
NORTHWESTERN UNIVERSITY

Real-Time Safe Control for Model-Based and Data-Driven Robotics

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Mechanical Engineering

By

Giorgos Mamakoukas

EVANSTON, ILLINOIS

June 2021

2

© Copyright by Giorgos Mamakoukas 2021

All Rights Reserved

3

Abstract

Real-Time Safe Control for Model-Based and Data-Driven Robotics

Giorgos Mamakoukas

4

Robot dynamics are typically highly nonlinear and their control is a challenging research

topic without a single overarching algorithm that demonstrates best performance. In this

thesis, I derive a nonlinear control algorithm that uses an analytical, closed-form solution

to compute feedback with controllability-based guarantees for convergence. The proposed

algorithm, based on needle variations, is computationally more efficient than alternative

top performing methods, while also a priori guaranteeing convergence for dynamics that

are controllable with first-order Lie brackets. The performance of the proposed algorithm

is demonstrated on various systems and tasks, including a differential drive robot avoiding

moving obstacles while converging to the target and a 3D underactuated robotic fish model

tracking a target in the presence of fluid drift. The results highlight the ability of the

feedback scheme to reject disturbances and run in real time, rendering it an attractive

candidate nonlinear controller.

As a second contribution, this thesis improves system identification methods via

Koopman Operators. First, it introduces a generalizable methodology for data-driven

identification of nonlinear dynamics using Koopman models that bound the model error

in terms of the prediction horizon and the magnitude of the derivatives of the system

states. The approach relies on synthesizing Koopman basis functions using the derivatives

of general nonlinear dynamics that need not be known and can be computed numerically

in real time. The error bounds are verified in different scenarios, including data-driven

models learned from unknown dynamics of a pendulum with highly noisy measurements.

The efficacy of the data-driven modeling approach is also validated with simulation and

experimental results on the control of a tail-actuated robotic fish and is shown to outperform

a well-tuned model-free PID (Proportional Integral Derivative) controller. When updated

5

online, the data-driven model leads to significantly improved control performance in the

presence of unmodeled fluid disturbance.

Second, to improve learning of unknown dynamics with little data, this thesis leverages

side information (i.e., general knowledge we have about the properties of a system,

besides training data) and presents a new algorithm that imposes stability on the learned

representation. The proposed algorithm, which is provably more memory efficient than

top competing methods and achieves orders of magnitude lower modeling error, makes the

learned model robust to the amount of training data and improves both prediction accuracy

and control performance. The benefits of stability-constrained data-driven models are

demonstrated in simulation and experiment, including the tasks of stabilizing a quadrotor

in free-fall and learning the dynamics of a pusher-slider system. Conditions under which

the learned dynamics of a controlled system can lead to an online certificate for stabilizing

controllers, via control Lyapunov function analysis, are also discussed.

6

Acknowledgements

This thesis is the result of years of efforts. Along the way, there were a number

of people who helped me, directly or indirectly, and I would like to acknowledge their

contributions. First of all, to my adviser Todd Murphey, you have helped me understand

that research itself is nonlinear (pun intended). You inspired me to think bold, strive to set

high expectations, develop as an independent researcher, and become a better writer. To

my committee member Randy Freeman, thank you for cultivating my interest in control

theory through your courses and our personal conversations, as well as for your ability

to identify the exact (often numerical) cause of ‘impossible’ results. To my committee

member, Malcolm MacIver, thank you for your high attention to detail when reviewing

our research papers.

I would also like to thank my external research collaborators for contributing to these

results and making my research experience a great journey. To Xiaobo Tan, thank you for

always salvaging meaningful results from our failures, and trying to re-frame them towards

a positive contribution. It has helped me approach failure with a more welcoming mindset.

To Maria Castaño, thank you for your hard work, patience, and willingness to stay up

late to complete our experiments during my visits, even at times when we had to put out

fires. I also want to thank my colleagues for sharing the same passion for research, offering

me feedback on my papers and presentations, and being great friends. Special thanks to

Emmanouil, Anastasia, Ian, Katie, and Gerardo, with whom I have worked more closely.

7

My family has been a indispensable part of this journey and supported me throughout

the many bumps of this road. To my mother, thank you for all your wonderful support

and for mitigating the time difference by staying up late to chat. To my father, thank

you for making me laugh at the frustrating moments of research and life and instilling

an optimistic outlook in me. To my siblings, close relatives, and friends, thank you for

being there for me. To Nikos, a dear friend, thank you for being a great mentor for both

academic and personal matters. Special thanks to Gerhard, a remarkable person, who has

been nothing sort of a family in the states for me. I will always be grateful for all your

help.

Last, I want to dedicate this thesis to my lovely grandmother, who passed away before

I could finish it. I know how much you were anticipating my graduation and complaining

that I always said ‘one more year to go’. I will always remember you.

8

Table of Contents

Abstract 3

Acknowledgements 6

Table of Contents 8

List of Tables 12

List of Figures 13

Chapter 1. Introduction 31

Part 1. Model-Based Control with Controllability-Based Convergence

Guarantees 42

Chapter 2. Background 43

2.1. Needle Variation Control Methods 43

2.2. Sequential Action Control (SAC) 46

Chapter 3. Empirical Disturbance Rejection of SAC for Unmodeled Fluid Flow 50

3.1. Simulation Results 50

3.2. Discussion 61

Chapter 4. Relationship of SAC to Gradient Descent and Smooth Control Synthesis 62

4.1. Descent Direction of Needle-Variation-Based Continuous Control 62

9

4.2. Connection to Gradient Descent 69

4.3. Example Systems 76

4.4. Discussion 81

Chapter 5. Second-Order SAC with Controllability-Based Convergence Guarantees 84

5.1. Dependence of Needle Variation Controls on Nonlinear Controllability 84

5.2. Control Synthesis Based on Second-Order Needle Variations 93

5.3. Simulation Results 99

5.4. Discussion 111

Chapter 6. Real-Time Obstacle Avoidance with Second-Order SAC 113

6.1. Motion Planning for Controllable Systems in the Presence of Obstacles 113

6.2. Simulation Results 116

Part 2. Physics-Based System Identification and Data-Driven Control 122

Chapter 7. Background 123

7.1. Koopman Operator 123

7.2. Koopman Invariant Subspaces 124

7.3. Data-Driven Approximations of Koopman Operators 125

7.4. LQR Control of Nonlinear Dynamics Using Koopman Operators 127

Chapter 8. Data-Driven Identification and Control Using Koopman Operators 130

8.1. Synthesis of Basis Functions for Error-Bounded Koopman Representation 131

8.2. Data-Driven Control of Tail-Actuated Robotic Fish 152

8.3. Discussion 167

10

Chapter 9. Memory-Efficient Learning of Stable Linear Dynamical Systems 169

9.1. Notation 170

9.2. SOC Algorithm 172

9.3. Experiments 174

9.4. Discussion 183

Chapter 10. Learning Stable Models for Prediction and Control Using Koopman

Operators 185

10.1. Stable Koopman Operators 185

10.2. Synthesis of Stable Koopman Operators 200

10.3. Results 204

10.4. Discussion 219

Chapter 11. Conclusions and Future Work 220

Bibliography 225

Appendix A. Derivations and Proofs 246

A.1. Derivation of the Mode Insertion Hessian 246

A.2. Dependence of the Mode Insertion Hessian on First-Order Lie-Brackets 266

A.3. Control Solutions based on the Mode Insertion Gradient and Hessian 273

A.4. Global Error for Taylor-Based Koopman Operators 277

A.5. Global Error Bounds for Taylor-Based Koopman Operator 279

A.6. Incremental Update of Koopman Operator 284

A.7. Gradient Descent for SOC algorithm 285

A.8. Equivalent Matrix Representation for Sum of Squares Error 289

11

A.9. Memory-Preserving Gradient Descents for SOC Algorithm 290

12

List of Tables

4.1 Parameter values for single-action control, iLQG, and NVC 79

6.1 Table of Multimedia Extensions 120

8.1 Simulation parameters for the tail-actuated fish model dynamics (8.21).157

8.2 Amplitude and bias inputs used to collect training dataset. 159

9.1 Performance on steam and fountain sequences from the MIT

database. 179

9.2 Errors of stable LDS using experimental data from the Franka Emika

Panda manipulator. 181

13

List of Figures

2.1 A fixed-value perturbation in the nominal control, introduced at time

τ and with duration λ, and the associated variation in the state. In

the limit λ→ 0, the control perturbation becomes a needle variation. 46

2.2 The algorithmic steps of SAC. Using default control, the state and

costate variables are forward simulated in time. The optimal control

response is computed from a closed-form analytical expression and

saturated. In the last step, the application time of a single inserted

action is chosen to correspond to a negative MIG. 48

3.1 A parametric plot of SAC-computed trajectories on tracking the

desired trajectory (dotted line) using the dynamic car dynamics at a

control sequencing frequency of 20 Hz. The performance of the control

is tested against no drift and drift of -1 m/s x̂. Although the time

horizon used for the simulations is extremely short (T = 1 s), the

performance of SAC remains largely unaffected by the presence of flow. 51

3.2 The SAC algorithm tests the dynamic car system on tracking the

reference (gray) signal in two ways. On the first (blue) run, SAC is

tested in a non-fluid environment and on the second run (red) in a

fluid environment with -1 m/s x̂ flow. The simulation uses non-fluid

14

dynamics (absence of drift effects) in both cases–that is, the controller

does not know there is fluid drift on the second run. Dotted lines show

the x-coordinates and solid ones the y- ones. The reference signal is

marked with gray, the neutral-environment test with blue and the

underwater one with red. 52

3.3 SAC and the projection-based trajectory optimization scheme are

tested on reaching a nearby target at (x,y) = (5 m, 5 m), starting

from s0 = [0, 0, 0, 0, 0] and using the dynamic car dynamics in the

presence of a -1.0 m/s x̂ drift. As shown in the left figure, SAC satisfies

saturation limits and exhibits better station keeping performance by

remaining closer to the target (zoomed image). SAC outperforms

Trajectory Optimization also in terms of the control efforts, which

are measured by integrating control actions over application time:∫ tf
t0 u(t)dt. Throughout the ten seconds of simulation, SAC uses

26.71 m/s2· s and Trajectory Optimization uses 41.35 m/s2· s. After

the first two seconds, the integrated errors are 26.3 cm and 65.6 cm

and the controls used are 3.63 m/s2· s and 4.41 m/s2· s for SAC and

Trajectory Optimization, respectively. Control saturations used in SAC

keep controls below 10 m/s2, better resembling experimental actuation

constraints. 54

3.4 A map of target locations posed to the dynamic robot-fish system in

the presence of +0.1 m/s ŷ drift. Two hundred targets are randomly

generated from a sample space of (x, y) = (1 m, 1 m) using Monte

15

Carlo sampling. Success is defined by whether the robot-fish, always

starting from an initial state of s0 = [0, 0, 0, 0, 0, 0]T , is at the end of

the simulation (10 seconds) within 2 cm of the target, equal to half the

longest dimension of the electric fish [1]. The only concern of the task

is to approach the nearby targets and so zero weight is applied on the

orientation θ of the system. 57

3.5 SAC is applied on the dynamic fish-robot model to track the desired

trajectory at a control sequencing frequency of 20 Hz. The performance

of the controller is tested against no drift and drift of +0.1 m/s ŷ.

The computed trajectories are plotted against the reference signal.

Although the time horizon used for the simulations is extremely short

(T = 1 s), the performance of SAC remains largely unaffected by the

presence of flow. 58

3.6 A contour plot on the effect of fluid drift intensity on trajectory

- tracking performance for the dynamic system. The maps plot

performance error as a function of fluid drift intensity (in both the

x- and y- direction) and are generated from interpolating data for

drift ∈ (-0.15, 0.15) m/s sampled in steps of 0.05 m/s. Performance

error is calculated as the integrated distance (in m) away from the

desired trajectory throughout the simulation period (20 seconds). The

majority of the error occurs in the first five seconds, until the controller

catches up with the target. The right figure shows the error between

16

5-20 seconds. The desired trajectory is provided in 3.4 and has a total

arc length of 1.52 m over the simulation period. 59

4.1 Cases of control scaling that remain valid descent directions for the

proposed needle-variation controller. The left figure shows control

clipping, where values are saturated at a specific threshold; the

middle figure shows arbitrary stretching to the saturation limits;

the right figure shows proportional scaling that maintains the same

direction of the applied control. Control curves are a function of time

and arbitrarily shown for a 2-input system for easier visualization.

Simulation results in this chapter use control clipping. 69

4.2 Visual relationship between the control solutions of SAC, iSAC, and

Gradient Descent. 75

4.3 Performance of a single-action needle variation controllers and NVC on

the inversion task of a cart pendulum. NVC successfully inverts the

pendulum with saturation limits of 5 N, while single-action controls

are reported to require at least 15 N for the four-state system [2].

Given the time, NVC can invert the pendulum with as low as 1N

saturation limits. Note that the NVC solution appears similar to a

low-pass filtered single-action solution. 77

4.4 Fig. 4.4a compares NVC, single-action feedback, and two

implementations of iLQG—one limited to one forward and backward

pass per iteration and one with unlimited passes per iteration. The

17

latter provides the optimizer, while the former can be thought of as

providing a good enough solution. Fig. 4.4b shows a Monte Carlo

simulation over the initial angle θ0. NVC successfully leads to inversion

in 50 out of 50 trials with convergence times ranging from 4.7 to 10.1

seconds. For the same set of parameters and range of initial conditions,

single-action policies do not converge for any of the trials [3]. 78

4.5 Comparison of NVC and iLQG performance over a range of cost

function formulations. Terminal cost at the end of a 15-second

simulation was interpolated over the range of Q sampled. For all

simulations Q was defined as a diagonal matrix with weights = 0 for

all states except θ and xc, for which weights are shown on the x- and

y-axis, respectively. Note the robustness of NVC for a range of task

definitions. 79

4.6 Forward locomotion of a planar biped using a continuous-action needle

variation controller. Note that the NVC-controlled biped is able to

perform gait initialization and establish a quasi-periodic gait pattern.

Fig. 4.6a shows the walking pattern of the biped. Fig. 4.6b shows

phase plots of the legs and torso angles; the upper plots correspond to

the gait initiation (first five seconds); the lower plots correspond to the

simulation from t = 10 s until the end of the five-minute walk. The

imperfect gait cycle can allude to a certain level of robustness with

respect to deviations from a nominal gait phase. 82

18

4.7 Gait recovery from disturbances on the torso angular velocity. The

figure shows the phase plane related with the torso angle given

disturbances of −0.15 rad/s applied every 8 seconds over a 30-second

simulation. The introduced disturbance discontinuities are marked

with a solid black line. The trajectory in-between disturbances changes

linearly with time from red to green color. As a result, the green

trajectory is the converging gait cycle and the red indicates deviations

present immediately after the disturbances. 83

4.8 Gait recovery from external forces applied on the torso for 0.02 s at

various times of a full gait cycle. The shaded regions indicate the

maximum magnitude of positive (blue) and negative (orange) forces

tolerated by the biped without losing balance. The legend bar in the

figure indicates the magnitude scale of the forces. 83

5.1 The steps of the controller outlined by Algorithm I. Using the default

control, the states and co-states are forward-simulated for the time

horizon [to, to + T]. The optimal control response is computed

from (5.6), and saturated appropriately. At the end, the algorithm

determines the finite duration of the inserted single action, evaluated

at an application time τ , with a line search. 97

5.2 Differential drive using first-, second-order needle variation actions,

iLQG, and DDP, from top to bottom. Snapshots of the system are

19

shown at t = 0, 2.5, 5, 7.5, 10, and 12.5 sec. The target state is

[xd, yd, θd] = [1000 mm, 1000 mm, 0]. 101

5.3 Fig. 5.3a plots the running state cost; Fig. 5.3b plots the integrated

(cumulative) cost, including the control cost. DDP and iLQG obtain

the same cumulative cost, with slightly different trajectories (see Fig.

5.2). Second-order needle variation actions demonstrate improved

convergence to the target over DDP and iLQG, despite optimizing over

one single action at each iteration. 101

5.4 Convergence success rates of first- (5.7) and second-order (5.6) needle

variation controls for the kinematic differential drive model. Simulation

runs: 1000. 104

5.5 Convergence success rates of first- and second-order needle

variation controls—(5.7) and (5.6), respectively—and iLQG for the

underactuated dynamic vehicle model. Simulation runs: 280 108

5.6 Snapshots of a parallel displacement maneuver using an underactuated

dynamic vehicle model with second-order controls given by (5.6);

first-order solutions (5.7) are singular throughout the simulation.

Animation of these results is available in Extension 3. 108

5.7 Tracking performance of the same system in the presence of +10 cm/s

ŷ fluid drift. The yellow system corresponds to first-order needle

variation actions; the red one to second order. The target trajectory

(red ball) is indicated with white traces over a 10-second simulation.

20

Fig. 5.7b shows the error distance as a function of time, clearly

demonstrating the advantage of the second-order approach. Animation

of these results is available in Extension 4. 109

6.1 Differential drive using second-order needle variation actions in the

presence of obstacles. Fig. 6.1b shows the deviation from the nominal

trajectory that is the solution to the no-obstacle task. The system

performs two maneuvers to avoid each obstacle. These are evident in

the angle deviation (compare to Fig. 5.2c). 117

6.2 Trajectories of the differential drive in the presence of obstacles.

Fig. 6.2d compares the solution to the trajectories generated when

considering only a) obstacle 1, and b) obstacles 1 and 2, both of which

collide with the obstacles. Simulations run in real time in Matlab. 118

6.3 Cost reduction ∆J , modeled after (5.4), for sampled x and y in the

presence of obstacles, given second-order needle variation controls. The

first- and second-order mode insertion gradients are evaluated with the

controls from (5.6). Figures 6.3a and 6.3b are identical, but shown

over a different range to illustrate that even when looking at small

variations of the first-order mode insertion gradient, the second-order

method is reliably negative. The bright vertical line in Fig. 6.3b is

vertically aligned with the target located at [400 mm, 1000 mm], where

first-order solutions are singular. No data are sampled inside the white

circles, as these indicate the infeasible occupied region. 119

21

6.4 Performance of second-order needle variation actions in the presence of

static obstacles. The controller is able to converge to the target for all

500 trials and avoid collisions. Fig. 6.4a is an interpolated heat map

that indicates the time to convergence as a function of initial position;

Fig. 6.4b shows the trajectories followed by the center of mass of the

agent. The gray area indicates the collision space, taking into account

the width of the differential drive. (the simulation runs in real time in

Matlab). For visualization, watch Extension 1. 120

6.5 Performance of second-order needle variation actions in the presence

of three moving obstacles. The left figure shows a snapshot of the

simulation; the right figure plots the distance of the agent from each

object and the target, where the gray area indicates the threshold

minimum distance to avoid collision with the obstacles. The controller

converges to the target in a collision-free manner (the simulation runs

in real time in Matlab). For visualization, watch Extension 2. 121

8.1 Local and global errors induced by approximate Koopman operators.

The local error is the error induced by the operator across one step,

assuming no error in the initial conditions. The global error is the total

deviation away from the true states across multiple steps. 134

8.2 The deviation of the data-driven Koopman operator from the

Taylor-based matrix (8.6) for the single pendulum system, where

the derivative basis functions are constructed analytically from the

22

known dynamics. Fig. 8.2b shows that the non-zero coefficients (upper

triangle) of the linear Taylor expansion are accurately recovered from

the data-driven operator. The zero coefficients (lower triangle) are

replaced by small values that help minimize the least-squares error

for the part of the state space used in the training set. The deviation

differs by orders of magnitude across the basis functions, as seen in Fig.

8.2c. As expected, the deviation is smallest for θ, as it is the one with

the highest number of derivatives used in the basis functions. 147

8.3 Simulated error bound estimates and actual error bounds for the single

pendulum system as a function of the prediction horizon and for

increasing orders of derivatives used as Koopman basis functions. The

derivative basis functions are constructed analytically from the known

dynamics. Both error bound estimates are calculated using (8.8), but

differ in how they compute |f (n+1)
max |. Data Est. is the model-free

error bound estimate and uses the data-driven Koopman operator

and (8.15) to compute |f (n+1)
max |; Model Est. is the model-based error

bound estimate and uses the analytical dynamics equations to compute

|f (n+1)
max |; Max error is the measured largest deviation as a function of

time between the actual value of the state and the one predicted by

the data-driven Koopman operator across all trajectories that evolve

from randomly sampled initial conditions. Results are shown for

three different orders of derivatives of θ. Note that state θ has always

one more derivative than ω. The data-driven bound estimates and

23

actual errors can be generated for different parameter choices using a

Jupyter notebook at https://colab.research.google.com/drive/

1EPX1XVUHr9gix-pZD_3Ydw7Npzz9n3Jj. 148

8.4 Simulated error bound estimates and actual maximum errors induced

by the data-driven Koopman operators for the single pendulum system

when dynamics are unknown and measurements are noisy. The

derivative basis functions are calculated numerically from the state

measurements—no analytical model is used. 150

8.5 Control of a pendulum system based on data-driven models obtained

using SINDy, NARX, a linear model based only on the system states,

and a derivative-based Koopman model whose observables contain

the state θ and its first- and second-order derivatives. The derivative

basis functions are numerically estimated from state measurements

both for training the Koopman model and online to implement

control—no analytical model is used. All models are used to design

MPC control and, in addition, I use the Koopman model for LQR

feedback (Koopman-LQR). Koopman with MPC has the lowest cost

(19.71) for the 10 s simulation, while NARX, SINDy and the linear

model result in errors that are 12.43%, 18.32%, and 30.61% higher,

respectively. Koopman-LQR leads to the second best performance

(0.97% higher error in comparison to Koopman-MPC). 150

8.6 Error bound estimates based on derivative-based Koopman models of

the robotic fish dynamics (8.21) for increasing order of derivatives used

https://colab.research.google.com/drive/1EPX1XVUHr9gix-pZD_3Ydw7Npzz9n3Jj
https://colab.research.google.com/drive/1EPX1XVUHr9gix-pZD_3Ydw7Npzz9n3Jj

24

in the basis functions. The derivative basis functions are constructed

analytically from the known dynamics. Each additional order of

derivatives improves the error bound estimates over the selected

prediction horizon. The error bound estimates are computed using

(8.8) where |f (n+1)
max | is calculated from the training data. 153

8.7 LQR-controlled robotic fish in simulation. The LQR gains are

generated once using the learned Koopman operator. The derivative

basis functions are constructed analytically from the known dynamics.

The desired trajectory is given in terms of the angle and the forward

velocity. Since the position coordinates are not included in the

performance objective (7.10), the controlled trajectories are individually

shifted to align with the desired figure-8 shape as closely as possible.

Despite using fixed LQR gains, the controlled systems successfully track

the desired states that were designed to produce a figure-8 pattern.

Koopman-LQR has the lower cost (3.35) for the 120 s duration, while

the approach based on the data-driven linear model with the same set

of states as in (8.21) results in an error that is 95% higher. 158

8.8 Tail-actuated robotic fish used in experiments, developed by the Smart

Microsystems Lab at Michigan State University. It maneuvers in water

by oscillating its tail fin. 159

8.9 Fitness between Koopman model and experimental measurements. The

green line shows data interpolated from experimental measurements

(blue dots) every ∆t = 0.005 s. The red line shows the evolution of the

25

states using the Koopman model. The actuation is constant for each of

the two runs and is indicated in the caption. 160

8.10 Outline of the proposed methodology for LQR control using

derivative-based Koopman operators. 163

8.11 Experimental setup for creating fluid disturbances. The motor is

halfway submerged in water, generating ripples with its propellers. 164

8.12 Experimental results: Average error scores for velocity and angle

tracking for PID and two variants of Koopman-LQR, trained offline

and updated online, with and without fluid flow indicated respectively

with the waves and no-fan icons. The four subplots compare the

performance for the linear and circular trajectories for each state

separately. The error bars indicate the standard error. The proposed

Koopman operator scheme outperforms PID in all tests. Further,

updating Koopman-LQR online improves the performance in the

presence of the unmodeled fluid flow. A video of experimental runs is

shown at https://youtu.be/9 wx0tdDta0. 165

9.1 Memory requirements as a function of dimensions r, where c1 = 8/220.

CG and WLS scale proportionately to r4, whereas SOC scales

proportionately to r2. For r = 150, SOC uses about 5.04 MB, whereas

CG and WLS about 3.78 GB. Due to memory limits, WLS and CG

failed to run at higher dimensions. 175

https://youtu.be/9_wx0tdDta0

26

9.2 Learning performance of CG, WLS, and SOC for varying subspace

dimensions performed on three datasets: UCLA, UCSD, and DynTex.

In all cases, SOC has the highest best error frequency, has lower

average error and, in terms of execution time, scales better than the

other methods. 177

9.3 Synthesized sequences generated by LS, SOC, CG, and WLS for

r = 40. 179

9.4 From left to right: simulation environment, physical robot, and

experimental training data. 180

9.5 Control performance in simulation using experimental measurements

from the Franka Emika Panda robotic arm. The left figure shows the

reconstruction error of the learned models for a varying number of

measurements sampled randomly from the training set; the middle

figure shows the performance of the controllers after training with

100 measurements sampled randomly (2 seconds worth of data); the

right figure shows the control performance of SOC after manually

introducing disturbances to the position of the end effector. 182

9.6 Experimental tracking of a figure-8 pattern using the Franka Emika

Panda robotic manipulator. The left figure shows, from top to bottom,

snapshots of the control maneuver; the rest figures show the trajectories

of three trials. The three trials are almost identical, showing the

robustness of the method. The applied control is computed with an

27

LQR policy using the stable LDS system obtained from the SOC

algorithm. The training data are obtained using 600 measurements. 182

10.1 Local and global errors (in time) induced by approximate Koopman

operators. The local error considers the accuracy of the model across a

single time step; the global error considers the accuracy of the model

across all time steps and is a more representative metric of long-term

accuracy, assuming states are not updated in every time step. 186

10.2 Comparison of the SOC (Algorithm I) and CG [4] algorithms as a

function of the total number of random measurements used for training

and the total number of basis functions. The error is normalized by the

product of the number of measurements and functions. In 10.2c, the

difference is calculated as the percent difference of the error between

the two algorithms and is calculated as eCG−eSOC
eSOC

. 206

10.3 Figure 10.3a shows the eigenvalues of the unconstrained (7.4) and

constrained (10.17) Koopman operator for the nonlinear dynamics of a

pendulum. The constrained operator pushes the unstable eigenvalues

to the stability boundary. The stable eigenvalues are also appropriately

modified so that constrained Koopman solution locally minimizes the

prediction error (10.17). Figure 10.3b shows the prediction of the angle

of the pendulum system using the unconstrained Koopman solution

(7.4) and the constrained-stable Koopman operator. The predictions of

28

the unconstrained Koopman operator start to diverge away from the

pendulum states after 1 second. 209

10.4 Average angle error, with one-half standard deviation shading, for the

undamped (Fig. 10.4a) and damped (Fig. 10.4b) pendulum dynamics,

as predicted by the unconstrained and the constrained-stable Koopman

operator solutions. For each number of measurements used to compute

a Koopman operator, the average angle error is the average absolute

difference of the true system state (evolved using the nonlinear

dynamics) and the system state as predicted by either Koopman

operator over 1 second over 300 initial conditions. 210

10.5 Candidate control-Lyapunov function constructed from stable

Koopman operators and evaluated on a LQR-controlled pendulum.

The candidate control-Lyapunov function is used to verify the stability

of the controlled trajectory. 211

10.6 Performance of LQR control derived from the stable (10.17) and

unstable (7.4) Koopman operators for the quadrotor dynamics. Both

models use the same training measurements that are collected with

active learning. At the end of the learning phase, the stable Koopman

is computed and the LQR gains from both models are derived.

Figures 10.6a and 10.6b show the log error of the tracking cost for 10

trajectories with the same uniformly sampled initial conditions. The

solid line represents the median score of each approach and the shaded

envelope the lowest and highest cost. Figure 10.6c shows a trajectory

29

using the 40 time-step horizon control. The initial conditions are the

same, but shifted in the x-axis for better visibility. 214

10.7 Experimental setup of the pusher-slider system. The states of the

pusher and the slider are recorded with an overhead camera. The block

configuration is identified using QR labels. 216

10.8 Simulation of the pusher-slider system over 500 time steps (dt = 0.1)

with zero control inputs. The least-squares Koopman model is unstable

and drifts away, despite the fact that there should be no motion in the

absence of control. 216

10.9 Comparison of the experimental trajectories from the training data

to those obtained in simulation using DISKO. Instances are shown

every 2 seconds. The simulated trajectories are initiated with the

starting states of the experiments and forward-propagated with the

same control inputs that were applied in each run. The position of the

pusher is indicated with red and the center of the slider with purple.

In the predictions, the location of the pusher is known only as py, the

distance away from the center of the block along its pushing side; the

pusher is always assumed to be in contact with the block. To highlight

this difference, I do not plot a trajectory of the pusher, but show its

location only at the instants the block is drawn. 217

10.10 Control of the pusher-slider system using DISKO. Infinite-horizon LQR

control is used to push the block to the desired orientation, marked

with yellow border. The pusher and the center of the block are marked

30

with red and purple dots, respectively. Each row corresponds to one

experimental run and shows the trajectory, the tracking errors, and

the constructed candidate control-Lyapunov function that verifies

that the controlled system converges to the target. The candidate

control-Lyapunov function is V (Ψ(s)) = Ψ(s)TPΨ(s), where P is the

solution to the Lyapunov equation (10.14) using the stable Koopman

operator. 218

31

CHAPTER 1

Introduction

Dynamics of robotic systems are often unknown, high-dimensional, and highly nonlinear,

making real-time control challenging [5]. Further, systems are underactuated either

by design—in order to reduce actuator weight, expenses, or energy consumption—or

as a result of technical failures. Such challenges can destabilize optimization schemes

that either do not run in real time or rely heavily on knowing the exact model and

environmental parameters. As a result, to be successful, feedback policies need to exploit

the nonlinearities of the dynamics, be general enough for a broad class of systems, and be

able to learn or adapt online to unmodeled changes [6], as well as balance model accuracy

and computational efficiency. In this thesis, I present real-time algorithms that improve

both system identification and control of robotic systems.

To control systems with known dynamics, one can draw from many schemes, including

linear quadratic regulator (LQR) [7], linear model predictive control (LMPC) [8], nonlinear

model predictive control (NMPC) [9], feedback linearization [10], differential dynamic

programming (DDP) [11], and variants of the above [12,13]. Additional nonlinear control

techniques include steering methods using sinusoid controls [14], sequential actions of

Lie bracket sequences [15], backstepping [16, 17], perturbation methods [18], sliding

mode control (SMC) [19–21], intelligent control [22,23], and hybrid control [24]. The

aforementioned methods have limitations. LQR and LMPC remain accurate only near the

localization points; NMPC and DP are typically computationally expensive; backstepping

32

is generally ineffective in the presence of control limits; perturbation methods assume a

future of control decisions that do not take the disturbance history into account; SMC

methods suffer from chattering, which results in high energy consumption and instability

risks by virtue of exciting unmodeled high-frequency dynamics [25], intelligent control

methods are subject to data uncertainties [26], while other methods (e.g. feedback

linearization, steering methods) are often case-specific and will not hold for the level of

generality encountered in robotics.

Underactuated systems that are subject to nonintegrable differential constraints, termed

nonholonomic constraints, are particularly challenging in robotics [27]. Examples include

wheeled agents that are not allowed to skid (e.g., unicycle, differential drive, tricycle).

These systems are studied in terms of their controllability, which reveals all possible effects

that combined control inputs can have. As a result, controllability analytically answers

the existence of control solutions that can move a robot between arbitrary states in finite

time and is particularly useful for underactuated systems that are subject to velocity, but

not displacement, constraints.

A popular approach in controlling nonholonomic systems is piecewise constant motion

planning [28,29]. Lafferriere and Sussmann [29,30] extend the original dynamics with

fictitious action variables in the direction of the nested Lie brackets to determine a control

for the extended system. They first compute the time the system must flow along each

vector field, in a sequential manner, to accomplish a given motion of the extended system.

Then, using the Campbell-Baker-Hausdorff-Dynkin (CBHD) formula [31–33], they recover

the solution in terms of the original inputs of the system. On the other hand, piecewise

constant motion planning is model-specific, since the process changes for different number

33

of inputs. In addition, solutions involve a sequence of individual actions that generate

the Lie bracket motion and the actuation sequence grows increasingly larger for higher

order brackets. Compensating for the third-order error in the CBHD formula involves two

second-order Lie brackets and twenty successive individual inputs, each of infinitesimal

duration [34]. The sequence is described in detail by [29]. In practice, such actuation

becomes challenging as the number of switches grows. The theoretically infinitesimal

duration of each input may be hard to reproduce in hardware, while, in the face of

uncertainty and time-evolving trajectories, actuation consisting of a large sequence of

controls (e.g., of twenty actions) is likely to change once feedback is received.

Another popular approach is steering using sinusoids [14,15,35–38]. This method

applies sinusoidal control inputs of integrally related frequencies. States are sequentially

brought into the desired configuration in stages, while the rest of the states remain

invariant over a single cycle. This approach has been validated in generating motion of

an underactuated robot fish [39]. Steering using sinusoids suffers from the complicated

sequence of actions that grows as a function of the inputs involved. Moreover, besides

also being model-specific, the method addresses each state separately, meaning each state

gets controlled by its own periodic motion, requiring N periods for an N -dimensional

system, leading to slow convergence. Further, solutions focus on the final states (at the

end of each cycle) and not their time evolution, hence they may temporarily increase the

running cost (consider the car example of Fig. 7 in [14]). As with the method of piecewise

constant motion planning, when tracking a moving target, these factors also compromise

the performance of this approach.

34

Other trajectory generation techniques for controllable systems involve differential

flatness [40–44] and kinematic reduction [45–47]. Control based on differential flatness

uses outputs and their derivatives to determine control laws. However, as discussed in [48],

there is not an automatic procedure to discover whether flat outputs exist. Further,

differential flatness does not apply to all controllable systems and motion planning is

further complicated when control limits or obstacles are present [45].

Needle variation methods constitute a distinct approach to optimal control. Contrary

to optimal control algorithms that try to minimize a local approximation of the cost

function by iteratively searching in high-dimensional spaces, a computationally expensive

process, needle variation methods aim to reduce, not minimize, the objective. They avoid

the approximation of the value function, and instead exploit the time-evolving sensitivity of

the objective to infinitesimal switched dynamics to optimally perturb the default trajectory.

As a result, needle variation methods are less computationally expensive than methods

such as iLQR and other algorithms that expand the cost function to second order [49,50].

For example, while first-order needle variation controls compute the evolution of the state

and first-order costate equations via two n× 1 differential equations in each iteration, the

iLQR algorithm solves the Riccati equations to calculate a descent direction and, together

with the simulation of the state, it computes in total three n× 1 and one n× n differential

equations.

Needle variation methods exist globally, demonstrate a large region of attraction [2,51],

and have a less complicated representation on Lie Groups [51]. On the other hand, needle

variation methods based on the mode insertion gradient have so far been implemented only

as single-action feedback. As a result, control responses are discontinuous without filtering

35

realizable by hardware. Additionally, single-action controllers exhibit poor performance

near equilibrium and often switch to iLQR policies to ensure stability [2,3].

Sequential Action Control (SAC) [2] is a nonlinear controller based on needle variation

theory. SAC uses an analytical closed-form solution to synthesize control actions that

best improve the stated objective, contrary to other optimization schemes that iteratively

calculate optimal control actions to minimize a cost function [52,53]. As a consequence,

SAC obtain orders of magnitude improvements in computational speed over controllers such

as iLQG [13], while achieving comparable performance with less control effort [2]. These

traits render SAC well-suited for online tasks of high-dimensional and highly-nonlinear

robots. On the other hand, SAC is challenging to implement in hardware because its

feedback is discontinuous, it performs poorly near equilibrium, and can fail to find solutions

even for single tasks (i.e., diagonal displacement of vehicle-like systems).

In the first part of this thesis, I address the shortcomings of SAC and leverage needle

variation methods to create a computationally efficient nonlinear controller that has

controllability-based convergence guarantees for known dynamics. First, in Chapter 3, I

demonstrate empirically that SAC is able to reject unknown drift intensities and directions

[2, 54, 55] and produces comparable trajectories to alternative trajectory optimization

methods using less control effort and resulting in better objective cost. In Chapter 4, I

establish a mathematical relationship between the solution of gradient descent and SAC.

By proving that the mode insertion gradient provides a descent direction for the entire

time horizon, I construct a continuous feedback synthesis scheme out of the single-action

solution, referred to as Needle Variation Controller (NVC). The proposed algorithm is

a generalization of all first-order control solutions and, under certain parameter choices,

36

matches the solution of conjugate gradient descent. NVC relates SAC to gradient descent

and, by showing that the entire curves of SAC solutions can be implemented for control,

I allow the discontinuous, hard-to-implement SAC solutions to be applied as smooth

feedback that is more actuator-friendly, and without losing the convergence guarantees.

Further, by relating SAC to gradient descent, I bridge the gap from sequential action

control to traditional control policies and show the potential for other feedback policies to

be implemented in a single-action fashion. Using NVC, I successfully control a bipedal

walker and show that the proposed controller readily adapts to hybrid systems. Without

using gait specific parameters, NVC performs gait initialization, establishes a quasi-periodic

gait cycle, and is robust to force disturbances.

Last, in Chapter 5, I augment SAC with second-order needle variations, termed mode

insertion hessian (MIH), to overcome control singularities and improve the convergence

rate. I relate the MIH expression to controllability analysis by revealing its underlying Lie

bracket structure and present a second-order Sequential Action Controller that guarantees

control solutions for the entire class of systems that are controllable with first-order Lie

brackets. For classically studied systems, such as the differential drive cart, this amounts

to being able to guarantee that the control approach is globally certain to provide descent

at every state. As a consequence, provided that the objective is convex with respect to the

state (in the unconstrained sense), second-order SAC provably guarantees that the robot

reaches the target in a collision-free manner in the presence of (moving) obstacles without

relying on predefined trajectories. I demonstrate the efficacy of the algorithm on various

systems, including a differential drive vehicle and an underactuated dynamic model of an

underwater vehicle. These studies conclude Part 1 of the thesis.

37

Robot dynamics are often unknown or stochastic (e.g., Sphero SPRK [56], soft robotics

[57,58]) and environments that are complex or changing (such as sand [59–61] or water

[62–65]) are hard to model accurately. In the face of such uncertainty, robotic applications

often fail due to poor prediction and control. For this reason, system identification methods

are used to develop or adapt a model from data [66–71].

Recent data-driven efforts in robotics have focused on Koopman operators [72]. Koop-

man operators are linear embeddings of nonlinear systems that evolve functions of the

states without loss of accuracy [73–76]. In general, linear representations are often desir-

able because they admit closed-form solutions, simplify modeling, and are general enough

to be useful in many applications (e.g. Kalman filters). Further, there are well-established

tools for the analysis (e.g. investigating properties of a system, such as stability and

dissipativity), prediction, estimation, and control of linear systems [77]. Further, linear

dynamical systems can be learned in a self-supervised manner and naturally arise in many

areas of machine learning and time series modeling with several active research applications,

such as dynamic texture classification [4,78] and video action recognition [79,80].

In robotics, Koopman operators have gained attention for the purposes of both system

identification [81] and real-time nonlinear control [76], as they can help address both the

difficulty with nonlinearity and the need to incorporate data in the model [81–83]. The

linear representation allows one to control the nonlinear system using tools from linear

optimal control [73, 84], which is often easier and faster to implement than nonlinear

methods, thus enabling online feedback for high-dimensional nonlinear systems. Beyond the

computational speed and the reduction in feedback complexity, the linear representation-

based control could lead to better performance compared to a controller that is based

38

on the original nonlinear system [85, 86]. However, with few exceptions [85, 87, 88],

Koopman operators are typically infinite-dimensional and studies seek finite-dimensional

approximations to Koopman operators that still capture the dynamics with high fidelity

using methods such as the Dynamic Mode Decomposition (DMD) [89], extended DMD

(EDMD) [82,90], Hankel-DMD [91], or closed-form solutions [92,93].

In the trade-off between the dimensionality and the modeling accuracy of the linear

representation, these studies face the challenge of finding the minimum number and choice

of basis functions for the desired accuracy [94]. There has not been a systematic way

to select basis functions for approximate Koopman models of general nonlinear systems;

rather, most efforts rely on trial-and-error [57,95–99] and machine learning tools [94,100],

or are system-specific [81]. Furthermore, there is no available method to analyze the

predictive accuracy of the finite-dimensional Koopman operators for general nonlinear

systems. In light of this, Chapter 8 presents a generalizable methodology for choosing

Koopman basis functions and analyzes the model accuracy with error bounds [101]. The

proposed method constructs the basis functions for the Koopman operator using higher-

order derivatives of the nonlinear dynamics, which need not be known; only the derivatives

of the tracked states must be available. The error bounds, which depend on the prediction

time horizon and the magnitude of the derivatives, can be used to determine the basis

functions for the desired level of model accuracy. This is the first work that selects basis

functions using a systematic methodology and provides an error bound on the accuracy

of a Koopman representation for general nonlinear dynamics. The proposed data-driven

modeling approach is validated with simulation and experimental results on the control

39

of a tail-actuated robotic fish. Updating the dynamical model in real time significantly

improves the performance of Koopman-LQR in the presence of unknown fluid disturbance.

When learning representations from data, it is important to generate models that

generalize beyond the training data and remain accurate for long predictions. To do so,

data-driven models need to have the same properties (e.g. symmetry) as the underlying

dynamics. However, when learning representations from data, side information and

knowledge of the modeled dynamics have typically not been leveraged to improve the

models. Koopman-based efforts, in particular, have relied on black-box optimization

tools that return best-fitting models without regard for their properties. As a result,

research efforts have overlooked whether the properties of the learned model are consistent

with those of the original system. Stability is an especially important feature of linear

representations. It describes the long-term behavior of a system and is critical both for

numerical computations to converge and to accurately represent the true properties of many

physical systems. However, it is often overlooked and the learned linear representation

may be unstable even when the underlying system is stable [102]. For example, work

in [90] makes assumptions on the stability of the underlying nonlinear dynamics—i.e., the

system has a single attractor that is (asymptotically) stable—but does not enforce similar

constraints on the learned model. As a result, stable nonlinear dynamics are sometimes

represented by Koopman operators that are unstable, due to noise, poor quality (e.g.,

sparse or highly-correlated) measurements, or even limitations of the learning schemes

used [103–105]. Needless to say, when the stability properties of the underlying system

and the learned model do not match, the Koopman-based evolution of the states diverges

exponentially from the true solution.

40

Chapter 9 presents an algorithm, called SOC, for learning stable LDSs for prediction

and control. SOC is provably more memory efficient than competing alternatives, with an

O(n2) space complexity—n being the state dimension—compared to O(n4). In addition,

SOC returns a stable LDS even after one single iteration, which can be crucial in online

applications and time-sensitive tasks where obtaining a stable state-transition matrix

as early in the optimization process as possible becomes of central importance. The

performance of SOC is demonstrated on learning dynamic textures from videos, as well as

learning and controlling (in simulation and experiment) the Franka Emika Panda robotic

arm [106]. When compared to the current top-performing models, a constraint generation

(CG) [4] and a weighted least squares (WLS) [107] approach, SOC achieves an orders-

of-magnitude lower reconstruction error, robustness even in low-resource settings, and

better control performance. Notably, SOC is the first that tests the control performance

of stable LDS; CG has been formulated but not evaluated for control tasks and it is not

straightforward that WLS can be implemented for such applications.

Chapter 10 uses the SOC algorithm for the data-driven identification of stable Koopman

operators (DISKO) for the purposes of predictions that remain numerically stable and

accurate over long time horizons as well as improving control performance, especially in

the low-data limit. Specifically, it derives the prediction error induced by Koopman models

over an arbitrary number of time steps (a result that is used to show the need for stable

operators); it provides conditions for choosing Koopman basis functions that are consistent

with the stability properties of the underlying nonlinear system and which can improve

data-driven learning; and it presents a method to construct candidate control-Lyapunov

functions for nonlinear dynamics, which are used to verify stabilizing controllers. The

41

benefits of DISKO are demonstrated with simulation and experimental results on various

systems, including a quadrotor in free-fall and a pusher-slider system.

42

Part 1

Model-Based Control with

Controllability-Based Convergence

Guarantees

43

CHAPTER 2

Background

This chapter reviews Sequential Action Control (SAC), which is the pillar upon which

Part 1 of this thesis is developed. SAC is a model-based controller for control-affine

nonlinear systems that is based on the theory of needle variations. Chapter 3 demonstrates

empirically the ability of SAC for disturbance rejection and Chapter 4 relates SAC

to Gradient Descent. Last, Chapters 5 and 6 augment SAC with second-order needle

variations and provide explicit controllability-based guarantees for convergence and collision

avoidance.

2.1. Needle Variation Control Methods

Consider a system with state x : R 7→ RN and control u : R 7→ RM×1 with control-

affine dynamics of the form

ẋ(t) = f(x(t),u(t)) = g(x(t)) + h(x(t))u(t),(2.1)

44

where g(x(t)) is the drift vector field. Needle variation methods consider a time period

[to, tf] and switched control modes described by

ẋ(t) =

f1, to ≤ t < τ − λ
2

f2, τ − λ
2 ≤ t < τ + λ

2

f1, τ + λ
2 ≤ t ≤ tf ,

(2.2)

where f1 and f2 are dynamics associated with default and inserted control v(t) and u(t),

respectively, and defined as

f1 , f(x(t), v(t))

f2 , f(x(t),u(τ)).

Parameters τ and λ are the switching time between the two modes and the (infinitesimal)

duration of the inserted dynamics f2. Note that the default control v(t) is the actuation

for the nominal trajectory—v(t) could itself be the result of a different controller—which

is then improved by the insertion of a new control vector u(t) creating a switched mode

f2. In addition, while the default control v(t) of the switched mode sequence in (2)

may be time-dependent, the dynamics f2 have control u(τ) that has a fixed value over

[τ − λ
2 , τ + λ

2]. Dynamics of the form (2.2) appear in optimal control of hybrid systems to

optimize the time scheduling of a priori known modes [108], but single-action feedback

schemes use them to obtain a new control mode that will optimally perturb the trajectory

of any type of system with a needle action.

45

Needle variation methods consider objectives that have typically been control-independent

of the form1

J(s(t)) =
∫ tf

to
`(s(t)) dt+m(s(tf)).(2.3)

and use the first-order sensitivity of the cost function to infinitesimal applications of

inserted control (called the mode insertion gradient (MIG) in the hybrid systems literature

[110, 111]). For simplicity, the arguments are dropped as necessary in the following

analysis. The mode insertion gradient for control-independent costs, derived in [108], is

dJ

dλ+
= ρT (f2 − f1),(2.4)

where the elements of ρ : R 7→ RN are the first-order adjoint states (costates), which are

calculated from the default trajectory via

ρ̇ = −Ds`
T −Dsf

T
1 ρ

subject to: ρ(tf) = Dsm(s(tf))
T .

(2.5)

The subscript λ+ indicates that derivative is considered after evaluating the limit λ→ 0.

Note that, in practice, the applied control will have finite duration. Due to continuity,

however, the first-order sensitivity of the cost to inserted control will be similar to the

1While the objective for needle variation controls has typically not included a control term, doing so is
straightforward and yields similar performance. Work in [2,109] has considered objectives with control
terms, and one can recompute the mode insertion gradient and mode insertion Hessian assuming the
objective depends on u [109] without impacting any of the rest of the approach.

46

time

state

control

τ

λ

Figure 2.1. A fixed-value perturbation in the nominal control, introduced at time
τ and with duration λ, and the associated variation in the state. In the limit
λ→ 0, the control perturbation becomes a needle variation.

MIG value (e.g., remain negative, if the MIG (2.4) is negative) in a neighborhood around

λ = 0. For more details, refer to [2].

2.2. Sequential Action Control (SAC)

SAC, introduced in [2], is a needle-variation based closed-loop control algorithm. It

considers two modes, v(t) and u(τ), associated with default and optimal dynamics f1 and

f2, respectively and, over the course of each horizon [to, tf], it injects optimal dynamics f2

for infinitesimal duration. That is, the algorithm switches from the default mode f1 to the

optimal action mode f2 and back to f1.

More specifically, during each cycle SAC forward simulates the dynamics of the system

along a user-specified time horizon T . Then, it uses the MIG to compute a closed-form

analytical expression of an optimal action that minimizes the MIG (not the objective

47

function) with respect to an infinitesimal application of f2, that is

u∗(t) =min
u(t)

1
2(

dJ

dλ+
(t)− αd)2 +

1
2‖u(t)‖

2
R

=(Λ +RT)−1[Λu1(t) + αdh(t)
Tρ(t)],

(2.6)

where Λ , h(t)Tρ(t)ρ(t)Th(t) � 0 and αd ∈ R− expresses the (desired) first-order cost

sensitivity (MIG) to the injected dynamics. Typically, αd = −γJ where γ ∈ R+. Although

αd changes across iterations, it remains constant throughout [to, tf] of any individual

control update.

The optimal control curve u∗(t) in (2.6) returns the optimal control value as a function

of time and enables SAC to compute the most effective time to act, i.e., one that minimizes

the MIG while penalizing also control effort and the cost of waiting:

τ = min
t
‖u(t)‖+ dJ

dλ+i
(t) + (t− to)β.(2.7)

Last, SAC considers finite controls that could improve the objective more than infini-

tesimal actions. Starting with an initial finite duration λ centered at τ , SAC iteratively

reduces the duration via a backtracking line search until the objective improvement is

above a specified value. SAC controls exist and are unique, as they are solutions to

Tikhonov regularization problems [2]. A visual overview of SAC is presented in Fig. 2.2.

The algorithm successively, every ts seconds, performs the set of computations presented

in Algorithm I.

The results in [2] show that SAC is promising for on-line optimization problems.

Additionally, SAC is computationally very efficient, as it computes an analytical solution

2tcurr = i× ts

48

Figure 2.2. The algorithmic steps of SAC. Using default control, the state and
costate variables are forward simulated in time. The optimal control response
is computed from a closed-form analytical expression and saturated. In the last
step, the application time of a single inserted action is chosen to correspond to a
negative MIG.

Algorithm I Sequential Action Control
1: Simulate dynamics f1 for t ∈ (tcurr, tcurr + T)2

2: Compute initial tracking cost Jinit,i from equation (2.3)
3: Analytically compute optimal control curve u∗(t)
4: Search for optimal time τi to enact infinitesimal control u(τi) from equation (2.7)
5: Saturate control
6: Perform line search to specify control duration λi, centered at τi : (τi − λi

2 , τi + λi
2)

to a non-linear optimal control problem. As a result, it avoids the large computational cost

involved in solving the n×n+n
2 Riccati differential equations used by open-loop optimal

control approaches for Rn-state systems. Further, it readily imposes control constraints,

and can avoid local solutions at which SQP algorithms stop prematurely (see [2]).

49

The computational cost for systems with multidimensional state and control space

renders some optimization methods too slow to incorporate feedback and perform in real

time. The speed of the algorithm and its ability to scale better with respect to state and

control dimensions are the reasons to consider SAC appropriate for real-time applications.

50

CHAPTER 3

Empirical Disturbance Rejection of SAC for Unmodeled Fluid

Flow

This chapter uses Sequential Action Control (SAC) for fast trajectory-tracking tasks in

the presence of fluid drift. Through the benchmark example of the dynamic car, it is shown

that SAC outperforms a traditional offline projection - based optimization technique in

terms of control effort and objective cost. Motivated by recent work on effort-efficient, sight-

independent weakly electric fish, this chapter also shows that SAC successfully provides

control-optimal dynamics to perform short-range underwater maneuvers. Simulation

results highlight SAC’s empirical robustness to different drift intensities and added mass

properties, even when the effective fluid drift is not included in the controller’s model.

3.1. Simulation Results

In this chapter, I investigate applications of SAC on systems with drift. The goal is to

illustrate the algorithm’s ability to track trajectories:

– in non-dynamic/fluid environments

– underwater, in the presence of drift

– using dynamics with added mass in fluid.

The systems I consider are the 2D model of the dynamic car and an underwater model with

the same dynamics and added mass parameters from the electric fish (dynamic fish-robot).

51

Desired Trajectory

No Flow
With Flow

-6 -4 -2 2 4 6
x (m)

-6

-4

-2

2

4

6
y (m)

Figure 3.1. A parametric plot of SAC-computed trajectories on tracking the
desired trajectory (dotted line) using the dynamic car dynamics at a control
sequencing frequency of 20 Hz. The performance of the control is tested against
no drift and drift of -1 m/s x̂. Although the time horizon used for the simulations
is extremely short (T = 1 s), the performance of SAC remains largely unaffected
by the presence of flow.

These examples showcase SAC’s general ability to track trajectories in environments

with fluid flow and, more specifically, control the kinematics of the actual systems. The

kinematic model of the car tests the general trajectory - tracking ability of SAC in fluid

environments. Application on the dynamic fish-robot serves as a stepping stone for

ultimately testing SAC on a robotic fish system [112,113].

Both examples present the same trajectory - tracking task with and without fluid drift.

The results of the two cases are compared to show the effect of fluid environments on SAC.

Underwater dynamics are simplified to constant fluid velocity drift in the system’s state.

To model the effect of drift, different intensities of fluid flow are used in both systems.

52

X[t] Desired
Y[t] Desired
X[t] No Flow
Y[t] No Flow
X[t] With (Unknown) Flow

Y[t] With (Unknown) Flow

0 5 10 15 20

-400

-200

0

200

400

Time (s)

P
os
iti
on
S
ta
te
s
(c
m
)

Figure 3.2. The SAC algorithm tests the dynamic car system on tracking the
reference (gray) signal in two ways. On the first (blue) run, SAC is tested in a
non-fluid environment and on the second run (red) in a fluid environment with
-1 m/s x̂ flow. The simulation uses non-fluid dynamics (absence of drift effects)
in both cases–that is, the controller does not know there is fluid drift on the
second run. Dotted lines show the x-coordinates and solid ones the y- ones. The
reference signal is marked with gray, the neutral-environment test with blue and
the underwater one with red.

3.1.1. Dynamic Car

The dynamic car is a well studied example often used in the literature to measure tracking

performance of optimization algorithms [114,115]. In this subsection, SAC is tested on

the 2D underactuated model of the dynamic car with state s = (x, y, v, θ, θ̇)T , where v

is the forward velocity of the car in the body frame, and control input u = (uD,uT)T –

53

drive and turn, respectively. The dynamics are modeled as

f(s,u) =

v · cosθ+ ẋw

v · sinθ+ ẏw

uD − η1 · v

θ̇

uT − η2 · θ̇

,(3.1)

where ẋw and ẏw represents the fluid drift in the x- and y- world frame axes and η1 =

0.01 1/s and η2 = 0.03 1/s represent linear and rotational damping coefficients. In this

example, SAC is applied to track the following desired trajectory:

sd(t) = (5 · sin t4, 5 · sin t2, 0, π2 , 0)T .(3.2)

The parameters used in the simulations are ts=0.05 s, T=1 s,ẋw = -1.0 m/s, ẏw = 0,

Q=Diag[100,100,1/1000,0,1/100], P1=Diag[0, 0, 0, 0, 0], R = Diag[10−8, 10−8]. The

system starts from initial conditions s0 = (0, 0, 0, 0, 0)T and the control remains constrained

within the following limits: (uD ∈ [−10,+10] m/s2, uT ∈ [−30,+30] rad/s2).

The results of the simulation are presented in Fig. 3.1. The dynamic car stays within

a couple centimeters of the desired trajectory, both in the absence and presence of fluid

drift. In this benchmark example, fluid drift does not have a significant effect on tracking

performance, despite the short time horizon used. Even though fluid dynamics have been

simplified with constant velocity drift, SAC stays largely unaffected in its performance

and is able to turn and drive the car to follow this changing track. The algorithm is also

54

(a) Tracking error performance of SAC and Trajec-
tory Optimization on the task of reaching a station-
ary nearby target.

(b) Controls produced by SAC and Trajectory Opti-
mization on the task of reaching a stationary nearby
target.

Figure 3.3. SAC and the projection-based trajectory optimization scheme are
tested on reaching a nearby target at (x,y) = (5 m, 5 m), starting from s0 =
[0, 0, 0, 0, 0] and using the dynamic car dynamics in the presence of a -1.0 m/s x̂
drift. As shown in the left figure, SAC satisfies saturation limits and exhibits better
station keeping performance by remaining closer to the target (zoomed image).
SAC outperforms Trajectory Optimization also in terms of the control efforts,
which are measured by integrating control actions over application time:

∫ tf
t0 u(t)dt.

Throughout the ten seconds of simulation, SAC uses 26.71 m/s2· s and Trajectory
Optimization uses 41.35 m/s2· s. After the first two seconds, the integrated errors
are 26.3 cm and 65.6 cm and the controls used are 3.63 m/s2· s and 4.41 m/s2· s
for SAC and Trajectory Optimization, respectively. Control saturations used
in SAC keep controls below 10 m/s2, better resembling experimental actuation
constraints.

compared to a projection-based trajectory optimization method on the task of reaching a

nearby location. As Fig. 3.3 shows, SAC is able to decrease the objective (distance to the

target) with less control and better final error, despite the saturation limits applied on

control.

The ability of SAC to perform well with fluid drift inspired further work. Specifically,

the authors tested whether SAC could apply optimal corrective control, without knowledge

of the existing drift effects. In simulation, SAC is tested in the context of two dynamics,

the non-fluid fnf and the fluid freal. Dynamics fnf are the dynamics of the car f in

55

the absence of drift (ẋ = ẏ = 0), whereas dynamics freal are the actual dynamics of the

environment (ẋ = −1.0 m/s, ẏ = 0). In this way, SAC performs its computations, and

applies control using fnf . The actual progression of the system states, however, occurs

using freal and the control that is computed for fnf . The results presented in Fig. 3.2 show

that SAC performance does not significantly deteriorate “underwater” without knowledge

of the true fluid dynamics. The controller tracks the desired y-state accurately, while the

x-state is only slightly off throughout the simulation. As the figure shows, the car oscillates

back and forth over the reference target in the non-fluid test (blue curves) due to control

overshoot. This effect arises because of the very short time horizon that does not allow the

controller to know the desired trajectory well in advance. A second simulation with twice

the time horizon duration (T = 2 s) showed reductions in the oscillations around these

reference x-state. Yet the results of Fig. 3.2 describe a more realistic scenario, in which

the controller has limited information about the controller’s future motion and becomes

more reactive than predictive.

3.1.2. Dynamic Fish-Robot

Through the benchmark example of the dynamic car, SAC is shown to be capable of

trajectory - tracking in the presence of fluid drift, whether or not it has any knowledge of

the actual fluid dynamics. Its computational speed and empirical disturbance rejection

(evident in the results presented) are reasons to believe SAC can appropriately control

underwater vehicles in real-time. Fish in general, and the weakly electric fish more

specifically, are promising candidate system for underwater dynamical models in cluttered,

56

dirty environments [1,112,116–118]. For this reason, this is the second system on which

SAC is tested.

The weakly electric fish black ghost knifefish Apteronotus albifrons lives in dirty,

turbulent waters and provides science with an example of optimal underwater motion

[1, 117]. Its ability to navigate has already been studied and shown to be optimal in

prey-tracking scenarios [1], providing a potentially useful design model for future AUVs.

Its ability to navigate in turbid water sensing by way of a self-generated electric field

drew the attention of the scientific world which saw a model of how to extend underwater

expeditions to low-visibility areas. As described in [119] and [120], the weakly electric fish

use active electrosense to map its surroundings and catch its prey. It continually generates

an oscillating electric field and, through thousands of electric sensors placed throughout

its body, can sense the presence of objects around it. Objects that do not share the same

conductivity as water and perturb the self-generated electric field of the fish cause voltage

changes at the sensors that are processed by the animal.

The dynamics of the underactuated electric fish are derived from Euler-Lagrange (EL)

equations equivalent to Kirchhoff’s equations [1]. With state s = (x, y, θ, ẋ, ẏ, θ̇)T expressed

in the world frame, and control input u = (uD,uT)T – drive and turn, respectively – in

the body frame, the model incorporates damping and control input in the body - frame

and fluid drift in the world frame. Specifically, the fish is modeled as a rigid body with

a generalized inertia matrix I = Diag[m1,m2,m3, j1, j2, j3] and body-frame velocity Vb

given in terms of Gwb(x, y, θ) (the transformation from the world to the body - frame)

and R(θ) (the rotation matrix):1

1The ∨ operation on a 4x4 matrix is defined as G∨ = (G14,G24,G34,G32,G13,G21), with Gij defining
the element of G in the i-th row, j-th column; ṗ = (ẋ, ẏ, ż)T .

57

(a) A success/failure map of nearby targets for the
dynamic fish-robot. All targets are successfully
reached within ten seconds of simulation time.

(b) Target locations are color-coded based on the
simulation time it takes the dynamic robot-fish
to reach them. Targets lying ahead (+x̂) or be-
hind (-x̂) the system are reached the fastest. The
asymmetry around the y-axis origin is due to the
+0.1 m/s ŷ drift.

Figure 3.4. A map of target locations posed to the dynamic robot-fish system in
the presence of +0.1 m/s ŷ drift. Two hundred targets are randomly generated
from a sample space of (x, y) = (1 m, 1 m) using Monte Carlo sampling. Success
is defined by whether the robot-fish, always starting from an initial state of
s0 = [0, 0, 0, 0, 0, 0]T , is at the end of the simulation (10 seconds) within 2 cm of
the target, equal to half the longest dimension of the electric fish [1]. The only
concern of the task is to approach the nearby targets and so zero weight is applied
on the orientation θ of the system.

Vb = (G−1
wb · Ġwb)

∨ =

RT ṗ
ω

,

R(θ) =

cos(θ) −sin(θ) 0

sin(θ) cos(θ) 0

0 0 1

, Gwb(x, y, θ) =

x

R y

0

0 0 0 1

.

58

(a) A parametric plot of SAC-produced trajecto-
ries.

(b) Tracking error in the x-y states.

Figure 3.5. SAC is applied on the dynamic fish-robot model to track the desired
trajectory at a control sequencing frequency of 20 Hz. The performance of the
controller is tested against no drift and drift of +0.1 m/s ŷ. The computed
trajectories are plotted against the reference signal. Although the time horizon
used for the simulations is extremely short (T = 1 s), the performance of SAC
remains largely unaffected by the presence of flow.

The generalized inertia matrix I uses information about the physical limitations of

motion and restorative forces in underwater environment. Parameters m1,m2,m3 describe

the added mass matrix (due to the volume of fluid accelerated by translations of the fish)

and parameters j1, j2, j3 refer to the added moment of inertia matrix (due to the volume

of fluid accelerated by rotations). The values used are (m1,m2,m3) = (6.04, 17.31, 8.39) g,

(j1, j2, j3) = (1.57, 27.78, 54.11) g cm2 found in [1].

Assuming the body lies on a 2D plane, its potential energy (PE) is constant and its

KE = 1
2V

T
b IVb (invariant across transformations). The Lagrangian of the system is L ,

KE - PE, the EL differential equations are:

∂L

∂qi
− d

dt

∂L

∂ṡi
= Fext, for i = 1, 2, 3,(3.3a)

59

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

X drift (m/s)

Y
D
rif
t
(m

/s
)

Error (m)

0.02

0.06

0.10

0.14

(a) Tracking error throughout simulation. The
white region corresponds to large errors, not visi-
ble in the bar legend.

-0.15 -0.10 -0.05 0.00 0.05 0.10 0.15
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

X drift (m/s)

Y
D
rif
t
(m

/s
)

Error (m)

0.0045

0.0055

0.0065

0.0075

0.0085

(b) Steady-state tracking error, as measured after
the first five seconds of simulation.

Figure 3.6. A contour plot on the effect of fluid drift intensity on trajectory -
tracking performance for the dynamic system. The maps plot performance error
as a function of fluid drift intensity (in both the x- and y- direction) and are
generated from interpolating data for drift ∈ (-0.15, 0.15) m/s sampled in steps of
0.05 m/s. Performance error is calculated as the integrated distance (in m) away
from the desired trajectory throughout the simulation period (20 seconds). The
majority of the error occurs in the first five seconds, until the controller catches
up with the target. The right figure shows the error between 5-20 seconds. The
desired trajectory is provided in 3.4 and has a total arc length of 1.52 m over the
simulation period.

where

Fext = R(θ) ·

uD +D1

D2

uT +D3

,(3.3b)

where D1,D2,D3 are the damping forces. The rotation matrix in equation (3.3) is used

to convert the forces of damping and control in the body-frame. Solving equation (3.3)

yields ẍ, ÿ, θ̈. Water drift ẋw, ẏw is added to the measured state - velocities ẋ, ẏ.

60

First, SAC is tested on reaching nearby targets in the presence of +0.1 m/s ŷ drift.

The results, presented in Fig. 3.4, show that SAC reaches all randomized targets. These

results highlight the maneuverability of the dynamic robot-fish dynamics, which SAC

can efficiently handle. The parameters used in the simulation are ts = 0.05 s, T =

1 s, Q = Diag[1000, 1000, 0, 0.01, 0.01, 0.01], P1 = Diag[10000, 10000, 0, 1, 1, 1],

R = Diag[10−3, 10−6]. SAC is further applied on tracking the following desired trajectory

for 20 seconds, with and without flow:

sd(t) = (0.2 · cos[t4 −
π

2], 0.2 + 0.2 · sin[t4 −
π

2], 0, 0, 0, 0)T .

Starting from s0 = (0, 0, 0, 0, 0, 0)T , SAC uses ts = 0.05 s, T = 1 s, Q = Diag[1000,

1000, 0, 0.01, 0.01, 0.01], P1 = Diag[10000, 10000, 0, 1, 1, 1], R = Diag[10−3, 10−6], and

saturation constraints of 1 N on both control inputs. Simulation results are presented in

Fig. 3.5. Not only does SAC successfully track the desired trajectory using the electric

fish dynamics, but it also does reasonably well in the presence of fluid drift. The resulting

underwater motion (with drift) is less smooth compared to the motion without drift, but

is not worse in terms of the objective which is tracking the reference signal. Last, SAC is

tested on the following trajectory - tracking task for a set of different fluid flow direction

and intensities:

sd(t) = (0.2 · sin t

4, 0.2 · sin t

2, 0, 0, 0, 0)T .(3.4)

Results are presented in Fig. 3.6 and show that SAC’s ability to track the desired trajectory

is empirically robust to different fluid intensities. While these simulation results cannot

guarantee SAC’s success tracking trajectories underwater in general, they suggest that

61

SAC can be used for underwater tracking using the model of the knifefish and provides a

promising basis for further exploration.

3.2. Discussion

This chapter presents the ability of SAC to perform trajectory-tracking tasks in the

presence of fluid drift. Because underwater environments are difficult to model accurately,

several optimization schemes involve approximations in their models. Due to being offline

or having a high computational cost, such schemes do not seem good candidates for

real-time problems. On the other hand, the application results of this chapter show SAC

to be a control-efficient solution that empirically rejects fluid drift disturbance, without

sacrificing tracking performance. Hence, SAC seems a reasonable alternative for underwater

trajectory-tracking. On the other hand, Sequential Action Control generates discontinuous

feedback that may be challenging (or infeasible) for actuators. In Chapter 4, I show how

one can use the solution of Sequential Action Control to generate smooth feedback that

can provably decrease the cost function.

62

CHAPTER 4

Relationship of SAC to Gradient Descent and Smooth Control

Synthesis

This chapter proves that the mode insertion gradient (MIG), traditionally used in

hybrid systems for optimal mode scheduling, provides a descent direction over the entire

time horizon. This result allows us to construct first-order needle-variation based controllers

for general nonlinear systems that synthesize continuous control responses from the MIG,

maintaining the benefits of needle variation methods, such as high computational efficiency

and a large region of attraction. The proposed algorithm of needle-variation based

continuous (NVC) feedback is a generalization of all possible first-order algorithms and,

for specific parameters, it is shown to match the conjugate gradient descent algorithm.

As a second result of this chapter, the proposed control solution guarantees descent even

when subject to arbitrary scaling (that can differ both across different inputs and over

time) as long as it maintains the sign of each input. The benefits of NVC are showcased

in simulations of a three-link biped that demonstrates successful gait initiation, walking,

and disturbance tolerance.

4.1. Descent Direction of Needle-Variation-Based Continuous Control

In hybrid systems literature, the mode insertion gradient (MIG) is the first-order

sensitivity of the objective to an infinitesimal perturbation of the default control. Feedback

controllers that use needle variation methods, such as Sequential Action Control [2],

63

construct control responses that correspond to a negative MIG. The resulting solution

is itself a function of time and returns the optimal infinitesimal input perturbation at

an application time. In this chapter, I show that the mode insertion gradient, and by

extension the solutions of first-order single-action controllers [2,3], is a descent direction for

the control over the entire time horizon. As a result, one can apply the control curve and

avoid the sparse implementation of single-action feedback schemes. This is an alternative

implementation that updates all the control values over the time horizon, similar to linear

quadratic methods, but with less computation. The analysis of this chapter rests on

definitions and assumptions that are defined next.

4.1.1. Assumptions

Definition 1. A trajectory that is the local minimizer is given by a pair (x∗,u∗) if

and only if the pair satisfies the optimality conditions posed by Pontryagin’s Maximum

principle:

∂H

∂ρ
=

d

dt
s(t)

∂H

∂s
= − d

dt
ρ(t)

∂H

∂u
= 0,(4.1)

where H, the Hamiltonian function, is defined as

H , L(s(t),u(t), t) + ρT (t)f(s(t),u(t), t).

Assumption 1. The vector elements of dynamics f1 and f2 are real, bounded, C1 in

x, and C0 in u and t.

64

Assumption 2. The incremental cost `(·) and the terminal cost m(·) are real, bounded,

and C1 in x.

Assumption 3. Default and inserted controls v and u are real, bounded, and C0 in t.

There are two variants of single-action policies, SAC and iterative SAC (iSAC), with

slightly different control policies. In the analysis that follows, I examine the properties of

both algorithms.

4.1.2. Feedback Policy of Sequential Action Control

Let v(t) be the default control and w(t) be the control perturbation vector, such that

u(t) = v(t) +w(t).(4.2)

For ease of comparison, I also express the SAC solution in terms of the nominal vector

and a perturbation,

u(t) = argmin
u

1
2(

dJ

dλ+
− αd)2 +

1
2‖u‖

2
R

= v(t)− (Λ +R)−1(Rv(t)− αdhTρ(t)),

such that

w(t) = −(Λ +R)−1(Rv(t)− αdhTρ(t))(4.3)

65

4.1.3. Feedback Policy of Iterative Sequential Action Control

To show that the control solution of Sequential Action Control is a descent direction over

the entire time horizon, I use the slightly modified control solution of iterative Sequential

Action Control (iSAC) [3], a variation of SAC with conditions on stability.

Work in [3] uses αd as the desired sensitivity and computes controls given by

u(t) = argmin
u

1
2(

dJ

dλ+
− αd)2 +

1
2‖u− v‖

2
R

= v(t) + αd(Λ +R)−1hT (t)ρ(t),(4.4)

where Λ , h(t)Tρ(t)ρ(t)Th(t) � 0 as in (2.6). The first term in (4.4) drives the MIG to

a desired negative sensitivity (αd), while the second term penalizes large deviations from

the nominal control. Given (4.2), the control update becomes

w(t) = αd(Λ +R)−1hT (t)ρ(t).(4.5)

Note that the only difference between the control solution of iSAC (4.4) and SAC (2.6)

is that iSAC penalizes the deviation from the nominal control ‖|u(t)− v(t)‖2R, where

SAC penalizes the magnitude of the applied control ‖u(t)‖2R. The two solutions become

identical if the nominal control is zero.

4.1.4. Proofs of Descent for MIG-based Continuous Feedback

This subsection proves that the control solution of iSAC is a descent direction over the

entire time horizon. Further, it proves that the descent direction remains a direction when

scaled in arbitrary ways.

66

Proposition 1. Consider systems with state s and control u and an objective given

by (2.3). Then, the control policy given by (4.5) is a descent direction for all t ∈ [to, tf].

Further, if there exists t ∈ [to, tf] for which the MIG is negative, then the feedback policy in

(4.5) will decrease the cost. Moreover, this feedback policy converges to the local minimizer

trajectory, as stated in Definition 1.

Proof. Using a first-order Taylor expansion, I write

J(v(t) +w(t)) ≈ J(v(t)) +
∂J

∂u(t)

∣∣∣∣
v(t)
·w(t).(4.6)

For objectives of the form in (2.3), I use the Gâteaux derivative to calculate the gradient

of the cost with respect to the control

d

dε
J(v(t) + εw(t))

∣∣∣∣
ε=0

=
∫ tf

to
ρ(t)Th(t) ·w(t) dt.(4.7)

From (4.6) and (4.7), the first-order change in cost can be approximated with

∆J ≈
∫ tf

to
ρT (t)h(t) ·w(t)dt.(4.8)

Equivalently, using the expression of the MIG (2.4) for control-affine dynamics (8.21),

dJ

dλ+
=ρT (f2 − f1)

=ρT (g+ hu− g− hv)

=ρTh(u− v)

=ρThw,

67

such that, using (4.2), I can write

∆J ≈
∫ tf

to

dJ

dλ+
dt,

which, with the update of (4.5) and given that αd < 0, becomes

∆J ≈
∫ tf

to
αd‖ρT (t)h(t)‖2(Λ(t)+R)−1dt ≤ 0.

The equality is true when

∆J = 0⇔ ρT (t)h(t) = 0 ∀ t ∈ [to, tf]

⇔ dJ

dλ+
= 0 ∀ t ∈ [to, tf].

Therefore, if there exists t ∈ [to, tf] for which dJ/dλ+ < 0, then ∆J < 0. The change in

cost, to first order, will be zero if and only if ρT (t)h(t) = 0 for all t ∈ [to, tf], which is the

condition for a minimum according to Pontryagin’s Maximum Principle (for objectives of

the form in (2.3)). �

Note that the SAC policy (4.3) is not a guaranteed descent direction over the entire

horizon for control-independent cost functions (2.3). On the other hand, it is straight-

forward to show that the SAC policy is a descent direction over the entire horizon for

control-dependent cost functions. The difference between SAC and iSAC and their relation

to Gradient Descent is examined in Section 4.2.

Next, I prove that one can scale the descent direction in an arbitrary way, differently

across the time-horizon, and still obtain a descent direction, provided that the direction of

the update is maintained.

68

Proposition 2. Consider systems with state x and control u and an objective metric

given by (2.3). Let Γ(t) � 0 be a diagonal matrix. The control update w(t) given by (4.5)

remains a descent direction for the entire trajectory even when scaled to ws(t) = Γ(t)w(t).

Proof. Consider the update policy in (4.5) with scaled control ū(t). Let ws(t) indicate

the perturbation after scaling, such that ū(t) = v(t) + ws(t), where ws(t) = Γ(t)w(t),

where the diagonal elements of Γ(t), γi(t) ≥ 0, can be different from each other.

From Proposition 1, the cost change, approximated to first-order, is then

∆J ≈
∫ tf

to
αd‖ρT (t)h(t)‖2Γ(t)(Λ(t)+R)−1dt.(4.9)

Given that αd < 0, Γ(t) � 0, and Λ(t) +R � 0, (4.9) is negative if there exists time t in

[to, tf] such that ρT (t)h(t) 6= 0 ⇐⇒ ws(t) 6= 0. Hence,

∆J < 0

⇐⇒ ∃ t ∈ [to, tf] such that ws(t) = Γ(t)w(t) 6= 0.

Therefore, given the update (4.5), the cost—approximated to first-order—is guaranteed to

decrease provided that there exists t ∈ [to, tf] such that ū(t) 6= v(t). �

I note that Proposition 2 holds even when control inputs are scaled differently in time.

Fig. 4.1 shows valid cases of control distortion that remain a descent direction.

Compared to other first-order continuous policies and to the best of the authors’

knowledge, the scalability results of the control inputs shown in 2 guarantee descent over

a broader set of cases of control distortion. For example, work in [121] considers only

particular cases of the scalability results shown in Figure 4.1, that of control clipping. Their

69

u(t)
u(t)

Figure 4.1. Cases of control scaling that remain valid descent directions for the
proposed needle-variation controller. The left figure shows control clipping, where
values are saturated at a specific threshold; the middle figure shows arbitrary
stretching to the saturation limits; the right figure shows proportional scaling
that maintains the same direction of the applied control. Control curves are a
function of time and arbitrarily shown for a 2-input system for easier visualization.
Simulation results in this chapter use control clipping.

method suggests dividing, based on a guess, the time horizon into regions of saturated

and unsaturated control inputs and updating actuation only for the latter regions. Work

in [122] provides a control clipping and proofs that the modified control update remains a

descent direction, however it also considers only a special case of the results shown here.

In particular, I am not aware of a method that considers the arbitrary scaling of the inputs

to the saturation limits, which would be a desired traits for applications capable only of

discrete actuation.

4.2. Connection to Gradient Descent

Steepest (or gradient) descent algorithm [123] is arguably the simplest and most

popular first-order trajectory optimization algorithm for general nonlinear optimal control

70

problems. The update policy is given by

w(t) = −Rv(t)− hT (t)ρ(t).(4.10)

Conjugate gradient descent [124], a first-order technique that provably outperforms

steepest descent in terms of convergence at comparable computational cost, is only the

conjugate variant of steepest descent. The only difference is the conjugate update, which

modifies the control update in (4.10) to ensure successive controls are conjugate with

respect to one another. In that sense, all algorithms can have their conjugate variant.

For the purposes of comparison, I relate the proposed algorithm to the gradient descent

policy (4.10); if the solutions match, then the conjugate variants of both methods will

also be identical. To that extent, by showing that NVC can, under certain parameter

choices, match steepest descent, the reader should also assume that NVC can also, under

the same choices and by using a conjugate update, also match the conjugate gradient

descent algorithm.

Next, I compare both variants of single-action control, SAC (4.3) and iSAC (4.4), to

gradient descent.

4.2.1. Relationship Between Gradient Descent and iSAC

In general, the solution of iSAC (4.5) is not equivalent to the gradient descent.

αd(Λ +R)−1(hTρ) =−Rv− hTρ

αdh
Tρ =− (Λ +R)Rv− (Λ +R)hTρ.

71

To show the above relationship is not always true, consider hTρ = 0 such that

0 =−RRv,

which is only satisfied if v = 0.

4.2.2. Relationship Between Gradient Descent and SAC

On the other hand, for specific αd and R parameters, the SAC update policy (4.3) matches

the solution of the gradient descent.

Proposition 3. Consider control affine dynamics (8.21). If R = I and αd =

−(ρThRuo + ρThhTρ+ 1), then the update policies of (4.3) and (4.10) match.

Proof. Setting the control updates of the proposed algorithm and the Gradient

Descent, shown in (4.3) and (4.10) respectively, equal to each other,

(Λ +R)−1(Rv− αdhTρ) =Rv+ hTρ

Rv− αdhTρ =(Λ +R)(Rv+ hTρ),

where Λ = hTρρTh � 0 and Λ +R � 0. I consider two cases: 1) hTρ = 0 and 2) hTρ 6= 0.

72

Case 1. hTρ = 0.

If hTρ = 0, then also Λ = 0 and the above equation becomes

Rv =R(Rv)

(I −R)Rv =0

R = I.

Note that, given R � 0, the solutions also match if v = 0, but that is not always the case,

especially when one iterates on previous control solutions.

Case 2. hTρ 6= 0.

Using R = I, then

v− αd hTρ︸︷︷︸
p

= (Λ + I)(v+ hTρ)

0 =ppT v+ v+ ppTp + p− v+ αdp

0 =p(pT v+ pTp + 1 + αd)

αd = − (pT v+ pTp + 1)

αd = − (ρThv+ ρThhTρ+ 1)(4.11)

73

Alternatively, for v = 0, then

−αdp =(Λ +R)(hTρ)

=(ppT +R)p

=pTpp +Rp,

which, from inspection, has a solution αd = −ρThhTρ−γI for R = γI, where γ ∈ R+. �

It is worth noting that αd, as given by (4.11), is not necessarily negative. Similarly,

it can easily be shown that the SAC solution (4.3) does not always generate a descent

direction, that is a negative ∆J , as shown in (4.8).

Next, I prove that for αd given by (4.11), the policies shown in (4.5) and (4.10) always

match. Although this may seem trivial, a solution may not always exist. For example,

consider two vectors x and z. Even though a scalar c = zT x
‖z‖ algebraically satisfies the

equation x = cz, such a solution is infeasible if the vectors are not parallel to each other.

Proposition 4. Consider control affine dynamics (8.21). If R = I and αd =

−(ρThRvh+ ρThhTρ+ 1), then the control policies of (4.5) and (4.10) match.

Proof. Setting the update policies of the proposed algorithm and Gradient Descent

equal to each other,

v− αdp =Λv+ v+ Λp + p(4.12)

0 =Λ(v+ p) + p + αdp,

74

where

Λ = ppT =

p2
1 . . . p1pn

. . .

... pipj
...

. . .

pnp1 . . . p2
n

,

such that

p2
1 . . . p1pn
. . .

... pipj
...

. . .

pnp1 . . . p2
n

v1+p1

v2+p2
...

vn+pn

+

p1

p2
...

pn

+αd

p1

p2
...

pn

= 0.

In the kth row (where k ∈ [1,n]),

pk

n∑
i=1

pi(vi+pi)+pk+αdpk = 0

αdpk = −pk(
n∑
i=1

pi(vi+pi)+1).

If pk = 0, the above equation is always satisfied (for all k ∈ [1,n]), regardless of αd. If

pk 6= 0, dividing both sides by pk gives

αd = −
n∑
i=1

pi(vi+pi)−1,(4.13)

75

which is independent of k and, thus, the same equation holds for all k ∈ [1,n]. Thus, n

equations collapse to 1, the same as the number of unknowns (αd). Therefore, (4.12) has

always a solution, shown in (4.13), and the policies of iSAC and Gradient Descent match

each other. �

SAC
w: -(Λ+R)-1(R v -αdhTρ)

iSAC
w = αd(Λ+R)-1hTρ

Gradient Descent
w = -R v - hTρ

v = 0
R= I
αd=-(pThRv+ρΤhhΤρ+1)

v = 0

v=0
R = γI, γ>0
αd=-(ρΤhhΤρ+γ)

* or **

Gradient Descent

SAC iSAC

**

* **

R= I
αd=-(pThRv+ρΤhhΤρ+1)

Figure 4.2. Visual relationship between the control solutions of SAC, iSAC, and
Gradient Descent.

76

4.3. Example Systems

In this section, I use the benchmark cart pendulum system to test NVC and compare

it both to trajectory optimization and single-action algorithms. I also use a 3-link biped

to demonstrate the performance of NVC on a more challenging system and its empirical

robustness against disturbances. The algorithmic steps are shown in Algorithm I and the

parameters used in the simulations are reported in Table 4.1.

4.3.1. Cart Pendulum

To compare performance across algorithms I use the cart pendulum system, which has

been a popular testbed for conventional controllers [24,125–127]. Dynamics are used as

in [128] and a state vector x = [xc, ẋc, θ, θ̇] is utilized.

Algorithm I Needle Variation Controller
Initialize k ∈ (0, 1).

1: Simulate x(t) and ρ(t) in [to, to + T] from f1
2: Compute J(v(t))
3: Compute w(t) given by (4.5)
4: Compute J(u(t)) and ∆J
5: β = 0
6: while ∆J > ∆Jmin do
7: k = kβ

8: Update u(t) = v(t) + kw(t)
9: Saturate u(t)

10: Compute J(u(t))
11: β = β + 1
12: end while

Fig. 4.3 illustrates a comparison in performance between single-action and continuous-

action needle variation controllers. Saturation limits of 5 N are imposed. These limits are

the same as in [2], where they are unable to assure convergence for all four states, and

77

(a)

0 1 2 3 4 5

time (s)

0

50

100

150

200

250

c
o

s
t

fu
n

c
ti
o

n

Single Action

NVC

(b)

0 1 2 3 4 5

time (s)

-5

0

5

c
o
n
tr

o
l
(N

)

(c)

0 1 2 3 4 5

time (s)

-5

0

5

c
o
n
tr

o
l
(N

)

(d)

Figure 4.3. Performance of a single-action needle variation controllers and NVC
on the inversion task of a cart pendulum. NVC successfully inverts the pendulum
with saturation limits of 5 N, while single-action controls are reported to require
at least 15 N for the four-state system [2]. Given the time, NVC can invert
the pendulum with as low as 1N saturation limits. Note that the NVC solution
appears similar to a low-pass filtered single-action solution.

four times lower than those used in [3] to invert the pendulum with single-action control.

I further compare NVC to the iLQG controller with results shown in Fig. 4.4a.

I demonstrate the robustness of NVC through a Monte Carlo simulation over the initial

pendulum angle θ0 as well as over the relative state weights in Q and R matrices that

define the quadratic objective. Fig. 4.4b demonstrates that NVC converges in all 50 trials

78

0 2 4 6 8 10

time (s)

10
-6

10
-4

10
-2

10
0

10
2

ru
n
n
in

g
 c

o
s
t

NVC

single-action

iLQG (1 iteration)

iLQG

(a)

0 1 2 3 4 5 6

initial angle (rad)

4

6

8

10

12

ti
m

e
 t
o
 c

o
n
v
e
rg

e
n
c
e
 (

s
)

(b)

Figure 4.4. Fig. 4.4a compares NVC, single-action feedback, and two implemen-
tations of iLQG—one limited to one forward and backward pass per iteration
and one with unlimited passes per iteration. The latter provides the optimizer,
while the former can be thought of as providing a good enough solution. Fig.
4.4b shows a Monte Carlo simulation over the initial angle θ0. NVC successfully
leads to inversion in 50 out of 50 trials with convergence times ranging from 4.7
to 10.1 seconds. For the same set of parameters and range of initial conditions,
single-action policies do not converge for any of the trials [3].

randomly sampled over [0, 2π]. Fig. 4.5 shows that NVC is robust to changes in the Q

and R matrices within almost two orders of magnitude, while iLQG1 does not converge as

reliably.

4.3.2. 3-link Biped

I use a 3-link model that consists of a torso and two identical legs without knees or ankles;

all links are rigid. The behavior of the system is described by the swing phase dynamics,

derived using the method of Lagrange [130] and the impact update on the states [131,132].

To handle impulses that occur at impact, I modify the adjoint variable using reset maps,

similar to [2]. Specifically, I simulate the adjoint variables using the same differential
1I implement iLQG using the code that is available here and is described in [129].

http://www.mathworks.com/matlabcentral/fileexchange/52069-ilqg-ddp-trajectory-optimization

79

Error cost for NVC

1 2 3 4 5

Q weight for 10
4

1

2

3

4

5

Q
 w

e
ig

h
t

fo
r

x
c

10
4

(a)

Error cost for iLQG

1 2 3 4 5

Q weight for 10
4

1

2

3

4

5

6

7

8

9

10

(b)

Figure 4.5. Comparison of NVC and iLQG performance over a range of cost
function formulations. Terminal cost at the end of a 15-second simulation was
interpolated over the range of Q sampled. For all simulations Q was defined as a
diagonal matrix with weights = 0 for all states except θ and xc, for which weights
are shown on the x- and y-axis, respectively. Note the robustness of NVC for a
range of task definitions.

Table 4.1. Parameter values for single-action control, iLQG, and NVC

Cart Pendulum Biped
x [xc, ẋc, θ, θ̇] [θs, θm, θt,xhip, yhip, θ̇s, θ̇m, θ̇t, ẋhip, ẏhip]

Q [2, 0, 3, 0] · 104 [10, 350, 350, 0, 0, 0, 0, 0, 0, 0]
R [0.2] [0.1, 0.1]

T 2.2 s 1.0 s
tf 15 s 10 s
ts 0.005 s 0.01 s

umax ±[20] ±[30, 30]

equation as (2.5) and utilize a reset map at time of impact to account for state jumps, as

outlined in Equation (40) in [2].

Parameters of the dynamic model can be found in [132]. The biped states are described

by x = [θs, θm, θt,xhip, yhip, θ̇s, θ̇m, θ̇t, ẋhip, ẏhip], where θs, θm, and θhip are the angles of

80

the support leg, moving leg, and torso from the vertical, respectively; xhip and yhip are the

Cartesian coordinates of the hip. As legs alternate between support and swing phase, θs

and θm swap upon impact. I illustrate the performance of NVC for this biped system in

Fig. 4.6. The target states are given by xd = [π/8, π/8, π/18, 0, 0, 1, 1, 0, 0, 0] and provide

the system with a command of driving the swing leg forward and maintaining a slightly

forward-leaning posture of the torso that is commonly observed in everyday walking.

As such, NVC enables the generation of a dynamic gait rather than tracking pre-

computed reference trajectories [133–136]. As seen in Fig. 4.6, NVC creates a quasi-

periodic gait without gait-specific constraints, such as touch-down or take-off angles

used by other controllers [137, 138]. What is more, I do not initiate walking from

favorable configurations, contrary to other approaches [139,140] that either ignore gait

initiation or treat it separately. Lastly, I use the full dynamic model of the biped [141],

while other online controllers take advantage of simplified dynamics or linear model

approximations [142–144].

Fig. 4.7 demonstrates the algorithm’s robustness against disturbances, which are

introduced in the form of discontinuities in the angular velocity of the torso. Fig. 4.8

introduces forces on the torso for 0.02 s at various points throughout a gait cycle. The force

disturbances that the biped can recover from range between −32 N and 18 N depending

on the biped’s position in the cycle. This range, when scaled by the size of the biped

considered here (35 kg compared to 57+ kg), corresponds to the tolerable range reported

in literature [145,146] for different controllers for kneed bipeds.

81

4.4. Discussion

This study presents the Needle Variation Controller (NVC), a nonlinear feedback

method. The algorithm synthesizes its control response in ways similar to the needle

variation controllers shown in [2] and [147], but differs from these single-action policies in

that it utilizes the entire time horizon of control values at each iteration. The resulting

feedback of the proposed scheme guarantees descent, even in the presence of actuation

limits. NVC maintains the desirable traits of existing needle variation methods, namely a

large region of attraction, a closed-form expression, and computational efficiency.

Compared to popular feedback schemes, such as iLQG or DDP, the proposed method

uses only first-order information and is computationally faster, which makes it suitable

for online applications. Further, as the example of the biped model shows, the proposed

scheme lends itself to hybrid system applications without additional overhead associated

with switched dynamics and impacts. The controller design is not problem-specific, which

makes NVC an attractive controller for versatile robotic applications.

Finally, the robustness of the controller can become especially meaningful when dealing

with human-in-the-loop approaches, where safety is of utmost importance. It is also critical

in applications such as rehabilitation equipment, exoskeletons, and other assistive devices

that require low failure rates in the presence of unanticipated system inputs or changes in

the environment.

82

0 1 2 3 4 5

x (m)

-0.5

0

0.5

1

1.5

2

y
 (

m
)

Left leg

Right leg

(a)

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

θ1

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

θ̇
1

-0.25 -0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2 0.25

θ2

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

θ̇
2

0 0.02 0.04 0.06 0.08 0.1 0.12

θ3

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

θ̇
3

-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15 0.2

θ1

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

θ̇
1

-0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4

θ2

-1.5

-1

-0.5

0

0.5

1

1.5

θ̇
2

-0.02 0 0.02 0.04 0.06 0.08 0.1

θ3

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

θ̇
3

(b)

Figure 4.6. Forward locomotion of a planar biped using a continuous-action needle
variation controller. Note that the NVC-controlled biped is able to perform gait
initialization and establish a quasi-periodic gait pattern. Fig. 4.6a shows the
walking pattern of the biped. Fig. 4.6b shows phase plots of the legs and torso
angles; the upper plots correspond to the gait initiation (first five seconds); the
lower plots correspond to the simulation from t = 10 s until the end of the five-
minute walk. The imperfect gait cycle can allude to a certain level of robustness
with respect to deviations from a nominal gait phase.

83

-0.04 0 0.04 0.08 0.12

θ3

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

θ̇
3

Figure 4.7. Gait recovery from disturbances on the torso angular velocity. The
figure shows the phase plane related with the torso angle given disturbances of
−0.15 rad/s applied every 8 seconds over a 30-second simulation. The introduced
disturbance discontinuities are marked with a solid black line. The trajectory
in-between disturbances changes linearly with time from red to green color. As
a result, the green trajectory is the converging gait cycle and the red indicates
deviations present immediately after the disturbances.

Figure 4.8. Gait recovery from external forces applied on the torso for 0.02 s
at various times of a full gait cycle. The shaded regions indicate the maximum
magnitude of positive (blue) and negative (orange) forces tolerated by the biped
without losing balance. The legend bar in the figure indicates the magnitude scale
of the forces.

84

CHAPTER 5

Second-Order SAC with Controllability-Based Convergence

Guarantees

This chapter derives nonlinear feedback control synthesis for general control affine

systems using second-order actions—the second-order needle variations of optimal control—

as the basis for choosing each control response to the current state. A second result of the

chapter is that the method provably exploits the nonlinear controllability of a system by

virtue of an explicit dependence of the second-order needle variation on the Lie bracket

between vector fields. As a result, each control decision necessarily decreases the objective

when the system is nonlinearly controllable using first-order Lie brackets. Simulation results

using a differential drive cart, an underactuated kinematic vehicle in three dimensions, and

an underactuated dynamic model of an underwater vehicle demonstrate that the method

finds control solutions when the first-order analysis is singular. Lastly, the underactuated

dynamic underwater vehicle model demonstrates convergence even in the presence of a

velocity field.

5.1. Dependence of Needle Variation Controls on Nonlinear Controllability

In this section, I relate the controllability of systems to first- and second-order needle

variation actions. After presenting the MIH expression, I relate the MIH to the Lie bracket

terms between vector fields. Using this connection, I tie the descent property of needle

variation actions to the controllability of a system and prove that second-order needle

85

variation controls can produce control solutions for a wider set of the configuration state

space than first-order needle variation methods. As a result, I am able to constructively

compute, via an analytic solution, control formulas that are guaranteed to provide descent,

provided that the system is controllable with first-order Lie brackets. Generalization

to higher-order Lie brackets appears to have the same structure, but that analysis is

postponed to future work.

5.1.1. Second-Order Mode Insertion Gradient

Needle variation methods in optimal control have served as the basic tool in proving the

Pontryagin’s Maximum Principle [148–150]. Using piecewise dynamics, they introduce

infinitesimal perturbations in control that change the default trajectory and objective

(see Fig. 2.1). Such dynamics are typically used in optimal control of hybrid systems to

optimize the schedule of a-priori known modes [108,151].

Here, instead, I consider dynamics of a single switch to obtain a new control mode u

at every time step that will optimally perturb the trajectory [2]. The feedback algorithm

presented in [2], however, only considers the first-order sensitivity of the cost function to a

needle action and, as a result, often fails to provide solutions for controllable underactuated

systems. By augmenting the algorithm with higher order information (via the MIH), I am

able to provide solutions in cases when the first-order needle variation algorithm in [2] is

singular.

Consider control-affine dynamics (8.21), a time period [to, tf] and control modes

described by (2.2).

86

The derivation of the mode insertion Hessian is similar to [152] and is presented in the

Appendix. For dynamics that do not depend on the control duration, the mode insertion

Hessian (MIH)1 is given by

d2J

dλ2
+

= (f2−f1)
TΩ(f2−f1)+ρ

T (Dxf2·f2+Dxf1·f1−2Dxf1·f2)−Dxl1·(f2−f1),(5.1)

where Ω : R 7→ RN×N is the second-order adjoint state, which is calculated from the

default trajectory and is given by

Ω̇ = −Dxf1
TΩ−ΩDxf1−D2

xl1−
N∑
i=1

ρiD
2
xf

i
1(5.2)

subject to: Ω(tf) = D2
xm(x(tf))

T .

The superscript i in the dynamics f1 refers to the ith element of the vector.

5.1.2. Dependence of Second Order Needle Variations on Lie Bracket Struc-

ture

The Lie bracket of two vectors f(x), and g(x) is

[f , g](x) = ∂g

∂x
f(x)−∂f

∂x
g(x),

1In this work, I consider the second-order sensitivity with respect to an action centered at one single
application time τ . It is also possible to consider the second-order sensitivity with respect to two application
times τi and τj in the same iteration. Assuming that the entire control curve is a descent direction over
the time horizon for second-order needle variation solutions, as I have proved is the case for first-order
needle variation methods, multiple second-order needle actions at different application times would still
decrease the objective. On the other hand, searching for two application times would slow down the
algorithm and was not preferred in this work.

87

which generates a control vector that points in the direction of the net infinitesimal change

in state x created by infinitesimal noncommutative flow φfε ◦ φgε ◦ φ−fε ◦ φ−gε ◦ x0, where

φfε is the flow along a vector field f for time ε [15,153]. Lie brackets are most commonly

used for their connection to controllability [154,155], but here they will show up in the

expression describing the second-order needle variation.

I relate second-order needle variation actions to Lie brackets in order to connect the

existence of descent-providing controls to the nonlinear controllability of a system. Let

hi : R 7→ RN×1 denote the column control vectors that make up h : R 7→ RN×M in (8.21)

and ui ∈ R be the individual control inputs. Then, I can express dynamics as

f = g+
M∑
i

hiui.

and, for default control v = 0, I can re-write the MIH as

d2J

dλ2
+

=
(M∑
i=1

hiui
)T

Ω
M∑
j=1

hjuj+ρ
T
(M∑
i=1

(Dxhiui)· g−Dxg·(hiui)+
M∑
i=1

Dxhiui
M∑
i=1

hiui

)

−Dxl1
M∑
i=1

hiui.

Splitting the sum expression into diagonal (i = j) and off-diagonal (i 6= j) elements, and

by adding and subtracting 2∑M
i
∑i−1
j=1(Dxhiui)(hjuj), I can write

M∑
i=1

Dxhiui
M∑
i=1

hiui =
M∑
i

i−1∑
j=1

[hi,hj]uiuj+2
M∑
i

i−1∑
j=1

(Dxhiui)(hjuj)+
M∑

i=j=1
(Dxhiui)(hiui).

88

Then, I can express the MIH as

d2J

dλ2
+

=
M∑
i=1

M∑
j=1

uiujh
T
i Ωhj

+ρT
(M∑
i=2

i−1∑
j=1

[hi,hj]uiuj+2
M∑
i=2

i−1∑
j=1

(Dxhi)hjuiuj+
M∑
i=1

(Dxhi)hiuiui+
M∑
i=1

[g,hi]ui
)

−Dxl(
M∑
i=1

hiui).

The expression contains Lie bracket terms of the control vectors that appear in the

system dynamics, indicating that second-order needle variations incorporate higher-order

nonlinearities. By associating the MIH to Lie brackets, I next prove that second-order

needle variation actions can guarantee decrease of the objective for systems that are

controllable with first-order Lie brackets.

5.1.3. Existence of Control Solutions with First- and Second-Order Mode In-

sertion Gradients

In this subsection, I prove that the first two orders of the mode insertion gradient can

be used to guarantee controls that reduce objectives of the form (2.3) for systems that

are controllable with first-order Lie brackets. The analysis is applicable to optimization

problems that satisfy the following assumptions.

Assumption 4. The vector elements of dynamics f1 and f2 are real, bounded, C2 in

x, and C0 in u and t.

Assumption 5. The incremental cost l1(x) is real, bounded, and C2 in x. The terminal

cost m(x(tf)) is real and twice differentiable with respect to x(tf).

89

Assumption 6. Default and inserted controls v and u are real, bounded, and C0 in t.

Under Assumptions 4-6, the MIG and MIH expressions exist and are unique. Then,

as I show next, there are control actions that can improve any objective as long as there

exists t ∈ [to, tf] for which x(t) 6= x∗(t).

Definition 2. A trajectory x∗ described by a pair (x∗,u∗) is the global minimizer of

the objective function J(x∗(t)) for which J(x∗(t)) ≤ J(x(t)) ∀ x(t).

Given Definition 1, a trajectory x∗ described by a pair (x∗,u∗) is the global minimizer

of the cost function in the unconstrained sense (not subject to the dynamics of the system)

and satisfies DxJ(x∗(t)) = 0 throughout the time horizon considered.

Assumption 7. The pair (x∗,u∗) describes the only trajectory x∗ for which the

unconstrained derivative of the objective is equal to zero (i.e., DxJ(x∗(t)) = 0 ∀ t ∈

[to, tf]).

Assumption 4 is necessary to prove that the first-order adjoint is non-zero, which is a

requirement for the controllability results shown in this work. It assumes that the objective

function in the unconstrained sense does not have a maximizer or saddle point and has

only one minimizer x∗ described by (x∗,u∗) that indicates the target trajectory or location.

It is an assumption that, among other choices, can be easily satisfied with a quadratic

cost function that even includes penalty functions associated with physical obstacles.

Proposition 5. Consider a pair (x, v) that describes the state and default control of

(8.21). If (x, v) 6= (x∗, v∗), then the first-order adjoint ρ is a non-zero vector.

90

Proof. Using (2.3), and by Assumption 4,

x 6= x∗ ⇒ DxJ(x(t)) 6= 0

⇒
∫ tf

to
Dxl1(x(t))dt+Dxm(x(tf)) 6= 0

⇒
∫ tf

to
Dxl1(x(t))dt 6= 0 OR Dxm(x(tf)) 6= 0

⇒ Dxl1(x(t)) 6= 0 OR Dxm(x(tf)) 6= 0

⇒ ρ̇ 6= 0 OR ρ(tf) 6= 0.

Therefore, if x 6= x∗, then ∃ t ∈ [to, tf] such that ρ 6= 0. �

Proposition 6. Consider dynamics given by (8.21) and a trajectory described by state

and control (x, v). Then, there are always control solutions u ∈ RM such that dJ
dλ+
≤ 0 for

some t ∈ [to, tf].

Proof. Using dynamics of the form in (8.21), the expression of the mode insertion

gradient can be written as

dJ

dλ+
= ρT (f2−f1) = ρT

(
h(u−v)

)
.

Given controls u and v that generate a positive mode insertion gradient, there always exist

control u′ such that the mode insertion gradient is negative, i.e. u′−v = −(u−v). The

mode insertion gradient is zero for all u ∈ RM if the costate vector is orthogonal to each

control vector hi or if the costate vector is zero everywhere.2 �
2If the control vectors span the state space RN , the costate vector ρ ∈ RN cannot be orthogonal to each
of them. Therefore, for first-order controllable (fully actuated) systems, there always exist controls for
which the cost can be reduced to first order.

91

Proposition 7. Consider dynamics given by (8.21) and a pair of state and control

(x, v) 6= (x∗, v∗) for which dJ
dλ+

= 0 ∀ u ∈ RM and ∀ t ∈ [to, tf]. Then, the first-order

adjoint ρ is orthogonal (under the Euclidean inner product) to all control vectors hi.

Proof. I rewrite (2.4) as

dJ

dλ+
= 0⇒ ρT

M∑
i

hi(ui−vi) = 0

⇒
M∑
i

kiwi = 0 ∀ wi,

where wi = (ui−vi) and ki = ρThi ∈ R. The linear combination of the elements of k is

zero for any wi, which means k must be the zero vector. By Proposition 5, ρ 6= 0 for

a trajectory described by a pair of state and control (x,u) 6= (x∗,u∗) and, as a result,

ρThi = 0 ∀ i ∈ [1,M]. �

Proposition 8. Consider dynamics given by (8.21) and a pair of state and control

(x, v) 6= (x∗, v∗) for which dJ
dλ+

= 0 ∀ u ∈ RM and ∀ t ∈ [to, tf]. Further assume that

the control vectors hi and the Lie Bracket terms [hi,hj] and [g,hi]—where i, j ∈ [1,M]—

span the state space RN . Then, there exist i and j such that either ρT [hi,hj] 6= 0 or

ρT [g,hi] 6= 0.

Proof. Let S = {hi, [hi,hj], [g,hi]} ∀ i, j ∈ [1,M] be a set of vectors that span the

state space RN (span{S} = RN). Then, any vector in RN can be written as a linear

combination of the vectors in S. The first-order adjoint is an N -dimensional vector, which

is non-zero for a trajectory described by a pair of state and control (x,u) 6= (x∗,u∗) by

92

Proposition 5. Therefore, it can be expressed as

ρ = c1h1+· · ·+cMhM+
M∑
i=2

i−1∑
j=1

c′i,j [hi,hj]+
M∑
i=1

c′′i [g,hi],(5.3)

where ci, c′i, c′′i ∈ R. Left-multiplying (5.3) by ρT yields

ρTρ =
M∑
i=1

ciρ
Thi+

M∑
i=2

i−1∑
j=1

c′i,jρ
T [hi,hj]+

M∑
i=1

c′′i ρ
T [g,hi].

Given that dJ
dλ+

= 0, and by Proposition 7, ρ is orthogonal to all control vectors hi (which

also implies that the control vectors hi do not span RN), the above equation simplifies to

ρTρ =
M∑
i=2

i−1∑
j=1

c′i,jρ
T [hi,hj]+

M∑
i=1

c′′i ρ
T [g,hi].

Because ρTρ 6= 0, there exists i, j ∈ [1,M] and a Lie bracket term [hi,hj], or [g,hi] that

is not orthogonal to the costate ρ. That is,

∃ i, j ∈ [1,M] such that ρT [hi,hj] 6= 0 OR ρT [g,hj].

�

First-order needle variation methods are singular when the mode insertion gradient is

zero. When that is true, the next result—that is the main piece required for the main

theoretical result of this section in Theorem 1—demonstrates that the second-order mode

insertion gradient is guaranteed to be negative for systems that are controllable with

first-order Lie Brackets, which in turn implies that a control solution can be found with

second-order needle variation methods.

93

Proposition 9. Consider dynamics given by (8.21) and a trajectory described by state

and control (x, v) 6= (x∗, v∗) for which dJ
dλ+

= 0 for all u ∈ RM and t ∈ [to, tf]. If the

control vectors hi and the Lie brackets [hi,hj] and [g,hi] span the state space (RN), then

there always exist control solutions u ∈ RM such that d2J
dλ2

+
< 0.

Proof. See Appendix. �

Theorem 1. Consider dynamics given by (8.21) and a trajectory described by state

and control (x, v) 6= (x∗, v∗). If the control vectors hi and the Lie brackets [hi,hj] and

[g,hi] span the state space (RN), then there always exists a control vector u ∈ RM and a

duration λ such that the cost function (2.3) can be reduced.

Proof. The local change of the cost function (2.3) due to inserted control u of duration

λ can be approximated with a Taylor series expansion

J(λ)−J(0) ≈ λ
dJ

dλ+
+
λ2

2
d2J

dλ2
+

.

By Propositions 6 and 9, either 1) dJ
dλ+

< 0 or 2) dJ
dλ+

= 0 and d2J
dλ2

+
< 0. Therefore, there

always exist controls that reduce the cost function (2.3) to first or second order. �

5.2. Control Synthesis Based on Second-Order Needle Variations

In this section, I present an analytical solution of first- and second-order needle variation

controls that reduce the cost function (2.3) to second order. I then describe the algorithmic

steps of the feedback scheme used in the simulation results in Section 5.3.

94

5.2.1. Analytical Solution for Second Order Actions

For underactuated systems, there are states at which ρ is orthogonal to the control vectors

hi (see Proposition 7). At these states, control calculations based only on first-order

sensitivities fail, while controls based on second-order information still have the potential

to decrease the objective provided that the control vectors and their Lie brackets span

the state space (see Theorem 1). I use this property to compute an analytical synthesis

method that expands the set of states for which individual actions that guarantee descent

of an objective function can be computed.

Consider the Taylor series expansion of the cost around control duration λ. Given the

expressions of the first- and second-order mode insertion gradients, I can write the cost

function (2.3) as a Taylor series expansion around the infinitesimal duration λ of inserted

control u:

J(λ) ≈ J(0)+λ dJ

dλ+
+
λ2

2
d2J

dλ2
+

.(5.4)

The first- and second-order mode insertion gradients used in the expression are functions

of the inserted control u in (8.21). Equation (5.4) is quadratic in u and, for a fixed λ, has

a unique solution which is used to update the control actions. Controls that minimize the

Taylor expansion of the cost will have the form

u∗(t) = argmin
u

J(0)+λ dJ

dλ+
+
λ2

2
d2J

dλ2
+
+

1
2‖u‖

2
R,(5.5)

95

where the MIH has both linear and quadratic terms in u. I compute the minimizer of (5.5)

to be

u∗(t) = [
λ2

2 Γ+R]−1 [
λ2

2 ∆+λ(−hTρ)],(5.6)

where ∆ : R 7→ RM×1 and Γ : R 7→ RM×M are respectively the first- and second-order

derivatives of d2J/dλ2
+ with respect to the control u (see Appendix). These quantities

are given by

∆ ,
[[
hT
(

ΩT+Ω
)
h+2hT ·(

n∑
k=1

(Dxhk)ρk)
T
]
v+(Dxg·h)Tρ−(

n∑
k=1

(Dxhk)ρk)·g+hTDxl
T
]

Γ , [hT
(

ΩT+Ω
)
h+hT ·(

n∑
k=1

(Dxhk)ρk)
T+

n∑
k=1

(Dxhk)ρk·h].

The parameter R, a positive definite matrix, denotes a metric on control effort.

The existence of control solutions in (5.6) depends on the inversion of the Hessian

H = λ2

2 Γ+R. To practically ensure H is positive definite, I implement a spectral

decomposition on the Hessian H = V DV −1, where matrices V and D contain the

eigenvectors and eigenvalues of H, respectively. I replace all elements of the diagonal

matrix D that are smaller than ε with ε to obtain D̄ and replace H with H̄ = V D̄V −1 in

(5.6). I prefer the spectral decomposition approach to the Levenberg-Marquardt method

(H̄ = H+κI � 0), because the latter affects all eigenvalues of the Hessian and further

distorts the second-order information. At saddle points, I set the control equal to the

eigenvector of H that corresponds to the most negative eigenvalue in order to descend

along the direction of most negative curvature [156–159].

96

Synthesis based on (5.6) provides controls at time t that guarantee to reduce the cost

function (2.3) for systems that are controllable using first-order Lie brackets. Control

solutions are computed by forward simulating the state over a time horizon T and backward

simulating the first- and second-order costates ρ and Ω. As is shown next, this leads to a

very natural, and easily implementable, algorithm for applying cost-based feedback while

avoiding iterative trajectory optimization.

5.2.2. Algorithmic Description of Control Synthesis Method

Algorithm I
1. Simulate states and costates with default dynamics f1 over a time horizon T
2. Compute optimal needle variation controls
3. Saturate controls
4. Use a line search to find control duration that ensures reduction of the cost function

(2.3)3

The second-order controls in (5.6) are implemented in a series of steps shown in

Algorithm I and visualized in Fig. 5.1. I compare first- and second-order needle variation

actions by implementing different controls in Step 2 of Algorithm I. For the first-order case,

I implement controls that are the solution to a minimization problem of the first-order

sensitivity of the cost function (2.3) and the control effort

u∗(t) =min
u

1
2(
dJ1
dλ+i
−αd)2+

1
2‖u‖

2
R

=(Λ+RT)−1(Λv+hTραd),(5.7)

where Λ , hTρρTh and αd ∈ R− expresses the desired value of the mode insertion gradient

term (see, for example, [65]). Typically, αd = γJo, where Jo is the cost function (2.3)

97

v(t)

Ω(t)

ρ(t)

x(t)

u(t)

τ

λ

u(τ)

v(t)

to tfT

Simulate state and co-states

Calculate control response

Apply saturation limits

Determine control duration

u(t)

Use default control

Figure 5.1. The steps of the controller outlined by Algorithm I. Using the default
control, the states and co-states are forward-simulated for the time horizon
[to, to+T]. The optimal control response is computed from (5.6), and saturated
appropriately. At the end, the algorithm determines the finite duration of the
inserted single action, evaluated at an application time τ , with a line search.

computed using default dynamics f1. For second-order needle variation actions, I compute

controls using (5.6). As Fig. 5.1 indicates, the applied actuation is the saturated value of

the control response of either (5.6) or (5.7), evaluated at the application time τ .

While not shown here, [2] proves that the first-order needle variation control solutions

(5.7) remain a descent direction after saturation. I extend this result to show that the

entire control signal over the time horizon, and not a needle action, remains a descent

direction when saturated by an arbitrary amount. While I have not yet formally proved

a similar property for the second-order needle variation controls (11), one can test and

98

identify if the saturated controls would decrease the cost function before applying any

actuation. In addition, the results of this work rely on the sign and not the magnitude of

the control solutions, suggesting that the saturated second-order solutions in (5.6) also

provide a descent direction.

Further, needle variation actuation as shown in Fig. 5.1 may be practically infeasible

or at least problematic for motors due to the abrupt changes in the control. There are

two remedies to this issue. First, introducing additional filter states associated with the

control can constraint the changes in actuation [51]. Second, one can show that the entire

curve of the first-order needle variation solution is a descent direction. Assuming the same

is true for the second-order solutions as well, one could either apply part of the continuous

control solution around the time of application τ or filter the discontinuous actuation in

hardware and still provide descent with more motor-friendly actuation.

5.2.3. Comparison to Alternative Optimization Approaches

Algorithm I differs from controllers that compute control sequences over the entire time

horizon in order to locally minimize the cost function. Rather, the proposed scheme utilizes

the time-evolving sensitivity of the objective to an infinitesimal switch from v to u and

searches a one-dimensional space for a finite duration of a single action that will optimally

improve the cost. It does so using a closed-form expression and, as a result, avoids the

expensive iterative computational search in high-dimensional spaces, while it may still get

closer to the optimizer with one iterate.

Specifically, in terms of computational effort, Algorithm I computes two n×1 (state

(8.21) and first-order adjoint (2.5) variables) and one n×n (second-order adjoint (5.2))

99

differential equations and searches. All simulations presented in this chapter are able to

run in real time, including the final 13-dimensional system. However, real-time execution

is not guaranteed for higher dimensional systems. Nevertheless, the presented algorithm

runs faster than the iLQG method for the simulations considered here.

Further, compared to traditional optimization algorithms such as iLQG, needle variation

solutions exist globally, demonstrate a larger region of attraction and have a less complicated

representation on Lie Groups [51]. These traits naturally transfer to second-order needle

controls (5.6) that also contain the first-order information present in (5.7). In addition,

as this chapter demonstrates, the suggested second-order needle variation controller has

formal guarantees of descent for systems that are controllable with first-order Lie brackets,

which—to the best of my knowledge—is not provided by any alternative method.

Given these benefits, the authors propose second-order needle variation actions as a

complement to existing approaches for time-sensitive robotic applications that may be

subject to large initial error, Euler angle singularities, or fast-evolving (and uncertain)

objectives.

Next, I implement Algorithm I using first or second-order needle variation controls

(shown in (5.7) and (5.6), respectively) to compare them in terms of convergence success

on various underactuated systems.

5.3. Simulation Results

The proposed synthesis method based on (5.6) is implemented on three underactuated

examples—the differential drive cart, a 3D kinematic rigid body, and a dynamic model

of an underwater vehicle. The kinematic systems of a 2D differential drive and a 3D

100

(a)

0 2 4 6 8 10 12 14 16

 time (sec)

-20

0

20

40

60

80

100

120

 s
ta

te
s

x (cm)

y (cm)

θ (degrees)

(b)

(c)

0 2 4 6 8 10 12 14 16

 time (sec)

-20

0

20

40

60

80

100

120
 s

ta
te

s

x (cm)

y (cm)

θ (degrees)

(d)

(e)

0 2 4 6 8 10 12 14 16

 time (sec)

-20

0

20

40

60

80

100

120

 s
ta

te
s

x (cm)

y (cm)

θ (degrees)

(f)

101

(g)

0 2 4 6 8 10 12 14 16

 time (sec)

-20

0

20

40

60

80

100

120

 s
ta

te
s

x (cm)

y (cm)

 (degrees)

(h)

Figure 5.2. Differential drive using first-, second-order needle variation actions,
iLQG, and DDP, from top to bottom. Snapshots of the system are shown
at t = 0, 2.5, 5, 7.5, 10, and 12.5 sec. The target state is [xd, yd, θd] =
[1000 mm, 1000 mm, 0].

0 5 10 15

time (s)

10
0

10
2

10
4

10
6

10
8

ru
n

n
in

g
 c

o
s
t

1st Order

2nd Order

DDP

iLQG

(a)

0 5 10 15

time (s)

0

2

4

6

8

10

c
u
m

m
u
la

ti
v
e
 c

o
s
t

10
7

1st Order

2nd Order

DDP

iLQG

(b)

Figure 5.3. Fig. 5.3a plots the running state cost; Fig. 5.3b plots the integrated
(cumulative) cost, including the control cost. DDP and iLQG obtain the same
cumulative cost, with slightly different trajectories (see Fig. 5.2). Second-order
needle variation actions demonstrate improved convergence to the target over
DDP and iLQG, despite optimizing over one single action at each iteration.

102

rigid body are controllable using first-order Lie brackets of the vector fields and help

demonstrate Theorem 1. The underactuated dynamic model of a 3D rigid body serves

to compare controls in (5.6) and (5.7), as well as make comparisons to other control

techniques, in a more sophisticated environment. In all simulation results, I start with

default control v = 0 and an objective function of the form

J(x(t)) =
1
2

∫ tf

to
‖~x(t)−~xd(t)‖2Qdt+

1
2‖~x(tf)−~xd(tf)‖

2
P1 ,

where ~xd is the desired state-trajectory, and Q = QT ≥ 0, P1 = P T1 ≥ 0 are metrics on

state error.

5.3.1. 2D Kinematic Differential Drive

I use the differential drive system to demonstrate that first-order controls shown in (5.7)

that are based only on the first-order sensitivity of the cost function (2.3) can be insufficient

for controllable systems, contrary to controls shown in (5.6) that guarantee decrease of the

objective for systems that are controllable using first-order Lie brackets (see Theorem 1).

The system states are its coordinates and orientation, given by s = [x, y, θ]T , with

kinematic (g = 0) dynamics

f = r

cos(θ) cos(θ)

sin(θ) sin(θ)

1
L − 1

L

uR
uL

,

where r = 3.6 cm, L = 25.8 cm denote the wheel radius and the distance between

them, and uR, uL are the right and left wheel control angular velocities, respectively (these

103

parameter values match the specifications of the iRobot Roomba). The control vectors h1,

h2 and their Lie bracket term [h1,h2] = 2r
2

L

[
−sin(θ),−cos(θ)

]T
span the state space

(R3). Therefore, from Theorem 1, there always exist controls that reduce the cost to first

or second order.

Fig. 5.2 and 5.3 demonstrate how first-, second-order needle variations, iLQG, and

DDP [13, 129] perform on reaching a nearby target. I implement the iLQG and DDP

algorithms to generate offline trajectory optimization solutions using the publicly available

software.4 Actions based on first-order needle variations (5.7) do not generate solutions

that turn the vehicle, but rather drive it straight until the orthogonal displacement between

the system and the target location is minimized. Actions based on second-order needle

variations (5.6), on the other hand, converge successfully. The solutions differ from the

trajectories computed by iLQG and DDP, despite using the same simulation parameters.

I note the fact that, besides the computational benefits, single-action approaches appear

to be rich in information and perform comparably to offline schemes that attempt to

minimize the objective by computing different control responses over the entire horizon.

Given that the solutions of iLQG and DDP are very similar, and the fact that DDP is

slower than iLQG due to expanding the dynamics to second order, I use only the iLQG

algorithm as a means of comparison for the rest of the simulations presented in this work.

The results in Fig. 5.2 based on second-order needle variations are generated in real time

in Matlab and approximately forty times faster than the iLQG implementation.

Fig. 5.4 shows a Monte Carlo simulation that compares convergence success using

first- and second-order needle variations controls shown in (5.7) and (5.6), respectively,

4Available at http://www.mathworks.com/matlabcentral/
fileexchange/52069-ilqg-ddp-trajectory-optimization.

104

0 2 4 6 8 10 12 14 16 18 20

time (sec)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ra
te

 o
f

s
u

c
c

e
s

s

1st Order

2nd Order

iLQG

Figure 5.4. Convergence success rates of first- (5.7) and second-order (5.6) needle
variation controls for the kinematic differential drive model. Simulation runs:
1000.

and iLQG. I sampled over initial coordinates x0, y0 ∈ [−1500, 1500] mm using a uniform

distribution and keeping only samples for which the initial distance from the origin exceeded

L/5; θ0 = 0 for all samples. Successful samples are defined by being within L/5 from

the origin with an angle θ < π/12 within 60 seconds using feedback sampling rate of 4

Hz. Results are generated using Q = diag(10, 10, 1000), P1 = diag(0, 0, 0), T = 0.5 s,

R = diag(100, 100) for (5.7), R = diag(0.1, 0.1) for (5.6), γ = −15, λ = 0.1

and saturation limits on the angular velocities of each wheel ±150/36 mm/s for each

control approach.5 As shown in Fig. 5.4, the system always converges to the target using

second-order needle variation actions, matching the theory.

5The metric on control effort is necessarily smaller for (5.6), due to parameter λ. The parameter is chosen
carefully to ensure that control solutions from (5.6) and (5.7) are comparable in magnitude.

105

5.3.2. 3D Kinematic Rigid Body

The underactuated kinematic rigid body is a three dimensional example of a system that

is controllable with first-order Lie brackets. To avoid singularities in the state space,

the orientation of the system is expressed in quaternions [160, 161]. The states are

s = [x, y, z, q0, q1, q2, q3], where b = [x, y, z] are the world-frame coordinates and

q = [q0, q1, q2, q3] are unit quaternions. Dynamics f = [ḃ, q̇]T are given by

ḃ = Rqv,(5.8)

q̇ =
1
2

−q1 −q2 −q3

q0 −q3 q2

q3 q0 −q1

−q2 q1 q0

ω,(5.9)

where v and ω are the body frame linear and angular velocities, respectively [162]. The

rotation matrix for quaternions is

Rq =

q2

0+q
2
1−q2

2−q2
3 2(q1q2−q0q3) 2(q1q3+q0q2)

2(q1q2+q0q3) q2
0−q2

1+q
2
2−q2

3 2(q2q3−q0q1)

2(q1q3−q0q2) 2(q2q3+q0q1) q2
0−q12−q2

2+q
2
3

.

The system is kinematic: v = F and ω = T , where F = (F1,F2,F3) and

T = (T1,T2,T3) describe respectively the surge, sway, and heave input forces, and the

106

roll, pitch, and yaw input torques. I render the rigid body underactuated by removing the

sway and yaw control authorities (F2 = T3 = 0).

The four control vectors span a four-dimensional space. First-order Lie bracket terms

add two more dimensions to span the state space (R6) (the fact that there are seven states

in the model of the system is an artifact of the quaternion representation; it does not

affect controllability).

The vectors h1,h2, and [h2,h3] span R3 associated with the world frame coordinates

ẋ, ẏ, and ż. Similarly, vectors h3,h4, and [h4,h3] span R3 associated with the orientation.

Thereby, control vectors and their first-order Lie brackets span the state space and, from

Theorem 1, optimal actions shown in (5.6) will always reduce the cost function (2.3).

To verify this prediction, I present the convergence success of the system on 3D motion.

Using Monte Carlo sampling with uniform distribution, initial locations are randomly gener-

ated such that x0, y0, z0 ∈ [−50, 50] cm keeping only samples for which the initial distance

from the origin exceeded 6 cm. I regard as a convergence success each trial in which the

rigid body is within 6 cm to the origin by the end of 60 seconds at any orientation. Results

are generated at a sampling rate of 20 Hz using Q = 0, P1 = diag(100, 200, 100, 0, 0, 0, 0),

T = 1.0 s, γ = −50000, λ = 10−3, R = 10−6 diag(1, 1, 100, 100) for (5.6), and

R = diag(10, 10, 1000, 1000) for controls in (5.7). Controls are saturated at ±10 cm/s

for the linear velocities and ±10 rad/s for the angular ones. Using 280 simulations over

24 seconds, 80% satisfy the success criterion within 12 seconds and 100% of trajectories

satisfy the success criterion within 20 seconds. None of the simulations converge for the

first-order needle variation controls, because they cannot displace the system in the ŷ

direction.

107

5.3.3. Underactuated Dynamic 3D Fish

I represent the three dimensional rigid body with states s = [b, q, v, ω]T , where

b = [x, y, z] are the world-frame coordinates, q = [q0, q1, q2, q3] are the quaternions that

describe the world-frame orientation, and v = [vx, vy, vz] and ω = [ωx,ωy,ωz] are the

body-frame linear and angular velocities. The rigid body dynamics are given by ḃ and q̇

shown in (5.8) and (5.9) and

Mv̇ = Mv×ω+F ,

Jω̇ = Jω×ω+T ,

where the (experimentally determined) effective mass and moment of inertia of the rigid

body are given by M = diag(6.04, 17.31, 8.39) g and J = diag(1.57, 27.78, 54.11) g·cm2,

respectively. This example is inspired by work in [1,65] and the parameters used for the

effective mass and moment of inertia of a rigid body correspond to measurements of a fish.

The control inputs are F2 = T3 = 0 and F3 ≥ 0.

The control vectors only span a four-dimensional space and, since they are state-

independent, their Lie brackets are zero vectors. However, the Lie brackets containing

the drift vector field g (that also appear in the MIH expression) add from one to four

(depending on the states) independent vectors such that control solutions in (5.6) guarantee

decrease of the cost function (2.3) for a wider set of states than controls in (5.7).

Simulation results based on Monte Carlo sampling are shown in Fig. 5.5. Initial

coordinates x0, y0, z0 are generated using a uniform distribution in [−100, 100] cm, dis-

carding samples for which the initial distance to the origin is less than 15 cm. Successful

108

0 5 10 15 20 25 30 35 40 45 50 55 60

time (sec)

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

ra
te

 o
f

s
u

c
c

e
s

s

1st Order

2nd Order

iLQG

Figure 5.5. Convergence success rates of first- and second-order needle variation
controls—(5.7) and (5.6), respectively—and iLQG for the underactuated dynamic
vehicle model. Simulation runs: 280

Figure 5.6. Snapshots of a parallel displacement maneuver using an underactuated
dynamic vehicle model with second-order controls given by (5.6); first-order
solutions (5.7) are singular throughout the simulation. Animation of these results
is available in Extension 3.

109

(a)

0 2 4 6 8 10

time (s)

0

10

20

30

40

50

d
is

ta
n

c
e
 e

rr
o

r
(c

m
)

1st order

2nd order

(b)

Figure 5.7. Tracking performance of the same system in the presence of +10 cm/s
ŷ fluid drift. The yellow system corresponds to first-order needle variation actions;
the red one to second order. The target trajectory (red ball) is indicated with
white traces over a 10-second simulation. Fig. 5.7b shows the error distance
as a function of time, clearly demonstrating the advantage of the second-order
approach. Animation of these results is available in Extension 4.

trials are the ones for which, within a simulation window of 60 seconds, the system

approached within 5 cm to the origin (at any orientation) and whose magnitude of

the linear velocities is, at the same time, less than 5 cm/s. Results are generated at

a sampling rate of 20 Hz using T=1.5 s, P1=0, Q= 1
200diag(103,103,103,0,0,0,0,1,1,1,2·

103,103,103), γ=−5, R=diag(103,103,106,106) for (5.7), R=1
2diag(10−6,10−6,10−3,10−3)

for (5.6), and λ = 10−4. The same control saturations (F1 ∈ [−1, 1]mN, F3 ∈ [0, 1]mN,

T1 ∈ [−0.1, 0.1]µN·m, and T2 ∈ [−0.1, 0.1]µN·m) are used for all simulations of the dy-

namic 3D fish. As shown in Fig. 5.5, controls computed using second-order needle

variations converge faster than those based on first-order needle variations, and 97% of

trials converge within 60 seconds.

110

Both methods converge over time to the desired location; as the dynamic model of

the rigid body tumbles around and its orientation changes, possible descent directions of

the cost function (2.3) change and the control is able to push the system to the target.

Controls for the first-order needle variation case (5.7) are singular for a wider set of states

than second-order needle variation controls (5.6) and, for this reason, they benefit more

from tumbling. In a 3D parallel maneuver task, only second-order variation controls (5.6)

manage to provide control solutions through successive heave and roll inputs, whereas

controls based on first-order sensitivities (5.7) fail (see Fig. 5.6).

As controls in (5.6) are non-singular for a wider subset of the configuration state

space than the first-order solutions in (5.7), they will provide more actions over a

period of time and keep the system closer to a time-varying target. Fig. 5.7a

demonstrates the superior trajectory tracking behavior of controls based on (5.6) in

the presence of +10 cm/s ŷ fluid drift. The trajectory of the target is given by

[x, y, z]=[cos(3t
10) (20+10cos(t

5)), sin(3t
10) (20 + 10 cos(t

5)), 10 sin(2t
5)], with T=2 s, λ=0.01,

γ=−50000, Q=diag(10,10,10,0,0,0,0,0,0,0,1,1,0.1), P1=diag(10,10,10,0,0,0,0,0,0,0,0,0,0),

R=diag(103,103,106,106) for (5.7), and R=diag(10,10,104,104) for (5.6). The simulation

runs in real time using a C++ implementation on a laptop with Intelr CoreTM i5-6300HQ

CPU @2.30GHz and 8GB RAM.

The drift is known for both first- and second-order systems and accounted for in

their dynamics in the form of ḃ = ḃ+ ḃdrift, where ḃdrift is a vector that points in the

direction of the fluid flow. Simulation results demonstrate superior tracking of second-order

needle variation controls that manage to stay with the target, whereas the system that

corresponds to first-order needle variation controls is being drifted away by the flow.

111

I also tested convergence success of the +10 cm/s ŷ drift case. Initial conditions x, y, z

are sampled uniformly from a 30 cm radius from the origin, discarding samples for which

the initial distance is less than 5 cm. I consider samples to be successful if, during 60

seconds of simulation, they approached the origin within 5 cm. Out of 500 samples, controls

based on second-order variations converged 91% of the time (with average convergence time

of 5.87 s), compared to 89% for first-order actions (with average convergence time of 9.3 s).

Simulation parameters are T=1 s, γ=−25000, Q=10−3diag(10,10,10,0,0,0,0,1,1,1,1,1,1),

P1=diag(100,100,100,0,0,0,0,1
2 ,1

2 ,1
2 ,0,0,0), λ=10−4, R=diag(0.1,0.1,104,104) for (5.7), and

R=1
2diag(10−5,10−5,1,1) for (5.6).

5.4. Discussion

This chapter presents a needle variation control synthesis method for nonlinearly

controllable systems that can be expressed in control affine form. Control solutions

provably exploit the nonlinear controllability of a system and, contrary to other nonlinear

feedback schemes, have formal guarantees with respect to decreasing the objective. By

optimally perturbing the system with needle actions, the proposed algorithm avoids the

expensive iterative computation of controls over the entire horizon that other NMPC

methods use and is able to run in real time for the systems considered here.

Simulation results on three underactuated systems compare first-order needle variation

controls, second-order needle variation controls, and iLQG controls and demonstrate the

superior convergence success rate of the proposed feedback synthesis. Because second-order

needle variation actions are non-singular for a wider set of the state space than controls

based on first-order sensitivity, they are also more suitable for time-evolving objectives, as

112

demonstrated by the trajectory tracking examples in this chapter. Second order needle

variation controls are also calculated at little computational cost and preserve control

effort. These traits, demonstrated in the simulation examples of this chapter, render

feedback synthesis based on second- and higher-order needle variation methods a promising

alternative feedback scheme for underactuated and nonlinearly controllable systems.

113

CHAPTER 6

Real-Time Obstacle Avoidance with Second-Order SAC

This chapter exploits the controllability-based guarantees for convergence presented

in Chapter 5 to achieve collision-avoidance. By accounting for obstacles in the objective,

second-order SAC provably guarantees that the agent reaches the target in a collision-free

manner in the presence of obstacles without relying on predefined trajectories. Using

systems that are controllable with first-order Lie brackets, this chapters demonstrates that

the proposed controller finds collision-free solutions in the presence of both static and

moving obstacles.

6.1. Motion Planning for Controllable Systems in the Presence of Obstacles

Controllability in its classical sense concerns itself with the existence of an action

trajectory that can move the agent to a desired state, subject to the differential constraints

posed by the dynamics, in the absence of obstacles. Controllability is an inherent property

of the dynamics and reveals all allowable motion, disregarding the presence of physical

constraints in the environment.

Feasible path planning amidst obstacles is often treated separately from the optimal

control problem. Most commonly, feasible trajectories are generated with efficient path

planners, such as rapidly-exploring random tree (RRT) and probabilistic road map (PRM)

methods [163,164]. The distinction between path planning and optimal control can be

seen in work by [46,48] that uses such motion planners to generate trajectories among

114

obstacles and then uses them as a reference to compute the optimal control. In this setting,

nonholonomic motion consists of two stages, the path planning and the feedback synthesis

that tracks the feasible trajectory.

Another solution to obstacle avoidance in motion planning is the use of barrier cer-

tificates [165]. Barrier certificates provably enforce collision-free behavior by minimally

perturbing, in a least-squares sense, the control response in order to satisfy safety con-

straints. Feedback synthesis proceeds without accounting for obstacles and solutions are

modified, only when necessary, via a quadratic program (QP) subject to constraints that

ensure collision avoidance [166–170].

Additional solutions to obstacle avoidance include compensating functions that elim-

inate local minima in the objective caused by the obstacles [171], as well as designing

navigation functions using inverse Lyapunov expressions [172]. The former method com-

putes the local minima in the objective and constructs a plane surface function to remove

them and make the objective convex. This process can be cumbersome, as one would have

to locate all local minima in the objective induced by the obstacles and then calculate the

compensating function. On the other hand, navigation functions, described in [172,173],

are globally convergent potential functions and are system-specific.

Several of these collision-avoidance algorithms are not system-specific and could be

implemented with the proposed controller, outlined in Section 5.2. In simulation results,

presented in Section 6.2, I show collision-avoidance using only penalty functions in the

objective, demonstrating that the proposed controller succeeds in tasks (collision avoidance)

that traditionally require sophisticated treatment.

115

I use Theorem 1 to show that the proposed needle-variation controller will always

converge to the global minimizer for convex functions. This statement is true independent

of the presence of obstacles.

Theorem 2. Consider dynamics given by (8.21), a trajectory described by state and

control (x,v) 6=(x∗,v∗). Let x̃k describe the trajectory generated after k iterations of

Algorithm I. Further let x∈Xfree∀ t∈[to,tf], where Xfree⊂X denotes the collision-free

part of the state-space. Consider an objective (2.3) that satisfies Assumption 2 and whose

running cost term penalizes collisions, such that J(x̃k)>J(x) if ∃ t∈[to,tf] where x̃/∈Xfree.

If the objective J(x) is convex with respect to the state x in the unconstrained sense and

the control vectors hi and the Lie brackets [hi,hj] and [g,hi] span the state space (RN),

then the sequence of solutions {x̃k} generated by Algorithm I converges to x∗. Further,

x̃k∈Xfree∀ k∈R+.

Proof. Algorithm I constructs control responses out of the first- and second-order

mode insertion gradients. By extension of Theorem 1, it can guarantee to reduce the

objective with each iteration (for some control u of duration λ). Therefore,

J(x̃k)>J(x̃k+1)≥Jmin,(6.1)

where Jmin=J(x∗) is the (only) minimizer of the convex objective. It follows that,

lim
k→∞

J(x̃k)=Jmin.(6.2)

116

Further, assume that there exists t∈[to,tf] and k∈R+ such that x̃k/∈Xfree. Then J(x̃k)>

J(x), which contradicts (6.1). Using proof by contradiction, I conclude that

x̃k∈Xfree ∀ t∈[to,tf], ∀ k∈R+.(6.3)

Assuming that a collision-free path exists between the agent and the target, it is straight-

forward that the minimizer trajectory is the target’s location. Therefore, from (6.2) and

(6.3), Algorithm I generates a sequence {x̃k} that converges to the target safely.1 �

With regards to Theorem 2, I should alert the reader that Algorithm I may not

guarantee collision-avoidance if the default trajectory is not collision-free, that is if there

exists t∈[to,tf] such that x/∈Xfree. Further, the result of Theorem 2 can generalize to

non-convex functions that have only one minimum.

6.2. Simulation Results

Next, I illustrate the performance of the algorithm in the presence of obstacles. In all

simulations, obstacles are considered in the objective in the form of a penalty function. In

Fig. 6.1, I test the system in the same task as Fig. 5.2 in the presence of two obstacles,

indicated with red spheres. In comparison with Fig. 5.2f, it is worth noting the two angle

peaks, corresponding to each obstacle. After passing the obstacles, the system recovers

the same angle profile.

1Although control responses are constructed from a second-order Taylor series approximation of the
objective, the iterated sequence is guaranteed to decrease the real cost function at each iteration. If the
real cost function is convex with respect to the state (in the unconstrained sense), the iterated sequence
will converge towards the only minimizer. Using a sufficient descent condition, the algorithm is guaranteed
to converge to a point where the unconstrained derivative of the objective is zero (i.e., DxJ(x)=0), which,
from Assumption 4, only happens at the global minimizer.

117

(a) (b)

Figure 6.1. Differential drive using second-order needle variation actions in the
presence of obstacles. Fig. 6.1b shows the deviation from the nominal trajectory
that is the solution to the no-obstacle task. The system performs two maneuvers
to avoid each obstacle. These are evident in the angle deviation (compare to Fig.
5.2c).

Fig. 6.2 shows more complicated maneuvers using controls from (5.6). The controller,

without relying on a motion planner, is able to generate collision-free trajectories and

safely converge to the target in all cases. These simulations also demonstrate another

aspect of Algorithm I. The differential drive always drives up to an obstacle and then

narrowly maneuvers around, instead of preparing a turn earlier on. This behavior is to be

expected of needle variation actions that instantly reduce the cost.

I next use the more complicated scenario of Fig. 6.2d to evaluate the second-order

expansion of the objective, shown in (5.4), across the state-space (see Fig. 6.3). The first-

and second-order mode insertion gradients are computed based on the second-order needle

variation controls from (5.6). States are sampled in the space for x and y in increments

of 5 mm, with θ=0 everywhere. These results correspond to λ=0.001. The horizontal

discontinuity that appears around y=750 mm is believed to be due to the effect of the

118

(a) (b)

(c) (d)

Figure 6.2. Trajectories of the differential drive in the presence of obstacles. Fig.
6.2d compares the solution to the trajectories generated when considering only
a) obstacle 1, and b) obstacles 1 and 2, both of which collide with the obstacles.
Simulations run in real time in Matlab.

119

(a) (b)

Figure 6.3. Cost reduction ∆J , modeled after (5.4), for sampled x and y in the
presence of obstacles, given second-order needle variation controls. The first- and
second-order mode insertion gradients are evaluated with the controls from (5.6).
Figures 6.3a and 6.3b are identical, but shown over a different range to illustrate
that even when looking at small variations of the first-order mode insertion
gradient, the second-order method is reliably negative. The bright vertical line
in Fig. 6.3b is vertically aligned with the target located at [400 mm, 1000 mm],
where first-order solutions are singular. No data are sampled inside the white
circles, as these indicate the infeasible occupied region.

penalty functions. As Fig. 6.3 indicates, the change in cost is always negative, verifying

Theorem 1, even in the presence of obstacles.

I further use a Monte Carlo simulation of 500 trials on the initial conditions to test

convergence success (Fig. 6.4). I sample initial conditions [x,y] from a uniform distribution

in [-200 mm, 1000 mm] × [-400 mm, 800 mm], where θo=0 in all cases. All trials converged

within 25 seconds.

Last, I test the differential drive in the presence of moving obstacles (Fig. 6.5). The

controller is again able to avoid collision and converge to the target, without relying on

additional motion planning techniques. The feedback rate used is 20 Hz and the trajectory

of the obstacles is known to the agent throughout the time horizon. In these simulations,

120

(a) (b)

Figure 6.4. Performance of second-order needle variation actions in the presence
of static obstacles. The controller is able to converge to the target for all 500
trials and avoid collisions. Fig. 6.4a is an interpolated heat map that indicates
the time to convergence as a function of initial position; Fig. 6.4b shows the
trajectories followed by the center of mass of the agent. The gray area indicates
the collision space, taking into account the width of the differential drive. (the
simulation runs in real time in Matlab). For visualization, watch Extension 1.

Table 6.1. Table of Multimedia Extensions

Extension Type Description
1 Video Collision-free convergence

in the presence of static obstacles
from random initial conditions

2 Video Collision-free convergence in the
presence of moving obstacles

3 Video Parallel maneuver of 3D dynamic fish.
4 Video Underactuated tracking of dynamic

3D Fish in the presence of drift.

T=0.3 s. The multimedia extensions to this article can be found online by following the

hyperlinks shown in Table 6.1.

https://www.dropbox.com/s/bql55gmqsh73gx1/StaticObstaclesConvergence.mp4?dl=0
https://www.dropbox.com/s/80qi1hjetm864m0/MovingObstacles.mp4?dl=0
https://www.dropbox.com/s/yk3q0b4xoytbum6/ParallelManeuver.mp4?dl=0
https://www.dropbox.com/s/0e1znvlw0qo7gdx/Tracking.mp4?dl=0

121

Figure 6.5. Performance of second-order needle variation actions in the presence
of three moving obstacles. The left figure shows a snapshot of the simulation; the
right figure plots the distance of the agent from each object and the target, where
the gray area indicates the threshold minimum distance to avoid collision with
the obstacles. The controller converges to the target in a collision-free manner
(the simulation runs in real time in Matlab). For visualization, watch Extension
2.

122

Part 2

Physics-Based System Identification and

Data-Driven Control

123

CHAPTER 7

Background

7.1. Koopman Operator

The Koopman operator K linearly evolves functions of the states s(t)∈S⊆RN (i.e.

Ψ(s(t)), commonly referred to as observables or basis functions) without loss of accuracy

[72]. Given general nonlinear dynamics of the form

sk+1=F (sk),(7.1)

where F is the flow map, the Koopman operator advances the observables with the flow of

the dynamics:

KΨ=Ψ◦F .(7.2)

Thus, it advances measurements of the states linearly. That is,

d

dt
Ψ(s)=KΨ(s) and Ψ(sk+1)=KdΨ(sk),(7.3)

where K and Kd are the continuous-time and discrete-time operators, respectively, related

by K=log(Kd)/∆t [174]. Although a linear representation, the Koopman operator evolves

nonlinear dynamics with full fidelity throughout the state space, contrary to methods that

locally linearize dynamics around a point or a trajectory. To allow for the effect of actuation,

124

(7.3) is modified such that the observables include control terms u as well [73,95]. For a

more comprehensive review of the Koopman operator, I refer the reader to [75].

Expressing nonlinear systems in a linear manner is a desirable property for many

reasons, such as investigating the global stability of a system [175], or extending the local

linearization around a point to the whole basin of attraction [176]. In addition to studying

the behavior of complex systems, the Koopman framework enables the use of linear optimal

control for original nonlinear dynamics. Unfortunately, the infinite-dimensional nature of

the Koopman operator makes practical use prohibitive.

7.2. Koopman Invariant Subspaces

There exist nonlinear systems that admit a finite-dimensional linear Koopman represen-

tation. Work in [85] analytically derives such Koopman invariant subspaces for nonlinear

systems with a specific polynomial structure, whereas the authors in [86–88,177–182]

have tried to identify such subspaces from data. For example, work in [180] identifies

eigenfunctions that may be different from the system states and synthesizes the control

objective in terms of the new coordinates. However, not only do such eigenfunctions not

always exist, they may also not allow the recovery of the system states. In these studies,

the authors demonstrate that the LQR control based on the linear representation can out-

perform LQR control calculated based on the original, nonlinear dynamics. Unfortunately,

Koopman invariant subspaces have only been found for a few systems, mentioned above.

In fact, there can be no finite-dimensional invariant subspace that includes the states for

systems with multiple fixed points [85].

125

In the absence of a finite-dimensional Koopman invariant subspace, a linear propagation

of states will induce errors. Regardless, the benefits of a linear model motivate obtaining

an approximation to the Koopman operator that will evolve the nonlinear system with

acceptable accuracy. Recent studies [56,57,183] use data-driven regression schemes to

approximate the infinite-dimensional operator K with a finite-dimensional representation

K̃ [57,73,82].

7.3. Data-Driven Approximations of Koopman Operators

To obtain an approximation to the Koopman operator, K̃ ∈Rw×w, one can choose a set

of observable functions Ψ(s)=[ψ1(s),ψ2(s),...,ψw(s)] :RN 7→Rw (which can include the

states s themselves) and compute a data-driven model that best fits measurements. There

are several methods to approximate Koopman operators, such as DMD [89], EDMD [82,90],

Hankel-DMD [91], closed-form solutions [92,93], or regression techniques, such as Least

Absolute Shrinkage and Selection Operator (LASSO) regression [57,184]. For efficiency

purposes, researchers typically consider the least-squares solutions of the local one-time-step

error across P measurements given by

K̃∗d=argmin
K̃d

1
2

P∑
k=1
‖Ψ(s(tk+∆t),u(tk+∆t))−K̃dΨ(s(tk),u(tk))‖2,(7.4)

where K̃d∈RW×W is the finite-dimensional approximation of the Koopman operator and

Ψ(s(tk)):RN 7→RW are the observables. Each measurement k consists of the initial state

s(tk), final state s(tk+∆t) and the actuation applied at the same instants, u(tk) and

126

u(tk+∆t), respectively. Equation (7.4) has a closed-form solution given by

K̃∗d=AG†,(7.5)

with

A=
P∑
k=1

Ψ(s(tk+∆t),u(tk+∆t))Ψ(s(tk),u(tk))T

and

G=
P∑
k=1

Ψ(s(tk),u(tk))Ψ(s(tk),u(tk))T

where † refers to the Moore-Penrose pseudoinverse. Measurements need not be from a

single trajectory. Note, however, that the time spacing ∆t between measurements s(tk)

and s(tk+∆t) must be consistent for all P training measurements.

Koopman operators offer an easily implementable system identification framework

that is conducive to linear control tools for nonlinear dynamical systems. The linear

representation makes it easier to analyze the properties of the underlying system, such

as model accuracy or regions of attraction [175, 176]. Further, Koopman-operator-

based control can even outperform feedback that utilizes full knowledge of the nonlinear

dynamics [85,86].

The data-driven approximation of the Koopman operator is not inherently different from

other system identification techniques. In fact, the Koopman operator can be approximated

using any of the standard regression methods, such as ridge or lasso regression [185,186].

More importantly, contrary to standard system identification tools that may try to estimate

127

unknown parameters or, more generally, the nonlinear dynamics of a system [66, 187],

the Koopman operator framework places the system identification task in the context of

seeking linear transformations of the states, which is useful for control [188–190] and

other purposes.

7.4. LQR Control of Nonlinear Dynamics Using Koopman Operators

Consider a linear system with states s(t)∈RN , control u(t)∈RM , and a discrete-time

performance objective

J=
1
2

∞∑
tk=0
‖s(tk)−sdes(tk)‖2Q+‖u(tk)‖2R,(7.6)

where Q�0∈RN×N and R�0∈RM×M are weights on the deviation from the desired states

and the applied control, respectively. Next, I use the Koopman operator dynamics to

design an equivalent objective function and a control response for the original nonlinear

system.

Further, consider the Koopman representation

Ψ(s(tk+∆t),u(tk+∆t))=K̃dΨ(s(tk),u(tk)).(7.7)

For simplicity, let Ψ(s(tk),u(tk))=[ΨT
s (s(tk)),ΨT

u (u(tk))]
T , where Ψs(s(tk))∈Rws are the

functions that depend on the states s and Ψu(u(tk))∈Rwu are the functions that depend

on the input u, where w=ws+wu. Using this notation, I rewrite (7.7) as

Ψs(s(tk+∆t))

Ψu(u(tk+∆t)

≈
A B

· ·

Ψs(s(tk))

Ψu(u(tk))

,(7.8)

128

where (·) is used to indicate the terms associated with predicting the evolution of control,

which is of no interest in this thesis as it will determined by the feedback policy. The

terms A∈Rws×ws and B∈Rws×wu are submatrices of K̃d that describe the dynamics of

the state-dependent functions and change only when K̃d is updated. In addition, (·) is

used to indicate the terms associated with predicting the evolution of control, which is

of no interest in this thesis as it will determined by the feedback policy. Note that even

when there are states coupled with control, dynamics can always be transformed to a

control-affine form. When necessary, this is achieved with a variable replacement u→v and

by introducing additional variables v̇=u such that the control becomes the derivative of the

applied actuation [180]. In this thesis, I choose Ψu(u(tk))=u(tk) to ensure that control

appears linearly in the model. Then, the dynamics of the Koopman state-dependent basis

functions are

Ψs(s(tk+∆t))≈AΨs(s(tk))+Bu(tk).(7.9)

Given the Koopman dynamics (7.9), I choose the performance objective

JK̃=
1
2

∞∑
tk=0
‖Ψs(s(tk))−Ψs(sdes(tk))‖2QK̃+‖u(tk)‖

2
R,(7.10)

where QK̃�0∈Rws×ws penalizes the deviation from the desired observable functions

Ψs(sdes(tk). I let the first N observables be the original states s and set

QK̃=

Q 0

0 0

,(7.11)

129

so that a meaningful comparison can be made with regards to the original nonlinear system

and the associated objective function shown in (7.6). The Koopman representation is

conducive to linear quadratic regulator (LQR) feedback of the form

u(tk)=−KLQR(Ψs(s(tk))−Ψs(sdes(tk))),(7.12)

where KLQR∈RM×ws , the LQR gains, can be readily calculated from A,B in (7.8) [191,

192]. Note that, for given LQR gains, the control is updated using only the functions

Ψs(s(tk)), leading to minimal computation. For more details on the control policy used

for the Koopman representation, the reader can refer to [92]. Last, I want to emphasize

that the proposed approach for synthesizing data-driven Koopman representations can be

used with different feedback schemes, such as MPC control.

130

CHAPTER 8

Data-Driven Identification and Control Using Koopman

Operators

This chapter presents a generalizable methodology for data-driven identification of

nonlinear dynamics that bounds the model error in terms of the prediction horizon and the

magnitude of the derivatives of the system states. Using higher-order derivatives of general

nonlinear dynamics that need not be known, I construct a Koopman operator-based linear

representation and utilize Taylor series accuracy analysis to derive an error bound. The

resulting error formula is used to choose the order of derivatives in the basis functions

and obtain a data-driven Koopman model using a closed-form expression that can be

computed in real time. Using the inverted pendulum system, I illustrate the robustness of

the error bounds given noisy measurements of unknown dynamics, where the derivatives

are estimated numerically. When combined with control, the Koopman representation

of the nonlinear system has marginally better performance than competing nonlinear

modeling methods, such as SINDy and NARX. In addition, as a linear model, the Koopman

approach lends itself readily to efficient control design tools, such as LQR, whereas the

other modeling approaches require nonlinear control methods. The efficacy of the approach

is further demonstrated with simulation and experimental results on the control of a

tail-actuated robotic fish. Experimental results show that the proposed data-driven control

approach outperforms a tuned PID (Proportional Integral Derivative) controller and

131

that updating the data-driven model online significantly improves performance in the

presence of unmodeled fluid disturbance. This chapter is complemented with a video:

https://youtu.be/9 wx0tdDta0.

8.1. Synthesis of Basis Functions for Error-Bounded Koopman

Representation

This section motivates using higher-order derivatives of nonlinear dynamics to populate

the observables of an approximate Koopman operator. The benefits of a derivative-based

representation are twofold. First, subject to a finite number of basis functions, it allows

one to best capture, locally in time, nonlinear dynamics. For systems that admit a finite-

dimensional Koopman invariant subspace, it is straightforward to show that the terms in

the observable functions Ψ(s) capture all higher-order derivatives of the original states.

This is the reason why the linear representation matches the nonlinear dynamics with

no error. This is also true for the invariant subspaces found in [85], where the Koopman

observable functions are populated using the Carleman linearization approach [193–195];

for the polynomial systems considered there, the observable functions correspond to the

higher-order derivatives of the nonlinear dynamics. When the derivative functions do not

span an invariant subspace, populating the observables Ψ(sk) with higher-order derivatives

instead of arbitrary basis functions generates, locally in time, an increasingly (with the

order of derivatives) accurate linear representation of the nonlinear dynamics.

Second, the derivative-based representation enables the derivation of error bounds on

future predictions. Notably, when the model is entirely data-driven, these error bounds

might not be enforced, but offer sound bound estimates that still hold, as I illustrate

https://youtu.be/9_wx0tdDta0

132

in Subsection 8.1.4, but which are then dependent on the quality of data used in the

data-driven process. To approximate the Koopman operator, so far studies have largely

focused on data-driven methods of the form in (7.4) that consider only the local error

across one time step, that is

Ψ(sk+1,uk+1)−K̃dΨ(sk,uk).(8.1)

Another measure of the accuracy of the Koopman representation is the global error, over

an arbitrarily long time window across all time steps m>0 (see Fig. 8.1), that is

Ψ(sk+m,uk+m)−K̃md Ψ(sk,uk).(8.2)

The derivative-based linear embedding methodology presented in this work enables

the computation of global error bounds of the Koopman representation. By exploiting the

accuracy properties of Taylor expansions, I can synthesize Koopman basis functions that

bound the model error for any particular order of linear representation. The error bounds

in turn allow one to select the lowest-order representation that meets a desired accuracy.

This analysis is presented next.

The proposed linear embedding method does not require knowledge of the dynamics;

instead, it requires only that the time derivatives of the system states of interest be

available. The values of the derivatives can be either evaluated, using knowledge of

the dynamics equations, or numerically estimated from state measurements (using finite

differencing or other methods [196]). The method can be used

133

• for known nonlinear dynamics: each state derivative is analytically derived from

the dynamics equation and constitutes a basis function for the Koopman operator

(one basis function per derivative)

• for dynamics whose structure is known but coefficients might be unknown or

changing, as I illustrate in Subsection 8.1.3: derivatives are analytically derived

from each term that appears in the dynamics equation; each term that is computed

constitutes a separate basis function for the Koopman operator (at least one basis

function per derivative)

• for completely unknown dynamics, as I illustrate in Subsection 8.1.4: each state

derivative is numerically calculated and constitutes a basis function for the

Koopman operator (one basis function per derivative).

8.1.1. Error Bounds of Derivative-Based Koopman Operators

The evolution of a nonlinear function f(t) that is continuously differentiable up to nth

order can be approximated with a Taylor series as

f̃(tk+1)=f(tk)+f
′(tk)·(tk+1−tk)

+
f ′′(tk)

2!
·(tk+1−tk)2+···+f

(n)(tk)

n!
(tk+1−tk)n,

where tilde (·̃) denotes the predicted value of a function, and not its true value.1 To

keep the algebraic expressions compact, let tk+1−tk=∆t and f (i)k ,,f (i)(tk), ∀ i∈Z∩[1,n],

1I assume that the true values of the function f and its derivatives are known at time tk. Uncertainty
about the initial values can be readily included in the formula of the global error, later shown in this
chapter.

134

Ψ(sk, uk)
KdΨ(sk, uk)
~

Ψ(sk+2, uk+2)

e1
e2

KdKdΨ(sk, uk)
~ ~

Ψ(sk+1, uk+1)

F
u
n
ct

io
n
 S

p
a
ce

~

KdΨ(sk+1, uk+1)
~e1

Ψ(sk, uk)
KdΨ(sk, uk)

Ψ(sk+2, uk+2)
Ψ(sk+1, uk+1)

e1

Local Error

Global Error

Ψ(sk+3, uk+3)

KdKdKdΨ(sk,uk)
~ ~ ~

e3

KdΨ(sk+2, uk+2)
~

Ψ(sk+3, uk+3)

e1

Figure 8.1. Local and global errors induced by approximate Koopman operators.
The local error is the error induced by the operator across one step, assuming no
error in the initial conditions. The global error is the total deviation away from
the true states across multiple steps.

which simplifies the above expression to

f̃k+1=fk+f
′
k·∆t+f ′′k ·

∆t2

2!
+···+f (n)k

∆tn

n!
.(8.3)

Propagating a function using its derivatives allows one to use the accuracy of the Taylor

series to characterize the error in the evolution of a function across one time step ∆t.

The local error induced by a Taylor series approximation using up to n derivatives across

135

one time step is Rn(k)=fk+1−f̃k+1. This error is calculated using Lagrange’s remainder

formula:

Rn(k)=
f
(n+1)
c

(n+1)! ∆tn+1,(8.4)

where f
(n+1)
c ,f (n+1)(c) is the time derivative of order n+1 evaluated at some time

c∈[tk,tk+1]. If there exists a positive real number L such that |f (n+1)
c | ≤L for all c∈[tk,tk+1],

then the upper error bound in (8.4) becomes

|Rn(k)|≤
L

(n+1)! ∆tn+1.(8.5)

For the purpose of applying linear control synthesis tools to linear representations of

nonlinear dynamics, I bring the Taylor approximation in (8.3) to a linear matrix form:

f̃k+1

f̃ ′k+1

f̃ ′′k+1
...

f̃
(n)
k+1

︸ ︷︷ ︸
Ψ(sk+1)

≈

1 ∆t
∆t2

2 ··· ∆tn

n!
0 1 ∆t ··· ∆tn−1

(n−1)!

0 0 1 ··· ∆tn−2

(n−2)!
...

...
...

. . .
...

0 0 0 ··· 1

︸ ︷︷ ︸

K̃d

fk

f ′k

f ′′k
...

f
(n)
k

︸ ︷︷ ︸

Ψ(sk)

.(8.6)

For a fixed ∆t, expression (8.6) resembles (7.3), where the derivatives of the function fk

are the observables Ψ(sk). When representing the Taylor series expansion, the derivative

functions f (i) are known at time step tk and approximated at time tk+1 by f̃ (i). When

training a Koopman operator, pairs of measurements of the states sk and sk+1 are used to

136

evaluate the basis functions at the corresponding time steps: Ψ(sk) and Ψ(sk+1). Note

that, in (8.6), all derivatives of fk are assumed to be different functions. The analytical

expression (8.6) is equivalent to a Taylor series expansion (8.3) across one time step ∆t for

all the basis functions. Therefore, the same error analysis (8.5) applies to each observable

in (8.6).

When propagating a function across multiple time-steps using (8.6), the observable

functions are themselves numerically propagated instead of being evaluated with measurable

states at each time step, as is the case for a typical integration scheme. As a result, error

accumulates not only in approximation of the original function f , but in the other

observables as well. To track the error in the original f , therefore, it is necessary to be

able to model the error in all of the basis functions. Using the accuracy of the Taylor

series structure, I am able to model the error on every basis function and ultimately bound

the model error in f .

Theorem 3. Consider a general nonlinear function f(t) that is continuously differen-

tiable up to order n. Propagating f(t) and its first n derivatives using the Taylor-based

linear representation (8.6) induces an error in f(t) that is given by

ek=
k−1∑
i=1

n∑
j=1

e
(j)
i

∆tj

j!
+
k−1∑
i=0

f
(n+1)
i,i+1

∆tn+1

(n+1)! ,(8.7)

where n∈Z≥0 is the number of derivative basis functions used, k∈Z≥1 is the number of

time steps into the future, and, from Lagrange’s remainder formula (8.4), f (n+1)
i,i+1 is the

n+1th time derivative of function f evaluated at some time t∈[ti,ti+1]. The error bound

137

is given by

|ek|≤
Tn+1

(n+1)! |f
(n+1)
max |,(8.8)

where T,k∆t is the prediction time horizon and |f (n+1)
max | is the maximum magnitude of

the n+1th derivative.

Proof. For the derivation of the error expression (8.7), see Appendix A.4. For the

derivation of the error bound formula (8.8), see Appendix A.5. �

To the best of my knowledge, this is the first work that provides prediction error

bounds on the accuracy of a Koopman representation for general nonlinear dynamics.

Prediction error bounds based on Taylor series had previously only been derived for a

single step, and not for an arbitrary number of time steps into the future, as I derive in

this chapter.

The error bound (8.8) is associated with the Koopman representation (8.6) for the

dynamics of a single function f . The same methodology can be used to propagate multiple

states of a system with coupled dynamics. Specifically, a system with states s(t) and

general nonlinear dynamics ṡ(t)=g(s(t))∈RN that are continuously differentiable up to

order n

d

dt

s1

s2
...

sN

=

g1(s)

g2(s)
...

gN (s)

(8.9)

138

can be propagated in discrete time as

s1,k+1

s2,k+1
...

sN ,k+1

=

s1,k+g1,k·∆t+···+g
(n1)
1,k

∆tn1+1

(n1+1)!

s2,k+g2,k·∆t+···+g
(n2)
2,k

∆tn2+1

(n2+1)!
...

sN ,k+gN ,k·∆t+···+g
(nN)
N ,k

∆tnN+1

(nN+1)!

,(8.10)

where nj for j∈Z∩[1,N] indicates the highest-order of derivatives of gj used to propagate

the jth state of the original dynamics (which does not have to be the same for all states).

The above expression can be rewritten in a linear form similar to (8.6)

139

s1,k+1

g1,k+1
...

g
(n1)
1,k+1

s2,k+1

g2,k+1
...

g
(n2)
2,k+1

...

sN ,k+1

gN ,k+1
...

g
(nN)
N ,k+1

︸ ︷︷ ︸

Ψ(sk+1)

=

T (n1) 0 ··· 0

0 T (n2) ··· 0

0 0
. . .

...

0 0 ··· T (nN)

︸ ︷︷ ︸

K̃d

s1,k

g1,k
...

g
(n1)
1,k

s2,k

g2,k
...

g
(n2)
2,k

...

sN ,k

gN ,k
...

g
(nN)
N ,k

︸ ︷︷ ︸

Ψ(sk)

,(8.11)

140

where

T (nj)=

1 ∆t ··· ∆tnj+1

(nj+1)!

0 1 ··· ∆tnj

nj !
...

...
. . .

...

0 0 ··· 1

for j∈Z∩[1,N].(8.12)

Note how (8.11) is grouped into submatrices that propagate independently each state

and its higher-order derivatives. The basis functions are the states and their derivatives.

Propagating a nonlinear system with states s and nonlinear dynamics g(s(t)) using (8.11)

is equivalent to propagating each state separately using (8.6) and thus induces, for each

state, an error given by an expression similar to (8.7).

The formulation in (8.11) uses basis functions that depend, for simplicity, only on the

state s. When working with a system that has control inputs, one can treat controls u in

a similar fashion and calculate its higher-order derivatives, by introducing u as dummy

states that are the derivatives of the control input, a common practice [86].

Corollary 3.1. Consider general nonlinear dynamics ṡ(t)=g(s(t)) that are continu-

ously differentiable up to order n. Propagating s(t) using (8.11) induces a bounded error

on state si, i∈Z∩[1,N], given by (8.7), where g(s(t))(i−1)=f(t)(i).

Proof. Consider the propagation of each state si and its derivative functions g(·)i . Let

each si be a function fi whose nthi derivative is f (ni). Then, from Theorem 3, propagating

each state si,fi with (8.6) induces an error given by (8.7). �

141

The error bound (8.8) allows one to calculate the maximum possible error in each

system state when propagating it with the fixed linear matrix (8.11). As a result, the

bound can be used to determine the desired number of derivatives that are needed for each

state that would generate minimal error given a fixed prediction horizon T and subject

to the nonlinear dynamics. Alternatively, the error bound can also be used to compute

the maximum length of the prediction time horizon for which the state error is bound to

remain under a threshold given a set number of derivative basis functions.

Because, in general, there is no closure of the higher-order derivatives and the series

has to be truncated, the analytical expression (8.6) would only lead to an approximate

Koopman operator, as is commented in [85]. Note, for example, that the highest derivatives

in (8.11) are not updated at all. For this reason, I use data-driven techniques to obtain a

K̃d that more accurately advances all of the basis functions than the analytical expression.

On the other hand, the error bound (8.8) applies to a linear propagation of nonlinear

dynamics using (8.11) and therefore is no longer guaranteed when a data-driven operator is

used instead. Nevertheless, it can still serve to measure how amenable nonlinear dynamics

are to a linear representation by revealing the relationship between the magnitude and

order of the derivatives. Furthermore, empirically, the data-driven model does resemble

the Taylor-series structure (8.11) such that the error bounds remain relevant.2 Using

simulation results, I next verify the similarity of the data-driven operator to the analytical

expression in (8.6), as well as the validity of the error bounds.

2Although the data-driven solution is not guaranteed to bound all local errors within the Taylor series
accuracy, given a training dataset that is a representative part of the state space, solutions that largely
deviate from the Taylor-series structure in (8.6) would generate large local errors in parts of the state
space and thus be avoided by the least-squares solution (7.5).

142

8.1.2. Error Bound Estimation Using Data-Driven Operator

The error bound formula (8.8), derived for a linear representation of (8.11), remains relevant

to a data-driven operator, when the latter has similar structure, i.e., small Frobenius

distance, to the Taylor-series form (8.6). On the other hand, since an operator computed

from data may not take exactly the form of (8.11), the bounds shown in (8.8) are not

strictly enforced, but offer what I refer to as sound bound estimates in the remainder of the

chapter. To calculate the bound estimates, one needs to compute |f (n+1)
max |, the magnitude

of the lowest-order derivative of the system states that is not used in the basis functions.

When dynamics are known, this value can be calculated numerically. Alternatively, as

I show next, one can exploit the Taylor-series structure of the data-driven operator to

estimate the error bounds beyond the training set that has been used to generate the

Koopman operator even when there is no knowledge of the dynamics.

Specifically, given a linear representation that approximates the Taylor-series structure

(8.6), the local error across one time step induced by the data-driven model can be described

by the Taylor series accuracy. Thus, using (8.8), the error across one time step (k=1) of a

function f can be written as

|e1|≤|f (n+1)
max

∆t(n+1)

(n+1)! |=|f
(n+1)
max |

∆t(n+1)

(n+1)! ,(8.13)

where e1 is available from the data-driven training process (7.4). Let |e1|max be the

maximum local error, i.e., |e1|max≥|e1|. Then, when the training data set is large enough,

143

one can get

|e1|max≈|f (n+1)
max |

∆t(n+1)

(n+1)! ,(8.14)

which is rearranged to

|f (n+1)
max |≈|e1|max

(n+1)!
∆t(n+1) .(8.15)

In short, I use the maximum error across one time step from the training process to

estimate the term |f (n+1)
max |, which in turn, using (8.8), allows us to estimate |ek|, the error

bound after k time steps. Alternatively, when no analytical model of the dynamics is

available, the value |f (n+1)
max | can also be estimated numerically using measurements of f .

8.1.3. Synthesis of Derivative-Based Koopman Observables with Structural

Knowledge of Dynamics

The derivative-based approach proposed in this work populates Koopman observables with

the system states s and their derivative functions. Each derivative is a separate function

that can be computed from the analytical expression when dynamics are fully known, or

numerically estimated from measurements when no model exists. In this subsection, I

show how I construct the basis functions to exploit structural knowledge of dynamics that

have unknown coefficients.

For simplicity, I assume that the dynamics of each system state depend on a single

term, i.e., a nonlinear function multiplied by a coefficient; the case of having multiple such

terms can be handled similarly. In particular, consider a nonlinear system with states

144

s∈RN and dynamics

d

dt

s1

s2
...

sN

=

c1g1(s)

c2g2(s)
...

cNgN (s)

,(8.16)

where ci, i∈Z∩[1,N], are unknown coefficients and gi(s) are nonlinear functions of the

states s. The second-order time derivatives of the states s are

d2

dt2

s1

s2
...

sN

=

c1g′1(s)

c2g′2(s)
...

cNg
′
N (s)

,(8.17)

where g′i(s) denotes the time derivative of gi, and thus

cig
′
i(s)=ci(

∂gi
∂s1

c1g1+···+
∂gi
∂sN

cNgN) for i∈Z∩[1,N].(8.18)

For ease of discussion, I limit the analysis to the first two time derivatives, but the

same process can continue to generate higher-order derivatives and, thus, additional basis

functions.

Using the states si, the first-order derivatives gi and the individual terms ∂gi
∂sj

gj that

appear in g′i(s), where i,j∈Z∩[1,N], I populate the basis functions of the Koopman matrix.

145

In discrete time, the states are then propagated with

s1,k+1

s2,k+1
...

sN ,k+1

=

s1,k+c1g1,k·∆t+c1g′1,k
∆t2

2!
s2,k+c2g2,k·∆t+c2g′2,k

∆t2

2!
...

sN ,k+cNgN ,k·∆t+cNg′N ,k
∆t2

2!

.(8.19)

Substituting for the g′i(s) terms, I show the expected form for a single state s1:

s1,k+1

g1,k+1

{∂g1
∂s1

g1}k+1

{∂g1
∂s2

g2}k+1

...

{ ∂g1
∂sN

gN}k+1

︸ ︷︷ ︸

Ψ(sk+1)

=

1 c1∆t c2
1

∆t2

2 c1c2
∆t2

2 ... c1cN
∆t2

2
0 1 c1∆t c2∆t ... cN∆t

0 0 1 0 ... 0

0 0 0 1 ... 0
...

...
...

...
. . .

...

0 0 0 0 ... 1

︸ ︷︷ ︸

K̃d

s1,k

g1,k

{∂g1
∂s1

g1}k

{∂g1
∂s2

g2}k
...

{ ∂g1
∂sN

gN}k

︸ ︷︷ ︸

Ψ(sk)

.(8.20)

As before, to improve the accuracy of the linear representation, I use data to approximate

a Koopman operator.

8.1.4. Assessment of Error Bound Estimates

Using the single pendulum system, I demonstrate the error bound estimates for the

data-driven linear approximation, both when the dynamics are known and when they are

unknown. In particular, I show that |f (n+1)
max | can be computed using the dynamics equations

(model-based estimate) when those are available, or approximated using the residue error in

146

the training process when the dynamics are unknown (data-driven estimate), as explained in

Subsection 8.1.2. In both cases, once |f (n+1)
max | is calculated, the error bounds are computed

using (8.8). The states are s=[θ,ω]T and dynamics are given by ṡ=[ω,gl sin(θ)+u]
T , where

g=9.81 m/s2 is the gravitational constant, l=1 m is the pendulum length, and u is the

control.

For the model-based estimate of the error bounds, the maximum magnitude of the nth

derivative is (for each state) computed numerically by maximizing the symbolic expression

over the domain of the state space that is used for training. For the data-driven estimate,

the maximum magnitude is computed using (8.15) based on the training error. Note that,

when propagating a data-driven operator instead of (8.11), the error bound estimates may

in theory be violated.

I sample and forward-simulate 5000 initial states s0 for ∆t=0.01 s to obtain a Koopman

operator K̃d via (7.5), which I then use on a different randomly selected set of 5000 states

to propagate the dynamics for a time horizon T . In both the training and the testing sets,

uniform distributions of the initial states Uθ0(−2π rad, 2π rad) and Uω0(−5 rad/s, 5 rad/s)

are used. For each sample, both in training and in testing, I apply random inputs generated

from a uniform distribution given by Uu(−5rad/s2,5rad/s2). The observables include the

angle θ and its first three derivatives, derived analytically based on the dynamics equation.

The obtained structure of the data-driven Koopman operator resembles the Taylor-

series structure (8.6) (see Fig. 8.2), which adds validity to the data-driven error bound

estimation. The error bound estimates and the actual errors are shown in Fig. 8.3. The

error bound that is estimated from the structure of the data-driven operator without

knowledge of the dynamics is reasonably accurate at predicting the maximum error. In

147

- =~

Data-driven

Kd

100 0

10 0 Δt

10 Δt

1 Δt Δt2

2
Δt3
6

Δt2

2

(a)

0 1 2 3

0

1

2

3de
riv

at
iv

es
 o

rd
er

Taylor coefficients order

10-2

10-10

10-8

10-6

10-4

(b)

0 1 2 3
Taylor coefficients order

θ

θ

θ

θ

10-12

10-10

10-8

10-6

10-4

10-2

100

de
vi

at
io

n

(c)

Figure 8.2. The deviation of the data-driven Koopman operator from the Taylor-
based matrix (8.6) for the single pendulum system, where the derivative basis
functions are constructed analytically from the known dynamics. Fig. 8.2b shows
that the non-zero coefficients (upper triangle) of the linear Taylor expansion are
accurately recovered from the data-driven operator. The zero coefficients (lower
triangle) are replaced by small values that help minimize the least-squares error for
the part of the state space used in the training set. The deviation differs by orders
of magnitude across the basis functions, as seen in Fig. 8.2c. As expected, the
deviation is smallest for θ, as it is the one with the highest number of derivatives
used in the basis functions.

addition, note that the maximum actual error and the error bound estimates have similar

slopes with respect to the prediction horizon as well as the fact that both the actual error

and the error bound estimates decrease with increasing order of derivatives used as basis

functions.

148

0 0.1 0.2

T (s)

0

0.2

0.4

0.6

 (
ra

d
)

Data Est.

Model Est.

Max Error

0 0.1 0.2

T (s)

0

2

4

 (
ra

d
/s

)

(a) n=1

0 0.1 0.2

T (s)

0

0.2

0.4

0.6

 (
ra

d
)

0 0.1 0.2

T (s)

0

2

4

 (
ra

d
/s

)

(b) n=2

0 0.1 0.2

T (s)

0

0.2

0.4

0.6

 (
ra

d
)

0 0.1 0.2

T (s)

0

2

4

 (
ra

d
/s

)

(c) n=3

Figure 8.3. Simulated error bound estimates and actual error bounds for the single
pendulum system as a function of the prediction horizon and for increasing orders
of derivatives used as Koopman basis functions. The derivative basis functions are
constructed analytically from the known dynamics. Both error bound estimates are
calculated using (8.8), but differ in how they compute |f (n+1)

max |. Data Est. is the
model-free error bound estimate and uses the data-driven Koopman operator and
(8.15) to compute |f (n+1)

max |; Model Est. is the model-based error bound estimate
and uses the analytical dynamics equations to compute |f (n+1)

max |; Max error is
the measured largest deviation as a function of time between the actual value of
the state and the one predicted by the data-driven Koopman operator across all
trajectories that evolve from randomly sampled initial conditions. Results are
shown for three different orders of derivatives of θ. Note that state θ has always one
more derivative than ω. The data-driven bound estimates and actual errors can be
generated for different parameter choices using a Jupyter notebook at https://
colab.research.google.com/drive/1EPX1XVUHr9gix-pZD_3Ydw7Npzz9n3Jj.

Next, I demonstrate the performance of the derivative-based data-driven Koopman

operator and the error bound estimates when dynamics are unknown. Using the sin-

gle pendulum system, only the angle and angular velocity are measured; higher-order

derivatives are estimated using central finite differences [197]. To illustrate the robustness

of the approach to noise, I add zero-mean Gaussian-distributed noise N (0,σ2) to the

measurements of θ and ω, which are then also filtered through a moving average of 15

periods for noise reduction. The higher-order derivatives and the Koopman operator are

computed from the filtered measurements. The term |f (n+1)
max | is computed as the maximum

magnitude of |f (n+1)|, which is also calculated using central finite differences [197].

https://colab.research.google.com/drive/1EPX1XVUHr9gix-pZD_3Ydw7Npzz9n3Jj
https://colab.research.google.com/drive/1EPX1XVUHr9gix-pZD_3Ydw7Npzz9n3Jj

149

In Fig. 8.4 I show results for n=2 and two levels of noise: low (σ=π/180) and high

noise (σ=15π/180). Note that the actual maximum error induced by the Koopman

operator remains almost identical, indicating that the operator is robust to high levels of

noise. The error bound estimate for the low-noise scenario follows closely the error induced

by the Koopman operator. In the high-noise scenario, the error bound estimate is more

conservative. This is because the error bound formula is highly dependent on the calculated

term |f (n+1)
max |, which is likely to be miscalculated with noisy measurements. Note that if

the training data do not represent the entire state space, the calculated value for |f (n+1)
max |

is likely to underestimate the true value. On the other hand, including some safety margin

in the |f (n+1)
max | term can make the error bounds more conservative. These results suggest

that, although the error bound estimates may become less accurate with increasing levels

of noise when dynamics are unknown, the performance of the derivative-based Koopman

operator remains robust to noise, suggesting that the proposed methodology is a promising

candidate for the prediction of unknown systems.

In conclusion, the error bounds are derived with respect to the analytical Taylor-based

Koopman form of (8.6). However, I show (Fig. 8.2) that, in practice, the data-driven

Koopman model has a very similar structure to (8.6) such that the error bounds remain

relevant estimates. In addition, I verify that the error bounds reflect reasonably well

the prediction error induced by data-driven Koopman models (Fig. 8.3), even in the

presence of noise (Fig. 8.4). In practice, the error bounds, which depend on the prediction

time horizon and the magnitude of the derivatives of the dynamics, provide a systematic

method to determine the basis functions for a desired balance between model accuracy

and complexity.

150

0 0.1 0.2 0.3

T (s)

0

0.1

0.2

0.3

0.4

 (
ra

d
)

0 0.1 0.2 0.3

T (s)

0

1

2

3

4

 (
ra

d
/s

)

Bound Est. (Low Noise)

Max Error (Low Noise)

Bound Est. (High Noise)

Max Error (High Noise)

Figure 8.4. Simulated error bound estimates and actual maximum errors induced
by the data-driven Koopman operators for the single pendulum system when
dynamics are unknown and measurements are noisy. The derivative basis functions
are calculated numerically from the state measurements—no analytical model is
used.

Figure 8.5. Control of a pendulum system based on data-driven models obtained
using SINDy, NARX, a linear model based only on the system states, and a
derivative-based Koopman model whose observables contain the state θ and its
first- and second-order derivatives. The derivative basis functions are numerically
estimated from state measurements both for training the Koopman model and
online to implement control—no analytical model is used. All models are used to
design MPC control and, in addition, I use the Koopman model for LQR feedback
(Koopman-LQR). Koopman with MPC has the lowest cost (19.71) for the 10 s
simulation, while NARX, SINDy and the linear model result in errors that are
12.43%, 18.32%, and 30.61% higher, respectively. Koopman-LQR leads to the
second best performance (0.97% higher error in comparison to Koopman-MPC).

151

Note that, in this work, I do not argue that one should always use additional basis

functions than the original system states; instead, one could analyze when and how to

augment the basis functions of Koopman operators to improve the modeling accuracy

while being cognizant of increased system order and complexity. In particular, the derived

error bound estimates can serve as a guide on whether one should do so and by how many

derivatives.

8.1.5. Comparison to alternative system identification methods

Finally, I compare the performance of the derivative-based data-driven Koopman represen-

tation approach to alternative system identification methods using the single pendulum

system. Specifically, I use SINDy [198], NARX [199], a data-driven linear model, and the

proposed derivative-based data-driven Koopman approach to obtain models and design

MPC control to invert the pendulum to the upright position.

To train the models I uniformly sample and forward simulate 500 initial states s0 for

∆t=0.04 s. The initial states are sampled from uniform distributions given by Uθ0(−2π rad,

2π rad) and Uω0(−5 rad/s, 5 rad/s). I use random inputs generated from a distribution given

by Uu(−10rad/s2,10rad/s2). I train the SINDy model using the open-source package [200]

and the NARX model using the MATLAB Deep Learning Toolbox [201]. The higher-order

derivatives used for SINDy and the derivative-based Koopman model are numerically

estimated from the angle and angular velocity measurements.

Fig. 8.5 shows simulation results for the inversion of the single pendulum system using

MPC control computed from models obtained with NARX, SINDy, a data-driven linear

model based only on the system states (n=1, see Fig. 8.3), and a data-driven Koopman

152

representation based on the state θ and its first- and second-order derivative (n=2). In

addition, I also test LQR control on the Koopman model to demonstrate that similar

control performance can be achieved with LQR gains that are computed once. The desired

states are given by sdes=[0,0], the weights for the states and control are Q=diag(5,0.01)

and R=0.001, respectively, and the prediction horizon is T=0.1 s.

I also compare the control performance of these methods for 30 initial conditions θ0

and ω0 sampled from uniform distributions given by Uθ0(−π rad, π rad) and Uω0(−2 rad/s,

2 rad/s). The average of the 30 errors is 6.00 (with a standard deviation of 6.60) for the

Koopman-LQR approach; 6.05 (with a standard deviation of 6.59) for the Koopman-MPC;

6.48 (with a standard deviation of 7.00) for NARX; 6.69 (with a standard deviation of

7.18) for SINDy; and 7.44 (with a standard deviation of 7.70) for the linear model.

These results show that the control performance of the Koopman-MPC method is

marginally better than the linear-MPC, NARX-MPC and SINDy-MPC. Also, the Koopman-

LQR approach delivers control performance comparable to the Koopman-MPC method,

with the additional benefit that it lends itself to efficient control computation, which

makes it an attractive choice for online robotic control applications. This is why I use

Koopman-LQR in the simulations and experiments with the robotic fish in Section 8.2.

8.2. Data-Driven Control of Tail-Actuated Robotic Fish

I illustrate and validate the proposed data-driven modeling approach using a tail-

actuated robotic fish. The states of the robotic fish are s=[x,y,ψ,vx,vy,ω]T , where x,y are

the 2D world-frame coordinates, ψ is the orientation, vx and vy are the body-frame linear

velocities (surge and sway, respectively), and ω is the body-frame angular velocity. I use α

153

Figure 8.6. Error bound estimates based on derivative-based Koopman models
of the robotic fish dynamics (8.21) for increasing order of derivatives used in the
basis functions. The derivative basis functions are constructed analytically from
the known dynamics. Each additional order of derivatives improves the error
bound estimates over the selected prediction horizon. The error bound estimates
are computed using (8.8) where |f (n+1)

max | is calculated from the training data.

to indicate the angle of the tail, actuated with α(t)=αo+αasin(ωat), where αa,αo,ωa are

the amplitude, bias, and frequency of the tail beat. To simplify the problem, I keep the

frequency fixed at ωa=2π rad/s.

I describe the dynamics of the system with an average model [202] given by

ṡ=

ẋ

ż

ψ̇

v̇x

v̇y

ω̇

4
=

vxcos(ψ)−vysin(ψ)

vxsin(ψ)+vycos(ψ)

ω

f1(s)+Kff4(α0,αa,ωa)

f2(s)+Kff5(α0,αa,ωa)

f3(s)+Kmf6(α0,αa,ωa)

,(8.21)

154

where

f1(s)=
m2
m1

vyω−
c1
m1

vx
√
v2
x+v

2
y+

c2
m1

vy
√
v2
x+v

2
yarctan(vy

vx
)

f2(s)= −
m1
m2

vxω−
c1
m2

vy
√
v2
x+v

2
y−

c2
m2

vx
√
v2
x+v

2
yarctan(vy

vx
)

f3(s)= (m1−m2)vxvy−c4sgn(ω)ω2

f4(α0,αa,ωa)=
m

12m1
L2ω2

aα
2
a(3−

3
2α

2
o−

3
8α

2
a)

f5(α0,αa,ωa)=
m

4m2
L2ω2

aα
2
aαo

f6(α0,αa,ωa)= −
m

4J3
L2cω2

aα
2
aαo

(8.22)

and m1=mb−max ,m2=mb−may ,J3=Jbz−Jaz ,c1=1
2ρSCD,c2=1

2ρSCL,c4= 1
J3
KD,c5=

1
2J3

L2mc. Parameter mb is the mass of the robotic fish, max and may are the hydrody-

namic derivatives that represent the added masses of the robotic fish along the x and y

directions, respectively, Jaz and Jbz are the added inertia effect and the inertia of the

body about the z-axis, respectively, m is the mass of the water displaced by the tail

per unit length, ρ is the water density, L is the tail length, c is the distance from the

body center to the pivot point of the actuated tail, CD,CL,KD are drag force, lift, and

drag moment coefficients, respectively, and Kf and Km are scaling coefficients measured

experimentally [203].

I train a Koopman operator using the control-affine form of the dynamics (8.21) that

is obtained by substituting

u1= α2
a(3−

3
2α

2
o−

3
8α

2
a) u2= α2

aαo.(8.23)

155

Because the computed control is in terms of the variables u1 and u2, it needs to be mapped

to implementable values for the amplitude, αa, and the bias, αo, of the tail flapping. To

convert u1 and u2 back to the physical actuation variables, I use a constrained global

minimization solver based on Sequential Quadratic Programming (SQP) that finds the

nearest, in the space of u1 and u2, feasible actuation values for αa and αo. Given u1 and

u2, the constrained optimization problem is posed as

argmin
αa,αo

√(
u1−α2

a(3−
3
2α

2
o−

3
8α

2
a)
)2
+
(
u2−α2

aαo
)2

subject to: αa∈[0,30◦] AND αo∈[−45◦,45◦].
(8.24)

This minimization is solved before every control update.

Given the unilateral constraints on the forward motion of the tail-actuated robotic

fish (it cannot move backwards), directly tracking position coordinates becomes rather

challenging. For example, when the target lies behind the robotic fish, the control solution

generates a negative amplitude (to generate backward motion) that is infeasible and

thus the system stops moving. This behavior has been observed and tackled in [204] by

translating position coordinates into different error states, associated with the body-frame

velocities of the system. Similarly, in this work, I argue that one can express all feasible

trajectories for the tail-actuated robotic fish in terms of an angle and a forward velocity

profile.

8.2.1. Simulation Results

In this subsection, I present simulation results on the data-driven modeling and LQR

control on the tail-actuated robotic fish. To decide the optimal order of derivative basis

156

functions, I compare the error bound estimates over T=1 s, which is the feedback rate,

using different orders of derivatives. Results are shown in Fig. 8.6. I select n=2 for a

reasonable balance between the increasing complexity of calculating higher-order derivatives

and model accuracy. Next, I populate the observable functions with the states, their

first- (using (8.21)) and second-order derivatives, which are derived analytically from

the average model. To allow the identification of unknown or changing coefficients (as

discussed in Subsection 8.1.3), I consider each term in the derivatives individually. For

example, d
dtvyω=v̇yω+vyω̇ generates multiple basis functions, where v̇y and ω̇ are given

by (8.21). Using separate functions for the time derivatives of each individual term that

appears in the dynamics is similar to using the time derivatives of the entire equation

of a state (e.g. v̈y(t)). Despite increasing the number of basis functions, I prefer the

first approach because it does not require knowing the coefficients of the individual terms

in advance (e.g. m2
m1

). As a result, I can readily train the Koopman operator on other

robotic tail-actuated fish that have a different morphology. In this way, I end up with the

system states, the control inputs, and 54 additional scalar functions, with Ψs(s)∈R60 and

Ψu(u)=u∈R2.

Note that I choose control-dependent basis functions to be u so as to use LQR feedback.

One can also choose basis functions that include nonlinear control terms in combination

with a different control policy, such as NMPC [86,205]. Alternatively, one can always

convert dynamics that are nonlinear in control by introducing new dummy variables (e.g.

vi) as the control input that are the derivatives of the system actuation (u̇i=ci(vi−ui)),

where ci∈R+ dictate the rate of change [86]. This is in practice also closer to the physical

implementation of actuation that cannot instantly change values. In this way, it is then

157

Table 8.1. Simulation parameters for the tail-actuated fish model dynamics (8.21).

Simulation Parameters
Parameter Value Parameter Value
mb 0.725 kg ρ 1000 kg/m3

max −0.217 kg S 0.03 m2

may −0.7888 kg CD 0.97
Jbz 2.66×10−3 kg·m2 CL 3.9047
Jaz −7.93×10−4 kg·m2 KD 4.5×10−3

L 0.071 m Kf 0.7
d 0.04 m Km 0.45
c 0.105 m

possible to include nonlinearities in ui, while the system remains still linear with respect

to the control input vi designed by the user.

Next, I train an approximate Koopman operator using (7.5). To generate data sk and

sk+1, I sample P=3000 initial conditions for the states with uniform distributions given

by Ux0(−0.5 m, 0.5 m), Uy0(−0.1 m, 0.1 m), Uψ0(−π/4 rad, π/4 rad), Uvx(0, 0.04 m/s),

Uvy(−0.0025 m/s, 0.0025 m/s), Uω(−0.5 rad/s, 0.5 rad/s). For each sample, I apply random

inputs generated from a uniform distribution given by Uα0(−45°, 45°) for the tail angle

bias and Uαa(0,30◦) for the tail angle amplitude of oscillations. Then, for each sample

of initial conditions sk and controls uk, I use dynamics (8.21) and parameters shown in

Table 8.1 to propagate the states with the given control for ∆t=0.005s and obtain the final

states sk+1. I use the set of sk,sk+1,uk to compute the approximate discrete Koopman

operator (7.5). Note that the value of uk+1 can be arbitrary, since I am not trying to

predict the evolution of the control-dependent basis functions. Once I have trained the

Koopman operator, I convert it to the continuous time via K̃=log(K̃d)/∆t, extract the

state- and control-linearization matrices A and B, choose the weight matrices Q and R

and compute the infinite-horizon LQR gains.

158

0 50 100

time (s)

0

0.01

0.02
v

x
 (

m
/s

)

0 50 100

time (s)

-2

0

2

 (
ra

d
)

Desired

Linear-LQR

Koopman-LQR

Figure 8.7. LQR-controlled robotic fish in simulation. The LQR gains are gener-
ated once using the learned Koopman operator. The derivative basis functions are
constructed analytically from the known dynamics. The desired trajectory is given
in terms of the angle and the forward velocity. Since the position coordinates are
not included in the performance objective (7.10), the controlled trajectories are
individually shifted to align with the desired figure-8 shape as closely as possible.
Despite using fixed LQR gains, the controlled systems successfully track the
desired states that were designed to produce a figure-8 pattern. Koopman-LQR
has the lower cost (3.35) for the 120 s duration, while the approach based on the
data-driven linear model with the same set of states as in (8.21) results in an
error that is 95% higher.

Figure 8.7 shows the velocity tracking performance of the derivative-based Koopman

model in comparison to a linear data-driven model for the system (8.21) (with the same

set of states as in (8.21)) when using LQR-feedback. The desired trajectory is a figure-8

described by sdes=[0,0,135·π/180·sin(0.05t+π/2),0.02,0,0.05·135·π/180·cos(0.05t+π/2)].

The weights are Q=diag(0,0,0.1,4000,0,0) and R=diag(0.01,0.01). As is seen in the figure

159

Table 8.2. Amplitude and bias inputs used to collect training dataset.

Actuation values
Amp (◦) 15 20 25 30
Bias (◦) 0 ±20 ±30 ±40 ±50 0 ±20 ±30 ±40 ±50 0 ±20 ±30 ±40 ±50 0 ±20 ±30 ±40 ±50

Figure 8.8. Tail-actuated robotic fish used in experiments, developed by the
Smart Microsystems Lab at Michigan State University. It maneuvers in water by
oscillating its tail fin.

the proposed derivative-based Koopman modeling approach leads to improved control

performance.

8.2.2. Experimental Results

8.2.2.1. Experimental Setup. I next use the physical robot shown in Fig. 8.8 to

experimentally test the proposed approach. An overhead camera captures the red and blue

marks on the robotic fish (see Fig. 8.8) and calculates the coordinates of its center and its

orientation at about 3Hz. The body-frame velocities are estimated using a Kalman filter.

The state derivative functions, provided by the average model, are then evaluated with the

160

0 5 10

t (sec)

0.2

0.4

0.6

0.8

1

x
 (

m
)

0 5 10

t (sec)

0.2

0.25

0.3

0.35

0.4

y
 (

m
)

0 5 10

t (sec)

-0.2

0

0.2

0.4

 (
ra

d
)

0 5 10

t (sec)

0

0.05

0.1

v
x
 (

m
/s

)

0 5 10

t (sec)

-0.02

0

0.02

v
y
 (

m
/s

)

0 5 10

t (sec)

-0.1

0

0.1

0.2

 (
ra

d
/s

)

(a) α0=0,αa=30°

0 5 10 15

t (sec)

0.6

0.7

0.8

0.9

x
 (

m
)

0 5 10 15

t (sec)

0

0.2

0.4

0.6

y
 (

m
)

0 5 10 15

t (sec)

-4

-3

-2

-1

0

 (
ra

d
)

0 5 10 15

t (sec)

0

0.02

0.04

0.06

v
x
 (

m
/s

)

0 5 10 15

t (sec)

0

0.01

0.02

0.03

0.04

v
y
 (

m
/s

)

0 5 10 15

t (sec)

-0.4

-0.3

-0.2

-0.1

0

 (
ra

d
/s

)

(b) α0=45°,αa=25°

Figure 8.9. Fitness between Koopman model and experimental measurements.
The green line shows data interpolated from experimental measurements (blue
dots) every ∆t=0.005s. The red line shows the evolution of the states using
the Koopman model. The actuation is constant for each of the two runs and is
indicated in the caption.

states. To simplify the modeling and control task, the tail-beat frequency used in both

the training phase and the testing phase is kept constant at ωa=2πrad/s. In order not to

disturb the periodic movement of the tail oscillation during tracking, feedback control is

updated at roughly one second. The control commands are communicated to the robot

via Xbee (RF communication).

161

8.2.2.2. Training Phase. For the training phase, I collect experimental measurements

using the robotic fish to compute the approximate Koopman operator. Throughout each

run, I apply constant tail bias and amplitude for the oscillations of the tail fin. I conduct

a total of 72 runs, with two trials for each of the 36 different combinations of actuation

parameters, shown in Table 8.2. I train the Koopman operator using the same basis

functions as discussed in Subsection 8.2.1.

To create a consistent mapping with the Koopman operator, all pairs of measurements

sk and sk+1 need to be spaced (in time) equally apart. For this reason, and also to decrease

the time between measurements to fine levels (without the constraints of my sampling and

filtering methods), the obtained data is interpolated at ∆t=0.005s. The interpolated data

is then used to obtain an approximate Koopman operator according to (7.4).

To measure how well the Koopman model captures the nonlinear dynamics of the

robotic fish, I use K̃, learned from the experimental data, to propagate the identified model

continuously based on the initial states of each of the 72 experimental runs. Then, the

predicted simulated trajectories are compared against the corresponding experimental ones.

For the purposes of illustration, two such comparisons are shown in Fig. 8.9. The linear

Koopman model, despite not perfect, reasonably follows the experimental data for at least

five seconds. Note that, because I only minimize the single-step prediction error (7.5), it

is more likely (compared to minimizing a multi-step error) that I compute an unstable

Koopman operator, even if the dynamics are stable. In that case, the long-term predictions

would exponentially deviate and become inaccurate. Imposing stability properties on the

operator is the focus of ongoing work [206,207].

162

8.2.2.3. Testing Phase. I use the data-trained Koopman operator to implement linear

feedback control (LQR) for tracking. Using the weight matrices Q and R, which penalize

the tracking error and control effort, respectively, I define the minimization problem (7.10)

and calculate the infinite-horizon LQR gains. Contrary to work in [92], and in order to

illustrate the simplicity and robustness of the proposed scheme, I keep the same weights

across all different tasks, such that the same LQR gains, (unless the model is updated)

are used in every type of trajectory. The resulting feedback has the form shown in (7.12).

As mentioned earlier, I argue that, to follow any trajectory, it suffices to track a desired

orientation and forward velocity and so I design the LQR weights accordingly. Specifically,

the weights used are Q=diag(0,0,0.1,1000,0,0) and R=diag(1,1). The weights for the

angle and forward velocity are disproportionate to account for the difference in scale

between the velocity of the robotic fish, typically in the order of 0.01 m/s, and the body

orientation, expressed in radians.

I implement the proposed data-driven Koopman methodology in two ways. One

approach is computing the model and LQR gains offline once; the other is updating the

model and recalculating the LQR gains online in real time. To update the Koopman

operator online in a memory-efficient manner, I do not store any previous measurements.

Instead, I use (7.5) and split it into the P measurements used last to calculate the Koopman

operator and the ∆P new measurements since the last update, where Ptotal=P+∆P is

the total number of measurements used. Then,

K̃∗d,new=AnewG†new,(8.25)

163

Figure 8.10. Outline of the proposed methodology for LQR control using
derivative-based Koopman operators.

164

Figure 8.11. Experimental setup for creating fluid disturbances. The motor is
halfway submerged in water, generating ripples with its propellers.

where

Anew=
1

Ptotal
(AP+

Ptotal−1∑
k=P

Ψ(sk+1,uk+1)Ψ(sk,uk)T)

Gnew=
1

Ptotal
(GP+

Ptotal−1∑
k=P

Ψ(sk,uk)Ψ(sk,uk)T)

(8.26)

and A and G are given by (7.5). The derivation of the formula is shown in Appendix A.6.

Then, the LQR gains are recomputed as shown in Section 7.4 using the updated Koopman

operator. I show an outline of the process in Fig. 8.10.

The proposed method is compared to a PID controller, a widely-used model-free control

method. PID feedback is quite effective, requires low computational effort, and does not

165

0

0.005

0.01

0.015

0.02

v x
er

ro
r

(m
/s

)

P
ID

P
ID

0

2

4

6

8

10

12

14

er
ro

r
(d

eg
re

es
)

P
ID

P
ID

LQ
R

 o
ffl

in
e

LQ
R

 o
nl

in
e

LQ
R

 o
ffl

in
e

LQ
R

 o
nl

in
e

LQ
R

 o
ffl

in
e

LQ
R

 o
nl

in
e

LQ
R

 o
ffl

in
e

LQ
R

 o
nl

in
e

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

v x
er

ro
r

(m
/s

)

P
ID

P
ID

0

50

100

150

200

er
ro

r
(d

eg
re

es
)

P
ID

P
ID

Line Circle

LQ
R

 o
ffl

in
e

LQ
R

 o
nl

in
e

LQ
R

 o
nl

in
e

LQ
R

 o
nl

in
e

LQ
R

 o
nl

in
e

LQ
R

 o
ffl

in
e

LQ
R

 o
ffl

in
e

LQ
R

 o
ffl

in
e

Figure 8.12. Experimental results: Average error scores for velocity and angle
tracking for PID and two variants of Koopman-LQR, trained offline and updated
online, with and without fluid flow indicated respectively with the waves and
no-fan icons. The four subplots compare the performance for the linear and
circular trajectories for each state separately. The error bars indicate the stan-
dard error. The proposed Koopman operator scheme outperforms PID in all
tests. Further, updating Koopman-LQR online improves the performance in the
presence of the unmodeled fluid flow. A video of experimental runs is shown at
https://youtu.be/9 wx0tdDta0.

require exact knowledge of the dynamics or any of the model coefficients [208]. In fact,

it has been shown to perform remarkably well on motion and speed control of robotic

fish [209,210]. However, this method often requires intensive gain tuning. To tune the

PID controller, I utilize the Ziegler-Nichols’ closed-loop method [211]. By comparing my

method to PID, I hope to demonstrate that the proposed method is a promising, data-

driven feedback scheme that compares well against a popularly used, effective controller,

yet without the additional overhead of intensive parameter tuning. The two methods are

https://youtu.be/9_wx0tdDta0

166

compared on tracking linear and circular trajectories that are described in terms of the

desired orientation and forward velocity.

The comparison of the proposed Koopman-LQR method and the PID is conducted

over ten trials for both types of trajectories. I further compare their performance in the

presence of fluid disturbance, generated by a propeller (see Fig. 8.11). The results are

presented in Fig. 8.12, which displays the average error in the two tracked states, together

with the standard error. The standard error is a measure of the expected variability in the

average error, contrary to the standard deviation that measures the expected variability

away from the mean. Note that, for the case of LQR with gains computed offline, the

data used to obtain the Koopman representation was collected in the absence of fluid

disturbance.

From the results, the proposed data-driven Koopman-LQR scheme, regardless of

whether it is updated online, outperforms PID in all tasks, with or without fluid disturbance,

except for tracking the orientation in the linear trajectory, where both algorithms have

similar performance. The difference in the performance between the Koopman-LQR and

the PID is highlighted in the tracking of the circular trajectory in the presence of fluid

flow, where the angle error is significantly higher for PID (Fig. 8.12). Given that angle

tracking (in the linear trajectory) is the only metric where PID is comparable to the

proposed method, I attribute the difference in performance in the presence of fluid flow to

the robustness of the proposed approach and its ability to track the desired trajectory in a

confined space in the presence of unmodeled dynamics.

In the absence of fluid disturbance, the two implementations of the proposed method

(that is, with and without updating the model and LQR gains in real time) have comparable

167

results. It is only in tracking the circular trajectory that the offline implementation tracks

the desired velocity better. I conjecture that this is due to the collisions of the robotic fish

with the side wall (and the unmodeled boundary conditions) that take place because of

the confined space. Introducing such discontinuous disturbances likely deteriorates the

learned model temporarily; yet it still outperforms the well tuned PID controller. On

the other hand, the major benefit of updating the model online is, as one would expect,

in the presence of fluid disturbance. There, the real-time updated method significantly

outperforms the offline-trained Koopman-LQR scheme, highlighting the importance of

updating the model online in environments that constantly change.

8.3. Discussion

In this chapter, I use the Koopman operator framework to develop derivative-based

data-driven linear representations of nonlinear systems, suitable for real-time feedback.

The proposed synthesis of the observable functions aims at minimizing the representation

error without requiring knowledge of the dynamics. Utilizing Taylor series error bounds, I

characterize the error for the analytical expression and use the error bound formula to

decide the basis functions for obtaining a linear data-driven Koopman representation. I

then control the linear model using LQR feedback, which enables very fast control synthesis.

In fact, unless the model is updated online, the LQR gains are computed only once. I

demonstrate the efficacy of the proposed approach with simulation and experimental

results using a case study of a tail-actuated robotic fish.

Although the proposed method can be used for any system that can benefit from

data-driven methods or reduction of the nonlinearity, underwater robotics is perhaps the

168

most suitable application for this method, due to the inherent environmental uncertainty,

the highly nonlinear dynamics, and the need for controllers that use limited computation

(to preserve battery use or due to limited computational power). While this method could

certainly be applied to other systems, it perhaps would not be as useful for low-dimensional

systems, with known dynamics and few nonlinearities.

169

CHAPTER 9

Memory-Efficient Learning of Stable Linear Dynamical Systems

This chapter presents a novel algorithm, called SOC, for learning stable LDSs for

prediction and control. Using a recent characterization of matrix stability [212], I derive a

gradient-descent algorithm that iteratively improves the reconstruction error of a projected

stable model. Contrary to current top-performing methods that start from the least-

squares (LS) solution and iteratively push the LDSs towards the stability region, SOC

enforces stability in each step. As a result, it returns a stable LDS even after one iteration.

Furthermore, whereas alternative methods terminate upon reaching stability, SOC can

iterate on already stable solutions to improve the reconstruction error. It can therefore be

used to further improve the solutions of other methods.

The proposed method is provably more memory-efficient, with an O(n2) space

complexity—n being the state dimension—compared to O(n4) of the competing alternative

schemes for stable LDS. For systems with inputs, I derive the gradient directions that

update both state and control linear matrices. By doing so, I expand the space of possible

solutions and enable the discovery of models achieving lower error metrics compared to

searching only for a stable state matrix which, to the best of my knowledge, is what the

current top-performing algorithms do.

To demonstrate the superior performance of the SOC method, I test it on the task of

learning dynamic textures from videos (using benchmark datasets that have been used to

assess models that learn stable LDSs), as well as learning and controlling (in simulation

170

and experiment) the Franka Emika Panda robotic arm [106]. When compared to the

current top-performing models, a constraint generation (CG) [4] and a weighted least

squares (WLS) [107] approach, the proposed method achieves an orders-of-magnitude

lower reconstruction error, robustness even in low-resource settings, and better control

performance.

9.1. Notation

In this section, I review the notation and the setup used in identifying stable linear

dynamical systems from data. I consider states x∈RN , controls u∈RM and discrete time

LDSs modeled as

yt≡xt+1=Axt+But,(9.1)

where A∈RN×N and B∈RN×M are the state and control matrices, respectively. For

systems without inputs, one can simply set B=0. Let SA,B={(A,B) | xt+1=Axt+But}

denote the solution space of the matrices A and B that describe a LDS of the form (9.1).

Stability of linear systems is typically analyzed using the eigenvalues of the state

transition matrix. Let {λi(A)}Ni=1 denote the eigenvalues of an N×N matrix A in

decreasing order of magnitude and S be the set of all stable matrices of size N×N .

Further, let ρ(A)≡|λ1(A)| denote the spectral radius of A.

171

9.1.1. Learning Data-Driven LDSs

Given p pairs of measurements (xt,yt), learning LDSs from data typically takes the form

Â=inf
A

1
2‖Y−AX‖

2
F ,(9.2)

where Y=[y1y2...yp]∈RN×p, X=[x1x2...xp]∈RN×p, and ||·||F is the Frobenius norm. The

LS solution is then computed as

Als=Y X
†.(9.3)

where X† denotes the Moore-Penrose inverse (or pseudo-inverse) of X. The optimization

problem in (9.2) does not impose stability constraints on Â. The objective of learning

stable LDSs is typically formulated as

Â= inf
A∈S

1
2‖Y−AX‖

2
F ,(9.4)

and is highly nonconvex.

The current top-performing methods for computing stable LDSs are a constraint

generation [4] and a weighted least squares [107] approach. CG formulates the optimization

as a quadratic program without constraints, which is an approximation to the original

problem. It then iterates on the solution to the approximate optimization by adding

constraints and terminates when a stable solution is reached. WLS determines the

components of the LS transition matrix that cause instability and uses a weight matrix

to enforce stability, while minimizing the reconstruction error. Note that both methods

consider an entire sequence of observations, say D∈RN×p, such that X=D[0:p−1] and

172

Y=D[1:p], thereby making the assumption that all measurements belong to a unique time-

series dataset. In the case of the WLS method, this assumption is necessary and the method

fails dramatically for datasets with disjoint windows of time, as I demonstrate in the

results section. CG and SOC, on the other hand, do not require contiguous observations.

9.1.2. Subspace Methods

For high-dimensional LDSs, such as in the case of image reconstruction, it is computationally

prohibitive to learn a state transition matrix. Even for small images of size 100×100

pixels, the dimensionality of the state transition matrix A would be 1004. For such

high-dimensional systems, models are obtained using subspace methods that reduce

the dimensionality of the learning task. Subspace methods for learning LDSs typically

use singular value decomposition (SVD) on the original dataset [213] decomposing the

observation matrix D ≈ UΣV T , where r<N is the subspace dimension, U∈RN×r and

V ∈Rp×r are orthonormal matrices and Σ={σ1,...,σr}∈Rr×r contains the r largest singular

values. Then, the learning optimization is performed on the reduced observation matrix

Dr=ΣV T , where Xr=Dr[0:p−1] and Yr=Dr[1:p]. U is used to project the solutions back to

the original state space. For a more complete description of the subspace method, the

reader can refer to [214,215].

9.2. SOC Algorithm

The optimization problem for finding stable LDSs has traditionally only considered

solving for a stable matrix A that minimizes the reconstruction loss. In this work, I

173

formulate the objective as

[Â,B̂]= inf
A∈S,B

1
2‖Y−AX−BU‖

2
F ,(9.5)

to expand the solution space and solve both for a stable state matrix A and a matrix B. I

denote the least-square solution for the control system by [Als,Bls]=Y ·[X;U]†.

9.2.1. Optimization Objective and Gradient Descents

The proposed algorithm uses a recent characterization of stable matrices [212]. Specifically,

a matrix A is stable if and only if it can be written as A=S−1OCS, where S is positive

definite, O is orthogonal, and C is a positive semidefinite contraction (that is, C is a

positive semidefinite matrix with norm less than or equal to 1). Using this property, I

formulate the optimization problem as

[Â,B̂]= inf
S�0,O orthogonal,C�0,‖C‖≤1

1
2‖Y−S

−1OCSX−BU‖2F ,(9.6)

where Â≡S−1OCS. I then derive the gradient directions with respect to the four matrices

S,O,C, and B as follows:

∇Sf(S,O,C,B)=S−TEXTSTCTOTS−T−CTOTS−TEXT(9.7)

∇Of(S,O,C,B)=−S−TEXTSTCT(9.8)

∇Cf(S,O,C,B)=−OTS−TEXTST(9.9)

∇Bf(S,O,C,B)=−EUT(9.10)

174

where E=Y−S−1OCSX−BU and I use a gradient descent algorithm to reach a local

minimum of the reconstruction cost. The derivation of the gradients is presented in

Appendix A.7. Note that, contrary to CG and WLS that search stable LDS in SA,Bls

by iterating over only A, my algorithm updates both linear matrices A and B, thereby

expanding the feasible solution space to SA,B, where SA,B⊃SA,Bls
. Henceforth, I refer to

the proposed algorithm as SOC.

9.3. Experiments

I implement LS, CG, WLS, and the proposed SOC method for learning LDSs and

compare their performance on dynamical systems with and without control inputs. For

systems without inputs, I focus on learning dynamic texture from frame sequences extracted

from videos using standard benchmark datasets [216–218]. For systems with inputs, I use

experimental data from the Franka Emika Panda robotic manipulator and illustrate the

learning and control performance of all the methods considered. I split the results in three

parts: memory requirements, reconstruction error performance, and control performance.

For an impartial assessment, I perform all comparisons in MATLAB using the publicly

available code of the CG and WLS algorithms1. All simulations are performed using

MATLAB R2019b on a machine with a 14-core Intel E5-2680v4 2.4-GHz CPU with 20GB

RAM.

9.3.1. Memory Usage

First, I compare the three algorithms on memory requirements. For an objective comparison,

I only measure the size of all MATLAB workspace variables created by the algorithms.
1https://github.com/huangwb/LDS-toolbox

https://github.com/huangwb/LDS-toolbox

175

0 50 100 150 200 250 300
dimensions r

10-4

10-2

100

102

104

106

m
em

or
y

(M
B

)

1 GB

1 MB

c
1
r4

c
1
r2

CG WLS SOC

Figure 9.1. Memory requirements as a function of dimensions r, where c1=8/220.
CG and WLS scale proportionately to r4, whereas SOC scales proportionately to
r2. For r=150, SOC uses about 5.04 MB, whereas CG and WLS about 3.78 GB.
Due to memory limits, WLS and CG failed to run at higher dimensions.

That is, I consider a matrix with 4 double-precision cells to use 32 bytes. I compare the

algorithms on a sequence of frames extracted from a coffee cup video downloaded from

Youtube2. I use this video because it exhibits dynamical motion and has a sufficient number

of frames to allow for relatively higher subspace dimensions (the SVD decomposition limits

the subspace dimension to be no larger than the number of frames).

The results are shown in Figure 9.1. SOC scales proportionately to r2, whereas both

CG and WLS scale proportionately to r4. At r=150, SOC uses about 5 MB of memory;

CG and WLS use about 3.78 GB of memory and fail to run at higher dimensions due to

memory constraints. Though such high dimensions may perhaps seem out of scope for

2https://www.youtube.com/watch?v=npkBC4GYodg

https://www.youtube.com/watch?v=npkBC4GYodg

176

the image reconstruction examples demonstrated next, they can typically occur in the

field of robotics. For example, a recent study [57] used a linear data-driven Koopman

representation with dimensions r=330 to identify and control a pneumatic soft robotic

arm. For this dimension, WLS and CG would require about 88 GB of memory and SOC

would need about 25 MB. As a result, only SOC would be able to successfully train

a stable Koopman model on a standard personal laptop and, as I show in the control

performance section, failing to impose stability on the learned model can lead to unsafe

robot movements.

9.3.2. Error Performance

To measure the predictive accuracy of the learned representations, I use three benchmark

datasets: UCLA [216], UCSD [217], and DynTex [218]. The UCLA dataset consists

of 200 gray-scale frame sequences that demonstrate 50 different categories of dynamic

motion (e.g. flame flickering, wave motion, flowers in the wind), each captured from 4

different viewpoints. Every frame sequence contains 75 frames of size 48×48 pixels. The

UCSD dataset consists of 254 frame sequences showing highway traffic in different weather

conditions. Each sequence contains between 42 and 52 frames of size 48×48 pixels. For

the DynTex dataset, I use 99 sequences from 5 groups of dynamic texture (smoke and

rotation from the Beta subset and foliage, escalator, and flags from the Gamma

subset) that exhibit periodic motion. The frames are of size 352×288 pixels. I convert

the frames to grayscale and use the bicubic interpolation algorithm implemented in the

Python library pillow to scale down the frames without ratio distortion down to 48×39

pixels. Each DynTex sequence contains between 250 and 1576 frames.

177

CG WLS SOC

0

20

40

60

80

100

100

101

0 5 10 15 20 25 30

dimension r

10-2

10-1

100

101

102

UCLA UCSD DynTex

be
st

er
ro

r
av

er
ag

e
er

ro
r

tim
e

av
er

ag
e

er
ro

r
(%

)
be

st
 e

rr
or

 fr
eq

ue
nc

y
(%

)
av

er
ag

e
tim

e
(s

)

0
10-2

10-1

100

101

65

70

75

80

85

90

95

100

0 5 10 15 20 25 30

dimension r

10-3

10-2

10-1

100

101

40

50

60

70

80

90

100

0 5 10 15 20 25 30

dimension r

10-3

10-2

10-1

100

101

102

10-1

100

101

102

Figure 9.2. Learning performance of CG, WLS, and SOC for varying subspace
dimensions performed on three datasets: UCLA, UCSD, and DynTex. In all cases,
SOC has the highest best error frequency, has lower average error and, in terms
of execution time, scales better than the other methods.

As explained in Section 9.1, the dimensionality of images can be prohibitively high and

cause slow computations or memory failures: the transition matrix for an image of size as

small as 48×48 pixels would require hundreds of TBs for CG and WLS to run. For this

reason, I use subspace methods to reduce the problem dimensionality. For each dataset, I

consider a set of subspace dimensions r∈{3,30}. Then, for each dimension, I use the four

methods (LS, CG, WLS, and SOC) to obtain an LDS for each of the frame sequences. To

178

compare the performance of the four algorithms, I use the reconstruction error relative to

the LS solution: e(Â)= e(Â)−e(Als)
e(Als)

×100.

I report the results in Figure 9.2 and focus on three metrics: best error frequency,

average reconstruction error, and execution time. The best error plots the percentage of

frame sequences for a given dimension for which an algorithm computed the best relative

error (that is, lower than or equal to the other two methods). The average error and

time plots show the average reconstruction error and average execution time of all frame

sequences for each dimension, respectively.

The results demonstrate certain patterns that are present in all datasets considered.

First, SOC computes the best error for more frame sequences than the other methods

across any dimension. In the UCLA and UCSD datasets, the SOC best error frequency

reaches 100% for the majority of the dimensions; compared to less than 80% (for UCLA)

and 40% (for UCSD) shown by both of the other two methods. This means that, for the

aforementioned datasets, CG and WLS almost never find a better solution than SOC.

While for the DynTex dataset the differences are not as pronounced, SOC still computes

the best error the majority of the time and about 20% more often than each other method.

Second, SOC has orders-of-magnitude lower average relative error across all dimensions

and datasets. Last, in terms of the execution time, SOC is slower than CG and WLS

for low dimensions (r<20). However, it scales better than the other two methods, such

that it becomes faster than CG for r>20. For the UCSD dataset, SOC and WLS become

comparable in terms of average execution time near n=30. This observation is in line with

the fact that CG and WLS are high space-complexity algorithms that may even fail to

perform at high dimensions due to memory limitations.

179

SOC CG WLS SOC CG WLS
steam (r = 20) steam (r = 40)

|λ1| 1 1 1 1 1 1
σ1 1.06 1.03 1.07 1.10 1.03 1.10
e(Â) 12.32 28.05 24.94 5.59 24.90 21.27
time 0.36 0.22 0.53 1.48 9.76 15.82

fountain (r = 20) fountain (r = 40)
|λ1| 1 1 1 1 1 1
σ1 1.11 1.00 1.11 1.43 1.01 1.43
e(Â) 0.001 1.07 0.004 0.0005 2.97 0.0007
time 1.52 0.48 0.18 3.18 15.40 0.84

Table 9.1. Performance on steam and fountain sequences from the MIT database.

f = 25 f = 50 f = 75

f = 100 f = 500 f = 1000

Training
Data

LS

CG

WLS

SOC

f = 25 f = 50 f = 75f = 25 f = 50 f = 75

Figure 9.3. Synthesized sequences generated by LS, SOC, CG, and WLS for r=40.

Next, I compare the three methods on the steam sequence (composed of 120×170 pixel

images) and the fountain sequence (composed of 150×90 pixel images) from the MIT

temporal texture database [219]. Results are shown in Table 9.1. To show the effect on

the predictive quality of the solutions, I plot the frames reconstructed from the learned

LDS for each method in Figure 9.3. Next to the steam and fountain frame sequences, I

add the coffee cup sequence used in Figure 9.1.

180

-0.2 -0.1 0 0.1 0.2 0.3 0.4
y (m)

0.3

0.4

0.5

0.6

0.7

0.8

z
(m

)

Figure 9.4. From left to right: simulation environment, physical robot, and
experimental training data.

9.3.3. Control

In this section, I demonstrate the superior performance of SOC in control systems. Using

experimental data gathered from the robotic arm Franka Emika Panda, I illustrate

the improvement in both the reconstruction error of the learned model and the control

performance. To use CG and WLS to compute a stable Â, I use the LS solution for the

control matrix and modify the objective to

Â= inf
A∈S

1
2‖Y

′−AX‖2F ,(9.11)

where Y ′=Y−BlsU . The learning performance of the algorithms is then measured as the

% error increase when compared to the LS solution (Als,Bls). Note that this error depends

both on Â and B̂; for WLS and CG, I use the LS solution for the control matrix B=Bls,

whereas SOC computes both A and B.

I collected training data on the experimental platform at 50 Hz, using a controller to

manually move the robotic arm. I gathered 400 measurements (8 seconds) in eight separate

runs. The training data, along with the experimental and simulation environments used

181

Measurements 50 75 100 150 200 300 500
SOC 0.01 0.56 0.0001 0.06 0.05 0.09 0.05
CG 50.14 32.77 11.66 - - 1.40 0.23

WLS 17.00 - - 124.01 36.63 25.17 42.01
Table 9.2. Errors of stable LDS using experimental data from the Franka Emika
Panda manipulator.

in this section are shown in Figure 9.4. Table 9.2 compares the performance of the SOC,

CG, and WLS algorithms on learning stable models for the Franka Emika Panda robotic

manipulator using experimental data. The performance is compared for different numbers

of measurements p. As the data show, SOC is the only algorithm that never fails to

find stable solutions, regardless of the amount of training data. As more measurements

are used, the LS solution itself becomes more stable and CG and WLS are both able to

converge to stable solutions. Further, the quality of CG solutions improves with more

training measurements; the performance of SOC remains robust throughout the testing

cases.

In Figure 9.5, I plot the reconstruction error for the three methods for different training

data sizes. In this setting, however, measurement sets (xt,yt,ut) are randomly drawn

from the training data such that the matrices Y and X have discontiguous measurements.

Note how such a choice worsens the performance of WLS that assumes continuity in the

observation matrices. On the other hand, CG and SOC are similar in learning performance.

With regard to controlling the system, I use LQR control computed using the models

from each algorithm and simulate tracking a figure-8 pattern. The states are the x,y,z

coordinates of the end effector, the 7 joint angles of the arm, and the 7 joint angular

velocities. The trajectory is generated in the y−z plane for the end effector; the desired angle

182

0 500 1000 1500 2000
number of measurements

10-4

10-2

100

102

104

er
ro

r
pe

rc
en

ta
ge

CG

WLS

SOC

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
y (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

z
(m

)

target CG WLS SOC LS

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
y (m)

0.3

0.4

0.5

0.6

0.7

0.8

0.9

z
(m

)

target SOC

Figure 9.5. Control performance in simulation using experimental measurements
from the Franka Emika Panda robotic arm. The left figure shows the reconstruc-
tion error of the learned models for a varying number of measurements sampled
randomly from the training set; the middle figure shows the performance of the
controllers after training with 100 measurements sampled randomly (2 seconds
worth of data); the right figure shows the control performance of SOC after
manually introducing disturbances to the position of the end effector.

-0.3 -0.2 -0.1 0 0.1 0.2 0.3
y (m)

0.4

0.5

0.6

0.7

0.8

0.9

z
(m

)

0 5 10 15 20 25 30
time (s)

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

y-
z

co
or

di
na

te
s

(m
)

Figure 9.6. Experimental tracking of a figure-8 pattern using the Franka Emika
Panda robotic manipulator. The left figure shows, from top to bottom, snapshots
of the control maneuver; the rest figures show the trajectories of three trials. The
three trials are almost identical, showing the robustness of the method. The
applied control is computed with an LQR policy using the stable LDS system
obtained from the SOC algorithm. The training data are obtained using 600
measurements.

configurations of the robotic arm are solved offline using inverse kinematics; the desired

angular joint velocities are set to 0. LQR control is generated using Q=diag([ci])∈R17×17,

where ci=1 for i∈{1,10} and 0 elsewhere and R=0.1×I7×7.

The LS model is unstable and fails at the task. Similarly, WLS—despite the stable

model—performs poorly, highlighting the need for both stability and fidelity of the learned

representation. On the other hand, CG and SOC are similar in performance.

183

To measure robustness across the initial conditions, I run 50 trials, varying both the

y and z initial positions with displacements sampled uniformly in U(−0.1,0.1). Across

all trials, LS has an average error of 7556, WLS scores 38.73, CG scores 0.0810 and SOC

scores 0.0799.

Then, I test LQR control computed on the LDS obtained from the SOC algorithm in

an experiment to demonstrate that the simulation results are indicative of the performance

in a physical experiment. Figure 9.6 shows the control performance of three trials tracking

a figure-8 pattern. Due to COVID-19 limitations, I were unable to extend the experimental

tests. However, these results serve primarily to experimentally validate the SOC algorithm

and illustrate that the simulation results are an accurate prediction of the experimental

behavior as well.

9.4. Discussion

In this work, I introduce a novel algorithm for computing stable LDSs. Compared to

the current top-performing alternatives, the proposed scheme is significantly more memory-

efficient and, as a result, scales better for high-dimensional systems often encountered in

image processing and robotic applications. Further, the suggested method outperforms

the alternatives in terms of the error and control performance, as demonstrated on three

benchmark datasets and the Franka Emika Panda robotic arm experiments. These

features make it a promising tool for compression and data-driven system identification

tasks. Coupled with the ongoing research around Koopman-operator-based nonlinear

control, this algorithm can be a promising candidate for high-dimensional nonlinear control.

184

The proposed method can improve robotic tasks that are safety-critical, particularly

those that include a human-in-the-loop (such as rehabilitation devices and prosthetics)

where the human-robot interaction dynamics are not known ahead of time. For such tasks,

a robotic platform prioritizes stability and safety during operation. Unstable data-driven

models may lead to catastrophic robotic behavior, as I demonstrate in simulations with the

Franka Emika Panda robotic arm. This work provides a mechanism for online learning of

models that satisfy stability constraints, improving the safety and reliability of closed-loop

control of those systems.

185

CHAPTER 10

Learning Stable Models for Prediction and Control Using

Koopman Operators

This chapter demonstrates the benefits of imposing stability on data-driven Koopman

operators. The data-driven identification of stable Koopman operators (DISKO) is

implemented using the algorithm derived in Chapter 9 that computes the nearest stable

matrix solution to a least-squares reconstruction error. As a first result, I derive a formula

that describes the prediction error of Koopman representations for an arbitrary number of

time steps, and which shows that stability constraints can improve the predictive accuracy

over long horizons. As a second result, I determine formal conditions on basis functions of

Koopman operators needed to satisfy the stability properties of an underlying nonlinear

system. As a third result, I derive formal conditions for constructing Lyapunov functions

for nonlinear systems out of stable data-driven Koopman operators, which I use to verify

stabilizing control from data. Lastly, I demonstrate the benefits of DISKO in prediction

and control with simulations using a pendulum and a quadrotor and experiments with a

pusher-slider system. The chapter is complemented with a video: https://sites.google.

com/view/learning-stable-koopman.

10.1. Stable Koopman Operators

In this section, I derive the error induced by approximate Koopman operators over an

arbitrary number of time steps into the future. I then use the error expression to motivate

https://sites.google.com/view/learning-stable-koopman
https://sites.google.com/view/learning-stable-koopman

186

Ψ(tk)
KdΨ(tk)
~

Ψ(tk+2)

e1
e2

KdKdΨ(tk)
~ ~

Ψ(tk+1)

Fu
n
ct

io
n
 S

p
ac

e

~

KdΨ(tk+1)
~e1

Ψ(tk)
KdΨ(tk)

Ψ(tk+2)
Ψ(tk+1) e2

Local Error

Global Error

Ψ(tk+3)

KdKdKdΨ(tk)
~ ~ ~

e3

KdΨ(tk+2)
~

Ψ(tk+3)

e3

Figure 10.1. Local and global errors (in time) induced by approximate Koopman
operators. The local error considers the accuracy of the model across a single
time step; the global error considers the accuracy of the model across all time
steps and is a more representative metric of long-term accuracy, assuming states
are not updated in every time step.

imposing stability on the operators, sometimes even in cases when the underlying system

is unstable. Then, I present conditions on the basis functions that are consistent with

stable Koopman operators. Last, I demonstrate how to construct Lyapunov functions

using stable data-driven Koopman operators.

187

10.1.1. Global Error of Approximate Koopman Operators

10.1.1.1. Notation. At time t0+n∆t, I use Ψ(s(t0+n∆t)) to indicate the true value of

the basis function evaluated with the true state value s(t0+n∆t) and Ψ̃n to indicate the

approximate solution, where n∈Z+ indicates the number of time steps into the future. I

use en to be the local error at the nth time step induced by the approximate Koopman

operator K̃d, that is

en≡Ψ(s(t0+n∆t))−K̃dΨ(s(t0+(n−1)∆t)),(10.1)

which assumes that the Koopman operator propagates the true value of the basis functions

from the previous time step. Similarly, I use En to refer to the global error at the nth

time step:

En≡Ψ(s(t0+n∆t))−K̃ndΨ(s(t0)),(10.2)

which, for n=1, matches the local error (10.1). However, note that the global error (10.2)

is not an accumulation of the local errors (10.1): En 6=
∑n
i ei. The difference between local

and global error is illustrated in Fig. 10.1.

10.1.1.2. Derivation of Global Error. Consider the true solution at some time step

t0+n∆t, which can be written using (10.1) as

Ψ(s(t0+n∆t))=K̃dΨ(s(t0+(n−1)∆t))+en.(10.3)

188

Similarly,

Ψ(s(t0+(n−1)∆t))=K̃dΨ(s(t0+(n−2)∆t))+en−1.(10.4)

Plugging (10.4) into (10.3)

Ψ(s(t0+n∆t))= K̃d
(
K̃dΨ(s(t0+(n−2)∆t))+en−1

)
+en(10.5)

= K̃2
dΨ(s(t0+(n−2)∆t))+K̃den−1+en.(10.6)

Recursively expressing the solution in terms of the true values of the basis functions in

the previous steps and the corresponding local error yields

Ψ(s(t0+n∆t))=K̃ndΨ(s(t0))+
n−1∑
i=0
K̃iden−i.

Therefore, using (10.2), the global error at t0+n∆t is

En=
n−1∑
i=0
K̃iden−i.

10.1.1.3. Global Error Bound. Next, I compute a bound for the global error bound.

I use an induced norm that satisfies the properties of triangle inequality (‖A+B‖≤

‖A‖+‖B‖), subordinance (‖Ax‖≤‖A‖‖x‖) and submultiplicativity (‖AB‖≤‖A‖·‖B‖),

189

such that

‖En‖= ‖
n−1∑
i=0
K̃iden−i‖

≤
n−1∑
i=0
‖K̃iden−i‖(triangle inequality)

≤
n−1∑
i=0
‖K̃id‖·‖en−i‖(subordinance)

‖En‖≤
n−1∑
i=0
‖K̃d‖i·‖en−i‖.(submultiplicativity)

Assuming that the local error is bounded, that is there exists ‖emax‖ such that ‖ei‖≤

‖emax‖ ∀ i∈[1,n], I can simplify the upper bound to the global error to

‖En‖≤‖emax‖·
n−1∑
i=0
‖K̃d‖i.(10.7)

Note that

‖emax‖=0⇐⇒‖Ek+n‖=0,

which is true for invariant subspaces.

From (10.7), if K̃d is unstable, then the power of the matrix norm diverges as the

number of time steps increases. This means that an unstable K̃d amplifies exponentially

even small errors and thus renders the long-term prediction of the Koopman representation

impractical. Instead, I propose that one should use a stable operator that generates similar

local errors, but which also has the additional benefit of numerical stability over long-term

predictions. Note that it is possible that such a stable operator can generate similar local

190

errors even for unstable dynamics. In fact, later in Section 10.3, I show an example where

a stable operator improves stabilization of a quadrotor that is unstable.

Note that the eigenvalue profile of the Koopman model can be at times misleading in

terms of bounding the power of the operator, because the upper bound can be itself large,

as is pointed out in [220–222]. Such scenarios are shown to occur for moderately large

dimensions of the operator (W≈100) and do not apply in the examples of this chapter.

Exploiting the conditions that prevent large error growth in the transient response of

a system, which is related to the strong stability property [223], for high-dimensional

operators is left for future work.

10.1.2. Stability-Based Conditions for Koopman Basis Functions

Given the importance of the spectral properties of the Koopman operator on the accuracy

of long-term predictions, I next consider the implications of stability on the choice of basis

functions. Specifically, I relate the stability properties of original nonlinear dynamics to

the stability properties of the Koopman representation and present necessary conditions

for the basis functions so that they are consistent with dynamics that have a stable (or

an asymptotically stable) equilibrium. Although in practice one can impose stability on

arbitrary Koopman models, choosing basis functions that are not consistent with stable

dynamics could lead to unstable representations and worse training errors. I present the

analysis for continuous-time dynamics, which are arguably the default expression, but

equivalent relationships can be extended to the discrete-time case.

191

Consider a nonlinear dynamical system with states s(t)∈S and dynamics of the form

d

dt
s(t)=f(s(t))(10.8)

with associated Koopman dynamics given by

d

dt
Ψ(s(t))=KΨ(s(t)).(10.9)

If the two representations (10.8) and (10.9) are equivalent throughout the state space,

that is, they evolve the dynamics in identically the same way, then I argue that certain

properties must be true.

Definition 3. For a nonlinear dynamical system (10.8) and an equivalent Koopman

representation (10.9), the following are true:

(1) A trajectory s∗(t) is an equilibrium for the nonlinear dynamical system (10.8) if

and only if it is an equilibrium for the equivalent Koopman dynamics (10.9). That

is,

f(s∗(t))=0⇐⇒f(Ψ(s∗(t)))=0.

(2) A trajectory s∗(t) is Lyapunov stable for the equivalent nonlinear dynamical system

(10.8) if and only if it is Lyapunov stable for the Koopman dynamics (10.9). That

is, there exist εs>0 and εΨ>0 such that

‖s(t)‖<εs⇐⇒‖Ψi(s(t))‖<εΨ ∀ i∈Z+1,t≥0.

192

(3) A trajectory s(t) is asymptotically stable in a region of the state space D⊆S for the

nonlinear dynamical system (10.8) if and only if the equivalent trajectory Ψ(s(t))

is also asymptotically stable in D for the Koopman dynamics (10.9). That is,

given s(0)∈D,

lim
t→∞

s(t)=0⇐⇒ lim
t→∞

Ψ(s(t))=0.

Note that the conditions on the Koopman basis functions in Definition 3 consider

equivalent Koopman representations and nonlinear dynamics. These conditions need to be

satisfied even for approximate Koopman operators in order for the Koopman representation

to be consistent with the stability properties of the original system. Next, I use Definition

3 to relate the stability properties of the original nonlinear dynamics to the properties of

a Koopman operator and its associated basis functions. Using this relationship, I derive

necessary conditions for both the operator and admissible basis functions associated with

stable nonlinear systems.

10.1.2.1. Conditions on Koopman Operators for Stable Systems. First, I derive

stability properties for a Koopman representation that is consistent with its associated

original stable, in the sense of Lyapunov, system. The analysis rests on Assumption 8.

Assumption 8. All states s(t)∈RN of a nonlinear dynamical system (10.8) remain

bounded for all t. That is, for some ε≥0, ‖s(t)‖≤ε for all t≥0.

1I only constraint the norms of each individual basis function, instead of the norm of Ψ, to be bounded
due to the fact that, for an infinite-dimensional Koopman operator, the sum of norms of basis functions
that are individually bounded could still be infinite.

193

Next, I prove that only a stable Koopman operator can accurately represent nonlinear

dynamics that are Lyapunov stable.

Definition 4. Consider a nonlinear dynamical system (10.8) with bounded states

s(t)∈RN . I define Dε⊆S as a region of the state space such that, if ‖s(t)‖≤ε, then

s(t)∈Dε for all t≥0.

Theorem 4 (Lyapunov Stability). Consider a nonlinear dynamical system (10.8) and

an equivalent Koopman representation (10.9). The solution s(t)=0 is a Lyapunov stable

equilibrium if and only if the Koopman operator K is stable.

Proof. From Definition 3, s(t)=0 is a Lyapunov stable solution for the nonlinear

dynamics if and only if it is also a Lyapunov stable solution for the Koopman dynamics

(10.9):

‖s(t)‖<εs⇐⇒‖Ψi(s(t))‖<εΨ, t≥0.(10.10)

From the definition of stability for linear state space models, Ψ(s(t))=0 is a Lyapunov

stable equilibrium for the Koopman dynamics (10.9) if and only if K is stable, specifically

Re[λi]≤0, for each eigenvalue λi of the operator K. That is,

‖Ψi(s(t))‖<εΨ⇐⇒Re[λi]≤0, t≥0(10.11)

Then, from (10.10) and (10.11), s(t)=0 is a Lyapunov stable solution for the nonlinear

dynamics if and only if K is stable:

‖s(t)‖<εs⇐⇒Re[λi]≤0, t≥0.

194

�

Theorem 4 proves that a Koopman operator that accurately represents a Lyapunov

stable nonlinear system must itself be stable. Therefore, even approximate Koopman

operators must satisfy this condition in order to satisfy the stability properties. Given a

part of the state space Dε that bounds all trajectories s(t) of the nonlinear system that

start within Dε, a Koopman operator trained with measurements from Dε should be stable

(see Theorem 4).

Even when no finite-dimensional Koopman representation can capture the nonlinear

dynamics with full fidelity, the approximate operator should be stable such that the system

states do not grow unbounded and exit Dε. Therefore, it is a necessary and sufficient

condition that the Koopman operator is stable.2

10.1.2.2. Conditions on Koopman Operators for Asymptotically Stable Sys-

tems. Next, I derive stability conditions for a Koopman representation that is consistent

with its associated asymptotically stable system. The analysis rests on Assumption 9 and

further assumes that all states of a nonlinear dynamical system (10.8) lie inside a domain

of attraction D0⊆RN , formally defined in Definition 5.

Assumption 9. The nonlinear dynamical system (10.8) has a single asymptotic

equilibrium.

2Note that the notion of global stability is considered only in the sense of asymptotic stability and not
Lyapunov stability. The system states, even when unbounded, always lie inside RN . Considering the
entire (infinite) state space as a region of stability, that is Dε=RN , all nonlinear dynamical systems can
be thought of as globally Lyapunov stable, a property that caries no meaning.

195

Definition 5. Given a nonlinear dynamical system (10.8) and an asymptotically stable

solution s(t)=0, the domain of attraction is

D0,{s0∈D:if s(0)=s0, then lim
t→∞

s(t)=0}.

Note that for multiple asymptotic equilibria, there need to be separate regions of

attractions, which must in turn be represented by separate Koopman operators. In this

work, I focus on obtaining a single Koopman operator consistent with a single asymptotic

equilibrium. For many systems, due to the presence of friction, this can often be represented

as the zero-velocity state. For nonlinear systems with multiple equilibria points, one can

use work in [224] to obtain multiple local Koopman representations.

Next, I prove that only a Koopman operator that is Hurwitz (all eigenvalues are strictly

in the left half-plane) satisfies the stability properties of nonlinear dynamics that are

asymptotically stable.

Theorem 5 (Asymptotic Stability). Consider a nonlinear dynamical system (10.8) and

an equivalent Koopman representation (10.9). The solution s(t)=0 is an asymptotically

stable equilibrium if and only if the Koopman operator K is Hurwitz.

Proof. From Definition 3, s(t)=0 is an asymptotically stable solution for the nonlinear

dynamical if and only if it is also an asymptotically stable solution for the Koopman

dynamics (10.9). That is,

lim
t→∞

s(t)=0⇐⇒ lim
t→∞

Ψ(s(t))=0.

196

From the stability properties of linear systems, Ψ(s(t))=0 is an asymptotically stable

solution for the Koopman dynamics (10.9), if and only if K must be Hurwitz. That is,

lim
t→∞

Ψ(s(t))=0⇐⇒Re[λi]<0, t≥0

for each eigenvalue λi of the operator K. Then, s(t)=0 is an asymptotically stable solution

for the nonlinear dynamics if and only if the Koopman operator K of the associated

Koopman dynamics is Hurwitz. That is,

lim
t→∞

s(t)=0⇐⇒Re[λi]<0, t≥0.

�

Definition 3 and Theorems 4 and 5 present conditions for a Koopman representation,

specifically on admissible basis functions and the operator itself, that is consistent with

the stability properties of the associated underlying nonlinear system. In practice, one can

compute a Koopman operator for any choice of basis functions. However, the stability-

related constraints on the admissible basis functions can indicate which basis functions

are consistent with stable Koopman operators. I argue that using basis functions that

violate these conditions and are inconsistent with stable dynamics would generate unstable

Koopman operator solutions or, if stability is enforced on the operator during learning as

is the focus of this work, would lead to higher training error. As I show next, this becomes

problematic as bounding the training error is of central importance in the construction of

Lyapunov functions, which I show next.

197

10.1.3. Lyapunov Functions Using Stable Koopman Operators

Given a stable operator, it is possible to design Lyapunov functions for nonlinear systems

using the data-driven Koopman matrix. Consider an approximate finite-dimensional

Koopman representation that is equivalent, based on Definition 3, to general dynamical

systems (10.8) such that

d

dt
Ψ(s(t))=K̃Ψ(s(t))+ε(Ψ(s(t))),(10.12)

where

ε(Ψ(s(t))),f(Ψ(s(t))−K̃Ψ(s(t))(10.13)

is the residual error. If K̃ in (10.12) is stable, I can design Lyapunov functions for the

nonlinear dynamics, as I prove in Theorem 6.

Theorem 6. Consider a Koopman representation (10.12) of a nonlinear dynamical

system. Further assume K̃ is stable. Let

α≤λmin(Q)−2λmax(P),

where Q�0 and P�0 are a solution to the Lyapunov equation

K̃TP+P K̃+Q=0.(10.14)

198

If

‖ε(Ψ(0))‖2=0(10.15)

and

‖ε(Ψ(s(t)))‖2<α‖Ψ(s(t))‖2 ∀ Ψ(s(t))∈Dα⊆S,(10.16)

then, the zero solution Ψ(s(t))=0 to the nonlinear dynamics is asymptotically stable in

Dα. Further, V=Ψ(s(t))TPΨ(s(t)) is a Lyapunov function in Dα.

Proof. Consider a candidate Lyapunov function V=ΨT (s(t))PΨ(s(t)). Taking the

time derivative,

d

dt
V (Ψ(s(t)))=

dV (Ψ(s(t))

dΨ(s(t))

dΨ(s(t))

dt

=Ψ(s(t))TPf(Ψ(s(t)))+f(Ψ(s(t)))TPΨ(s(t))

=Ψ(s(t))TP [KΨ(s(t))+ε(Ψ(s(t)))]+[ΨT K̃T+ε(Ψ(s(t)))T]PΨ(s(t))

=Ψ(s(t))T (P K̃+K̃TP)Ψ(s(t))+2Ψ(s(t))TPε(Ψ(s(t))).

Given that K̃ is stable and Q�0, then there always exists a (unique) solution P�0 to

the Lyapunov equation. Thus,

P K̃+K̃TP=−Q

199

such that

d

dt
V (Ψ(s(t)))=−Ψ(s(t))TQΨ(s(t))+2Ψ(s(t))TPε(Ψ(s(t))).

Note that −Ψ(s(t))TQΨ(s(t))≤−λmin(Q)‖Ψ(s(t))‖22 and using the Cauchy-Schwartz

inequality [225], it follows that

d

dt
V (Ψ(s(t)))≤−λmin(Q)‖Ψ(s(t))‖22+2λmax(P)‖Ψ(s(t))‖2‖ε(Ψ(s(t)))‖2.

Then, using (10.16), I can rewrite

d

dt
V (Ψ(s(t)))≤−(λmin(Q)−2αλmax(P))‖)‖Ψ(s(t))‖22 ∀ Ψ(s(t))∈Dα⊆S.

Choosing α≤ λmin(Q)
2λmax(P)

, then

d

dt
V (Ψ(s(t)))≤0 ∀ Ψ(s(t))∈Dα

such that the system (10.12) is stable in Dα about Ψ(s(t))=0. Further, for α< λmin(Q)
2λmax(P)

,
d

dt
V (Ψ(s(t)))<0 ∈ Dα and the system is asymptotically stable in Dα about Ψ(s(t))=

0. �

Theorem 6 makes it is possible to design Lyapunov functions for nonlinear systems

that are valid in a region Dα of the state space where the modeling error of the Koopman

operator is bounded (10.16). This highlights the importance of choosing appropriate basis

functions that satisfy the stability conditions outlined in Definition 3 and the conditions

in (10.15) and (10.16). Further, Theorem 6 makes it possible to design control-Lyapunov

functions that can be used to verify stabilizing feedback laws from controlled measurements

200

in a region Dα (10.16) for data-driven systems. In Section 10.3, I present a few examples

of verifying the stability of controlled systems using Lyapunov functions constructed from

stable data-driven Koopman operators, but leave more sophisticated analysis for future

work.

Section 10.1 shows that stable Koopman operators can improve long-term predictions

and help construct Lyapunov functions. I also present conditions on admissible basis

functions for stable Koopman models to match the stability properties of the operator and

improve the training error. However, in practice, data-driven Koopman operators can be

unstable even if the modeled dynamics are stable and even if appropriate basis functions

(as described in Definition 3) are used. For this reason, next in Section 10.2 I next present

the first framework for data-driven identification of stable Koopman operators (DISKO).

10.2. Synthesis of Stable Koopman Operators

This section presents the methodology used for the Data-driven Identification of Stable

Koopman Operators (DISKO). There are several candidate algorithms that can compute

a stable solution to the optimization in (10.17). In this chapter, I use the gradient-descent

algorithm presented in Chapter 9 (referred to as SOC) to find locally optimal stable

solutions K̃d. The SOC algorithm builds upon the work in [212,226], where the nearest

stable matrix to an unstable one is computed by minimizing the Frobenius norm.

I choose the SOC algorithm because it is shown to outperform the top-alternative

existing algorithms for stable linear dynamical systems in terms of model accuracy, memory

efficiency, and scalability such that it can be used for feedback control of higher-dimensional

systems when the other methods fail.

201

10.2.1. Stable Least-Squares Koopman Operators

To compute a stable Koopman operator, I first convert the optimization (10.17) to a

different formulation that is suitable for the SOC algorithm.

Proposition 10. Consider P measurements of states s∈RN and basis functions

Ψ(s(t))∈RW . Given X and Y such that

X=

Ψ(s(t1),u(t1))T

...

Ψ(s(tP),u(tP))T

T

and Y=

Ψ(s(t1+∆t),u(t1+∆t))T

...

Ψ(s(tP+∆t),u(tP+∆t))T

T

.

Then, the expression

P∑
k=1

1
2‖Ψ(s(tk+∆t),u(tk+∆t))−K̃dΨ(s(tk),u(tk))‖2

is equivalent to

1
2‖Y−K̃dX‖

2
F ,

where X,Y ∈RW×P , K̃d∈RW×W , ‖·‖F is the Frobenius norm of a matrix and S
W ,W
d is the

set of all stable matrices of size W×W .

Proof. See Appendix A.8. �

From Proposition 10, seeking stable Koopman operators for

inf
K̃d∈S

W ,W
d

1
2‖Y−K̃dX‖

2
F ,(10.17)

202

is equivalent to seeking stable solutions for (7.4). Note that solving (10.17) is not equivalent

to projecting the unconstrained Koopman solution (7.4) to the stable set of matrices. That

is,

inf
K̃d∈S

W ,W
d

1
2‖Y−K̃dX‖

2
F 6= inf
K̃d∈S

W ,W
d

1
2‖K̃

∗
d−K̃d‖2F .(10.18)

Projecting an unstable solution of (7.4) to the stable set results in a matrix that is stable

but often with much greater fitness error than the solution to (10.17), as I demonstrate

with examples later in Section 10.3.

The SOC algorithm uses the property that a matrix A is stable if and only if it can be

written as A=S−1OCS [226], where S is invertible, O is orthogonal, and C is a positive

semidefinite contraction; its singular values are less than or equal to 1. Then, I reformulate

the optimization (10.17) such that

inf
Kd∈S

W ,W
d

1
2‖Y−K̃dX‖

2
F= inf

S�0,U orthogonal,C�0,‖C‖≤1,B

1
2‖Y−S

−1OCSX‖2F .

Algorithm I Data-driven Identification of Stable Koopman Operators (DISKO)
Input: Ψs(t),Ψu(t) . Choice of basis functions
Output: Stable Koopman model

1: while k<kmax do
2: Collect new state and control measurements s(tk),s(tk+∆t), u(tk)
3: Evaluate basis functions Ψs(s(tk)),Ψs(s(tk+∆t)),Ψu(tk)
4: Update G,A,XU ,YU ,UU . Preserve memory space
5: Run SOC algorithm . Compute stable Koopman dynamics (7.9)
6: end while

When considering systems with inputs, instead of imposing stability on the Koopman

operator that propagates both state- and input- dependent basis functions, I use the

203

Koopman dynamics shown in (7.9) and impose stability only the state transition matrix

A. Then, the optimization problem becomes

[A,B]= inf
S�0,U orthogonal,C�0,‖C‖≤1,B

1
2‖Y−S

−1OCSX−BU‖2F ,(10.19)

where X,Y ∈RWs×P include the measuremets of the state-dependent Koopman basis

functions Ψs(s(t)) and U∈RWu×P include the measurements of the control-dependent

ones Ψu(u(t)), similar to the form shown in proposition 10. Note that for linear systems

with inputs, the stability properties described in Section 10.1 apply to the state-transition

matrix A shown in (7.9). In the rest of the analysis, one can simply set B=0 for systems

without inputs. For details on how the SOC algorithm can solve either (10.17) or (10.19),

I refer the reader to Chapter 9 and the publicly available code3.

Let f(S,O,C,B)=1
2‖Y−S

−1OCSX−BU‖2F . The gradients with respect to S,O, and

C are derived in Chapter 9 and rewritten here in a more compact form as

∇Sf(S,O,C,B)= S−T [VAT−ATV]

∇Of(S,O,C,B)=−S−TVSTCT

∇Cf(S,O,C,B)=−OTS−TVST

∇Bf(S,O,C,B)=−(Y−AX−BU)UT

(10.20)

where A=S−1OCS∈RWs×Ws and V=(Y−AX−BU)XT∈RWs×Ws . The gradients (10.20)

depend on X, Y , and U , which contain a history of all the basis functions measurements

and can slow down the computation over time, as increasingly more data are collected.

3https://github.com/MurpheyLab/MemoryEfficientStableLDS

https://github.com/MurpheyLab/MemoryEfficientStableLDS

204

To speed up the computation as well as preserve memory space, I use the relation-

ships XXT=G∈RWs×Ws , Y XT=A∈RWs×Ws , XUT=XU∈RWs×Wu , Y UT=YU∈RWs×Wu ,

and UUT=UU∈RWu×Wu (derived in Appendix A.9) such that V=A−AG−BXT
U and

∇Bf(S,O,C,B)=−YU+AXU+BUU . Then, the gradient directions can be incrementally

updated with new measurements and preserve memory space. The algorithmic steps of

the DISKO framework are presented in Algorithm I.

10.3. Results

In this section, I demonstrate the benefits of DISKO in prediction and control. First, I

consider systems without inputs and show the effect of imposing stability on the prediction

accuracy. I first compare the solutions of the proposed SOC algorithm to the method [212]

that does not consider the least-squares fitness error when projecting the matrix to the

stable set of solutions. Then, I compare the evolution of nonlinear dynamics using the

unconstrained and stable Koopman models, shown in (7.4) and (10.17), respectively.

10.3.1. Least-Squares vs Nearest Stabilization

I demonstrate the difference between projecting an unstable matrix to the nearest stable

solution (nearest stabilization) and solving for a stable matrix while also optimizing for

the reconstruction error (least-squares stabilization).

205

Consider the randomly generated matrices

X=

0.1419 0.4218 0.9157 0.7922 0.9595

0.6557 0.0357 0.8491 0.9340 0.6787

0.7577 0.7431 0.3922 0.6555 0.1712

Y=

8.1472 9.0579 1.2699 9.1338 6.3236

0.9754 2.7850 5.4688 9.5751 9.6489

1.5761 9.7059 9.5717 4.8538 8.0028

.

Computing the least-squares solution using (7.4) and then projecting it to the stable set

of matrices using [212] yields

K̃d=

0.0041 −6.6031 5.1709

10.3449 −1.9480 −0.0590

11.7192 −6.7149 3.4609

,

with eigenvalues Λ={0.87,0.87,−0.22}. The least-squares error using the stable matrix is

1
2‖Y−K̃dX‖

2
F=203.04

and the Frobenius norm from the least squares solution is

1
2‖K̃

∗
d−K̃d‖2F=45.98.

206

2 3 4 5 6 7 8 9 10 20 40 60 80 100
number of measuremenents

2

3

4

5

6

7

8

9

10

25

50

75

100

nu
m

be
r

of
 b

as
is

 fu
nc

tio
ns

10-4

10-3

10-2

10-1

100

101

NaN

(a) CG

2 3 4 5 6 7 8 9 10 20 40 60 80 100
number of measuremenents

2

3

4

5

6

7

8

9

10

25

50

75

100

nu
m

be
r

of
 b

as
is

 fu
nc

tio
ns

10-12

10-10

10-8

10-6

10-4

10-2

100

(b) DISKO (c) Difference

Figure 10.2. Comparison of the SOC (Algorithm I) and CG [4] algorithms as a
function of the total number of random measurements used for training and the
total number of basis functions. The error is normalized by the product of the
number of measurements and functions. In 10.2c, the difference is calculated as
the percent difference of the error between the two algorithms and is calculated
as eCG−eSOC

eSOC
.

On the other hand, directly solving (10.17) generates a different solution

K̃d=

5.6337 −8.2334 11.5883

14.4877 −5.0863 1.9636

8.3346 −2.8916 1.0662

with eigenvalues Λ={0.98,0.98,−0.35}. The least-squares error using the stable matrix is

1
2‖Y−K̃dX‖

2
F=79.47

and the Frobenius norm from the least squares solution is

1
2‖K̃

∗
d−K̃d‖2F=108.53.

As expected, projecting the unstable solution to the stable set and ignoring the least-

squares error fitness generates a solution that is closer, in the Frobenius norm sense, to the

original unstable matrix, but also with greater error compared to the solution of (10.17).

207

10.3.2. Comparison to alternative schemes for DISKO

As mentioned earlier, there are many candidate algorithms that can be implemented for

DISKO. To motivate using the SOC algorithm over alternative choices, I compare it to the

constraint generation (CG) approach [4], which has been shown to outperform competing

alternative algorithms.4 The two algorithms are compared also in Chapter 9, but not on

randomly generated matrices and not up to such high dimensions.

I compare SOC and CG on finding stable operators that minimize the error in (10.17) for

varying number of basis functions (W∈[2,100] and number of measurements (P∈[2,100]).

Data in X and Y are sampled from the uniform distributions U(0,10) and U(0,20),

respectively, where U(a,b) is a uniform distribution and a and b are the minimum and

maximum values. The results are presented in Fig. 10.2. SOC outperforms CG in all

cases, for any number of measurements and functions used. Further, CG does not always

converge to a solution in the allotted time (10 minutes per minimization). Besides the

superior performance in terms of the reconstruction error, the SOC algorithm is also more

memory efficient. In light of these results, I use the SOC algorithm to implement DISKO

in the remaining of this work.

10.3.3. Comparisons of Reconstruction and Prediction Error

Next, I compare the evolution of the nonlinear dynamics of a pendulum (without control)

using the unconstrained solution (7.4) and the stable one (10.17). The states, dynamics,

4The algorithm in [107] does not work well for systems with inputs, as demonstrated in Chapter 9.

208

and basis functions used to train the Koopman operator are given by

s=[θ,θ̇]T , d

dt
s=[θ̇,9.81sin(θ)+βθ̇]T

Ψ(s)=[θ,θ̇,sin(θ),cos(θ)θ̇,sin(θ)cos(θ),sin(θ)θ̇2]T ,

where θ,θ̇, and β are the angle, angular velocity and damping coefficient, respectively. The

time spacing between samples is ∆t=0.02 s. For simplicity, the time dependencies of the

variables are dropped.

Fig. 10.3 shows the eigenvalues of the two methods and the prediction of the two

solutions for the undamped pendulum (β=0). The prediction associated with the uncon-

strained least-squares Koopman operator diverges away, whereas the states predicted with

DISKO remain bounded and close to the true evolution of the nonlinear dynamics for a

longer amount of time.

Next, I investigate the effect of unstable eigenvalues on the prediction accuracy, as

well as the data-efficiency of the algorithms. Specifically, for 300 randomly sampled initial

conditions, I compare the prediction error for the pendulum angle as a function of the

number of training measurements used to compute a Koopman model. I show the results

in Fig. 10.4 for an undamped and a damped pendulum system.

For both systems, the stable Koopman operator leads to smaller average prediction

error for any number of measurements used for training, as well as lower error variance

than the least-squares, unconstrained solution (7.4), exhibiting better predictive accuracy

and robustness. Further, the large error spikes associated with the unstable Koopman

model around 5 measurements indicate that the unstable solution can be very inaccurate

when trained with few measurements; on the other hand, the predictive accuracy of the

209

(a)

0 0.5 1 1.5 2 2.5 3
time (s)

0

1

2

3

4

5

(r
ad

)

real

unstable

stable

(b)

Figure 10.3. Figure 10.3a shows the eigenvalues of the unconstrained (7.4) and
constrained (10.17) Koopman operator for the nonlinear dynamics of a pendulum.
The constrained operator pushes the unstable eigenvalues to the stability bound-
ary. The stable eigenvalues are also appropriately modified so that constrained
Koopman solution locally minimizes the prediction error (10.17). Figure 10.3b
shows the prediction of the angle of the pendulum system using the unconstrained
Koopman solution (7.4) and the constrained-stable Koopman operator. The
predictions of the unconstrained Koopman operator start to diverge away from
the pendulum states after 1 second.

stable Koopman operator remains almost the same regardless of the size of the training

sample, demonstrating data-efficiency and emphasizing the benefit of DISKO in the low-

sample limit. When few measurements are available, the least-squares solution is prone to

misidentifying the system, but the stability constraints help make the learning process less

sensitive to the amount of training data. The envelope of the standard deviation error of

the unconstrained Koopman is slightly lower than that of the stable solution around 10

training measurements, suggesting that it is possible that the unstable Koopman generates

at times a smaller error and is more accurate. I argue that this is a result of the unstable

Koopman overfitting to certain initial conditions and accurately predicting the evolution

210

Number of Training Measurements

100

102

104

106

A
ve

ra
ge

 A
ng

le
 E

rr
or

0 20 480 490 500

Stable Koopman

Unstable Koopman

(a) Undamped pendulum
Number of Training Measurements

100

102

104

106

A
ve

ra
ge

 A
ng

le
 E

rr
or

0 20 480 490 500

(b) Damped pendulum

Figure 10.4. Average angle error, with one-half standard deviation shading, for
the undamped (Fig. 10.4a) and damped (Fig. 10.4b) pendulum dynamics, as
predicted by the unconstrained and the constrained-stable Koopman operator
solutions. For each number of measurements used to compute a Koopman operator,
the average angle error is the average absolute difference of the true system state
(evolved using the nonlinear dynamics) and the system state as predicted by either
Koopman operator over 1 second over 300 initial conditions.

of very few initial states. Last, the unconstrained least-squares solution for the damped

pendulum is always unstable, misidentifying in all cases the true properties of the system.

Next, I use the undamped pendulum system to illustrate how stable Koopman operators

can be used to construct Lyapunov functions and verify the stability of a controller. Using

LQR feedback, I generate a trajectory and use the state measurements and the DISKO

algorithm to compute a stable Koopman operator. I then use the Koopman operator

to construct a Lyapunov function, which I evaluate with the measurements from the

controlled trajectory.

To generate LQR control, I use Q=diag[1,1] and R=diag[0.01], initial conditions

[θ0,θ̇0]=[π,5] and collect measurements every ∆t=0.1 s. I train a Koopman operator

211

0

0.2

2

0.4

V
(

(s
))

0.6

0.8

0.5

 (rad/s)

0

 (rad)

0
-0.5-2

(a) Candidate control-Lyapunov function

0 10 20 30

time (s)

10
-2

10
0

10
2

0 10 20 30

time (s)

-15

-10

-5

0

(b) Evaluation with state measurements from LQR-controlled trajectory.

Figure 10.5. Candidate control-Lyapunov function constructed from stable Koop-
man operators and evaluated on a LQR-controlled pendulum. The candidate
control-Lyapunov function is used to verify the stability of the controlled trajec-
tory.

212

using Ψ(s)=[θ,θ̇,θ2,θ̇2,sin(θ),sin(θ̇),sin(θ)θ̇,sin(θ̇)θ]T , which satisfy the stability condi-

tions presented in Section 10.1. I then solve the Lyapunov equation (10.14) using QK̃=

diag[1,1,0,0,0,0,0,0] and construct the candidate control-Lyapunov function as V (Ψ((s))=

Ψ(s)TPΨ(s). The constructed Lyapunov function, rounded to two decimal places,

is V (Ψ(s))=1.16θ2+0.04ω2−0.16θsin(θ)+0.02θsin(ω)+0.04ωsin(θ)+0.06sin(θ)2+0.04θω.

I show the results in Fig. 10.5. The candidate control-Lyapunov function evaluated with

the controlled trajectory of the pendulum satisfies the properties of a Lyapunov function

and shows that the specific trajectory is converging to the equilibrium.

Note that the control-Lyapunov function shown in Fig. 10.5 is used to verify the stability

of the applied controller for the particular trajectory and may not be a Lyapunov function

everywhere in the state space. Rather, one can compute the region of validity based on

Theorem 4 and the modeling errors of the data-driven Koopman operator [227,228]. I

leave further analysis of Lyapunov functions generated with stable Koopman operators to

future work.

10.3.4. Nonlinear Control Using Stable Koopman Operators

In this subsection, I demonstrate the benefit of using stable Koopman operators for

nonlinear control. By improving the robustness and modeling accuracy of data-driven

models, I argue that stability-constrained models would also lead to improved control

performance.

10.3.4.1. Quadrotor. I first consider stabilizing a falling quadrotor. Using active learn-

ing, which has been shown to enhance learning and the accuracy of identified dynam-

ics [229], I collect training data within the first second of the free-fall. Then, using

213

the same training sample, I compute a Koopman model using the least-squares solution

(7.4) and DISKO and develop an LQR policy to stabilize the quadrotor. The system

feedback rate is 200 Hz and the state is partially observed containing only the measured

body-relative gravity vector and the body linear and angular velocities (see [229] for more

detail). The quadrotor dynamics, LQR parameters, and Koopman basis functions are the

same as in [229].

I present the stabilizing performance of the stable and unstable Koopman models in

Fig. 10.6. I consider two prediction horizons (30 and 40 time steps) used in computing the

finite-horizon LQR control and test both approaches using the same 10 uniformly sampled

initial conditions as done in [229]. I use the median score (in log scale) as a performance

metric of the two approaches, because it is not as biased in a case of failure (when states

diverge). Using DISKO, the control is robust and stabilizes the dynamics for both choices

of the prediction horizon, contrary to the unconstrained model that fails when using a

longer prediction window. Even in the 30 time-step horizon, however, where both models

succeed, the stable model leads to a lower median error than the unconstrained model

and has smaller variance. These results show that active learning techniques that enhance

learning are not sufficient to address the challenges of unconstrained data-driven models

and can be further improved through the use of DISKO.

10.3.4.2. Pusher-slider system. Next, I demonstrate the benefits of DISKO using a

pusher-slider system [230–232]. The pusher is a steel rod held tightly by the end effector of

the Franka Emika Panda robot [106] and the slider is a rectangular block with dimensions

15.3×13 cm. The states of the system are recorded at 10 Hz using an overhead camera

and QR codes on the slider. The experimental setup is shown in Fig. 10.7.

214

0 500 1000 1500 2000
0

5

10

15
Stable Koopman

Unstable Koopman

Time Steps

Lo
g

T
ra

ck
in

g
E

rr
o

r

(a) 30 time-steps horizon.

0 500 1000 1500 2000
0

10

20

30

Time Steps

Lo
g

T
ra

ck
in

g
 E

rr
o

r

(b) 40 time-steps horizon.

Unstable Koopman Stable Koopman

(c) LQR-controlled trajectories.

Figure 10.6. Performance of LQR control derived from the stable (10.17) and
unstable (7.4) Koopman operators for the quadrotor dynamics. Both models
use the same training measurements that are collected with active learning. At
the end of the learning phase, the stable Koopman is computed and the LQR
gains from both models are derived. Figures 10.6a and 10.6b show the log error
of the tracking cost for 10 trajectories with the same uniformly sampled initial
conditions. The solid line represents the median score of each approach and the
shaded envelope the lowest and highest cost. Figure 10.6c shows a trajectory
using the 40 time-step horizon control. The initial conditions are the same, but
shifted in the x-axis for better visibility.

To train a model, I collected data using a controller to push the block with the end-

effector of the robot. I collected six training sets (200 measurements each) and used the

215

data to compute a least-squares unconstrained and a stable Koopman model. The basis

functions used are

Ψ(s)=[x,y,θ,py,vn,vp,sin(θ)vn,cos(θ)vn,sin(θ)vp,cos(θ)vp,pyvn,vp,vn,u]T ,

where x,y, and θ are the world-frame coordinates and orientation of the block, py is the

distance of the slider (end effector of the Franka Emika robot) away from center of the

block and along its pushing side (the slider is assumed to be always in contact with the

block), vn and vp are the normal and parallel velocity of the slider in the body-frame of

the block, respectively, and u∈R2 is the acceleration input for the body-frame normal

and parallel velocity of the slider. To compare the unconstrained and stable least-squares

models, I forward predict the system with zero inputs (see Fig. 10.8). Given no movement

from the pusher, the block should stay in place. However, the states propagated with the

unconstrained model diverge, as expected for an unstable linear model. On the other hand,

the simulated prediction of the DISKO model barely shows any motion and is consistent

with the expected behavior of the system.

Next, I test the predictive accuracy of the learned DISKO representation against

the training data. Specifically, I use the stable Koopman model to forward-simulate the

pusher-slider system with the controls applied during the experiments and compare it

to the actual trajectories. The results are shown in Fig. 10.9. In all cases, the model

obtained using DISKO generates qualitatively similar trajectories compared to the actual

experiments.

Last, I test the control performance of the DISKO approach. I apply infinite-horizon

LQR control, the gains of which are calculated offline once. The results are shown in Fig.

216

slider

pusher

origin

Figure 10.7. Experimental setup of the pusher-slider system. The states of
the pusher and the slider are recorded with an overhead camera. The block
configuration is identified using QR labels.

0 0.2 0.4 0.6 0.8 1
x (m)

0

0.2

0.4

0.6

y
(m

)

(a) LS Koopman

0 0.2 0.4 0.6 0.8 1
x (m)

0

0.2

0.4

0.6

y
(m

)

(b) DISKO

Figure 10.8. Simulation of the pusher-slider system over 500 time steps (dt=0.1)
with zero control inputs. The least-squares Koopman model is unstable and drifts
away, despite the fact that there should be no motion in the absence of control.

10.10. The Franka Emika Robot successfully pushes the block to the desired orientations.

In the last of the three experiments, I applied a low-pass filter to increase the controller

217
E

xp
er

im
en

t
P

re
di

ct
io

n

y
(m

)

-0.1 0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3

x (m)

0.1

0.2

0.3

0.4

0.5

0.6

y
(m

)

-0.1 0 0.1 0.2 0.3

x (m)

0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3

x (m)

0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3

x (m)

0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3

x (m)

0.1

0.2

0.3

0.4

0.5

0.6

-0.1 0 0.1 0.2 0.3
0.1

0.2

0.3

0.4

0.5

0.6

x (m)
-0.1 0 0.1 0.2 0.3

0.1

0.2

0.3

0.4

0.5

0.6

Figure 10.9. Comparison of the experimental trajectories from the training data
to those obtained in simulation using DISKO. Instances are shown every 2 seconds.
The simulated trajectories are initiated with the starting states of the experiments
and forward-propagated with the same control inputs that were applied in each
run. The position of the pusher is indicated with red and the center of the slider
with purple. In the predictions, the location of the pusher is known only as py,
the distance away from the center of the block along its pushing side; the pusher
is always assumed to be in contact with the block. To highlight this difference, I
do not plot a trajectory of the pusher, but show its location only at the instants
the block is drawn.

lag time and slow down the experiment in order to capture more of the dynamic response

of the robot experiment. The LQR objective is given in terms of x,y,θ, and py. The

weights used for the states are respectively given by Q=diag[800,800,50,10] and the control

weights are given by R=diag[104,104]. In all three experiments, the pusher successfully

moves the block close to the desired configuration. I verify that the controlled system

converges to the target by constructing a candidate control-Lyapunov function with the

stable Koopman operator and evaluating it with the state measurements. Note that the

candidate control-Lyapunov function is reconstructed using Theorem 4, using data from

each individual trajectory. This is a candidate control-Lyapunov function for a basis of

attraction surrounding the equilibrium, but the robot would need to collect data verifying

218

0 0.2 0.4
x (m)

0

0.2

0.4

0.6

y
(m

)

(a) (b)

0 2 4 6

time (s)

10
-2

10
-1

0 2 4 6

time (s)

-0.1

-0.08

-0.06

-0.04

-0.02

0

(c)

0 0.2 0.4
x (m)

0

0.2

0.4

0.6

y
(m

)

(d) (e)

0 2 4 6

time (s)

0.05

0.1

0.15

0.2

0 2 4 6

time (s)

-0.4

-0.3

-0.2

-0.1

0

0.1

(f)

0 0.2 0.4
x (m)

0

0.2

0.4

0.6

y
(m

)

(g) (h)

0 10 20

time (s)

40

60

80

100

120

0 10 20

time (s)

-40

-30

-20

-10

0

10

(i)

Figure 10.10. Control of the pusher-slider system using DISKO. Infinite-horizon
LQR control is used to push the block to the desired orientation, marked with
yellow border. The pusher and the center of the block are marked with red and
purple dots, respectively. Each row corresponds to one experimental run and
shows the trajectory, the tracking errors, and the constructed candidate control-
Lyapunov function that verifies that the controlled system converges to the target.
The candidate control-Lyapunov function is V (Ψ(s))=Ψ(s)TPΨ(s), where P is
the solution to the Lyapunov equation (10.14) using the stable Koopman operator.

the candidate control-Lyapunov function. This active phase of stability verification will be

considered in future work.

219

10.4. Discussion

This chapter demonstrates the benefits of stable Koopman operators in the prediction

and control of data-driven nonlinear systems. I derive a formula for the prediction error

associated with Koopman operators for an arbitrary number of time steps, which I use

to show how unstable eigenvalues exponentially amplify modeling errors. I also derive

properties for basis functions that are consistent with a stable Koopman operator and can

improve the learning process. Appropriate basis functions can lead to low training error,

which is in turn useful for the construction of Lyapunov functions, also shown in this work.

Using the examples of the pendulum and the quadrotor, I demonstrate how stability

constraints on the Koopman models makes them more robust to limited training data

(which often arises in time-urgent tasks such as stabilizing unknown dynamics), as well

as the prediction horizon. In fact, stability constraints improve even models that are

computed with rich data obtained through active learning methods. Last, using the

pusher-slider system, I validate the performance of DISKO experimentally.

220

CHAPTER 11

Conclusions and Future Work

In this thesis, I presented algorithms that improve both data-driven and model-based

control. In Part 1, I presented the only nonlinear control scheme available that has formal

performance guarantees that are dependent on the controllability properties of the system.

Besides being the only nonlinear controller with formal convergence guarantees, it also

has a computational advantage over alternative control methods, such as model predictive

control, since it avoids the expensive calculation of controls over the entire horizon. In

addition, it is shown to have superior convergence rates to top competing alternatives.

These traits render the proposed algorithm a promising feedback scheme for underactuated

and nonlinearly controllable dynamics.

In Part 2 of the thesis, I shifted the attention to control of dynamics whose model

is not available. By leveraging Koopman operator theory, I presented a derivative-based

methodology suitable for real-time data-driven identification and control. Besides the

results presented in this thesis, the presented derivative-based methodology has also been

successfully tested on predicting the state evolution of a soft robotic swimmer based

on high-fidelity CFD simulations [233]. As shown in Chapter 8, combined with model

predictive control, the performance of the proposed Koopman approach is comparable to

state-of-the-art data-driven modeling methods, such as SINDy and NARX. Further, this

modeling approach can even be used with known nonlinear dynamics to generate a linear

representation and reap the benefits of linear tools for nonlinear feedback.

221

In addition, I demonstrated the benefits of using side information, and specifically

stability, to constrain system identification methods to generate models with certain

desirable properties. Imposing such properties on the derived models helps identify

representations that better generalize beyond the training set and are remarkably more

robust to the training size. Stability, in particular, is important for numerical reasons as

well, as it ensures that the predictions generated by data-driven models are bounded and

can be practically useful for control purposes. To impose stability on learned dynamics,

I derived an optimization algorithm (SOC) to learn stable data-driven linear dynamical

systems. SOC outperforms top-performing alternatives by orders of magnitude in terms

of performance, which naturally leads to improved control as well. Further, SOC is

significantly more memory efficient and scales better for high-dimensional systems often

encountered in data-driven applications in robotics and other fields. After analyzing the

prediction error based on Koopman models and explicitly showing the effect of stability,

I used the SOC algorithm to present the benefits of data-driven identification of stable

Koopman operators (DISKO). Stability constraints improve even models that are computed

with rich data obtained through active learning methods.Using the pusher-slider system, I

validated the performance of DISKO experimentally. I also derived properties for basis

functions that are consistent with a stable Koopman operator and can improve the learning

process. Appropriate basis functions can lead to low training error, which is in turn useful

for the construction of candidate control Lyapunov functions, as illustrated in Chapter 10.

Advancements in robotics are happening at a fast pace, yet there are still a lot of

challenges to be tackled in the near future. For applications where the dynamics model is

available and accurate, it is important to develop feedback schemes that offer convergence

222

guarantees for any controllable systems. Extending the second-order needle-variation-

based algorithm presented in Part 1 of this thesis with higher-order information to always

provide solutions for all controllable systems is a promising research area, if such an

extension can scale well for high-dimensional robotics. In addition, with the increasing

advancements in Koopman operator theory and linear embeddings of nonlinear systems,

it is important to better understand the trade-offs between different modeling choices.

Under what conditions and choices can linear embeddings of known nonlinear dynamics

offer advantages in prediction and control? For example, using a linear approximation

of nonlinear dynamics and modeling the error from the true model as state-dependent

disturbance, as is shown in Chapter 10, can offer analysis tools of linear systems at the

disposal of nonlinear control.

For applications with unknown dynamics, there is significant progress to be made

in data collection, data-driven modeling, as well as data-driven control. For example,

improving the data collection can help gather training data that are more representative and

informative and enable better identification results. Promising active learning directions

include collecting data that reduce the correlation of the existing model classifiers until

system identification can be confidently attempted. Similarly, exploiting the connection

between feedback linearizable and controllable dynamics and using control to cancel

nonlinear terms that appear in the data-driven model until a linear model can be obtained

is a promising direction for actively learning with guarantees for convergence to the true

dynamics.

In addition, despite all the advancements seen in data-driven modeling in recent years,

system identification has typically taken the form of black-box machine learning operations

223

that generate unconstrained models that fit the data well, but do not generalize well

outside the training set. Using side information and knowledge, general (e.g., a system is

controllable) or more specific (e.g., a system has equilibria at known locations), about a

system can help address the challenges of overfitting, as well as improve data-efficiency.

In the future, there is a lot of room for growth in constraining optimization processes

to generate models that satisfy a wider range of properties (e.g. symmetry, stability,

periodicity, controllability) that transfer over to unseen data. Besides the task of the

learning optimization itself, side information should be used for case-specific optimization

of model parameters and classifiers a model is equipped with. For example, as Chapter 10

demonstrated, side-information such as knowledge of equilibria points of dynamics can be

used to filter out basis functions that would violate the physical properties of the modeled

system. In the same manner, system identification tools, such as SINDy [198], should

use libraries with functions that are in accordance with the properties of the modeled

system (e.g. basis functions that do not blow up at equilibria points). Other promising

research directions include characterizing the fitness of basis functions based on other

criteria, such as a Lipschitz constant for the lifted dynamics, given information about the

range of system states (the domain of basis functions).

Last, promising directions for data-driven control include leveraging the training

performance of system identification to generate control with performance guarantees.

Treating the modeling error as state-dependent disturbance and implementing robust

control on the identified model can be used to guarantee control safety. Further, improving

the worst-case performance for a bundle of representations that lie within the uncertainty

224

of the data-driven model can provide guarantees for the performance of data-driven

control [234].

All in all, there are exciting research directions in robotics, control, and machine

learning. Given the fast-evolving nature of these fields, employing on any system (known

or unknown) autonomous methods that can run online, use limited computational resources,

adapt with minimal data, and provide performance and safety guarantees seems like an

attainable goal that can have a huge impact on applications such as self-driving cars,

human-robot interactions, and underwater operations.

225

Bibliography

[1] C. M. Postlethwaite, T. M. Psemeneki, J. Selimkhanov, M. Silber, and M. A. MacIver,
“Optimal movement in the prey strikes of weakly electric fish: a case study of the
interplay of body plan and movement capability,” Journal of The Royal Society
Interface, vol. 6, no. 34, pp. 417–433, 2009.

[2] A. R. Ansari and T. D. Murphey, “Sequential action control: closed-form optimal
control for nonlinear and nonsmooth systems,” IEEE Transactions on Robotics,
vol. 32, no. 5, pp. 1196–1214, 2016.

[3] E. Tzorakoleftherakis and T. Murphey, “Iterative sequential action control for stable,
model-based control of nonlinear systems,” arXiv preprint arXiv:1706.08932, 2017.

[4] B. Boots, G. J. Gordon, and S. M. Siddiqi, “A constraint generation approach
to learning stable linear dynamical systems,” in Advances in neural information
processing systems, 2008, pp. 1329–1336.

[5] D. Mayne, Nonlinear Model Predictive Control: Challenges and Opportunities,
F. Allgöwer and A. Zheng, Eds. Basel: Birkhäuser Basel, 2000, vol. 26.

[6] Z.-S. Hou and Z. Wang, “From model-based control to data-driven control: Survey,
classification and perspective,” Information Sciences, vol. 235, pp. 3–35, 2013.

[7] B. D. Anderson and J. B. Moore, Optimal control: linear quadratic methods. Courier
Corporation, 2007.

[8] A. Bemporad, F. Borrelli, and M. Morari, “Model predictive control based on linear
programming—The explicit solution,” IEEE Transactions on Automatic Control,
vol. 47, no. 12, pp. 1974–1985, 2002.

[9] F. Allgöwer and A. Zheng, Nonlinear Model Predictive Control. Basel: Birkhäuser,
Basel, 2012, vol. 26.

[10] A. Isidori, Nonlinear Control Systems, 3rd ed. London, UK: Springer, 1995.

https://ieeexplore.ieee.org/iel7/8860/4359257/07562474.pdf
https://ieeexplore.ieee.org/iel7/8860/4359257/07562474.pdf
https://link.springer.com/content/pdf/10.1007%2F978-3-0348-8407-5.pdf
https://www.sciencedirect.com/science/article/pii/S0020025512004781/pdfft?md5=5d85a37775f351c14e22b74822b10112&pid=1-s2.0-S0020025512004781-main.pdf
https://www.sciencedirect.com/science/article/pii/S0020025512004781/pdfft?md5=5d85a37775f351c14e22b74822b10112&pid=1-s2.0-S0020025512004781-main.pdf
http://www.academia.edu/download/31077934/AUTT.pdf
http://www.academia.edu/download/31077934/AUTT.pdf

226

[11] D. H. Jacobson and D. Q. Mayne, Differential Dynamic Programming. New York:
American Elsevier, 1970.

[12] E. Theodorou, Y. Tassa, and E. Todorov, “Stochastic differential dynamic program-
ming,” in Proceedings of the American Control Conference, 2010, pp. 1125–1132.

[13] E. Todorov and W. Li, “A generalized iterative LQG method for locally-optimal
feedback control of constrained nonlinear stochastic systems,” in Proceedings of the
American Control Conference, 2005, pp. 300–306.

[14] R. M. Murray and S. S. Sastry, “Nonholonomic motion planning: Steering using
sinusoids,” IEEE Transactions on Automatic Control, vol. 38, no. 5, pp. 700–716,
1993.

[15] R. M. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to Robotic
Manipulation. CRC press, 1994, ch. 18.

[16] P. V. Kokotovic, “The joy of feedback: nonlinear and adaptive,” IEEE Control
systems, vol. 12, no. 3, pp. 7–17, 1992.

[17] D. Seto and J. Baillieul, “Control problems in super-articulated mechanical systems,”
IEEE Transactions on Automatic Control, vol. 39, no. 12, pp. 2442–2453, 1994.

[18] J. L. Junkins and R. C. Thompson, “An asymptotic perturbation method for
nonlinear optimal control problems,” Journal of Guidance, Control, and Dynamics,
vol. 9, no. 4, pp. 391–396, 1986.

[19] W. Perruquetti and J.-P. Barbot, Sliding Mode Control in Engineering. New York:
Marcel Dekker, 2002.

[20] V. I. Utkin, Sliding Modes in Control and Optimization. Springer-Verlag, 1992.

[21] R. Xu and Ü. Özgüner, “Sliding mode control of a class of underactuated systems,”
Automatica, vol. 44, no. 1, pp. 233–241, 2008.

[22] S. C. Brown and K. M. Passino, “Intelligent control for an acrobot,” Journal of
Intelligent & Robotic Systems, vol. 18, no. 3, pp. 209–248, 1997.

[23] C. J. Harris, C. G. Moore, and M. Brown, Intelligent Control: Aspects of Fuzzy
Logic and Neural Nets. Singapore: World Scientific, 1993, vol. 6.

https://ieeexplore.ieee.org/iel5/5512481/5530425/05530971.pdf
https://ieeexplore.ieee.org/iel5/5512481/5530425/05530971.pdf
https://ieeexplore.ieee.org/iel5/9861/31519/01469949.pdf
https://ieeexplore.ieee.org/iel5/9861/31519/01469949.pdf

227

[24] R. Fierro, F. L. Lewis, and A. Lowe, “Hybrid control for a class of underactuated
mechanical systems,” IEEE Transactions on Systems, Man, and Cybernetics-Part
A: Systems and Humans, vol. 29, no. 6, pp. 649–654, 1999.

[25] H. K. Khalil, Nonlinear Systems. Prentice-Hall, 2002.

[26] A. M. El-Nagar, M. El-Bardini, and N. M. EL-Rabaie, “Intelligent control for non-
linear inverted pendulum based on interval type-2 fuzzy PD controller,” Alexandria
Engineering Journal, vol. 53, no. 1, pp. 23–32, 2014.

[27] I. Kolmanovsky and N. H. McClamroch, “Developments in nonholonomic control
problems,” IEEE Control Systems, vol. 15, no. 6, pp. 20–36, 1995.

[28] H. J. Sussmann, “Two new methods for motion planning for controllable systems
without drift,” in European Control Conference (ECC), 1991, pp. 1501–1506.

[29] G. Lafferriere and H. J. Sussmann, “A differential geometric approach to motion
planning,” in Nonholonomic Motion Planning. Springer, 1993, pp. 235–270.

[30] G. Lafferriere and H. Sussmann, “Motion planning for controllable systems without
drift,” in Robotics and Automation. IEEE, 1991, pp. 1148–1153.

[31] R. S. Strichartz, “The Campbell-Baker-Hausdorff-Dynkin formula and solutions of
differential equations,” Journal of Functional Analysis, vol. 72, no. 2, pp. 320–345,
1987.

[32] W. Rossmann, Lie groups: An Introduction Through Linear Groups. Oxford
University Press, 2002, vol. 5.

[33] S. M. La Valle, “Motion planning,” IEEE Robotics & Automation Magazine, vol. 18,
no. 2, pp. 108–118, 2011.

[34] M. B. McMickell and B. Goodwine, “Motion planning for nonlinear symmetric
distributed robotic formations,” The International Journal of Robotics Research,
vol. 26, no. 10, pp. 1025–1041, 2007.

[35] R. W. Brockett, “Control theory and singular Riemannian geometry,” in New
Directions in Applied Mathematics. Springer, 1982, pp. 11–27.

[36] S. Sastry, Nonlinear Systems: Analysis, Stability, and Control. Springer, 2013,
vol. 10.

228

[37] A. R. Teel, R. M. Murray, and G. C. Walsh, “Non-holonomic control systems: from
steering to stabilization with sinusoids,” International Journal of Control, vol. 62,
no. 4, pp. 849–870, 1995.

[38] J.-P. Laumond, S. Sekhavat, and F. Lamiraux, “Guidelines in nonholonomic motion
planning for mobile robots,” Robot Motion Planning and Control, vol. 229, pp. 1–53,
1998.

[39] K. A. Morgansen, V. Duidam, R. J. Mason, J. W. Burdick, and R. M. Murray, “Non-
linear control methods for planar carangiform robot fish locomotion,” in International
Conference on Robotics and Automation (ICRA), vol. 1, 2001, pp. 427–434.

[40] F. Lamiraux and J.-P. Laumond, “Flatness and small-time controllability of multi-
body mobile robots: Application to motion planning,” IEEE Transactions on
Automatic Control, vol. 45, no. 10, pp. 1878–1881, 2000.

[41] M. Rathinam and R. M. Murray, “Configuration flatness of Lagrangian systems
underactuated by one control,” SIAM Journal on Control and Optimization, vol. 36,
no. 1, pp. 164–179, 1998.

[42] I. M. Ross and F. Fahroo, “Pseudospectral methods for optimal motion planning of
differentially flat systems,” IEEE Transactions on Automatic Control, vol. 49, no. 8,
pp. 1410–1413, 2004.

[43] M. Fliess, J. Lévine, P. Martin, and P. Rouchon, “Flatness and defect of non-linear
systems: introductory theory and examples,” International Journal of Control,
vol. 61, no. 6, pp. 1327–1361, 1995.

[44] P. Rouchon, M. Fliess, J. Levine, and P. Martin, “Flatness and motion planning: The
car with n trailers,” in European Control Conference (ECC), 1993, pp. 1518–1522.

[45] F. Bullo and K. M. Lynch, “Kinematic controllability for decoupled trajectory
planning in underactuated mechanical systems,” IEEE Transactions on Robotics
and Automation, vol. 17, no. 4, pp. 402–412, 2001.

[46] K. M. Lynch, N. Shiroma, H. Arai, and K. Tanie, “Collision-free trajectory planning
for a 3-DOF robot with a passive joint,” The International Journal of Robotics
Research, vol. 19, no. 12, pp. 1171–1184, 2000.

[47] T. D. Murphey and J. W. Burdick, “The power dissipation method and kinematic
reducibility of multiple-model robotic systems,” IEEE Transactions on Robotics,
vol. 22, no. 4, pp. 694–710, 2006.

229

[48] P. Choudhury and K. M. Lynch, “Trajectory planning for kinematically controllable
underactuated mechanical systems,” in Algorithmic Foundations of Robotics V.
Springer, 2004, pp. 559–575.

[49] E. Theodorou and F. J. Valero-Cuevas, “Optimality in neuromuscular systems,” in
2010 Annual International Conference of the IEEE Engineering in Medicine and
Biology Society (EMBC), 2010, pp. 4510–4516.

[50] J. Hauser, “A projection operator approach to the optimization of trajectory func-
tionals,” IFAC Proceedings Volumes, vol. 35, no. 1, pp. 377–382, 2002.

[51] T. Fan and T. Murphey, “Online feedback control for input-saturated robotic systems
on Lie groups,” in Robotics: Science and Systems Conference (RSS), 2016.

[52] S. Aseev and V. Veliov, “Needle variations in infinite-horizon optimal control,”
Variational and Optimal Control Problems on Unbounded Domains, vol. 619, pp.
1–17, 2014.

[53] M. S. Shaikh and P. E. Caines, “On the hybrid optimal control problem: theory and
algorithms,” IEEE Transactions on Automatic Control, vol. 52, no. 9, pp. 1587–1603,
2007.

[54] A. Ansari, K. Flaßkamp, and T. D. Murphey, “Sequential action control for tracking
of free invariant manifolds,” in Conference on Analysis and Design of Hybrid Systems,
In Press.

[55] A. D. Wilson, J. Schultz, A. Ansari, and T. D. Murphey, “Real-time trajectory
synthesis for information maximization using sequential action control and least-
squares estimation,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems
(IROS), In Press.

[56] I. Abraham, G. De La Torre, and T. D. Murphey, “Model-based control using
koopman operators,” arXiv preprint arXiv:1709.01568, 2017.

[57] D. Bruder, B. Gillespie, C. D. Remy, and R. Vasudevan, “Modeling and control of soft
robots using the Koopman operator and model predictive control,” in Proceedings of
Robotics: Science and Systems, 2019.

[58] M. T. Gillespie, C. M. Best, E. C. Townsend, D. Wingate, and M. D. Killpack,
“Learning nonlinear dynamic models of soft robots for model predictive control
with neural networks,” in 2018 IEEE International Conference on Soft Robotics
(RoboSoft). IEEE, 2018, pp. 39–45.

https://arxiv.org/pdf/1902.02827
https://arxiv.org/pdf/1902.02827

230

[59] B. Klaassen, R. Linnemann, D. Spenneberg, and F. Kirchner, “Biomimetic walking
robot scorpion: Control and modeling,” Robotics and autonomous systems, vol. 41,
no. 2-3, pp. 69–76, 2002.

[60] Y. F. Zheng, H. Wang, S. Li, Y. Liu, D. Orin, K. Sohn, Y. Jun, and P. Oh, “Humanoid
robots walking on grass, sands and rocks,” in 2013 IEEE Conference on Technologies
for Practical Robot Applications (TePRA). IEEE, 2013, pp. 1–6.

[61] G. Kan-feng and Z. Ming-yang, “Dynamic modeling and simulation of driving control
for wheeled mobile robot on sand,” Journal of System Simulation, vol. 20, no. 18,
pp. 5035–5039, 2008.

[62] J. C. Kinsey, R. M. Eustice, and L. L. Whitcomb, “A survey of underwater ve-
hicle navigation: Recent advances and new challenges,” in IFAC Conference of
Manoeuvering and Control of Marine Craft, vol. 88, 2006, pp. 1–12.

[63] G. Mamakoukas, M. A. MacIver, and T. D. Murphey, “Feedback synthesis for under-
actuated systems using sequential second-order needle variations,” The International
Journal of Robotics Research, vol. 37, no. 13-14, pp. 1826–1853, 2018.

[64] J. Yuh, “Modeling and control of underwater robotic vehicles,” IEEE Transactions
on Systems, man, and Cybernetics, vol. 20, no. 6, pp. 1475–1483, 1990.

[65] G. Mamakoukas, M. A. MacIver, and T. D. Murphey, “Sequential action control for
models of underactuated underwater vehicles in a planar ideal fluid,” in Proceedings
of the American Control Conference, 2016, pp. 4500–4506.

[66] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems,” Proceedings of the
National Academy of Sciences, vol. 113, no. 15, pp. 3932–3937, 2016.

[67] W. Yu, J. Tan, C. K. Liu, and G. Turk, “Preparing for the unknown: Learning a
universal policy with online system identification,” arXiv preprint arXiv:1702.02453,
2017.

[68] O. Ennasr, G. Mamakoukas, M. Castaño, D. Coleman, T. Murphey, and X. Tan,
“Adaptive single action control policies for linearly parameterized systems,” in Dy-
namic Systems and Control Conference. American Society of Mechanical Engineers
Digital Collection, 2019.

[69] R. Johansson, A. Robertsson, K. Nilsson, and M. Verhaegen, “State-space system
identification of robot manipulator dynamics,” Mechatronics, vol. 10, no. 3, pp.
403–418, 2000.

https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7526061
https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=7526061
https://www.pnas.org/content/pnas/early/2016/03/23/1517384113.full.pdf
https://www.pnas.org/content/pnas/early/2016/03/23/1517384113.full.pdf

231

[70] J. Swevers, W. Verdonck, and J. De Schutter, “Dynamic model identification for
industrial robots,” IEEE control systems magazine, vol. 27, no. 5, pp. 58–71, 2007.

[71] W. He, W. Ge, Y. Li, Y.-J. Liu, C. Yang, and C. Sun, “Model identification and
control design for a humanoid robot,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 47, no. 1, pp. 45–57, 2016.

[72] B. O. Koopman, “Hamiltonian systems and transformation in hilbert space,” Pro-
ceedings of the National Academy of Sciences, vol. 17, no. 5, pp. 315–318, 1931.

[73] J. L. Proctor, S. L. Brunton, and J. N. Kutz, “Generalizing Koopman theory to
allow for inputs and control,” SIAM Journal on Applied Dynamical Systems, vol. 17,
no. 1, pp. 909–930, 2018.

[74] I. Mezić, “On applications of the spectral theory of the Koopman operator in
dynamical systems and control theory,” in Proceedings of the Conference on Decision
and Control, 2015, pp. 7034–7041.

[75] M. Budǐsić, R. Mohr, and I. Mezić, “Applied Koopmanism,” Chaos, vol. 22, no. 4, p.
047510, 2012.

[76] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical systems: Koopman
operator meets model predictive control,” Automatica, vol. 93, pp. 149–160, 2018.

[77] J. P. Hespanha, Linear systems theory. Princeton university press, 2018.

[78] G. Doretto, A. Chiuso, Y. N. Wu, and S. Soatto, “Dynamic textures,” International
Journal of Computer Vision, vol. 51, no. 2, pp. 91–109, 2003.

[79] Y. Li, W. Li, V. Mahadevan, and N. Vasconcelos, “Vlad3: Encoding dynamics of
deep features for action recognition,” in Conference on Computer Vision and Pattern
Recognition, 2016, pp. 1951–1960.

[80] H. Wang, C. Yuan, G. Luo, W. Hu, and C. Sun, “Action recognition using linear
dynamic systems,” Pattern Recognition, vol. 46, no. 6, pp. 1710–1718, 2013.

[81] A. Mauroy and J. Goncalves, “Linear identification of nonlinear systems: A lifting
technique based on the Koopman operator,” in Proceedings of the Conference on
Decision and Control, 2016, pp. 6500–6505.

[82] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data-driven approximation
of the Koopman operator: Extending dynamic mode decomposition,” Journal of
Nonlinear Science, vol. 25, no. 6, pp. 1307–1346, 2015.

https://epubs.siam.org/doi/pdf/10.1137/16M1062296
https://epubs.siam.org/doi/pdf/10.1137/16M1062296
http://robotics.caltech.edu/wiki/images/3/35/ApplicationsSpectralTheoryKoopman.pdf
http://robotics.caltech.edu/wiki/images/3/35/ApplicationsSpectralTheoryKoopman.pdf
https://arxiv.org/pdf/1206.3164
https://ieeexplore.ieee.org/iel7/7786694/7798233/07799269.pdf
https://ieeexplore.ieee.org/iel7/7786694/7798233/07799269.pdf
https://link.springer.com/content/pdf/10.1007%2Fs00332-015-9258-5.pdf
https://link.springer.com/content/pdf/10.1007%2Fs00332-015-9258-5.pdf

232

[83] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven approximations of dynamical
systems operators for control,” arXiv preprint arXiv:1902.10239, 2019.

[84] M. O. Williams, M. S. Hemati, S. T. Dawson, I. G. Kevrekidis, and C. W. Rowley,
“Extending data-driven Koopman analysis to actuated systems,” in Proceedings of
the IFAC Symposium on Nonlinear Control Systems, 2016, pp. 704–709.

[85] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koopman invariant
subspaces and finite linear representations of nonlinear dynamical systems for control,”
PloS One, vol. 11, no. 2, p. e0150171, 2016.

[86] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven discovery of Koopman
eigenfunctions for control,” https:// arxiv.org/ pdf/ 1707.01146 , 2017.

[87] N. Takeishi, Y. Kawahara, and T. Yairi, “Learning Koopman invariant subspaces for
dynamic mode decomposition,” in Proceedings of the Neural Information Processing
Systems, 2017, pp. 1130–1140.

[88] M. Haseli and J. Cortés, “Efficient identification of linear evolutions in nonlinear
vector fields: Koopman invariant subspaces,” in 2019 IEEE 58th Conference on
Decision and Control (CDC). IEEE, 2019, pp. 1746–1751.

[89] P. J. Schmid, “Dynamic mode decomposition of numerical and experimental data,”
Journal of fluid mechanics, vol. 656, pp. 5–28, 2010.

[90] C. Folkestad, D. Pastor, I. Mezic, R. Mohr, M. Fonoberova, and J. Burdick, “Extended
dynamic mode decomposition with learned koopman eigenfunctions for prediction
and control,” arXiv preprint arXiv:1911.08751, 2019.

[91] H. Arbabi and I. Mezic, “Ergodic theory, dynamic mode decomposition, and compu-
tation of spectral properties of the koopman operator,” SIAM Journal on Applied
Dynamical Systems, vol. 16, no. 4, pp. 2096–2126, 2017.

[92] G. Mamakoukas, M. L. Castaño, X. Tan, and T. D. Murphey, “Local Koopman
operators for data-driven control of robotic systems,” in Proceedings of Robotics:
Science and Systems, 2019.

[93] A. Mauroy and J. Goncalves, “Koopman-based lifting techniques for nonlinear
systems identification,” arXiv preprint arXiv:1709.02003, 2017.

[94] B. Lusch, J. N. Kutz, and S. L. Brunton, “Deep learning for universal linear
embeddings of nonlinear dynamics,” Nature Communications, vol. 9, no. 1, p. 4950,
2018.

https://arxiv.org/pdf/1902.10239
https://arxiv.org/pdf/1902.10239
https://www.sciencedirect.com/science/article/pii/S2405896316318286/pdf?md5=18aa1f3ea8ffe3e38894ad0d982a9be3&pid=1-s2.0-S2405896316318286-main.pdf
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0150171&type=printable
https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0150171&type=printable
https://arxiv.org/pdf/1707.01146
https://arxiv.org/pdf/1707.01146
https://arxiv.org/pdf/1707.01146
https://papers.nips.cc/paper/6713-learning-koopman-invariant-subspaces-for-dynamic-mode-decomposition.pdf
https://papers.nips.cc/paper/6713-learning-koopman-invariant-subspaces-for-dynamic-mode-decomposition.pdf
http://www.roboticsproceedings.org/rss15/p54.pdf
http://www.roboticsproceedings.org/rss15/p54.pdf
https://arxiv.org/abs/1709.02003
https://arxiv.org/abs/1709.02003
https://www.nature.com/articles/s41467-018-07210-0.pdf
https://www.nature.com/articles/s41467-018-07210-0.pdf

233

[95] I. Abraham, G. De La Torre, and T. D. Murphey, “Model-based control using
Koopman operators,” in Proceedings of Robotics: Science and Systems, 2017.

[96] A. Salova, J. Emenheiser, A. Rupe, J. P. Crutchfield, and R. M. D’Souza, “Koopman
operator and its approximations for systems with symmetries,” Chaos, vol. 29, no. 9,
p. 093128, 2019.

[97] S. Peitz and S. Klus, “Koopman operator-based model reduction for switched-system
control of PDEs,” Automatica, vol. 106, pp. 184–191, 2019.

[98] S. Sinha, U. Vaidya, and E. Yeung, “On computation of Koopman operator from
sparse data,” in Proceedings of the American Control Conference, 2019, pp. 5519–
5524.

[99] B. Huang, X. Ma, and U. Vaidya, “Data-driven nonlinear stabilization using Koopman
operator,” arXiv preprint arXiv:1901.07678, 2019.

[100] E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network representations
for Koopman operators of nonlinear dynamical systems,” in Proceedings of the
American Control Conference, 2019, pp. 4832–4839.

[101] G. Mamakoukas, M. L. Castano, X. Tan, and T. D. Murphey, “Derivative-based
Koopman operators for real-time control of robotic systems,” Transactions on
Robotics (TRO), 2021.

[102] N. L. C. Chui and J. M. Maciejowski, “Realization of stable models with subspace
methods,” Automatica, vol. 32, no. 11, pp. 1587–1595, 1996.

[103] S. Sinha, B. Huang, and U. Vaidya, “Robust approximation of Koopman operator
and prediction in random dynamical systems,” in 2018 Annual American Control
Conference (ACC). IEEE, 2018, pp. 5491–5496.

[104] S. Sinha, U. Vaidya, and E. Yeung, “On computation of Koopman operator from
sparse data,” in 2019 American Control Conference (ACC). IEEE, 2019, pp.
5519–5524.

[105] S. Sinha, H. Bowen, and U. Vaidya, “On robust computation of koopman operator
and prediction in random dynamical systems,” arXiv preprint arXiv:1803.08562,
2018.

[106] C. Gaz, M. Cognetti, A. Oliva, P. R. Giordano, and A. De Luca, “Dynamic identifi-
cation of the franka emika panda robot with retrieval of feasible parameters using

https://arxiv.org/pdf/1709.01568
https://arxiv.org/pdf/1709.01568
http://aip.scitation.org/doi/pdf/10.1063/1.5099091?class=pdf
http://aip.scitation.org/doi/pdf/10.1063/1.5099091?class=pdf
https://www.sciencedirect.com/science/article/pii/S0005109819302237/pdfft?md5=189afebe58e93960c631d0b5189c5382&pid=1-s2.0-S0005109819302237-main.pdf
https://www.sciencedirect.com/science/article/pii/S0005109819302237/pdfft?md5=189afebe58e93960c631d0b5189c5382&pid=1-s2.0-S0005109819302237-main.pdf
https://ieeexplore.ieee.org/iel7/8789884/8814292/08814861.pdf
https://ieeexplore.ieee.org/iel7/8789884/8814292/08814861.pdf
https://arxiv.org/pdf/1901.07678
https://arxiv.org/pdf/1901.07678
https://ieeexplore.ieee.org/iel7/8789884/8814292/08815339.pdf
https://ieeexplore.ieee.org/iel7/8789884/8814292/08815339.pdf

234

penalty-based optimization,” IEEE Robotics and Automation Letters, vol. 4, no. 4,
pp. 4147–4154, 2019.

[107] W.-b. Huang, L. le Cao, F. Sun, D. Zhao, H. Liu, and S. Yu, “Learning stable linear
dynamical systems with the weighted least square method.” in IJCAI, 2016, pp.
1599–1605.

[108] M. Egerstedt, Y. Wardi, and H. Axelsson, “Transition-time optimization for switched-
mode dynamical systems,” IEEE Transactions on Automatic Control, vol. 51, no. 1,
pp. 110–115, 2006.

[109] G. Mamakoukas, M. A. MacIver, and T. D. Murphey, “Superlinear convergence
using controls based on second-order needle variations,” in Conference on Decision
and Control (CDC), 2018, pp. 4301–4308.

[110] Y. Wardi, M. Egerstedt, and P. Twu, “A controlled-precision algorithm for mode-
switching optimization,” in Decision and Control (CDC), 2012 IEEE 51st Annual
Conference on. IEEE, 2012, pp. 713–718.

[111] T. M. Caldwell and T. D. Murphey, “Projection-based optimal mode scheduling,” in
Decision and Control (CDC), 2013 IEEE 52nd Annual Conference on. IEEE, 2013,
pp. 5307–5314.

[112] I. D. Neveln, Y. Bai, J. B. Snyder, J. R. Solberg, O. M. Curet, K. M. Lynch, and
M. A. MacIver, “Biomimetic and bio-inspired robotics in electric fish research,”
Journal of Experimental Biology, vol. 216, no. Pt 13, pp. 2501–2514, Jul. 2013.

[113] O. M. Curet, N. A. Patankar, G. V. Lauder, and M. A. MacIver, “Mechanical
properties of a bio-inspired robotic knifefish with an undulatory propulsor,” Bioinspir.
Biomim., vol. 6, no. 2, 2011.

[114] R. Pepy, A. Lambert, and H. Mounier, “Path planning using a dynamic vehicle
model,” in Information and Communication Technologies, 2006. ICTTA’06. 2nd,
vol. 1. IEEE, 2006, pp. 781–786.

[115] A. De Luca, G. Oriolo, and C. Samson, “Feedback control of a nonholonomic car-like
robot,” in Robot motion planning and control. Springer, 1998, pp. 171–253.

[116] D. Babineau, J. E. Lewis, and A. Longtin, “Spatial acuity and prey detection in
weakly electric fish,” PLoS Comput Biol, vol. 3, no. 3, p. e38, 2007.

235

[117] M. MacIver, E. Fontaine, and J. W. Burdick, “Designing future underwater vehicles:
Principles and mechanisms of the weakly electric fish,” IEEE Journal of Oceanic
Engineering, vol. 29, no. 3, pp. 651–659, 2004.

[118] M. Porez, V. Lebastard, A. J. Ijspeert, and F. Boyer, “Multi-physics model of an
electric fish-like robot: Numerical aspects and application to obstacle avoidance,” in
Intelligent Robots and Systems (IROS), 2011 IEEE/RSJ International Conference
on. IEEE, 2011, pp. 1901–1906.

[119] J. R. Solberg, K. M. Lynch, and M. A. MacIver, “Active electrolocation for underwater
target localization,” International Journal of Robotics Research, vol. 27, no. 5, pp.
529–548, 2008.

[120] J. B. Snyder, M. E. Nelson, J. W. Burdick, and M. A. MacIver, “Omnidirectional
sensory and motor volumes in an electric fish,” PLoS Biology, vol. 5, no. 11, pp.
2671–2683, 2007.

[121] B. Pagurek and C. M. Woodside, “The conjugate gradient method for optimal control
problems with bounded control variables,” Automatica (Journal of IFAC), vol. 4, no.
5-6, pp. 337–349, 1968.

[122] V. Quintana and E. Davison, “Clipping-off gradient algorithms to compute optimal
controls with constrained magnitude,” International Journal of Control, vol. 20,
no. 2, pp. 243–255, 1974.

[123] H. B. Curry, “The method of steepest descent for non-linear minimization problems,”
Quarterly of Applied Mathematics, vol. 2, no. 3, pp. 258–261, 1944.

[124] L. Lasdon, S. Mitter, and A. Waren, “The conjugate gradient method for optimal
control problems,” IEEE Transactions on Automatic Control, vol. 12, no. 2, pp.
132–138, 1967.

[125] W. Sun, E. A. Theodorou, and P. Tsiotras, “Game theoretic continuous time
differential dynamic programming,” in American Control Conference (ACC), 2015.
IEEE, 2015, pp. 5593–5598.

[126] ——, “Continuous-time differential dynamic programming with terminal constraints,”
in Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE,
2014, pp. 1–6.

[127] A. N. K. Nasir, M. A. Ahmad, and M. F. Rahmat, “Performance comparison between
LQR and PID controllers for an inverted pendulum system,” in AIP Conference
Proceedings, vol. 1052, no. 1. AIP, 2008, pp. 124–128.

236

[128] E. Tzorakoleftherakis and T. D. Murphey, “Controllers as filters: Noise-driven swing-
up control based on maxwell’s demon,” in 54th Annual Conference on Decision and
Control (CDC). IEEE, 2015, pp. 4368–4374.

[129] Y. Tassa, N. Mansard, and E. Todorov, “Control-limited differential dynamic pro-
gramming,” in IEEE International Conference on Robotics and Automation (ICRA),
2014, pp. 1168–1175.

[130] M. W. Spong, S. Hutchinson, and M. Vidyasagar, Robot modeling and control. Wiley
New York, 2006, vol. 3.

[131] F. Plestan, J. W. Grizzle, E. R. Westervelt, and G. Abba, “Stable walking of a 7-dof
biped robot,” IEEE Transactions on Robotics and Automation, vol. 19, no. 4, pp.
653–668, 2003.

[132] E. R. Westervelt, J. W. Grizzle, C. Chevallereau, J. H. Choi, and B. Morris, Feedback
control of dynamic bipedal robot locomotion. CRC press, 2007, vol. 28.

[133] J. H. Park and K. D. Kim, “Biped robot walking using gravity-compensated inverted
pendulum mode and computed torque control,” in 1998 IEEE International Con-
ference on Robotics and Automation, 1998. Proceedings., vol. 4. IEEE, 1998, pp.
3528–3533.

[134] S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, and
H. Hirukawa, “Biped walking pattern generation by using preview control of zero-
moment point,” in IEEE International Conference on Robotics and Automation,
2003. Proceedings., vol. 2. IEEE, 2003, pp. 1620–1626.

[135] Q. Huang, K. Kaneko, K. Yokoi, S. Kajita, T. Kotoku, N. Koyachi, H. Arai, N. Ima-
mura, K. Komoriya, and K. Tanie, “Balance control of a biped robot combining
off-line pattern with real-time modification,” in IEEE International Conference on
Robotics and Automation, 2000. Proceedings., vol. 4. IEEE, 2000, pp. 3346–3352.

[136] P.-B. Wieber and C. Chevallereau, “Online adaptation of reference trajectories for
the control of walking systems,” Robotics and Autonomous Systems, vol. 54, no. 7,
pp. 559–566, 2006.

[137] P. M. Wensing and D. E. Orin, “High-speed humanoid running through control with
a 3d-slip model,” in IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2013, pp. 5134–5140.

237

[138] M. Rutschmann, B. Satzinger, M. Byl, and K. Byl, “Nonlinear model predictive
control for rough-terrain robot hopping,” in IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS), 2012, pp. 1859–1864.

[139] Y. Jian, D. A. Winter, M. G. Ishac, and L. Gilchrist, “Trajectory of the body cog
and cop during initiation and termination of gait,” Gait & Posture, vol. 1, no. 1, pp.
9–22, 1993.

[140] B. G. Buss, K. A. Hamed, B. A. Griffin, and J. W. Grizzle, “Experimental results
for 3d bipedal robot walking based on systematic optimization of virtual constraints,”
in American Control Conference (ACC), 2016, pp. 4785–4792.

[141] E. Tzorakoleftherakis, “Stable control synthesis for human-in-the-loop systems,”
Ph.D. dissertation, Northwestern University, 2017, unpublished thesis.

[142] E. R. Westervelt, J. W. Grizzle, and D. E. Koditschek, “Hybrid zero dynamics of
planar biped walkers,” IEEE Transactions on Automatic Control, vol. 48, no. 1, pp.
42–56, 2003.

[143] D. Dimitrov, P.-B. Wieber, O. Stasse, H. J. Ferreau, and H. Diedam, “An optimized
linear model predictive control solver for online walking motion generation,” in IEEE
International Conference on Robotics and Automation (ICRA), 2009, pp. 1171–1176.

[144] A. Herdt, H. Diedam, P.-B. Wieber, D. Dimitrov, K. Mombaur, and M. Diehl,
“Online walking motion generation with automatic footstep placement,” Advanced
Robotics, vol. 24, no. 5-6, pp. 719–737, 2010.

[145] B. J. Stephens and C. G. Atkeson, “Dynamic balance force control for compliant
humanoid robots,” in 2010 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS). IEEE, 2010, pp. 1248–1255.

[146] J. M. Wang, D. J. Fleet, and A. Hertzmann, “Optimizing walking controllers,” ACM
Transactions on Graphics (TOG), vol. 28, no. 5, p. 168, 2009.

[147] G. Mamakoukas, M. A. MacIver, and T. D. Murphey, “Feedback synthesis for con-
trollable underactuated systems using sequential second order actions,” in Robotics:
Science and Systems (RSS), 2017.

[148] L. Pontryagin, V. Boltyanskii, R. Gamkrelidze, and E. Mishchenko, “The mathemat-
ical theory of optimal processes,” New York: Interscience, 1962.

[149] A. Dmitruk and N. Osmolovskii, “On the proof of Pontryagin’s maximum principle
by means of needle variations,” arXiv preprint arXiv:1412.2363, 2014.

238

[150] M. Garavello and B. Piccoli, “Hybrid necessary principle,” SIAM Journal on Control
and Optimization, vol. 43, no. 5, pp. 1867–1887, 2005.

[151] T. M. Caldwell and T. D. Murphey, “Projection-based iterative mode scheduling for
switched systems,” Nonlinear Analysis: Hybrid Systems, vol. 21, pp. 59–83, 2016.

[152] ——, “Switching mode generation and optimal estimation with application to skid-
steering,” Automatica, vol. 47, no. 1, pp. 50–64, 2011.

[153] B. Jakubczyk, “Introduction to geometric nonlinear control; controllability and Lie
bracket,” Mathematical Control Theory, vol. 1, no. 2, pp. 107–168, 2001.

[154] P. Rashevsky, “About connecting two points of a completely nonholonomic space by
admissible curve,” Uch. Zapiski Ped. Inst. Libknechta, vol. 2, pp. 83–94, 1938.

[155] W. Chow, “Über Systeme von linearen partiellen Differentialgleichungen erster
Ordnung.” Mathematische Annalen, vol. 117, pp. 98–105, 1940/1941. [Online].
Available: http://eudml.org/doc/160043

[156] W. Murray, “Newton-type methods,” Wiley Encyclopedia of Operations Research
and Management Science, 2010.

[157] R. B. Schnabel and E. Eskow, “A new modified Cholesky factorization,” SIAM
Journal on Scientific and Statistical Computing, vol. 11, no. 6, pp. 1136–1158, 1990.

[158] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge, U.K.: Cambridge
University Press, 2004.

[159] J. Nocedal and S. J. Wright, Numerical Optimization. Springer, 2006, ch. 3.

[160] D. Titterton and J. L. Weston, Strapdown Inertial Navigation Technology, 2nd ed.
IET, 2004.

[161] J. B. Kuipers, Quaternions and Rotation Sequences. Princeton, NJ: Princeton Univ.
Press, 1999.

[162] A. E. C. da Cunha, “Benchmark: Quadrotor attitude control.” in Applied Verification
for Continuous and Hybrid Systems (ARCH), 2015, pp. 57–72.

[163] S. M. LaValle and J. J. Kuffner Jr, “Randomized kinodynamic planning,” Interna-
tional Journal of Robotics Research, vol. 20, no. 5, pp. 378–400, 2001.

http://eudml.org/doc/160043

239

[164] D. Hsu, R. Kindel, J.-C. Latombe, and S. Rock, “Randomized kinodynamic motion
planning with moving obstacles,” International Journal of Robotics Research, vol. 21,
no. 3, pp. 233–255, 2002.

[165] S. Prajna, A. Jadbabaie, and G. J. Pappas, “A framework for worst-case and stochas-
tic safety verification using barrier certificates,” IEEE Transactions on Automatic
Control, vol. 52, no. 8, pp. 1415–1428, 2007.

[166] U. Borrmann, L. Wang, A. D. Ames, and M. Egerstedt, “Control barrier certificates
for safe swarm behavior,” Analysis and Design of Hybrid Systems, vol. 48, no. 27,
pp. 68–73, 2015.

[167] X. Xu, P. Tabuada, J. W. Grizzle, and A. D. Ames, “Robustness of control barrier
functions for safety critical control,” the IFAC Conference on Analysis and Design
of Hybrid Systems, vol. 48, no. 27, pp. 54–61, 2015.

[168] L. Wang, A. D. Ames, and M. Egerstedt, “Safety barrier certificates for collisions-free
multirobot systems,” IEEE Transactions on Robotics, 2017.

[169] A. D. Ames, J. W. Grizzle, and P. Tabuada, “Control barrier function based
quadratic programs with application to adaptive cruise control,” in IEEE Conference
on Decision and Control (CDC), 2014, pp. 6271–6278.

[170] G. Wu and K. Sreenath, “Safety-critical geometric control for systems on manifolds
subject to time-varying constraints”,” IEEE Transactions on Automatic Control, in
review, 2016.

[171] M. Deng, A. Inoue, and K. Sekiguchi, “Lyapunov function-based obstacle avoidance
scheme for a two-wheeled mobile robot,” Journal of Control Theory and Applications,
vol. 6, no. 4, pp. 399–404, 2008.

[172] H. G. Tanner, S. Loizou, and K. J. Kyriakopoulos, “Nonholonomic stabilization with
collision avoidance for mobile robots,” in International Conference on Intelligent
Robots and Systems, vol. 3, 2001, pp. 1220–1225.

[173] E. Rimon and D. E. Koditschek, “Exact robot navigation using artificial potential
functions,” IEEE Transactions on Robotics and Automation, vol. 8, no. 5, pp. 501–518,
1992.

[174] P. J. Antsaklis and A. N. Michel, A Linear Systems Primer. Springer Science &
Business Media, 2006, ch. 3, pp. 116–119.

240

[175] A. Mauroy and I. Mezić, “Global stability analysis using the eigenfunctions of the
Koopman operator,” IEEE Transactions on Automatic Control, vol. 61, no. 11, pp.
3356–3369, 2016.

[176] Y. Lan and I. Mezić, “Linearization in the large of nonlinear systems and Koopman
operator spectrum,” Physica D: Nonlinear Phenomena, vol. 242, no. 1, pp. 42–53,
2013.

[177] S. P. Nandanoori, S. Sinha, and E. Yeung, “Data-driven operator theoretic methods
for global phase space learning,” arXiv preprint arXiv:1910.03011, 2019.

[178] M. Haseli and J. Cortés, “Learning Koopman Eigenfunctions and Invariant Subspaces
from Data: Symmetric Subspace Decomposition,” arXiv preprint arXiv:1909.01419,
2020.

[179] N. Takeishi, Y. Kawahara, and T. Yairi, “Learning koopman invariant subspaces for
dynamic mode decomposition,” arXiv preprint arXiv:1710.04340, 2017.

[180] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven discovery of Koopman
eigenfunctions for control,” arXiv preprint arXiv:1707.01146, 2017.

[181] ——, “Discovering conservation laws from data for control,” in 2018 IEEE Conference
on Decision and Control (CDC). IEEE, 2018, pp. 6415–6421.

[182] S. Pan, N. Arnold-Medabalimi, and K. Duraisamy, “Sparsity-promoting algorithms
for the discovery of informative koopman invariant subspaces,” arXiv preprint
arXiv:2002.10637, 2020.

[183] D. Bruder, C. D. Remy, and R. Vasudevan, “Nonlinear system identification of soft
robot dynamics using Koopman operator theory,” in 2019 International Conference
on Robotics and Automation (ICRA). IEEE, 2019, pp. 6244–6250.

[184] R. Tibshirani, “Regression shrinkage and selection via the lasso,” Journal of the
Royal Statistical Society: Series B (Methodological), vol. 58, no. 1, pp. 267–288, 1996.

[185] K. P. Murphy, Machine learning: A Probabilistic Perspective. Cambridge, MA: The
MIT Press, 2012.

[186] G. James, D. Witten, T. Hastie, and R. Tibshirani, An Introduction to Statistical
Learning. New York: Springer, 2013, vol. 112.

[187] L. Ljung, System Identification. Upper Saddle River, NJ: Prentice Hall, 1998.

https://arxiv.org/pdf/1408.1379
https://arxiv.org/pdf/1408.1379
https://www.sciencedirect.com/science/article/pii/S0167278912002102/pdfft?md5=34cedc11b45a1c03c1d11b8902fa8def&pid=1-s2.0-S0167278912002102-main.pdf
https://www.sciencedirect.com/science/article/pii/S0167278912002102/pdfft?md5=34cedc11b45a1c03c1d11b8902fa8def&pid=1-s2.0-S0167278912002102-main.pdf
https://arxiv.org/pdf/1910.03011
https://arxiv.org/pdf/1910.03011
https://arxiv.org/pdf/1909.01419
https://arxiv.org/pdf/1909.01419

241

[188] B. C. Daniels and I. Nemenman, “Automated adaptive inference of phenomenological
dynamical models,” Nature Communications, vol. 6, p. 8133, 2015.

[189] I. G. Kevrekidis, C. W. Gear, J. M. Hyman, P. G. Kevrekidis, O. Runborg, and
C. Theodoropoulos, “Equation-free, coarse-grained multiscale computation: En-
abling microscopic simulators to perform system-level analysis,” Communications in
Mathematical Sciences, vol. 1, no. 4, pp. 715–762, 2003.

[190] Z. Hou and S. Jin, “A novel data-driven control approach for a class of discrete-time
nonlinear systems,” IEEE Transactions on Control Systems Technology, vol. 19,
no. 6, pp. 1549–1558, 2011.

[191] J. R. Cloutier, “State-dependent Riccati equation techniques: an overview,” in
Proceedings of the 1997 American control conference (Cat. No. 97CH36041), vol. 2.
IEEE, 1997, pp. 932–936.

[192] T. Çimen, “State-dependent Riccati equation (SDRE) control: A survey,” IFAC
Proceedings Volumes, vol. 41, no. 2, pp. 3761–3775, 2008.

[193] T. Carleman, “Application de la théorie des équations intégrales linéaires aux
systèmes d’équations différentielles non linéaires,” Acta Mathematica, vol. 59, no. 1,
pp. 63–87, 1932.

[194] K. Kowalski and W.-H. Steeb, Nonlinear Dynamical Systems and Carleman Lin-
earization. Teaneck, NJ: World Scientific, 1991.

[195] S. Banks, “Infinite-dimensional Carleman linearization, the Lie series and optimal
control of non-linear partial differential equations,” International Journal of Systems
Science, vol. 23, no. 5, pp. 663–675, 1992.

[196] G. V. Bard, “Numerically estimating derivatives during simulations,” in Proceedings
of the International Conference on Modelling, Simulation, and Visualization Methods,
2011, pp. 341–347.

[197] P. J. Olver, Introduction to partial differential equations. Springer, 2014.

[198] S. L. Brunton, J. L. Proctor, and J. N. Kutz, “Discovering governing equations from
data by sparse identification of nonlinear dynamical systems,” Proceedings of the
national academy of sciences, vol. 113, no. 15, pp. 3932–3937, 2016.

[199] O. Nelles, “Nonlinear dynamic system identification,” in Nonlinear System Identifi-
cation. Springer, 2001, pp. 547–577.

https://www.nature.com/articles/ncomms9133.pdf
https://www.nature.com/articles/ncomms9133.pdf
https://projecteuclid.org/download/pdf_1/euclid.cms/1119655353
https://projecteuclid.org/download/pdf_1/euclid.cms/1119655353
https://ieeexplore.ieee.org/iel5/87/4389040/05673018.pdf
https://ieeexplore.ieee.org/iel5/87/4389040/05673018.pdf
https://www.tandfonline.com/doi/pdf/10.1080/00207729208949241
https://www.tandfonline.com/doi/pdf/10.1080/00207729208949241
http://www.gregorybard.com/papers/derivatives.pdf

242

[200] B. de Silva, K. Champion, M. Quade, J.-C. Loiseau, J. Kutz, and S. Brunton,
“Pysindy: A python package for the sparse identification of nonlinear dynamical
systems from data,” Journal of Open Source Software, vol. 5, no. 49, p. 2104, 2020.
[Online]. Available: https://doi.org/10.21105/joss.02104

[201] I. The MathWorks, MATLAB Deep Learning Toolbox, Natick, Massachusetts, United
State, 2019b. [Online]. Available: https://www.mathworks.com/help/deeplearning

[202] J. Wang and X. Tan, “Averaging tail-actuated robotic fish dynamics through force
and moment scaling,” IEEE Transactions on Robotics, vol. 31, no. 4, pp. 906–917,
2015.

[203] M. Castaño and X. Tan, “Model Predictive Control-Based Path-Following for Tail-
Actuated Robotic Fish,” Journal of Dynamic Systems, Measurement, and Control,
vol. 141, no. 7, pp. 1–11, 2019.

[204] M. L. Castaño and X. Tan, “Backstepping control-based trajectory tracking for tail-
actuated robotic fish,” in Proceedings of the International Conference on Advanced
Intelligent Mechatronics, 2019, pp. 839–844.

[205] D. Bruder, X. Fu, and R. Vasudevan, “Advantages of bilinear Koopman realizations
for the modeling and control of systems with unknown dynamics,” arXiv preprint
arXiv:2010.09961, 2020.

[206] G. Mamakoukas, O. Xherija, and T. D. Murphey, “Memory-Efficient Learning of
Stable Linear Dynamical Systems for Prediction and Control,” in Conference on
Neural Information Processing Systems (NeurIPS), 2020.

[207] G. Mamakoukas, I. Abraham, and T. D. Murphey, “Learning stable models for
prediction and control,” https://arxiv.org/abs/2005.04291, 2020.

[208] J. Quevedo, “Digital control: past, present and future of pid control,” in Proceedings
of IFAC Workshop, 2000.

[209] J. Yu, M. Tan, S. Wang, and E. Chen, “Development of a biomimetic robotic fish
and its control algorithm,” IEEE Transactions on Systems, Man, and Cybernetics,
vol. 34, no. 4, pp. 1798–1810, 2006.

[210] Q. Ren, J. Xu, and X. Li, “A motion control approach for a robotic fish with iterative
feedback tuning,” in Proceedings of the International Conference on Industrial
Technology, 2015, pp. 40–45.

[211] F. Haugen, PID Control. Tapir Academic Press, 2004, ch. 4, pp. 94–98.

https://doi.org/10.21105/joss.02104
https://www.mathworks.com/help/deeplearning
https://ieeexplore.ieee.org/iel7/8860/4359257/07117447.pdf
https://ieeexplore.ieee.org/iel7/8860/4359257/07117447.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/141/7/071012/6030050/ds_141_07_071012.pdf
https://asmedigitalcollection.asme.org/dynamicsystems/article-pdf/141/7/071012/6030050/ds_141_07_071012.pdf
https://ieeexplore.ieee.org/iel7/8847927/8868321/08868586.pdf
https://ieeexplore.ieee.org/iel7/8847927/8868321/08868586.pdf
https://arxiv.org/abs/2006.03937
https://arxiv.org/abs/2006.03937
https://ieeexplore.ieee.org/iel5/3477/29160/01315762.pdf
https://ieeexplore.ieee.org/iel5/3477/29160/01315762.pdf
https://ieeexplore.ieee.org/iel7/7108493/7125066/07125073.pdf
https://ieeexplore.ieee.org/iel7/7108493/7125066/07125073.pdf

243

[212] N. Gillis, M. Karow, and P. Sharma, “A note on approximating the nearest stable
discrete-time descriptor systems with fixed rank,” Applied Numerical Mathematics,
vol. 148, pp. 131–139, 2020.

[213] R. A. Horn and C. R. Johnson, Matrix analysis. Cambridge university press, 2012.

[214] S. Soatto, G. Doretto, and Y. N. Wu, “Dynamic textures,” in International Confer-
ence on Computer Vision, vol. 2, 2001, pp. 439–446.

[215] P. Van Overschee and B. De Moor, Subspace identification for linear systems:
Theory—Implementation—Applications. Springer Science & Business Media, 2012.

[216] P. Saisan, G. Doretto, Y. N. Wu, and S. Soatto, “Dynamic texture recognition,” in
Computer Society Conference on Computer Vision and Pattern Recognition, vol. 2,
2001.

[217] A. B. Chan and N. Vasconcelos, “Probabilistic kernels for the classification of auto-
regressive visual processes,” in Computer Society Conference on Computer Vision
and Pattern Recognition, vol. 1, 2005, pp. 846–851.

[218] R. Péteri, S. Fazekas, and M. J. Huiskes, “Dyntex: A Comprehensive Database of
Dynamic Textures,” Pattern Recognition Letters, vol. 31, no. 12, pp. 1627–1632,
2010.

[219] M. Szummer and R. W. Picard, “Temporal texture modeling,” in International
Conference on Image Processing, vol. 3, 1996, pp. 823–826.

[220] N. Borovykh and M. Spijker, “Resolvent conditions and bounds on the powers of
matrices, with relevance to numerical stability of initial value problems,” Journal of
Computational and Applied Mathematics, vol. 125, no. 1-2, pp. 41–56, 2000.

[221] P. Shcherbakov, “On peak effects in discrete time linear systems,” in 2017 25th
Mediterranean Conference on Control and Automation (MED). IEEE, 2017, pp.
376–381.

[222] U. Ahiyevich, S. E. Parsegov, and P. S. Shcherbakov, “Upper bounds on peaks in
discrete-time linear systems,” Automation and Remote Control, vol. 79, no. 11, pp.
1976–1988, 2018.

[223] G. Halikias, L. Dritsas, A. Pantelous, and V. Tsoulkas, “Strong stability of discrete-
time systems,” Linear Algebra and its Applications, vol. 436, no. 7, pp. 1890–1908,
2012.

244

[224] T. A. Berrueta, A. Pervan, K. Fitzsimons, and T. D. Murphey, “Dynamical system
segmentation for information measures in motion,” IEEE Robotics and Automation
Letters, vol. 4, no. 1, pp. 169–176, 2018.

[225] W. M. Haddad and V. Chellaboina, Nonlinear dynamical systems and control: a
Lyapunov-based approach. Princeton university press, 2011.

[226] N. Gillis, M. Karow, and P. Sharma, “Approximating the nearest stable discrete-time
system,” Linear Algebra and its Applications, vol. 573, pp. 37–53, 2019.

[227] B. D. Anderson, T. S. Brinsmead, F. De Bruyne, J. Hespanha, D. Liberzon, and
A. S. Morse, “Multiple model adaptive control. part 1: Finite controller coverings,”
International Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal,
vol. 10, no. 11-12, pp. 909–929, 2000.

[228] J. Hespanha, D. Liberzon, A. Stephen Morse, B. D. Anderson, T. S. Brinsmead, and
F. De Bruyne, “Multiple model adaptive control. part 2: switching,” International
Journal of Robust and Nonlinear Control: IFAC-Affiliated Journal, vol. 11, no. 5,
pp. 479–496, 2001.

[229] I. Abraham and T. D. Murphey, “Active learning of dynamics for data-driven control
using koopman operators,” arXiv preprint arXiv:1906.05194, 2019.

[230] F. R. Hogan and A. Rodriguez, “Feedback control of the pusher-slider system: A
story of hybrid and underactuated contact dynamics,” in Algorithmic Foundations
of Robotics XII. Springer, 2020, pp. 800–815.

[231] M. Bauza and A. Rodriguez, “A probabilistic data-driven model for planar pushing,”
in 2017 IEEE International Conference on Robotics and Automation (ICRA). IEEE,
2017, pp. 3008–3015.

[232] M. Bauza, F. R. Hogan, and A. Rodriguez, “A data-efficient approach to precise
and controlled pushing,” arXiv preprint arXiv:1807.09904, 2018.

[233] M. L. Castaño, A. Hess, G. Mamakoukas, T. Gao, T. Murphey, and X. Tan, “Control-
oriented modeling of soft robotic swimmer with koopman operators,” in IEEE/ASME
International Conference on Advanced Intelligent Mechatronics (AIM), 2020, pp.
1679–1685.

[234] W. Edwards, G. Tang, G. Mamakoukas, T. Murphey, and K. Hauser, “Automatic
tuning for data-driven model predictive control,” in International Conference on
Robotics and Automation (ICRA), 2021.

245

[235] K. MacMillan and J. Sondow, “Proofs of power sum and binomial coefficient congru-
ences via Pascal’s identity,” The American Mathematical Monthly, vol. 118, no. 6,
pp. 549–551, 2011.

https://www.tandfonline.com/doi/pdf/10.4169/amer.math.monthly.118.06.549
https://www.tandfonline.com/doi/pdf/10.4169/amer.math.monthly.118.06.549

246

APPENDIX A

Derivations and Proofs

A.1. Derivation of the Mode Insertion Hessian

Consider switched systems that are defined by dynamics

ẋ(t)=f
(
x(t),Λ,t

)
=

f1
(
x(t),t

)
, T0≤t<τ1

f2
(
x(t),t

)
, τ1≤t<τ1+λ1

f1
(
x(t),t

)
, τ1+λ1≤t<τ2

f3
(
x(t),t

)
, τ2≤t<τ2+λ2

f1
(
x(t),t

)
, τ2+λ2≤t<τ3

...
...

...

f1
(
x(t),t) , τL+λL≤t<TF

(A.1)

subject to: x(T0)=x0,

where T0 is the initial time, TF is the final time, x0:R 7→RN is the initial state, L is the

number of injected dynamics, τ={τ1,τ2,···,τL}∈RL is a monotonically increasing set of

switching times, Λ={λ1,λ2,···,λL}∈RL is a set of control durations, f1:R 7→RN specify

the default dynamics, and fi:R 7→RN describe the ith injected dynamics. The switching

times are assumed to be fixed.

247

Note that, while the system dynamics f depend on the set of control durations Λ,

the same is not true for the individual switch mode dynamics fi. In addition, I refer to

individual elements in the set Λ as either Λi or λi. I measure the performance of the

system with the integral of the Lagrangian, `(·), and a terminal cost m(·), similar to (2.3).

J(Λ)=

TF∫
T0

`(x(t))dt+m(x(TF)).(A.2)

Re-writing the dynamics using step functions gives

f(x(t),Λ,t) =
[
1(t−T0)−1(t−τ−1)

]
f1
(
x(t),t

)
+
[
1(t−τ+1)−1

(
t−(τ1+λ1)

−
)]
f2
(
x(t),t

)
+
[
1
(
t−(τ1+λ1)

+
)
−1(t−τ−2)

]
f1
(
x(t),t

)
+...

+
[
1(t−(τL−1+λL−1)

+)−1(t−τ−L)
]
f1
(
x(t),t

)
+
[
1(t−τ+L)−1

(
t−(τL+λL)−

)]
fL
(
x(t),t

)
+
[
1
(
t−(τL+λL)+

)
−1(t−TF)

]
f1
(
x(t),t

)
.

The superscripts + and − help avoid ambiguity at the switching times. I use directional

derivatives to differentiate, where the slot derivative DiF(·,·) is the partial derivative of a

function F with respect to its ith argument. That is, DxF indicates the derivative of F

with respect to x and is the same as ∂F
∂x . Further, Di,jF(·,·) denotes the second partial of

a function F with respect to its first and second arguments. The step-function form of

the dynamics makes it straightforward to compute the partial derivatives D1f
(
x(t),Λ,t

)

248

and D2f
(
x(t),Λ,t

)
. Specifically,

D1f
(
x(t),Λ,t

)
=
[
1(t−T0)−1(t−τ−1)

]
D1f1

(
x(t),t

)
+
[
1(t−τ+1)−1

(
t−(τ1+λ1)

−
)]
D1f2

(
x(t),t

)
+
[
1
(
t−(τ1+λ1)

+
)
−1(t−τ−2)

]
D1f1

(
x(t),t

)
+...

+
[
1(t−(τL−1+λL−1)

+)−1(t−τ−L)
]
D1f1

(
x(t),t

)
+
[
1(t−τ+L)−1

(
t−(τL+λL)−

)]
D1fL

(
x(t),t

)
+
[
1
(
t−(τL+λL)+

)
−1(t−TF)

]
D1f1

(
x(t),t

)
and

D2f
(
x(t),Λ,t

)
=
{
δ
(
t−(τk+λk)−

)
fk(x(t),t)−δ

(
t−(τk+λk)+

)
f1(x(t),t)

}L
k=1

,(A.3)

where δ(·) is the Dirac delta functions. Using variational calculus,

DJ(Λ)·θ=
TF∫
T0

D`
(
x(r)

)
·z(r)dr+Dm

(
x(TF)

)
·z(TF)(A.4)

where z(t):R 7→RN×1 is the variation of x(t) due to the variation, θ, in Λ. Also,

249

ż(t)=
∂

∂t

∂x(t)

∂Λ
=

∂

∂Λ
∂x(t)

∂t
=

∂

∂Λ
ẋ(t)=

∂

∂Λ
f
(
x(t),Λ,t

)
=D1f

(
x(t),Λ,t

)
·z(t)+D2f

(
x(t),Λ,t

)
·θ,

subject to: z(0)= ∂

∂Λ
x(0)=0.

Define A(t),D1f
(
x(t),Λ,t

)
and B(t),D2f

(
x(t),Λ,t

)
. Therefore, ż is

ż(t)=A(t)·z(t)+B(t)·θ

subject to: z(0)=0.

The above differential equation has the solution

z(t)=

t∫
T0

Φ(t,r)B(r)·θdr,(A.5)

where Φ(t,r) is the state transition matrix corresponding to A(t). Substituting z(·) in

DJ(Λ)·θ,

DJ(Λ)·θ=
TF∫
T0

D`
(
x(r)

) r∫
T0

Φ(r,s)B(s)·θdsdr+Dm
(
x(TF)

) TF∫
T0

Φ(TF ,s)B(s)·θds.

250

Switching the order of integration in the first-integral,

DJ(Λ)·θ=
TF∫
T0

TF∫
s

D`
(
x(r)

)
Φ(r,s)B(s)·θdrds+

TF∫
T0

Dm
(
x(TF)

)
Φ(TF ,s)B(s)·θds

=

TF∫
T0

[TF∫
s

D`
(
x(r)

)
Φ(r,s)dr

︸ ︷︷
+

TF∫
T0

Dm
(
x(TF)

)
Φ(TF ,s)

]
︷︷ ︸

ρ(s)T

B(s)ds·θ.

Then,

ρ(t)=Φ(TF ,t)TDm(x(TF))
T+

TF∫
t

Φ(r,t)TD`(x(r))Tdr,

where ρ(t) is the solution to the backwards differential equation:

ρ̇(t)=−D1f(x(t),Λ,t)Tρ−D`(x(t))

subject to: ρ(TF)=Dm(x(TF))
T .

(A.6)

To avoid confusion, it is important to explain the notation used in the remaining of the

derivation. I use θ to represent first-order and η to represent second-order perturbations

to control durations Λ, respectively. I use subscripts to refer to the perturbation acting

on a specific (single) duration. For example, θi indicates the perturbation that takes

place with respect to the ith control duration, λi. I index the order of perturbations with

a superscript, so that θj indicates the jth (in order) perturbation to the set of control

durations Λ. Therefore, θ2
1 indicates the perturbation that acts on the first control duration

λ1 and that is associated with the second perturbation.

251

I write

∂

∂Λ
(DJ(Λ)·θ1)=

∂

∂Λ
(

TN∫
T0

D`(x(r))·z1(r)dr+Dm(x(TF))·z1(TF)),

and, using the product rule, I compute

D2J(Λ)·(θ1,θ2)+DJ(Λ)·η=
TF∫
T0

D2`(x(r))·
(
z1(r),z2(r)

)
+D`(x(r))·ζ(r)dr

+D2m
(
x(TF)

)
·(z1(TF),z2(TF))+Dm

(
x(TF)·ζ(TF),

where θ1 and θ2 are two first-order variations of Λ, η is a second-order variation of Λ

and ζ(t) is the second-order variation of x(t). Parameter ζ̇(t) is found by taking the

second-order switching time derivative of ẋ(t):

ζ̇(t)=
∂2

∂Λ2 ẋ(t)=
∂

∂Λ
ż1(t)

=
∂

∂Λ

(
D1f(x(t),Λ,t

)
·z1(t)+D2f

(
x(t),Λ,t)·θ1

)

such that

ζ̇(t)=A(t)·ζ(t)+B(t)·η+
(
z1(t)

T
θ1T

) D2
1f
(
x(t),Λ,t

)
D1,2f(x(t),Λ,t

)
D2,1f

(
x(t),Λ,t

)
D2

2f
(
x(t),Λ,t

) z2(t)

θ2

(A.7)

subject to: ζ(0)= ∂2

∂Λ2x(0)=0.

252

Define

C(t),

 D2
1f
(
x(t),Λ,t

)
D1,2f(x(t),Λ,t

)
D2,1f

(
x(t),Λ,t

)
D2

2f
(
x(t),Λ,t

) ,

and notice that ζ̇(t) is linear with respect to ζ(t) and therefore ζ̇(t) has solution

ζ(t)=

t∫
T0

Φ(t,r)
[
B(r)·η+

(
z1(r)T θ1T

)
C(r)

(
z2(r)
θ2

)]
dt.

Substituting ζ(t) into (A.1) gives

D2J(Λ)·(θ1,θ2)+DJ(Λ)·η=
TF∫
T0

[
z1(r)

T
D2`(x(r))z2(r)

+D`(x(r))

r∫
T0

Φ(r,s)
[
B(s)·η+(z1(s)T θ1T)C(s)

(
z2(s)
θ2

)]
ds
]
dr

+z1(TF)
TD2m(x(TF))z

2(TF)+Dm(x(TF))·

TF∫
T0

Φ(TF ,s)
[
B(s)·η+(z1(s)T θ1T)C(s)

(
z2(s)
θ2

)]
ds.

253

Note that DJ(Λ)·η equals
TF∫
T0
D`(x(r))

r∫
T0

Φ(r,s)B(s)·ηdsdr+Dm(x(TF))
TF∫
T0

Φ(TF ,s)B(s)·

ηds, which is clear from (A.4) and (A.5). Therefore, this leaves

D2J(Λ)·(θ1,θ2)=

TF∫
T0

[
z1(r)D2`(x(r))z2(r)

+D`(x(r))

τ∫
T0

Φ(r,s)(z1(s)T θ1T)C(s)

(
z2(s)
θ2

)
ds
]
dr

+z1(TF)
TD2m(x(TF))z

2(TF)

+Dm(x(TF))

TF∫
T0

Φ(TF ,s)
(
z1(s)T θ1T

)
C(s)

(
z2(s)
θ2

)
ds.

Split the integral over dr, move D`
(
x(r)

)
and Dm(x(TF)) into their respective integrals

and switch the order of integration of the double integral:

=

TF∫
T0

z1(r)TD2`(x(r))z2(r)dr+
TF∫
T0

TF∫
s

D`(x(r))Φ(r,s)
(
z1(s)T θ1T

)
C(s)

(
z2(s)
θ2

)
drds

+z1(TF)
TD2m(x(TF))z

2(TF)+

TF∫
T0

Dm
(
x(TF)

)
Φ(TF ,s)

(
z1(s)T ,θ1T

)
C(s)

(
z2(s)
θ2

)
ds.

I combine the integrals over ds, and notice that ρ(r)T , in (A.6), enters the equations.

Furthermore, I switch the dummy variable s to r and put everything back under one

integral:

=

TF∫
T0

z1(r)TD2`(x(r))z2(r)+ρ(r)T
(
z1(r)T θ1T

)
C(r)

(
z2(r)
θ2

)
dr

+z1(TF)
TD2m(x(TF))z

2(TF).

254

Expand C(·) back out,

=

TF∫
T0

z1(r)TD2`(x(r))z2(r)+ρ(r)T
[
z1(r)TD2

1f(x(r),Λ,r)z2(r)
]

+ρ(r)T
[
z1(r)TD1,2f(x(r),Λ,r)θ2

]
+ρ(r)T

[
θ1TD2,1f(x(r),Λ,r)z2(r)

]
+ρ(r)T

[
θ1TD2

2f(x(r),Λ,r)θ2
]
dr+z1(TF)

TD2m(x(TF))z
2(TF).

Switching to index notation, where ρk(·) is the kth component of ρ(·) and fk(·,·,·) is the

kth component of f(·,·,·),

=

TF∫
T0

z1(r)TD2`(x(r))z2(r)+z1(r)T
n∑
k=1

ρk(r)D
2
1f

k(x(r,Λ,r)z2(r)

+z1(r)T
n∑
k=1

ρk(r)D1,2f
k(x(r),Λ,r)θ2+θ1T

n∑
k=1

ρk(r)D2,1f
k(x(r),Λ,r)z2(r)

+θ1T
n∑
k=1

ρk(r)D
2
2f

k(x(r),Λ,r)θ2dr+z1(TF)
TD2(x(TF))z

2(TF).

255

Rearrange the terms allows D2J(Λ)·(θ1,θ2) to be partitioned into the summation of parts

P1,P2,P3 given by

P1=

TF∫
T0

z1(r)T
[
D2`(x(r))+

n∑
k=1

ρk(r)D
2
1f

k
(
x(r),Λ,r

)]
z2(r)dr

+z1(TF)
TD2m

(
x(TF)

)
z2(TF),

P2=

TF∫
T0

θ2T
n∑
k=1

ρk(r)D2,1f
k
(
x(r),Λ,r)z1(r)+θ1

n∑
k=1

ρk(r)D2,1f
k
(
x(r),Λ,r

)
z2(r)dr,

P3=

TF∫
T0

θ1T
n∑
k=1

ρk(r)D
2
2f

k
(
x(r),Λ,r

)
θ2dr

Looking at P1 first, let

g(r)=D2`
(
x(r)

)
+

n∑
k=1

ρk(r)D
2
1f

k
(
x(r),Λ,r).

Then,

P1=

TF∫
T0

z1(r)T g(r)z2(r)dr+z1(TF)D
2m
(
x(TF)

)
z2(TF).

Substituting (A.5) for z·(·), results in

=

TF∫
T0

[r∫
T0

Φ(r,s)B(s)θ1ds
]T
g(r)

r∫
T0

Φ(r,ω)B(ω)θ2dwdr

+
[TF∫
T0

Φ(TF ,s)B(s)θ1ds
]T
D2m

(
x(TF)

) TF∫
T0

Φ(TF ,w)B(w)θ2dw.

256

The integrals may be specified as follows:

=

TF∫
T0

r∫
T0

r∫
T0

θ1TB(s)TΦ(r,s)T g(r)Φ(r,w)B(w)θ2dsdwdr

+

TF∫
T0

TF∫
T0

θ1B(s)TΦ(TF ,s)TD2m
(
x(TF)

)
Φ(TF ,w)B(w)θ2dsdw.

Note that the volume of the triple integral is given by r=max(s,w). Therefore, the order

of integration may be switched to:

=

TF∫
T0

TF∫
T0

TF∫
max(s,w)

θ1TB(s)TΦ(r,s)T g(r)Φ(r,w)B(w)θ2drdsdw

+

TF∫
T0

TF∫
T0

θ1B(s)TΦ(TF ,s)TD2m
(
x(TF)

)
Φ(TF ,w)B(w)θ2dsdw.

I combine the double integral with the triple integral and rearrange the terms so that only

the ones depending on r are inside the internal integral:

=

TF∫
T0

TF∫
T0

B(s)T
[T∫

max(s,w)

Φ(r,s)T g(r)Φ(r,w)dr+Φ(TF ,s)TD2m
(
x(TF)

)
Φ(TF ,w)

]
B(w)dsdw

·(θ1,θ2).

Let

Ω(t)=

TF∫
t

Φ(r,t)g(r)Φ(r,t)dr+Φ(TF ,t)TD2m
(
x(TF)

)
Φ(TF ,t)

257

where Ω(t)∈Rn×n is the integral curve to the following differential equation

Ω̇(t)=−A(t)TΩ(t)−Ω(t)A(t)−g(t)

=−A(t)TΩ(t)−Ω(t)A(t)−D2`
(
x(t)

)
−

n∑
k=1

ρk(t)D
2
1f

k
(
x(t),Λ,t

)

subject to: Ω(TF)=D
2m
(
x(TF)

)
.

Then, depending on the relationship between s and w, P1 becomes

P1=

TF∫
T0

TF∫
T0
B(s)TΩ(s)Φ(s,w)B(w)dsdw·(θ1,θ2) s>w

TF∫
T0

TF∫
T0
B(s)TΦ(w,s)TΩ(w)B(w)dsdw·(θ1,θ2) s<w

TF∫
T0

TF∫
T0
B(s)TΩ(s)B(w)dsdw·(θ1,θ2) s=w,

P1 is a scalar and equal to its transpose, therefore

P1
s<w
=

TF∫
T0

TF∫
T0

B(w)TΩ(w)Φ(w,s)B(s)dsdw·(θ2,θ1)

Use i and j to index θ1 and θ2 respectively, where θ indicate the variations of Λ and

i,j=1,...,L. Integrating the δ-functions in B(s) and B(w) will pick out times s=τi+λi

258

and w=τj+λj such that P1ij is given by

P1ij

i>j
=

[
fi
(
x(τi+λi),t

)
−f1

(
x(τi+λi),t

)]T
Ω(τi+λi)Φ(τi+λi,τj+λj)[
fj
(
x(τj+λj),t

)
−f1

(
x(τj+λj),t

)]
·(θ1

i ,θ2
j)

i<j
=

[
fj
(
x(τj+λj),t

)
−f1

(
x(τj+λj),t

)]T
Ω(τj+λj)Φ(τj+λj ,τi+λi)[
fi
(
x(τi+λi),t

)
−f1

(
x(τi+λi),t

)]
·(θ1

i ,θ2
j)

i=j
=

[
fi
(
x(τi+λi),t

)
−f1

(
x(τi+λi),t

)]T
Ω(τi+λi)[

fi
(
x(τi+λi),t

)
−f1

(
x(τi+λi),t

)]
·(θ1

i ,θ2
i)

Taking the limit Λ→0, limΛ→0P1ij becomes

lim
Λ→0

P1ij

i>j
= [fi(x(τi),t)−f1(x(τi),t)]TΩ(τi)Φ(τi,τj)

[fj(x(τj),t)−f1(x(τj),t)]·(θ1
i ,θ2

j)

i<j
= [fj(x(τj),t)−f1(x(τj),t)]TΩ(τj)Φ(τj ,τi)

[fi(x(τi),t)−f1(x(τi),t)]·(θ1
i ,θ2

j)

i=j
= [fi(x(τi),t)−f1(x(τi),t)]Ω(τi)

[fi(x(τi),t)−f1(x(τi),t)]·(θ1
i ,θ2

i).

Now consider P2, where

D2,1f
k(x(t),Λ,t)=

{
δ
(
t−(τa+λa)−

)
D1f

k
a (x(t),t)

T −δ
(
t−(τa+λa)+

)
D1f

k
1 (x(t),t)

T
}L
a=1

.

259

Choose again the ith index of θ1 and the jth index of θ2, where i,j=1,...,L. This corresponds

to the ith index of z1(t) and the jth index of z2(t), where the kth index of z·(·) is

z·k(t)=

t∫
T0

Φ(t,r)
[
δ
(
r−(τk+λk)−

)
fk
(
x(r),r

)
−δ
(
r−(τk+λk)+

)
f1
(
x(r),r

)]
drθ·k,(A.8)

Specifying these indexes allows us to revert back to matrix representation for ρ(·) and

f(·,·,·). Thus,

P2ij=

TF∫
T0

θ2
jρ(r)

T
[
δ
(
r−(τj+λj)−

)
D1fj(x(r),r)−δ

(
r−(τj+λj)+

)
D1f1(x(r),r)

]
z1
i (r)

+θ1
i ρ(r)

T
[
δ
(
r−(τi+λi)−

)
D1fi(x(r),r)−δ

(
r−(τi+λi)+

)
D1f1(x(r),r)

]
z2
j (r)dr.

Integrating over the δ-functions picks out the times for which the δ-functions’ arguments

are zero:

=θ2
jρ
(
(τj+λj)

−
)
D1fj

(
x(τj+λj)

−,(τj+λj)−
)
z1
i

(
(τj+λj)

−
)

−θ2
jρ
(
(τj+λj)

+
)
D1f1

(
x(τj+λj)

+,(τj+λj)+
)
z1
i

(
(τj+λj)

+
)

+θ1
i ρ
(
(τi+λi)

−
)T
D1fi

(
x(τi+λi)

−,(τi+λi)−
)
z2
j

(
(τi+λi)

−
)

−θ1
i ρ
(
(τi+λi)

+
)T
D1f1

(
x(τi+λi)

+,(τi+λi)+
)
z2
j

(
(τi+λi)

+
)
.

The indexes i and j relate in three possible ways: i<j, i=j, or i>j. The first and last

case are the same, which is based on the fact that partial derivatives (with respect to

perturbations indexed with i and j) commute.

Recall that τ is a set of monotonically increasing times. Therefore, if i>j, then

τi+λi>τj+λj . Given (A.8), z·k(t) is non-zero only after time t=(τk+λk)
−. In other words,

260

the state does not change up until the first injected control and so the state perturbation z

will be zero for all times prior to the perturbations to the control duration. Consequently,

because tj+λj<ti+λi, given that i>j and so z1
i (τj+λj)=0. Therefore, the first two terms

of P2ij are zero and

i>j
= θ1

i ρ
(
(τi+λi)

−
)T
D1fi

(
x(τi+λi)

−,(τi+λi)−
)

Φ
(
(τi+λi)

−,(τj+λj)−
)[
fj
(
x(τj+λj)

−,(τj+λj)−
)
−f1

(
x(τj+λj)

+,(τj+λj)+
)]
θ2
j

−θ1
i ρ
(
(τi+λi)

+
)T
D1f1

(
x(τi+λi)

+,(τi+λi)+
)

Φ
(
(τi+λi)

−,(τj+λj)−
)[
fj
(
x(τj+λj)

−,(τj+λj)−
)
−f1

(
x(τj+λj)

+,(τj+λj)+
)]
θ2
j .

Omitting the no longer useful superscripts + and − gives

i>j
= θ1

i ρ
(
τi+λi

)T
D1fi

(
x(τi+λi),τi+λi

)
Φ
(
τi+λi,τj+λj

)[
fj
(
x(τj+λj),τj+λj

)
−f1

(
x(τj+λj),τj+λj

)]
θ2
j

−θ1
i ρ
(
τi+λi

)T
D1f1

(
x(τi+λi),τi+λi

)
Φ
(
τi+λi,τj+λj

)[
fj
(
x(τj+λj),τj+λj

)
−f1

(
x(τj+λj),τj+λj

)]
θ2
j

i>j
= θ1

i ρ
(
τi+λi

)T [
D1fi

(
x(τi+λi),τi+λi

)
−D1f1

(
x(τi+λi),τi+λi

)]

Φ
(
τi+λi,τj+λj

)[
fj
(
x(τj+λj),τj+λj

)
−f1

(
x(τj+λj),τj+λj

)]
θ2
j .

261

Taking the limit Λ→0,

lim
Λ→0

P2
i>j
= ρ(τi)

T [D1fi(x(τi),τi)−D1f1(x(τi),τi)]Φ(τi,τj)[fj(x(τj),τj)−f1(x(τj),τj)]

·(θ1
i ,θ2

j).

Now consider the i=j case. Because i=j, the perturbations θ1 and θ2 are equivalent—in

the sense that they are both perturbations to the same control duration λi—and therefore

z1(t) and z2(t) are also equivalent. So,

P2ij

i=j
= 2θ2

i ρ
(
(τi+λi)

−
)T
D1fi

(
x(τi+λi)

−,(τi+λi)−
)
z1
i

(
(τi+λi)

−
)
−2θ2

i ρ
(
(τi+λi)

+
)T

D1f1
(
x(τi+λi)

+,(τi+λi)+
)
z1
i

(
(τi+λi)

+
)

Substituting in for z1
i (·),

=2θ2
i ρ
(
(τi+λi)

−
)T
D1fi

(
x(τi+λi)

−,(τi+λi)−
)

(τi+λi)
−∫

T0

Φ
(
(τi+λi)

−,r
)
·
[
δ
(
r−(τi+λi)−

)
fi(x(r),r)−δ

(
r−(τi+λi)+

)
f1(x(r),r)

]
drθ1

i

−2θ2
i ρ
(
(τi+λi)

+
)T
D1f1

(
x(τi+λi)

+,(τi+λi)+
)

(τi+λi)
+∫

T0

Φ
(
(τi+λi)

+,r
)
·
[
δ
(
r−(τi+λi)−

)
fi(x(r),r)−δ

(
r−(τi+λi)+

)
f1(x(r),r)

]
drθ1

i .

262

This time the arguments of the δ-functions are zero at the upper bounds of their integrals.

So,

=2θ2
i ρ
(
(τi+λi)

−
)T
D1fi

(
x(τi+λi)

−,(τi+λi)−
)
·

1
2Φ

(
(τi+λi)

−,(τi+λi)−
)
fi
(
x(τi+λi)

−,(τi+λi)−
)
θ1
i

−2θ2
i ρ
(
(τi+λi)

+
)T
D1f1

(
x(τi+λi)

+,(τi+λi)+
)
·

[
Φ
(
(τi+λi)

+,(τi+λi)−
)
fi
(
x(τi+λi)

−,(τi+λi)−
)

−Φ
(
(τi+λi)

+,(τi+λi)+
)1

2f1
(
x(τi+λi)

+,(τi+λi)+
)]
θ1
i .

Recall that Φ((τi+λi)−,(τi+λi)−)=Φ((τi+λi)+,(τi+λi)+)=I and that Φ(·,·) is a con-

tinuous operator, such that Φ((τi+λi)+,(τi+λi)−)=I. Therefore, omitting the no longer

helpful − and + super-scripts,

=ρ(τi+λi)
T
[
D1fi

(
x(τi+λi),τi+λi

)
fi
(
x(τi+λi),τi+λi

)
−2D1f1

(
x(τi+λi),(τi+λi)

)
fi
(
x(τi+λi),(τi+λi)

)
+D1f1

(
x(τi+λi),(τi+λi)

)
f1
(
x(τi+λi),(τi+λi)

)]
·(θ1

i ,θ2
i).

Taking the limit Λ→0,

lim
Λ→0

P2
i=j
= ρ(τi)

T [D1fi(x(τi),τi)fi(x(τi),τi)−2D1f1(x(τi),(τi))fi(x(τi),(τi))

+D1f1(x(τi),(τi))f1(x(τi),(τi))]·(θ1
i ,θ2

i).

263

Finally, P3. Start with D2
2f

k
(
x(r),λ,r

)
. For i=j,

D2
2f

k(x(r),λ,r)ij=
(

∂

∂Λi
δ
(
r−(τi+λi)−

))
fki (x(r),r)−

(
∂

∂Λi
δ
(
r−(τi+λi)+

)
fk1 (x(r),r)

)
,

and, for i 6=j, D2
2f

k
(
x(r),λ,r

)
ij
=0. Revert back to matrix representation of ρ(·) and f(·,·).

For i=j, using chair rule on D2
2f

k
(
x(r),Λ,r

)
ij

results in:

D2
2f

k(x(r),Λ,r)ij=−δ̇
(
r−(τi+λi)−

)
fki (x(r),r)+δ̇

(
r−(τi+λi)+

)
fk1 (x(r),r).

Then,

P3=

TF∫
T0

[
−ρ(r)T δ̇

(
r−(τi+λi)−

)
fi(x(r),r) +ρ(r)T δ̇

(
r−(τi+λi)+

)
f1(x(r),r)

]
dr·(θ1

i ,θ2
i).

Using integration by parts,

=

[
−ρ(r)T δ

(
r−(τi+λi)−

)
fi(x(r),r)

∣∣∣∣∣
TF

T0

+ρ(r)T δ
(
r−(τi+λi)+

)
f1(x(r),r)

∣∣∣∣∣
TF

T0

TF∫
T0

[
ρ̇(r)T fi(x(r),r) +ρ(r)TD1fi(x(r),r)ẋ(t)+ρ(r)TD2fi(x(r),r)

]
·δ
(
r−(τi+λi)−

)
dr

−
TF∫
T0

[
ρ̇(r)T f1(x(r),r)+ρ(r)TD1f1(x(r),r)ẋ(t)+ρ(r)TD2f1

(
x(r),r)

]

δ
(
r−(τi+λi)+

)
dr
]
·(θ1

i ,θ2
i).

264

Integrating over the δ-functions picks out the times for which the δ-functions’ arguments

are zero:

=
[
ρ̇
(
(τi+λi)

−
)
fi

(
x
(
(τi+λi)

−
)
,(τi+λi)−

)
−ρ̇
(
(τi+λi)

+
)
f1

(
x
(
(τi+λi)

+
)
,(τi+λi)+

)

+ρ
(
(τi+λi)

−
)T
D1fi

(
x
(
(τi+λi)

−
)
,(τi+λi)−

)
ẋ
(
(τi+λi)

−
)

−ρ
(
(τi+λi)

+
)T
D1f1

(
x
(
(τi+λi)

+
)
,(τi+λi)+

)
ẋ
(
(τi+λi)

+
)

+ρ
(
(τi+λi)

−
)T
D2fi

(
x
(
(τi+λi)

−
)
,(τi+λi)−

)

−ρ
(
(τi+λi)

+
)T
D2f1

(
x
(
(τi+λi)

+
)
,(τi+λi)+

)]
·(θ1

i ,θ2
i).

Using (A.6),

=

[[
−ρ
(
(τi+λi)

−
)T
D1fi

(
x
(
(τi+λi)

−
)
,(τi+λi)−

)
−D`

(
x
(
(τi+λi)

−
))]

·fi
(
x
(
(τi+λi)

−
)
,(τi+λi)−

)

−
[
−ρ
(
(τi+λi)

+
)T
D1f1

(
x
(
(τi+λi)

+
)
,(τi+λi)+

)
−D`

(
x
(
(τi+λi)

+
))]

·f1

(
x
(
(τi+λi)

+
)
,λi,(τi+λi)+

)

+ρ
(
(τi+λi)

−
)T
D1fi

(
x
(
(τi+λi)

−
)
,(τi+λi)−

)
fi

(
x
(
(τi+λi)

−
)
,(τi+λi)−

)

−ρ
(
(τi+λi)

+
)T
D1f1

(
x
(
(τi+λi)

+
)
,(τi+λi)+

)
f1

(
x
(
(τi+λi)

+
)
,(τi+λi)+

)

+ρ
(
(τi+λi)

−
)T
D2fi

(
x
(
(τi+λi)

−
)
,(τi+λi)−

)

−ρ
(
(τi+λi)

+
)T
D2f1

(
x
(
(τi+λi)

+
)
,(τi+λi)+

)]
·(θ1

i ,θ2
i).

265

Canceling out terms,

=
[
−D`

(
x
(
(τi+λi)

−
))(

fi
(
x
(
(τi+λi)

−
)
,(τi+λi)−

)
−f1

(
x
(
(τi+λi)

+
)
,(τi+λi)+

))
+ρ

(
(τi+λi)

−
)T(

D2fi
(
x
(
(τi+λi)

−
)
,(τi+λi)−

)
−D2f1

(
x
(
(τi+λi)

+
)
,(τi+λi)+

))]
·
(
θ1
i ,θ2

i

)
.

Then, taking Λ→0 and omitting the superscripts,

lim
Λ→0

P3=[D`(x(τi))(fi(x(τi),τi)−f1(x(τi),τi))

+ρ(τi)
T (D2fi(x(τi),τi)−D2f1(x(τi),τi))

]
·(θ1

i ,θ2
i).

Therefore, for i6=j,

lim
Λ→0

D2J=
[
[fi(x(τi),τi)−f1(x(τi),τi)]TΩ(τi)

+ρ(τi)
T [D1fi(x(τi),τi)−D1f1(x(τi),τi)]

]
·Φ(τi,τj)[fj(x(τj),τj)−f1(x(τj),τj)]

and, for i=j,

lim
Λ→0

D2J=
[
fi
(
x(τi),τi

)
−f1

(
x(τi),τi

)]T
Ω(τi)

[
fi
(
x(τi),τi

)
−f1

(
x(τi),τi

)]

+ρ(τi)
T
[
D1fi

(
x(τi),τi

)
fi
(
x(τi),τi

)
−2D1f1

(
x(τi),τi

)
fi
(
x(τi),τi

)
+D1f1

(
x(τi),τi

)
f1
(
x(τi),τi

)
+D2fi

(
x(τi),τi

)
−D2f1

(
x(τi),τi

)]

−D`(x(τi))(fi(x(τi),τi)−f1(x(τi),τi)).

Given dynamics of the form (2.1), the MIH (for i=j) takes the form in (5.1).

266

A.2. Dependence of the Mode Insertion Hessian on First-Order Lie-Brackets

Proof. The following analysis shows the algebraic dependence of the MIH expression

on the first-order Lie brackets [hi,hj] and [g,hi] and proves Proposition 5 if either: 1)

ρT [hi,hj] 6= 0 or 2) ρT [g,hi] 6= 0, as guaranteed by Proposition 4.

Consider controls such that uj = vi ∀ j,i6=k and vk=0 and expresses the MIH expression

(5.1) as

d2J

dλ2
+

= uTGu−uk((Dxl1)hk−ρT [g,hk]),

where Gij = 0 ∀ i,j∈[1,M]\{k}, Gik = Gki = 1
2 [hi,hk], and Gkk = hTk Ωhk+ρTDxhk·hk.

The matrix G is shown to be either indefinite or negative semidefinite if there exists

a Lie bracket term [hi,hk] such that ρT [hi,hk] 6= 0. From Proposition (8), there exist

i, j ∈ [1,M] such that either ρT [hi,hj] 6= 0 or ρT [g,hi] 6= 0. Let k ∈ [1,M] be an index

chosen such that either ρT [hi,hk] 6= 0 or ρT [g,hi] 6= 0 for some i ∈ [1,M] \ {k}.

I use summation notation to express the MIH as

d2J

dλ2 = (
M∑
i=1

hi(ui−vi)
)T

Ω
M∑
j=1

hj(uj−vj)

+ρT
[∂g
∂x
g+

∂g

∂x

M∑
j

hjuj+
M∑
j

∂hj
∂x

ujg+
M∑
j

∂hj
∂x

uj
M∑
j

hjuj+
∂g

∂x
g+

∂g

∂x

M∑
i

hivi

+
M∑
i

∂hi
∂x

vig+
M∑
i

∂hi
∂x

vi
M∑
i

hivi−2∂g
∂x
g−2∂g

∂x

M∑
j

hjuj−2
M∑
i

∂hi
∂x

vig−2
M∑
i

∂hi
∂x

vi
M∑
j

hjuj
]

− ∂`
∂x

(
M∑
i=1

hi(ui−vi)),

267

which can be simplified to

= (
M∑
i=1

hi(ui−vi)
)T

Ω
M∑
j=1

hj(uj−vj)+ρT
(
−∂g
∂x

M∑
j

hjuj+
M∑
j

∂hj
∂x

ujg+
M∑
j

∂hj
∂x

uj
M∑
j

hjuj

+
∂g

∂x

M∑
i

hivi−
M∑
i

∂hi
∂x

vig+
M∑
i

∂hi
∂x

vi
M∑
i

hivi−2
M∑
i

∂hi
∂x

vi
M∑
j

hjuj

)
− ∂`
∂x

(
M∑
i=1

hi(ui−vi)).

Rearranging the expression into quadratic and linear terms in the control input, I rewrite

the MIH expression (5.1) as

= (
M∑
i=1

hi(ui−vi)
)T

Ω
M∑
j=1

hj(uj−vj)

+ρT
(M∑
j

∂hj
∂x

uj
M∑
j

hjuj+
M∑
i

∂hi
∂x

vi
M∑
i

hivi−2
M∑
i

∂hi
∂x

vi
M∑
j

hjuj
)
− ∂`
∂x

(
M∑
i=1

hi(ui−vi))

+ρT
(
−∂g
∂x

M∑
j

hjuj+
M∑
j

∂hj
∂x

ujg+
∂g

∂x

M∑
i

hivi−
M∑
i

∂hi
∂x

vig
)
.

Further considering controls such that uj = vi ∀ j, i 6= k and vk = 0,

= (hkuk)
TΩ(hkuk)+ρ

TD− ∂`
∂x

(hkuk)+ρ
T
(
−∂g
∂x
hkuk+

∂hk
∂x

ukg
)
,

268

where uk is the kth control input and D is

D =
M∑
j

∂hj
∂x

uj
M∑
j

hjuj+
M∑
i

∂hi
∂x

vi
M∑
i

hivi−2
M∑
i

∂hi
∂x

vi
M∑
j

hjuj

= (
M∑
j 6=k

∂hj
∂x

uj)
M∑
j 6=k

hjuj+(
∂hk
∂x

uk)
M∑
j 6=k

hjuj+(
M∑
j 6=k

∂hj
∂x

uj)hkuk

+
∂hk
∂x

ukhkuk+(
M∑
i6=k

∂hi
∂x

vi)
M∑
i6=k

hivi−2(
M∑
i6=k

∂hi
∂x

vi)
M∑
j 6=k

hjuj−2(
M∑
i6=k

∂hi
∂x

vi)hkuk

= uk

M∑
j 6=k

∂hk
∂x

hjuj−uk(
M∑
j 6=k

∂hj
∂x

ujhk)+
∂hk
∂x

ukhkuk

= uk
[M∑
j 6=k

uj
(∂hk
∂x

hj−
∂hj
∂x

hk
)]
+
∂hk
∂x

ukhkuk

= uk
[M∑
j 6=k

uj [hj ,hk]
]
+
∂hk
∂x

ukhkuk,

where terms cancel because uj = vi ∀ j, i 6= k. I use the property xTAx = xT
(

1
2(A+A

T)
)
x

and I write D in a matrix form,

=uT

0 ... 1
2 [h1,hk] ... 0

...
. . . 1

2 [h2,hk] . .
. ...

1
2 [h1,hk] 1

2 [h2,hk] ∂hk
∂x hk

1
2 [hM−1,hk] 1

2 [hM ,hk]
... . .

. 1
2 [hM−1,hk]

. . .
...

0 ... 1
2 [hM ,hk] ... 0

u.

269

The dotted entries in the matrix represent zero terms. Combining all terms, the MIH can

be written as

d2J

dλ2 = uTGu− ∂`
∂x

(hkuk)+ρ
T
(
−∂g
∂x
hkuk+

∂hk
∂x

ukg
)

(A.9)

= uTGu−uk
(∂`
∂x
hk−ρT [g,hk]

)
,(A.10)

where

G=

0 ... 1
2ρ
T [h1,hk] ... 0

...
. . . 1

2ρ
T [h2,hk] . .

. ...

1
2ρ
T [h1,hk] 1

2ρ
T [h2,hk] C1

1
2ρ
T [hM−1,hk] 1

2ρ
T [hM ,hk]

... . .
. 1

2ρ
T [hM−1,hk]

. . .
...

0 ... 1
2ρ
T [hM ,hk] ... 0

,

and C1 = hTk Ωhk+ρT
∂hk
∂x hk.

Given that dJ
dλ+

= 0, then, by Proposition 7, ρThi = 0 ∀ i ∈ [1,M]. In addition, by

Proposition 5, ρ 6= 0 and, by Proposition 8, there exist i, j ∈ [1,M] such that ρT [hi,hj] 6= 0

or ρT [g,hi] 6= 0. It is more convenient to consider two cases that capture all possible

scenarios: 1) ρT [hi,hj] 6= 0 and 2) ρT [hi,hj] = 0 (which implies ρT [g,hi] 6= 0, by Proposition

3).

Case 1. ρT [hi,hj] 6= 0.

270

Let G[i,j] denote a 2×2 matrix obtained from G by deleting all but its ith and jth row

and ith and jth column

G[i,j] =

Gii Gij
Gji Gjj

,

where Gij = Gji because G is symmetric. The principal minors of G of order 2 are given

by ∆2 = det(G[i,j]) = GiiGjj − G2
ijGji ∀ i 6= j ∈ [1,M].

Consider first the diagonal terms of G[i,j]. Note that, because i 6= j and Gii = 0 ∀ i 6= k,

then either Gii = 0 or Gjj = 0. Therefore, ∆2 = − GijGji ∀ i 6= j ∈ [1,M]. Next,

consider the off-diagonal elements. Also note that Gij = 0 ∀ i, j ∈ [1,M] \{k}. Given

that Gik = Gki = 1
2ρ
T [hi,hk] ∀ i ∈ [1,M] \ {k}, I have ∆2 = 0 ∀ i ∈ [1,M] \ {k} and

∆2 = − 1
4(ρ

T [hi,hk])2, otherwise. I summarize these cases as follows

∆2 =

0 ∀ i, j ∈ [1,M] \ {k}

−G2
ij = −1

4(ρ
T [hi,hk])2 ≤ 0 otherwise.

If there exists i ∈ [1,M] such that ρT [hi,hj] 6= 0, there is at least one negative second-order

principal minor. Therefore, G is indefinite and so there exist controls u ∈ RM such that

uTGu < 0.

Choose u ∈ RM such that uTGu < 0 and let uk ∈ R represent the kth element of u. If

uk
(
ρT [g,hk]−Dxlhk

)
≤ 0, then

uTGu < 0 =⇒ uTGu+uk
(
ρT [g,hk]−Dxlhk

)
< 0.

271

Else, if uk
(
ρT [g,hk]−Dxlhk

)
> 0, choose u′ = −u so that

u′k
(
ρT [g,hk]−Dxlhk

)
=−uk

(
ρT [g,hk]−Dxlhk

)
< 0

and

u′TGu′+u′k
(
ρT [g,hk]−Dxlhk

)
=uTGu−uk

(
ρT [g,hk]−Dxlhk

)
< 0.

Therefore, if ρT [hi,hj] 6= 0, there always exists u ∈ RM such that d2J
dλ2 < 0.

Case 2. ρT [hi,hj] = 0.

If ρT [hi,hj] = 0 ∀ i, j ∈ [1,M], then, shown in Proposition 8, there exists i ∈ [1,M]

such that ρT [g,hi] 6= 0. For ρT [hi,hj] = 0, the MIH becomes

u2
k

(
hTk Ωhk+ρTDxhk

)
+uk

(
ρT [g,hk]−Dxlhk

)
,(A.11)

which is a quadratic expression of the form ax2+bx+c. Quadratic expressions become

negative if and only if a ≤ 0 or b2−4ac > 0. Therefore, (A.11) takes negative values if

and only if, for some time t ∈ [to,to+T],

(1) hTk Ωhk+ρTDxhk ≤ 0 OR

(2) ρT [g,hk]−Dxlhk 6= 0.

272

I consider the second condition: ρT [g,hk]−Dxlhk 6= 0. Because dJ
dλ+

= 0 ∀ u ∈ RM and

∀ t ∈ [to,to+T], then

dJ

dλ+
= 0 =⇒ ρThi = 0 ∀ i ∈ [1,M], ∀ t ∈ [to, to+T]

=⇒ ρThk = 0 ∀ t ∈ [to, to+T]

=⇒ ρThk = 0 for t = to+T AND ρ̇Thk = 0 ∀ t ∈ [to, to+T]

=⇒ Dxmhk = 0 for t = to+T AND (−Dxl−ρTDxf2)hk=0 ∀ t∈ [to, to+T]

=⇒ (x−xd)TP1hk = 0 for t = to+T

AND (−(x−xd)TQ−ρTDxf2)hk = 0 ∀ t ∈ [to, to+T].

Consider positive-definite weight matrices Q = δP1�0, where δ is a scale factor. Then,

(x−xd)TP1hk = 0|to+T ⇔ (x−xd)T δP1hk = 0|to+T

⇔ (x−xd)TQhk = 0|to+T ,

and

dJ

dλ+
=0 =⇒ Dxmhk = 0

⇔ Dxlhk = 0 AND ρTDxf2hk=0.

Then, ρT [g,hk]−Dxlhk = ρT [g,hk] 6=0. Therefore, there exist control solutions u∈RM

such that the MIH expression becomes negative. �

273

A.3. Control Solutions based on the Mode Insertion Gradient and Hessian

In the following derivation, I treat the first- and second-order mode insertion gradient

terms separately.

Associate f1 with default control v and f2 with injected control u, such that

f1,f(x(t),v(t))=g(x(t))+h(x(t))v(t)

f2,f(x(t),u(t))=g(x(t))+h(x(t))u(t)

For simplicity, I drop the arguments as necessary. For the mode insertion gradient, the

update step is straightforward

∂

∂u

dJ

dλ+
=
∂

∂u
ρT (f2−f1)=

∂

∂u
ρTh(u−v)=ρTh,(A.12)

∂2

∂u2
dJ

dλ+
=0.(A.13)

The update step on the MIH is more complicated and so I divide the MIH expression into

three parts
d2J

dλ2
+
=A1+A2+A3,

where the terms A1,A2,A3 are given by the following set of equations

A1=(f2−f1)
TΩ(f2−f1)

A2=ρ
T (Dxf2·f2+Dxf1·f1−2Dxf1·f2)

A3=−Dxl·(f2−f1).

274

Let l2= d2J
dλ2

+
. Using the Gâteux derivative,

∂l2
∂u

=
∂l2(u+εη)

∂ε

∣∣∣∣
ε=0

=
∂A1(·)
∂ε

+
∂A2(·)
∂ε

+
∂A3(·)
∂ε

∣∣∣∣
ε=0

.

Then,

∂A1
∂u

=
∂

∂ε
A1(u+εη)

∣∣∣∣
ε=0

=
∂

∂ε
([h
(
(u+εη)−v

)
]TΩ [h

(
(u+εη)−v

)
])
∣∣∣∣
ε=0

=(hη)TΩ (h·(u+εη−v))+(h(u+εη−v))TΩ hη
∣∣∣∣
ε=0

=ηThTΩ hu−ηThTΩ hv+uThTΩ hη−vThTΩ hη

=
(
uThT

(
ΩT+Ω

)
h−vThT

(
ΩT+Ω

)
h
)
η

275

∂A2
∂u

=
∂

∂ε
A2(u+εη)

∣∣∣∣
ε=0

=
∂

∂ε
ρT (Dxf1·f1−2 Dxf1·f2+Dxf2·f2)

∣∣∣∣
ε=0

=
∂

∂ε
ρT (Dx(g+hv)·(g+hv)−2Dx(g+hv)(g+h(u+εη))

+Dx(g+h(u+εη))(g+h(u+εη)))
∣∣∣∣
ε=0

=ρT (−2 Dx(g+hv)hη+Dx(hη)·(g+hu) +Dx(g+hu)·hη)

=ρT (−2Dx(g+hv)hη+Dx(hη)g+Dx(hη)hu+Dxghη+Dx(hu)hη)

=ρT (−Dxghη−2Dx(hv)hη+Dx(h η)·g +Dx(h η)·hu+Dx(hu)·hη)

=ρT
(
−Dxg·hη−2Dx(

m∑
k=1

hkudk
)·hη+Dx(

m∑
k=1

hkηk)·g+Dx(
m∑
k=1

hkηk)hu

+Dx(
m∑
k=1

hku2k
)·hη

)

=−ρTDxghη−2vT (
n∑
k=1

(Dxhk)ρk)hη+η
T (

n∑
k=1

(Dxhk)ρk)g+η
T (

n∑
k=1

(Dxhk)ρk)hu

+uT (
n∑
k=1

(Dxhk)ρk)hη

=−ρTDxghη−2vT (
n∑
k=1

(Dxhk)ρk)·hη+gT (
n∑
k=1

(Dxhk)ρk)
T η+uThT ·(

n∑
k=1

(Dxhk)ρk)
T η

+uT (
n∑
k=1

(Dxhk)ρk)·hη

=
[
−ρTDxg·h−2vT (

n∑
k=1

(Dxhk)ρk)·h+gT (
n∑
k=1

(Dxhk)ρk)
T+uThT ·(

n∑
k=1

(Dxhk)ρk)
T

+uT (
n∑
k=1

(Dxhk)ρk)·h
]
·η.

276

Last,

∂A3
∂u

=
∂

∂ε
A3(u+εη)

∣∣∣∣
ε=0

=− ∂l
∂x

∂

∂ε

(
g+h(u+εη)−g−hv

)∣∣∣∣
ε=0

=− ∂l
∂x
hη

Therefore,

∂l2
∂u

=uT
[
hT
(

ΩT+Ω
)
h+hT (

n∑
k=1

(Dxhk)ρk)
T+(

n∑
k=1

(Dxhk)ρk)h
]

−vT
[
hT
(

ΩT+Ω
)
h+2(

n∑
k=1

(Dxhk)ρk)h
]
−ρTDxg·h+gT (

n∑
k=1

(Dxhk)ρk)
T− ∂l

∂x
h.

Solving for the minimizer, ∂l2
∂u

T
=0, I get

0=
[
hT
(

ΩT+Ω
)
h+hT (

n∑
k=1

(Dxhk)ρk)
T+(

n∑
k=1

(Dxhk)ρk)h
]
u

(A.14)

−
[
hT
(

ΩT+Ω
)
h+2hT (

n∑
k=1

(Dxhk)ρk)
T
]
v−Dxg

Tρh−(
n∑
k=1

(Dxhk)ρk)g+h
TDxl

T

⇒

u=
[
hT
(

ΩT+Ω
)
h+hT (

n∑
k=1

(Dxhk)ρk)
T+(

n∑
k=1

(Dxhk)ρk)h
]−1[

hT
(

ΩT+Ω
)
h

+2hT (
n∑
k=1

(Dxhk)ρk)
T
]
v+Dxg

Tρh−(
n∑
k=1

(Dxhk)ρk)g+h
TDxl

T

The terms shown in (A.12) and (A.14), together with a penalty term for the control, are

the gradient and Hessian terms used for the Newton update step that appears in (5.6).

277

A.4. Global Error for Taylor-Based Koopman Operators

In each time step, there is error induced in the updated function. Let e(m)
k indicate

the deviation from the accurate value of the f (m)
k function at time tk, where m∈ Z∩[0,n].

That is,

ek=f̃k−fk

e′k=f̃
′
k−f ′k

...

e
(n)
k =f̃

(n)
k −f

(n)
k

(A.15)

Next, consider how previous errors accumulate in the prediction of a function:

f̃k+1=f̃k+f̃
′
k·∆t+f̃ ′′k ·

∆t2

2!
+···+f̃ (n)k

∆tn

n!

=(fk+ek)+(f ′k+e
′
k)·∆t+(f ′′k+e

′′
k)·

∆t2

2!
+···+(f

(n)
k +e

(n)
k)

∆tn

n!

=fk+f
′
k·∆t+f ′′k

∆t2

2!
+···+f (n)k

∆tn

n!
+ek+e

′
k·∆t+e′′k·

∆t2

2!
+···+e(n)k

∆tn

n!︸ ︷︷ ︸
error terms

,

(A.16)

such that

ek+1=ek+e
′
k·∆t+e′′k·

∆t2

2!
+···+e(n)k

∆tn

n!
+

∆tn+1

(n+1)!f
(n+1)
k,k+1 ,(A.17)

where the last error term is from Lagrange’s remainder formula and is added at each

step. Remember, f (n)k,k+1 is the nth derivative of a function evaluated at some t∈[tk,tk+1].

278

Similarly,

ek=ek−1+e
′
k−1·∆t+e′′k−1·

∆t2

2!
+···+e(n)k−1

∆tn

n!
+

∆tn+1

(n+1)!f
(n+1)
k−2,k−1(A.18)

...(A.19)

e3=e2+e
′
2·∆t+e′′2·

∆t2

2!
+···+e(n)2

∆tn

n!
+

∆tn+1

(n+1)!f
(n+1)
2,3(A.20)

e2=e1+e
′
1·∆t+e′′1·

∆t2

2!
+···+e(n)1

∆tn

n!
+

∆tn+1

(n+1)!f
(n+1)
1,2 ,(A.21)

where e1=f
(n+1)
0,1

∆tn+1

(n+1)! ; in the first iteration, I assume the knowledge of the exact values of

all derivatives up to order n, such that the only numerical error comes from the inaccuracy

of the Taylor series expansion. Without loss of generality, the functions are assumed to be

known exactly at k=0. That is, e0=0,e′0=0,...,e(n)0 =0. Thus, I can express the error of a

function f as

ek=(
k−1∑
i=1

e′i·∆t+e′′i ·
∆t2

2!
+···+e(n)i

∆tn

n!
+f

(n+1)
i,i+1

∆tn+1

(n)!
)+f

(n+1)
0,1

∆tn+1

(n+1)!
(A.22)

Similarly, for the errors associated with the higher-order terms, I have

e′k= (
k−1∑
i=1

e′′i ·∆t+e′′i ·
∆t2

2!
+···+e(n)i

∆tn−1

(n−1)!+f
(n+1)
i,i+1

∆tn

(n)!
)+f

(n+1)
0,1

∆tn

(n)!

...

e
(n−1)
k = (

k−1∑
i=1

e
(n)
i ·∆t+f

(n+1)
i,i+1

∆t(n+1)−(n−1)

((n+1)−(n−1))!)+f
(n+1)
0,1

∆t(n+1)−(n−1)

((n+1)−(n−1))!

e
(n)
k = (

k−1∑
i=1

f
(n+1)
i,i+1

∆tn+1−n

(n+1−n)!)+f
(n+1)
0,1

∆tn+1−n

(n+1−n)!

(A.23)

279

In general, the error of the p-th derivative of a function f at time tk is given by

e
(p)
k =

k−1∑
i=1

((n−p∑
j=1

e
(j)
i

∆tj

j!

)
+f

(n+1)
i,i+1

∆tn+1−p

(n+1−p)!

)+f (n+1)
0,1

∆tn+1−p

(n+1−p)! ,(A.24)

which can be simplified to

e
(p)
k =

k−1∑
i=1

n−p∑
j=1

e
(j)
i

∆tj

j!
+
k−1∑
i=0

f
(n+1)
i,i+1

∆tn+1−p

(n+1−p)! ,(A.25)

which is split into the error from the derivative inaccuracies and the error induced by

the Taylor series expansion at each step. Note that n is the number of derivatives used

to propagate f , where p∈ Z∩[0,n] indicates the order of the derivative of a function for

which the error is calculated (p=0 refers to the original function f).

A.5. Global Error Bounds for Taylor-Based Koopman Operator

First, consider the error in f when no derivative basis functions are used, that is, n=0.

Then,

ek=
k−1∑
i=0

f
(1)
i,i+1

∆t1

1!
(A.26)

|ek|=|
k−1∑
i=0

f
(1)
i,i+1

∆t1

1!
|(A.27)

|ek|≤
∆t1

1!

k−1∑
i=0
|f (1)i,i+1|(A.28)

280

To further simplify the analysis, I can assume a maximum value of f (1), |f (1)i,i+1|≤|f
(1)
max|

for all i∈ Z∩[0,k−1]. Then,

|ek|≤
∆t1

1!

k−1∑
i=0
|f (1)max|(A.29)

|ek|≤k·∆t·|f (1)max|=T ·|f (1)max|,(A.30)

where T,k·∆t is the time window that I approximate the function over.

Similarly, I compute the error bound for n=1 (one derivative of f in the basis functions).

Then,

ek=
k−1∑
i=1

e′i∆t+
k−1∑
i=0

f
(2)
i,i+1

∆t2

2!
,(A.31)

where e′i is given by (A.26). Note that f (1) becomes f (2); what was ei is now e′i and the

first-order derivative of e′i is the second-order derivative of ei. Thus,

ek=
k−1∑
i=1

(i−1∑
j=0

f
(2)
j,j+1

∆t1

1!

)
∆t+

k−1∑
i=0

f
(2)
i,i+1

∆t2

2!
(A.32)

|ek|≤
k−1∑
i=1

(i−1∑
j=0
|f (2)j,j+1|

∆t1

1!

)
∆t+

∆t2

2!

k−1∑
i=0
|f (2)i,i+1|(A.33)

281

To further simplify things, I again use |f (2)i,i+1|≤|f
(2)
max| for all i∈ Z∩[0,k−1], such that

|ek|≤
k−1∑
i=1

(i−1∑
j=0
|f (2)max|

∆t1

1!

)
∆t+

∆t2

2!

k−1∑
i=0
|f (2)max|(A.34)

|ek|≤
k−1∑
i=1

i|f (2)max|∆t2+k·
∆t2

2 |f
(2)
max|(A.35)

|ek|≤|f (2)max|∆t2
k−1∑
i=1

i+k·∆t
2

2 |f
(2)
max|.(A.36)

Using the property ∑n
i=0i=

∑n
i=1i=

n(n+1)
2 ,

|ek|≤|f (2)max|∆t2
(k−1)k

2 +k·∆t
2

2 |f
(2)
max|(A.37)

|ek|≤|f (2)max|∆t2
k2−k

2 +k·∆t
2

2 |f
(2)
max|(A.38)

|ek|≤
(k·∆t)2

2 |f (2)max|=
T 2

2 |f
(2)
max|.(A.39)

From n=0 and n=1, I notice a pattern in the error bound expression. Using proof by

induction, I next show that the error bound is given by

|ek|≤
Tn+1

(n+1)! |f
(n+1)
max |.(A.40)

A.5.1. Base Case: n=0

From (A.30), it is true that, for n=0,

|ek|≤T ·|f (1)max|.(A.41)

282

A.5.2. Induction Step:

Assuming that the relationship holds for n−1, I show it is also true for n. For the case of

using basis functions with derivatives up to order n, the error in the derivative function of

order p=0 is, using (A.25), given by

ek=
k−1∑
i=1

n∑
j=1

e
(j)
i

∆tj

j!
+
k−1∑
i=0

f
(n+1)
i,i+1

∆tn+1

(n+1)! .(A.42)

Taking the absolute value of the error,

|ek|=|
k−1∑
i=1

n∑
j=1

e
(j)
i

∆tj

j!
+
k−1∑
i=0

f
(n+1)
i,i+1

∆tn+1

(n+1)! |(A.43)

≤
k−1∑
i=1

n∑
j=1
|e(j)i |

∆tj

j!
+
k−1∑
i=0
|f (n+1)
i,i+1 |

∆tn+1

(n+1)! ,(A.44)

where ∆tj

j!
and ∆tn+1

(n+1)! are non-negative. Then, I use the relationship to substitute for

the terms |e(j)i |. Note that |e(1)i | is equivalent to |ek| using n−1 derivatives. Similarly,

each term |e(j)i | for j∈Z∩[1,n] is equivalent to |ek| for n−j derivatives. Thus, I use the

relationship that holds for up to n−1 derivatives, such that

|ek|≤
k−1∑
i=1

n∑
j=1
|(i∆t)

n+1−j

(n+1−j)! f
(n+1)
max |

∆tj

j!
+
k−1∑
i=0
|f (n+1)
i,i+1 |

∆tn+1

(n+1)!

=|f (n+1)
max |∆tn+1

k−1∑
i=1

n∑
j=1

in+1−j

(n+1−j)!j!
+|f (n+1)

max |
k−1∑
i=0

∆tn+1

(n+1)! ,
(A.45)

where |f (n+1)
max |≥|f (n+1)

i,i+1 |. Next, I use j′=n+1−j to simplify the inner sum term

n∑
j=1

in+1−j

(n+1−j)!j!
=

1∑
j′=n

ij
′

(j′)!(n+1−j′)! ,(A.46)

283

which can be rewritten for j and the summation order can also be reversed such that

|ek|≤|f (n+1)
max |∆tn+1

k−1∑
i=1

n∑
j=1

ij

(n+1−j)!j!
+|f (n+1)

max |
k−1∑
i=0

∆tn+1

(n+1)! .(A.47)

Further simplifying

|f (n+1)
max |

k−1∑
i=0

∆tn+1

(n+1)!=k|f
(n+1)
max |

∆tn+1

(n+1)! ,(A.48)

gives

|ek|≤|f (n+1)
max |∆tn+1

k−1∑
i=1

n∑
j=1

ij

(n+1−j)!j!
+k|f (n+1)

max |
∆tn+1

(n+1)!

=

k−1∑
i=1

n∑
j=1

ij

(n+1−j)!j!
+

k

(n+1)!

|f (n+1)
max |∆tn+1.

(A.49)

Using the binomial coefficient

a!
(a−b)!b!

=

(
a

b

)
,(A.50)

to rewrite the term (n+1−j)!j!,

|ek|≤

k−1∑
i=1

n∑
j=1

ij

(n+1)!

(
n+1
j

)
+

k

(n+1)!

|f (n+1)
max |∆tn+1.(A.51)

Switching the summation order,

|ek|≤

 n∑
j=1

(
n+1
j

)
k−1∑
i=1

ij+k

|f (n+1)
max |

∆tn+1

(n+1)! .(A.52)

284

To use Pascal’s identity [235]:

k∑
p=0

(
k+1
p

)
n∑
j=1

jp=(n+1)k+1−1,(A.53)

I rewrite the error bound as

|ek|≤

 n∑
j=0

(
n+1
j

)
k−1∑
i=1

ij−
(
n+1

0

)
k−1∑
i=1

i0+k

|f (n+1)
max |

∆tn+1

(n+1)! ,(A.54)

such that

|ek|≤
[
(kn+1−1)−(k−1)+k

]
|f (n+1)
max |

∆tn+1

(n+1)!

=kn+1|f (n+1)
max |

∆tn+1

(n+1)!

=
Tn+1

(n+1)! |f
(n+1)
max |,

(A.55)

where T=k·∆t. Therefore,

|ek|≤
Tn+1

(n+1)! |f
(n+1)
max | for all n∈Z≥0.(A.56)

A.6. Incremental Update of Koopman Operator

Consider P measurements used to last update the Koopman operator and ∆P new

measurements. I incrementally compute a Koopman operator using all Ptotal=P+∆P

measurements as follows. The Koopman operator is computed using (7.5), which I split

285

the expression into past and new measurements, such that

Anew=
1

Ptotal

Ptotal−1∑
k=0

Ψ(sk+1,uk+1)Ψ(sk,uk)T

=
1

Ptotal
(
P−1∑
k=0

Ψ(sk+1,uk+1)Ψ(sk,uk)T+
Ptotal−1∑
k=P

Ψ(sk+1,uk+1)Ψ(sk,uk)T)

(A.57)

and, using

A= 1
P

P−1∑
k=0

Ψ(sk+1,uk+1)Ψ(sk,uk)T ,(A.58)

Anew can be written as

Anew=
1

Ptotal
(PA+

Ptotal−1∑
k=P

Ψ(sk+1,uk+1)Ψ(sk,uk)T .(A.59)

Similarly,

Gnew=
1

Ptotal
(GP+

Ptotal−1∑
k=P

Ψ(sk,uk)Ψ(sk,uk)T).(A.60)

A.7. Gradient Descent for SOC algorithm

Here I derive the gradient descents for the SOC algorithm, shown in (9.7). Let

f=
1
2‖Y−S

−1OCSX−BU‖2F

Using the identity

‖X‖2F=Tr(XTX)

286

and expanding the product (Y−S−1OCSX−BU)T (Y−S−1OCSX−BU), I rewrite the

optimization problem as

f=
1
2Tr(Y TY−Y TS−1OCSX−Y TBU

−XTSTCTOTS−TY+XTSTCTOTS−TS−1OCSX+XTSTCTOTS−TBU

−UTBTY+UTBTS−1OCSX+UTBTBU).

To calculate the gradients of f , I use the identities

∂

∂X
Tr(AXB)=ATBT(A.12)

∂

∂X
Tr(AXTB)=BA(A.13)

∂

∂X
Tr(BTXTCXB)=(CT+C)XBBT .(A.14)

The gradient of f with respect to C is

∂

∂C
f=

1
2(−O

TS−TY XTST−OTS−TY XTST+(2OTS−TS−1O)CSXXTST

+OTS−TBUXTST+OTS−TBUXTST)

=−OTS−T (Y−S−1OCSX−BU)XTST .(A.15)

287

Similarly, the gradient of f with respect to O is

∂

∂O
f=

1
2(−S

−TY XTSTCT−S−TY XTSTCT+(2S−TS−1)OCSXXTSTCT)

+S−TBUXTSTCT+S−TBUXTSTCT)

=−S−T (Y−S−1OCSX−BU)XTSTCT .(A.16)

The gradient of f with respect to B is

∂

∂B
f=

1
2(−Y U

T+S−1OCSXUT−Y UT+S−1OCSXUT+2BUUT)

=−(Y−S−1OCSX−BU)UT .(A.17)

Last, the gradient of f with respect to S is calculated as follows:

1
2‖Y−S

−1OCSX−BU‖2F .=〈R−Y |R−Y 〉,

where R=S−1OCSX+BU . Then, using the property

∂X−1

∂q
=−X−1∂X

∂q
X−1

I calculate

Ṙ=−S−1ṠS−1OCSX+S−1OCṠX,

288

such that

ḟ=
1
2〈Ṙ|R−Y 〉+〈R−Y |Ṙ〉

=〈R−Y |Ṙ〉

=〈R−Y |−S−1ṠS−1OCSX+S−1OCṠX〉

=〈−S−T (R−Y)XTSTCTOTS−T+CTOTS−T (R−Y)XT |Ṡ〉.

Thus, the gradient of f with respect to S is

∂

∂S
f=S−T (Y−S−1OCSX−BU)XTSTCTOTS−T

−CTOTS−T (Y−S−1OCSX−BU)XT .(A.18)

To simplify the notations, I use E=Y−S−1OCSX−BU and rewrite the gradients

(A.15) through (A.18) as

∇Cf=−OTS−TEXTST

∇Of=−S−TEXTSTCT

∇Bf=−EUT

∇Sf=S−TEXTSTCTOTS−T−CTOTS−TEXT ,

where I use the notation ∇X(·)≡ ∂
∂X (·).

289

A.8. Equivalent Matrix Representation for Sum of Squares Error

Note that the Frobenius norm of A∈Rm×n is

‖A‖F=
√√√√ m∑
i=1

n∑
j=1
|aij |2.

Let K̃d∈RW×W and Ψ(·)∈RW and consider the expression

P∑
k=1
‖Ψ(s(tk+∆t),u(tk+∆t))−K̃dΨ(s(tk),u(tk))‖2.(A.19)

Then, using the Frobenius norm definition for the vector

Ψ(s(tk+∆t),u(tk+∆t))−K̃dΨ(s(tk),u(tk)) ∈RW ,

(A.19) becomes

(A.19)=
P∑
k=1

(
W∑
i=1
|Ψi(s(tk+∆t),u(tk+∆t))−K̃di

Ψi(s(tk),u(tk))|2,

where K̃di
∈RW is a row vector that corresponds to the ith row of K̃d. Then, consider the

term inside the absolute value as the Gik element of a matrix G∈RW×P such that

(A.19)=
P∑
k=1

(
W∑
i=1
|Gij ||2.

G can be expressed as

GT=

(Ψ(s(t1+∆t),u(t1+∆t))−K̃dΨ(s(t1),u(t1)))T

...

(Ψ(s(tP+∆t),u(tP+∆t))−K̃dΨ(s(tP),u(tP)))T

290

and rewrite it as

GT=

Ψ(s(t1+∆t),u(t1+∆t))T

...

Ψ(s(tP+∆t),u(tP+∆t))T

−

Ψ(s(t1),u(t1)))T
...

Ψ(s(tP),u(tP)))T

K̃
T
d .

Let X,Y ∈RW×P be given by

X=

Ψ(s(t1),u(t1))T

...

Ψ(s(tP),u(tP))T

T

Y=

Ψ(s(t1+∆t),u(t1+∆t))T

...

Ψ(s(tP+∆t),u(tP+∆t))T

T

such that

G=Y−K̃dX.

Then, using the Frobenius norm definition, (A.19) can be written as

(A.19)=‖G‖2F

=‖Y−K̃dX‖2F .

A.9. Memory-Preserving Gradient Descents for SOC Algorithm

Let Ψ(s(t))∈RW be given by

Ψ(s(t))=
[
Ψ1(s(t)) Ψ2(s(t)) ... ΨW (s(t))

]T

291

and X,Y ∈RW×P be given by

X=
[
Ψ(s(t1)) Ψ(s(t2)) ... Ψ(s(tP))

]

and

Y=
[
Ψ(s(t1+∆t)) Ψ(s(t2+∆t)) ... Ψ(s(tP+∆t))

]
.

292

Then,

XXT=
[
Ψ(s(t1)) Ψ(s(t2)) ... Ψ(s(tP))

]

Ψ(s(t1))T

Ψ(s(t2))T

...

Ψ(s(tP))
T

=

Ψ1(s(t1)) Ψ1(s(t2)) ... Ψ1(s(tP))

Ψ2(s(t1)) Ψ2(s(t2)) ... Ψ2(s(tP))
...

... ...
...

ΨW (s(t1)) ΨW (s(t2)) ... ΨW (s(tP))

·

Ψ1(s(t1)) Ψ2(s(t1)) ... ΨW (s(t1))

Ψ1(s(t2)) Ψ2(s(t2)) ... ΨW (s(t2))
...

... ...
...

Ψ1(s(tP)) Ψ2(s(tP)) ... ΨW (s(tP))

=

P∑
k=1

Ψ1(s(tk)Ψ1(s(tk) ...
P∑
k=1

Ψ1(s(tk)ΨW (s(tk)

...
. . .

...

P∑
k=1

ΨW (s(tk)Ψ1(s(tk) ...
P∑
k=1

ΨW (s(tk)ΨW (s(tk)

=
P∑
k=1

Ψ1(s(tk)Ψ1(s(tk) ... Ψ1(s(tk)ΨW (s(tk)

...
. . .

...

ΨW (s(tk)Ψ1(s(tk) ... ΨW (s(tk)ΨW (s(tk)

=
P∑
k=1

Ψ(s(tk)Ψ(s(tk)
T

=G.

Similarly, Y XT=A, XUT=XU , Y UT=YU , and UUT=UU .

	Abstract
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	Part 1. Model-Based Control with Controllability-Based Convergence Guarantees
	Chapter 2. Background
	2.1. Needle Variation Control Methods
	2.2. Sequential Action Control (SAC)

	Chapter 3. Empirical Disturbance Rejection of SAC for Unmodeled Fluid Flow
	3.1. Simulation Results
	3.2. Discussion

	Chapter 4. Relationship of SAC to Gradient Descent and Smooth Control Synthesis
	4.1. Descent Direction of Needle-Variation-Based Continuous Control
	4.2. Connection to Gradient Descent
	4.3. Example Systems
	4.4. Discussion

	Chapter 5. Second-Order SAC with Controllability-Based Convergence Guarantees
	5.1. Dependence of Needle Variation Controls on Nonlinear Controllability
	5.2. Control Synthesis Based on Second-Order Needle Variations
	5.3. Simulation Results
	5.4. Discussion

	Chapter 6. Real-Time Obstacle Avoidance with Second-Order SAC
	6.1. Motion Planning for Controllable Systems in the Presence of Obstacles
	6.2. Simulation Results

	Part 2. Physics-Based System Identification and Data-Driven Control
	Chapter 7. Background
	7.1. Koopman Operator
	7.2. Koopman Invariant Subspaces
	7.3. Data-Driven Approximations of Koopman Operators
	7.4. LQR Control of Nonlinear Dynamics Using Koopman Operators

	Chapter 8. Data-Driven Identification and Control Using Koopman Operators
	8.1. Synthesis of Basis Functions for Error-Bounded Koopman Representation
	8.2. Data-Driven Control of Tail-Actuated Robotic Fish
	8.3. Discussion

	Chapter 9. Memory-Efficient Learning of Stable Linear Dynamical Systems
	9.1. Notation
	9.2. SOC Algorithm
	9.3. Experiments
	9.4. Discussion

	Chapter 10. Learning Stable Models for Prediction and Control Using Koopman Operators
	10.1. Stable Koopman Operators
	10.2. Synthesis of Stable Koopman Operators
	10.3. Results
	10.4. Discussion

	Chapter 11. Conclusions and Future Work
	Bibliography
	Appendix A. Derivations and Proofs
	A.1. Derivation of the Mode Insertion Hessian
	A.2. Dependence of the Mode Insertion Hessian on First-Order Lie-Brackets
	A.3. Control Solutions based on the Mode Insertion Gradient and Hessian
	A.4. Global Error for Taylor-Based Koopman Operators
	A.5. Global Error Bounds for Taylor-Based Koopman Operator
	A.6. Incremental Update of Koopman Operator
	A.7. Gradient Descent for SOC algorithm
	A.8. Equivalent Matrix Representation for Sum of Squares Error
	A.9. Memory-Preserving Gradient Descents for SOC Algorithm

