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ABSTRACT

Methods for the Imaging, Analysis, and Display of Layered Media

Lionel D. Fiske

This dissertation is a review of three projects I worked on during my time in the Compu-

tational Photography Lab at Northwestern University. First, a source separation problem

for the X-Ray Fluorescence images of painted works of art is addressed through the in-

corporation of Hyperspectral Reflectance data. Following this, a discussion of Optical

Coherence Tomography and its applications to cultural heritage science is presented. A

rigorous analysis of the depth resolved attenuation coefficient in the presence of speckle is

performed and a Bayesian model for the signal is derived. Finally, the problem of speckle

in fast temporally multiplexed holographic displays is addressed. In this, the impact

of quantization on the reconstructed image quality is analyzed and quantization aware

optimization methods to reduce speckle are surveyed.
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c) Histogram of estimated value for top 100 rows of pixels of the DR
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averaging 1000 A-scans 78
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a) This panel is a simulated B-Scan, which was simulated using

parameters βNA = .3, Iinc = 1e7, µoct = 2.00 mm−1, lateral resolution

of ∆x = .022mm and ∆z = .0068 mm in a domain which is 3.4 mm

deep.

b) This is the DR reconstructed coefficient map. The reconstruction

is highly variable around the true attenuation value of 2.00 mm−1.

This panel also demonstrates the growth artifact in the bottom 30%
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c) This figure is a histogram of the top 70% of pixels from panel

b). As shown in equation 2.23 we expect this to be exponentially

distributed with parameter 2.00 . A best fit exponential demonstrates

this is accurate to 3 significant figures.
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µoct = 2.00 βNA = .3, σscat = 1.0 − 6 mm2, a lateral resolution of
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artifacts. Both the simulations and figure creation were done in
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a) This panel shows the ground truth attenuation coefficient for the

simulation. This ground truth is a realization of the prior distribution

given in equation 2.28.

b) This image shows the reconstructed attenuation coefficient using
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a) This image shows how the DR reconstruction error varies with

different mean attenuation coefficients for a variety of ζ values. The ζ

value does not appear to greatly impact DR Reconstruction fidelity.

b) This image shows how the mean posterior estimator error varies

with different mean attenuation coefficients for a variety of ζ values.

This estimate was computed using equation 2.32. Clearly, the

incorporation of this value into the prior impacts our uncertainty in

our Bayesian estimate. 81
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For the majority of my time at Northwestern I have worked in the Computational

Photography Lab (CPL) under the guidance of Prof. Oliver Cossairt. This lab focuses

on the blending of physical modeling, machine learning, optics, and imaging know-how

into new ways to take, display and analyze images. In learning to do research in this

lab I became wholly interdisciplinary, learning to speak the languages of art conservators,

engineers and physicists in addition to applied mathematics. This dissertation is a re-

view of three of the projects I worked on at during my time in CPL, and represents the

culmination of many hours of hard work. While this is an exploration of several topics,

the projects are spiritually related through the modeling and understanding of impact of

material properties on optical fields.

The first project discussed in this thesis is on the subject of ill-posed source separation

of X-ray fluorescence (XRF) elemental images of paintings with multiple layers. I worked

on this while jointly appointed in the Northwestern Center for Scientific Studies in the Arts

(NU-ACCESS) in collaboration with two talented researchers Prof. dr. Matthias Alfeld

and Prof. dr. Maurice Aalders from TU Delft and the Amsterdam UMC respectively.

While I learned much in graduate school, the origin of acronym "NU-ACCESS" remains a

mystery to me. We developed a technique which identified correlations with another less

penetrating spectroscopy method. This differential in penetration depths allows us to gain

some 3D information from 2 separate 2D measurements. These results were published

these results at the peer reviewed conference ICIP in 2021.

The following chapter, covers work I did while living abroad as a researcher at the

Amsterdam UMC in the Netherlands under the guidance of Prof. dr. Maurice Aalders

and in close collaboration with Prof dr. Dirk Faber. This project originated as a question
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of the applicability of attenuation analysis methods for OCT to the identification of paints

in paintings. Instead of that problem, we ultimately addressed an open question mod-

eling the uncertainty of the attenuation analysis methods as a function of the material

properties. In this chapter a rigorous statistical model for this system is proposed and

and a careful treatment of the signals which considers noise is done. These results were

published in Scientific Reports in 2021.

The second chapter additionally covers two papers which I contributed to in collabora-

tion with Dr. Mitra Almasian and several other talented researchers at the Rijks Museum

in the Netherlands. This collaboration came about while working in neighboring offices

at the Amsterdam UMC and realizing that much of the code I was developing to analyze

OCT speckle could be repurposed for the analysis of OCT images of paintings. I helped

to develop a robust image processing pipeline with Mitra for the purpose of analyzing

varnish and glaze layers layers in painted works of art. While, I continue to provide tech-

nical support and help for Mitra in these investigations the spirit of the scientific work

comes from her and the other talented scientists at the Rijks Museum. This resulted in a

publication in a Cultural Heritage Science in 2021 and a second publication in review as

a part of operation Night Watch.

In the final chapter of the thesis, the problem of displaying a 3D object is considered

using a technique called Computer Generated Holography. My interest in holography de-

veloped as a result of listening to Ollie talk endlessly about Fourier optics and 3D displays.

This holographic indoctrination culminated in a research internship at Meta Reality Labs

under the supervision of Dr. Gang Li to work on holographic display technology for

next generation head mounted displays. Mathematically and conceptually, this problem
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is deeply related to the OCT problem. Only, instead of measuring the object as a series

of slices instead you must display them. To do this, coherent light is controlled using a

spatial light modulator forming a potentially 3D image in the interference pattern. This

project studied the speckle introduced into these interference patters from fast spatial

light modulators and surveyed different methods which could help to reduce it.

This dissertation is about the numerical modeling of the interaction between optical

fields and objects. In this work, I will study two versions of this problem. The source

separation problem covered in chapter 1 and the attenuation parameter problem posed in

chapter 2 are focused on analyzing and extracting images taken with various modalities.

That is, measuring an optical field and extracting information about materials from these

measurements. In chapter 3 I focus on the opposite problem; the realities of generating an

arbitrary optical field through the use of real world optical components. In the following

chapters I will demonstrate an understanding of a wide variety of topics, techniques, and

concepts and use those to answer or investigate problems in computational imaging and

display. I will call on my background in numerics, modeling, as well as signal processing

and machine learning to address these problems in fun and creative ways. I sincerely hope

this dissertation is as enjoyable a read as graduate school was to complete.
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CHAPTER 1

Computational XRF Delayering: Inferring Depth with Data

Fusion
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1.1. Introduction

Cultural heritage science is an interdisciplinary field which blends techniques from

history, art conservation and hard sciences together in an effort to answer historical ques-

tions and to preserve art and artifacts for future generations. While scientific techniques

have been applied to art historical questions since at least the 1930s [92], there has re-

cently been increased interest in bringing new computational imaging techniques to bear

on these problems [98, 94]. In the study of painted works of art, a problem of particular

interest is material identification and characterization. Solving this problem is necessary

for several applications. First and foremost, material identity can be used to inform the

preservation of the artwork as different materials will require different light, humidity,

and temperature conditions for storage and display and specific conservation treatments.

Material identity is also useful for studies of the artist’s style and access to different pig-

ments and media. Furthermore, an understanding of both the pigments an artist worked

with and the order in which they were applied in layers on a canvas or support can be

important for art historical questions. This stratigraphic information when coupled with

spatial information can be used to identify revisions, preparatory layers, and an artist’s

working process. Traditional approaches to layered material identification involve the tak-

ing of physical paint cross-sections which is damaging to the artwork. Furthermore, these

techniques provide only local information and do not give access to information across

the entire work of art.

To avoid both of these issues, imaging spectroscopy is now commonly employed. Imag-

ing spectroscopy refers to any technique in which a large 2D ’image’ of an object is

created where each pixel contains some sort of characteristic spectra (E.g. reflectance,
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fluorescence, phosphorescence) of the object. These spectra contain chemical or phys-

ical information. In the case of painted works of art or other layered media, imaging

spectroscopy often involves the use of deeply penetrating wavelengths such as X-rays or

infra-red which can probe information about all of the layers– allowing access much of the

same information as a cross section in a non-contact and non-destructive manner. For all

of their advantages, these techniques provide large amounts of complex data and as such

the interpretation of the acquired images features is still an ongoing area of research.

This chapter addresses the problem of identifying surface and subsurface portions of

2D X-ray fluorescence elemental maps through the incorporation of visible reflectance

data. In essence, this is an attempt to infer depth information from two different mea-

surements which are not depth resolved. The XRF measurements are a superposition of

the component parts we seek to recover, making this problem essentially like trying to

recover two numbers which have been added together. A complementary spectroscopy

technique with a different penetration depth profile will contain additional information

about the stratiography, which can help to address the ill-posedness of the delayering

problem. This chapter shows a proof of principle that penetration depth diversity can be

used to gain 3D layering information and the limitations of this simple approach are also

discussed.

1.1.1. Chapter Outline and Structure

To better understand the problem, section 1.2.1 provides the background needed to un-

derstand this problem. Specifically, section 1.2.1 and 1.2.2 some background on XRF and

RIS are given respectively. Section 1.2.4 other data fusion approaches to similar problems
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and section 1.2.3 provides context to how these problems arise in the context of cultural

heritage science. Following this, a fusion algorithm is then proposed in section 1.3 and

results are demonstrated in section 1.5

1.2. Background

1.2.1. X-ray Fluorescence Spectroscopy

X-ray Fluorescence spectroscopy (XRF) is a non-contact and non-destructive material

identification technique which gives information on the elemental make up of an object

[102, 42, 6, 33, 4, 7, 32]. It works by illuminating an object with high energy X-rays with

energies ranging from 20–60 kV. This X-ray bombardment causes electron transitions in

the inner shells of the constituent atoms in an object, leading to the release of fluorescent

X-ray radiation at very characteristic energies. These emission spectra are measured

and mapped to different atomic species using a fitting routine [102]. By measuring

over a large grid of points, a 2D image called an XRF elemental map can be created

allowing for the visualization of the distribution of various elements across an object, as

shown in figure 1.2. XRF has been used in cultural heritage applications since the 1950s

[42], however in recent years, developments in sensor technology have made XRF much

more portable and accessible for cultural heritage scientists and conservators. While this

technique is powerful for non-destructive material analysis, X-ray dose can be an issue for

cultural heritage applications [14]. Additionally, this technique gives information about

the distribution of atomic species and not about the chemical state or bonds these atoms

are in. This can make distinguishing between different materials with similar atomic make

ups difficult. Due to the fact that both the incident illumination and fluorescent light in
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this technique have an exceedingly high penetration depth (X-rays) this technique can

probe the interior or subsurface of an object. This can be used to study overpaintings

where additional paint was applied to change a region in a work of art [6, 5, 32]. In

layered media, signals from all layers are detected as a superposition. This often leads to

ambiguities as to where in the bulk of an object a signal is coming from. Trying to find

the signals from different layers given their super-position is an ill-posed source separation

problem. Blind source separation techniques such as ICA may be of limited use because

of the assumption that the layers are statistically independent which is not true in general

for painted images. Confocal XRF can be employed to depth-resolve features in a sublayer

[65]. However, it is a technically complex method, costly, and requires both the much

higher total X-ray dose and longer acquisition times typically associated with synchrotron

sources. Confocal XRF is thus not feasible for large paintings or routine applications in

cultural heritage science.

1.2.2. Visible Reflectance Imaging Spectroscopy

Visible reflectance imaging spectroscopy (RIS) is a non-destructive and non-invasive tech-

nique in which one illuminates an object with broadband white light and measures the

reflected light wavelength by wavelength. At each pixel, the reflectance curve is continu-

ous in wavelength and has a characteristic shape dependent on the material composition of

the underlying object, as demonstrated in figure 1.4. In particular, many commonly used

pigments have distinctive absorption features in the visible range which allow them to be

unambiguously identified. Since the development of compact RIS cameras in the 1990s
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Figure 1.1. Layered structures are irradiated by x-rays and the resulting
fluorescence is measured in an energy-resolved way. Elements have charac-
teristic peaks at certain energies which are fitted to qualitatively measure
local concentration. These concentrations are then arranged into maps of
elemental concentration. Example spectra reproduced from [121].

[88] these hyperspectral imaging methods have become a workhorse technique for identi-

fying pigments and repairs [33, 4, 7, 81, 94]. Typically, measured reflectance curves are

compared to a reference database either visually or with quantitative similarity measures

such as spectral angle, allowing for the identification of materials such as pigments and

additives.

The RIS signals of different pigments mix in a nonlinear fashion based on the absorp-

tion and scattering properties of the pigments, fillers, and binding media [69, 53, 108].
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Figure 1.2. Example XRF elemental maps from Poèmes Barbares [2] by
Paul Gauguin taken as a part of a collaboration between the Straus Center
for Conservation and Technical Studies at the Harvard Art Museums and
the Northwestern Center for Scientific studies in the arts [115]. The top
rows show images whose contrast represents the relative abundance of vari-
ous atomic species. The bottom panel is a real cross section taken from the
painting showing the complex composition and layering of the same painting.

However, due to the fact that both the absorption and scattering coefficients are wave-

length dependent, the reflectance curve simply does not contain enough information to
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recover them unambiguously without additional assumptions or measurements [99]. This

means that, at least theoretically, two paints can have the same reflectance curves but

behave differently when mixed with other paints. Sometimes this ambiguity is addressed

by using a dictionary or database of known pigments for regression [95].

RIS is often used in conjunction with clustering and nonlinear embedding techniques

for unsupervised endmember (pigment) identifications [7, 115]. These approaches are

essentially trying to find a inverse mapping between pigment identity and relative con-

centration and the reflectance signal itself. These techniques can find potential pigment

candidates which mix either linearly or nonlinearly to produce the measured signal. How-

ever, it is not always the case that these pigment candidates are physical and these

unmixing problems are still an open area of research. Due to the fact that paint absorbs

and reflects light strongly in the visible range the penetration depth of light in this range

is generally very small. Thus, in many situations RIS can only provide information about

the surface of an object and does not probe the layered structure at all.

1.2.3. XRF Source Separation Problems Arising in Layered Media

In the measurement of XRF elemental maps often the specific layer a pigment signature is

coming from can be inferred by reasoning about the techniques in constructing a painting.

For example, in the lead elemental map (Pb-L) shown in figure 1.2 the signal is relatively

flat and uniform across the surface of the entire painting. Clearly, no single lead containing

pigment is used across the entire surface of the painting so this signal must be coming from

the subsurface layers. In the case of this painting, the canvas was painted with a lead white

ground layer and the image was built on top. However, other signals are more difficult
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Figure 1.3. The Proposed framework takes co-registered XRF and RIS data
cubes. RIS data is clustered into K pigment mixtures and the surface XRF
is estimated by calculating the mean XRF response across all clusters. The
subsurface XRF signal is estimated by subtracting the surface XRF from
the total XRF signal.

to interpret when lower layers and surface layers have elemental composition. Clearly

in this case the subsurface layer is visible but the pigments on the surface somewhat

obscure and hide a clear image of the elemental map below. It would be desirable from

a data visualization and clarity perspective if it were possible to identify and remove

the contribution of the surface pigment layer to the elemental map and only view the

subsurface.
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1.2.4. Related Work

Some approaches to infer depth information has been from XRF and related measurements

have been investigated. For example, it has been shown that layering information in XRF

can been gained through the incorporation of PXIE, a spectroscopic technique in which

a sample is exposed to an ion beam which then induces X-ray Fluoresence which can

be measured. One paper found that some layering information can be gained by taking

PIXIE measurements with different incident energies [83]. These results are impressive

but require a particle accelerator making this technique out of reach for most cultural

heritage problems. In some cases, depth information can be extrapolated from a series

of XRF measurements which are made with increasingly tilted detection angles [109].

Signals from deep layers will attenuate more due to interactions with the surface layers

allowing depth information to be gained by the ratio of peak heights. However, this

can lead to ambiguities when multiple layers have a given element. Additionally, very

precise alignment of the illumination between measurements is required. This can be

accomplished by using two detectors simultaneously effectively doubling the hardware

requirements to use this technique.

Painted works of art are often investigated by using both RIS and XRF. Combined

RIS and XRF have been used to study the connection between stylistic changes and mate-

riality in Late Rembrandt’s [34], study the composition of many illuminated manuscripts

[81, 65], and to identify hidden or obscured text [89]. Currently, both techniques are

being employed for the highly publicized Operation Nightwatch [94] to study and analyze

materials used in the Nightwatch by Rembrandt. These modalities are also employed in

other disciplines such as Geo-science, where recent work used them to study sediment
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cores [93]. While both RIS and XRF are often independently analyzed using quantitative

techniques, the fusion of the data is typically qualitative and, with a few exceptions [7],

performed by simply comparing the resulting images by eye. While some preliminary work

demonstrated that quantitative fusion is possible [29] techniques to solve this problem

remain an open area of research.

Some work has been done on the problem of computationally delayering the X-

radiography images [30]. In this work, a joint dictionary approach based on sparsity

is employed to accomplish the separation. While the results are impressive, the problem

addressed in this chapter fundamentally differs, as all measurements are made from the

surface layer of a painting. A similar one sided problem has been investigated as part

of guided XRF super-resolution algorithm [28]. In this, an RGB image is used to help

interpolate XRF data. This paper split the XRF signal into a portion which is corre-

lated with the RGB and a portion which is unrelated. This splitting suffered from the

fact that RGB images typically do not contain enough information for robust pigment

identification because many pigment combinations are visually identical. Furthermore,

a dictionary approach implicitly assumes a linear mixing model for pigments, which is

nonphysical and can lead to poor results. Some newer work has used a Neural Network to

find the nonlinear mapping [91] however, this approach requires information from both

sides.

1.3. Delayering XRF with RIS Data

Light penetrates into a material structure with a depth dependant on wavelength. For

the wavelengths used in RIS to analyze most paint systems, we see very little reflectance
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Figure 1.4. An example RIS data cute for the Gauguin dataset. This fig-
ure demonstrates the two ways RIS data can be interpreted, as a series of
reflectance curves containing data in their shape, or as a series of images
each with different relative contrast and brightness between the pixels. The
image on the left represents the x,y slice of the data cube at wavelength
643. The blue dot on the red image represents the position of the reflectance
curve next to it.

from deep buried layers. Conversely, X-rays, associated with XRF, penetrate through the

entire layered structure of a painting with ease. From this perspective, the question of

whether it is possible to exploit the diversity in penetration depths alone to isolate the

portion of the XRF signal which is closely associated with the surface of the painting.

To gain information about the XRF from the RIS, the data sets must be mapped

into a space where they are comparable. Conceptually, a painting is made from physical

materials, i.e., different paints and glazes, with a given spatial distribution and chemical

structure. Since the chemical structure is made from a defined set of atoms we expect

XRF elemental map intensity and RIS data to both be functions of the physical pigment
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distribution. Thus, if we can successfully cluster a hyperspectral signal, such that the

clusters represent the pigment concentration, we should also expect these clusters to be

correlated in some way with XRF signal intensity.

Due to the non-linearity of each underlying mixing problem it is reasonable to expect

the relationship between the XRF map and the RIS data cube to be nonlinear and difficult

to explicitly model. One obvious mapping would be the composition of the RIS to pigment

inverse function which is inferred through clustering and the pigment to XRF function

which is either inferred or measured explicitly. Obviously, XRF elemental inverse mapping

will not be one-to-one without adding in additional constrains due to the fact that many

pigments contain the same elements. Finding RIS to pigment mapping is commonly

done via a clustering approach- either a non-negative matrix factorization or a non-linear

technique such as TSNE. The goal is to have as many endmembers as pigments used on

the surface of the painting, usually around 5-10. However, this ’unmixing’ problem is

very sensitive to clustering method and parameter choice leading to questions about how

physical the resulting distributions and endmembers are in general.

For the delayering problem, the specific distribution of a given pigment is intermediary

so solving the difficult and hard to verify nonlinear unmixing problem may be unnecessary.

Instead, the assumption can be made that the reflectance signal R(pipipi) is continuous, such

that given two mixtures of pigments p1, p2p1, p2p1, p2, if ||R(p1p1p1) − R(p2p2p2)|| is small then ||p2p2p2 − p1p1p1||

is small as well. This assumption can be used to justify clustering the reflectance data

into K groups which are spectrally most similar, and that these spectrally similar groups

should also have surface pigment concentrations. Instead of unmixing the pixels, the

pixels are separated into groups with the most similar mixtures, without uncovering what
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those mixtures exactly are. Pixels with similar surface pigment concentrations should

have similar surface contributions to the XRF signal allowing us a route to isolating the

proportion of the signal coming from the surface layer of the painting.

Once the initial clustering step has been performed the XRF response for each con-

stituent cluster can be estimated. Given sufficiently large clusters, statistically indepen-

dent layers, and assuming that the subsurface image is sparse, the mean XRF response

should provide a sensible estimate for the surface XRF signal for those pixels. We can

then form an image of a predicted surface distribution by replacing each cluster of pixels

in an image with the mean XRF response as seen in figure 1.7. The surface concentration

can be estimated as

X̂surface =
∑
k

ECk
[Xtot] ICk

(1.1)

Where k is the cluster index and Ck is the kth cluster, and ICk
is the indicator function

on cluster Ck. High frequency error can be introduced both by slight misregistrations as

well as from hard cluster boundaries. To account for this we consider the solutions to

multiple K-means clusters which have their XRF intensities slightly varied by shifting the

XRF signal by single pixels relative to the reflectance cluster and different initial seeds.

We estimate the surface pixel value as

X i
surface = min

l

{
X̂ l,i

surface

}
(1.2)

where X̂ l,i
surface is the surface estimate for the ith pixel given by the lth clustering seed. We

have found that this routine produces results with fewer errors at the boundaries than

using a single estimate. The example in figure 1.6 uses 13 different clustering seeds and
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shifts. Finally, the subsurface intensity is estimated as

X i
subsurface = min(X i

tot −X i
surface, 0).(1.3)

The threshold of 0 is physically motivated from the fact that XRF elemental intensity is

strictly positive. This algorithm is written in psuedocode in appendix C.1.

1.4. Data Sets

To test this delayering approach, a page from a 15th/16th century Book of Tides with

decoration and writing on both sides of the page is considered. This manuscript has been

analyzed and imaged by XRF and RIS as shown in figure 1.3. Since by its nature, a

manuscript allows easy access to the rear of the page, features on the backside can easily

be compared to the results obtained through visual inspection. While having access to

the rear helps with verification, we will only use measurements made from a single side.

Confocal XRF data was also obtained for this manuscript [65] thus providing a ground

truth comparison with a different technique.

To assess the performance of the algorithm, a simulated dataset produced from real

reflectance curves for pigments clustered out of the Book of Tides dataset has been pro-

duced. The reflectance curves from the RIS data are split into 15 clusters and select

an example cluster for red, beige, white, and green regions in figure 1.6 showing a fig-

ure which is a simulated painting depicting the ICIP 2021 logo. The respective clusters

contain several hundred pixels, each with their own reflectance spectra, which we assign

pixel-wise to the image. Each color in the image is then assigned a mean XRF response

and a top layer XRF signal is created as a realization of a Poisson distributed around the
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Figure 1.5. Typical X-ray distribution map. Cu-Ka X-ray image showing
both surface (bright pixels) and subsurface (darker pixels) features.

mean value of this signal to simulate physical photon counting noise. Finally, a second

image is added to the rear which is also realization of a Poisson random variable giving

physically realistic random variation.
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Figure 1.6. A simulated RIS image generated by reassigning pixels from the
Book of Tides RIS data cube to an simulated RIS image of a painting of the
ICIP 2021 logo and simulate an XRF by assigning each cluster a mean XRF
value and adding a subsurface image. A) shows an RGB reconstruction of
the simulated RIS data cube, B) examples of two green reflectance curves
located at 2 different pixels. The curves have similar shapes but also contain
slight differences in intensity and noise. C) shows the simulated XRF signal
under Poisson noise, D) a surface XRF estimate with K=5 clusters obtained
by computing the average for each cluster, E) a subsurface XRF estimate.

1.5. Results

1.5.1. Simulated Data Results

The results on the simulated data are shown in figure 1.6. In this simulation it is qual-

itatively observed that the reconstructed surface estimate matches with the true surface

XRF signal on average. Due to the fact that this is a simulation there are no uncorre-

lated surface effects or other sources of error so the shifting routine can be skipped. The

resulting delayering is very close to the original image. You can see some residual signal

remaining particularly in the regions of strong XRF signal in the green areas. The overall

PSNR for the surface and subsurface is good at 24.4 and 35.9 respectively. The subsurface

performance is aided in the fact that the physical threshold makes the pixel values match

exactly where the image is 0.
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1.5.2. Book of Tides Results

The delayering results for the complete dataset is shown in figure 1.7 in which our proposed

method is compared to the previously acquired confocal XRF measurements made on the

same area and visible images from the front and back of the page (see [65] for complete

results and conditions of acquisition). In figure 1.7A, the total overlapping XRF signal

for the element Cu is observed. Our prediction for the top layer and bottom layer are

shown respectively in figure 1.7B and C. In comparison with the previously acquired

confocal XRF image of the same area (figure 1.7F) it is found that our result compares

surprisingly well with this complex and costly method. Likewise, compared to the visible

images (figures 1.7D and E), our algorithm may be seen to faithfully reconstruct the

copper signal coming from the front and back of the page.

1.6. Discussion

This chapter considered the problem of virtually delayering XRF elemental maps

through the incorporation of RIS data. The problem of interpreting XRF data in layered

media is of interest to cultural heritage scientists because it can allow for easier analysis of

layering structure and the imaging of underpaintings. An approach which uses an initial

clustering step and the identification of a cluster-wise response dictionary which can then

be used to estimate the surface image was proposed and tested in three different data

sets.

This approach of cluster and compare is computationally simple and easy to implement

and provides the end user with an easy to interpret delayered result with few parameters.

This serves as an proof of concept that information of the surface XRF intensities can
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Figure 1.7. Recovery of signal from an illuminated manuscript which is
obscured by surface level features. A) Total Cu K XRF signal, B) estimate
of Cu top layer, C) estimate of Cu bottom. D and E show visible feature
of Front and Rear of manuscript. F) Cu map produced by confocal scan of
same area.

be gained by examining clusters in registered RIS data cubes. However, the method only

can detect correlations between the XRF signal and the RIS signal so in situations where

there is surface signal which is not correlated to RIS spectra the method fails. This occurs
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in the case of a thick layer of paint with thickness variations visible in the XRF signal.

Furthermore, the method is sensitive to misregistration between the XRF and the RIS

data. Which can be a difficult problem in and of itself due to contrast and resolution

differences between the two measurements.

This method provides an easy to implement and effective way to estimate delayering

for cultural heritage applications involving 2 layered paintings. However, we use a very

brute force clustering algorithm and ignore the underlying distributions of the XRF mea-

surements. Several frameworks can more directly handle this sort of statistical prior such

as Gaussian Mixture model or a neural network with an appropriate cost function.

While these results can and should be refined, the results demonstrate the difficulty

in extrapolating 3D information from a 2D measurement. The conceptual framework of

treating a painting as a series of independent depths can sometimes be appropriate but

it is nonphysical. An example of a situation where such a conceptual model would not

work is when studying objects such as glass particles [10] which are embedded within a

layer. In situations such as these an understanding of the depth of the particles within a

layer will need to be studied with a true 3D imaging method such as Optical Coherence

tomography, as discussed in chapter 2.
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CHAPTER 2

Optical Coherence Tomography Attenuation Imaging with

Speckle Present
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2.1. Introduction

Both imaging modalities discussed in chapter 1, are concerned with measuring 2 di-

mensional projections of an object. When studying questions surrounding stratiogra-

phy, morphology, shape or structure the relevant information is inherently 3 dimensional.

While clever tricks can be developed to infer this depth information from a 2D imaging

modality, these measurements often will not contain enough information to address the

question being asked. In these cases a true depth resolved imaging modality is needed.

Optical Coherence Tomography (OCT) is an imaging technique which allows for the visu-

alization of internal structures of tissues and other translucent materials volumetrically.

It manages to do this with a very low dosage of (often) visible light making it appropriate

for sensitive applications such as imaging the eye [10] or studying the structure of varnish

and glazes in old master paintings [10, 9].

OCT was developed as an imaging technique in the seminal paper by Huang and Fuji-

moto [55] by extending work in 1-dimensional partial coherence interferometry developed

by Fercher [40, 41]. Later, the technique was refined again by Fercher into Fourier Do-

main OCT which uses wavelength diversity to reconstruct an image faster and with less

noise [39]. OCT creates these depth resolved images through interferometry, effectively

measuring where the light is being reflected from the phase of the back-scattered field at

the detector. Due to the wavelike nature and constant speed of light the phase of the

light carries depth information for where in the sample the light was reflected allowing

an image to be constructed where the pixel values are related to the amount of light

back-reflected at each point. Modern OCT is a workhorse for visualizing layered media
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by probing depth in one dimension called an A scan, generating a virtual cross section

called a B scans, or by measuring full volumes called C scans.

In applications such as cultural heritage science or medical imaging, insights on mate-

rial structure and makeup can be gained by extracting quantitative material parameters

from the imaged sample. In particular, the depth resolved attenuation coefficient has been

related to tissue structure in cancers [116]. However, because OCT is a technique which

uses the scattering of coherent light, the measurements suffer from large and effectively

random intensity fluctuations due to self interference called speckle.

The goal of this chapter is to construct and validate the posterior distribution for the

voxelwise attenuation coefficient in the presence of random fluctuations due to speckle.

The posterior distribution assigns a meaningful probability to every possible value of

the true attenuation coefficient. Here, the true attenuation coefficient is defined as the

attenuation coefficient of the mean OCT signal without speckle fluctuations. Using an

existing depth resolved method [114], the attenuation coefficient at each voxel can be

estimated from the measured OCT signal. These estimates depend on the intensity at

each voxel which fluctuates due to speckle. Because of these voxelwise fluctuations, the

estimated value of the attenuation coefficient at that point will likely differ from the true

coefficient. The posterior probability distribution gives the probability that the true value

of the attenuation coefficient is equal to µoct given that our depth resolved estimate from

the measured image was equal to µ̂. Utilizing the posterior distribution allows for the

identification of estimation biases and the quantification of uncertainty by giving access to

statistics about the inferred attenuation coefficient. A better understanding of uncertainty

can have direct clinical implications by helping to inform practitioners of how much they
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can trust a given inference. Furthermore, this approach opens the door to probabilistic

tissue classification tasks such as tumor grading where the likelihood of various outcomes

must be compared.

2.1.1. Chapter Outline and Structure

Section 2.2 provides background and examples on OCT and attenuation analysis. A

description of back scattering as a contrast mechanism is given in 2.2.1. Two applications

of Fourier Domain OCT to the imaging of painted works of art are discussed 2.2.3 with

example images of real OCT scans. Before the posterior and prior distributions of the

attenuation coefficient can be derived we must first have a mathematical model for the

measured OCT signal so we can make depth resolved attenuation coefficient estimates. In

section 2.3 a model which describes the mean signal decay is given. This model assumes

that the measurements are made on a weakly absorbing medium and that the majority of

measured light is single scattered. Next, in section 2.4 the effect of speckle on this OCT

signal is considered and the probability distribution for the measurement is given.

The likelihood function is derived in section 2.5 by analyzing the speckle variations

and is verified experimentally in section 2.6.1 by measuring the distribution of depth

resolved attenuation coefficient estimates for a very homogeneous phantom. In section

2.5.1 the prior probability, P (µoct), is derived using basic physical principles. This prior

gives the background probability for finding a particular value of µoct at any point in

the sample without any additional measurement information. Following this we define

a Bayesian estimator for the attenuation coefficient in section 2.5.3. In section 2.6.2 we
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simulate OCT signals with realistic variations to test our assumptions and statistical

model. Finally, section 2.7 will provide a thorough discussion and propose future work.

2.2. Background

2.2.1. Scattering Coefficients

Fourier domain OCT is a technique which senses the Fourier transform of the depth

resolved changes in index of refraction by measuring interference patterns of the back-

reflected electric field at many different wavelengths. A rigorous derivation of this method

is presented in appendix A.1. For many applications of OCT, the light scattering occurs

not from index of refraction variations within one media, but instead from small particles

of a different refractive index embedded in the material itself [11]. These particles are

much much smaller than the imaging resolution of the OCT with any realistic laser band-

width. As a result, the reconstructed intensity for an OCT depth scan is proportional

to the amount of scattering that the aggregate group of particles within a given imaging

voxel. This is generally quantified using a single coefficient called the scattering coefficient

µs[L
−1] which is defined as the amount of light which is scattered out of a path within a

given unit length.

Light which is scattered is scattered in all the directions, and the distribution of

the amount of light scattered in each direction, called the phase function of the light,

depends highly on the particles size and shape. Often, it is assumed that light scatters

isotropically although many alternative scattering models exist. From this alternative and

more aggregate perspective, not all of the scattered light will reach the detector as some

proportion of the energy will be scattered forward or in a direction which does not enter
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the camera aperture. This is frequently modeled as a coefficient called the back-scattering

coefficient βNA(z) as shown in figure 2.1. This coefficient is dependent on the optics of

your OCT system, and in particular the numerical aperture (angle of acceptance) of your

lens.

Figure 2.1. A demonstration of the impact of numerical aperture on the
ratio of back-scattered light. The NA of the lens controls the acceptance
angle of the optics. As light is scattered a certain fraction of light will arrive
at the imaging plane. Only a small subset of that light can be detected by
your optics. The ratio of the detected intensity and total scattered intensity
is βNA

2.2.2. OCT Attenuation Analysis

While qualitative visualization is sufficient to solve many problems there is interest in de-

veloping new quantitative metrics which can be used to make inferences in a more robust

and reliable way, particularly in the medical world. One such quantitative measure is

OCT attenuation analysis. Assuming a constant amount of scattering, as light penetrates
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more deeply into a medium the total amount of light there which can be back reflected is

lessened due to previous scattering and absorption events reducing the incident intensity

leading to a decrease in signal. The precise rate of this signal decay is controlled only

by the scattering and absorption of the medium. These are material properties which

are imaging system independent and can be correlated with material structure and com-

position. Currently, methods to extract the attenuation coefficient fall into one of two

categories: layerwise extraction through curve fitting [38] and depth resolved or voxelwise

extraction [24].

In the layerwise approach, the layers of media are segmented, and then an exponen-

tially decaying model is fit to each A-scan of the OCT signal in the least squares sense

[38, 24, 82]. From this perspective, the attenuation coefficient is a bulk measure which

assigns a single, deterministic number to each segment of an A-scan. However, a measured

A-scan will contain fluctuations due to speckle [96, 60]. OCT speckle is the voxel-to-voxel

variation of OCT amplitude, due to random variations in the spatial position of scatter-

ing particles within the imaging voxel. Randomly placed scatterers within the voxels will

thus return scattered fields with random amplitude and phase – leading to intensity fluc-

tuations at the detector. While the origin of speckle is deterministic at the microscopic

level, in practice the measured signal is well modeled as a realization of a random process

equivalent to randomly varying the exact microscopic position of the scattering particles

in the bulk of the media [11]. One common technique to overcome the speckle variations

is lateral averaging [111, 82, 36], where neighboring A-scans are averaged together prior

to fitting. Lateral averaging can be an effective technique at reducing speckle variations

but at a severe cost to lateral resolution. If the sample is not perfectly static, as is the
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case in liquid samples with particles undergoing Brownian motion or sufficiently dynamic

living samples, consecutive A-scans taken at the same location can be averaged together

to reduce speckle variations at the cost of effective acquisition time [119]. In either case,

the layerwise fitting assumes complete uniformity in the composition and statistics of the

layer segment in depth and lateral averaging makes the same assumption over a volumetric

region.

A depth resolved (DR) approach, initially developed for ultrasound image quantifica-

tion [56], was adapted by Vermeer for use in OCT and has become popular in recent years

[114, 120, 100]. This approach removes the assumption of material uniformity in depth

and allows variations in the attenuation coefficient in three dimensions. The DR approach

assumes the material is weakly absorbing, making this technique related to voxelwise OCT

scattering parameter inference methods[61, 1, 110] which have a long history in OCT

signal processing. This method has been further refined by Liu [70] to better handle

boundary effects caused by finite imaging depth. In either formulation, reconstructions

of the attenuation coefficient will be highly variable due to the influence of speckle [100].

Thus, as before, lateral averaging is often still employed to get a more consistent result

[114]. Conceptually, the DR approach allows one to recover some amount of the natural

variability of optical properties within the tissues. While the advantages of the DR ap-

proach are manifest, the result of this approach in the presence of intensity variations due

to speckle leads to reconstructions in which the recovered attenuation coefficient itself has

large variations.

The propagation of speckle variation into the recovery of an otherwise deterministic

coefficient has clear implications for the accuracy of the attenuation parameter inferred at
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a single voxel. Since the exact measured intensity is effectively random, one can in general

expect the inferred coefficient to be effectively random as well. One way to handle the

inference of parameters in these circumstances would be to adopt a Bayesian perspective.

In this paradigm, instead of simply seeking an estimate for the value, one seeks the

posterior distribution, which quantifies how probable each attenuation value is [104]. In

these methods, accurate physical models about measurement uncertainty are combined

with prior information about the objects which are being measured.

2.2.3. Two Applications of FD-OCT to Cultural Heritage Science

This subsection summarizes work done as a part of a collaboration with the Rijksmuseum. I would like

to thank the staff Rijksmuseum, particularly Erma Hermens and Mitra Almasian, for allowing me to

reproduce these figures to include in this section.

OCT is primarily thought of as a medical imaging technique and sees consistent use in

optometry. However, as a non-contact and low power imaging modality, OCT has become

increasingly popular to address questions in cultural heritage science. In particular, glazes

and varnishes [10, 9] are frequently translucent in the wavelength ranges of most common

OCT systems and often contain embedded features and complex layered structures which

OCT is well suited to image. In this section two interesting case studies are addressed by

using Fourier Domain OCT coupled with an image processing pipeline which we developed

for cultural heritage purposes.

2.2.3.1. Imaging Ground Glass Embedded in Glazes. Ground glass was added to

paint layers for its sicative (oil-drying) properties throughout 15th-17th centuries [10].
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Figure 2.2. An outline from the image processing pipeline developed for
OCT images. Initially, some preprocessing and corrections are done to
smooth and normalize the signal. After this the OCT layers and or embed-
ded particles are segmented and optionally a depth resolved attenuation
image is generated which can increase contrast. Following this, a pixel-
wise random forest classifier is trained and outputs a series of probability
maps. Layers are then segmented using a maximum likelihood approach
and the segmentations are smoothed. Following this an index of refraction
correction is applied to each material and the layer thickness and geometry
is computed. Finally, any tilt between the OCT and measured object is
removed and the visualizations are generated.

When ground very finely, this can have the additional effect of increasing color depth in

certain red lake glazes [73]. However, altering the composition of the glaze layer could

potentially change the hardness or robustness of the layer. The changes in mechanical

properties can potentially impact the way the layer changes over time or must be handled.

While many example of painted works of art with glaze layers that contain ground glasses

exist historically, the available information on the ground glass and glaze recipes comes
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Figure 2.3. Example OCT C-scan [10] (volumetric image) of a mock-up
glaze layer with embedded glass particles. Clear contrast difference can be
seen between the glass (c) and the surrounding medium (b) due to the glass
particles not having any volume scattering making them appear darker than
the surrounding glaze layer. The layer interfaces (a,d) are bright due to a
rapid index of refraction change. The segmentation of the glass particles
can be seen on the lower left.

from recipes calling for the glasses to be hand ground confounding any measurements

taken. To investigate the mechanical properties of layers we created a series of sample

reconstructions following historic recipes. The mechanical properties such as hardness

could then be measured using microindentation. However, even controlling the creation of

the ground glass as well as possible there was ambiguity in the size and shape distribution

of the glass as well as the specific glaze layer thickness.

To gain insight on the size, shape, and distribution of the settles glass in the glaze

layer OCT was employed. The resulting images, shown in figure 2.3, show clear contrast

between the glass particles and the background glaze layers. However, the images must

be analyzed so the glass shape, location and size can be studied. To accomplish this task,
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the OCT images were processed using an off the shelf random forest classier called Illastik

[13]. This classifier creates probability maps, where the probability of each pixel belonging

to a specific layer, boundary, or glass particle is measured. These probability maps are

then analyzed in Matlab where a rough segmentation is produced using a max likelihood

approach and then refined with assumptions about layer continuity and uniformity. The

resulting segmentation is then corrected using information about the refractive index

of the glaze and glass which can have a large impact on the measured geometry. The

segmentation is then processed to extract statistics from the segmented layers such as

thickness and shape, as well as the segmented particles particularly the distribution of

size and location. The image processing pipeline used here is shown in figure 2.2.

Comparing the size and shape distributions for the ground glass showed a relationship

between the total surface area, which is inverse to the particle size which also impacts

the mechanical proprieties of the layer. The more homogeneous particle size distribution

further increased elastic and viscous moduli of the dried red glazes. Furthermore, it could

be seen that the distribution and locations of the particles in the layer were relatively

uniform. Showing in the short term little setting or particle migration occurred. Further

scientific details can be seen in the full publication [10].

2.2.3.2. Studying Varnish Degradation and Thickness in the Night Watch.

The Night Watch is a large and famous painting by Rembrandt van Rijn. This painting is

arguably the most famous work by Rembrandt and is a part of the rich cultural heritage

that the Netherlands relies on for tourism. While this painting is widely beloved, the

attention of this painting often makes it a target, which has lead to several attempts at

vandalization including two separate knife attacks [106, 84] and an acid attack [107].



59

Figure 2.4. A 2D virtual cross section (B-scan) done in a small region of
the shirt of Willem van Ruytenburch [27]. The varnish layers are clearly
visible as well as the surface topography of the paint layers.

The damage to the painting from these attacks has largely been mitigated through hard

fought conservation and restoration efforts. One such effort is currently under the way

called Operation Night watch [94]. The goal of [94] is three-fold. First, this effort is
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Figure 2.5. A small region of the Night Watch painting which exhibits sur-
face cracking. The cracks can be studied my measuring the surface height
using OCT as shown in the top right panel. A virtual cross section (B-scan)
clearly visualized the depth and width of the cracks.

restorative with the structure of the painting and the varnish are being repaired. Second,

to help connect the broader public to cultural heritage the repairs and measurements are

being widely publicised and live streamed. Lastly, and most importantly to this section,

the painting is being thoroughly measured and studied by a large team of cultural heritage

scientists.

This team of cultural heritage researchers have taken broad variety of measurements

including the reflectance spectroscopy and XRF discussed in the previous chapter, a va-

riety of chemical analyses and even ultra high resolution photography at roughly 717

gigapixel. Additionally, to address questions surrounding surface shape, layering, and

varnish OCT has been employed. Due to the fact that the painting is roughly 12 ft x
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14 ft and OCT has a microscopic field of view the entire painting could not be scanned

practically. Instead, 70 separate regions of this room-sized painting were imaged and the

subsequently analyzed using the processing pipeline shown in figure 2.2. The regions were

chosen due to the presence of damage, repairs, and interesting layering or surface shape.

These OCT scans give insight into how the painting is degrading with age. In some

regions lead soaps, where chemical reactions within the paint layers are slowly forming

structures which grow and pertrude from the painting are visible and could be measured.

Surface cracking also specifically imaged and quantified as shown in figure 2.5. In some

regions, multiple varnish layers were discovered as shown in figure 2.4 which shows an

imperfect removal of varnish during a previous repair. Overall, the OCT measurements

gave insight into current condition of this work of art, but as well as helping to find regions

or repairs to the surface of the painting and varnish. A full discussion of this project can

be seen in the publication [9].

2.3. Mathematical Modeling of the Intensity Decay

Intuitively, due to conservation of energy it is not possible to image infinitely deeply

into a media using a technique like OCT. In fact, the amount of light which can be

detected from within the media itself will decay rapidly. In most cases, the decay of

the reconstructed OCT intensity with depth can be adequately described using a single

exponential decay model [8, 47, 24]. Understanding the form of the OCT signal is

necessary prior to understanding the attenuation itself. The attenuation coefficient is a

material property, which depends on the absorption and scattering properties of tissue

and is not a function of the measurement system. However, several system dependent
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factors can also contribute to measured signal attenuation such as the confocal point

spread function and the sensitivity roll off function for OCT systems based on detection

in the Fourier domain [38, 112]. A model which takes all of these effects into account

was described in detail in earlier work [8, 112]. Typically for an OCT system, the signal

decay due to the confocal PSF and the sensitivity roll off function can be independently

measured, and subsequently, the resulting OCT data can be corrected for these effects. For

the sake of analysis, we will assume that the measured signal has already been calibrated

for these system dependent effects. A more thorough discussion of this can be found in

appendix A.3.

We denote the corrected OCT signal at depth z as I(z;µb,NA(z), µoct(z)) where µb,NA(z)

is the depth dependent back-scattering coefficient (the probability per unit length that

light is back-scattered into the detection numerical aperture). The depth dependent at-

tenuation coefficient, µoct(z), and the back-scattering coefficients depend on both the

scattering coefficient µs. These coefficients describe the probabilities of scattering and

absorption per unit length, respectively. For weakly scattering samples, with negligible

contributions from multiple scattered light, µoct = µs + µa, where µa is the absorption

coefficient.

Following Vermeer [114], we further assume that the tissue is very weakly absorbing

(µa ≈ 0), and, a constant fraction of the attenuated light is back-scattered at every point

in the tissue. We denote this fraction as βNA and define µb,NA = βNAµoct. Physically, this

implies that the system is highly scattering dominant, i.e., there is very little absorbed

light in the system when compared to the total attenuated light. Using these assumptions
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and Beer’s law we the continuous signal can be modeled as

I(z) = IincβNAµoct(z) exp

(
−2
∫ z

0

µoct(ξ)dξ

)
.(2.1)

Indefinite integration yields

∫
dzI(z) = IincβNA

∫
dzµoct(z) exp

(
−2
∫ z

0

µoct(ξ)dξ

)
(2.2)

= −2IincβNA exp

(
−2
∫ z

0

µoct(z)dz

)
=
−I(z)
2µoct(z)

+ C.(2.3)

Combining this simple observation with the physical boundary condition that I(z) → 0

as z →∞ yields the parameter recovery formula

µoct(z) =
I(z)

2
∫∞
z

dξI(ξ)
.(2.4)

In practice, OCT measures a series of discrete samples instead of a continuous signal.

Let ∆z denote the fixed axial resolution of the system, then the measured intensity is

given by quantity

IN = I(N∆z;µoct(N)) = IincβNAµoct(N) exp

(
−2

N∑
i=1

µoct(i∆z)∆z

)
.(2.5)

IN is defined which describes the mean value of the OCT signal with depth in a certain

region at depth z = N∆z where N is the pixel index and given an incident intensity Iinc .

For brevity, the shorthand µoct(N) = µoct(N∆z) is used. Provided that the inverse of the

attenuation coefficient is relatively small compared with the pixel size, its discrete value
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Figure 2.6. This figure demonstrates the imaging principle of OCT. An in-
cident current of coherent light illuminates a volume and some proportion of
the light is back scattered. In a weakly absorbing sample the back-scattered
light and the attenuation coefficient are proportional to one another. Within
a single imaging voxel there are many different scattering particles embed-
ded leading to speckle. This speckle forces the measured intensity to be
effectively randomly distributed around the mean refelectance of the voxel.

is given by [114]

µoct(N) =
IN∑∞

i=N+1 2∆zIi
.(2.6)

As noted by Liu[70], the tail of the series in the denominator in equation 2.6, meaning

all of the terms in the sum after some large term K, can be computed when an estimate

for an attenuation coefficient at that point in the sample is available. This is given by

∞∑
i=K+1

2∆zIi =
IK

µoct(K)
.(2.7)
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2.4. A Statistical Model of Speckle

For any technique using coherent light, the overall intensity is based on the amount of

interference given by the path length of any surface or particle reflecting light to a point.

For very smooth surfaces or systems with very few scattering particles the resulting images

contain physical and slowly varying fluctuations. However, for volume scatters with many

particles tiny variations in path length between the particles compounds and forms high

frequency and difficult to model fluctuations called speckle [48]. In the case of depth

imaging, when there are sufficiently many scattering events within a single voxel, the

speckle is called fully developed [54] and the measured signal becomes effectively random.

The phase of the measured field at the detector from a randomly positioned particle

will be random. In fact both the real and imaginary parts of the total field at the detector

will approach i.i.d. Gaussian random variables given a sufficient number of scattering

particles due to the central limit theorem with zero mean and variance proportional to the

number of particles and their scattering amplitude. A more robust derivation is given in

appendix A.2. Let Ez denote a random electric field such that Re[Ez], Im[Ez] ∼ G(0, ⟨I⟩).

With this statistical model for the electric field, one can derive the distribution of the

intensity of the electric field at the detector as a change of variables. Consider the function

A =
√

Im[Ez]2 +Re[Ez]2 := r(2.8)

by the change of variables formula has the PDF

A ∼ d

dA

∫ 2π

0

∫ A

0

r

2πσ2
exp(− r2

2⟨I⟩
)drdθ =

x

⟨I⟩
exp(

−I2

2⟨I⟩
).(2.9)
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Since OCT is a volumetric imaging modality the measured intensity on the detector must

obey these statistics. We can formally write the PDF of the detected amplitude for a

given depth as a conditional distribution as

Pamp(A|⟨I⟩) =
A

⟨I⟩
exp

(
− A2

2⟨I⟩

)
(2.10)

where ⟨I⟩ = σ2 denotes the mean intensity value. This formula gives the probability of

measuring amplitude A when the mean signal is given by
√
⟨I⟩. When OCT measurements

are made, typically intensity is measured and not amplitude. Given a Rayleigh distributed

amplitude of the form given in equation 2.10 it can be shown by a similar change of

variables that the intensity which is the square of the amplitude, follows [48]

Pint(I|⟨I⟩) =
1

⟨I⟩
exp

(
− I

⟨I⟩

)
(2.11)

which is an exponential distribution with parameter ⟨I⟩ as shown in figure 2.6

2.4.1. The Posterior Distribution

Due to the uncertainty from speckle, it is reasonable to expect that the recovered attenua-

tion coefficient for a material to contain some uncertainty as well. A robust understanding

of this parameter must contain some way to quantify this uncertainty given a series of

measurements. One way to do that is through he use of a Bayesian posterior distribution.

The posterior distribution assigns a meaningful probability to every possible value of the

true attenuation coefficient. Mathematically, the posterior distribution can be written

as the conditional probability distribution P
(
µoct

∣∣µ̂). This is the probability that the

true attenuation coefficient is µoct given a certain set of estimates denoted µ̂. Conditional
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probabilities can be rewritten as product of two easier to derive probability distributions

using Bayes’ theorem. This theorem states that the posterior distribution is given by,

P
(
µoct

∣∣µ̂) = P
(
µ̂
∣∣µoct

)
P (µoct)

P (µ̂)
.(2.12)

In this expression, P
(
µ̂
∣∣µoct

)
is called the likelihood function which represents the prob-

ability of estimating µ̂ given that the true attenuation coefficient is equal to µoct. The

distribution denoted by P (µoct) is called the prior distribution for the unknown µoct. The

prior probability allows the incorporation of additional information into the statistical

model and is often used as a way to establish bounds or to bias solutions towards realistic

values. The marginal probability P (µ̂) is a normalizing factor and can be computed via

integration. Using this relation, we can find the posterior distribution by solving two

easier problems: finding the likelihood function and finding the prior distribution.

2.5. Analyzing the DR Reconstruction Distribution

This section considers the estimation of the voxelwise attenutaion coefficients µoct(N)

from intensity measurements in the presence of speckle modeled by equation 2.11. In

this case, instead of measuring the mean intensity ⟨IN⟩ directly we can only measure IN

which is exponentially distributed with parameter ⟨IN⟩. Because the constituent parts of

equation 2.6 are now random the estimate will be itself a random variable. The estimated

random variable is denoted as

µ̂(N) =
IN∑∞

i=N+1 2∆zIi
(2.13)
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Following Vermeer [114] we consider the attenuation coefficient at the N th point and trun-

cate the series in the denominator at M which in practice corresponds to the maximum

imaging depth Zmax with M > N giving

µ̂(N) ≈ IN∑M
i=N+1 2∆zIi

.(2.14)

Consider the denominator, and let,

DN =
M∑

i=N+1

2∆zIi.(2.15)

The variable DN is the sum of M−(N+1) independent exponentially distributed random

variables Ii, taken from distributions parameterized only with average ⟨Ii⟩. Thus, DN will

be distributed as a hypoexponential distribution and has mean

⟨DN⟩ =
M∑

i=N+1

2∆z⟨Ii⟩,(2.16)

because the Ii’s are independent. If M is sufficiently larger than N , equation 2.7 implies

that

⟨DN⟩ ≈
⟨IN⟩

µoct(N)
.(2.17)

It is known that reconstruction artifacts [70, 114] make the inferred coefficient unreliable

near the deepest point of an A-scan. In practice, the reconstructed attenuation coefficient

made from this approach must be discarded near the bottom of a scan and estimated

using a different method [70].
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One useful measure of how much a random variable deviates from the mean called

the coefficient of variation, and is denoted Cv. This quantity is defined as the standard

deviation divided by the mean. The variance of ⟨DN⟩ is given by

var (DN) = (4∆z2)
N∑
i=1

λ2
i

by the Bienaymé formula where λ2
i is the variance of each intensity measurement. Since

each constituent λi is positive, the binomial theorem implies that

var (DN) = (4∆z2)
N∑
i=1

λ2
i ≤ ⟨DN⟩2 =

(
N∑
i=1

2∆zλi

)2

.

Dividing through by the ⟨DN⟩2 and taking a square root gives

Cv :=

√
(var (DN))

⟨DN⟩
< 1.

In practice, we find that Cv ≪ 1 as demonstrated in figure 2.10 and described in detail

in section 2.6.

Next, letting

ηN := DN − ⟨DN⟩(2.18)

allows formula 2.14 to be rewritten as

µ̂(N) =
IN
⟨DN⟩

(
1

1 + ηN
⟨DN ⟩

)
.(2.19)

Because η has zero mean with a very small Cv one can expect ηN
⟨DN ⟩ to be small. Using

this as justification, consider the Taylor approximation
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µ̂(N) ∼ IN
⟨DN⟩

(
1− ηN
⟨DN⟩

)
+O

(
η2N
⟨DN⟩

)
.(2.20)

At leading order, the reconstruction of the attenuation coefficient is given by

µ̂(N) ≈ IN
⟨DN⟩

.(2.21)

Intuitively, this means the denominator of equation 2.14 is approximately constant at

the scale set by the mean. Therefore, the probability distribution of µ̂ will be given by

rescaling the distribution of IN . Rescaling equation 2.11 yields

P
(
µ̂(N)

∣∣⟨IN⟩, ⟨DN⟩
)
=
⟨DN⟩
⟨IN⟩

exp

(
−⟨DN⟩

µ̂(N)

⟨IN⟩

)
.(2.22)

Next, using the approximation for the tail of D given in equation 2.17 with K = N and

substituting ⟨IN ⟩
⟨DN ⟩ with µoct(N) yields the probability distribution

P
(
µ̂(N)

∣∣µoct(N)
)
≈ 1

µoct(N)
exp

(
− µ̂(N)

µoct(N)

)
.(2.23)

Therefore, the reconstructed coefficient at leading order will be exponentially distributed

around the mean attenuation parameter. The accuracy of this estimate is demonstrated

in Fig. 2.10.

This approach can be extended to the time-averaged case, where k independent co-

registered measurements have been made. To do this, first the k estimates for the attenu-

ation coefficient, denoted by µ̂i(N), i = 1, 2m..., k, should be constructed using equation
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2.14. Then, assuming the measurements are independent, the likelihood is given by

P
(
µ̂1 (N) , ..., µ̂k (N)

∣∣µoct(N)
)
=

k∏
i=1

P
(
µ̂i (N)

∣∣µoct(N)
)
=

(
1

µoct(N)

)k

exp

(
−
∑k

i=1 µ̂i(N)

µoct(N)

)
.

(2.24)

2.5.1. Constructing a Prior distribution

In this section, a prior distribution for the variation in attenuation coefficient in a layer is

derived based on physical principles. As an initial theoretical step we consider a simpli-

fied media of dispersed scattering particles with negligible absorption. Following Chan-

drasekhar, [21] it is assumed that the system is a single layer, with Np dispersed particles

throughout. Let

γ =
[voxel]vol
[scan]vol

(2.25)

be the ratio of the volume of a single voxel to the volume of the entire scanned layer.

Provided that [voxel]vol ≪ [scan]vol the probability of finding n particles inside the volume

defined by a single voxel is given by the Poisson distribution

Pvox(n) := P (n particles inside voxel) ∼ ⟨n⟩
ne−⟨n⟩

n!
,(2.26)

where the mean particle number ⟨n⟩ = Npγ. For very large particle counts, Np →∞, the

Poisson distribution is well approximated as

Pvox(n) =
exp

(
− (n−⟨n⟩)2

2⟨n⟩

)
√

2π⟨n⟩
.(2.27)
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Since absorption can be ignored, the attenuation coefficient can then be computed as

µ ∼ σscat
n

[voxel]vol
and the mean coefficient as ⟨µ⟩ = σscat

⟨n⟩
[voxel]vol

, where σscat is the scat-

tering cross section of a particle. Therefore, P (µ) is a rescaled version of the probability

distribution in equation 2.27 given by

P (µ) =
1√

2πζ⟨µ⟩
exp

(
−(µ− ⟨µ⟩)2

2ζ⟨µ⟩

)
(2.28)

where ζ = σscat

[voxel]vol
.

2.5.2. Deriving the Posterior for the Reconstructed Attenuation Coefficients

The posterior distribution for the attenuation coefficient at depth N can be now derived

by plugging in the equation 2.24 and equation 2.28 into equation 2.12. Thus, our posterior

distribution is proportional to

P
(
µoct(N)

∣∣µ̂1(N)...µk(N)
)
∝(2.29) (

1

µoct(N)

)k

exp

(
−
∑k

i=1 µ̂i(N)

µoct(N)

)
1√

2πζ⟨µoct⟩
exp

(
−(µoct(N)− ⟨µoct⟩)2

2ζ⟨µoct⟩

)

where k is the number of co-registered scans and ⟨µoct⟩ is the layer mean of the DR

estimates. The specific proportionality constant is given by integrating the numerator of

equation 2.12 over all possible values of µoct. Considering the case where only a single

independent scan can be made, the posterior distribution for the attenuation coefficient
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at depth N is given by

P
(
µoct(N)

∣∣µ̂(N)
)
∝ 1

µoct(N)
exp

(
− µ̂(N)

µoct(N)

)
1√

2πζ⟨µoct⟩
exp

(
−(µoct(N)− ⟨µoct⟩)2

2ζ⟨µoct⟩

)(2.30)

This distribution describes the probability of the mean coefficient at voxel N . Assuming

that each voxel is independent, a joint posterior distribution for the attenuation coefficient

map for the entire A, B or C scan as

P
(
µµµoct

∣∣µ̂̂µ̂µ) ∝ R∏
i=1

P
(
µoct(i)

∣∣µ̂(i))(2.31)

where R is the total number of voxels in the scan, µµµoct is an R×1 vector of true coefficients

and µ̂̂µ̂µ is the R × 1 vector of voxelwise estimates for the attenuation coefficient. Figure

2.7 shows two posterior distributions plotted using equation 2.30 which use two different

values for the DR estimate. These examples demonstrate the impact that the initial DR

estimate has on the shape and position of the posterior distribution for the attenuation

coefficient.

2.5.3. Bayesian Parameter Estimator

In Bayesian formulations of parameter estimation problems, when a single number predic-

tion for the coefficient must be made, a Maximum a Posteriori (MaP) approach is often

employed [20, 100]. This approach gives the attenuation coefficient which maximizes the

posterior distribution by solving

µµµMaP
oct = argmin

µµµoct

log(P (µµµoct|µ̂µµ)).
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However, as can be seen in figure 2.7 for sufficiently small DR estimates, the posterior

distribution becomes bimodal and the MaP estimate will nearly coincide with the low DR

estimate for the attenuation coefficient. As demonstrated in figure 2.7 panel b) this peak

is relatively narrow and contains little probability mass. Because of this, the maximum

a posteriori is a bad representation of the entire probability distribution. The mean of

the posterior distribution is agnostic to the bimodality of the distribution and provides

a more stable and realistic estimate for the attenuation parameter. Therefore, when a

single value estimate is desired, the quantity

µ̂mean(N) :=

∫
R+

µoctP
(
µoct(N)

∣∣µ̂(N)
)
dµoct.(2.32)

can be computed.

2.6. Results

2.6.1. Experimental Verification and Results

To verify the likelihood model from equation 2.23, the DR attenuation formula is applied

to phantom data and a histogram is computed to compare against theory. The data was

collected with a Santec IVS 2000 swept source OCT system with a central wavelength of

1309 nm, axial resolution of 12 micron in air and lateral resolution of 25.5 micron. The

phantom was made by suspending silica beads manufactured by BaseClear with mean

diameter of 0.47 micron and a refractive index of 1.425 in water at a volume fraction of

.08. Water is assumed to have a phase refractive index of 1.32 and a group refractive index

of 1.34[50]. Using Mie theory, the scattering cross section is given by 1.9 ∗ 10−9 mm2 and

the total attenuation coefficient is 3.2 mm−1 [8]. This value is realistic for tissue [47, 71].
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Figure 2.7. This figure shows realization of the posterior distribution for
the attenuation coefficient given in equation 2.30 for different values of µ̂.
Both the simulations and figure creation were done in Matlab 2019a [75],
https://www.mathworks.com/.
a) This panel shows two unimodal reconstructed posterior distributions.
With these distributions, the true parameter is much more likely than the
DR estimate. This posterior was constructed with a layer mean of ⟨µoct⟩ =
.4 mm−1, ζ = 6.87 ∗ 10−2 mm−1 and a DR estimates of µ̂ = .08 mm−1 and
µ̂ = 1.3 mm−1 .
b) This panel shows a constructed posterior distribution which is Bi-Modal
and has two local maxima. For a given layer mean, the constructed dis-
tribution develops a second peak if the DR estimate used to construct the
posterior is sufficiently small. This second peak can make the Maximum
a Posteriori difficult due to non-convexity. In many cases, the maximum
value of the Posterior distribution may sit very near the origin on this second
peak. As demonstrated in this panel, often the total amount of probability
mass under the peak near zero is relatively small, despite being the max-
imum likelihood. Thus, the Maximum of the posterior distribution is a
poor representation for the distribution itself. In these cases an estimate
for the mean is a better choice. This posterior was constructed with a layer
mean of ⟨µoct⟩ = .4 mm−1, ζ = 6.87 ∗ 10−2 mm−1, and a DR estimate of
µ̂ = .015 mm−1 .

An OCT B-scan of the phantom is shown in figure 2.8 panel a). Using these values

and equation 2.28 we can see that the expected variance for the attenuation coefficient

is ⟨µoct⟩ · ζ = 0.0020 mm−2 which is very small when compared with the variance of

the exponential distribution which is ⟨µoct⟩2 = 11.5 mm−2. Since the speckle variance
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dominates the distribution of attenuation coefficients the reconstruction should look like

equation 2.23. This is demonstrated in figure 2.8 panel c).

Figure 2.9 demonstrates the effect of the posterior mean estimator defined in equation

2.32 when compared with lateral averaging. In figure 2.9 panels a) and b) show the OCT

attenuation coefficient B and A-scans respectively generated from the same OCT B-scan

used in figure 2.8. This phantom is very homogeneous so we expect that the variation

is almost entirely generated from speckle, thus it is reasonable to assume if sufficiently

many A-scans are averaged together then the resulting attenuation coefficient should

look constant. Figure 2.9 panel d) shows the resulting OCT attenuation coefficient after

laterally averaging 1000 A-scans together. Figure 2.9 panel c) shows the result of the

mean estimator defined in equation 2.32 applied to the A-scan from panel b). There is

little remaining variation in the signal when compared with standard lateral averaging.

2.6.2. Simulated Results

To validate and better understand the statistical model, a series of simulations were pre-

formed. In figure 2.10 panel a) a B-Scan was simulated using equation 2.5 with βNA = .3,

Iinc = 1e7w/m2, lateral resolution of ∆x = .022mm and ∆z = .0068 mm in a 3.4 mm deep

domain with a fixed attenuation coefficient of µoct = 2.00 mm−1. Once the deterministic

signal is modeled we generate the OCT signal per voxel as a realization of an exponential

random variable with parameter given by the true coefficient as in equation 2.11. This

random realization can be seen in figure 2.10 panel a). The attenuation coefficient was

estimated using the DR method given in equation 2.14 and is shown in figure 2.10 panel

b). The reconstruction equation becomes inaccurate near the bottom of the measurement
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Figure 2.8. This figure demonstrates the validity of the likelihood func-
tion given in equation 2.23 by considering the distribution of attenuation
coefficients for a very homogeneous phantom. Both the analysis and figure
creation were done in Matlab 2019a [75], https://www.mathworks.com/.
a) An OCT B-scan of a phantom made by suspending silica beads with
mean diameter of 0.47 micron and a refractive index of 1.425 in water which
has a phase refractive index of 1.32 [50]. The red lines indicate a homoge-
neous region where the DR estimate is made.
b) The DR estimate for the attenuation coefficient of the B-Scan shown
in a). The overestimation artifact is clear towards the bottom part of the
scan.
c) Histogram of estimated value for top 100 rows of pixels of the DR esti-
mate on the B-scan. Because the phantom is very homogeneous we expect
the histogram to follow equation 2.23 for this region. The exponential fit is
in good agreement with the theoretical predicted value of 3.2 mm−1 .

volume preventing accurate estimation. To avoid these inaccuracies the deepest 30% of

the reconstructed attenuation coefficients were truncated. The 30% value was arrived at

by inspection. In figure 2.10 panel c) we fit an exponential model to the histogram of

the reconstruction and see that the best fit parameter agrees with our model to the 2nd

decimal point.

To avoid artifacts the bottom 30% of the predicted attenuation coefficient is discarded.

Figure 2.11 panel c) shows a posterior mean estimate for the attenuation coefficient which

was computed with equation 2.32 voxelwise. In general, the mean attenuation coefficient

for the layer, ⟨µoct⟩, would not be known ahead of time to compute the prior distribution.
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Figure 2.9. This figure demonstrates variability of the DR attenuation
estimates in the presence of speckle and the Bayesian estimator for the at-
tenuation coefficient given in equation 2.32 Both the analysis and figure
creation were done in Matlab 2019a [75], https://www.mathworks.com/.
a) The DR estimate for the attenuation coefficient of the B-Scan shown in
figure 2.8. The red line is the portion of the scan considered in b).
b) Plot of the DR estimate for A-scan extracted from a). This estimate
shows how highly variable the DR attenuation coefficient appears to be in
the presence of speckle.
c) Mean of the Posterior estimate for the extracted A-scan. This was
computed using the ⟨µoct⟩ = 3.38 mm−1 which is the layer mean for the
first 100 rows of pixels of the B-scan., The value of ζ was computed to be
ζ = 6.0053 ∗ 10−2mm−1 from a voxel volume of 3.2 ∗ 10−6 micron and a
scattering cross section of σscat = 1.9 ∗ 10−9 mm2.
d) Comparative DR estimate for the average of all 1000 A-lines in the B-
scan. The resulting fluctuations are still very large even after averaging
1000 A-scans

To account for this, we used the mean of the truncated DR attenuation estimate for the

whole scan in equation 2.32. The estimate given by the mean of the posterior distribu-

tion for the attenuation coefficient can give much more accurate estimates for the true

coefficient than using the standard DR technique, as demonstrated in figure 2.11.
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Figure 2.10. This figure demonstrates the accuracy of the likelihood model
and estimates the coefficient of variation of the signal to verify the assump-
tions made in 2.20 for simulated signals. Both the simulations and figure
creation were done in Matlab 2019a [75], https://www.mathworks.com/.
a) This panel is a simulated B-Scan, which was simulated using parameters
βNA = .3, Iinc = 1e7, µoct = 2.00 mm−1, lateral resolution of ∆x = .022mm
and ∆z = .0068 mm in a domain which is 3.4 mm deep.
b) This is the DR reconstructed coefficient map. The reconstruction is
highly variable around the true attenuation value of 2.00 mm−1. This panel
also demonstrates the growth artifact in the bottom 30% of voxels where
estimated values which are much higher than the true value. The estimates
below the red line are truncated to avoid the exponential grown artifact.
c) This figure is a histogram of the top 70% of pixels from panel b). As
shown in equation 2.23 we expect this to be exponentially distributed with
parameter 2.00 . A best fit exponential demonstrates this is accurate to 3
significant figures.
d) Coefficient of Variation for the simulated OCT A-scans in panel a) at
different depths. In these simulations, Cv stays near .12 at all admissible depths.

2.7. Discussion

This chapter addressed the impact of speckle fluctuations on the depth resolved recov-

ery of the OCT attenuation coefficient. When making an OCT measurement, effectively
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Figure 2.11. This figure shows estimates of the attenuation coefficient
for simulated OCT data using the standard DR and the Bayesian es-
timator given in 2.32. The OCT data was simulated with parameters
Iinc = 1e7, µoct = 2.00 βNA = .3, σscat = 1.0 − 6 mm2, a lateral resolu-
tion of ∆x = .02 mm and ∆z = 0.0068 mm in a domain which is 13.6 mm
deep. After the attenuation coefficient was inferred using the DR method
the bottom 30% of pixels are discarded to avoid reconstruction artifacts.
Both the simulations and figure creation were done in Matlab 2019a [75],
https://www.mathworks.com/.
a) This panel shows the ground truth attenuation coefficient for the simu-
lation. This ground truth is a realization of the prior distribution given in
equation 2.28.
b) This image shows the reconstructed attenuation coefficient using the DR
method given in equation 2.14.
c) This panel shows an estimate attenuation coefficient given by the mean
of the posterior distribution. This estimate was computed using equation 2.32.

random voxelwise intensity fluctuations are present in the signal due to speckle, and as a

result, the voxelwise mean attenuation coefficient can not be exactly determined. Utiliz-

ing a statistical understanding of speckle fluctuations and prior physical knowledge, the

posterior distribution for the attenuation coefficient was derived from first principles. This

probability distribution better characterizes the voxelwise attenuation coefficient because

it allows for the weighing of relative likelihoods and the quantification of uncertainty by

measuring the variance of the attenuation posterior distribution.
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Figure 2.12. This figure demonstrates how problem parameters impact the
error in the attenuation coefficient recovery. For each data point a single
A-scan was simulated with 2000 depth measurements. After making the
initial DR estimate, the deepest 30% of the pixels were discarded to avoid
artifacts. The error (L2) estimates were made for each of the 1400 remain-
ing pixels and averaged. Both the simulations and figure creation were done
in Matlab 2019a [75], https://www.mathworks.com/.
a) This image shows how the DR reconstruction error varies with different
mean attenuation coefficients for a variety of ζ values. The ζ value does not
appear to greatly impact DR Reconstruction fidelity.
b) This image shows how the mean posterior estimator error varies with
different mean attenuation coefficients for a variety of ζ values. This esti-
mate was computed using equation 2.32. Clearly, the incorporation of this
value into the prior impacts our uncertainty in our Bayesian estimate.

While the statistical framework derived in this paper is general, the applicability is lim-

ited by the assumptions made for the underlying depth resolved reconstruction technique.

The DR reconstruction technique, given in equation 2.14, requires that the absorption of

light be negligible when compared the total amount of attenuated light. This assumption

is restrictive in the materials and wavelengths of light the DR technique can be applied
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to. However, for the materials and wavelengths used in most common biomedical appli-

cations of OCT this assumption is valid. Furthermore, when the probability distribution

for the reconstructed coefficient in equation 2.23 was derived, it was assumed that the

coefficient of variation of the denominator in equation 2.14 is sufficiently small such that

the denominator can be treated as constant. This does seem to be valid in numerical

simulations and experiments, however, it is not clear if this is generally true.

Additional physical assumptions are made during the derivation of the prior distribu-

tion for the attenuation coefficient given in section 2.5.1. The prior distribution allows for

the use of physical knowledge about the attenuation coefficient to introduce bounds and

bias the probabilities towards realistic values. The derivation given in section 2.5.1 was

made assuming the measured object contained uniform idealized scattering particles with

no absorption. While this assumption may not hold for most tissue systems, a normally

distributed prior is still a safe choice due to the fact that superpositions of random fluc-

tuations tend to look normally distributed. In real tissue, the parameter ζ in equation 24

is difficult to define, as the meaning of the effective scattering cross section is ambiguous.

However, it is still reasonable to assume that the true attenuation coefficient is normally

distributed around the mean. The variance of the prior must be provided or inferred by

other methods. There are techniques to estimate this parameter from the data such as

empirical Bayesian methods [80], however, the implementation of these techniques can

be nontrivial and a robust verification must be performed before the method could be

used clinically. While this is outside of the scope of this chapter, the Bayesian model

presented here serves an an initial step towards the goal of estimating these parameters

more robustly in tissue, and elucidates the impact of speckle on the recovered coefficients.
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The use of physically accurate statistical models for the attenuation coefficient has

several potential advantages. The variance of the posterior distribution provides a way to

quantify uncertainty in reconstructions. Furthermore, estimation bias from higher order

moments of the posterior can be quantified as well. The likelihood ratio statistic [20]

can be computed using the physically accurate likelihood function given in equation 2.23.

This statistical test gives a practitioner a sense of how likely a parameter is to fall within

a specified range. In situations where a practitioner may want to have a single number

to understand the attenuation in a system, the mean of the posterior can be computed as

demonstrated in figure 2.11. In figure 2.12 we measure the error in the estimates for both

the DR and mean of posterior estimators as the scattering cross section and attenuation

coefficient is varied and can see a clear and intuitive relationship between error and µoct.

Another potential application domain is in OCT image segmentation where atten-

uation analysis is used to correct for signal decay and as a contrast enhancement tool

[120, 18]. As we have discussed in this manuscript, the resulting attenuation image can

be very highly variable due to the speckle fluctuations in the original signal. If the attenu-

ation image is to be segmented, these fluctuations may lead to segmentation inaccuracies

which can be an issue in scattering media such as the cultural heritage applications dis-

cussed in subsection 2.2.3. Denoising algorithms could combine our exponential likelihood

with a spatial priors, such as total variation, [100] which would increase the likelihood

of the piecewise constant attenuation coefficients. This could be used to improve seg-

mentation accuracy by removing speckle fluctuations from the attenuation image. This



84

approach may be applicable even in the case of absorbing media because image segmen-

tation does not require extraction of accurate attenuation values, only sufficient contrast

between layers.

Speckle forms as a result of wavefront perturbations larger than a quarter of the

wavelength of the light. For visible and near infrared light this causes speckle to be present

in all but the most specialized applications as most objects have a surface roughness and

subsurface scattering that far exceed this threshold. In some arenas of coherent optics,

despeckling using hardware considerations may be possible. Techniques such as wavefront

shaping for deep tissue imaging or in advanced camera-in-the-loop calibration methods

for holographic displays demonstrate this principle. However, speckle in OCT can never

be completely eliminated because the contrast of the imaging technique comes from the

total light scattered volumetrically within a voxel. Since the volume scattering is the

source of the contrast and the source of the speckle, the speckle itself is the fundamental

signal formation mechanism. Thus, understanding the behavior, statistics, and impact of

the speckle is the best route forward.

This work is an initial theoretical step towards fully quantifying and characterizing un-

certainties in voxelwise OCT attenuation coefficient recovery in order to better understand

the resulting estimates. The likelihood function from equation 2.23 accurately models the

voxelwise measurement uncertainty of the attenuation coefficient due to speckle. This

likelihood function gives insight into the voxelwise statistics of the DR attenuation im-

ages. The posterior distribution for the mean value of the attenuation coefficient, given

in equation 2.30, allows parameter estimation to be performed in a consistent and reliable

manner by using the posterior mean estimator given in equation 2.32. Furthermore, the
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posterior distribution derived in this paper can be used to quantify the variance in esti-

mates, which gives insight into uncertainty. While this is a promising approach, further

research is still needed to find the best way to apply these techniques to clinical practice.
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CHAPTER 3

Computational Holography: Suppressing Speckle in Time

Multiplexed 3D Displays
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3.1. Introduction

Chapter 2 centers around the problem of parameter recovery in a coherent imaging

system with speckle. Fundamentally, the underlying imaging problem is about sensing a

3D optical field generated from scattering. The imaging of these scattered fields is at the

core of much modern science, however, the inverse of this problem, whether it is possible

to generate an arbitrary light field, is often less considered. Precise control over an optical

field has many applications, for instance, scattering media can often be imaged through

by shaping the incident coherent light beam to account for the occluding media [68]. A

more straightforward application of this principle would be in the creation of a coherent

3D display. Such a display would generate an image that would contain all the needed

visual cues for an observer to perceive depth.

Depth is perceived by human beings in response to a wide number of cues. One of

the primary depth cues comes from stereoscopic vision where each eye perceives the scene

differently due to parallax effects. 3D images have been displayed using this cue since at

least the 1800’s when stereoscopic displays were first built by Charles Wheatstone [101].

In these, two images which are captured from slightly different perspectives are presented

to each eye tricking the viewer into perceiving a natural 3D scene. When an observer

looks around these images the eyes will rotate to center the same point in each image

into the same part of the visual field meaning the eyes are rotated so that they converge

to a point in the scene, the depth of which is called the vergence distance. However, the

images shown to each eye are themselves 2 dimensional images meaning no matter where

the observer is looking at the eyes themselves are focused to a single plane, the plane

that the image is placed. This differs from a natural scene where there is an intrinsic
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correspondence between the vergence distance and focus distance (called accommodation

distance). In natural scenes, an additional depth cue comes from accommodation state

which is in conflict in traditional stereoscopic setup. While the human visual system is far

more complex than a standard camera, the eyes still focus light through a lens and have

a natural depth of field. When an observer is focused on a single depth, objects far from

this plane are out of focus and blurry. Furthermore, the farther an object is from your

focus the more severe the blur becomes. This subtle cue can conveys depth information to

the brain without the need to scan a scene. More high level depth cues come from object

geometry and motion, cue which underlay many 3D effects scene in optical illusions and

3D effects in computer generated scenes. Over the past 10 years, head mounted 3D display

technology has become increasingly commonly adopted for entertainment and professional

use cases [57, 77]. While the current generation displays are promising, they still rely on

stereoscopic depth cues only to generate the perceptual 3D experience. The lack of the

more subtle 3D depth cues leads to nausea and eye strain [62, 22]. These effects prevent

people from using current generation VR displays for an extended period of time and is

considered a core problem in the field of head mounted displays.

The problem of vergence accommodation conflict and missing depth cues could be

solved introduction of more complex display technology such as varifocal displays. A

varifocal head mounted display refers to a display where the focus position of a screen

changes by either the incorporation of a tuneable lens or a physical shift in the display

in depth which better corresponds with the natural vergence depth [52]. However, head

mounted displays must be high resolution, compact, and light enough to be worn com-

fortably for an extended period of time; parameters which are difficult to achieve with
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these methods. Instead of a varifocal display, a volumetric or multifocal display can be

used [117] which has several displays stacked up at different depths from the eye allowing

for natural accommodation. However, these are bulky and have limited depth planes.

Another approach is a near eye lightfield display [66] where different images are projected

in each direction allowing for parallax and view dependent effects to be rendered. How-

ever, the low space bandwidth product of these displays yields a severe tradeoff between

angular and spatial resolution making them impractical for high quality imagery.

One developing technology which can potentially address vergence accommodation

conflict and include natural depth cues is near eye Holographic Displays [74, 22, 87,

67, 31, 79, 63]. A holographic display forms a 3D image using interference patterns

generated by a programmable spatial light modulator (SLM) which can control the shape

of an incoming beam of light. This requires a relatively small amount of optics helping

to maintain a lightweight and compact form factor. Additionally, because the entire

light field is being controlled, it is possible to display a true 3D image which contains all

necessary focus cues.

Despite their advantages, holographic displays suffer from several physical drawbacks

which must be addressed prior to them being a practical option for real headsets. One

fundamental drawback of a holographic display is their limited Etendue [63]. The Etene-

due of an display is the product between the maximum solid angle a display can generate

and the entry pupil size. This quantity is a Lagrange invariant and is conserved for a given

optical system. For a near eye Holographic display this means the the field of view (FOV)

that the display can produce and the eyebox size, which is the area in space where the



90

eye can be located and see the image, are fundamentally at odds with one another. A dis-

play with a large immersive field of view will have a tiny eyebox, meaning that slight eye

or head movement can cause an end user to completely lose the image being displayed.

Techniques have been proposed to effectively boost the overall Etendue of holographic

displays through the use of scattering masks [63, 22] which have a very large scatter-

ing angle due to their microscopic features sizes. However, this technique introduces a

random perturbation to the wavefront causing speckle. Additionally, phase perturba-

tions can be introduced due to model mismatch, dust, quantization, poor alignment, or

a number of other factors making speckle an ever present issue in this display technology

[51, 85, 37, 25]. These physical limitations may prevent a single holographic image

from achieving the high SNR, large FOV and large eyebox needed for next generation

applications.

It may be possible to circumvent these limitations through the use of temporal multi-

plexing approaches [37, 51, 25] which build up the total high quality image using a series

of lower quality images displayed very rapidly. For instance, an approach to this prob-

lem would be to use a scanning pupil duplicating display architecture where the optical

configuration is chosen such that the FOV is as large as possible and the eyebox is small

and a grid of eyeboxes are sequentially projected and tiled. Additionally, by perturbing

the optical field deliberately, speckle from multiple frames can be averaged out produc-

ing a higher SNR image. These approaches are promising but require an SLM with a

considerably higher frame rate than traditional SLM technologies can offer.

A new type of SLM which relies on micromirrors instead of a traditional liquid crystal

display has recently been developed by Texas Instruments [15]. This DLP SLM has an
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extremely high refresh rate at around 10kHz, making temporal multiplexing for either

image enhancement or Etendue expansion a possibility. While the refresh rate of these

DLPs is exceedingly fast, they have a displacement bit depth of 4 bits, meaning they can

only delay phase to 16 different levels. This offers very poor control over the shape of the

wavefront severely degrading image quality, particularly if the original SLM pattern was

optimized for assuming continuous phase delays. The discretization of the phase leads to

the formation of speckle. Traditional methods to reduce speckle in temporally multiplexed

displays involve averaging a very high number of frames together to improve quality. This

is effective but uses a significant portion of the increased temporal bandwidth which could

be used to increase Etendue making the display more useable.

The degradation due to quantization will depend on how much the phase delay is

perturbed, which depends on the specific SLM pattern being displayed. Typically, to

find an SLM pattern to display a given scene, an iterative technique will be used, often

involving some form of gradient descent. The overall cost landscape for these problems

is highly non-convex [118] allowing for many nearly equally optimal SLM patterns to

be found. While, each subsequent pattern may be nearly equivalent in quality for the

continuous case, there is no reason to believe that this is the case for the quantized

patterns. Specifically, it may be useful to find optimization techniques which can take the

quantization operation into account and find patterns which generate images with higher

quality post quantization.

In the OCT sensing problem, Speckle was inherent to the volume scattering of coherent

light so there is no practical way to remove the speckle from the reconstructed volumes. In

fact, the speckle was the physical process by which the image is formed. However, in the
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case of time-multiplexed low bit holography it may be possible to pre-select SLM phase

delay patterns so that the speckle is reduced allowing for fewer frames to be averaged

together. In this chapter we consider optimization approaches which explicitly take this

discretization into account to reduce the required number of frames.

3.1.1. Chapter Structure

The purpose of this chapter is to propose and investigate a few techniques to incorporate

SLM quantization into optimization in the context of Holographic image generation. To

begin with, related work is reviewed in section 3.1.2. In 3.2.1 we derive a light propagation

model which is useful for on axis holography. In section 3.2.2 a brief primer on holography

and its application to display are explored.

The forward model for a general display is derived in section 3.3 and, in particular,

quantization is considered in section 3.3.2. The statistical properties of the signal degra-

dation are analyzed in section 3.4. Once this theory is understood we present a number

of optimization approaches in section 3.5. Simulated results are considered and compared

in section 3.6 and finally a discussion is done in 3.7.

3.1.2. Related work

Near eye displays have been a topic of interest since at least the 1960s when head mounted

(but wall tethered) stereo 3D displays with motion tracking were developed by Sutherland

[103]. Head mounted displays have become of particular interest since the explosion of

cheap consumer grade VR headsets in the early-2010s. A typical modern head mounted

display contains two LCD panels and the 3D effect is entirely generated by stereo 3D cues
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as well as 3D from motion. This type of setup can cause vergence-accommodation conflict

(VAC) where the eyes are focused (accommodation) on the display but tilted to look at

a virtual object far in the distance (vergence) [62]. To address this, 3D near eye displays

have been investigated [12, 45]. Light field displays, where different images are projected

into different viewing directions have been investigated in a near eye configuration [66].

This solves VAC but the severe trade-off between spatial pixel resolution and angular

resolution prevents high quality immersive images from being displayed. An alternative

approach is to either use a varifocal lens with an adjustable focal length or mechanical

actuation of the LCD to dynamically move the focal plane of the display to match the

depth of the observed object [35, 52]. This effectively eliminates VAC without sacrificing

any field of view or resolution. These varifocal style displays are promising but they require

perfect eye tracking as well as additional moving parts that require precise calibration and

add weight and power consumption. Instead of moving the display, it may be possible to

use a volumetric technique to accommodate for VAC [117]. However these methods are

bulky, and typically have limited depth planes and aren’t robust to eye movement and

rotation [76]. Near eye holographic displays have been of increasing interest in recent years

as SLMs have become cheaper and algorithms have improved [23, 113, 87, 86, 19, 25].

These methods have the capability to create a true 3D light field which contains all real

focus cues in an compact package [74]. However, they suffer from limited Entendue [63]

and require coherent light which leads to speckle [86] and require precise calibration [19].

The impact of hologram quantization in computer generated holography (CGH) has

been studied since at least the 1960s when the theory of Binary Fraunhofer Holograms was

developed [72]. Specific optimization algorithms for binary CGH have been developed in
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recent years which use non-convex optimization approaches to arrive at high quality im-

ages [118]. Many approaches to find good binary patterns for amplitude modulators to do

holography have been developed including error diffusion [78], optimized random phases

[113], and spiking NN inspired binary straight through estimation [67]. An analysis of

the impact of bit depth in Fourier holography found that the image degradation scales

with the size of the quantization error [85] and that the distribution of the degradation

follows speckle statistics at leading order.

In digital holography, the problem of speckle is often addressed through the improve-

ment of models [87, 86, 19] using learned holography approaches. In these approaches,

the traditional forward modeling is supplemented, or in some cases fully replaced, with

a learned forward model which can account for aberrations in the optical path and other

sources of model mismatch. This is done with a gradient based optimization scheme

where part of the gradient is computed with the camera image itself. This allows the

model parameters to be updated properly for the real system despite not having a perfect

forward model. Speckle can also be reduced by requiring smoothness on the output phase

preventing high frequency errors and phase wrapping from entering the problem at the

SLM [97, 87], however, this can reduce the ability of the hologram to represent 3D focal

stacks.

Speckle is only a major issue when using light sources with a very long coherence

length such as a laser. Some work has been done to optically reduce speckles by using

light sources with a lower coherence length such as an sLED [31, 79, 86]. In these

techniques, an SLM pattern which produces a reasonable image for a wide number of

wavelengths is found using an optimization method. Due to the fact that this single
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pattern must work at many wavelengths there is an overall reduction of image sharpness,

however, this also yields a massive reduction in noise [31]. This approach has been used

in a prototype headset to make a full color and speckle free head-mounted holographic

display [79]. Partial coherence has been fused with newer, neural holography approaches

to create very low noise images which are significantly higher quality than in traditional

partial coherence holography [86]. This work combined wavelength diversity with their

camera in the loop calibration to improve resolution and quality. The impressive results

come at a high computational cost and still have lower resolution and contrast compared

with traditional CGH.

Temporal multiplexing has been applied to holography to reduce speckle for decades

[51, 85, 37, 25]. In these approaches, many frames are averaged together with some

perturbation which yields independent speckle patterns. This has been directly applied to

the speckle generated from quantization noise [85]. Recently, an approach was proposed to

co-optimize frames using an adapted Gerchberg-Saxton phase retrieval method and reduce

speckle via averaging these frames together [37]. A similar technique has been developed

for binary bit depth CGH optimization. In this paper a proxy gradient method has been

used to replace the non-differentiable quantization operator derivative. Concurrently, a

similar multi-frame optimization method was also developed which incorporated camera

in the loop for even sharper results [25]. In this paper, a proxy gradient method was

proposed which used annealed Gumball-softmax functions to approximate the derivatives.

This was used in addition to camera in the loop training and showed excellent results.
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3.2. Background

3.2.1. Angular Spectrum Method

Computational holography is concerned with recreating a given interference pattern by

modulating the phase of a given input field. Before this can be addressed, the way that

light diffracts and propagates through space must be modeled. To do this, a numerical

method called the Angular spectrum method is often employed [59]. This method con-

siders an interesting correspondence between the frequency content of an on-axis incident

light field over some aperture and an expansion in a series of incident plane waves which

have different incident angles relative to the aperture known as the the angular spectrum

of the light.

Specifically, let E(x, y, 0) be the incident monochromatic electric field with frequency

k over some aperture function. Then the angular spectrum is defined as

A0(kx, ky) = F [E(x, y, 0)].(3.1)

A single plane wave in the expansion can be propagated a distance of z from the

aperture plane by simply applying a phase delay of the form exp[izkz] where kz is the

propagation direction given by kz =
√
k2 − k2

x − k2
y. Integrating over all possible direc-

tions will yield the propagated field at distance z and the propagation formula

E(x, y, z) = F−1[A0(kx, ky)exp(izkz)].(3.2)
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We assume that the incident field a very small angular spectrum such that the first order

Taylor expansion kz ≈ k − k2x+k2y
2k

holds. Plugging this in we see that

E(x, y, z) = exp(ikz)F−1[F [E0] exp(iz
−k2

x − k2
y

2k
)](3.3)

where F denotes the Fourier transform. Turning our perspective over to computation we

denote the FFT operator as FFF and the propagation operator as

AAA(z) = exp
(
iz
(
K2 − k2

x − k2
y

))
circ(

k2
x + k2

y(
K2 − k2

x − k2
y

)).(3.4)

From this we can define the ASM operator as

ASM(E0, z) = FFF−1AAA(z)FFFE0.(3.5)

A more detailed derivation can be found in appendix B.1.

3.2.2. Holography

Holography is a long standing technique in which all of the information of a wavefront is

encoded onto a film or physical media as an interference pattern. Due to the properties

of this interference pattern it is possible to illuminate the recorded film again and ’play’

the original light field back. This technique was originally invented by Denis Gabor in

the late 1940s [44] as a new modality by which to do high resolution electron microscopy.

What makes holography so unique is the ability to encode 3D information completely

in a 2D slice of the field, allowing for the reconstruction of a 3D light field from a 2D

measurement. In this subsection the basic ideas of holography are outlined.
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3.2.2.1. Intensity Holograms. Consider an ’object’ electric field denoted O(x, y, z)

and a reference field which is a plane wave denoted by R(x, y, z) = exp(−ikkkr · xxx). The

goal of holography is to encode the object field in a medium as an interference pattern

and then reconstruct or playback the field later. The interference pattern on plane z = 0

is given by

HI(x, y) = ||O +R||2 = ||O||2 + ||R||2 +O∗R +R∗O(3.6)

where O = O(x, y, 0) and R = R(x, y, 0). Assuming that this reference pattern in encoded

in the transmission of a media the media can be then be illuminated with a second plane

wave R′ yielding the electric field at a distance z from the aperture

ASM(R′HI , z) = (RR′)O(x, y, z) + (R∗R′)O∗(x, y, z) +DC(3.7)

where R′RO = exp(i(k−kr)·x)O and R′R = exp(i(k+kr)·x)O∗ which are two twin scaled

copies of the original object field evaluated at the plane of the interference pattern. This

means that the 3D information from the field was successfully encoded in the transmission

hologram HI . A more detailed derivation of this can be seen in appendix B.2.

3.2.2.2. Phase Holograms. For many types of recording media the hologram isn’t

recorded in a transmission but instead in an index of refraction variation. In this case we

would expect the phase hologram to have the phase patterns

H = exp(iγHI) ∼ 1 + iγHI −
γ2H2

I

2
+ ....(3.8)
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Figure 3.1. Diagram demonstrating the three leading order terms which
arise from phase only holography. One term is simply the undiffracted light
passing through he aperture. The twin image terms are identical conjugate
copies of the object. The coordinates for the conjugate copy of the object
field are transposed resulting ins a flipping of the image.

where HI is defined in equation 3.6. At leading order this is an additional DC term plus

the intensity hologram which we showed in the previous section reproduces our object

field but you also get a series of higher order diffraction terms. The weaker the index of

refraction change in the encoding the less bothersome the higher order diffraction terms

will be, but the less contrast you will have to overcome the addition D.C. term.

3.2.2.3. Digital Holography and Holographic Displays. Conventional Holography

was a revolution in imaging eventually resulting in Gabor winning the Nobel prize in

1971 [90]. However, with modern computational methods having a physical object field

for recording may not be strictly necessary. Suppose you want to create an object field
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O given some reference beam R′. Using mathematical modeling it should be possible to

predict what the interference pattern is that will produce this.

Figure 3.2. Figure demonstrating two common holographic display archi-
tectures. On the left a Fourier filter denoises the image and the Etendue
trade off is controlled with an additional lens at the end of the optical path.
On the right, a simple lensless architecture is shown. In this case, the field
of view is governed only by the maximum scattering angle given by the
SLM pixel size.

To actually apply the phase delay, the field is controlled with an optical component

called a Phase only Spatial Light Modulator (SLM). Amplitude SLMs exist as well but we

refer in this chapter consider the phase only variety. These optical components tradition-

ally use a liquid crystal on silicon (LCOS) display which has pixels that have a refractive

index which can be modulated by applying a voltage. A spatially varying phase delay ap-

plied to an incident field by reflecting the field off of the modulator. Newer architectures

use micromirrors which physically display by a fraction of a wavelength to accomplish
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the phase shift. These SLMs open up the ability to have a fully programmable and user

controlled holographic display. This would solve many issues with 3D display technology

such as VAC by creating a true 3D light field which is indistinguishable from a real scene.

3.3. Mathematical Modeling

3.3.1. Optical Path Modeling

To optimize for an SLM pattern in CGH we first need a parameterized physical model for a

simple optical setup which could be realistically implemented in a display. In this section,

it is assumed there is a complex incident field, denoted as E0, which is a normalized

uniform in phase and has intensity with |E0|2 = 1 everywhere. This incident field is

then modulated by the phase-only SLM pointwise as an applied phase delay denoted by

ϕ and the peak amplitude of the laser is α. We assume that there is some percentage

of undiffracted light due to the incomplete fill factor of the SLM given by pfill. This is

modeled mathematically by

(3.9) SLM[E0(x), pfill;ϕ(x), α] = (1− pfill)αE0(x) + pfillexp(−jϕ(x))αE0(x).

The propagation model is given by a band limited angular spectrum method discussed in

section 3.2.1 where

ASM[E, z] = (FFF−1AAA(z)FFF )E.(3.10)
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It is assumed that the detector measures intensity, meaning the whole image formation

model for a single SLM pattern is given by

Isingle(E0, z, pfill;ϕ, α) =

∣∣∣∣ASM[SLM[E0(x), pfill;ϕ(x), α]

∣∣∣∣2.(3.11)

In the temporally multiplexed case the intensity should be added together yielding a

Temporally multiplexed image formation model

I(E0, z, pfill;ϕ, α) =

nf∑
j=1

∣∣∣∣ASM[SLM[E0(x), pfill;ϕj(x), α]

∣∣∣∣2(3.12)

where nf is the total number of multiplexed frames.

3.3.2. Quantization

Quantization is the process of taking a continuous signal and ’binning’ it into a series of

discrete values. Some version of quantization is present in almost every area of compu-

tational science such as machine learning [46], numerical differential equations [26], and

digital image processing [105]. A major difference between traditional holography and

digital holography using SLMs is signal quantization. Spatial light modulators are real

devices which are controlled by real circuits and cannot control phase delays arbitrarily.

Instead, a SLM can apply a specific set of phase delays with finite accuracy. The potential

delays can broadly be separated into uniform and non-uniform quantization categories.

Typically, the number of representable phase levels will be of the form 2nb where nb is

referred to as the bit depth of the SLM. For the case of evenly spaced phase levels we can

model the quantization operator as
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Figure 3.3. This figure shows the quantization look up table for the TI DLP
slm. This quantization is uneven with large jumps between certain phase
levels and regions of phase which are very well represented buy the SLM.
The image degradation is bounded by the maximum phase perturbation,
so an unevenly spaced quantiazation will produce a worse image for an
arbitrary phase pattern.

Quant(ϕ;nb) =
2π

2nb − 1
round

(
(2nb − 1)

ϕ+ π

2π

)
− π(3.13)

where nb is the number of bits of the SLM and assuming that ϕ is wrapped such that

−π ≤ ϕ ≤ π. In this case the phase levels here have an spacing of 2π
2nb

. The quantization for

many SLMs is not perfectly uniform and adjusting the precise phase levels [43] which are

applied for each given signal can represent a core part of a holographic display calibration.

In this case, we cannot write down a simple and cheap quantization operator explicitly,
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and instead we refer to

Quant(ϕ;LUT) = argmin
ϕ∗∈LUT

|ϕ− ϕ∗|(3.14)

In the case of a very low bit depth SLM a search can be performed pixelwise quickly

enough to find the optimal quantized encoding.

In either case the quantization operator contains operations which are difficult to

differentiate as the derivative is zero almost everywhere except at the phase jumps. Figure

3.3 shows the uneven quantization used in the TI DLP SLM which we will be using to

test the optimziation methods later in this chapter. When the image is formed under

SLM quantization we can use the model

IQ(E0, z, pfill;ϕ, α) =

nf∑
j=1

∣∣∣∣ASM[SLM[E0(x), pfill;Quant(ϕj(x)), α]

∣∣∣∣2.(3.15)

3.4. An Analysis of Low Bit Depth Speckle

As discussed in section 2.4, speckle is a phenomenon in which small, unintended phase

perturbations in a coherent wavefront causes high frequency and undesirable intensity

fluctuations. In OCT these were introduced by volume scatters having random position

within a voxel. However in the case of Holography, similar phase variations can be in-

troduced from poor alignment, model mismatching, finite aperture sizes, or the use of

diffuse scatterers. While these sources of speckle are pernicious, they can be addressed

with calibration and temporal multiplexing. However, when using a fast SLM such as a

DLP, the quantization from the low bit depth causes a large amount speckle to be present
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in the system. In this section a brief analysis to understand the statistics of the speckles

introduced through signal quantization. This can be seen clearly in figure 3.4.

The magnitude of the phase perturbation will depend on how close the desired phase

level is to the nearest quantized value, but can be always bounded by

∆ϕ = |ϕij −Quant(ϕij)| <
1

2
supi(Pi − Pi+1)(3.16)

where {Pi} is the set of all quantized phase levels. Most conventional LCOS SLMs have

a bit depth between 8 to 10 meaning they can display 256 - 1024 different phase levels

which are nearly uniformly spaced.

In practice, signal degradation could be measured using MSE where the desired or

target intensity is given by Tij then the measured MSE is given by

MSE =
∣∣ |T − IQ(ϕ)|

∣∣2(3.17)

MSE is a practical and useful way measure error however for the purposes of theory

it is more useful to use signal variance given by

V ar[I] = E[E[I]− Ĩ]2.(3.18)

Speckle causes an intensity in the signal which is around the unperturbed mean meaning

E[Iij] = Tij as discussed in chapter 2. There is a subtle conceptual difference between the

signal variance and MSE in that the variance is discussing the expected variation in an

ensemble of measurements while MSE discussing the mismatch in a given realization of

the signal undergoing speckle. In practice the signal variance can be thought of as roughly
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equivalent to an expected MSE because they are on average they same and display systems

have many many pixels making individual realizations have an average like quality.

3.4.1. Quantization Speckle Statistics (How Much Signal Variance will Quan-

tization Introduce)

Let the unquantized phase on the SLM be denoted by H. Heuristically, for a general

hologram the histogram of phase delays is well approximated as a uniform distribution.

In this case, we can model the quantization error for a bit depth of l in a statistical sense

by assuming [85] that

(Quant(H)−H)ij ∼ Unif
(
−∆ϕ

2
,
∆ϕ

2

)
.(3.19)

where (Quant(H)−H)ij is the quantification error for pixel ij and all pixels are iid. This

is sensible because the different between the actual phase level and the quantized phase

level shouldn’t a priori favor any values. By modeling the quantization error in this

way it is possible to get statistical estimates for the variance of the image formed at the

observation plane. The standard deviation of the error in a Fourier Holography digital

setup is given by σq = ∆ϕ√
12

. We can generalize this to a lensless ASM based model. We

note that the ASM operator is unitary such that

ASM−1 =
(
FFF−1AAA(z)FFF

)∗(3.20)

Unitary operators transform covariance as

Cov [ASM(quant(H)−H)] =
(
F−1AF

)∗ Cov [quant(H)−H]
(
F−1AF

)
.(3.21)
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However, since we assumed (Quant(H)−H)ij are pairwise independent we know the

covariance must be Cov[quant(H)−H] = σ2
qI. This means that

Cov [ASM(quant(H)−H)] =
(
F−1AF

)∗ Cov [quant(H)−H]
(
F−1AF

)
= σ2

qI(3.22)

allowing us to understand our field variance based on our introduced phase perturbation.

Figure 3.4. Figure demonstrating the impact of 4 bit quantization using
the TI LUT. The predicted full bit depth image is in the right most column
and shows an image can be created using no temporal multiplexing with
high quality by finding an SLM pattern with stochastic gradient descent.
The right column shows the resulting image after the weights are quantized
simulating displaying the image on a real SLM. The overall image quality
plummets and speckle becomes very noticeable.
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3.5. Approaches to Optimization

Given an desired complex electric field at the detector plane, the electric field at the

SLM plane can be computed simply by propagation. However, because an SLM can only

modulate the phase the of the incident electric field, it is in general not possible to produce

the exact electric field to form the desired image. Furthermore, since detectors only

measure intensity, the SLM phase pattern must be solved for with measurements which

disregard phase. In line with most phase retrieval approaches, an iterative technique,

typically some sort of regression is used to find an SLM phase delay pattern which creates

as close of an image as possible. However, the regression problem is highly nonconvex

with many local optima which do not all produce equivalently high quality images after

quantization.

To find good SLM patterns using the mathematical model outlined in section 3.3 we

must find good optimization techniques which can take this quantization into account.

However, the quantization operator halts most gradient based optimization schemes be-

cause the derivative is zero almost everywhere. In this section, several gradient based

optimization methods which incorporate quantization are compared. Initially, we investi-

gate ignoring the quantization operator and solving for the phase in a continuous quantity.

This is standard practice for high bit depth SLMs with very little quantization error. Two

variable splitting approaches for temporal multiplexing are then considered, one where

each frame is solved for continuously while the other frames are quantized and one where

pixels are solved for iteratively allowing for quantization to be used on the remaining

pixels. We consider a soft categorical reparametization search method called a Gumbel

Softmax optimization. Finally, We consider two proxy gradient methods, straight through
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estimation where the quantization is used for a portion of the gradient only and a sec-

ond method which uses the gradient from the Gumbel method fused with the function

evaluations of the straight through estimator.

3.5.1. Continuous Stochastic Gradient Descent

The simplest approach to the problem is to optimize for a non-quantized pattern with

stochastic gradient descent and then rounding. The patterns are found assuming the

introduced phase delays are continuous variables. The computational graph is shown in

figure 3.5 and loss function is shown in equation 3.24. Once the optimization has stalled

the derived phase patterns are then wrapped and quantized to the look up table for the

TI DLP SLM shown in figure 3.3 and table in appendix B.3 yielding

Loss(ϕ∗) = ||I(ϕ∗)− Target||2(3.23)

ϕ = Quant(argmin(Loss(ϕ∗))).(3.24)

3.5.2. Framewise Predictor Corrector

A simple approach to incorporating quantization into a temporally multiplexed SGD

approach would be to only optimize for one frame at a time. In this case, the frame which

is currently being optimized for would not be quantized allowing for SGD to update the

phase pattern. All other frames would be quantized allowing the current frame being

updated to correct the speckle from the other frames. This splitting method which we

call Framewise predictor corrector (FPC) allows for the incorporation of quantization
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Figure 3.5. These figures show the SGD and STE computational graphs.
The graphs are the same except the STE graph replaces the derivative of
the quantization node with a 1 effectively skipping that node in the backpropagation.

The psuedocode for these algorithms are written in section C.2.2 and C.2.3.

information into the problem while not causing the optimization to halt. To do this the

optimization would have nf loss functions of the form

Lossi(ϕ∗) = ||
∑

j<nf ,j ̸=i

∣∣∣∣ASM[SLM[E0(x), pfill;Quant(ϕi(x)), α]

∣∣∣∣2 − Target||2.(3.25)

which will be iterated through in sequence. The computational graph is shown in figure

3.6. While conceptually, splitting the SLM patterns into groups framewise may seem

obvious it has the drawback of only allowing quantized and non-quantized variables to

interact incoherently.
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Figure 3.6. The Framewise Predictor Corrector computational graph. Each
frame is quantized except for the frame i which is unquantized and opti-
mized for. The frames are then interleaved into a single tensor and each
frames phase delay and output is computed and summed. The red arrow
shows where the gradient is forced to zero causing the SGD for those vari-
ables to halt. The psuedocode for this algorithm is written in section C.2.4.

3.5.3. Single Frame Predictor Corrector

The prospect of splitting the variables into groups which can impact each other coherently

may improve results of a splitting method by allowing for pixels with too much intensity

to be reduced. For this reason we propose dividing the SLM pixels into odd and even

rows, quantizing one at a time and stepping the other in an alternating fashion. Because

there are some pixels which are both quantized and unquantized within a single frame

coherent effects are allowed.
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To accomplish this approach denoted as single frame predictor corrector (SFPC), let

ϕe = {ϕij s.t i is even} and ϕo = {ϕij s.t i is odd} and note that ϕ = ϕe ∪ ϕo. The

total predicted field for the even and odd steps can be computed as

EQ,e,j(E0, z, pfill;ϕj, α) = ASM[SLM[E0;ϕ
e ∪Quant(ϕo

j), α](3.26)

EQ,o,j(E0, z, pfill;ϕj, α) = ASM[SLM[E0;Quant(ϕe
j) ∪ ϕo, α](3.27)

Two loss function of the form

Figure 3.7. The Single Frame Predictor Corrector computational graph.
This splits the variables into two groups separated at odd and even rows.
Quantization is applied to only one group and the alternating group is
updated. The red arrow shows where the gradient is forced to zero causing
the SGD for those variables to halt. The psuedocode for this algorithm is
written in section C.2.5.
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Losso(ϕ∗) =

∣∣∣∣∣∣∣∣||EQ,e,j(Quant(ϕj)) + EQ,o,j((ϕj))||2 − Target
∣∣∣∣∣∣∣∣2(3.28)

Losse(ϕ∗) =

∣∣∣∣∣∣∣∣||EQ,o,j(Quant(ϕj)) + EQ,e,j((ϕj))||2 − Target
∣∣∣∣∣∣∣∣2(3.29)

can then be partially optimized using SGD iterations and iterated between until conver-

gence. Like in the method discussed in section 3.5.2, this can be implemented as the

two versions of the computational graph shown in Fig. 3.7 and alternated between using

SGD. Formally, because quantization is differentiable but 0 almost everywhere the SGD

can be done for all of ϕ and only the even and odd rows will update respectively. This

has some drawbacks with respect to memory and computational however.

3.5.4. Straight Through Refinement

Another field where quantization is frequently encountered is in neural networks, par-

ticularly those which must run quickly and efficiently on hardware with memory and

processing limitations. Adapting pre-trained networks to this environment is an active

and interesting field of research [46]. For a neural network, typically training will be done

on faster hardware and then the weights of the network will be quantized and copied

to the lower power device to run–severely reducing network performance. To ameliorate

this, a standard technique called ’quantization aware training’ using a straight through

estimator. This technique begins by using stochastic gradient descent to train the weight

which are then perturbed via quantization. After the quantization step the weights are

readjusted using a new optimization process which uses a modified computational graph.

This graph uses the non-differentiable quatization operator for the forward pass allow-

ing quantization information to enter the problem. Then, when the gradients are being
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backpropagated the backwards graph skips the quantization operator allowing it to be

unmodified. This seemingly arbitrary refinement approach has proven to be incredibly

effective in reducing the impact of quantization on lightweight networks [46].

Modifying this approach for our heavily quantized SLM we can split the optimization

into two stages. In the first stage we compute a solution to stochastic gradient descent with

full bit depth, and then quantize after convergence as in section 3.5.1. Following this, a

refinement process begins using the computational graph shown in figure 3.5. This allows

quantization information to be taken into account in our optimization process. Essentially,

a quantization operation is written that is custom and the derivative is assumed to be

1 at all times. This allows the quantization node to be effectively ’skipped’ during the

backpropagation. More mathematically, consider the loss function

LossSTE(ϕ
∗) = Loss(Quant(ϕ∗)) = ||I(Quant(ϕ∗))− Target||2

we have from the chain rule

∂LossSTE(ϕ)

∂ϕ
=

∂Loss(quant)
∂quant

∂quant(ϕ)
∂ϕ

:= D.(3.30)

However since ∂quant(ϕ)
∂ϕ

= 0 gradient based methods halt. The straight through estimator

does SGD using an approximate derivative where quant(ϕ)
∂ϕ

is replaced with unity

D̂ = 1
∂L(quant(ϕ))

∂ϕ
=

∂L(x)

∂x
(3.31)
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and SGD is performed with the proxy gradient D̂ in place of D.

3.5.5. Gumbel-Softmax

Optimizing for Heavily quantized SLM patterns can be though of as a categorization

problem instead of a simple regression problem. Each SLM pixel must be assigned to

a discrete phase level (category) such that the ensemble of pixels generates the highest

quality image possible. These problems are difficult because they must sample a discrete

categorical distribution searching for an optimum, an operation which is highly non-

differentiable. However, it is often possible to rewrite a stochastic variable with a given

mean and variance as a variable which has a parameterized deterministic component

(which can be optimized for using a gradient based method) and added noise of fixed

statistics. A important result from the theory of rare events [49, 58], allows the sampling

of a categorical distribution whose probabilities are proportional to some energy functional

∝ exp(−log(pi)) as

z = one_hot
[
argmax

i≤n
(gi + log(pi))

]
(3.32)

where gi Gumbel(0, 1) is a Gumbel random variable with fixed mean and variance for any

probabilities. The output z is an n dimensional binary variable with only one non-zero

value. The quantity pi is the un-normalized probability for class i.

In the case of SLM optimization, pi should be a function which is largest for quanti-

zation states similar to the current SLM pattern being displayed. To do this, define the
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score function

pi(ϕ;w, qi) = Sigmoid(w(ϕ− qi)) (1− Sigmoid(w(ϕ− qi)))(3.33)

where qi is the ith quantization level. The one hot encoding in Eq. 3.32 is non-differentiable,

however this function can be replaced with the softmax operator

softmaxi(x; t) =
exp(−xi/t)∑
j exp(−xj/t)

.(3.34)

This function normalizes and assigns a probability to each category that is near one for

the largest values and near zero for the smaller values. As the temperature parameter

t→ 0+ the softmax becomes softmax(x; t)→ one_hot
[
argmax

i
(xi)

]
and as t→∞ the

softmax(x; t) → 1/nl where nl is the number of phase levels. The softmax effectively

returns a probability distribution that each pixel should be in each quantization state

given it’s current estimated phase delay value that can be annealed to allow for more or

less variation from the current state. We substitute this into equation 3.32 to arrive at

the ’soft’ category sampling function

z(p; t) =
exp(− (gi + log(pi)) /t)∑
j exp(− (gj + log(pj)) /t)

.(3.35)

The variable z is a probability distribution and not a phase delay. To generate phase

patterns we simply compute a probability weighted average of the different quantization

states, denoted ql, as

Gum_quant(ϕ; t) =
∑
l

qlz(p; t)l(3.36)
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This function is effectively a differentiable quantization function which introduces stochas-

ticity into the problem to prevent getting stuck in local optima. The overall computation

graph for this method is shown in Fig. 3.8. This stochastic differentiable quantization

node can be incorporated into a loss function as

Loss(ϕ∗) = ||I(Gum_quant(ϕ∗))Target||2(3.37)

Figure 3.8. The computational graph for the Gumbel Softmax optimization
method. The Gumbel soft-quant layer is a stochastic reparaterization of a
categorical sampling process where the category probabilities depend on the
similarity to the current SLM pattern. The psuedocode for this algorithm
is written in section C.2.6.
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3.5.6. Proxy Gumbel

Using the same conceptual framework as the straight through estimator it is possible to

introduce a more complex proxy gradient where instead of skipping the backwards node

an alternative function is differentiated. An interesting implementation of this is in [25]

where the forward computational graph allows for true computation but the backwards

pass was computed using the backwards computational graph from a Gumbel-Softmax

method. This is shown in figure 3.9

Figure 3.9. The computational graph for the Gumbel Proxy method. This
is a fusion of the STE and full Gumbel-Softmax methods which uses the true
quantization state on the forward pass and the random gradient updates on
the backwards pass. The psuedocode for this algorithm is written in section C.2.7.
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3.6. Results and Implementations

To evaluate the effectiveness of the different approaches to optimization the mathe-

matical model from equation 3.15 was implemented using Pytorch 1.9.0. All gradients are

computed using Pytorch’s automatic differentiation framework. The optimization schemes

were employed by altering the training loops from a standard gradient descent approach

using the in build ADAM stochastic gradient descent optimization method. Fifty images

were chosen from the Div2k data set [3] and converted into grayscale using the formula

Imgray(x, y) =
.3Im(x, y, 0) + .6Im(x, y, 1) + .11Im(x, y, 2)

max
x,y

(.3Im(x, y, 0) + .6Im(x, y, 1) + .11Im(x, y, 2))
.(3.38)

The optimization is run for each image with a variable number of frames to be multiplex

from 1 to 10. The results are then evaluated using PSNR as a metric

PSNR(I,G) = 10log
(

max(G)

MSE(I,G)

)
.(3.39)

A head to head comparison can be seen in figure 3.11 and 3.10 as well as in appendix B.4.

3.6.0.1. Stochastic Gradient Descent. Due to the fact that this implementation of

SGD does not factor gradient information into the problem we should expect the speckle

variance to reduce at a rate predicted by the law of large numbers. That is the variance

should decrease like ∼ 1/N and the PSNR should increase ∼ 2log(N). We can see that

this behavior matches SGD quite well in figure 3.10. The average 10 frame PSNR was

29.68 dB for this method.
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3.6.0.2. Framewise Predictor Corrector. To implement this approach in pytorch N

computational graphs were constructed, each one for a specific frame for an N-frame mul-

tiplexing approach. Each graph will have N−1 branches which have the non-differentiable

quantization operators. After doing nit iterations of SGD for frame i, the current SLM

patterns are loaded into the next computational graph which has frame i+ 1 tagged as a

parameter and no quantization operator on this branch. Cycle through each frame until

desired accuracy is reached. This resulted in a significant improvement over standard SGD

with a roughly 5 db improvement in PSNR. However, the scaling as moving to higher and

higher frames is logarithmic like SGD resulting in diminishing returns. Another issue is

that due to the fact that quantization is being introduced into the problem the overall

PSNR does not increase monotonically and can have large drops when switching between

frames. To account for this check-pointing is used. The average 10 frame PSNR was 31.48

dB for this method as shown in table 3.1.

3.6.0.3. Single Frame Predictor Corrector. To implement this approach in pytorch

two separate graphs were defined and the optimization alternated steps between them.

The SLM pattern of each forward model was a tensor of size (Nx/2, Ny) and the forward

model will take an additional flag variable to tell it if the model represents the odd

or even rows denoted ϕo and ϕe respectively . When the parameter is passed in it is

embedded in the even or odd rows of a zero matrix the size of the actual SLM. Then

when the phase delay is applied the the input field pointwise, a mask is applied to the

field forcing the magnitude of the field to zero for all un-modulated pixels. The odd

and even fields are then propagated and added together before the intensity operation is

applied. This implementation strategy allows for reuse of previous modules and makes it
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easier to change between optimization methods at a slight cost to memory. As shown in

figure 3.10 results show that for low frame counts this method is roughly equivelent to

FPC. However, the scaling as more frames are used shows that this method handles large

frames better. Furthermore, this method can improve a single frame and is considerably

computationally cheaper than FPC as more frames are added because there are only two

groups of variables instead of the frame number. The average 10 frame PSNR was 35.64

dB for the 50 images as seen in table 3.1.

3.6.0.4. Straight Through Estimation. The straight through estimator is imple-

mented as a variation of the stochastic gradient descent optical path. A custom quan-

tization module is written which produces a quantized SLM pattern where every pixel

is assigned to the nearest quantized state. However, when backpropagating this module

just multiplies the input gradient by 1 effectively skipping this node in the computational

graph. There is now no guarantee that the gradient point towards an optimum so a robust

checkpointing scheme is crucial which tracks the quantized PSNR and saves the best pat-

tern. To initialize the STE alghorithm an initial SGD algorithm is run past convergence

and then the weights are modified using STE. Fig. 3.10 demonstrates that this approach

greatly improves overall PSNR of the reconstruction. The average 10 frame PSNR was

38.91 dB for the 50 images as seen in table 3.1.

3.6.0.5. Gumbel Softmax. The Gumbel-Softmax method was implemented in Pytorch

by augmenting the existing SLM model to include the phase difference, score functions

and softmax equation from equation 3.36. The parameter values were hand tuned for two
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images to w = 25 and the temperature was annealed from t0 = 5 to tf ≈ .111

tk = t0 exp (k log(45/Nits)) .(3.40)

The optimization was run for a total of Nits = 2500 iterations. Overall, for higher frame

counts this was the highest performing method on average. In numerical experimentation

and tuning the width and temperature scheduling for specific images can improve results

further, although is not possible for large batches of images such as the 50 images tested.

The method performed poorly for low numbers of multiplexed frames underperforming

even SGD with rounding until 3 frames. The 10 frame average PSNR was 39.30 dB for

the 50 images as seen in table 3.1.

3.6.0.6. Gumbel Proxy. The Gumbel-Proxy method was implemented in Pytorch by

augmenting the existing STE-SLM model to include the backwards pass from equation

3.36 as shown in figure 3.9. The parameter values were hand tuned for two images to

w = 26 and the temperature was annealed from t0 = 5 to tf = .111

tk = t0 exp (k log(45/Nits)) .(3.41)

The optimization was run for a total of Nits = 2500 iterations. Like the Gumbel-Softmax

this method performed poorly for low numbers of frames in our batch images and improved

with higher frame counts to an average of 33.90 dB for 10 frames as seen in table 3.1.

Overall, this method was both harder to implement and worse performing than either

STE or the Gumbel-Softmax.
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Figure 3.10. A head to head comparison of a number of different quanti-
zation aware optimization strategies at different multiplexing levels. The
baseline method would be to use a standard gradient descent approach and
then quantize after determining the SLM pattern. This is shown in blue and
matches the logarithmic profile which would be expected from theory. The
variable splitting methods FPC and SFPC both show improvements over
the whole range of multiplexed frames. Proxy methods such as STE and
Proxy Gumbel seem to consistently produce better results at higher frame
counts. It may be possible to improve low frame performance with different
parameter regimes which fit better. The full Gumbel Softmax approach
suffers for low frame counts but quickly becomes the highest performing
method at moderate to high multiplexing numbers.
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3.7. Discussion

. This chapter discussed the impact of quantization on image quality for near eye

holographic displays and computationally investigated some techniques which can be used

to improve the degradation. Near eye holographic displays are a topic of increasing interest

at the moment and with the advent of fast spatial light modulators the need for efficient,

hardware realistic optimization schemes is greatly needed. Many papers have begun

working on incorporating different quantization aware optimization schemes into their

results but little head to head discussion between different methods has been done. This

chapter laid out a concise theoretical description of the statistics of the speckle generated

from SLM phase delay quantization and showed the value of incorporating quantization

into the image reconstruction. Quantization aware optimization methods improved the

PSNR by huge margins for all methods. The straight through estimators and Gumbel-

Softmax estimators can both be easily implemented in a automatic differentiation package

and allow for far fewer frames to be multiplexed to attain a desired quality.

While this chapter tested multiple methods head to head it did not show one method

is superior in all cases. In particular there are a number of hyperparameters which were

set through hand tuning. In the variable splitting methods the number of iterations per

group can impact reconstruction quality. The grouping can be seen has a massive impact

as SFPC grouped the variables to allow for coherent effects to account for speckle and

improved PSNR signficantly. In the cases of both FPC and SFPC the overall computa-

tional cost was very high as many iterations need to be done between the groups. Due to

the fact that the variable grouping in SFPC allow for a constant number of groups to it-

erate between no matter the frame count causing the total computational cost to remain
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lower. The straight through estimator represents an interesting direction of improving

proxy gradients. The concept of a proxy gradient lends itself well to modern automatic

differentiation technique and is widely used in machine learning. A proper choice for a

proxy gradient can allow for the incorporation of true quantization information into the

iteration without halting a gradient based method. The straight through estimator is

simple to implement and highly effective. However, as with all proxy gradient methods

there is no reason to expect the augmented gradient to point to a local minima mean-

ing early stopping or a consistent check pointing scheme must be used as sometimes the

iteration can begin to decrease quality over time. The Gumbel Proxy gradient was an

implementation inspired by the impressive results in a recent paper which showed that

the Proxy Gumbel would outperform the straight through estimator an several other op-

timization methods. This paper incorporated a neural network into the model so the

results aren’t directly comparable but the numerical experimentation in this chapter did

not see the same increase in performance. It is also possible that this is due to parameter

tuning problems. Further work is needed, however the full Gumbel-Softmax is simpler to

implement and not much more computationally expensive. The Gumbel Softmax method

performs very well in the high frame case which is very relevant to holographic displays.

The method does incorporate random noise meaning that there are issues with inter run

reproducability. However, as with all stochastic search methods, the randomness can help

prevent getting caught in local minima. The method has a relatively low computational

cost and can be hand tuned to produce individual images.

This chapter does not address the incorporation of Neural elements such as CNN layers

which can be calibrated in the loop. It is unclear whether the CNN layers can account for
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system quantization effects. These camera in the loop calibration methods are becoming

standard for all cutting edge high quality displays so the interaction between optimization

methods for highly quantized displays and calibration is a topic which will hopefully be

addressed in future work. These optimization methods can be used to reduce speckle

in traditional SLMs which are calibrated so the primary source of phase error is from

quantization. Furthermore, other non differentiable components such as amplitude DMDs

can potentially be optimized over in a similar way. Another area where quantization aware

methods might be useful is in beam shaping, where an incident coherent light is modulated

to account for the deformation from a media such as the layers of atmosphere or tissue.

The use of ultra high speed modulators could better account for rapid changes from blood

flow or atmospheric fluctuations.

This chapter serves as an exploratory step towards improving holographic displays

through computational methods. Circumventing the Etendue trade off with temporal

multiplexing allows for improved images with both a large eyebox and field of view making

this a realistic possibility for next generation 3D displays. These displays would prevent

nausea and eye strain in a form factor which is a fraction of the current size of modern

head mounted displays. These methods still must be explored in the context of Neural

holography and evaluated in a well calibrated experimental holographic display.
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Method 1 Frame 2 Frames 3 Frames 4 Frames 6 Frames 8 Frames 10 Frames

SGD 23.355 24.822 25.782 26.634 27.800 28.676 29.289
FPC NA 28.204 29.6800 30.932 31.323 31.237 31.481
SFPC 24.037 27.804 29.924 31.374 33.482 34.814 35.639
STE 22.877 26.745 29.552 31.752 34.931 37.224 38.914

Proxy Gumbel 17.757 23.164 26.078 28.066 30.744 32.6300 33.903
Full Gumbel 17.821 24.116 28.162 31.471 34.378 37.672 39.294

Table 3.1. Average results of the different optimization strategies for differ-
ent levels of temporal multiplexing. The highest 10 frame PSNR is the Full
Gumbel Softmax method.
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CHAPTER 4

Conclusion
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This dissertation was an exploration of several topics in the field of computational

imaging and display. The core this thesis is about the numerical modeling of the interac-

tion between optical fields and materials. In this thesis we study two important versions

of this problem, one where we don’t know the material properties but measure the fields,

as in the layering problem in chapter 1 or the attenuation parameter problem posed in

chapter 2 and one where the phase of the field is modulated to produce the desired image

in the interference pattern as studied in chapter 3.

The source separation problem in chapter 1 represented one corner of a much larger

area of research of imaging through a scattering and absorbing media. In this prob-

lem we automatically identified portions of the XRF signal which correlated with RIS

measurements of the surface of the painting. This simple solution showed how spatial

correlations between different signals can be extracted and interpreted. The extracted

information relied on the different penetration depths of the spectroscopy methods as

well as the registration of the signals. This method can be easily refined with a more

complex forward model, physical or learned, which better represents interaction between

material properties and light. Specifically, auto-florescence, scattering, and surface layer

attenuation could be accounted for to improve recovered signal contrast. While these fine

tuned improvements should be done, the essential principle was well demonstrated in this

chapter.

Chapter 2 covered my work in OCT signal processing. Two applications of OCT to

cultural heritage science are discussed in section 2.2.3. In these papers cross sectional

images of painted works of art were taken in a non-contact and non-destructive way.

These applications demonstrate the flexibility and usefulness of the technique when trying
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to investigate delicate and one of a kind objects. Section 2.2.2 through 2.7 consider

the uncertainty in the parameter recovery of the attenuation coefficient. The voxelwise

attenuation coefficient is an easy to access metric which can be strongly correlated to

useful categories such as tissue type and structure. This chapter modeled the uncertainty

in such a technique putting this approach on firmer footing. Basic questions such as

whether the parameter is right on average and how variance scales are addressed and a

Bayesian framework for denoising applications was proposed. It is unclear how generally

applicable the prior derived in that section is and further work is needed to develop this

as a despeckling method.

Chapter 3 was an exploratory study which considered how to best incorporate quan-

tization, a real physical system limitation, into the mathematical modeling and optimiza-

tion. This chapter built out the theory and concepts surrounding holographic displays

and then tested a large number of optimization methods which might be able to improve

signal quality for temporally multiplexed holographic display. All methods which incorpo-

rated quantization improved overall reconstruction PSNR, however the Gumbel Softmax

approach had the highest PSNR for moderate to high frame counts, however, the simpler

straight through estimator performed almost as well. There was not a lot of literature

comparing these methods for holographic displays however, the one paper with such a

study for a phase only SLM showed that Proxy Gumbel should outperform STE. This

was not reproduced in my numerical experiments. The reason why may come down to

several modeling differences and choices and a large parameter space meaning a more

precise and mathematical study must be done to understand these different results.
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OCT is done in practice by imaging a single line in depth and the raster scanning

across the face of an object. However, it is possible to define a 3D OCT technique where

uniform plane waves at different frequencies illuminate an object and the scattered field

is recorded and then played back. From this perspective, OCT is a holographic imaging

technique. Similarly, one might be able to think of the Holographic display problem as

optimizing for a hologram which generates the scattered field which would be present

in the 3D OCT problem. The simplified 1D approach is done instead because it has a

higher lateral resolution and fewer artifacts. These deep connections between OCT and

holography helped to enable the transition between the two topics and to help understand

the speckle formation in the quantization problem.

The numerical modeling of light material interaction is a topic I have broadly explored

and am deeply interested in pursuing further in my career. This thesis represents several

completed projects, but is a hopefully just a first step into my future career.
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A.1. Fourier Domain OCT Derivation

To understand the working principle of a modern Fourier domain OCT, we must model

the interaction between a small semi-translucent object of interest [39]. Consider a single

frequency, time harmonic Gaussian beam of the form

Einc(xxx) = A(x, y)exp(i kkk · xxx)

which is sent into a media with index of refraction variations from air given by f(xxx).

The dynamics of the electric field, denoted by E, is well modeled by the inhomogenious

Helmholtz equation

∇2E +
(
f(xxx) + k2

)
E = 0

with the Sommerfield radiation conditions

lim
|xxx|→∞

(
∂

∂|xxx|
− ik

)
E → 0.

It is will established that such a beam will approximately obey the homogeneous equation

∇2Einc + k2Einc ≈ 0.

when the paraxial approximation is valid [64]. Using linearity, the related problem dif-

ference between the scattered and unscattered fields can be considered equivalently

∇2
(
E − Einc

)
+ k2

(
E − Einc

)
= fE.(A.1)
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This system is well studied and has the fundamental solution

G(xxx;xxx0) =
eik

s·|xxx−xxx0|

|xxx− xxx0|
.

Multiplying both sides of equation A.1 by G and integrating results in the integral equation

E(xxx;kkk)− Einc(xxx;kkk) =

∫
R3

dxxx0G(xxx;xxx0)f(xxx0)E(xxx0)dxxx0

or

(
I−

∫
R3

dxxx0G(xxx;xxx0)f(xxx0)

)
E = Einc.

Which has the formal solution

E =

(
I−

∫
R3

dxxx0G(xxx;xxx0)f(xxx0)

)−1

Einc.

Using the assumption supg∈L2
|
∫
R3 dxxx0G(x;x0)f(xxx0)| < 1 then we can safely compute the

solution with a Nuemann expansion of the inverse operator:

(
I−

∫
R3

dxxx0G(xxx;xxx0)f(xxx0)

)−1

=
∞∑
n=0

(
I−

∫
R3

dxxx0G(xxx;xxx0)f(xxx0)

)n

.

This type of solution is for a light scattering system is called a Born series and is a topic

which has been well studied [16, 17]. Each term in this series represents a higher order

scattering event. OCT is typically used for systems which are only weakly backscattering,

meaning that the vast majority of the light is given by the first scattering event [39]. Thus,

we are justified in keeping only the first two terms in the series
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(
I−

∫
R3

dxxx0G(xxx;xxx0)f(xxx0)

)−1

∼ I+
∫
R3

dxxx0G(xxx;xxx0)f(xxx0)

and computed the scattered field as:

E ∼ Einc +

∫
R3

dxxx0G(xxx;xxx0)f(xxx0)E
inc(xxx0).

Plugging in the incident field and G we see that

E ∼ Einc +

∫
R3

dxxx0A(x, y)
f(xxx0)

|xxx− xxx0|
exp (i (kkk − ksksks) · xxx0 − ikkks · xxx)

If we assume our object of interest is relatively small and some distance away from

the origin of our coordinate system we can approximate 1
|xxx−xxx0| ≈ D which is constant.

Furthermore, since in practice an incident beam with a very narrow waist is used, the

support of A(x, y) can be very small, such that the scattering potential f doesn’t vary

much in x and y in depth. Thus, we can approximate the integration in these dimensions

as a fixed multiplicative constant w. Combining these assumptions we have

E ∼ Einc +
A(x, y)Dw

4π
exp (−ikkks · xxx)

∫
R
dz0f(z0) exp (iKz0) .(A.2)

where K = (kkk − ksksks)z. More simply for the scattered field Es = E − Einc we have

Es(kkk;xxx) ≈ A(x, y)Dw

4π
exp (−ikkks · xxx)F [f(z)](A.3)
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From this it is clear that if the scattered field can be measured for a range of wave-

lengths, the scattering potential (index of refraction) for a given object.

The scattered electric field is complex, and most detectors can only sense the intensity

of the electric field losing the phase information. The intensity of the scattered field relates

to the scattering potential through

F−1
[
||Es(kkk;xxx)||2

]
∝ F−1

[
|F [f(z)]|2

]
= corr(f(Z), f(Z))(z)(A.4)

which is the autocorrelation of the scattering potential. Clearly, measuring the signal

intensity will lead to reconstruction ambiguities, as auto-correlation is not a one to one

function. This is sensible since the intensity operation is throwing away half or more of

the information in the Electric field. To avoid this issue, we can use interferometry to

gain additional information about the signal. Using a mirror and a beam splitter we can

add a known incident beam to the the detector causing an interference pattern. Assume

the reference beam is given by Er = R exp (ikzr) = RF [δ(z − zr)] where R is a constant

depending on the reflectivity and beam intensity. The interference pattern measured on

the detector is

I(k;x, y, z) = ||Er + Es||2 = ||Er||2 + ||Es||2 + EsEr∗ + Es∗Er

The Fourier transform of the correlation terms is

F−1[I] ∝ corr(f(z), f(z)) +R2δ(z − zr) + F−1[EsEr∗] + F−1[Es∗Er].(A.5)



150

The first term in this expression is the auto correlation of the scattering potential and is

not impacted by the reference mirror position given by zr. The second term is a delta

peak from the beam intensity which can be in practice subtracted out from the signal.

The remaining two terms are conjugate mirrored copies of the scattering potential. This

is clear as

F−1[EsEr∗] = corr(f(Z), Rδ(Z + z0))(z)

F−1[[Es∗, Er] = corr(f(Z)∗, Rδ(Z − z0))(z).

The specific mirror position z0 impacts the location in the Fourier domain that the copies

of f(z) are centered. If we make the compactness assumption that f(z) = 0 for z < 0∪z >

L and assume the mirror position is z0/2 > L then none of these terms will overlap in the

Fourier domain and f(z) can be viewed directly.

In practice, the wavelengths which was used to illuminate a sample are given by a

certain bandwidth. Because of this, the measured signal will be a sampled copy of this

FFT with an effective high pass filter and resolution depending on the center wavelength

and bandwidth.

A.2. Derivation of Scattered Electric Field Statistics

Given a volumetric scattering material backscattering and incident electric field, the

real and imaginary parts of the electric field at the detector are well modeled by pixelwise

gaussian random variable. To see this, assume that there are Np particles with positions

which are randomly (uniformly) distributed throughout an imaging voxel. The electric
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field on the detector from the ith particle will have the phase

ϕi = mod(
z + ξi
λ

, 2π)(A.6)

where ξi is a uniformly distributed random variable. Assuming the wavelength of light is

sufficiently smaller than the axial depth resolution, then the phase is effectively random

and uniformly distributed between (−π, π) after phase wrapping. This means that the

real and imaginary part of the field at the detector from each particle will be a random

variables with the constraint that the intensity is fixed. The complex representation of

the total electric field incident on the detector will be proportional to

Ez =
N∑
i=1

Ei =
1√
N

N∑
i=1

|ai| cos(ϕi) +
i√
N

N∑
i=1

|ai| sin(ϕi).(A.7)

By the central limit theorem we should expect the real and imaginary parts of this field

to approach Gaussian random variables as N → ∞, which is fully defined by the mean

and variance. We can compute these quantities for the real and imaginary parts as

⟨Re[Ez]⟩ =
1√
N

N∑
i=1

⟨|ai| cos(ϕi)⟩ = 0(A.8)

⟨Im[Ez]⟩ =
1√
N

N∑
i=1

⟨|ai| sin(ϕi)⟩ = 0
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and by orthogonality

⟨Re[Ez]
2⟩ =

N∑
i=1

|ai|2

2N
(A.9)

⟨Im[Ez]
2⟩ =

N∑
i=1

|ai|2

2N

⟨Im[Ez]Re[Ez]⟩ = 0.

Letting
∑N

i=1
|ai|2
2N

= σ2 Thus we have that the real and imaginary parts of the electric field

at the detector are, Im[Ez] ∼ G (0, σ2) and Re[Ez] ∼ G (0, σ2) respectively. The detector

then can detect the real valued intensity of this field as Iz = |Im[Ez]|2 + |Re[Ez]|2 which

is the length of a 2D Gaussian random vector.

A.3. Correcting Beam Profile and Sensitivity Roll Off

An OCT signal model to account for OCT signal decay, confocal point spread function

(PSF) and sensitivity roll off effects was derived by Faber [8, 112]. This model defines

the OCT signal in depth as

IT (z;µB,µoct) = α · T (z − zf ) ·H(z) · µB exp

(
−2
∫ z

0

µoct(τ)dτ

)
(A.10)

where IT (z;µB, µoct) is the measured signal at depth z, µB is the potentially spatially

varying back-scattering coefficient, µoct is the potentially spatially varying attenuation

coefficient. The quantity T is the confocal PSF defined by

T (z − zf ) =
1

1 +
(

z−zf
2nzR0

)2
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where zf is the focus position in depth and zR0 is the apparent Rayleigh length given by

zR0 = πw2
0/λ0.

In this expression, w0 is the radius of the beam waist, λ0 is the center wavelength of the

OCT system, and n is the refractive index of the media. The sensitivity roll off function

is defined by

H(z) = sinc2(.5∆ksamp) exp

(
−
∆k2

optz
2

8 log 2

)

is a depth dependent function of wave number where ∆ksamp is the spectral resolution

and ∆kopt is determined by the dispersion line width of the spectrometer.

The model used in this paper assumes all of the attenuation comes from scattering

events, the frequency of which depend on material properties. However, because a sig-

nificant amount of signal attenuation comes from the sensitivity roll off and confocal

PSF functions applying our model directly to an uncalibrated signal will result in a large

overestimation of true material dependent attenuation. Therefore, to use the DR model

presented in this paper these functions must be measured and the resulting data must be

corrected as

I(z;µB,NA,µoct) =
IT

H(z)T (z − zf )
.(A.11)

This formula is valid such that sin2(.5∆ksamp) is non-zero, although for small spectral

resolutions this could lead to numerical instability.



154

APPENDIX B

Appendix B: Holography Derivations
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B.1. Angular Spectrum Method

Steady state light propagation in space or through an aperture is well described by

Huygen’s principle. This states that the wavefront can be considered as the superposition

of outgoing spherical waves originating at every point. Mathematically, this is often

written as the Fresnel diffraction integral [59]

E(x, y, z) =
−ik
π

∫
R2

dx0dy0E(x0, y0, 0)
exp(ikr)

r
(B.1)

where E(x0, y0, 0) is the known ’input’ electric field in a system and the distance r =

Figure B.1. Figure demonstrating visually how Huygen’s principle can be
used to compute diffraction through an aperture.

√
(x− x0)2 + (y − y0)2 + z2. An alternative way to exploit the linearity of this system
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Figure B.2. Figure demonstrating visually how tilting an incident plane
wave and evaluating on an aperture can be equivalently viewed as a field
with variable frequency present on the aperture.

is to expand the incident field into a series of tilted plane waves (as opposed to spher-

ical) which have a well defined direction of propagation. This can be done by Fourier

transforming the incident field with respect to x and y as

A0(kx, ky) = F [E(x, y, 0)],(B.2)

where A0 is referred to as the angular spectrum of the input fields. The plane defined by

(x, y, 0) is fixed in space, and the original wavelength of light determines the frequency of

the incident wave. There is an equivalence between higher spatial frequencies and tilted

plane waves as shown in Figure B.2. If a plane wave of a fixed frequency is tilted and
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then evaluated on an aperture it is equivalent to just having a higher frequency incident

wave. The equivalent tilted plane wave would have a propagation direction which satisfies

kz =
√

k2 − k2
x − k2

y. A plane wave propagating with direction (kx, ky, kz) between plane

z0 = 0 and z0 = z will simply pick up a phase term of the form exp(ikzz) meaning the

propagated field can be computed as the superposition of all the incident plane waves

multiplied by the phase factor

E(x, y, z) =

∫
R2

dkxdkyA0(kx, ky) exp(ikzz + kxx+ kyy)(B.3)

which is the inverse Fourier transform

E(x, y, z) = F−1[A0(kx, ky) exp(izkz)] = F−1[A0(kx, ky) exp(iz
√

k2 − k2
x − k2

y)].(B.4)

In the case of a digital holographic system we know we have a collimated laser beam as

our input electric field. This is known to have a very small angular spectrum such that

the first order Taylor expansion kz ≈ k − k2x+k2y
2k

holds. Plugging this in we see that

E(x, y, z) = exp(ikz)F−1[F [E0] exp(iz
−k2

x − k2
y

2k
)].(B.5)

Turning our perspective over to computation we denote the FFT operator as FFF and the

propagation operator as we will denote as AAA which is defined as

AAA(z) := exp
(
iz
(
K2 − k2

x − k2
y

))
circ(

k2
x + k2

y(
K2 − k2

x − k2
y

)),(B.6)
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where

circ(x) = I||x||<1(B.7)

From this we can define the ASM operator as

ASM(E0, z) = FFF−1AAA(z)FFFE0.(B.8)

B.2. Intensity Holograms

Consider an ’object’ electric field denoted O(x, y, z) and a reference field which is a

plane wave denoted by R(x, y, z) = exp(−ikkkr · xxx). The goal of holography is to encode

the object field in a medium as an interference pattern and then reconstruct or playback

the field later. The interference pattern on plane z = 0 is given by

HI(x, y) = ||O +R||2 = ||O||2 + ||R||2 +O∗R +R∗O(B.9)

where O = O(x, y, 0) and R = R(x, y, 0). Assuming that this reference pattern in encoded

in the transmission of a media the media can be then be illuminated with a second plane

wave R′ yielding the electric field

R′HI = R′(||O||2 + ||R||2) +O∗RR′ +R′R∗O.(B.10)

Where R′RO = exp(i(k− kr) · x)O and R′RO∗ = exp(i(k+ kr) · x)O∗ which are two twin

scaled copies of the original object field evaluated at the plane of the interference pattern.

To see what the total optical field looks like in space we can simply apply the ASM kernel

and propagate the optical field to a new depth z. Ignoring the first two ’DC terms’ we
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have

ASM(HI , z)−DC = FFF−1AAAFFF [RR′O∗] +FFF−1AAAFFF [R′R∗O](B.11)

where DC = R′(||O||2 + ||R||2). The convolution theorem gives

FFF [RR′O∗] = FFF [RR′] ∗FFF [O∗] = δ(k − kr) ∗FFF [O∗] = FFF [O∗](k − kr)(B.12)

FFF [R′R∗O] = FFF [R∗R′] ∗FFF [O] = δ(k + kr) ∗FFF [O] = FFF [O](k + kr)(B.13)

which allows us to see that

ASM(R′HI , z)−DC = (RR′)O(x, y, z) + (R∗R′)O∗(x, y, z)(B.14)

which are just two twin copies of the original object field scaled by the interference pattern

of the reference and playback waves.

B.3. TI DLP Phase Level Table

The following are the provided phase levels for the TI DLP.
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Phase Level Percent Delay Phase Delay

1 0 -3.1416

2 0.0100 -3.0788

3 0.0205 -3.0128

4 0.0422 -2.8764

5 0.0560 -2.7897

6 0.0727 -2.6848

7 0.1131 -2.4310

8 0.1734 -2.0521

9 0.3426 -0.9890

10 0.3707 -0.8124

11 0.4228 -0.4851

12 0.4916 -0.0528

13 0.5994 0.6245

14 0.6671 1.0499

15 0.7970 1.8661

16 0.9375 2.7489

17 1 3.1416
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B.4. Example Results
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Figure B.3. Results for 2 and 10 frame SGD before and after quantization.



163

Figure B.4. Results for 2 and 10 frame FPC before and after quantization.
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Figure B.5. Results for 2 and 10 frame SFPC before and after quantization.
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Figure B.6. Results for 2 and 10 frame Gubell Softmax before and after quantization.
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Figure B.7. Results for 2 and 10 frame STE before and after quantization.
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Figure B.8. Results for 2 and 10 frame Proxy Gumbel before and after quantization.
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APPENDIX C

Appendix C: Psuedo-code and Algorithms
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C.1. XRF Delayering Incorporating RIS

Inputs:
• XRF : XRF elemental map
• R: RIS data cube
• Nc, Nx, Ny: Number of clusters and pixels in x and y directions
• Shifts: Pixel shift directions and distance

Output:
• S,B:Two Delayered XRF elemental Maps (Surface and below Surface)

Register R to XRF image:
R← Sift(R;XRF )

Cluster R:
R← K_means(R;Nc)

Construct Surface Image Stack:
S ← 0
for k ≤ Nc do

mk = meanij(XRF ∗ Ii,j∈ cluster k)
for i, j ≤ NX , Ny do

Sij = Sij +mk ∗ Ii,j∈ cluster k

end
end
for sh ∈ len( Shifts ) do

(si, sj) = Shifts(sh)
Ssh
ij = Si+si,j+sj

end
Compute Subsurface Intensity:

Bij ← minsh(XRFij − Ssh
ij )

Return: S,B

Algorithm 2: Psuedo-code for the Surface and Subsurface XRF Delayering algorithm
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C.2. Holography Algorithms

C.2.1. A note on automatic differentiation

In this section we discuss the implementations of the algorithms laid out in chapter 3.

As is quickly becoming standard, all algorithms were implemented using a scientific com-

puting package which has automatic differentiation capabilities, specifically Pytorch. In

languages with automatic-differentiation, when a new elementary function is written it

must be written with both the function value called the forward operation as well as it’s

derivative evaluated at the input called the backward function. The forward value is re-

turned and the backwards value is stored in memory. When a series of these elementary

functions are called in sequence, the precise order of the function calls as well as their

gradient values are stored in a graph structure called the computational graph. Since the

vast majority of functions are computed using elementary functions the backward func-

tion does not need to be explicitly defined unless an inexact gradient is needed for some

reason such as in the case of proxy gradient methods.

When doing optimization for parameter recovery, a loss function is computed. This

loss function is a mapping from the parameters to a positive valued scalar function which

describes how well the model agrees with the data. Normally, the goal is to minimize this

loss function using a gradient based method to find the variables which fit the data best.

When the loss function is computed in a language which has automatic differentiation

capabilities, the gradients of the loss function can be efficiently computer by multiplying

together the stored backwards values all the way down the computational graph. This

will, under most circumstances have the same computational complexity as the forward
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pass making it a computationally cheap method. All psuedo-code in this appendix is

written assuming the gradients are being computed in a modern autograd language such

as pytorch. In this psuedocode we adopt the convention that ’.backward()’ backpropagates

the gradients through the computational graph.

C.2.2. SGD
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Inputs:
• z, λ, dx: Propagation distance, Wavelength, Pixel size
• Nf , Nx, Ny: Number of frames and pixels in x and y directions (size of P)
• T, P, LUT : Desired output intensity, initial phase pattern stack, quantization

level look up table
• Input_Field: Desired output intensity
• tol,max_its, lr: Error tolerance, Max SGD iterations, Learning rate

Output:
• P : SLM phase delay pattern to display image

Define Propagation Object:
kx, ky ← meshgrid(linspace(0, 2π/dx), linspace(0, 2π/dx))
K ← 1/λ

A← exp
(
1iz−(kx2+ky2)

K

)
∗ circ( kx2+ky2

K2−kx2+ky2
)

defASM(x;H) :
forward(x) : return conv(x,A)

while it < max_its or er > tol do
Fieldf = Input_Field ∗ exp(−1jP f )
Intensity_Output =

∑
f≤Nf

||ASM(Fieldf , A)||2

Loss = (Intensity_Output− T )2/Nx/Ny

grad = Loss.backward()
P f
ij ← P f

ij + lr gradfij
it = it+ 1

end
Wrap Phase Pattern and Quantize:

P f
ij = atan(Imag(P f

ij)/Real(P f
ij))

P f
ij ← minq∈ Look up table(P

f
ij − q)2

Return: P

Algorithm 3: Psuedo-code for the Stochastic Gradient Descent Algorithm for Com-
putational Holography.

C.2.3. STE

The straight through estimation algorithm looks exactly the same as the SGD algorithm

defined in ap. C.2.2 with the addition of quantization and which has a backwards function

which lets the gradients pass through unchanged.
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Inputs:
• z, λ, dx: Propagation Distance, Wavelength, Pixel size
• Nf , Nx, Ny: Number of frames and pixels in x and y directions (size of P)
• T, P, LUT : Desired output intensity, initial phase pattern, quantization level

look up table
• Input_Field: Desired output intensity
• tol,max_its, lr: Error tolerance, Max STE iterations, Learning rate

Output:
• P : SLM phase delay pattern to display image

Define Objects:
kx, ky ← meshgrid(linspace(0, 2π/dx), linspace(0, 2π/dx))
K ← 1/λ

A← exp
(
1iz−(kx2+ky2)

K

)
∗ circ( kx2+ky2

K2−kx2+ky2
)

defASM(x;A) :
forward(x) : return conv(x,A)

def diff_quant(x;LUT ) :
forward(x) : return minq∈ Look up table((xij)− q)2

backward(x, grad_in) : return grad_in
while it < max_its or er > tol do

Pquant = diff_quant(P,LUT ) Fieldf = Input_Field ∗ exp(−1jP f
quant)

Intensity_Output =
∑

f≤Nf
||ASM(Fieldf , A)||2

Loss = (Intensity_Output− T )2/Nx/Ny

grad = Loss.backward()
P f
ij ← P f

ij + lr gradfij
it = it+ 1

end
Wrap Phase Pattern and Quantize:

P f
ij = atan(Imag(P f

ij)/Real(P f
ij))

P f
ij ← minq∈ Look up table(P

f
ij − q)2

Return: P

Algorithm 4: Psuedo-code for the Straight Through Estimation Algorithm for Com-
putational Holography.

C.2.4. Framewise PC

The Framewise PC algorithm is a version of SGD where some frames are quantized and

frozen during the optimization process allowing quantization information to flow into
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the problem. In this algorithm superscripts refer to the frame. The derivative of the

quantization operator used here is zero so the derivative for the entire phase pattern stack

will only be non-zero for the frames which are unquantized.
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Inputs:
• z, λ, dx: Propagation Distance, Wavelength, Pixel size
• Nf , Nx, Ny: Number of frames and pixels in x and y directions (size of P)
• T, P, LUT : Desired output intensity, initial phase pattern, quantization level

look up table
• Input_Field: Desired output intensity
• tol,max_its, lr: Error tolerance, Max FPC iterations, Learning rate

Output:
• P : SLM phase delay pattern to display image

Define Objects:
kx, ky ← meshgrid(linspace(0, 2π/dx), linspace(0, 2π/dx))
K ← 1/λ

A← exp
(
1iz−(kx2+ky2)

K

)
∗ circ( kx2+ky2

K2−kx2+ky2
)

defASM(x;A) :
forward(x) : return conv(x,A)

def quant(x;LUT ) :
forward(x) : return minq∈ Look up table((Pij)− q)2

while it < max_its or er > tol do
for f < Nf do

P fr ̸=f
quant ← quant(P fr;LUT )

P f
quant ← P f

Fieldfr = Input_Field ∗ exp(−1jP f )
Intensity_Output =

∑
fr≤Nf

||ASM(Fieldfr, A)||2

Loss = (Intensity_Output− T )2/Nx/Ny

grad = Loss.backward()
P f
ij ← P f

ij + lr gradfij
end
it = it+ 1

end
Wrap Phase Pattern and Quantize:

P f
ij = atan(Imag(P f

ij)/Real(P f
ij))

P f
ij ← minq∈ Look up table(P

f
ij − q)2

Return: P

Algorithm 5: Psuedo-code for the Framewise Predictor Corrector Algorithm for Com-
putational Holography.
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C.2.5. Psuedo-code for the Single Frame Predictor Corrector Algorithm for

Computational Holography.

The SFPC algorithm is a version of SGD where odd and even rows are updated indepen-

dently allow for partial quantization.
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Inputs:
• z, λ, dx: Propagation Distance, Wavelength, Pixel size
• Nf , Nx, Ny: Number of frames and pixels in x and y directions (size of P)
• T, P, LUT : Desired output intensity, initial phase pattern, quantization level

look up table
• Input_Field: Desired output intensity
• tol,max_its, lr: Error tolerance, Max SFPC iterations, Learning rate

Output:
• P : SLM phase delay pattern to display image

Define Objects:
kx, ky ← meshgrid(linspace(0, 2π/dx), linspace(0, 2π/dx))
K ← 1/λ

A← exp
(
1iz−(kx2+ky2)

K

)
∗ circ( kx2+ky2

K2−kx2+ky2
)

defASM(x;A) :
forward(x) : return conv(x,A)

def quant(x;LUT ) :
forward(x) : return minq∈ Look up table((Pij)− q)2

while it < max_its or er > tol do
Odd update
(Pquant) i,j s.t. i odd ← Pi,j

(Pquant) i,j s.t. i even ← quant(Pi,j;LUT )

Fieldfr = Input_Field ∗ exp(−1jP fr)
Intensity_Output =

∑
fr≤Nf

||ASM(Fieldfr, A)||2

Loss = (Intensity_Output− T )2/Nx/Ny

grad = Loss.backward()
P fr s.t. fr odd ← P fr

ij + lr gradfrij
Even update
(Pquant) i,j s.t. i even ← Pi,j

(Pquant) i,j s.t. i odd ← quant(Pi,j;LUT )

Fieldfr = Input_Field ∗ exp(−1jP fr)
Intensity_Output =

∑
fr≤Nf

||ASM(Fieldfr, A)||2

Loss = (Intensity_Output− T )2/Nx/Ny

grad = Loss.backward()
P fr s.t. fr odd ← P fr

ij + lr gradfrij
it = it+ 1

end
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Wrap Phase Pattern and Quantize:
P f
ij = atan(Imag(P f

ij)/Real(P f
ij))

P f
ij ← minq∈ Look up table(P

f
ij − q)2

Return: P

Algorithm 6: Psuedo-code for the Single Frame Predictor Corrector Algorithm for
Computational Holography.
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C.2.6. Gumbel-Softmax

The Gumbel-Softmax method relies on a technique known as categorical reparameteriza-

tion to efficiently sample the space of SLM patterns to find an optima. As the space is

sampled the control pattern which controls the mean of the sampling process converges

to a suitable SLM pattern to be displayed.
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Inputs:
• z, λ, dx: Propagation Distance, Wavelength, Pixel size
• Nf , Nx, Ny: Number of frames and pixels in x and y directions (size of P)
• T, P, LUT : Desired output intensity, initial phase pattern, quantization level

look up table
• w, t0, trate: Sigmoid width , Starting temperature, Annealing rate
• Input_Field: Desired output intensity
• tol,max_its, lr: Error tolerance, Max GS iterations, Learning rate

Output:
• P : SLM phase delay pattern to display image

Define Objects:
kx, ky ← meshgrid(linspace(0, 2π/dx), linspace(0, 2π/dx))
K ← 1/λ, t← t0

A← exp
(
1iz−(kx2+ky2)

K

)
∗ circ( kx2+ky2

K2−kx2+ky2
)

defASM(x;A) :
forward(x) : return conv(x,A)

def gum_quant(x;LUT,w, t) :
forward(x) :

xj ← Sigmoid(w(xj − LUTj))
xj ← xj(1− xj) +Gumbel(0, 1)
x← Softmax(x, t)
xquant =

∑
j LUTjxj

Return: xquant

while it < max_its or er > tol do
Pquant = gum_quant(Pquant;LUT,w, t) Fieldf = Input_Field ∗ exp(−1jP f )
Intensity_Output =

∑
f≤Nf

||ASM(Fieldf , A)||2

Loss = (Intensity_Output− T )2/Nx/Ny

grad = Loss.backward()
P f
ij ← P f

ij + lr gradfij t← t0 exp
(
− it

max_its
log(trate)

)
it = it+ 1

end
Wrap Phase Pattern and Quantize:

P f
ij = atan(Imag(P f

ij)/Real(P f
ij))

P f
ij ← minq∈ Look up table(P

f
ij − q)2

Return: P

Algorithm 7: Psuedo-code for the Gumbel-Softmax Algorithm for Computational
Holography
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C.2.7. Proxy Gumbel

The Proxy Gumbel method is a fusion of the random gradient from the GS method

with the deterministic quantization of a standard STE method. For more complex proxy

methods it is necessary to edit the computational graph directly to independently alter

either the gradient or the function value at that point used to compute the gradient. In

this algorithm two forward models are calculated using different quantization methods.

The proxy gradient can be computed with back propagation by replacing the function

value but not the stored gradient information. in the syntax of pytorch we can access this

by using the ".data" field in the tensor.
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Inputs:
• z, λ, dx: Propagation Distance, Wavelength, Pixel size
• Nf , Nx, Ny: Number of frames and pixels in x and y directions (size of P)
• T, P, LUT : Desired output intensity, initial phase pattern, quantization level

look up table
• w, t0, trate: Sigmoid width , Starting temperature, Annealing rate
• Input_Field: Desired output intensity
• tol,max_its, lr: Error tolerance, Max PGS iterations, Learning rate

Output:
• P : SLM phase delay pattern to display image

Define Objects:
kx, ky ← meshgrid(linspace(0, 2π/dx), linspace(0, 2π/dx))
K ← 1/λ, t← t0

A← exp
(
1iz−(kx2+ky2)

K

)
∗ circ( kx2+ky2

K2−kx2+ky2
)

defASM(x;A) :
forward(x) : return conv(x,A)

def gum_quant(x;LUT,w, t) :
forward(x) :

xj ← Sigmoid(w(xj − LUTj))
xj ← xj(1− xj) +Gumbel(0, 1)
x← Softmax(x, t)
xquant =

∑
j LUTjxj

Return: xquant

def quant(x;LUT ) :
forward(x) : return minq∈ Look up table((xij)− q)2

while it < max_its or er > tol do
Pgum_quant = gum_quant(P ;LUT,w, t)
Pquant = quant(P ;LUT )

Fieldfgum_quant = Input_Field ∗ exp(−1jP f
gum_quant)

Fieldf = Input_Field ∗ exp(−1jP f
quant)

Intensity_Outputgum_quant =
∑

f≤Nf
||ASM(Fieldf , A)||2

Intensity_Output =
∑

f≤Nf
||ASM(Fieldf , A)||2

Intensity_Outputgum_quant.data = Intensity_Output.data
Loss = (Intensity_Outputgum_quant − T )2/Nx/Ny

grad = Loss.backward()
P f
ij ← P f

ij + lr gradfij

t← t0 exp
(
− it

max_its
log(trate)

)
it = it+ 1

end
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Wrap Phase Pattern and Quantize:
P f
ij = atan(Imag(P f

ij)/Real(P f
ij))

P f
ij ← minq∈ Look up table(P

f
ij − q)2

Return: P

Algorithm 8: Psuedo-code for the Proxy Gumbel Algorithm for Computational
Holography.
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