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ABSTRACT

Recurrent inhibition within olfactory networks shapes noise correlations and stimulus

discrimination

Angelia Wang

Each second, living organisms take in sensory input from an ever-changing environ-

ment and respond appropriately. Identifying and contextualizing stimuli is critical for

survival, and it often necessitates distinguishing between sensory experiences that are

similar to each other. Pattern separation characterizes the mechanisms by which neu-

ronal networks extract and highlight differences between similar stimulus-induced activity

patterns, making it easier for higher-order brain centers to distinguish between them.

Within the olfactory system, pattern separation is made possible by its extensive cir-

cuitry through which neurons communicate and interpret each other’s activities. Previous

work discusses how specific shared connectivity can induce pairwise correlations between

neurons and how correlations reduce the total information a network can carry, but the

roles of specific recurrent connectivities and mechanistic interactions between cells within

the bulb are not well understood. In this thesis, we investigate how different motifs of

recurrent connectivity shape noise correlations, how variances and pairwise covariances
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are impacted by stimulus shape and measurement duration, and how all these quantities

impact performance in a two-class stimulus discrimination problem.

The olfactory bulb contains recurrently-connected mitral cells (MCs) and granule

cells (GCs), whose excitatory-inhibitory interactions generate network oscillations in the

gamma frequency range. In Chapter 2, we find that recurrent inhibition from the GCs

induces a gamma rhythm characterized by alternating volleys of MC and GC spikes and

that MC fluctuate on the scale of the gamma period. On short timescales, MCs fire syn-

chronously (i.e. within the same volley of spikes); over longer timescales, they reduce each

other’s activity via shared inhibition. Correspondingly, pairwise covariance between two

MCs is positive for short measurement durations and negative in measurements larger

than the period of the gamma rhythm.

In Chapter 3, we quantify network performance using linear discriminability, which

is governed by the average difference in response (∆µ⃗) between two stimuli and the sum

of response covariances (Σ). Linear discriminability measures the dissimilarity between

two stimulus-evoked patterns and may represent a cortical neuron’s readout of MC ac-

tivity. We find that inhibition worsens stimulus discrimination in a network comprising

independent pairs of MC-GC reciprocal connections (“single connections”), but that this

reduction is largely dominated by average difference in response ∆µ⃗. Inhibition also

reduces variance in these single connected networks, which benefits discriminability and

partially offsets the effect of ∆µ⃗. Conversely, in a network with all-to-all coupling (“global

connections”), small amounts of inhibition improve discriminability despite reducing ∆µ⃗,

and noise correlations in Σ become increasingly beneficial as the stimuli become more

similar.
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We assess both optimal and exploratory linear discriminability, which constitute differ-

ent ways a network can perform discrimination. Optimal discriminability Fopt represents

the best-case-scenario performance of a network that optimally weights each MC input

in order to maximize stimulus separability, and random (exploratory) discriminability

Frandom represents the performance of a network that has not learned how to discriminate

an odor pair and weights MC inputs randomly. Networks connected with either single

connections or global connections perform similarly in both metrics – inhibition deliv-

ered through single connections worsens discriminability and small inhibition delivered

through global connections improves discriminability. However, a key difference between

the two metrics is that Frandom accounts for noise in dimensions (MC inputs) which have

the same average activity across both stimuli. As a result, preferentially inhibiting these

distracting cells reduces the total noise in the system, which improves Frandom.

In Chapter 4, motivated by the idea that cortical responses may result from a few

spikes soon after stimulus onset, we implement a sniff cycle and take measurement win-

dows sequentially along the sniff. We find that discriminability in the steady-state regime

matches discriminability over the later portion of a sniff, but that there may also be sub-

stantial improvements during early inhalation. Specifically inhibition delivered through

either single-connected and all-to-all networks improves both Fopt and Frandom, but only

at the specific times when MCs with the largest differences between stimuli are active,

whereas inhibition that preferentially suppresses strongly-spiking uninformative cells pro-

duces strong sustained improvement in discriminability over the entire inhalation. We
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also find that inhibition that reduces overall discriminability in the steady-state may pro-

duce alternating periods of improved and worsened discriminability, even if the overall

time-averaged discriminability is reduced.

Chapters 5 and 6 include model implementation and discussion of this thesis work,

respectively.

In Chapter 7, I describe my CAR-T modeling project completed as a Clinical Phar-

macology summer intern at Takeda Pharmaceuticals. While not directly related to the

primary thesis work, this research nevertheless showcases an example of using mathemati-

cal modeling to further understanding of biological mechanisms. In this project, I selected

a case study of CD19-targeting CAR-T used to treat both immunodeficient mice and a

cohort of clinical cancer patients, and I constructed a physiology-based mechanistic model

that simultaneously captured data from both cohorts. In doing so, the model predicted

key mechanistic differences in how preclinical (non-human) species and clinical patients

respond to this specific CAR-T construct. Specifically, T-cells expand approximately four

times more rapidly in clinical patients compared to immunodeficient mice, and it also has

approximately five-fold higher tumor-killing efficiency after infusion. This work may in-

form clinical dosing strategies in the future and provides a framework for other modeling

efforts in translational medicine.

The appendix includes more detailed analyses of some of the methods we use, as well

as various exploratory analyses that informed model development.
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List of abbreviations

Name Unit/Value Meaning

OB Olfactory bulb
OSN Olfactory sensory neuron
MC Mitral cell
GC Granule cell
S(i) kHz Poisson rate of Stimulus (i)
∆µ⃗ kHzNm×1 average difference in response rates
Σ kHz2

Nm×Nm Sum of covariance matrices of rates
∣M(f) ∣2 Power spectral density
ξ, ζ δ−correlated Gaussian noise terms
Fopt Optimal Fisher linear discriminability
Funcorr Uncorrelated linear discriminability
Frandom Random linear discriminability
w Inhibitory coupling
T ms Measurement duration
Wgm Weight matrix from GCs to MCs†

Wmg Weight matrix from MCs to GCs
Wom Weight matrix from OSNs to MCs
C 281 pF membrane capacitance
gL 30 nS leak conductance
EL -70 mV resting potential
∆T 2 mV exponential slope factor
VT -50.4 mV resting membrane threshold
V mV Voltage
x̄ mV Low-pass filtered voltage
τ mS Synaptic time constant

Table 0.1. Parameters and abbreviations

† Conventionally, matrix notation Wij indicates input from source j to recipient i. The author found

this indexing more intuitive.
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CHAPTER 1

Introduction

The mammalian brain is a powerful processing center that translates raw sensory input

from the environment into behavioral decisions, often in seconds or faster. This ability to

accurately identify environmental information with speed and precision is crucial for many

survival-related tasks, including identifying food, responding to predators, and socializing

with other members of the species. Our sense of smell in particular, which came under

unprecedented global popularity in Spring 2020, is one of the oldest sensory modalities

and helps us understand and perceive the world.

With hundreds of different chemical receptor types, the human olfactory system can

distinguish (estimatedly) thousands of odorants [1, 2, 3], and many animals rely on

olfaction as their primary sensory modality for day-to-day tasks [4]. The discriminatory

ability of the olfactory system is largely due to the complex, extensive circuitry through

which its networks of neurons communicate with each other. Understanding the dynamics

of these circuits can yield insights towards how animals effectively discriminate between

different stimuli.

Early processing of olfactory stimuli is composed of the following steps. Upon in-

halation, volatile chemical compounds in the air move into the nasal cavity and land on

olfactory receptor neurons. These neurons respond by sending electrical signals down-

stream to the olfactory bulb (OB), where principal neurons called mitral cells (MCs)

respond and produce an activity representation specific to that odor. Inhibitory neurons
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called granule cells (GCs) are reciprocally connected to MCs through dendrodendritic

connections [5]. GCs process MC activity, dynamically reshaping it before MC activity

is read out downstream by higher-order cortical cells responsible for decision making.

During this intermediate reformatting step, the neuronal network extracts and highlights

differences from similar patterns of stimulus-induced neural activity; this process is known

as pattern separation and is important for stimulus discrimination [6, 7, 8].

Many experimental studies highlight the importance of GCs in enhancing discrimina-

tion tasks [9, 10, 11], but specific relevant mechanisms and roles of recurrently-connected

neurons within the bulb are not currently well understood. In this thesis, we discuss specif-

ically how recurrent connectivity within the OB shapes noise correlations and pairwise

covariances between MCs, and how these resulting noise correlations impact stimulus

discriminability.

Previous efforts studying various sensory systems begin to explain how shared con-

nections and correlations impact discriminability. Computational studies of the visual

system, in which neurons interact with each other through local excitation paired with

far-reaching inhibition (commonly called “Mexican hat” connectivity), find that pairwise

correlations between neurons reduce the total amount of information that the network

can carry, suggesting that they are detrimental for discriminability [12, 13, 14]. Other

studies find that whether or not correlations reduce information is largely determined by

the neurons’ tuning curve [15, 16], specific forms of their correlation matrices [17, 18],

or the circuit motifs (feedforward-recurrent) connecting them [19].
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Correlations that limit information limitations can nevertheless improve behavioral

stimulus discrimination [20] or otherwise improve encoding precision [21]. While appar-

ently paradoxical, this is based off the fact that discrimination is not solely determined

by total available information but rather relies on different functional modalities. For

example, the OB engages in fast network oscillations, along which MCs tend to spike

synchronously in response to shared connections [22]. GCs induce synchronicity on these

short timescales, resulting in positive correlations between pairs of MCs that reduce the

total information but enhance propagation [23, 24]. In larger measurement windows

however, cells become anticorrelated due to the recurrent nature of the network and indi-

rect competition between MCs. Thus, there exists a tradeoff in stimulus discrimination;

increased synchronicity at shorter time scales increases propagation to downstream brain

regions, whereas pairwise anticorrelations at larger time scales increases the amount of

total information available in the system [23].

We contribute to these efforts using a framework specific to olfactory system func-

tionality, and we supplement our discussion of noise correlations with a broader analysis

of odor discriminability and the various factors contributing to it: network connectivity,

stimulus profile, measurement duration, and steady-state vs. aligned-to-sniff. Our frame-

work consists of a network of exponential integrate-and-fire neurons that models the core

excitatory-inhibitory interaction between MCs and GCs in the OB (Figure 1.1a), and we

assess how these networks perform in a two-class discrimination problem. Here, MC activ-

ity in response to an odorant comprises a noisy high-dimensional cloud representation, and

the distinction or “discriminability” of two similar odorants depends both on the average

distance between two “stimulus clouds” and the spread of each one (Figure 1.1b). Taken
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together, this thesis explores how different motifs of recurrent connectivity influence the

magnitudes and signs of variance and pairwise correlations, the roles of stimulus shape

and magnitude in shaping qualitative features of noise, the importance of measurement

duration and placement, and how noise correlations impact stimulus discriminability.

Figure 1.1. Network schematic, visual representation of discriminability
metric. a) Schematic of olfactory bulb. Mitral cells (green) excite granule
cells (red) and are reciprocally inhibited by them. Mitral cells are stimu-
lated by Olfactory Sensory Neurons (blue) and also synapse onto neurons
within piriform cortex. b) Schematic of linear discriminant analysis in two
dimensions. Red and blue clouds represent noisy responses to two stimuli;
solid black line is the vector of differences of the means. Teal and magenta
ellipses represent covariance matrices of the two stimuli.
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CHAPTER 2

Noise correlations are shaped by network connectivity, stimulus

shape, and measurement duration.

2.1. Single reciprocal connection

Our investigation of how recurrent inhibition shapes noise correlations begins with the

simplest connected network: a single MC-GC reciprocal pair (Figure 2.1a).

The MC and GC are each modeled as an exponential integrate-and-fire neuron with

no refractory period (Equation 2.1). When its voltage reaches a threshold VT , we record a

spike and reset the voltage to resting potential EL. These neurons have an FI curve that

appears linear, especially at larger inputs (Figure 2.1b). Consistent with experimental

observations [25], their variability also increases with input (Figure 2.1b).

C
dv

dt
= −gL (v −EL) + gL∆T e

v−vT
∆T + I(2.1)

v > VT → v = EL.

Here, C is the membrane capacitance, gL is the leak conductance, EL is the resting

potential, ∆T is a slope factor, and I represents input. Parameters and general structural

model are borrowed from [26] and listed in Table 0.1.
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The mitral cell receives input from an “olfactory sensory neuron” (OSN), represented

as a Poisson spike train whose rate is fixed in time. Whenever the OSN spikes, it incre-

ments an exponentially-decaying low-pass filter variable.

τOSN
d

dt
x̄OSN = −x̄OSN + ∑

OSN spike j

δ(t − tj)(2.2)

Similarly, when the MC or GC reaches threshold, it spikes and increment its respective

low-pass-filter variable. The excitatory coupling strength from the MC to GC is fixed, and

the inhibitory coupling strength from the GC to the MC is parametrized with a scaling

variable w, which ranges from 0 to 50 (arbitrary units). Here and in all subsequent

analyses in the main body of the thesis, we use the following values of w:

w = 0, 0.1, 0.2, 0.4, 0.6, 0.8, 1, 2, 5, 10, 20, 50.(2.3)

These numbers are chosen arbitrarily but cover ranges of w at which key qualitative results

occur.

τMC
d

dt
x̄MC = −x̄MC + ∑

MC spike k

δ(t − tk)(2.4)

τGC
d

dt
x̄GC = −x̄GC + ∑

GC spike i

δ(t − ti)

Ito MC = −w ×Wgm × x̄GC +Wom × x̄OSN

Ito GC =Wmg × x̄MC,
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We first evolve the reciprocally connected pair for 50,000 ms using a standard Forward

Euler algorithm with dt = 0.02 ms, and we keep track of MC spike history. To estimate

the finite-time variance of rates, we take randomly placed measurements along the spike

history, count the spikes occurring in each measurement, and calculate the variance of

rates from those samples. Measurement durations vary from T = 2 to T = 100 ms.

Note that since the time series is finite and measurements are taken randomly through-

out the time series, samples are not necessarily independent from each other. However,

estimations of variance do not seem to be spuriously affected at our choices of measure-

ment size nor bin size (see Appendix A.2).

Inhibition reduces MC firing rate, and MCs with higher baseline activities are sup-

pressed more strongly than those with lower activities (Figure 2.1c). The latter follows

from the a combination of the frequency-input relationship and network reciprocity; the

FI curve is linear (concave up at small inputs near threshold), and active mitral cells more

strongly drive their granule cells. However, MC firing rate decreases slower than on the

order 1
1+w (Figure 2.1c, inset), which would be the expected scaling if both MCs and GCs’

firing rates were linear in their inputs.

Variance of rates also trends lower with inhibitory strength (Figure 2.1d), especially

at small w. We plot our neuron’s variance against the corresponding variances of an

artificial Poisson spike train with the same mean rate (Figure 2.1d, dashed lines), in order

to establish baseline comparisons against known variance scaling.

Note: Figures 2.1c and 2.1d use a logarithmic horizontal scale in order to better show

behavior at small w. Horizontal variable is 1 + w in order to include w = 0. Horizontal

axis in the inset of figure 2.1c is on a linear axis to show that MC firing rate does not
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scale linearly with (1+w), which would be the expected scaling if both MC and GC firing

rates were linear in their inputs.

At all input levels and at small inhibition, the variance of a reciprocally-inhibited

MC reduces more steeply than in its corresponding Poisson spike train. Due to network

reciprocity, mitral cells receive feedback inhibition that directly results from their own

activity, which strongly reduces their noise.

At larger input levels, variance does not decrease monotonically with w; while unin-

tuitive, this results from the size of the measurement window relative to the period of the

system rhythm (Figure 2.2).

We next assess how variance of rates changes with measurement duration T . As in

our analysis of mean rates, variance is compared against that of a corresponding artificial

Poisson spike train of the same mean rate, whose variance decreases linearly with T

(Appendix A.1). To better highlight qualitative features and account for this known

scaling, we multiply variance of rates by the size of the measurement duration. At small

inhibitions, scaled variance decreases monotonically with T (Figure 2.2a). However, at

sufficiently strong inhibitions and large inputs, scaled variance nonmonotonically changes

with T . There is notably a rise at small window sizes before a dip, followed by subsequent

smaller rises and dips (Figure 2.2bc). Moreover, peaks move towards larger window sizes

with increasing inhibition, consistent with the previous observation that variance at a

fixed window size may increase with larger w (Figure 2.1d).

Nonmonotonic behavior at large inhibitions is caused by an emergent oscillation within

the network and depends on the inhibitory strength and the speed of granule cell response

(see Appendix A.3). Whereas small amounts of inhibition do not drive any apparent
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Figure 2.1. Properties of a reciprocally-connected MC-GC pair. (a) Net-
work schematic. (b) FI curve of exponential integrate and fire neuron.
Horizontal axis is the rate of a Poisson spike train who provides input to
the neuron, and vertical axis is firing rate. Both firing rates are measured in
kHz. Error bars indicate standard deviation of spikes measured in dt = 0.02
iterations over a 2000 ms simulation. (c) Average firing rate with inhibitory
strength w. Increasingly darker shades of blue correspond to increasing w.
Inset of (c) shows FR multiplied by (1+w). (d) Variance of rates (pro-
portional to that of w = 0). Dashed lines show corresponding variances of
Poisson spike trains of the same mean rates. Variance of rates is measured
at T = 60.

spiking pattern (Figure 2.3ac), a rhythm emerges at sufficiently strong inhibitory coupling

and strong inputs. These rhythms comprise alternating cycles of MC spiking that is

silenced by GC spiking (Figure 2.3b), and the corresponding power spectral density for

these MCs show strong peaks at the dominant system frequency and all its harmonics

(Figure 2.3c). Small T measurements (that is, smaller than the system period) pick

up either high amounts of activity within a spiking volley or periods of silence based
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Figure 2.2. Variance of rates scaled by measurement duration for (a) w = 2,
(b) w = 10, (c) w = 50. Dashed lines correspond to scaled variance of rates
for equivalent Poisson trains. Increasingly darker shades of blue indicate
increasing input strength.

off chance, resulting in high variability across measurements. Conversely, measurement

windows near the period size pick up more consistent numbers of spikes, resulting in a

lower estimated variance.

Figure 2.3. (a) Raster plot of MC (blue) and GC (red) for w = 2 during a
randomly chosen 500 ms interval. (b) Raster plot for w = 50. (c) Power
spectral density for w = 2 (magenta) and w = 50 (black). Relative input
strength is 1.

2.2. Shared inhibition

We next slightly expand our model to assess the impacts of shared connections between

multiple MCs. These simulations arose from the initial puzzlement that the 2-MC network

behaved differently than 10-MC networks with the same parameters (Appendix A.4).
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We simulate reciprocal networks containing a single inhibitory GC and increasing

numbers of MCs. Each MC is excited by an independent Poisson input with fixed mean

rate. Each MC excites the single GC and is inhibited by it. We use inhibitory strength

w = 50 and take randomly placed measurement windows of size T = 200. A key distinction

from the previous scenario is that these neurons are not independent; whereas a single

mitral cell reciprocally connected to a single granule cell receives inhibition resulting from

only its own activity, these mitral cells receive inhibition resulting from both its own

activity and the collective activity of all its neighbors.

Indeed, the GC’s variance reduction is lessened with increasing number of intercon-

nected MCs (Figure 2.4a). Additionally, as the system size increases, any pair of mitral

cells has a smaller pairwise correlation with each other (Figure 2.4b), as well as a smaller

pairwise correlation with the granule cell (Figure 2.4c). Increasing the number of cells in

an interconnected network dilutes the noise-shaping potency of the inhibitory signal.

Note that although variance does not decrease with w at all window sizes (seen in

Figure 2.3), increasing number of MCs increases the variance at any fixed w and T .

Figure 2.4. (a) Variance of MC rates, not scaled with T . (b) Pairwise
correlation coefficient between MCs. (c) Pairwise correlation coefficient of
MCs with the GC. Dots are data from individual samples. Solid line and
error bars indicate mean and standard deviations, respectively.
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2.3. Pairwise covariance

2.3.1. Pairwise covariances in a globally-connected network adhere to emer-

gent rhythms.

To further explore how covariance terms are shaped by shared inhibition and measurement

duration, we simulate all-to-all connected networks with at least 2 MC. In these networks,

the number of GC is always equal to the number of MC, and every MC is reciprocally

connected to every GC. To maintain each cell’s input comparable to that of the single MC-

GC network, we divide both coupling matrices Wmg and Wgm by the number of recipient

cells. Note that since every granule cell receives input from all mitral cells, and there is

no noise input to the granule cells, these systems are functionally equivalent to systems

containing only one universally-connected granule cell. System equations are similar to

that of the single MC-GC network:

τMCk

d

dt
x̄MCk

= −x̄MCk
+ ∑

MCk spike

δ(t − tspike)(2.5)

τGCi

d

dt
x̄GCi

= −x̄GC i + ∑
GCi spike

δ(t − tspike)(2.6)

Ito MC = −(∑
i

w ×Wgm × x̄GC i) + (∑
j

Wom × x̄OSN j)(2.7)

Ito GC = (∑
k

Wmg × x̄MC k) .(2.8)

Motivated by our previous finding that larger stimulus intensity drives stronger rhythms

(Figure 2.2), we now stimulate an all-to-all network in response to two input strengths,

with half the MCs driven by 1 kHz spike trains and the other half driven by 0.77 kHz

spike trains. These values are arbitrarily chosen, and using two levels of stimulation sets
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the stage for a later section in this thesis, in which we define a two-class discrimination

problem between stimuli each defined by two levels of input.

The precise scaling of variance with input strength is difficult to quantify and varies

with T and w (a few examples for the single-reciprocal scenario are shown in Figure 2.2),

but we generally find that MCs receiving larger stimulation (Figure 2.5, top row, green

curves) have larger variance than MCs receiving lower stimulation (Figure 2.5, top row,

red curves). Variance also increases with larger system sizes (Figure 2.5).

At small w, both scaled variance and covariance monotonically decrease with T . Co-

variance in particular is negative, corresponding to MCs’ indirectly suppressing each other

through mutual shared inhibition. At larger w, variance and covariance exhibit large lo-

cal maxima at small windows, indicating the presence of a system rhythm. Covariance

crosses zero at T near the system period, and the zero-crossing moves towards larger T

at stronger w (Figure 2.5). System rhythms become visually apparent around w = 2,

and synchronous volleys grow further apart as the inhibitory coupling strength increases

(Figure 2.6). The power spectral density exhibits peaks that increase in amplitude as w

increases, indicating stronger rhythms with larger inhibition.

Visual features of covariance are consistent with experimental and computational re-

sults [23]. Positive covariance at small T indicates correlated firing, such as in synchro-

nous volleys of spikes. Negative covariance at larger T is consistent with MCs’ suppressing

each other indirectly through shared inhibition. Moreover, covariance slightly increases

towards zero for larger system sizes, suggesting that negative feedback is less potent when

diluted by the activities of more cells.



33

Note: At w = 0, variance is mostly constant across window size, with a small uptick

at small window sizes. Since there is no interaction between mitral and granule cells in

this scenario and the uptick does not decrease with more samples, this may be due to

increased variability in the system on small time scales, for instance caused by the relative

refractory period caused by resetting voltage after each spike.

Note: In this case, this uptick does not seem to be due to measurement error, but

there are other scenarios in which measurement error scales inversely with window size. In

Appendix B.1, we derive how linear discriminability in Poisson networks is overestimated

by an amount that scales linearly with the measurement duration.

Figure 2.5. Variances and covariances of two cells with shared inhibition,
stimulated by 1 kHz spike trains (blue) and 0.77 kHz spike trains (red).
(Top row) Average variance scaled by T . (Bottom row) Pairwise covariance
scaled with T . Increasingly darker shades indicate increasing system sizes.
Dashed black line indicates zero.

2.3.2. Input strength determines magnitudes of pairwise covariance.

In subsequent sections of stimulus discrimination, we consider stimulus pairs that are

symmetric under the exchange of MCs: a MC that receives X Hz from Stimulus 1 and

Y Hz from Stimulus 2 has a corresponding MC in the network that receives Y Hz from
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Figure 2.6. Raster plots for an all-to-all connected network with half the
MCs driven by 1 kHz spike trains (blue) and half driven by 0.77 kHz spike
trains (red), for (a) w = 2, (b) w = 10, (c) w = 50 during a randomly selected
500 ms interval. (d) Power spectral density for 16 MCs averaged over all
mitral cells in the system.

Stimulus 1 and X Hz from stimulus 2. These pairs may represent binary mixtures, which

are often used in experimental studies [27, 28, 29]. Here, we briefly mention how the

pairwise covariance of two cells is shaped by stimulus profiles. Consider the following two

pairs of stimuli, termed High-Contrast and low-contrast blocks (Figure 2.7).

Figure 2.7. Two examples of symmetric block stimuli with the same mean
firing rates with (a) high contrast and (b) low contrast. Data shows average
firing rate over a 50,000 ms simulation.

Any two identically-stimulated MCs covary more strongly with larger stimulus inten-

sity (Figure 2.8 top and bottom rows, colored dashed lines). However, the covariance

of two differently-stimulated cells is not equal to the average covariance of two high-

stimulated cells and two low-stimulated cells. Rather, MCs receiving different inputs in
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Figure 2.8. Scaled pairwise covariances of MCs in response to high-contrast
blocks (top row) and low-contrast blocks (bottom row). Higher dashed line
corresponds to two cells receiving the higher input; lower dashed line cor-
responds to two cells both receiving the lower input. Solid line corresponds
to two cells receiving different inputs. Dashed black line is zero. Pairwise
covariances are averaged over all pairs of cells in each category.

Figure 2.9. (Covhigh,low −Covlow)/(Covhigh −Covlow) for w = 10 and w = 50.
Purple line corresponds to ‘low-contrast blocks and teal line corresponds to
high-contrast blocks.

low-contrast blocks have a higher covariance than those of corresponding MCs in high-

contrast blocks (Figure 2.8 top and bottom rows, solid colored lines) and covariance is

closer to the average of its corresponding identically-stimulated MCs (Figure 2.9). See

Appendix A.6 for a full explanation.
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CHAPTER 3

Network connectivity impacts linear discriminability

performance.

Linear discriminability is a useful metric for stimulus dissimilarity that has been used

extensively in the literature [17, 30, 14, 21]. It is well-suited for the olfactory system,

in which downstream piriform cortical neurons integrate collective MC activity. This

functionality suggests an implicit “weighting” of olfactory bulb inputs, which we represent

computationally as assigning numerical weights to each dimension of an activity vector.

F(c⃗) is the response of a linear readout with weights given in c⃗.

F(c⃗) =
(c⃗ ⋅ (⟨M⃗ (1)⟩ − ⟨M⃗ (2)⟩))2

c⃗T (∑(1) +∑(2)) c⃗
(3.1)

In this formulation, ⟨M⃗ (i)⟩ is a length-N vector containing the average responses (in

spikes) to stimulus i, and Σ(i) is the corresponding covariance matrix. Note that the

magnitude of c⃗ is divided out; F(c⃗) only depends on its direction.

Note also that for any c⃗, F increases with the magnitudes of responses. For a Poisson

network for instance, in which covariance of spikes Σ(i) is a diagonal matrix whose entries

correspond to mean spike counts, F increases linearly with measurement duration. This

implies that a network facing a two-class discrimination problem can always improve its

performance by measuring for longer. To account for this known improvement, our results

report F divided by T , which represents a scaled metric.
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For notational convenience, we denote ∆µ⃗ as the difference in average responses and

Σ as the sum of covariances, respectively:

∆µ⃗ = ⟨M⃗ (1)⟩ − ⟨M⃗ (2)⟩(3.2)

Σ = Σ(1) +Σ(2),(3.3)

The optimal vector c⃗opt can be found by taking the Fréchet derivative of F(c⃗), setting

equal to zero, and solving for c⃗.

c⃗opt ∝ Σ−1∆µ⃗,(3.4)

and as a result,

Fopt = ∆µ⃗TΣ−1∆µ⃗.(3.5)

We also note that Fopt can be written in terms of the eigendecomposition of ∑,

Fopt =∑
j

1

λj
(∆µ⃗ ⋅ e⃗j)2

,(3.6)

where λj and e⃗j are the jth eigenvalue and normalized eigenvector of ∑, respectively.

3.1. Symmetric block stimuli

Consider a network exposed to symmetric block stimuli: half the MCs in the system

receive input from independent Poisson spike trains of one mean rate, and the other

half of the MCs receive a constant input from independent Poisson spike trains of the

other mean rate. In the infinite-time limit, the average MC firing rates of the network
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approximates a symmetric block shape (Figure 3.1) whose average difference ∆µ is odd

under the exchange of mitral cells and is governed by a single number: the absolute

difference in response rates between MCs in different groups (Figure 3.1b).

If the system is single- or globally-connected, the expected sum of covariances Σ

contains three distinct terms (Figure 3.1c). It has the form

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a b . . . b c c . . . c

b a b ⋮ c c c c

⋮ b ⋱ b ⋮ c ⋱ ⋮

b . . . b a c c . . . c

c c . . . c a b . . . b

c c c c b a b ⋮

⋮ c ⋱ ⋮ ⋮ b ⋱ b

c c . . . c b . . . b a

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(3.7)

where a is the sum of variances, b is the sum of covariances of two identically-stimulated

cells, and c is the sum of pairwise covariances between two cells receiving different stim-

ulation. The sum is taken over both stimuli.

For an N ×N matrix, a straightforward calculation shows that out of N mutually or-

thogonal eigenmodes, only one is parallel to ∆µ⃗, and it has eigenvalue [a + (N
2 − 1) b − N

2 c].

e⃗ = [1,1, ...,1,−1,−1, ...,−1]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

N

T(3.8)

∑×e⃗ = [a + (N
2
− 1) b − N

2
c] e⃗.(3.9)
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Fopt thus takes the form

Fopt ∝
1

a + (N
2 − 1) b − N

2 c
.(3.10)

Note that if N = 2, that

Fopt ∝
1

a − c.(3.11)

In order to isolate the contributions of pairwise covariances in discriminability, we

frequently compare Fopt with Funcorr, an equivalent calculation that takes b = c = 0.

Funcorr ∝
1

a
.(3.12)

Figure 3.1 shows an example of numerically-estimated firing rates, ∆µ⃗, and covariance

terms of an all-to-all connected network exposed to block stimuli.

3.2. 1:1 connectivity

We simulate a network of 16 MC each connected to its own GC (akin to Section 2.1).

There is no lateral interaction, so pairwise covariances are zero, and discriminability is

determined by average difference in response ∆µ⃗ and variance terms a. This connectivity

is also referred to as “single connectivity.”

In a series of simulations, we keep all parameters identical except for w, the strength

of inhibition between each granule cell and mitral cell. As expected, overall firing rates of

all 16 mitral cells decreases as the strength of inhibitory coupling decreases (Figure 3.2b).

Furthermore, mitral cells who receive higher stimulation experience a greater decrease
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Figure 3.1. Example measurements of an all-to-all connected network ex-
posed to symmetric block stimuli. (a) Average MC firing rates in response
to two symmetric block stimuli (red and blue) at w = 0. (b) Difference in
average firing rates ∆µ⃗. (c) Numerically-estimated covariance Σ exhibits
three distinct quantities, which we denote a, b, and c. Σ is a sum over
both stimuli. Data shown is from inhibition level w = 50 and measurement
duration T = 12 ms. (d) Fraction of Fopt corresponding to each eigenmode
of Σ, at w = 50. Inset shows eigenvector 15.

in activity, and the magnitude of ∆µ⃗ correspondingly decreases as inhibitory coupling

increases (Figure 3.2cd).

To explicitly show how the scaled sum of variances changes with inhibition and window

size, we plot traces of a, b, and c, as well as the sum a+(N2 − 1) b−(N2 ) c across measurement

durations T from 2 to 50 milliseconds (Figure 3.3, top row).

The sum of variances a trends downward with increased inhibitory coupling, but does

not decrease monotonically with window size. In particular, for w = 10 and w = 50, a
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Figure 3.2. Network with 1:1 connectivity (also known as single connectiv-
ity) exposed to symmetric block stimuli. a) Schematic of network. Green
arrows are excitatory synapses and red capped bars are inhibitory synapses.
Not pictured: incoming excitatory synapses from olfactory sensory neurons
and outgoing excitatory synapses to downstream piriform cortex neurons.
b) Firing rates in response to stimulus 1. Colors indicate varying inhibitory
strengths from w = 0 to w = 50. c) Average difference between stimuli 1 and
2. Colored bands indicate varying inhibitory strengths and correspond to
the firing rate curves in 3b. d) Squared average magnitude of ∆µ⃗, averaged
across all mitral cells.

exhibits a rise at small window sizes before decreasing. Nonmonotonicity in a becomes

highlighted in the inverse terms 1
a , which trend upwards as inhibition coupling increases

(left to right columns) but exhibits large nonmonotonicities with T (Figure 3.3, middle

row). Covariance terms are zero (Figure 3.3 top row, green and blue lines).

Fopt, trends downwards with inhibition and upwards with window size at each inhibi-

tion (Figure 3.3 bottom row). Since Fopt is proportional to the inverse sum of variances
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Figure 3.3. Variance contributions in a 1:1 connected network exposed to
block stimuli. Top row: a (magenta), 7b (green) and −8c (blue). Solid black
line is the sum of all three terms. Dashed black line indicates zero. Middle
row: Inverses of a (magenta) and (a + 7b − 8c) (black). Bottom row: Fopt
(solid black line) and Funcorr (dashed black line), both scaled with T .

and proportional to the squared magnitude of ∆µ⃗, its downward trend must result be-

cause the reduction in ∆µ⃗ dominates over the marginal benefits of pairwise covariances.

As expected, Fopt does not differ from Funcorr because pairwise covariances are zero.

Notably, Fopt does not decrease with inhibition (Figure 3.4a) as quickly as the squared

contribution of ∆µ⃗ (Figure 3.4d), suggesting that neurons’ variances of rates are reduced

faster than the squared contribution of their means. Furthermore, Fopt does not decrease

with w as steeply as its corresponding Poisson network at all window sizes, and its mar-

ginal improvement is larger at larger T .
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Figure 3.4. Optimal discriminability and variance contributions in a single-
connected network. Increasingly darker of green correspond to increasing
measurement durations from T = 2 ms to 50 ms. (a) Optimal (solid lines)
and uncorrelated (dashed lines) linear discriminability, scaled with T . Hor-
izontal axis represents inhibitory coupling and is plotted on a log scale. We
use 1 + w in order to show the zero weight on the graph. Red line indi-
cates discrimination from a Poisson network with the same mean rates. (b)
Contribution of terms from the covariance matrix, scaled by bin size T .

We conclude that inhibition in a single-connected network worsens discriminability,

and the reduction is dominated by a reduction in the magnitude of ∆µ⃗.
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3.3. Global connectivity

Next, we assess the linear discriminability of a network whose MCs and GCs are all-

to-all (globally) connected (Figure 3.5a). In order to maintain each cell’s input similar

to that of the single connection case, we divide each connectivity matrix Wmg and Wgm

by the number of their respective recipient cells. In Section 2.2, we found that as the

number of MCs in a network increased, that MC variances were reduced less, that any

given pair was less correlated with each other, and each MC was less correlated with the

GCs. Motivated by this, we simulate globally connected networks containing a range from

2 MC to 16 MC.

In each of our networks of variable sizes, (Figure 3.5bd), MC input is set such that

average firing rates are similar between systems of different sizes (e.g. MC 1 in a 2-

MC network has the same average firing rate as MCs 1-8 in a 16-MC network). It

follows that for each inhibition level, the corresponding element(s) of ∆µ⃗ is also identical

(Figure 3.5ce). The squared magnitude of ∆µ⃗ decreases with inhibition just as in Single

Connections, but less steeply at small inhibitions (Figure 3.6).

Like in our analyses of single-connected networks, we plot how the Σ terms a and b

vary with measurement duration T , at various inhibitions, and at various system sizes.

Both a and b are qualitatively similar to before: monotonically decreasing with T at

small inhibitions, and with a local maximum emerging at larger w (Figure 3.7, first two

rows). Moreover, as system size increases, both variance and covariance trend upwards,

indicative of larger system sizes’ reduced ability to reduce noise.
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Figure 3.5. Firing rates and ∣ ∆µ⃗ ∣2 in a globally connected network, Nm = 2
to Nm = 16. a) Schematic of Mitral-Granule coupling. In the simulated
network, all mtiral cells excite all granule cells are also in turn inhibited
by all granule cells. b) Average firing rates of two mitral cells and (c)
corresponding signed differences in average firing rates. Different colored
lines correspond from w = 0 to w = 50 (arbitrary units). d) and e) Same as
b) and c) but for a network of 16 mitral cells receiving identical input.

The quantity b−c is constant for all N . Even though b and c each increase with larger

numbers of MCs, the difference of covariances between cells receiving the same stimulation

and cells receiving different stimulation is consistent across different system sizes.

Recall that in a network exposed to symmetric block stimuli,

Fopt ∝
1

a + (N
2 − 1) b − N

2 c
, Funcorr ∝

1

a
.(3.13)

Smaller variance (a) benefits discriminability, and pairwise covariance terms b and c have

opposing effects. Pairwise covariance term b improves discriminability when it is negative,

whereas pairwise covariance term c improves discriminability when it is positive. In other
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Figure 3.6. Squared average magnitude of ∆µ⃗, averaged across all mitral
cells. Subscripts indicate stimulus index. Increasingly darker shades of blue
correspond to larger system sizes.

Figure 3.7. Scaled sum of variances and covariances in a globally connected
network. (Top row) a across measurement durations for different inhibitory
coupling strengths. Increasingly darker shades of blue indicate increasing
system sizes, as in Figure 3.6. (Middle row) Same as top row but for b.
Dashed line indicates zero. (Bottom row) Same as first two rows but for
the quantity b − c.
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words, discriminability improves when cells receiving the same input are anti-correlated

and cells receiving different inputs are positively correlated.

In Figure 3.8, we first plot linear discriminability terms Funcorr and Fopt, followed

by the ratio Fopt/Funcorr. The latter quantity divides out the contribution from ∆µ⃗ and

indicates whether pairwise covariances improve discriminability.

Fopt
Funcorr

= a

a + (N
2 − 1) b − N

2 c
(3.14)

> 1 if pairwise covariances are beneficial.

Funcorr improves with small inhibition and more strongly in smaller system sizes (Fig-

ure 3.8ac). Since the contribution from ∆µ⃗ decreases monotonically with inhibition, this

indicates that variance reduction is strong enough to compensate for the loss in average

difference. In a small network, pairwise covariance benefits discriminability at smaller T

and sufficiently large inhibition. In a larger network (e.g. N = 16), pairwise covariance

has a much smaller effect on discriminability.

In Section 2.3.2, we found that the amount of contrast between a stimulus pair alters

the relative magnitudes of pairwise covariances. Recall that b is the sum of covariances

of identically-stimulated MC (sum of dashed lines in Figure 2.8), and c is the sum of

covariances of differently-stimulated MC (double the solid line of 2.8).

In a pair of stimuli of high contrast, b is much larger than c, and

(N
2
− 1) b > N

2
c,(3.15)



48

Figure 3.8. Discriminability in a globally-connected network, scaled with
T . (a) 2 MC network. Fopt (solid lines) and Funcorr (dashed lines) with
inhibitory coupling w (a.u.). Increasingly darker of green indicate larger
measurement durations. Red line is the result of Poisson spike trains with
the same mean rates. (b) Ratio

Fopt

Funcorr
. (c) and (d) Same as (a) and (b)

but for N = 6. (e) and (f) Same as (a) and (b) but for N = 16.

which reduces overall discriminability. Conversely, for stimuli of low contrast, b is very

close to c, and

(N
2
− 1) b < N

2
c,(3.16)

which improves discriminability.



49

In short, pairwise covariance terms enhance discriminability when stimuli are similar

to each other (low contrast), and they worsen discriminability when stimuli are far apart

(high-contrast).

One functional implication of these data is that lateral inhibition induces correlations

that are helpful for stimulus pairs that are very similar to each other, and that this pair-

wise covariance information harms discriminability for two stimuli with a large difference.

There are studies suggesting that odor representations are reformatted differently de-

pending on the difficulty of the discrimination task [6], and our work provides a concrete

mathematical suggestion for these different modalities.

Figure 3.9. Proportion of Fopt to Funcorr for different stimulus profiles,
scaled with T . (a) high-contrast blocks (b) baseline stimulus contrast (c)
low-contrast blocks. Increasingly darker shades of green indicate increasing
measurement durations. Insets of (abc) indicate average MC firing rates.

3.4. Random (exploratory) linear discriminability

Up to this point, we have quantified network performance using optimal linear dis-

criminability, which implicitly assumes that the network has presupposed knowledge how

much to weight each MC input. Now we will consider a similar metric that better repre-

sents uninformed or exploratory performance, for instance when an animal is first exposed
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to unfamiliar stimuli. We denote this metric Frandom and compute it as follows.

Frandom =
(c⃗rand ⋅ (⟨M⃗1⟩ − ⟨M⃗2⟩))

2

c⃗Trand (∑1 +∑2) c⃗rand
, c⃗rand = [x1, ..., xN]T , xi ∼ iid N(0,1).(3.17)

To estimate random discriminability, we take 106 random samples of weights c⃗rand,

compute the resulting discriminability for each, and take the average across all samples.

We found that using the median, rather than arithmetic mean, gives identical qualitative

results but takes longer to compute. For that reason, we report the means only.

For single- and globally-connected networks exposed to symmetric block stimuli, ⟨Frandom⟩

behaves qualitatively similar to Fopt. Specifically, in a single-connected network, ⟨Frandom⟩

trends downward for increasing inhibitory strengths (Figure 3.10ac). After dividing by

∣ ∆µ⃗ ∣2 however, discriminability trends upwards with inhibition (Figure 3.10bd), indi-

cating that much of the reduction in discriminability is due to the reduction of average

difference, and that inhibition reduces the MC variance. In globally-connected networks,

small inhibitions improve discriminability because noise reduction is able to overcome the

smaller reduction in ∆µ⃗.

One key distinction of Frandom is that it considers noise reduction in all directions, not

only in the optimal direction (for more detailed visualizations, see Appendix A.9), and

the two metrics differ when the stimuli drives a set of mitral cells at the same mean rates.

In these stimuli (Figure 3.11), ∆µ⃗ is zero in the entries corresponding to identically-driven

MCs. Single-connected networks exposed to such stimuli would have identical properties

as if the middle distractor block were absent (because distractor MC have zero entries in

∆µ⃗, and noise correlations between cells in the wings are unaffected by the distractor set).

In globally-connected networks exposed to such stimuli, activity of the middle distractor
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Figure 3.10. (a) Mean Frandom, scaled with T , over inhibitory strengths for
single-connected network in response to block stimuli. Increasing shades of
green corresponding to larger measurement durations. (b) Same as (a) but
divided by the contribution from ∆µ⃗. (c) and (d) Same as (a) and (b) for
a globally-connected network.

set could impact noise correlations of cells in the wings due to the shared inhibition, and

we find that in stimuli with larger middle block stimulations, pairwise correlations within

the wings worsen discriminability (Appendix A.7).

Inhibition that is neither 1:1 nor all-to-all, but rather selectively suppresses these

distractor cells substantially improves Frandom. In these regimes, Fopt is unchanged by in-

hibiting this distractor set (optimal discriminability has no contribution from cells whose

average difference is 0) but this selective reduction reduces the noise contributions from

these distractor cells. Indeed, inhibition that selectively suppressing distractor cells (re-

ducing their noise contributions) improves Frandom. Moreover, inhibition that selectively
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Figure 3.11. Firing rates of MCs exposed to symmetric block stimuli, with
an additional 8 MC that fire at the same rate across both stimuli.

suppressing cells in the wings worsens Frandom (Figure 3.12). This latter reduction is

dominated by a decrease in ∆µ⃗; dividing out its contribution shows that noise is still

reduced (Figure 3.13).

Figure 3.12. (Top row) Average Frandom, scaled with T , for a system ex-
posed to high-contrast blocks with a middle distractor set. Left to right
correspond to increasing levels of preferential distractor stimulation. In-
creasing shades of purple indicate increasing inhibition to cells in the wings.
(Bottom row) Same as (top row), but left to right indicates increasing lev-
els of inhibition delivered in the wings. Increasingly darker shades of red
indicate increasing amounts of middle block inhibition.
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Figure 3.13. Same data as in Figure 3.12 but divided by the squared mag-
nitude of ∆µ⃗
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3.5. Corollary: generalizing to other stimuli

To this point, we have only considered stimuli that are block-shaped; we now demon-

strate that the results from block stimuli extend to more general classes of odorants.

The first of two new stimulus pairs is composed of two symmetric mixtures of Gaussian

curves, and it represents pairs whose difference is largest in the MCs who are most strongly

driven by each stimulus (Figure 3.14a). The second pair, composed of overlapping skewed

Gaussian curves, represents classes of odorant pairs whose difference is largest in more

weakly stimulated MCs. We refer to these stimuli as “Gaussian mixtures” and “skewed

Gaussians,” respectively. While these two pairs by all means do not represent all possible

classes of odorant pairs, they serve as examples of inputs whose possible MC responses

exist on a continuum.

For notational convenience, we borrow terminology from [31] and denote a stimulus’

“primacy set” as the set of neurons that receive the most stimulation. Gaussian mixtures

have different primacy sets; skewed Gaussians have the same primacy set.

3.5.1. Single and global connectivity

As in the block stimuli, inhibition delivered through single reciprocal connections de-

creases Fopt = Funcorr monotonically, but not as steeply as that of a corresponding Poisson

network. Increasing window size also increases Fopt (scaled with T ) (Figure 3.15).

In a network of all-to-all connections, small inhibition marginally improves discrim-

inability in with small T , and pairwise covariances are more beneficial if the two Gaussian

curves are closer together. (Figure 3.16abc).
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Figure 3.14. (a) Gaussian mixtures and (b) Skewed Gaussians. Vertical
axis is average MC response.

Figure 3.15. Top row: Fopt with inhibition in a single-connected network,
relative to w = 0 and scaled with T , for (a) Gaussian mixtures and (b)
Skewed Gaussians. Bottom row: Same as top row but for ⟨Frandom⟩



56

Figure 3.16. (a) Fopt with inhibition in a globally-connected network, rela-
tive to w = 0 and scaled with T , for Gaussian mixtures. (bcd) Proportion
Fopt/Funcorr for various levels of contrast between stimuli. Insets show av-
erage MC response.

3.5.2. Stimulus-based inhibition

In section 3.4, we showed how exploratory discriminability can be improved by preferen-

tially inhibiting MCs who did not spike differently across stimuli, reducing noise contri-

butions from those cells without changing the average difference in response. The idea

of these “preferential networks” that only inhibit a subset of the MCs is motivated by

studies in the literature in which synaptic or structural plasticity occur as a result of

some experience-driven learning. In these studies, connectivity may be shaped by pre-

vious exposure to sensory input, and the resulting changes in the network can improve



57

discriminability [32, 33, 6, 34]. We now similarly assess whether inhibition delivered

through stimulus-dependent connectivity can improve discriminability.

Olfactory bulb physiology is characterized by long-ranging MC connections and short-

ranged GC-MC reciprocal interactions, and axonless GCs deliver inhibition primarily

through dendrodendritic synapses near MCs’ soma [5]. To model the effects of “learned”

connectivity, we leave the granule-to-mitral inhibitory matrix Wgm as a diagonal matrix

with identical elements and only modify the mitral-to-granule coupling matrix Wmg. Each

entry in Wmg is defined such that in the mitral-to-mitral coupling matrix Wmm =Wmg ×

Wgm, the i, jth entry W i,j
mm is proportional to the activities of MC i and MC j.

A key feature of stimulus-based connectivity is that MCs who are most highly stim-

ulated are suppressed most strongly. For Gaussian mixtures, the mitral-to-mitral inter-

action matrix is heavily weighted on the MCs in the peaks (Figure 3.17b), resulting in

firing rate profiles that are preferentially reduced in the peaks and a ∆µ⃗ that decreases in

magnitude in those corresponding cells (Figure 3.17cd). Intuitively, this may substantially

worsen discriminability of Gaussian mixtures, since ∆µ⃗ dominates linear discriminability,

and we indeed find that Fopt and Frandom both trend downwards with larger w (Figure

3.19ac).

However, neither metric decreases as strongly as what might be expected from the

reduction in ∆µ⃗ (Figure 3.19a, red line), suggesting that noise reduction offsets the overall

worsening of discriminability. This is most noticeable at small inhibitions, for which

∆µ⃗ does not noticeably change (Figure 3.17d), and improvements in discriminability

must be due to effects of the terms in ∑. While we cannot analytically derive the exact

contributions these ∑ terms, we can conclude the following. First, inhibition reduces



58

variance, which enhances discriminability (Funcorr > FPoiss). Second, increasing inhibition

induces pairwise covariances that are additionally beneficial (Figure 3.19b).

Figure 3.17. Stimulus-based recurrent inhibition and Gaussian mixtures.
(a) Network schematic. (b) Product of MC-to-GC coupling matrix and GC-
to-MC coupling matrix, representing the relative amount of inhibition the
MCs indirectly deliver unto themselves. (c) Average firing rate in response
to stimulus 1 for different levels of inhibition (green to black). (d) Difference
in average firing rates ∆µ⃗.

A network exposed to skewed Gaussians contains a mitral-to-mitral interaction ma-

trix that preferentially weights MCs in the center blob (Figure 3.18b) and preferentially

silences the highly active cells in the middle (Figure 3.18). This is similar in idea to the

setup in section 3.4, in which preferentially silencing distractor cells improved Frandom by

reducing noise from cells who fired similarly in both stimuli. Unlike in those previous

analyses, stimulus-based inhibition of skewed Gaussians changes Fopt, an effect that was

absent when the stimuli were block-shaped. This is due to the continuous nature of the
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Figure 3.18. Stimulus-based recurrent inhibition and skewed Gaussians. (a)
Network schematic. (b) Product of MC-to-GC coupling matrix and GC-to-
MC coupling matrix, representing the relative amount of inhibition the MCs
indirectly deliver unto themselves. (Wgm is a diagonal matrix with identical
entries) (c) Average firing rate in response to stimulus 1 for different levels
of inhibition (green to black). (d) Difference in average firing rates ∆µ⃗.

Figure 3.19. Discriminability scaled with T of a stimulus-based connected
network responding to Gaussian mixtures. (a) Fopt (b) Fopt/Funcorr (c)
Frandom. Data in (ac) are taken with respect to the measurement at w = 0

stimuli (and therefore the coupling); suppression of the most active cells also suppresses

neighboring cells whose differences contribute to Fopt.
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Notably, stimulus-based inhibition of skewed Gaussian stimuli significantly improves

Frandom (Figure 3.20c), and more strongly at small T . This suggests that a system learning

to distinguish between two similar stimuli benefits from suppressing MCs that spike early

and strongly, which do not contribute to stimulus difference but do contribute to total

noise.

Figure 3.20. Discriminability scaled with T of a stimulus-based connected
network responding to skewed Gaussians. (a) Fopt (b) Fopt/Funcorr (c)
Frandom. Data in (ac) are taken with respect to the measurement at w = 0
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CHAPTER 4

Timing-based metrics and the sniff cycle

So far, our model structure assumes that stimulus is continually present and respond-

ing cells have no time-based adaptation nor saturation. However, measurement duration

can yield vastly different estimates of both average rate and variance (and consequently,

discriminability) based on their size relative to the period of the system gamma rhythm.

Moreover, experimental evidence suggests that cell responses are locked to sniff on-

set and that precise temporal spiking patterns may inform towards odor discrimination

[35, 36, 31], and recurrent connectivity in the cortex limits the amount of incoming in-

formation to just those coming from the earliest-spiking cells [37]. These studies suggest

that discriminability may be largely determined by OB activity that arrives early in a

sniff. In this next section, we highlight the importance of measurement alignment: where

samples fall relative to stimulus onset and relative to any emergent rhythms, and how

inhibition delivered through various connectivity can shape which MCs are read out first.

To assess the impact of inhibition on sniff-aligned measurement windows, we simulate

single, global-, and stimulus-based connectivity in response to Gaussian mixtures and

skewed Gaussians, and impose a simulated “inhalation.” First, we impose a step function

that represents the stimulus suddenly being turned on and off at regular intervals. Then,

we use a more realistic sniff shape constructed using the difference of exponential functions.
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4.0.1. On/off step function

As a first step towards implementing a realistic sniff cycle, we divide our time steps into

500 ms-intervals. In each interval, stimulus is presented at time 50 ms and shut off at

450 ms (Figure 4.1). The system is evolved for 200,000 ms, or 400 sniffs in total, and

samples for discriminability are taken across sniffs. Network parameters are the same as

in steady-state: inhibitory coupling w takes values from 0 to 50 (arbitrary units). We

choose measurement durations of size T = 2,5,10,20, and 50, to represent sampling at

different frequencies. Rather than place measurement windows randomly in time, we align

them to sniff onset and slide them along the sniff every 2 ms increments.

Figure 4.1. Relative stimulus intensity over a 500 ms sniff cycle.

In the interest of reducing visual clutter, we include results from a few select pa-

rameters. See Appendix A.10 for a full gamut of activity heatmaps and discriminability

plots.

Results from steady-state single- and globally-connected networks, in which measure-

ment windows were taken randomly across the time series, are consistent with trends seen
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Figure 4.2. Single- and globally-connected networks exposed to Gaussian
mixtures as a step function in time. (a) Average firing rates at w = 50 in a
single-connected network. (b) Same as (a) for globally-connected network.
(c) Fopt scaled with T in single-connected network. Samples are of size
T = 50 and different colored lines from green to black indicate increasing w.
(d) Same as (c) but for a globally-connected network.

in the latter portions of sniff cycles. Discriminability worsens with inhibition in a single-

connection network and trends downwards with inhibition in a global network, especially

at larger w (Figure 4.2).

Inhibition given through global connectivity in particular generates rhythmic bands of

activity consisting of short volleys of MC spiking alternating with periods of inhibitory-

driven silence (Figure 4.3ab). During these volleys, only MCs that are most strongly

driven are the most active, and these strongly-driven MCs dominate the system response.
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Figure 4.3. Top row: Average sniff of globally-connected network exposed
to (a) Gaussian mixtures and (b) skewed Gaussians. Bottom row: Discrim-
inability taken with measurement duration T = 2 ms. Green line indicates
w = 0 and black line indicates w = 50. Data shown is Frandom scaled with
T . Insets of (cd) show average over the sniff.

Short measurement windows pick up these highly-active cells. For Gaussian mixtures,

discriminability is strongly enhanced in these short intervals, especially when its primacy

set (MCs in the centers of the peaks) is active (Figure 4.3c). For skewed Gaussians,

discriminability is strongly enhanced when cells in the wings are more active (Figure

4.3d). In both cases, inhibition can greatly improve discriminability in short intervals

even though its long-term average (what was measured in the steady-state regime) may

be reduced (Figure 4.3cd, insets).
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Figure 4.4. Top row: Average sniff of network with stimulus-based inhibi-
tion, exposed to (a) Gaussian mixtures and (b) skewed Gaussians. Bottom
row: Discriminability taken with measurement duration T = 2 ms. Green
line indicates w = 0 and black line indicates w = 50. Data shown is Frandom
scaled with T .

For Gaussian mixtures, stimulus-based inhibition has a similar effect on Frandom as

global connectivity. Discriminability is improved in small intervals corresponding to ac-

tivities of the primacy set (Figure 4.4c). These short periods of improved discriminability

emerge only when measurement windows are taken with respect to inhalation, and were

not observed when measurement windows are taken randomly in time as in the steady-

state analyses.

Stimulus-based inhibition has the greatest impact on skewed Gaussians. In that sce-

nario, inhibition promotes sustained improvement of random discriminability by way of

suppressing the middle cells whose activity is irrelevant for discriminability (Figure 4.4d).
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In doing so, it ensures that OB activity is comprised almost entirely of spikes from cells

in the wings, which exhibit the greatest difference between stimuli, and Frandom is larger

with inhibition across the entire sniff.
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4.0.2. More realistic sniff cycle

Finally, we consider an inhalation implementation that better matches experimental mea-

surements of internal nasal pressure [38, 35, 39]. At each iteration, all OSN rates are

multiplied by the value of a double exponential function in time, shown in Figure 5.2.

Stimulus intensity ramps up quickly before tapering more slowly to a reset each 500 ms.

Equations and parameters are listed in Section 5.

Figure 4.5. Relative stimulus intensity over a 500 ms sniff cycle.

When the sniff intensity is nonconstant, network rhythms are less distinct and vary in

length and duration. There are no longer clear visual bands but rather muddier stripes

that lose definition over time, resulting from the variability in MC-GCs interaction times

and in stimulus intensity itself. Nevertheless, stimulus-based inhibition still improves

random discriminability (Figure 4.6) over several gamma cycles.

Taken together, aligning measurement windows to sniff onset allows for better un-

derstanding of how information evolves over the course of a sniff. Recurrent inhibition

generates patterns of alternating inhibition with activity, which can be either detrimental

or beneficial depending on stimulus profile and connectivity regime. Inhibition improves

discrimination of Gaussian mixtures specifically at times when highly-excited cells at the
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Figure 4.6. Top row: Average sniffs of networks with stimulus-based con-
nectivity exposed to (a) Gaussian mixtures and (b) skewed Gaussians, for a
500 ms sniff cycle. Bottom row: Discriminability taken with measurement
duration T = 2 ms. Green line indicates w = 0 and black line indicates
w = 50. Data shown is Frandom scaled with T . Differently colored lines from
green to black correspond to increasing inhibition. Insets show only data
corresponding to w = 0 and w = 50.

peaks are active, whereas skewed Gaussians are most discriminable when cells in the wings

are active. Inhibition induces network rhythms that permit these respective windows to

happen, and improvements persist (albeit with less visual regularity) even if sniff intensity

is not constant in time.

As in the steady-state, stimulus-based inhibition promotes sustained improvement of

exploratory discriminability. These data suggest that networks can better discriminate

if they are able to suppress distracting information, especially if that information is the

first to arrive in the OB.



69

CHAPTER 5

Implementation summary

5.1. Neurons are modeled as exponential integrate and fire neurons.

All mitral and granule cells are modeled as exponential integrate and fire neurons.

When they reach a fixed threshold potential VT , an action potential is recorded, and the

neuron’s voltage is set to resting potential.

C
dv

dt
= −gL (v −EL) + gL∆T e

v−vT
∆T + I(5.1)

v > VT → v = EL.(5.2)

Here, C is the membrane capacitance, gLis the leak conductance, EL is the resting

potential, ∆T is a slope factor, and I represents input current. Olfactory sensory neurons

are modeled as Poisson spike trains with fixed mean rates over time, which represents

how the system may behave under steady-state conditions when a chemical stimulus is

continually available. Each stimulus “shape” is a mapping of OSNs to average rates; there

is otherwise no noise input into the model.

Each GC, MC, and OSN has a low-pass filter variable x̄ that is incremented following

an action potential and decays exponentially with time constant τx.

τx
dx̄

dt
= −x̄(5.3)

v > VT → x̄ = x̄ + 1(5.4)



70

Interactions between MCs and GCs are governed by two matrices: Wmg and Wgm

that represent the connectivities from MCs to GCs and GCs to MCs, respectively. These

naming conventions ostensibly go against traditional naming rules; the first subscript

indicates the source and the second indicates the recipient. There is a third diagonal

matrix Wom that represents the single one-way excitatory connections from OSNs to MCs

τMCk

d

dt
x̄MCk

= −x̄MCk
+ ∑

MCk spike

δ(t − tspike)(5.5)

τGCi

d

dt
x̄GCi

= −x̄GC i + ∑
GCi spike

δ(t − tspike)

Ito MC = −(∑
i

w ×Wgm × x̄GC i) + (∑
j

Wom × x̄OSN j)

Ito GC = (∑
k

Wmg × x̄MC k) ,

where i indexes all granule cells, j indexes OSNs, k indexes mitral cells, and w is a

nonnegative scalar representing inhibitory coupling strength.

In each steady-state analysis, the network is stimulated for 50,000 milliseconds using

a Forward Euler time stepping scheme with dt = .02. Measurement windows of a fixed

duration are randomly placed throughout the duration of the time series, and we calculate

linear discriminability out of those samples. We allow for the possibility that measure-

ment windows overlap and are therefore not independent of each other; however, we find

that probabilities of overlapping windows do not affect numerical estimates of Fopt (see

Appendix A.2).
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5.2. Linear discriminability

Linear discriminability measures the discriminability or dissimilarity of two network

representations of stimuli.

5.2.1. Optimal

Optimal Fisher information is the maximum noise to signal ratio achieved by projecting

multidimensional inputs onto a line in multidimensional space.

Fopt = max
c⃗

(c⃗ ⋅ ⟨M⃗ (1)⟩ − c⃗ ⋅ ⟨M⃗ (2)⟩)2

c⃗T (∑(1) +∑(2)) c⃗
,(5.6)

where c⃗ is a vector of weights, ⟨M⃗ (i)⟩ is a length-N vector containing the average responses

to stimulus i, and Σ(i) is the corresponding covariance matrix. Note that the magnitude

of c⃗ is divided out; Fopt only depends on its direction. In this thesis, we report Fopt scaled

by T to account for known improvement with increasing measurement bin.

For ease of notation, we denote ∆µ⃗ as the difference in average responses an Σ as the

sum of covariances, respectively:

∆µ⃗ = ⟨M⃗ (1)⟩ − ⟨M⃗ (2)⟩(5.7)

Σ = Σ(1) +Σ(2),(5.8)

allowing us to write Fopt as the optimal ratio of the squared projection of ∆µ⃗ to the

projection of noise terms Σ:

Fopt =
(c⃗opt ⋅∆µ⃗)2

c⃗ToptΣc⃗opt
.(5.9)
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It can be shown that the optimal vector of weights c⃗ is proportional to Σ−1∆µ⃗, and

we can simplify optimal linear discrimination as follows:

Fopt =
(Σ−1∆µ⃗ ⋅∆µ⃗)2

(Σ−1∆µ⃗)T Σ (Σ−1∆µ⃗)
(5.10)

= ∆µ⃗TΣ−1∆µ⃗.(5.11)

Therefore, Fopt is proportional to the squared difference in mean activities and in-

versely proportional to the sum of covariances.

In this work, we often compare Fopt with Funcorr, an equivalent computation that does

not include any pairwise correlations. That is,

Funcorr = ∆µ⃗TΣ−1
diag∆µ⃗,(5.12)

where Σdiag has the same entries as Σ on the main diagonal and is zero everywhere else.

5.2.1.1. Decomposition of Fopt with respect to ∑. It is sometimes useful to decom-

pose Fopt into the sum of contributions corresponding to each eigenmode of Σ.

Fopt = (∑
j

(∆µ⃗ ⋅ e⃗j) e⃗j)
T

Σ−1 (∑
k

(∆µ⃗ ⋅ e⃗k) e⃗k)(5.13)

= (∑
j

(∆µ⃗ ⋅ e⃗j) e⃗j)
T

(∑
k

1

λk
(∆µ⃗ ⋅ e⃗k) e⃗k)(5.14)

=∑
j

1

λj
(∆µ⃗ ⋅ e⃗j)2

.(5.15)
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5.2.2. Random / exploratory

Fopt and Funcorr both measure separability under optimal conditions; these involve pro-

jecting two stimuli’s means and covariances onto a separatrix using weights that maximize

the signal to noise ratio. However, we also consider discriminability that is more akin to

random guessing, for instance to represent when an animal is first exposed to a set of

unfamiliar stimuli. Such a metric uses random weights instead and assumes no prior

knowledge of how to weight different inputs. Visually, this entails drawing a line through

the weighted center of an inputs in a random direction, in which the probability of each

line is rotationally invariant. Several examples of such a separating line are shown in

Figure 5.1.

Figure 5.1. Two clouds with rotationally invariant separating lines. In this
schematic, weight vectors (and correspondingly, separating lines) are drawn
through the weighted center of the two stimuli.

We denote this “random discriminability” as Frandom and compute it as follows.

Frandom =
(c⃗rand ⋅ (⟨M⃗1⟩ − ⟨M⃗2⟩))

2

c⃗Trand (∑1 +∑2) c⃗rand
, c⃗rand = [x1, ..., xN]T , xi ∼ iid N (0,1).
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To easily see why this sampling gives us a rotationally invariant weight vector, consider

the product of probability distributions ΠN
i p (xi) .

p (x1, ..., xN) = ( 1√
2π
e−

1
2
x2

1)( 1√
2π
e−

1
2
x2

2) ...( 1√
2π
e−

1
2
x2
N)(5.16)

= ( 1

(2π)N/2
e−

1
2
(

√

x2
1+x

2
2+...+x

2
N)

2

) ,(5.17)

which is only a function of the magnitude of c⃗rand and not of its directional orientation.

Remark: The algorithm produces iterations of vector c⃗rand, whose components are

drawn i.i.d. from a standard normal distribution. The resulting vector points outward

from the origin. The diagram shown in the future above however draws these rotationally

invariant lines outward from the weighted center of the two activity clouds. Intuitively,

translating the two activity clouds so that their centroid sits on the origin would not affect

the separability of two clouds. We also show this analytically in Appendix B.2.

5.2.3. Comparison to artificial Poisson spike trains

We often plot networks’ performance against those of Poisson spiking networks with the

same mean rates. These “networks” suppose individual neurons are independent from

each other, and each neuron’s variance of spike counts is equal to its mean. It follows that

the covariance matrix Σ(i) is a diagonal matrix whose main diagonal is equal to ⟨M⃗ (i)⟩.

Under these assumptions, Fopt takes the form

Fopt = ∑
MC i

(M (1)
i −M (2)

i )
2

M
(1)
i +M (2)

i

,(5.18)
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where M
(j)
i is the response of mitral cell i to stimulus j. Note that in general we

cannot assume any relationships between ∆µ⃗ and Σ. However, Poisson spiking properties

allow us to compare network data against a baseline case where the variance of rates has

a known reduction with respect to reduction in means.

5.3. Timing-based metrics and the sniff cycle

In Section 4, we simulate the sniff cycle in two ways (Figure 5.2). The first is with a

Heaviside function, which in each 500 ms interval, turns on at 50 ms and turns off at 450

ms. Networks are evolved for 200,000 ms, or 400 “sniffs” in total. At each time increment,

discriminability is computed using samples taken randomly from a proper subset of the

400 sniffs.

The second implementation uses the difference of two exponentials to mimic nasal

pressure over a sniff. At each timestep, all OSN rates are multiplied by the value of a

double exponential function in time. Equations are shown for the 2 Hz, which is char-

acterized by stimulus intensity S ramping up rapidly, followed by tapering down more

slowly, before resetting.

S(t) = Smax [exp(tmod
τ1

) − exp(tmod
τ2

)](5.19)

where tmod = (t mod 500), τ1 = 50, and τ2 = 100.(5.20)
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Figure 5.2. (a) Step function (b) Simulated inhalation.
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CHAPTER 6

Conclusion and Discussion

This work explains how several physiological features of the olfactory bulb (OB) con-

tribute to sensory discrimination. Underlying our results are the gamma oscillations

observed in OB, driven by the reciprocal synapses between excitatory mitral cells and

GABAergic granule cells [40, 41, 42, 43]. These inhibitory granule cells reformat OB

activity representations within the OB over the course of a sniff, reducing the pairwise cor-

relation between responses to different stimuli [7, 8]. In doing so, they reshape mitral cell

responses before they are read out by downstream piriform cortical (PCx) neurons, which

integrate OB activity in order to enable odor recognition and classification. In general,

while there is always a tradeoff between decision speed and accuracy (a longer read-

out would always enable PCx to gather more information), the dominant response from

higher-order neurons occurs within tens of milliseconds after odor onset [37, 44, 45, 46]

suggesting that OB information necessary for stimulus discrimination must be delivered

within a finite-duration window shortly after inhalation. In this thesis, we have first shown

in the steady-state that noise correlations between MCs vary on the gamma timescale im-

posed by recurrent inhibition, which enhances linear discriminability in short measurement

durations when the stimulus pair is low-contrast. We have next shown that in a timing-

based framework, inhibition improves discriminability shortly after stimulus presentation,

at times during which differentially-excited MCs are most active.
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We quantify the separation between two stimuli using linear discriminability, which

increases with larger differences in average responses and decreases with increasing noise.

Many prior studies measure OB activity using a firing rate framework, which inherently ig-

nores spiking pattern information in favor of a long-term average over some long but finite

duration. To understand how inhibition can improve stimulus discriminability, our work

first similarly uses a steady-state regime in which stimulus is continually presented and

measurement windows of variable size are taken randomly in time. Under this framework,

we find that weak inhibition reduces the variance of MC rates (calculated as spike count

divided by the finite measurement duration) more strongly than it would in a Poisson

neuron, whose variance scales linearly with average spike count. This variance reduction

is stronger in smaller interconnected circuits, in which GC activity is more correlated with

that of individual MCs and can more effectively reduce their noise.

Moreover, increased inhibitory coupling drives the gamma rhythm to have higher

amplitude and lower frequency, and emergent noise correlations adhere to the oscillations

along which MCs and GCs spike. The variance (scaled by measurement duration) of

individual MCs’ finite-time rates is lowest at measurement durations near that system

period, and linear discriminability is accordingly highest in those measurement durations,

even after accounting for an expected improvement with larger readout time. In other

words, recurrent inhibition concurrently shapes MC response in two ways; it induces

oscillations in stimulus-driven activity response, and it reduces MCs’ variance, improving

discriminability in short finite-window durations near the gamma period.

Shared connections also induces pairwise covariances between different MCs, and fol-

lowing various studies in the literature [21, 15, 17, 18], we assess whether or not these
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pairwise noise terms increase information needed for discrimination. In one of these stud-

ies, the authors find that lateral connections between cells reduce the total amount of

information available, and that the majority of remaining information lies in the pairwise

covariance terms [16]. While the lateral connections in their study specifically mimic the

local-excitation-lateral-inhibition properties of the visual cortex, we only consider noise-

shaping properties of inhibitory lateral connections and show that the contributions of

noise correlations additionally depend on the stimulus contrast and measurement dura-

tion. Furthermore, whether or not noise correlations improve discriminability is more

complex and depends on the relative magnitudes between the covariance of two similarly-

stimulated MCs and that of two differently-stimulated MCs across both stimuli in a

classification task. When stimuli are low-contrast, the overall contribution of covariance

terms is beneficial towards discriminability, whereas when stimuli are high-contrast, they

are detrimental. There are studies that suggest that OB activity responses are refor-

matted differently depending on task difficulty [6]. and our work provides a concrete

mathematical suggestion for different modalities: a network faced with a low-contrast

discrimination task would benefit from using information from pairwise covariance terms,

whereas a network facing a high-contrast pair of stimuli would be better off without it.

This work is not the first effort to explain how noise correlations and discriminabil-

ity vary on different timescales in the olfactory system. Giridhar et al. 2011 find

that inhibition-induced pairwise correlation between MCs is positive at short timescales

and negative at long timescales. The former reflects MCs’ synchronizing on a gamma

timescale, enhancing the likelihood that spikes propagate to the cortex at the cost of
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information quantity, whereas the latter corresponds to more total information and en-

hances encoding potential [23]. We supplement this finding of correlations’ changing sign

by showing how pairwise covariances change sign precisely at multiples of the system

period, where the period itself is dictated by the frequency of recurrent inhibition-driven

gamma oscillations. Indeed, small measurement windows capture synchronous firing from

MCs spiking in the same volley, whereas at larger windows, some highly-excited MCs

spike more frequently, indirectly silencing its weakly-stimulated counterparts. Addition-

ally, where the authors of Giridhar et al. quantify correlations using Pearson correlation

coefficient (inherently normalized) relative to that of MCs without shared connections,

our usage of variance and covariance allows us to directly calculate their effects on dis-

criminability as well as isolate their contributions from that of mean difference.

In the field of sensory processing, evolution of synaptic weights in response to experi-

ence is widely considered and studied [32, 33, 6, 34]. We implement this idea by assessing

networks whose connectivity could be the result from exposure-driven learning: MCs who

receive more stimulation are more strongly coupled to their GCs, also indirectly inhibit-

ing themselves more strongly. As a result, these stimulus-shaped networks preferentially

silence MCs who are most strongly stimulated, allowing MCs that are more weakly stim-

ulated to dominate the network response. This enhances discriminability during tasks in

which the differences between a pair of stimuli lie in more weakly-excited MCs and when

the readout is exploratory and has not been already optimized to favor differentially-

excited MCs. In short, a network that has been shaped by experience-dependent learning

can perform better discrimination by preferentially silencing highly-stimulated MCs whose

activity contributes to total noise but does not contribute to average mean difference.
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A large majority of our analyses use a steady-state framework to understand how noise

correlations can enhance discriminability in small, finite-time measurement durations dic-

tated by network gamma oscillations. In the last chapter of this thesis, we extend our

analyses to a timing-based framework. An inhalation cycle is modeled by “turning on”

the stimulation at regular intervals and turning it off at the end of each simulated sniff

cycle, first with a Heaviside step function, then with a double exponential function that

mimics nasal pressure during inhalation. These efforts are motivated by the results of

some recent works in olfactory processing that find information may be encoded in a few

early spikes from MCs, rather than in long-term average firing rates [31]. In line with

these studies that show the importance of early encoding, we similarly show that inhibi-

tion can enhance discriminability shortly after stimulus is first presented to the olfactory

system.

Gamma oscillations that were observed in steady-state also persist in the sniff frame-

work, and in order to assess how the readout changes over the course of inhalation, we

align measurement windows to sniff onset rather than randomly in time. Similarly as

in steady-state, we find that inhibition enhances discriminability in short, finite-time

measurements and maximal discrimination occurs when MCs that are most differentially-

excited are spiking, regardless of which MCs contribute to stimulus difference. If the

most active MCs are differently excited across two stimuli, then discriminability is high-

est in early gamma cycles during which those MCs spike for the first time. Otherwise,

the network is better off waiting for a later gamma cycle, after which recurrent inhibition

silences the strongly-excited MCs, allowing more weakly-stimulated MCs to be read out.

This latter result is especially pronounced when the connectivity matrix is “learned,” and
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early-spiking MCs that do not contribute to discriminability are quickly suppressed to

make way for more important OB information. Thus, inhibition can improve stimulus

discrimination shortly after inhalation begins regardless of stimulus profile.

There are various olfactory tasks and situations that are not explicitly considered but

that our modeling analyses can help understand. For instance, this thesis only considers

pairs of stimuli that are symmetric, representing binary mixtures commonly used in ex-

perimental learning tasks [27, 28, 29]. We may additionally consider pairs of stimuli of

which one is a scalar multiple of the other, for instance representing different concentra-

tions of the same chemical substance. In this case, positive covariances between similarly-

stimulated MCs would be beneficial, rather than harmful, for discriminability. Another

assumption our model makes is that sniffs are always 2 Hz; in practice, the durations

and intensities of firing activity over a sniff cycle may vary with behavior (exploration vs.

learning) or with the animal’s wake state. Considering how odor representations change

with behavior would be an interesting extension of our current work but not directly rel-

evant in showing how inhibition-induced gamma oscillations shape noise correlations and

discriminability in a time-dependent manner.

In the appendix, we discuss other ways in which this model can be further analyzed.

While the networks listed in the main text contain at most 16 MC, we find that inhibition

improves discrimination more weakly at larger system sizes and that greater numbers of

interconnected MCs dilute the noise-shaping – and in particular the variance-reducing –

effects of recurrent connectivity (Appendix B.4.4). Additionally, the effect of inhibition

on discriminability is largely impacted by the difference in average stimulus response

∆µ⃗, which depends heavily on the neurons’ sensitivity to input and thus the choice of
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neuron model (adaptive integrate and fire, stochastically firing neuron, etc.) or which

properties to include (e.g. refractory period). Future studies may explore how variances

and ∆µ⃗ shape discriminability using these alternative neuron models, which are discussed

in Appendix B.6 and B.7.

Another modeling choice we made was to implement stimulus-based “learned” con-

nectivity by modifying the mitral-to-granule coupling matrix Wmg rather than Wgm. We

found in the latter scenario that the resulting network behaves similarly, as long as the

overall inhibition delivered to MCs was similar. However, this consistency relies on GCs in

the model not receiving external noise. In appendix B.4, we show via a linear rate model

that MC noise is amplified if GCs receive external noise, which implies that altering Wgm

instead of Wmg may affect how recurrent inhibition shapes noise correlations.

This work quantifies odor dissimilarity using linear discriminability, in which MC

input is weighted akin to how the cortex may weight olfactory inputs in formulating a

final decision. There are however many alternative metrics that may be used in further

explorations. Linear discriminability measures the dissimilarity of odor representations,

which tells us something about how difficult a task is. Other studies quantify dissimilarity

by framing odor discrimination using a probabilistic approach [47], as a set theory problem

[48], or using a diffusion-decision model that demonstrates how the output of a linear

classifier evolves over time [49]. In linear discriminability, Fopt also directly correlates

with the percentage of total samples correctly classified under the optimal separatrix;

some examples are included in appendix B.4.4. This thesis focuses on Fopt specifically, a

numerical score that allows us to directly mathematically quantify how noise correlations

and ∆µ⃗ individually impact discriminability.
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In summary, this work shows how the gamma oscillations within the olfactory bulb

dictate how noise correlations between MCs fluctuate, shaping discriminability on the

same timescale. It also shows how inhibition reduces variance of finite-time rates and

induces pairwise covariances between MCs, which enhance discriminability when stimuli

are low-contrast. In a simulated sniff cycle, recurrent inhibition shapes MCs to spike in

rhythmic volleys inside which MCs that are relevant for discrimination can be read out.

Taken together, this work demonstrates the mechanistic importance of shared inhibitory

connections in the bulb and quantifies precisely how spiking statistics shaped by these

recurrent interactions enhance pattern separation on a cortically relevant timescale.
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CHAPTER 7

Mechanistic modeling in clinical pharmacology

In summer 2021 I completed a summer internship with Takeda Pharmaceuticals and

learned how to use mathematical modeling techniques to inform drug development and

clinical dosing strategies. In this next section, I describe my internship project: develop-

ment of a mechanistic model to understand preclinical-to-clinical translation of CAR-T

cell therapies.

Despite groundbreaking clinical success of CAR-T cell therapies, a translational gap

exists between preclinical and clinical pharmacology, and interspecies differences in dose-

exposure-response relationships are poorly understood. To address this gap in trans-

lational research, we selected a CD19 directed 2nd generation CAR-T construct [50]

and developed a unified physiology-based pharmacokinetic-pharmacodynamic (PBPK-

PD) model that characterizes CAR-T and B-cell dynamics in both mice and patient

populations simultaneously. This model addresses CAR-T cell distribution in peripheral

blood (PB) and other pertinent tissues (n = 20) in NCG immunodeficient mice both

with and without disseminated CD19+ NALM-6 cells, and cellular kinetics and B-cell

depletion in 13 cancer patients. Key model components include both nonspecific and

target-engagement-mediated CAR-T expansion, distribution of CD19+ B-cells in lym-

phoid organs, and CAR-target engagement kinetics. Many of the estimated parameters,

which include first-order tissue transmigration rate constants, first-order maximum killing
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rate constants, and first-order maximum expansion rate constants, suggest key mechanis-

tic differences in CAR-T cell expansion and efficacy between mice and humans. Using this

case study, we can propose inter-species translational rules on estimated expansion and

efficacy parameters that could provide insight towards preclinical-to-clinical translation

of CAR-T cell therapy treatments.

7.1. Introduction

Chimeric antigen receptor (CAR) T-cell therapies comprise a family of immunothera-

peutic treatments that have enjoyed revolutionary clinical success in treating leukemias,

lymphomas, and myelomas [51, 52, 53, 54, 55, 56]. They have been described as a

miracle drug for many patients with relapsed or refractory cancers, in some cases eradi-

cating cancer cells up to a decade after treatment. Their successful clinical outcomes have

spurred rapid development and approval of marketable drugs – in the last several years

alone, five CAR-T cell products have been approved by the United States Food and Drug

Administration (Abecma R○, Kymriah R○, Breyanzi R○, Tecartus R○ and Yescarta R○) and one

product (Relma-cel R○) has been approved in China [57, 58, 59, 60].

Despite its success however, CAR-T cell therapy is usually a last-resort for cancer

patients and is only prescribed after other treatments have failed. Indeed, CAR-T cell

therapies are often studied in patients with relapsed or refractory cancers who have ex-

hausted other options and have low life expectancy. Even at that stage, CAR-T treatment

is not only also expensive – according to Novartis, the manufacturer of Kymriah, a single-

treatment course of Kymriah costs $475,000 – but also risky and high-stakes [61]. To that
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end, gaining a better mechanical understanding of the pharmacokinetic and pharmaco-

dynamic properties of CAR-T cell therapies is imperative toward advising clinical dosing

decisions. In this project, we develop a translational model that describes the cellular

kinetics and biodistribution of a CAR-T construct in both murine and human popula-

tions, with the longer term goal of furthering our collective understanding of interspecies

differences in cell therapy dose-exposure-response.

The mechanisms of CAR-T cell therapies involve isolating T-cells from cancer patients

and genetically engineering them to express target-specific receptors. These chimeric

antigen receptors (CARs) are designed to specifically recognize cancer cells upon reinfusion

into the patient, with the goal of seeking out and killing tumorous cells that express

those specific antigens. After infusion, CAR-T cells exhibit a distinctive profile that is

characterized by four phases: distribution, expansion, contraction, and persistence, with

various disease-related and drug-specific characteristics known to influence the shapes and

durations of each phase [62, 63]. We focus specifically on species-specific contributions

to CAR-T proliferation and killing efficiency in order to better understand how dose-

exposure-response relationships scale between preclinical models and clinical trials of the

same product.

Many previous studies use PBPK-PD models to estimate parameters related to biodis-

tribution of various biologics and cell types, including monoclonal antibodies, T cells, and

natural killer (NK) cells [64, 65, 66]. In recent years, many of these models have been

adapted for CAR-T studies and estimate distribution and expansion parameters, such

as tissue-specific first-order transmigration rates, first-order CAR-T metabolic rate con-

stants, target-mediated killing and expansion rates [67, 68]. Our work builds upon these
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existing efforts in a few key ways. First, while both models use compartmentalized repre-

sentations of major body systems, we expand the structural model to include significantly

more tissue types (Figure 7.1a), allowing for highly detailed analyses of biodistribution

dynamic, as well as laying the groundwork for more fine-tuned covariate analyses. An-

other key difference lies in how tumorous target cells are represented in the model. Since

this specific CAR-T construct targets CD19+ B cells, we represent their time-evolution

dynamics to include the B-cell specific processes of maturation, apoptosis, generation,

and trafficking between specific tissues (Figure 7.1b), rather than implementing passive

diffusion within the tumor compartment like some previous works have done. These

structural components of B cell dynamics are also more compatible with the available ex-

perimental procedure, which comprises intravenous injection of NALM-6 cells that then

diffuse through the peripheral blood and distribute through the extravascular compart-

ments of select tissues (Figure 7.1c). We acknowledge that this assumption may not fully

account for target-engagement mechanics in studies of solid tumors; however, it more

accurately represents of the true biological natures of haematological malignancies, in

which cancerous cells diffuse through the peripheral blood and lymphatic organs. More

precise modeling of CAR-T interactions with solid tumors are outside the scope of this

work and are the subject of future modeling efforts. Taken together, our work provides

a comprehensive, increased biophysically accurate modeling framework that simultane-

ously characterizes murine and human biological dynamics at an unprecedented level of

intricacy, and the biophysical parameters estimated by the model suggest interspecies dif-

ferences in CAR-T pharmacokinetic and pharmacodynamic properties. These modeling



89

efforts also may inform future research in studying preclinical-to-clinical translation of

other CAR-T products as well as other cell therapy treatments.

Taken together, our work provides a comprehensive, increased biophysically accurate

modeling framework that simultaneously characterizes murine and human biological dy-

namics at an unprecedented level of intricacy, and the biophysical parameters estimated

by the model suggest interspecies differences in CAR-T pharmacokinetic and pharmaco-

dynamic properties. These modeling efforts also may inform future research in studying

preclinical-to-clinical translation of other CAR-T products as well as other cell therapy

treatments.

7.2. Model-fitted profiles

7.2.1. A mechanistic model addresses CAR-T biodistribution and nonspecific

expansion in NCG immunodeficient mice without CD19+ B cells:

Figure 7.2 shows model-fitted CAR-T concentration profiles (solid lines) against observed

data (blue points) in seven tissue types in male (left panel) and female (left panel) NCG

immunodeficient mice. Horizontal axis indicates time measured in hours following infusion

of 1×107 CAR-T cells, and mice were killed and CAR-T concentration measured at three

hours, two days, eight days, and 15 days post infusion. Each experimental datapoint

represents the average value over three animals. Data and model fitted profiles are plotted

on a log scale.

For all tissues (n = 7) in this cohort, volumes, blood flow rates, and lymph flow

rates were fixed to reported literature values. Since these animals have no functional

immune system and did not receive any B cell injections, we conclude that cells proliferate



90

through some nonspecific expansion parametrized by doubling time (DT ) and maximum

blood concentration (Cmax
Blood), both of which are estimated by the model. Describing

nonspecific expansion using these two parameters reproduces key visual characteristics

of expansion patterns reported in vitro [69]. All tissues except blood, bone marrow,

and MLN are assumed to have both vascular and extravascular compartments through

which CAR-Ts distribute. Flow rate from the vascular to extravascular compartment

is parametrized by first-order transmigration rate constant Jtissue; in our model, JLung,

JSpleen, and JLiver were fixed to literature [68] and the rest were estimated. The resulting

model fits reasonably capture the overall increasing trends in most tissues, with a straight

increasing line indicating expected exponential growth on the experimental time scale.

7.2.2. Expanded model with incorporated B cell dynamics describes CAR-T

biodistribution and target-engagement-mediated expansion.

Figure 7.3 shows model fitted profiles for CAR-T concentration (solid lines) and exper-

imental datapoints (blue dots) in male (left panel) and female (right panel) NCG im-

munodeficient mice that have been injected with 1 × 106 NALM-6 cells five days before

intravenous injection of 5 × 106 CD19 CAR-T cells. Horizontal axis represents time in

hours following CAR-T injection, and all data and model fitted profiles are plotted on a

log scale. Blue dots plotted at 77 Copies/µg gDNA (the LLOQ) represent timepoints for

which the measured value was below detectable values.

To accurately characterize B cell dispersion and movement, we include evolution dy-

namics similar to that reported in Hosseini et al. 2018 and developed for modeling by



91

Kesisoglou and Maddah [70], who were interns concurrently in the same program. Specif-

ically, B cells diffuse between peripheral blood, spleen, liver, and bone marrow at rates

whose steady state ratios are fixed quantities known as partition coefficients. Within

each specific tissue, existing B cells proliferate and experience apoptosis at rates fixed

to the literature [71]. CAR-T-target engagement occurs in the extravascular compart-

ments of tissues in which both B cells and CAR T-cells exist. In each compartment, we

assume that CAR-T-target complexes form at rates proportional to the availability of B

cell receptors and both the binding affinity and dissociation rate of the construct. The

concentration of complexes modulates the rate at which CAR T-cells further proliferate

in those compartments as well as the rate at which target B cells are destroyed. Be-

cause NCG immunodeficient mice do not have functional B, T, and NK cells [72], the

model assumes that the only B cells present in the system are that which were injected

and correspondingly, there is no progenitor B cell population in bone marrow. A conse-

quence of these assumptions are that all available B cells are potential targets; in future

work, it would straightforward to categorize B cells into separate target and non-target

populations. Transmigration rates for bone marrow, liver, lung, spleen were fixed to the

estimated values from fitting the model to non-tumor-bearing NCG mice. The model

estimated transmigration rates for other tissues.

For most tissue types, the model reasonably captures the visual characteristics of

the initial injection and rapid distribution to tissue types, as well as the slower longer-

term rise. In general, the model reliably predicts values below the LLOQ when relevant,

although it tends to overestimate CAR-T concentration in the sex-specific organs of testes,

epididymis, and ovary. We acknowledge that this limitation may be restricted to lack of



92

precision in their related parameters, as tissue volumes and flow rates for these organs are

not well-studied nor documented.

7.2.3. A scaled-up PKPD model addresses cellular kinetics and B cell deple-

tion and recovery in clinical patients:

Figure 7.4 shows model-fitted profiles (black lines) of CAR-T cellular kinetics against

observed data (blue dots), in 13 clinical patients. Data show concentration of CAR-T

cells in peripheral blood versus days following CAR-T infusion. Figure 7.5 shows model

fitted profiles (black lines) and observed data (blue dots) of B cell percentage of seven

of the thirteen patients. Observed data represent amount of CD19+ cells in peripheral

blood as a percentage of baseline values. All patients experienced at least two lines of

prior treatment and went through a preconditioning lymphocyte-depleting regimen of 25

mg/m2 of fludarabine and 250 mg/m2 of cyclophosphamide before receiving doses of 106

CAR-T cells per kilogram of body weight. Clinical data differs from preclinical data in

two main ways. Firstly, data is limited to measurements that can be made in peripheral

blood (cellular kinetics and B cell concentration) whereas preclinical studies reported

biodistribution in several different organs. Secondly, the clinical patients in this study

underwent a lymphocyte-depleting regimen, with further B cell aphasia induced by CAR-

T target-killing, followed by longer-term B cell recovery. In contrast, all mouse models

used in this study are NCG immunodeficient and assumed to have no endogenous B cells.

To address the first challenge, we replicate the full structural model in mice and adjust

parameters to suit human physiology. When available, tissue volumes, blood flow rates,

and lymph flow rates were fixed to experimental values reported in literature. Unavailable
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lymph flow rates were estimated as 1
5000th of the corresponding blood flow rates, consistent

with existing practices in PKPD modeling [68, 73, 67]. Unavailable tissue volume rates

were estimated from mouse tissue volumes using an allometric exponent of 1, and all

first-order transmigration rate constants were allometrically scaled with an exponent of

−0.25, using the estimated values estimated from tumor-bearing mice data.

B cell dynamics and CAR-T-target engagement dynamics are captured similarly to

that of the NCG immunodeficient mice; B cells diffuse through the peripheral blood,

spleen, liver, and bone marrow at rates whose steady state ratios relative to each other are

fixed. Formation of complexes drives B cell killing and target-mediated CAR-T expansion

within the same extravascular compartments as the complexes. We use Hill dynamics to

model both how killing rates and expansion rates depend on the concentration of available

complexes, and relevant parameters in all Hill equations are estimated by the model.

Unlike the NCG immunodeficient mice model, clinical patients are assumed to have

endogenous B cells and can also produce progenitor B cells over the course of their treat-

ment. This production occurs in the bone marrow and consists of production of progenitor

B cells that mature into adult B cells before trafficking into other tissues [71]. Another

key difference between the patient model and the mouse model consists of implementing

lymphodepletion. To account for lymphodepletion dynamics and the resulting longer-

term B cell recovery, we incorporate a model concurrently developed by Parmar et al.

that modulates both CAR-T and B-cell evolution using two parameters that evolve over

the course of the lymphodepletion regimen: DRdep and DRexp. The former decreases

when there are fewer B cells in the system, and not only increases the rate of apoptosis

in all relevant tissues but also reduces CAR-T metabolism from the liver compartment in
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the early stages of B cell depletion. This slows down CAR-T depletion in the presence of

B cells, important for that key early expansion. The latter parameter DRexp increases

when there are fewer B cells and enhances the rate of nonspecific CAR-T expansion in

the peripheral blood. Taken together, these model equations connects CAR-T prolifera-

tion and depletion with the patients’ B-cell levels following the lymphodepletion regime

in a manner consistent with experimental and clinical observations. All implementations

are described in more detail in the methods section, and relevant equations are explicitly

listed in Model Equations.

The resulting model, which includes adjusted tissue parameters, allometrically scaled

tissue-specific transmigration rate constants, B cell dynamics, and lymphodepletion rea-

sonably captures major characteristics of both CAR-T cellular kinetics and B cell deple-

tion and recovery. Future work may further analyze individual covariates (e.g. age, initial

tumor burden, etc.) and their precise effects on these blood profiles.

7.3. PBPK-PD model implementation

7.3.1. CART biodistributon and cellular kinetics

The main structure of the model comprises CAR-T biodistribution through various tissues

(n = 19). Similar to that of other published works [65, 73, 67, 68], most tissues in our

model include both vascular and extravascular compartments through which CAR-T cells

distribute. In the vascular compartment, CAR-T concentration over time is incremented

by incoming blood flow, decremented by outgoing blood flow, and decremented by trans-

migration to the extravascular compartment as lymph (Figure 1a). In the corresponding

extravascular compartment, CAR-T content is incremented by transmigration from the
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vascular compartment and decremented by outgoing lymph flow.

V V ascdC
V asc

dt
= QCV asc

Lung − JCV ascV V asc − (Q −L)CV asc(7.1)

V EV ascdC
EV asc

dt
= JCV ascV V asc −LCEV asc(7.2)

A few tissue types do not subscribe to this general rule. Blood from stomach, spleen,

duodenum, and colon flow to the liver before returning to main circulation. Lymph from

duodenum and colon flow to mesenteric lymph nodes (MLN) before flowing to the main

lymphatic nodes (LN). In accordance with literature findings that there is no evidence

of lymph flow in bone marrow, we omit an extravascular compartment in bone marrow

[74]. Both LN and MLN are inherently lymphatic systems and do not have vascular

compartments.

One unexpected but essential characteristic of the data is non-specific CAR-T expan-

sion, evidenced by a rise in CAR-T concentration in NCG mice with no tumorous B cells

([50], Figure 2b) and similarly reported by in vitro assays [69]. To account for this ob-

served, non-target driven expansion, we include a doubling term in the blood compartment

so that CAR-Ts can proliferate passively. We assume that CAR T-cells have a natural

proliferation rate with doubling time DT and some maximum steady-state concentration.

VBlood
dCBlood
dt

= ln 2

DT
(CBloodVBlood (1 − CBlood

CMax
Blood

)) + ...(7.3)

We considered alternatively implementing non-specific proliferation by either omitting

a maximum concentration or by including this doubling component in all tissues, but we

found that in both of those cases, the model diverged beyond reasonable biological values.
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We also considered using a linear expansion rate rather than an exponential power law,

but found that this did not sufficiently capture the observed proliferation in the data.

To account for CAR-T metabolism and clearance from the body, we also include a linear

depletion rate constant in the liver compartment.

V E
Liver

dCE
Liver

dt
= −Kdepletion + ...(7.4)

To make our model match with the available data, we converted model concentration

units of cells per mL to copies of gDNA per µg, derived using information from [75].

[copies gDNA/µg] = 2039.37 × [cells/mL]0.8537.(7.5)

7.3.2. Parameter selection

In constructing both the preclinical and clinical structural models, tissue volumes and

flow rates for blood and lymph were set to reference values from literature when available

[73, 65, 64]. For body measurements for which a datum was reported in mice or humans

but not the other, we used allometric scaling exponents of −0.25 and 1 for volumes and

flow rates, respectively, to estimate the missing datum. Across these sources, to address

tissue types which blood flow was reported but not lymph flow, we estimated Ltissue as

1/5000th of the corresponding blood flow. We further took total lymph flow LLN to be

equal to the sum of all lymph flows and assumed there is no extravascular component of

bone marrow.
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Transmigration rate constants, which dictates the rate at which CAR-Ts diffuse from

vascular to extravascular components of tissue, are taken from [68] when available. Trans-

migration rate constants for all other tissues were estimated by the model.

Description (Units) Value
Preclinical Clinical

JLung Transmigration rate in lungs (1/hour) 4705.13 654.03
JSpleen Transmigration rate in spleen (1/hour) 1799.76 250.17
JLiver Transmigration rate in liver (1/hour) 716.49 99.59
JKidney Transmigration rate in kidney (1/hour) 296.75 41.25

Table 7.1. First-order transmigration rate constants.

In implementing the B-cell distribution model, physiological parameters were taken

from [71] and rate constants were estimated by [70].

Description (Units) Value
Preclinical Clinical

kB,prolif B cell proliferation rate (1/day) N/A .7
kB,apop B cell apoptotic rate (1/day) N/A .02
kB,mat Maturation rate of progenitor B cells (1/day) N/A .005
VB Volume of a B cell (mL) 2 × 10−10

pbBM,ref Progenitor B cells concentration (cells/mL) N/A 7.9 × 107

BBM,ref Bone marrow B cell concentration (cells/mL) 9.13 × 1011 3.32 × 108

BPB,ref Peripheral blood B cell concentration (cells/mL) 2.97 × 109 8.96 × 105

BSP,ref Spleen B cell concentration (cells/mL) 7.01 × 1011 4.02 × 108

BLN,ref Lymph node B cell concentration (cells/mL) 3.76 × 1011 1.55 × 108

Table 7.2. Parameters relevant for construction of B cell model. All rates
are first-order rate constants. All concentrations are baseline values.

Since the mouse cohorts all comprise NCG immunodeficient mice, we assume they

have no funtional immune system and as such, no progenitor B cell population. By

similar logic, lymphodepletion only applies to clinical populations. Parameters related to

lymphodepletion were estimated in a model by [76] and are used here.
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Description (Units)
Clinical

KDE Decay parameter (dimensionless) .05
Ke B cell regeneration rate constant (1/day) 2.69
Kout B cell depletion rate constant (1/day) .0012
γLD Lymphodepletion exponential factor 1

Table 7.3. Parameters Associated with Lymphodepletion.

Lastly, in implementing dynamics dictating CAR-T target engagement, we use the

following parameters from [68].

Description (Units) Value
Preclinical Clinical

DTtarget Nonspecific NALM-6 cell doubling time 696 (hours) 29 (days)
DensityCAR Density of CARs on CAR-T cells (number/cell) 5000
DensityTumor Density of TAA on tumor cells (number/cell) 12590

Kon Binding affinity of CAR to TAA (1/Mol s) 2.07 × 105

Koff Dissociation rate of CAR to TAA (1/day) 6.81 × 10−5

Table 7.4. Parameters associated with CAR-Target Engagement.

7.3.3. Characterizing CAR-T biodistribution with no target engagement

We first developed a PBPK-PD model to characterize the biodistribution of CAR-T cells

in a control group of NCG immunodeficient mouse strain with no intravenously-injected

B cells. Estimated parameters include non-specific doubling time, maximum CAR-T con-

centration in the blood, and first-order transmigration rate constants. Notably, this first

iteration of the model included no CAR-T target engagement, only passive proliferation

in the blood and linear depletion through the liver. Fitting this model to observed data

yields reasonably accurate model fitted profiles (Figure 7.2) and estimates of unknown

transmigration rate constants.
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7.3.4. Incorporating target-engagement into the existing model

With these estimated rate constants from fitting the initial model, we then expand the

model to account for data from an NCG immunodeficient mouse strain with 106 NALM-

6 cells injected intravenously. Since these mice have no functional immune system, we

assume that there is no innate production of B cells within bone marrow, and all B cells

in the system are those that were injected.

7.3.5. Preclinical to clinical scaling

Since the dataset does not include tissue-specific data for clinical patients, we cannot use

the model to estimate parameters for transmigration rate constants. To achieve those

values, we scale the preclinical estimates with an allometric exponent of −0.25.

Jhuman = Jmouse × (human mass

mouse mass
)
−0.25

(7.6)

All other parameters, including tissue volumes and flow rates, are taken from literature.

7.3.6. Model-estimated values

The main purpose of model simulation was to estimate parameters relevant for CAR-T

expansion and killing efficacy, which together can give mechanistic insights towards how

their mechanisms scale across species. The expansion rate is governed by two parameters:

Kexp,max and EC50exp, which dictate the maximum expansion rate and sensitivity of ex-

pansion (Hill curve characteristics), respectively. The killing rate is similarly governed by

parameters Kkill,max and KC50kill, which dictate the maximum killing rate and sensitivity

to effector concentration, respectively.
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Description (Units) Preclinical (Error %) Clinical (Error %)

Kexp,max
Maximum expansion
rate constant (1/day)

.917 (6.38) 4.33 (6.81)

EC50exp
Complex/CART ratio
achieving half Kexp,max

1.15 (2.13) 5.09 (102)

Kkill,max
Maximum killing

rate constant (1/day)
.026 (24.9) .55 (24.9)

KC50kill
Complex Tumor ratio
achieving half Kkill,max

2.25 (102) 3 × 10−6 (1e3)

Table 7.5. Model-estimated parameters for CAR-Target engagement

Estimated values suggest key mechanistic differences between preclinical to clinical

pharmacology, such as much higher expansion rates and killing rates in clinical patients

compared to mice, although further fine-tuning can refine this specific model and increase

its utility in advising clinical dosing strategies. This modeling effort also provides a frame-

work for future PBPK-PD models that seek to address preclinical-to-clinical translation

of various treatments and drug modalities. Future efforts may also validate these results

against known translational differences or other CAR-T products.

7.4. Conclusion and discussion

This work establishes a modeling framework that can be used to explore translation

of CAR-T cell therapies. The model simultaneously fits data from a cohort of non-

tumor-bearing mice, tumor-bearing mice, and clinical cancer patients, and in doing so

estimates biophysical parameters relevant for killing and expansion across each of the

populations. Although there is existing work addressing preclinical-to-clinical translation

of CAR-T cells between mice and patients, these models focus on BCMA and EGFR-

targeting products and use substantially fewer anatomical compartments, which limits
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their precision and sensitivity towards individual variability.. These studies also do not

differentiate between non-tumor-bearing and tumor-bearing mouse models, from which

the datasets provide insight on nonspecific expansion.

The model accounts the interactions between dynamic populations of CAR-T cells and

CD19-expressing B lymphocytes. They each have individual growth rates and interact

to form CAR-Target complexes; these complexes mediate the killing of tumor cells which

enables CAR-Ts to expand. For simplicity, we omit CAR-T exhaustion from the model,

but future work may address exhaustion, a biological phenomenon especially pertinent to

high-affinity CAR-T cells [77]. Future avenues of expansion (no pun intended) include

incorporating different functional roles of effector and memory T-cells, or incorporating

mechanisms of cytokine production. It would also be straightforward to extend the exist-

ing analyses to account for other attributes of CAR-T cell therapy – CAR affinity (which

can dictate how quickly CAR-T cells exhaust), construct-specific modalities, cancer types

beyond hematological malignancies, cancer severity and other covariates, and lymphode-

pletion dosing strategies – or to other biologics, such as CAR-NKs that have demonstrated

similar clinical success [78].

This work used an experimental dataset on CD19-targeting CAR-T cells as a case

study and expanded a previous modeling framework to include more highly detailed

anatomy more biophysically accurate B cell time evolution dynamics, and key lymphode-

pletion characteristics. It also addresses differences interspecies differences in expansion

and cell-killing efficacy for this CAR-T product. Taken together, this effort furthers

our collective understanding of how dose-exposure-response relationships scale between
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species. It simultaneously captures dynamics of CAR-T biodistribution and CK in im-

munocompromised NCG mice (both with-and without disseminated NALM-6 cells) and

CK and lymphodepletion in clinical patients. The suggested mechanistic differences can

inform clinical dosing strategies for existing products, as well as predict clinical PKPD

characteristics for drugs that have yet been tested in the clinic. The modeling framework

itself can also be used to study preclinical-to-clinical translation of other CAR-T products

or cell therapies.

7.5. Model equations

The model describes biodistribution and cellular kinetics of CAR-T cells in mice and

cancer patients. It includes species-specific tissue volumes, flow rates (for peripheral

blood and lymphatic tissues), differential kinetics of CAR-T cells, allometrically-scaled

transmigration rates, non-specific and target-mediated expansion of CAR-T cells and

target-engagement driven B-cell depletion, and linear depletion through the liver.

In preclinical mice experiments, both CAR-T cells and target NALM-6 tumor cells

are injected intravenously through the tail vein. To that end, there is no tumor com-

partment as in previous models [73], and B cells diffuse between the peripheral blood,

spleen, liver, and bone marrow. We assume that the preclinical mouse lines (immunod-

eficient NCG mice) have neither endogenous B cells nor progenitor B cells. To address

anatomical differences in mouse sex, we include a boolean variable within the dataset that

denotes whether each datum comes from male mice (for which there is data on testes and

epididymis biodistribution) or female (ovaries and uteri).
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The clinical patients comprise a mix of DLBCL, FL, and MZL patients, and we repre-

sent their initial tumor burden using baseline cancerous B cell concentrations from [71].

Both preclinical and clinical model equations suppose that B-cell-engagement CAR-T ex-

pansion occurs in a few select tissues, whereas nonspecific CAR-T expansion occurs in

the peripheral blood and flows into the other tissues.

7.5.1. Cellular kinetics and biodistribution equations

Peripheral Blood

VBlood
dCBlood

dt
= − (QLung −LLung)CWhole Blood +LLNCLN

(7.7)

+ (QSpleen −LSpleen +QStomach −LStomach +QDuodenum −LDuodenum)CVasc
Liver

+ (QColon −LColon +QLiver −LLiver)CVasc
Liver

+ (QKidney −LKidney)CVasc
Kidney + (QBrain −LBrain)CVasc

Brain

+ (QHeart −LHeart)CVasc
Heart + (QMuscle −LMuscle)CVasc

Muscle

+ (QAdipose −LAdipose)CVasc
Adipose + (QBone marrow −LBone marrow)CVasc

Bone marrow

+ (QUterus/Testes −LUterus/Testes)CVasc
Uterus/Testes

+ (QOvary/Epididymis −LOvary/Epididymis)CVasc
Ovary/Epididymis

+ (QOther −LOther)CVasc
Other

+HillexpBloodCBlood +DRexpCBlood
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Lung

V Vasc
Lung

dCVasc
Lung

dt
= (QLung −LLung)CWhole Blood − JLungC

Vasc
LungV

Vasc
Lung −QLungC

Vasc
Lung(7.8)

V EVasc
Lung

dCEVasc
Lung

dt
= JLungC

Vasc
LungV

Vasc
Lung −LLungC

EVasc
Lung(7.9)

Liver

V Vasc
Liver

dCVasc
Liver

dt
= QLiverC

Vasc
Lung − JLiverC

Vasc
LiverV

Vasc
Liver(7.10)

+ (QSpleen −LSpleen)CVasc
Spleen + (QStomach −LStomach)CVasc

Stomach

+ (QDuodenum −LDuodenum)CVasc
Duodenum + (QColon −LColon)CVasc

Colon

− (QSpleen −LSpleen +QStomach −LStomach)CVasc
Liver

− (QDuodenum −LDuodenum +QColon −LColon)CVasc
Liver

− (QLiver −LLiver)CVasc
Liver

dCEVasc
Liver

dt
= (JLiverC

Vasc
LiverV

Vasc
Liver −LLiverC

EVasc
Liver −KLiverC

EVasc
Liver V

EVasc
Liver ) /V EVasc

Liver(7.11)

−Kdep,LiverC
EVasc
Liver −KdepLDDRdepC

EVasc
Liver
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Lymph Node

VLN
dCLN

dt
= LLungC

EVasc
Lung +LLiverC

EVasc
Liver +LHeartC

EVasc
Heart +LMuscleC

EVasc
Muscle +LSkinC

EVasc
Skin

(7.12)

+LAdiposeC
EVasc
Adipose +LBone marrowC

EVasc
Bone marrow +LBrainC

EVasc
Brain +LKidneyC

EVasc
Kidney

+LSpleenC
EVasc
Spleen +LStomachC

EVasc
Stomach +LOtherC

EVasc
Other

+LTumor (CEVasc
Tumor −

CTE

DensityCAR

)

+LMLNCMLN −LLNCLN

+HillexpBloodCBloodVLN

Mesenteric Lymph Node

VMLN
dCMLN

dt
= LDuodenumC

EVasc
Duodenum +LColonC

EVasc
Colon −LMLNCMLN(7.13)

Other Tissues

V Vasc
Tissue

dCVasc
Tissue

dt
= QTissueC

Vasc
Lung − JTissueC

Vasc
TissueV

Vasc
Tissue − (QTissue −LTissue)CVasc

Tissue(7.14)

V EVasc
Tissue

dCEVasc
Tissue

dt
= JTissueC

Vasc
TissueV

Vasc
Tissue −LSpleenC

EVasc
Tissue(7.15)

7.5.2. Lymphodepletion

Each of the 13 cancer patients underwent a lymphodepletion regimen of 25 mg/m2 of

fludarabine and 250 mg/m2 of cyclophosphamide. We represent lymphodepletion and the

ensuing B-cell recovery with the following parameters and constrained the model to B cell



106

aplasia clinical data. This part of the model was concurrently developed by [76].

Lymphodepletion equation parameters:

KDE = 0.05(7.16)

Ke = 2.69(7.17)

Kout = .0012(7.18)

Kin =Kout ×BPB,ref(7.19)

γLD = 1(7.20)

Lymphodepletion initial conditions and equations.

A0 = 0(7.21)

R0 = BPB,ref(7.22)

DRexp =
BPB,ref −R
BPB,ref

(7.23)

DRdep = ( R

BPB,ref

)
γ
LD

(7.24)

dA

dt
= −KDE ×A(7.25)

dR

dt
=Kin −KoutR (1 +KeA)(7.26)
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7.5.3. B cell dynamics and CAR-target complexes

These parameters and equations were adapted from the B cell model concurrently devel-

oped by Kesioglou and Maddah [70].

Rate constants:

kBexit = .465, kBprolif = 7, kBapop = .02, kBmat = .25 × kBapop

Reference B cell concentrations and partition coefficients: The first term pbBM,ref is the

reference concentration of progenitor B cells in the bone marrow and is assumed to be

zero in the preclinical mouse lines. Initial conditions for each B cell concentration

pbBM,ref = 5 × 109cells/VBonemarrow(7.27)

BBM,ref = 2.1 × 1010cells/VBonemarrow(7.28)

BPB,ref = 2.8 × 109cells/VBlood(7.29)

BSP,ref = 2.86 × 1010cells/ (V Vasc
Spleen + V EVasc

Spleen )(7.30)

BLN,ref = 4.25 × 1010cells/VLN(7.31)

KBM,B,ref = BBM,ref/BPB,ref(7.32)

KSP,B,ref = BSP,ref/BPB,ref(7.33)

KLN,B,ref = BLN,ref/BPB,ref(7.34)
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Generation, apoptosis, proliferation, and maturation rates in the bone marrow:

Gen rate = pbBM × (kBapop + kBmat) ×max(0,1 − BBM

BBM,ref

)(7.35)

Apop rate = kBapop × pbBM(7.36)

Prolif rate = pbBM × kBprolif ×max(0,1 − pbBM

pbBM,ref

)(7.37)

Mat rate = kBmat × pbBM(7.38)

d (pbBM)
dt

= Gen rate−Apop rate+Prolif rate−Mat rate(7.39)

B cell trafficking within and between tissues:

Apop tissue = kBapop×Btissue ×DRdep(7.40)

Prolif tissue = kBprolif ×max(0,1 − Btissue

Btissue,ref

)(7.41)

TrafficBM,PB = kBexit × ( BBM

KBM,B,ref

−BPB)(7.42)

TrafficPB,SP = kBexit × (BPB −
BSP

KSP,B,ref

)(7.43)

TrafficPB,LN=kBexit × (BPB −
BLN

KLN,B,ref

)(7.44)

d (Bblood)
dt

= Mat rate −Apop rate +Prolif rate −Traffic(7.45)

−Hillkilltissue ×Bblood −Kout (1 −KeA)Bblood

d (Btissue)
dt

= Mat rate −Apop rate +Prolif rate(7.46)

−Traffic −Hillkilltissue ×Btissue
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7.5.4. Target-mediated expansion and killing:

Ctissue refers to CAR-T concentration in the tissue, Btissue refers to B cell concentration

in the tissue, and Cplxtissue refers to CAR-target complex concentration in the tissue.

Hillexptissue =
Kexp,max × Cplxtissue

CBlood

Cplxtissue

Ctissue
+EC50

(7.47)

Hillkilltissue =
Kkill,max × Cplxtissue

Btissue

Cplxtissue

Btissue
+KC50

(7.48)

d

dt
Cplxtissue =Kon (DensityCARCtissue −Cplxtissue) (DensityTAABtissue −Cplxtissue)(7.49)

−KoffCplxtissue

Modeling Software: All model fittings were performed using the Stochastic Approx-

imation Expectation Maximization (SAEM) algorithm within Monolix 2020R1 (Lixoft ®)
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Figure 7.1. (a) Blood and lymph flows through pertinent organs (n = 20).
Solid red arrows indicate blood flow, and teal arrows indicate lymph flow.
For most tissues, a portion of incoming blood travels through the extravas-
cular compartment as lymph, flowing through the lymph nodes before re-
turning to the main blood pool. Similarly, lymph from duodenum and
colon flow through the mesenteric lymph node (MLN) before returning to
the main lymph node compartment. The “Other” compartment comprises
issues for which we do not have data. (b) B cell production and distribu-
tion. Progenitor B cells (light blue circles) are produced in the bone marrow
and mature into full B cells (dark blue circles), which distribute between
the peripheral blood, lymph node, and spleen. All flow rates are bidirec-
tional. (c) CAR-T movement and target engagement in the vascular and
extravascular compartment of sample tissue. CAR-T cells form complexes
with target tumor cells (bright green).
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Figure 7.2. Model fitted profiles of CAR-T biodistribution in non-tumor-
bearing NCG (a) male and (b) female mice. Solid blue dots indicate ob-
served data and black lines indicate model fits. Data show CAR-T concen-
tration (in copies per µg of genomic DNA) versus hours after intravenous
infusion of 5×106 CAR-T cells. Observed data was digitized from the orig-
inal study and show averaged values in (a) male and (b) female mice. Each
set of data is the result of averaging over three mice.
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Figure 7.3. Model fitted profiles of CAR-T biodistribution in tumor-bearing
NCG (a) male and (b) female mice. Solid blue dots indicate observed data
and black lines indicate model fits. Data show CAR-T concentration (in
copies per µg of genomic DNA) versus hours after intravenous infusion of
5 × 106 CAR-T cells. Observed data was digitized from the original study
and show averaged values over three mice.
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Figure 7.4. Model fitted profiles of CAR-T cellular kinetics in 13 clinical pa-
tients. Solid blue dots indicate observed data and black lines indicate model
fits. Figure shows concentration, measured in CAR-T cell concentration in
peripheral blood (in 105 cells/L), versus days post CAR-T infusion. All pa-
tients received a intravenous dose of 106 CAR-T cells per kg of body weight.
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Figure 7.5. Model fitted profiles of B-cell recovery in 13 clinical patients.
Solid blue dots indicate observed data and black lines indicate model fits.
Figure shows concentration, measured in B-cell percentage of baseline, ver-
sus days post CAR-T infusion.
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APPENDIX A

Supplementary Analyses

A.1. Poisson spike trains’ variance of rates decreases linearly with T

A Poisson spike train that has (on average) λ spikes per unit time has a variance that

scales linearly with time T . Its variance of rates scales with 1/T .

V ar [ 1

T
Spikes in time T ] = 1

T 2
V ar [ Spikes in time T ](A.1)

∝ 1

T 2
T

∝ 1

T

A.2. Overlapping measurement windows do not substantially change

estimates of Fopt at sufficiently large time series durations.

In steady-state analyses, we assume that mitral cell spike data are stationary processes

and place measurement windows randomly throughout the time series. This allows the

possibility of different samples to overlap and thus not be independent.

To address the potential issue of overlapping data samples overestimating correla-

tions, we test several measurement durations and time series durations to assess how Fopt

is impacted by overlaps. In each of these measurements, ∆µ⃗ is held constant, so any

estimation variability solely arises from estimations of the covariance terms. Indeed, as

the measurement duration becomes larger, it takes a progressively longer time-series in
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order to eliminate any confounding influence of overlapping bins (Figure A.1). In our

analyses, we use time series lengths of at least 10,000 ms and measurement durations of

at most T = 200 ms. This parameter combination exists in a range that does not appear

to be impacted by overestimation.

Figure A.1. Estimates Fopt (blue lines) with standard errors of the mean
across samples. Red lines indicate measurements of Funcorr. These measure-
ments were done in a globally-connected network.

A.3. Infinitely fast granule cells strongly reduce variance single-connected

networks.

In analyzing the single reciprocal network, we observed that the synaptic response

time of the GC affects network oscillations. In this 1 MC-GC pair, the mitral cell spikes

and increments its x̄ variable, which increments the GC’s evolutionary equation, and when



130

the GC spikes, it increments its own x̄ variable, which increments the MC’s evolutionary

equation. During one alternative implementation, the MC spikes, increments its own x̄

variable, and the value of that variable is fed back into the MC’s inhibitory signal within

the same time iteration. In other words, the MCs receives instant inhibitory feedback

each time it spikes.

Firing rate decreases with strength of inhibition w similarly as before (Figure A.2a),

but variance decreases much more strongly with w (at large window sizes), lacking the

characteristic upswing that occurs at large w (Figure A.2b). Additionally, plots of scaled

variance with T shows a stronger downward trend, both at w = 2 (Figure A.2c) and

w = 50 (Figure A.2d). In summary, the initial upshoot at small T (reflective of the gamma

frequency) vanishes, but the noise-shaping at larger measurement windows remains.
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Figure A.2. Single MC-GC reciprocally connected network with infinitely
fast granule cell. (a) Firing rate with w (b) Scaled variance as a proportion
of w = 0, at T = 100. (c) Variance scaled with T . Dashed lines indicate
variance of the corresponding Poisson network. (d) Same as (c) but for
w = 50. Different shades of blue indicate relative strengths of OSN input.
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A.4. Neurons with shared inhibition are less correlated to their granule cells

and experience less variance reduction.

Analyses of how network size impacts noise correlations originally arose from an obser-

vation of globally-connected networks. Discriminability trends were qualitatively different

for networks of 2 MC and 10 MC, dashing our initial expectations of extrapolating re-

sults of a 2-MC network to larger networks (Figure A.3). In the smaller network, Funcorr,

which ignores pairwise covariances, substantially improved with small amounts of inhibi-

tion, suggesting that in those regimes, individual cell variance was reduced faster than the

corresponding squares of mean differences. This finding however did not extrapolate to

a network of 10 MC, in which both Fopt and Funcorr barely improved at small inhibition

and mostly decreased with inhibition.

Funcorr assumes each MC is independent and is linear in the number of MCs. For the

same difference in mean rates, if the cells in 2-MC and 10-MC networks had the same

variances, we’d expect exactly a 5-fold increase in Funcorr (in general, if the system size

increases by a factor of K, uncorrelated discriminability increases by the same factor of

K). Instead, we find that for any amount of nonzero inhibition, the variance per cell in a

10-MC network was larger than that of a 2-MC network, and that the scaling factor was

not the same for all w.

A.5. Contributions of Σ terms in Fopt and Funcorr.

This section shows how the Σ-terms a, b, and c shape Fopt and Funcorr in a globally

connected network exposed to symmetric block stimuli.
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Figure A.3. Discriminability in 2-MC and 10-MC networks, not scaled with
T . (a) Fopt with 1+w, in a 2-MC network at different measurement durations
from T = 2 to 50. (b) Corresponding Funcorr in a 2-MC network. (c) and
(d) Same as (a) and (b) but for a 10-MC network. (e) Left y−axis: Average
variance for a 2-MC (dark blue) and 10-MC (royal blue) globally-connected
network at inhibitory coupling y the number of cells, resulting in networks
whose cells fired at the same average rates. Qualitative differences in Funcorr
suggests differences in their variances directly resulting from changing the
network size.

Since b and c each have a multiplicative factor that scales with the system size, their

contributions are usually larger than that of a (Figure A.4, top row). However, since b and

c show similar qualitative trends but with opposite signs, their contributions mostly cancel

out, and the cumulative contribution from the covariance is not substantially different

from the contribution of just the variance term.

Taking the inverses of variance terms highlights small differences in qualitative behav-

ior (Figure A.4 middle row). We find that the contribution of variance and covariance

to discriminability trends upwards as inhibition increases, suggesting that recurrent in-

hibition helps modulate the noise in MC activities. Despite the general trend upwards,

these covariance contributions are not monotonic with window size, again reflecting the
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rhythmicity of the system and the importance of measurement size relative to the period

of network oscillations.

Figure A.4. Effect of covariance terms in computing linear discrimination.
(a) Terms of the covariance matrix with window size. Solid black line is
the sum. Dashed black line indicates zero. (b) Variance contribution (pink
line) and variance contribution including off-diagonal terms (black line).
(c) Optimal Fisher information (solid black line) and Fisher Information
without correlations (dashed black line), scaled with T .

A.6. Pairwise covariances of MCs exposed to high-contrast blocks

Many of our networks are exposed to block stimuli defined by two levels of input.

There are correspondingly three possible combinations of pairwise covariances: between

mitral cells both receiving the higher input, between mitral cells both receiving the lower
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input, and between mitral cells receiving one of each input. For notational convenience,

denote these quantities Covhigh, Covlow, and Covhigh,low.

For all pairs of block stimuli, Covhigh,low is closer to Covlow than Covhigh, and it is

closer yet in high-contrast blocks. To see why, we more closely examine the network at

w = 50, an inhibitory strength that is strong enough to produce system rhythms, and

measurement durations T = 16 ms and 50 ms. The smaller bin T = 16 corresponds to a

window size near the maximum of the covariance curves, whereas T = 50 corresponds to

a window size near the system period, at which all pairwise covariances are near zero.

In high-contrast blocks, cells receiving stronger input spike more frequently in between

inhibitory cycles than cells receiving weaker input (Figure A.5abc). In their power spec-

tral densities, MCs receiving weaker stimulation also have lower amplitude peaks (Figure

A.5bc), even though their peaks align to the same frequencies as their higher-stimulated

counterparts. Lower-amplitude-peaks in the PSD indicate that these cells have less vari-

ance content (Appendix B.5.2).

At T = 16 ms, the majority of randomly placed measurements pick up periods of

silence. Relative frequencies of spike counts have more distributional weight near zero,

with some weight at higher numbers. The stronger the stimulus intensity in those cells,

the larger weight is placed at higher spike counts (Figure A.5d), which also results in

marginally higher mean spike count, as well as higher signed deviations from the mean

in both directions (Figure A.5e). These slightly-higher deviations correspond to a higher

covariance; the numerical covariance is equal to the sample mean of products of deviations.

Pairs of highly-stimulated cells see occasional large deviations from their own mean, which

increases their pairwise covariance.
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These discrepancies vanish at T = 50 ms. At this larger bin, windows capture a full

period of activity, and even though spike count histograms vary between high- and low-

stimulated cells (Figure A.5g), measurements each contain similar deviations from their

own means (Figure A.5h), and have similar, near-zero covariances (Figure A.5i).

In contrast, activity from a network receiving low-contrast blocks input show much

smaller differences between differently-stimulated cells. Their raster plots are more visu-

ally similar (Figure A.6a), their corresponding power spectral densities are similar, and

their spike-counts histograms are shifted similarly to that of the high-contrast case, but to

a lesser degree (Figure A.6bc). Whereas different-stimulated cells in high-contrast blocks

had a much lower pairwise covariance than high-stimulated cells at small window sizes,

we see no such discrepancy here. Even at small window sizes, spike counts across samples

follow similar distributions, with neither category having a much stronger right tail than

the other. Their deviations from their respective means also follow similar distributional

shapes (Figure A.6de). As a result, pairwise products of deviations are all similar to each

other, independent of the level of stimulation each cell in the pair receives (Figure A.6f).

As in high-contrast blocks, we find that at a sufficiently large window size that captures a

full period of activity, measurement deviations from their means are clustered near zero,

and their products are all close to each other (Figure A.6ghi).
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Figure A.5. Spikes, power spectral densities, and spike statistics for a net-
work exposed to high-contrast blocks. (a) Raster plots of 16 MCs in a 500
ms interval. Darker teal corresponds to cells receiving higher inputs; lighter
teal corresponds to cells receiving lower inputs. (b) Power spectral density
for higher-stimulated and lower-stimulated cells. PSD is averaged over all
cells in the high-stimulated and low-stimulated groups, respectively. (c)
Relative frequency of spike counts in each periodic volley. (d) Relative fre-
quencies of spike counts captured in randomly placed windows of measure-
ment duration T = 16. (e) Deviations of (d) from their means. (f) relative
frequencies of products of deviations for high-stimulated cells (green), low-
stimulated cells (blue), and differently-stimulated cells (purple). Vertical
black line indicates sample mean of different-stimulated products of devi-
ations, vertical blue line corresponds to low-stimulated pairs, and vertical
green line corresponds to high-stimulated pairs. (g-i) Same as (d–f) but for
T = 50 ms.
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Figure A.6. Same as for Figure A.5 but for low-contrast blocks.
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A.7. Stimuli with overlapping set of MCs.

These analyses were developed as a precursor to skewed Gaussians, in order to better

examine how selectively suppressing distracting MCs impact discriminability. For each of

high-contrast blocks and low-contrast blocks, we add a set of eight cells that fire at the

same intensity across both stimuli in a pair. We term this middle set the “distractor set”

and cells outside this group as MCs in the “wings.” (Figure A.7).

Figure A.7. High-contrast blocks (top row) and low-contrast blocks (bottom
row) stimuli with a third set of firing cells driven by (left to right) 0.2, 1,
and 2 Hz inputs.

Note that the distractor set does not impact discriminability in a single-connected

network, since ∆µ⃗ is zero in entries corresponding to distractor MCs, and noise correlations

between cells in the wings are not impacted by the activity of the distractor.
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A.7.1. Distractor set activity dominates the system rhythm.

In a globally-connected network, distractor activity impacts noise correlations within cells

through shared inhibition, which may impact discriminability. As the activity of the

distractor increases, the overall frequency of the system increases (Figure A.8ae). When

there is low distractor activity, granule cells are driven primarily by cells in the wings,

producing a rhythm (Figure A.8bf). As amount of distractor activity increases, these

middle blocks dominate the overall MC response, driving the GCs more strongly and and

increasing the frequency of the system rhythm (Figure A.8ae).

Figure A.8. Globally-connected network exposed to stimuli with distractor
set. (a) Power spectral density for high-contrast blocks with distractor
set. Increasingly darker shades of green correspond to increasing levels
of activity from this middle set. PSD is averaged over all 24 cells in the
network. (b) Raster plot for low levels of distractor activity. (c) Raster
plot for middle levels of distractor activity (d) Raster plot for high levels of
distractor activity. (e-h) Same as (a-d) for low-contrast blocks.
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A.7.2. Noise correlations are reduced by strongly stimulated distractor set.

Scaled variance qualitatively behaves similarly to that of stimuli without the distractor

(Figure A.9, A.10). As the cells in the middle block are driven more strongly (light green

to dark green lines in the below figure), not only does the overall variance decrease, but

the first local minimum shifts to shorter measurement durations. Higher activity from the

distractor block drives the granule cells more strongly, creating a feedback rhythm with

shorter volleys and faster recoveries. In other words, the distractor entrains the network

at high levels of activity.

Figure A.9. Variances in a globally-connected network exposed to high-
contrast blocks with distractor set: scaled variance of cells receiving the
higher stimulus (top row) and smaller stimulus (bottom row). Increasingly
darker shades of green correspond to increasing activity of the distractor
cells. Dashed line is the corresponding variance measurement in the absence
of distractor blocks.

Pairwise covariances follow similar qualitative trends as variance terms. As the activity

of the distractor set increases, covariance decreases, and the measurement duration of the

first local minimum decreases. When the activity of the middle block is very large, all

variance and covariance terms become very small (Figures A.11, A.12).
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Figure A.10. Same as for Figure A.9 but for low-contrast blocks.

Figure A.11. High-contrast blocks with distractor set: scaled pairwise co-
variance of (top row) cells both receiving the high stimulus, (middle row)
cells receiving different inputs, and (bottom row) cells receiving the lower
stimulus. Increasing darker shades of green correspond to increasing activity
of the distractor set. Dashed line is the corresponding variance measure-
ment in the absence of distractor blocks.
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Figure A.12. Same as for A.11 but for low-contrast blocks. Increasing
darker shades of purple correspond to low, medium, and high activity of
the distractor set.
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Figure A.13. Pairwise covariance of cells scaled by T between MCs both
receiving the higher stimulation (top row), MCs receiving different stimu-
lation (middle row), and both cells receive the lower stimulation (bottom
row). Left to right indicate different levels of preferential middle stimula-
tion. Increasing darker shades of purple indicate different levels of within-
wing stimulation. Dashed black line is zero.
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A.8. Distractor set activity impacts whether covariances are beneficial

This section shows that the activity of the distractor set can change whether pairwise

covariances benefit discriminability in globally-connected networks.

In the presence of a distractor set of MCs whose firing rates are equal across both

stimuli, ∆µ⃗ is zero in those entries and only nonzero in the wings. As a result, the

quantity Fopt = ∆µ⃗TΣ∆µ⃗ is governed only by the contributions from MCs in the wings.

While in the previous globally-connected regime, the pairwise covariances of cells in the

wings depend on activity contrasts, that is not the case here. We show a few examples

below.

Our previous analyses of low-contrast blocks showed that pairwise covariance is similar

regardless of whether two cells are high-, low-, or differently-stimulated. This results in

values of b that are similar to values of c, and correspondingly, (Nm
2 − 1) b < Nm

2 c. Linear

discriminability is improved when these offdiagonal terms are taken into account. The

ratio Fopt to Funcorr is greater than one, suggesting that it is beneficial to include pairwise

covariances. However, if the activity of the middle set is sufficiently high, then pairwise

covariance of cells in the wings is pushed to near-zero levels. At these activity levels,

pairwise covariance does not substantially affect linear discriminability, and Fopt/Funcorr

is nearly one (Figure A.14c).

In networks exposed to high-contrast blocks, the covariances of similarly-stimuated

cells was substantially higher than that of differently-stimulated cells. In this scenario,

(Nm
2 − 1) b > Nm

2 c and these off-diagonal covariance terms are detrimental to linear dis-

criminability, particularly at smaller measurement bins. As the activity of the distractor

set increases, the relative detriment of the covariance term also increases, resulting in
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Figure A.14. Fopt/Funcorr for low-contrast blocks with (a) low (b) middle
and (c) high amounts of distractor activity. Insets show average MC activity
taken over the entire time series. Vertical axis limits are different in (c) to
show height of distractor block activity. Shades of increasingly dark green
indicate increasing measurement bin. Discriminability is scaled with T .

an Fopt/Funcorr ratio that is below one and decreases further with the strength of the

distractor set (Figure A.15).

Figure A.15. Same as for Figure A.14 but for High-contrast blocks.

A.8.1. Inhibition impacts noise correlations only in the cells it suppresses.

The following results are not surprising, but we examine this case as a building block

towards understanding how stimulus-based inhibition impacts network performance in

response to skewed Gaussians. Specifically, we consider a network exposed to stimuli

containing a distractor set, but there is no shared connectivity between the distractor set
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and cells in the wings. This is functionally equivalent to a system with two independent

subnetworks, each with their own global inhibition.

Inhibition within each subnetwork selectively decreases firing rates of cells within that

region (Figure A.16). Similarly, inhibition only reduces noise correlations between the

cells it suppresses (see Appendix A.7.2 for all figures of noise correlations).

Figure A.16. (Top row) Average firing rates of 24 MCs. Left to right:
increasing middle-block inhibition. Increasing darker shades of purple in-
dicate increasing within-wing stimulation. (Bottom row) Left to right: in-
creasing within-wing inhibition. Increasingly darker shades of red corre-
spond to increasing middle block inhibitions.

Figure A.17. Scaled variance of cells receiving the higher stimulation (top
row) and the lower stimulation (bottom row). Left to right indicate in-
creasing levels of preferential middle stimulation. Increasing darkershades
of purple indicate different levels of within-wing stimulation.
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Figure A.18. Scaled variance of cells receiving the higher stimulation (top
row) and the lower stimulation (bottom row). Left to right indicate in-
creasing levels of preferential within-wing stimulation. Increasingly darker
shades of red indicate different levels of middle stimulation. Lighter shades
of red are plotted at larger linewidths for visibility.
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A.9. Random linear discriminability accounts for noise in all directions.

This section serves to visualize how Frandom captures noise correlations, both in the

optimal and nonoptimal directions.

We consider a toy example with two mitral cells and observe how Fopt is affected by

noise-shaping. As a baseline, we simulate noisy spiking data of two mitral cells that are

uncorrelated with each other but have equal variance distributions (Figure A.19a, top

row). We also consider a case where the signs of the correlations are the same but larger

in each direction (Figure A.19a, bottom row).

The distribution of Frandom has a support whose lower limit is zero and upper limit

is Fopt. When the cells are negatively correlated, Frandom has more distributional weight

towards higher values. Conversely, when cells are pairwise positively correlated, Frandom

becomes skewed right, indicating a higher prevalence of worse discriminability. In general,

the size of the odd eigenvalue controls Fopt and thus the upper limit of Frandom, while the

relative size of the odd and even eigenvalues determines the distribution skew.
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Figure A.19. (a) Firing rates (arbitrary units) of two MCs in response to
symmetric stimuli (red and blue). In each of the top and bottom rows, the
odd eigenvalue of the covariance sum is equal across all three examples.
In the bottom middle, the even eigenvalue is equal in magnitude to the
odd eigenvalue of each example in the top row. (b) Corresponding prob-
ability distributions of Frandom for the six cases above. Red vertical line
indicate Fopt for each dataset. Magenta vertical line indicates Funcorr for
each dataset.
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A.10. On/off sniff: average firing rates and discriminability plots

This section contains heatmaps of average MC firing rate and discriminability plots

for all networks simulated with a Step function inhalation.

Figure A.20. Firing rates of a network exposed to Gaussian mixtures aver-
aged over 400 sniff cycles for (top row) Single-connected and (bottom row)
Globally-connected networks, for (ac) w = 0, (bd) w = 2, (ce) w = 10 and
(dh) w = 50.

Figure A.21. Firing rates of a network exposed to skewed Gaussians aver-
aged over 400 sniff cycles for (top row) Single-connected and (bottom row)
Globally-connected networks, for (ac) w = 0, (bd) w = 2, (ce) w = 10 and
(dh) w = 50.
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Figure A.22. Fopt and Frandom for single-connected (top row) and globally
connected (bottom row) networks exposed to Gaussian mixtures. Data is
scaled with T .

Figure A.23. Fopt and Frandom for single-connected (top row) and globally
connected (bottom row) networks exposed to skewed Gaussians. Data is
scaled with T .

Figures A.20 and A.21 show the average sniff activity for Gaussian mixtures and

skewed Gaussians, respectively. In a single-connected network, sufficiently large inhibition

induces separate rhythms for each MC, with the most strongly stimulated cells spiking

earlier in each wave. Bands of activity lose definition over time because MCs excite

their GCs at variable times, with most highly excited MCs incurring inhibition earlier.

Global connected networks demonstrate much more regular bands of spiking that persist
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throughout the sniff; in these networks, GC inhibition is delivered synchronously for all

MCs.

Figure A.24. Firing rates of a network with stimulus-based connectivity,
exposed to Gaussian mixtures (top row) and skewed Gaussians (bottom
row). Firing rates are averaged over 400 sniff cycles at (a) w = 0, (b) w = 2,
(c) w = 10 and (d) w = 50.

Figures A.24 shows average sniff cycles in networks with stimulus-based inhibition.

These are similar to that of single-connected networks in that emergent rhythms are led

by each stimulus’ primacy set. However, all-to-all coupling allows rhythms to persist

throughout the sniff, albeit with progressively less crispness. Figure A.25 shows the

corresponding results of random and optimal discriminability at T = 2 and T = 50.
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Figure A.25. Fopt and Frandom for stimulus-based connected networks re-
sponding to Gaussian mixtures (top row) and skewed Gaussians (bottom
row). Insets in (aceg) show data for only w = 0 and w = 50. Data is scaled
with T .
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APPENDIX B

Exploratory Analyses

This appendix includes analyses that are not directly relevant to the main results of

this project but may provide useful references for future work.

B.1. Measurement error of Fisher information scales with measurement bin

in Poisson networks.

In many of our analyses, we find that the variance of rates is slightly higher for small

window sizes, especially for low or zero levels of inhibition (Figure 2.5). It is unclear

whether this small uptick is a result of measurement error or is an inherent property

of the system (e.g. that small sampling sizes intuitively pick up more variability from

noisy spiking data, or that resetting voltage after a spikes produces an inherent refractory

period). While we cannot determine an explicit analytical formula for the error in variance

estimates from our network, we can analytically show that for a Poisson network with

fixed mean, Fopt is overestimated at small measurement bins by a margin that decreases

with increasing size of the measurement bin. These analyses provide an example of a

scenario in which small deviations at small measurement bins may be a result of over- or

under-estimation, rather than properties of the network.

Recall that we often compare network performance to that of Poisson spike trains

of the same mean rates. In the following calculation we show that the deviation of the

average estimated spike count µ̂i in response to stimulus i from the true average µi leads
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to an overestimation in Fisher information that decreases linearly with the size of the

measurement bin.

Since Poisson neurons are assumed to be uncorrelated, the Fisher information in a

network of N neurons is the sum of contributions from each neuron. We assess the

expected overestimation of a single neuron:

E [(µ̂1 − µ̂2)2

µ̂1 + µ̂2

− (µ1 − µ2)2

µ1 + µ2

] = E [(µ̂1 − µ̂2)2

µ̂1 + µ̂2

] − (µ1 − µ2)2

µ1 + µ2

(B.1)

= E [(µ̂1 + µ̂2)2

µ̂1 + µ̂2

] −E ( 4µ̂1µ̂2

µ̂1 + µ̂2

) − (µ1 − µ2)2

µ1 + µ2

= µ1 + µ2 −E ( 4µ̂1µ̂2

µ̂1 + µ̂2

) − (µ1 + µ2)2 − 4µ1µ2

µ1 + µ2

= −4E ( µ̂1µ̂2

µ̂1 + µ̂2

) + 4µ1µ2

µ1 + µ2

= 4( µ1µ2

µ1 + µ2

−E ( µ̂1µ̂2

µ̂1 + µ̂2

)) .

The standard error of the mean is
√

λ
n , where λ is the Poisson parameter (in this case

the expected number of spikes) and n is the sample size. By the central limit theorem, µ̂i

is normally distributed with standard deviation
√

µi
n . We can thus write expected numbers

of counts as the sums of the true counts and zero-mean error terms.

µ̂1 = µ1 +
δ1√
n
, µ̂2 = µ2 +

δ2√
n
.(B.2)
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Then using straightforward algebraic calculations, the right hand side of the previous

calculation is

4( µ1µ2

µ1 + µ2

−E ( µ̂1µ̂2

µ̂1 + µ̂2

))(B.3)

= 4
⎛
⎝
µ1µ2

µ1 + µ2

−E
⎛
⎝

(µ1 + δ1/
√
n) (µ2 + δ2/

√
n)

(µ1 + δ1/
√
n) + (µ2 + δ2/

√
n)

⎞
⎠
⎞
⎠

= 4( µ1µ2

µ1 + µ2

−E (A +B +C)) ,

where

A = µ1µ2/(µ1 + µ2)
1 + (δ1 + δ2)/ [(µ1 + µ2)

√
n]

(B.4)

B = µ2δ1/
√
n + µ1δ2/

√
n

µ1 + µ2 + δ1/
√
n + δ2/

√
n

(B.5)

C = δ1δ2/n
µ1 + µ2 + δ1/

√
n + δ2/

√
n

(B.6)

Next, invoke the Taylor approximation

1

1 + ε ∼ 1 − ε + ε2 −O (ε3) ,(B.7)

using ε = δ1+δ2
(µ1+µ2)

√
n
.
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The first terms inside the expectation simplifies as

E
⎛
⎝

µ1µ2/(µ1 + µ2)
1 + (δ1 + δ2)/ [(µ1 + µ2)

√
n]

⎞
⎠

(B.8)

= E ( µ1µ2

µ1 + µ2

[1 − δ1 + δ2

(µ1 + µ2)
√
n
+ (δ1 + δ2)2

n(µ1 + µ2)2
− h.o.t.])(B.9)

= µ1µ2

µ1 + µ2

−E ( µ1µ2

µ1 + µ2

( (δ1 + δ2)2

n(µ1 + µ2)2
− h.o.t.))(B.10)

Second term:

E ( µ2δ1/
√
n + µ1δ2/

√
n

µ1 + µ2 + δ1/
√
n + δ2/

√
n
) = E

⎛
⎝
(µ2δ1 + µ1δ2√

n
)
⎛
⎝

1

1 + δ1+δ2
(µ1+µ2)

√
n

⎞
⎠
⎞
⎠

(B.11)

= E ((µ2δ1 + µ1δ2√
n

)(1 − δ1 + δ2

(µ1 + µ2)
√
n
− h.o.t.))(B.12)

Third term:

E ( δ1δ2/n
µ1 + µ2 + δ1/

√
n + δ2/

√
n
) = E

⎛
⎝
( δ1δ2

n(µ1 + µ2)
)
⎛
⎝

1

1 + δ1+δ2
(µ1+µ2)

√
n
)
⎞
⎠
⎞
⎠

(B.13)

= 1

n(µ1 + µ2)
E ((δ1δ2)(1 − δ1 + δ2

(µ1 + µ2)
√
n
+ h.o.t.))(B.14)

Before we put things together, we note the following:

First, when n is large 1
n
√
n
≪ 1

n ≪ 1
√
n
.

Second, E (µ2δ1+µ1δ2
√
n

) = 0 due to linearity of expectation and the assumption that δ1

and δ2 are zero-mean Gaussian random variables.

Third, E (δ1δ2) = 0. To see this, note that δ1 = √
n (µ̂1 − µ1) , δ2 = √

n (µ̂2 − µ2), so

E (δ1δ2) = nE [(µ̂1 − µ1) (µ̂2 − µ2)] = 0, the covariance of independent random variables.

Fourth, δ1
√
n
∼ Norm(0,

√
µ1
√
n
), so δ1 ∼ Norm (0,

√
µ1) and E [δ2

i ] = µi.
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The error term simplifies to

4

n
{ 2µ1µ2

µ1 + µ2

+ µ1µ2 (µ1 + µ2)
(µ1 + µ2)3

} + h.o.t..(B.15)

In summary, Fisher information in a Poisson network is overestimated by an amount

that scales linearly with the expected number of spikes and by extension, the window size.

B.2. Random linear separability Frandom is invariant to translations of the

projection line.

Consider a two-class discrimination problem between two noisy activity clouds in N -

dimensional space. Consider a vector c⃗rand and consider the vector parallel to c⃗rand that

goes through the centroid [m1,m2, ...,mN]. This corresponding vector [x1, ..., xN]T is

parametrized as

[x1, ..., xN]T = [m1, ...,mN]T + tc⃗rand

and the resulting Frandom is

Frandom =
([x1, ..., xN]T ⋅∆µ⃗)2

[x1, ..., xN]T (∑1 +∑2) [x1, ..., xN]
.(B.16)

We can decompose the denominator as a sum over the eigenmodes of ∑1 +∑2, indexed

by k, where eigenvectors e⃗k are assumed to be normalized.

Frandom =
([x1, ..., xN]T ⋅∆µ⃗)2

∑k λk ([x1, ..., xN]T ⋅ e⃗k)
2 .(B.17)

The quantity ([x1, ..., xN]T ⋅∆µ⃗) is the signed magnitude of the projection of ∆µ⃗ onto

[x1, ..., xN]T . Similarly, the quantity ([x1, ..., xN]T ⋅ e⃗k) is the magnitude of the projection
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of e⃗k onto [x1, ..., xN]T . By properties of projections, and since [x1, ..., xN]T ∣∣ c⃗rand, we

have

([x1, ..., xN]T ⋅∆µ⃗) = (c⃗rand ⋅∆µ⃗)(B.18)

([x1, ..., xN]T ⋅ e⃗k) = (c⃗rand ⋅ e⃗k) ,(B.19)

and we conclude that

Frandom =
([x1, ..., xN]T ⋅∆µ⃗)2

[x1, ..., xN]T (∑1 +∑2) [x1, ..., xN]
=

(c⃗rand ⋅ (⟨M⃗1⟩ − ⟨M⃗2⟩))
2

c⃗Trand (∑1 +∑2) c⃗rand
.(B.20)

B.3. The benefit of induced noise correlations scales inversely to overall

stimulus discriminability.

We consider how noise correlation impacts discriminability in networks whose prin-

cipal neurons can be either excitatory or inhibitory. The purpose of this exploration

was to assess the impact of correlations induced by lateral connectivities in general, be-

yond the inhibitory networks known in the olfactory system. Excitatory MCs represent

disinhibition, for instance caused by MCs exciting cortical cells that inhibit GCs.

The network receives a symmetric pair of block stimuli. Each MC either delivers

excitation or inhibition to all other cells in its own stimulus group, and either excitation

or inhibition to all cells receiving the other stimulus. The coupling strength “within-

block” is independently tuned from the coupling strength “across-block.” For notational

convenience, we often refer to inhibition within the same block as self-inhibition and

inhibition to the other block as lateral-inhibition.
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B.3.1. Self-inhibition induces beneficial covariances even as discriminability is

reduced overall.

In this first regime, mitral cells inhibit other cells in their same stimulus group and also

inhibit other cells in the other stimulus group (Figure B.1a). Expectedly, the average

difference in response between the two stimuli increases as lateral inhibition increases,

and decreases as self-inhibition increases (Figure B.1b). Since one group of cells receives

higher stimulation than the other, cells in that group tend to suppress the activity of

the other group, enhancing the differences between them. Simultaneously, increasing

the strength of self-inhibition causes cells to indirectly inhibit their own activities, and

differences between average firing rates is diminished.

In (Figure B.1c), we hold the amount of lateral inhibition constant while increasing

the amount of self inhibition (red to black lines). In doing so, Fopt and Funcorr both de-

crease with the strength of self inhibition, and seemingly monotonically with window size.

However, the proportion Fopt/Funcorr increases as we increase self-inhibition, suggesting

that even though discriminability is dominated by the reduction in ∆µ⃗, inhibition induces

pairwise covariances that are beneficial, especially at large coupling strengths.

A similar trend emerges when we swap out lateral inhibition for lateral disinhibition,

whereby each MC inhibits the granule cells that inhibit MCs of the other stimulus group.

In this scenario, ∆µ⃗ ends to decrease with self-inhibition, and also increases with the

strength of lateral disinhibition (Figure B.2b, right to left) due to higher-excited mitral

cells becoming disinhibited by weakly-stimulated MCs of the other group. As before,

Fopt and Funcorr trend downward with increasing self inhibition (Figure B.2c). Unlike

in the previous scenario, discriminability trends upwards with increasing window size,
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Figure B.1. (a) Network schematic, in which each M represents all MCs
receiving a level of input. (b) Squared magnitude of ∆µ⃗. Horizontal axis is
strength of lateral inhibition. Increasingly darker shades of red correspond
to strength of self-inhibition. (c) Fopt and Funcorr for measurement bins
T = 2 to 50. Lateral inhibition is set to 1. (d) Proportion of Fopt to Funcorr
for measurement bins T = 2 to 50.

corresponding to covariances also becoming increasingly beneficial with larger measure-

ment bin (Figure B.2d). Future work may address the nonmonotonic behavior of covari-

ances within this regime, shown in Figure B.2d, which suggests the possibility of network

rhythms emerging from patterns of network coupling.
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Figure B.2. (a) Network schematic, in which each M represents all MCs
receiving a level of input. (b) Squared magnitude of ∆µ⃗. Horizontal axis is
strength of lateral inhibition. Increasingly darker shades of red correspond
to strength of self-inhibition. (c) Fopt and Funcorr for measurement bins
T = 2 to 50. Lateral inhibition is set to 1. (d) Proportion of Fopt to Funcorr
for measurement bins T = 2 to 50.

B.3.2. Self disinhibition reduces discriminability and induces pairwise covari-

ances that are not beneficial.

The final network contains self disinhibition paired with lateral excitation, which func-

tionally resembles network interactions within the visual system. In this regime, mitral

cells inhibit the granule cells that inhibit themselves, but excite the granule cells that

inhibit MCs of the other group.

In Figure B.4, we plot the squared magnitude of ∆µ⃗ against the strength of lat-

eral coupling, with darkening shades of blue corresponding to increasing amounts of self
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disinhibition. The quantity ∣ ∆µ⃗ ∣2 expectedly increases with lateral inhibition but unex-

pectedly trends lower with increasing self disinhibition. The latter result is unintuitive,

since we’d expect that higher-stimulated MCs that indirectly disinhibit themselves would

further bolster their activity above MCs of the weakly-stimulated group (Figure B.3).

The reason for the downward trend is as follows. For nonzero lateral inhibition and zero

self-inhibition (e.g. lateral w = 1, lightest blue line), highly-excited MCs reach a maxi-

mum activity level, capping out the amount of improvement they can hold over MCs in

the other stimulus group. This maximum level is set by these highly-excited MCs fully

suppressing weakly-stimulated MCs, whose corresponding GCs then provide no inhibition

to the first group of cells.

Figure B.3. Firing rates of MCs in a network with self-disinhibition. MCs
inhibit their own GCs with wmg = −1.2 (arbitrary units). Horizontal axis is
strength of excitatory coupling from MCs towards other group (arbitrary
units). Each dot represents one MC in one simulation. (a) Firing rate of
highly-excited MCs. (b) Firing rates of weakly-excited MCs.

As the amount of self-disinhibition is increased (blue to black, Figure B.4b), the group

of weakly-excited MCs occasionally dominate. This uncommon event is enabled because

OSNs inputs are noisy, and occasionally, MCs in the weakly-stimulated group receive

enough stimulation to “win out” over the other group. This inverted steady-state occurs
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more frequently with higher amounts of self-disinhibition, which overall drives down the

average mean difference across all trials. To conclude, higher self-disinhibition creates

a bistability within the system in which either set of cells may become the dominating

group.

Both Fopt and Funcorr trend downward with increasing self disinhibition, and the pro-

portion Fopt/Funcorr is less than 1 for most coupling strengths. These results are consistent

with similar studies of lateral connectivity in the visual system that suggest self-excitation

paired with lateral inhibition reduces total available information and induces pairwise cor-

relations that further weaken discriminability [12, 13, 14, 15, 16].

Note: We do not consider networks in which MCs disinhibit both themselves and

cells of the other stimulus group. Since the GCs in our network do not receive any input

aside from MC excitation, in this network, the GCs receive no input altogether and hence

do not spike. This scenario is not particularly interesting.
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Figure B.4. (a) Network schematic, in which each M represents all MCs
receiving a level of input. (b) Squared magnitude of ∆µ⃗. Horizontal axis is
strength of lateral inhibition. Increasingly darker shades of blue correspond
to strength of self-disinhibition. (c) Fopt and Funcorr for measurement bins
T = 2 to 50. Lateral inhibition is set to 1. (d) Proportion of Fopt to Funcorr
for measurement bins T = 2 to 50.
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B.4. Linear rate networks

We use a linear rate model to analytically understand how reciprocal and shared

inhibition affect the separability of two similar stimuli, particularly through noise shaping.

B.4.1. Variance of rates decreases slower than (1 +w)−2

Consider a simple linear rate equation that models the base interaction between a single

granule cell (G) and a single mitral cell (M). MC activity decays exponentially, is reduced

by granule cell activity via the coupling term w, and is incremented by stimulus S. GC

activity is increased by mitral cell activity and changes in accordance to synaptic time

constant τ . Both the MC and GC receive independent zero-mean Gaussian noise, noted

ξ and ζ respectively.

dM

dt
= −M −wG + S + ξ(B.21)

τ
dG

dt
= −G +M + ζ.(B.22)

We first assess how the difference in mean responses to two stimuli (∆µ) changes as

a function of inhibitory coupling strength w. Denote dW1 = ξdt and dW2 = ζdt and write

the two differential equations in the form

dM = (−M + S −wG)dt + dW1(B.23)

τdG = (−G +M)dt + dW2.(B.24)

Even if the stochastic differential system is not easily solvable, we can take the expec-

tation of both sides. This system has the Martingale property, so taking the expectation
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annihilates the stochastic terms, and the expected value of each variable satisfies the same

differential equations equations as the original variables.

dE [M]
dt

= −E [M] + S +w [G](B.25)

τ
dE [G]
dt

= −E [G] +E [M] .(B.26)

In steady state, the expected activities E[M] and E[G] satisfy

E [M] = S −wE [G](B.27)

E [G] = E [M]
+

(B.28)

and we conclude

E [M] = S

1 +w.(B.29)

This implies that the mean difference activity in response to two stimuli decreases

monotonically with w. That is,

∆µ = S
(1) − S(2)
1 +w .(B.30)

We next calculate how the covariance sum Σ changes with inhibitory weight.

As we show (Appendix B.5.1), the variance of a signal can be calculated as a function

of the power spectral density.

V ar ( 1

T ∫
T

0
M(t) dt) = 1

πT 2 ∫
∞

−∞

∣M(ω) ∣2 1 − cosωT

ω2
dω.(B.31)
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We endeavor to find the mitral cell’s power spectral density ∣M(ω) ∣2.

dM̂

dt
= d

dt ∫ M(t)e−iωtdt = −iω∫ M(t)e−iωtdt = iωM̂.(B.32)

The Fourier transform of (B.21) and (B.22) is

−iωM̂ = −M̂ −wĜ + ξ̂(B.33)

−iωτĜ = −Ĝ + M̂ + ζ̂(B.34)

M̂ has the form

M̂ = −wζ̂ + ξ̂ (1 − iωτ)
(1 − iω) (1 − iωτ) +w

Taking their product, and denoting ξ̂ξ̂∗ = ξ̂2
0 and ζ̂ ζ̂∗ = ζ̂2

0 , yields

∣M(ω) ∣2 = E [M̂M̂∗](B.35)

= w2ζ̂2
0 + ξ̂2

0 (1 + ω2τ 2)
(1 +w)2 + ω (τ 2 + 1 − 2wτ) + ω4τ 2

.(B.36)

In the second line, we use the property that the expectation of each noise term is 0 and

that they are independent. Plugging this form into our equation for variance produces a

formula for the variance of rates in terms of system parameters w, τ , ξ̂2
0 , and ζ̂2

0 ,

V ar ( 1

T ∫
T

0
M(t) dt) = 1

πT 2 ∫
∞

−∞

( w2ζ̂2
0 + ξ̂2

0 (1 + ω2τ 2)
(1 +w)2 + ω (τ 2 + 1 − 2wτ) + ω4τ 2

) 1 − cosωT

ω2
dω.

(B.37)
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Before computing the Fourier Transform of the system, we omitted the stimulus S

itself for computational convenience. In our analyses, S is constant in time. Including

this term produces the following expression for variance:

V ar ( 1

T ∫
T

0
M(t) dt)(B.38)

= 1

πT 2 ∫
∞

−∞

⎛
⎝

w2ζ̂2
0 + (ξ̂2

0 + S2) (1 + ω2τ 2)
(1 +w)2 + ω (τ 2 + 1 − 2wτ) + ω4τ 2

⎞
⎠

1 − cosωT

ω2
dω − ( S

1 +w)
2

.(B.39)

In short, it adds a term that is proportional to 1

(1+w)2
and does not change how the

integrand scales with w.

When w = 0, the power spectrum of the signal has a peak at low frequencies, whereas

w > 0 shifts the peak to a higher frequency (Figure B.5). The variance, which is computed

as a numerical integral over the PSD, consequently is lower for w > 0 (Figure B.6).

Figure B.5. As inhibition increases, power is reduced for each frequency.
Figure is shown for ζ̂2

0 = 0, ξ̂2
0 = 1, τ = 1.

For ζ̂2
0 ≠ 0, the power spectral density is larger at higher frequencies and for larger

inhibitory coupling w (Figure B.7). In general, at larger inhibitory weights, the peak

of the power spectrum occurs at higher frequency, and the peak is larger when there is
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Figure B.6. Variance decreases with increasing window size. In the presence
of inhibition, variance decreases more rapidly.

additional noise input to the granule cell. A slower GC (larger time constant) generates

a power spectral density with peaks at smaller frequencies (Figure B.7).

For ζ̂2
0 = 0 specifically, we plot the variance curves of the previous analysis with (1+w)2

and found that the result increases with w, indicating that the original variance decreases

with w more slowly than 1
(1+w)2 (Figure B.8).
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Figure B.7. Power spectral densities and corresponding variances of rates
for (ab) ζ̂2

0 = 1, τ = 1, (cd) ζ̂2
0 = 0, τ = 1, and (ef) ζ̂2

0 = 0, τ = 10. Horizontal
axis in first column is frequency in radians; horizontal axis in second column
is T in arbitrary units. Colored lines from green to black indicate increasing
inhibitory weights from w = 0 to w = 100 (arbitrary units).
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Figure B.8. (a) Variance of rates with T . Different color lines indicate in-
creasing inhibitory coupling, from w = 0 to w = 100 (arbitrary units). (b)
Variance of rates with w. Different color lines indicate increasing measure-
ment bins from T = 10−1 to T = 107 (artibrary units). (c) Same as (b) but
multiplied by (1 +w)2.
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B.4.1.1. Discriminability decays with w in a single-connected network. Con-

sider a network of two mitral cells each reciprocally connected to a granule cell.

We expose the system to symmetric stimuli S(1) and S(2).

Mean difference in response monotonically decreases with w,

∆µ⃗ =
⎛
⎜⎜
⎝

E [M (1)
1 ] −E [M (2)

1 ]

E [M (1)
2 ] −E [M (2)

2 ]

⎞
⎟⎟
⎠
= 1

1 +w

⎛
⎜⎜
⎝

S
(1)
1 − S(2)1

S
(1)
2 − S(2)2

⎞
⎟⎟
⎠
.(B.40)

M
(i)
j is the response of mitral cell j in response to stimulus i, with input S

(i)
j .

Since the cells do not share connections, the covariance matrix is a diagonal matrix

whose entries are the variances of each MC, summed over both stimuli. We conclude that

Fopt ∝
1

(1 +w)2

⎡⎢⎢⎢⎢⎢⎣

(S(1)1 − S(2)1 )
2

V ar (M1)
+

(S(1)2 − S(2)2 )
2

V ar (M2)

⎤⎥⎥⎥⎥⎥⎦
(B.41)

= 2

(1 +w)2

⎡⎢⎢⎢⎢⎢⎣

(S(1)1 − S(2)1 )
2

V ar (M)

⎤⎥⎥⎥⎥⎥⎦

by symmetry of the stimuli and because V ar (M1) = V ar (M2) . Note that since V ar(M)

decreases more slowly than 1
(1+w)2 at small measurement bins, the overall effect is that

Fopt decreases with increasing inhibitory weight w.

Simulations of the linear system show that Fopt indeed decreases with inhibitory weight

for small measurement, and this effect is magnified for a slower granule cell response.

Intuitively, a slower granule cell with a larger inhibitory weight induces rhythms in the

mitral cell activity. A small measurement window that would otherwise only pick up
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minimal variance content at low frequencies would then picks up greater variance, which

reduces Fopt. At sufficiently large window sizes, Fopt is unaffected by inhibitory weight.

Figure B.9. Predicted Fopt for a 4-cell linear network connected with single
reciprocal connections for a) τ = 1 and b) τ = 10. Colored lines from green
to black indicate increasing T .

B.4.1.2. ∆µ⃗ is independent of w in a laterally-connected network. We now

slightly complicate our rate model to assess the effects of lateral inhibition on stimu-

lus discriminability. Consider a system of two excitatory mitral cells that both excite

the same granule cell and receive inhibition in turn. A common stimulus S(i) excites the

two mitral cells at levels S
(i)
1 and S

(i)
2 , and every neuron receives uncorrelated, zero-mean

Gaussian noise.

dM1

dt
= −M1 −wG + S(i)1 + ξ1(B.42)

dM2

dt
= −M2 −wG + S(i)2 + ξ2(B.43)

τ
dG

dt
= −G + (M1 +M2) + ζ(B.44)
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We write ∆µ in terms of system parameters. As before, we take the expectation of

the system, which annihilates the stochastic terms,

0 = −E [M (i)
1 ] −wE [G] + S(i)1(B.45)

0 = −E [M (i)
2 ] −wE [G] + S(i)2(B.46)

0 = −E [G] + (E [M (i)
1 ] +E [M (i)

2 ])(B.47)

Straightforward algebra yields that for stimulus i,

E [M (i)
2 ] = wS

(i)
2 + S(i)2 −wS(i)1

1 + 2w
(B.48)

E [M (i)
1 ] = wS

(i)
1 + S(i)1 −wS(i)2

1 + 2w
(B.49)

which we use to expand and simplify ∆µ
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∆µ =
⎛
⎜⎜
⎝

E [M (2)
1 ] −E [M (1)

1 ]

E [M (2)
2 ] −E [M (2)

1 ]

⎞
⎟⎟
⎠

(B.50)

=
⎛
⎜⎜
⎝

wS
(2)
1 +S

(2)
1 −wS

(2)
2

1+2w − wS
(1)
1 +S

(1)
1 −wS

(1)
2

1+2w

wS
(2)
2 +S

(2)
2 −wS

(2)
1

1+2w − wS
(1)
2 +S

(1)
2 −wS

(1)
1

1+2w

⎞
⎟⎟
⎠

= 1

1 + 2w

⎛
⎜⎜
⎝

wS
(2)
1 + S(2)1 −wS(2)2 − (wS(1)1 + S(1)1 −wS(1)2 )

wS
(2)
2 + S(2)2 −wS(2)1 − (wS(1)2 + S(1)2 −wS(1)1 )

⎞
⎟⎟
⎠

=
⎛
⎜⎜
⎝

S
(2)
1 − S(1)1

S
(1)
1 − S(2)1

⎞
⎟⎟
⎠
.

In the last line, we’ve made a symmetry assumption that S
(1)
1 = S(2)2 and S

(2)
1 = S(1)1 .

This is equivalent to supposing that the difference between our two stimuli is odd under

reflections (∆µ⃗ is odd under the exchange of mitral cells), rather than constant multiples of

each other (∆µ⃗ is even). (In these studies, we only consider stimuli that are symmetric.).

We conclude that the mean response difference ∆µ does not depend on w.

B.4.2. Optimal linear discriminability is independent of w in a laterally-connected

network.

Shared inhibition induces pairwise correlations (and covariances) between the two mi-

tral cells. We next calculate the pairwise covariance of rates between cells M1 and M2.
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Without loss of generality, assume they each have an average value of zero.

Cov ( 1

T ∫
T

0
M1(t)dt,

1

T ∫
T

0
M2(t)dt)

(B.51)

= E [( 1

T ∫
T

0
M1(t)dt)( 1

T ∫
T

0
M2(t)dt)] −

���
���

���
��:0

E [ 1

T ∫
T

0
M1(t)dt]

���
���

���
��:0

E [ 1

T ∫
T

0
M2(t)dt]

= E [ 1

T 2 ∫
T

0
∫

T

0
M1(t1)M2(t2)dt1dt2]

= 1

T 2 ∫
T

0
∫

T

0
E [M1(t1)M2(t2)]dt1dt2.

Under the assumption that M1 and M2 are stationary processes, E [M1(t1)M2(t2)] is

the cross-correlation between the two processes and depends only on the time difference

t2 − t1, which we denote τ .

1

T 2 ∫
T

0
∫

T

0
E [M1(t1)M2(t2)]dt1dt2 =

1

T 2 ∫
T

0
∫

T

0
E [∫

∞

−∞

M1 (t′)M2 (t′ + τ)dt′]dt1dt2

(B.52)
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Isolate and simplify the expectation:

E [∫
∞

−∞

M1 (t′)M2 (t′ + τ)dt′](B.53)

= ∫
∞

−∞

E [( 1

2π ∫ M̂1(ω)eiωt
′
dω)( 1

2π ∫ M̂2(ω′)eiω
′t′+iω′τdω′)]dt′

Exchange the order of integration.

= 1

(2π)2 ∫
∞

−∞

∫ E [M̂1(ω)eiω
′τM̂2(ω′) (∫ eit

′
(ω+ω′)dt′)]dω′dω

= 1

(2π)2 ∫
∞

−∞

∫ E [M̂1(ω)eiω
′τM̂2(ω′)] (2πδ (ω + ω′))dω′dω

= 1

2π ∫
∞

−∞

E [M̂1(ω)eiω
′τM̂2(−ω)]dω

= F−1 (E [M̂1M̂
∗

2 ]) (τ)

We have thus so far written covariance in terms of the cross spectrum.

Cov ( 1

T ∫
T

0
M1(t)dt,

1

T ∫
T

0
M2(t)dt) =

1

T 2 ∫
T

0
∫

T

0
F−1 (E [M̂1M̂

∗

2 ])dt1dt2

(B.54)

= 1

2πT 2 ∫
T

0
∫

T

0
[∫ E [M̂1M̂

∗

2 ] eiω(t2−t1)dω]dt1dt2(B.55)

Taking the Fourier transform of our original system yields

−iωM̂1 = −M̂1 −wĜ + ξ̂1(B.56)

−iωM̂2 = −M̂2 −wĜ + ξ̂2(B.57)

−iωτĜ = −Ĝ + (M̂1 + M̂2) + ζ̂(B.58)
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Isolate M̂1 and M̂∗

2

Ĝ =
(ξ̂1 + ξ̂2) + ζ̂ (1 − iω)

(1 − iω) (1 − iωτ) + 2w
(B.59)

M̂1 =
ξ̂1 ((1 − iω) (1 − iωτ) +w) −wξ̂2 −wζ̂ (1 − iω)

(1 − iω) [(1 − iω) (1 − iωτ) + 2w](B.60)

M̂∗

2 = −wξ̂∗1 + ξ̂∗2 [(1 + iω) (1 + iωτ) +w] −wζ̂∗ (1 + iω)
(1 + iω) [(1 + iω) (1 + iωτ) + 2w](B.61)

In taking their product, we use the δ−correlation properties of all the noise terms

M̂1M̂
∗

2(B.62)

= −wξ̂1,0 ((1 − iω) (1 − iωτ) +w) −wξ̂2,0 ((1 + iω) (1 + iωτ) +w) +w2ζ̂2
0 (1 + ω2)

(1 + ω2) [(1 + ω2) (1 + ω2τ 2) + 4w (1 − ω2τ) + 4w2](B.63)

We now make an important observation about this quantity. The product M̂1M̂∗

2 is

complex, whereas the covariance of two real quantities must itself be real. Therefore, the

inner integral ∫ E [M̂1M̂∗

2 ] eiω(t2−t1)dω must also be real.

Note that the quantity M̂1 (ω) M̂∗

2 (ω) is equal to M̂∗

1 (−ω) M̂2 (−ω). Let ω′ = −ω and

dω′ = −dω.

∫
∞

−∞

E [M̂1(ω)M̂∗

2 (ω)] eiω(t2−t1)dω = ∫
∞

−∞

E [M̂∗

1 (−ω)M̂2(−ω)] eiω(t2−t1)dω(B.64)

= ∫
−∞

∞

E [M̂∗

1 (ω′)M̂2(ω′)] e−iω
′
(t2−t1) (−dω′)(B.65)

= ∫
∞

−∞

E [M̂∗

1 (ω′)M̂2(ω′)] e−iω
′
(t2−t1)dω′(B.66)

= ∫
∞

−∞

E [M̂∗

1 (ω′)M̂2(ω′)] eiω
′
(t1−t2)dω′,(B.67)
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which lets us conclude that taking the complex conjugate of the random variable M̂1 (ω) M̂∗

2 (ω)

is equivalent to time-reversing the original quantity. We therefore have the two equivalent

statements

E [∫
∞

−∞

M1 (t′)M2 (t′ + τ)dt′] = E [∫
∞

−∞

M1 (t′ + τ ′)M2 (t′)dt′](B.68)

F−1E [M̂1(ω)M̂∗
2(ω)] (t2 − t1)= F−1E [M̂∗

1 (ω′)M̂2(ω′)] (t1 − t2) .(B.69)

For convenience, we can replace F−1 (E [M̂1M̂∗

2 ]) in our covariance computation with

1
2F−1 (E [M̂1M̂∗

2 + M̂1M̂∗

2 ]) without changing the value of the covariance but annihilating

all the imaginary terms.

Simplifying,

Cov ( 1

T ∫
T

0
M1(t)dt,

1

T ∫
T

0
M2(t)dt)(B.70)

= 1

T 2 ∫
T

0
∫

T

0

1

2
F−1 (E [M̂1M̂

∗

2 + M̂1M̂
∗

2 ])dt1dt2(B.71)

= 1

T 2 ∫
T

0
∫

T

0

1

2(2π) ∫ I × eiω(t2−t1)dωdt1dt2.(B.72)

,

where

I = −wξ̂1,0 (2 − 2ω2τ + 2w) −wξ̂2,0 (2 − 2ω2τ + 2w) + 2w2ζ̂2
0 (1 + ω2)

(1 + ω2) [(1 + ω2) (1 + ω2τ 2) + 4w (1 − ω2τ) + 4w2](B.73)
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Exchanging the order of integration and simplify as in the single cell case gives

Cov ( 1

T ∫
T

0
M1(t)dt,

1

T ∫
T

0
M2(t)dt)(B.74)

= 1

πT 2 ∫ I × (1 − cosωT

ω2
)dω,(B.75)

This yields an analytical formula for the covariance of two MCs that share inhibition.

Fopt can be written

Fopt = (∑
j

(∆µ⃗ ⋅ e⃗j) e⃗j)
T

Σ−1 (∑
k

(∆µ⃗ ⋅ e⃗k) e⃗k)(B.76)

= (∑
j

(∆µ⃗ ⋅ e⃗j) e⃗j)
T

(∑
k

1

λk
(∆µ⃗ ⋅ e⃗k) e⃗k)(B.77)

=∑
j

1

λj
(∆µ⃗ ⋅ e⃗j)2

.(B.78)

Our stimuli are symmetric, so ∆µ⃗ is an odd vector. We further assume that the noise

to each of the two mitral cells have the same variance, i.e. ξ̂2
0 = ξ̂2

1,0 = ξ̂2
2,0, and denote

∣M(ω) ∣2=∣M1(ω) ∣2=∣M2(ω) ∣2 .(B.79)

Then the covariance of sums Σ is a symmetric matrix

⎡⎢⎢⎢⎢⎢⎢⎣

a c

c a

⎤⎥⎥⎥⎥⎥⎥⎦
(B.80)
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with determinant a2 − c2 and eigenvalues λ1, λ2 = a + c and a − c, corresponding to

eigenvectors [ 1 1 ]
T

and [ 1 −1 ]
T

, respectively. For odd ∆µ, only the odd eigenvec-

tor with corresponding eigenvalue λj = a − c contributes to Fopt.

The diagonal term a is the sum of variances of both cells; the offdiagonal term c

is the pairwise covariance. They can each be computed analytically from the integral

formulation:

a = 1

πT 2 ∫
∞

−∞

∣M(ω) ∣2 1 − cosωT

ω2
dω

(B.81)

= 1

πT 2 ∫
∞

−∞

( ξ̂
2
0 ((1 + ω2) (1 + ω2τ 2) + 2w (1 − ω2τ) + 2w2) +w2ζ̂2

0 (1 + ω2)
(1 + ω2) [(1 + ω2) (1 + ω2τ 2) + 4w (1 − ω2τ) + 4w2] ) 1 − cosωT

ω2
dω

c = 1

πT 2 ∫
∞

−∞

( −2wξ̂2
0 (1 − ω2τ +w) +w2ζ̂2

0 (1 + ω2)
(1 + ω2) [(1 + ω2) (1 + ω2τ 2) + 4w (1 − ω2τ) + 4w2])(1 − cosωT

ω2
)dω.

We next take ξ̂2
0 = τ = 1 and compute the odd eigenvalue a−c, the only eigenvalue that

contributes to Fopt. A straightforward integral computation shows that ζ̂0 drops out of

the calculation; the noise input to the GC does not impact discriminability. Furthermore,

a − c is independent of w

a − c = 1

πT 2 ∫
∞

−∞

1

1 + ω2
(1 − cosωT

ω2
)dω(B.82)

= T + e−T − 1

T 2
.(B.83)
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In other words, the inhibitory coupling between the GC and the two MCs does not

reduce noise in the direction parallel to ∆µ⃗, only in the direction orthogonal. Fopt is

unaffected by inhibitory strength.

The other eigenvalue, a + c, corresponds to the even mode.

a + c = 1

πT 2 ∫
∞

−∞

( 1 + 2w2ζ̂2
0 + ω2

4w2 − 4w (−1 + ω2) + (1 + ω2)2)(1 − cosωT

ω2
)dω.(B.84)

This quantity does not contribute to optimal linear discrimination.

To conclude,

Fopt = (T + e−T − 1

T 2
)
−1

⎡⎢⎢⎢⎢⎢⎢⎣

⎛
⎜⎜
⎝

S
(2)
1 − S(1)1

S1
1 − S2

1

⎞
⎟⎟
⎠
⋅ [−1,1]T

⎤⎥⎥⎥⎥⎥⎥⎦
(B.85)

= T 2

−1 + e−T + T [2 (S(2)1 − S(1)1 )
2
] .(B.86)

We plot the values of 1
2 (M∗

1M2 +M2M∗

1 ) , the pairwise covariance between two cells,variances

of each neuron individually, and both eigenvalues for ζ̂2
0 = 1 and ζ̂2

0 = 0, respectively (Fig-

ure B.10). All plots use ξ̂2
1,0 = ξ̂2

2,0 = 1, τ = 1. When there is noise input to the granule

cells (ζ̂2
0 ≠ 0), both the variance of each cell individually and the pairwise covariance of

the cells increases with inhibitory coupling. The eigenvalue corresponding to the even

eigenvector also increases with w. When there is no noise input to the granule cells, i.e.

ζ̂2
0 = 0 and mitral cell activity is the only thing driving their evolution, both variance

and covariance decrease with w, and the even eigenvalue follows suit. In both cases, the

qualitative behavior of the covariance follows from the shape of the corresponding power
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spectral densities. Specifically, at small window sizes the integral computation of the

covariance picks up frequency content at both small and large frequencies, whereas larger

window sizes pick up only the frequency content at small frequencies. For cross-spectra

that have a peak, increasing the window size beyond the frequency of the peak correlates

with a sudden drop in covariance. We note in particular that when ζ̂2
0 ≠ 0, increasing

inhibitory couplings creates a larger, higher peak in the PSD.

Notably, the odd eigenvalue decreases with window size but does not change with w,

regardless of whether the granule cell receives external noise.
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Figure B.10. Elements of the covariance matrix for a 2-MC linear system.
(a) ζ̂2

0 = 0. Top left: 1
2 (M∗

1M2 +M2M∗

1 ). Bottom left: Pairwise covariance
of the two cells. Top middle: variance of mitral cell 1 for various T . Bottom
middle: variance of mitral cell 2. Top right: Eigenvalue corresponding to
the odd mode of the covariance matrix. Bottom right: Eigenvalue corre-
sponding to the even mode of the covariance matrix. (b) Same as for (a)

but for ζ̂2
0 = 1. In all figures, colored lines from light green to black indicate

increasing inhibitory weights from w = 0 to w = 10.
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A few observations:

For w = 0 (light green line), pairwise covariance is zero regardless of whether there is

noise input to the granule cells. This is consistent with the lack of common influence on

the two cells, and they function as two independently driven neurons with no covariance.

When the granule cells do not receive noise input (i.e. ζ̂2
0 = 0), covariance is nega-

tive, indicating that the two mitral cells are anticorrelated. When there is noise in the

granule cells, covariance at small window sizes shows a positive correlation. Covariance at

larger window sizes shows a negative correlation. In all our simulations, we suppose ζ̂2
0 = 0.

In summary, we have the prediction that for single connected neurons,

∣ ∆µ⃗ ∣∝ 1

1 +w(B.87)

V ar(M) decreases slower than
1

(1 +w)2 , especially at small T (FigureB.8).(B.88)

Fopt =
2

(1 +w)2 [(S2,1 − S1,1)2

V ar (M) ] .(B.89)

Fopt decreases with w at small window sizes and is barely affected by w at large

measurement windows. When the granule cell evolves with a larger time constant τ ,

it takes larger measurement windows yet before Fopt is unaffected by w. For any fixed

inhibition, Fopt increases with measurement bin.

For globally connected neurons,

Fopt =
T 2

−1 + e−T + T [2 (S2,1 − S1,1)2] ,(B.90)
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which monotonically increases with window size T and does not change with inhibitory

coupling w.

B.4.3. Linear rate model simulations

We numerically evolve a rate model according to the equations described above.

First, we simulate dynamics of a single-connected network with two mitral cells and

two granule cells connected reciprocally. System parameters are ξ̂2
0 = 1, ζ̂2

0 = 0, and τ = 1,

and inhibitory weights are taken from w = 0 to w = 50 (arbitrary units). After each time

series is produced, we take a sufficiently large number of samples of a fixed measurement

bin, from which we compute Fopt as well as fraction of samples correctly classified. Chosen

measurement bins range from T = 5 ms to T = 200 ms.

In globally-connected networks, we use the same model parameters as in single-

connected networks. In order to keep the same amount of inhibition comparable to that

of the single connection case, we scale the weight matrix in each direction by the total

number of recipient cells. Indeed, we find that neither Fopt nor fraction correctly classified

changes with inhibitory weight. Even though the average value of mitral cells decreases

with inhibition, their difference is preserved. Furthermore, we verify that the dominant

odd of the covariance matrix decreases monotonically with window size and is unaffected

by inhibition. Taken together, we conclude that global inhibition preserves Fisher linear

information even as overall variance content is reduced.

We briefly comment on the impacts in the limit of an infinitely fast granule cell response

(τ → 0),
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Figure B.11. Single-connected linear rate network. (a) Firing rates for mi-
tral cells 1 and 2 for stimulus 1 (solid lines) and 2 (dashed lines). Colored
lines from green to black indicate increasing inhibitory weight from w = 0
to w = 50 (arbitrary units). (b) Difference in average responses for different
inhibitions. Solid lines are the results of numerical computations; open cir-
cles indicate analytical predictions. (c) Eigenvalue of the odd eigenvector
with inhibitory weight. Green to black lines indicate increasing window
sizes. Open circles indicate analytical predictions (d) Eigenvalue of the odd
eigenvector with window size T . Green to black lines indicate increasing
inhibitory strengths from w = 0 to w = 50.

The two governing systems of equations for single and global connections, respectively,

becomes

dM

dt
= − (1 +w)M + S + ξ, dM1

dt
= − (1 +w)M1 −wM2 + S(i)1 + ξ1(B.91)

dM2

dt
= − (1 +w)M2 −wM1 + S(i)2 + ξ2.(B.92)
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Figure B.12. Discriminability and classification performance of a single-
connected linear rate network. (a) Proportional change of Fopt relative to
that of a network with w = 0. Colored lines from green to black indicate
increasing T . (b) Fraction correctly classified using linear discriminant anal-
ysis across inhibitory weights. Colored lines from green to black indicate
increasing measurement bin. (c) Fopt for different measurement bins T. Col-
ored lines from green to black indicate increasing inhibitory weight, from
w = 0 to w = 50 (arbitrary units). (d) Fraction correctly classified across
measurement bins. Colored lines from green to black indicate increasing
inhibitory weight, from w = 0 to w = 50.

For the single-connected network, Fopt does not obviously decrease with inhibition as

before, although the rate at which it improves with increasing T is larger for stronger

inhibition w. Both Fopt and fraction correctly classified increase with T .

In the global network, discriminability is still preserved across different inhibitory

coupling w and increases monotonically with T .
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Figure B.13. Same as Figure B.11 but for globally-connected networks

Figure B.14. Same as Figure B.12 but for globally-connected networks.
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Figure B.15. Same as for Figure B.12 but with infinitely-fast granule cell.

Figure B.16. Same as for Figure B.14 but with infinitely-fast granule cell.
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B.4.4. Inhibition improves Frandom but not Fopt in globally connected linear

networks.

One key feature of Frandom is that it reflects changes in how noise correlations are shaped,

not just along the optimal direction. In a globally connected network, w reduces noise

in the direction orthogonal to ∆µ⃗ (Figure B.17). This translates into an improvement

in Frandom (Figure B.18), which reflects the noise reduction along that direction. As we

increase the number of MCs in the system however, this noise reduction has less of an

effect. Put another way, Frandom improves because the variability in a single eigenmode

is decreased; at larger systems, this effect is barely noticeable (Figure B.19).

Figure B.17. (a) Scatterplot of sample rates measured in 200ms windows
with no inhibition (b) global inhibition
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Figure B.18. Random discriminability in 2-MC network (a) Mean Frandom
for single-connected network. Different colored lines indicate increasing
window size, from T = 10 to T = 200. (b) Corresponding error rate for
each measurement bin in (a). (cd) same as (ab) but for globally-connected
network.

Figure B.19. Same as in Figure B.18cd but for 50-MC globally-connected
linear network.



195

B.5. Power spectral density derivations

B.5.1. Power spectral density can be calculated from the variance

We derive a formula for the variance of a signal as a function of the power spectral density:

V ar ( 1

T ∫
T

0
M(t) dt) = 1

πT 2 ∫
∞

−∞

∣M(ω) ∣2 1 − cosωT

ω2
dω.(B.93)

Let M0(t) be a time series for which the integral over a finite interval of size T gives

the number of spikes. M0(t) can either be a continuous variable representing the time-

averaged firing rate of a neuron or a discrete sum of Dirac delta functions. Let M(t) be

the result of subtracting its mean.

Then the variance of firing rates measured in windows of size T can be written

V ar ( 1

T ∫
T

0
M(t) dt) = 1

T 2
V ar (∫

T

0
M(t) dt)(B.94)

= 1

T 2

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

E [(∫
T

0
M(t) dt)

2

] −E [(∫
T

0
M(t) dt)]

2

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

= 1

T 2
E [(∫

T

0
M(t) dt)

2

]

= 1

T 2
E [(∫

T

0
M(t) dt)(∫

T

0
M(t′) dt′)]

= 1

T 2 ∫
T

0
∫

T

0
E [M(t)M(t′)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=A(t−t′)

dtdt′

= 1

T 2 ∫
T

0
∫

T

0
A(t − t′) dtdt′,

where A(t − t′) is the autocorrelation function.
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We next invoke the Wiener-Kinchin theorem, which states that the autocorrelation of

a time series is equal to the inverse Fourier transform of the power spectrum.

1

T 2 ∫
T

0
∫

T

0
A(t − t′) dtdt′ = 1

T 2 ∫
T

0
∫

T

0

1

2π ∫
∞

−∞

∣M(ω) ∣2 eiω(t−t′) dωdtdt′(B.95)

= 1

2πT 2 ∫
∞

−∞

∣M(ω) ∣2 (∫
T

0
∫

T

0
eiω(t−t

′
) dtdt)

′

dω

= 1

2πT 2 ∫
∞

−∞

∣M(ω) ∣2
⎛
⎜⎜⎜⎜
⎝

2

ω2
− 2

ω2
(e

iωT − e−iωT
2

)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=cosωT

⎞
⎟⎟⎟⎟
⎠
dω

= 1

πT 2 ∫
∞

−∞

∣M(ω) ∣2 1 − cosωT

ω2
dω.

Note that

∫
∞

−∞

1

πT
(1 − cosωT

ω2
)dω = 1(B.96)

and the integrand biases towards lower frequencies for higher values of T (Figure B.20).

Specifically, this means that larger window sizes pick up more variance at lower frequencies

of the power spectrum, and that variance decreases faster when there is a greater volume

of activity at higher ω.

B.5.2. Power spectral density indicates amount of frequency content.

Consider a discrete time signal x(t) of length N . Assuming it is periodic, we can write it

as the composition of periodic functions of different finite frequencies.

xi = x(ti) = x̄ +
N

∑
n=1

(an cos(ωnti) + bn sin(ωnti))(B.97)
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Figure B.20. The term (1−cosωT
ω2 ) for different frequencies. Colored lines

from light green to black indicate exponentially increasing bin sizes T .

wherex̄ is the mean value of the signal, ωn is the nth frequency, and an and bn control

the amplitudes of each mode.

By definition, the variance of x(ti) is the expected squared difference of the signal

from its mean.

E[(xi − x̄)2] = 1

N − 1

N

∑
i=1

(
N

∑
n=1

an cos(ωnti) + bn sin(ωnti))
2

(B.98)

= 1

N − 1

N

∑
i=1

N

∑
n=1

(an cos(ωnti) + bn sin(ωnti))2
by orthogonality

= 1

N − 1

N

∑
n=1

N

∑
i=1

(an cos(ωnti) + bn sin(ωnti))2

= 1

N − 1

N

∑
n=1

N

2
(a2

n + b2
n)

= N

2(N − 1)
N

∑
n=1

(a2
n + b2

n) ,

where the second line follows by orthogonality and the fourth line uses known trigono-

metric properties.
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The term (a2
n + b2

n) is by definition the power spectral density of x(t) , denoted ∣ x̂(ω) ∣2.

Each term in the sum indicates the contribution to the total variability for that particular

frequency. It represents the amount of each frequency content present in the signal.



199

B.6. Adaptive exponential integrate and fire neuron with refractory period

An earlier iteration of this project used an adaptive integrate and fire neuron with

absolute refractory period, similar to that of [32]. It is similar to the model described in

the main body of the thesis, except with two additional terms, shown below in red.

After a spike, neuron voltage was held at resting potential for 5 ms.

C
dv

dt
= −gL (v −EL) + gL∆T e

v−vT
∆T −wad + z + I(B.99)

v > VT → v = EL for 5 ms,(B.100)

It includes a hyperpolarizing adaptation current wad whose evolution equation is

τwad

d

dt
wad = a(v −EL) −wad,(B.101)

where a is a parameter and τwad
is the time constant of the adaptation of the neuron.

Upon a spike, wad is incremented by amount b.

The other addition is z, which is a depolarizing spike afterpotential. Upon a spike, z

is set to a value Isp and decays otherwise with time constant z.

τz
d

dt
z = −z.(B.102)

The third and final adaptation mechanism is an adaptive threshold. VT is set to VTmax

following a spike and decays to VTrest with a time constant τVT . That is,

τVT
d

dt
VT = −(VT − VTrest)(B.103)
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This neuron’s average firing rate saturates with increasing excitation, and its frequency-

input curve is concave down. Correspondingly, inhibition always has a larger effect on

neurons that are more weakly stimulated. As a result, any amount of inhibition increases

their average differences and also increases Fopt.

There is a connectivity analyzed here known in the literature as “Mexican hat,” char-

acterized by MCs disinhibiting its direct neighbors but inhibiting cells that are further

away. This connectivity has the effect of sharpening the activity responses, and is imple-

mented as

W (x) = Ae exp(−x
2

σ2
e

) −Ai exp(−x
2

σ2
i

) ,(B.104)

where x is a spatial coordinate and represents for instance, the lateral distance between

granule and mitral cells. This is equivalent to the difference of two Gaussian humps.

In all networks regardless of connectivity, discriminability increases with measurement

duration (Figures B.21 and B.22). In these scenarios, percent correct (PC) is near 100%.

One of the reasons we opted for a simpler model was that in these simulations, it

was difficult to understand clearly what exactly made discriminability improve under

some conditions, and not others. For instance, we intuitively hypothesized that global

connectivity would improve the discriminability of skewed Gaussians because it extracted

larger differences between MC responses (Figure B.22, top row, second column). However,

small amounts of inhibition actually worsened Fopt but larger amounts improved it.

Also, while inhibition generally changed the eigenvalues of the covariance matrix Σ

(Figure B.23, Figure B.24), it was difficult to pinpoint how∑ terms contributed to discrim-

inability. For example, inhibition in most connectivity regimes increased the magnitude of
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covariance eigenvalues in networks exposed to Gaussian mixtures, but since contributions

scale with the inverse of eigenvalues, it is the smallest ones whose change has the greatest

impact. Altogether, these data encouraged us to consider a simpler model with which we

could more precisely analyze performance.
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Figure B.21. Data from networks of AdExIF neurons exposed to Gaussian
mixtures. Columns from left to right indicate single, global, stimulus-based,
and Mexican hat connectivity, respectively. Rows correspond to average MC
firing rate of stimulus 1 (solid line) and stimulus 2 (dashed line) at increasing
inhibitions (green to black, arbitrary units), Fopt over measurement duration
(horizontal axis) and inhibition (vertical axis), Fopt for the corresponding
Poisson spike trains with same mean rate, percent correct using the optimal
classifier on network data, percent correct using the optimal classifier on
Poisson spike train data.
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Figure B.22. Same as for B.21 but for skewed Gaussians.
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Figure B.23. Columns from left to right indicate single, global, stimulus-
based, and Mexican hat connectivity, respectively. Top row indicates Fopt at
various measurement bins for network dat (red) and Poisson (blue). Middle
row plots eigenvalues of the covariance matrix by ascending magnitude.
Bottom row plots eigenvalues of the covariance matrix for the corresponding
Poisson network. Green to black indicate increasing inhibition.
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Figure B.24. Same as for B.23 but for skewed Gaussians.
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B.7. Noisy neuron model

The earliest iteration of this project used a stochastic firing neuron, whose implemen-

tation is described in [79]. These efforts comprised an early work towards understanding

networks’ roles in shaping noise correlations and thus aiding discrimination.

Consider a simple stochastic neuron model whose voltage-like variable dictates its

probability of firing,

P (ui) = min (max (0, ui) ,1)(B.105)

Its value is the combination of a stimulus, input from recurrent synapses, and a refractory

variable,

ui = ηi + hi +∑
j

hj,int,(B.106)

where ηi is a refractory variable updated as

τ η̇i = −ηi(B.107)

at spike, ηi → −η0.(B.108)

and hi and ∑j hj,int comprise external stimuli and internal recurrent inputs,

τsḣj,int = −hj,int(B.109)

hj,int = hj,int ±we,i.(B.110)
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Dots indicate time derivatives, and subscripts e, i represent excitatory and inhibitory

connections, respectively.

We plot firing rates of a 10-MC single-connected network driven by each of two similar

odors and with an arbitrary inhibitory strength. Across 100 simulations, cells show rea-

sonably consistent firing patterns, with higher-excited MCs firing more frequently (Figure

B.25). In a Poisson network with the same average rates, cells demonstrate less consis-

tency between simulations (Figure B.26).

Figure B.25. When spikes are network-driven, mitral activity is consistent
across test samples.

Figure B.26. For Poisson-driven spiking, mitral cells fire less consistently
across test samples.



208

Scatterplots of network-driven firing rates and Poisson rates similarly show that the

latter has more variability (Figures B.27 and B.28) and worse discriminability for any

inhibitory coupling (Figures B.29 and B.30).

Figure B.27. Activity clouds in a Poisson process have more spread and
overlap.

Figure B.28. Activity clouds in a network-spiking process are more com-
pact.

We next assess the eigenmodes of the covariance matrix in each scenario. For Poisson-

driven spiking, the magnitudes of eigenvalues scales linearly with the measurement bin,

In contrast, for network-driven spiking, eigenvalues of the covariance reduce with window

size, even after accounting for the expected scaling (Figures B.31 and B.32). This suggests

that recurrent inhibition reduces variance more strongly than what is expected from an
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Figure B.29. In a single-connection network, increasing the amount of inhi-
bition increases the rate of false classifications. The effect is slightly larger
for Poisson-driven spiking.

Figure B.30. In a network with all-to-all reciprocal connections between
MCs and GCs, there is an optimal amount of inhibition for which linear
discrimination is best. Increasing inhibition past that point leads to worse
performance.

increase in measurement time, and is a result that is consistent across all our neuron

models.
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Figure B.31. Eigenvalues (scaled with measurement bin) do not substan-
tially change with measurement bin.

Figure B.32. Scaled eigenvalues of the covariance matrix decrease as win-
dow size increases.
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