
NORTHWESTERN UNIVERSITY

Experiment-Driven Modeling of Plasmonic Nanostructures

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Materials Science and Engineering

By

Alexander John Hryn

EVANSTON, ILLINOIS

December 2016

	 2

	
	
	
	
	
	
	
	
	
	
	
	
	
	

© Copyright Alexander Hryn 2016

All Rights Reserved

	 	

	 3

ABSTRACT

Experiment-Driven Modeling of Plasmonic Nanostructures

Alexander John Hryn

Plasmonic nanostructures can confine light at their surface in the form of surface plasmon

polaritons (SPPs) or localized surface plasmons (LSPs) depending on their geometry. SPPs are

excited on nano- and micropatterned surfaces, where the typical feature size is on the order of the

wavelength of light. LSPs, on the other hand, can be excited on nanoparticles much smaller than

the diffraction limit. In both cases, far-field optical measurements are used to infer the excited

plasmonic modes, and theoretical models are used to verify those results. Typically, these

theoretical models are tailored to match the experimental nanostructures in order to explain

observed phenomena. In this thesis, I explore incorporating components of experimental

procedures into the models to increase the accuracy of the simulated result, and to inform the

design of future experiments. First, I examine SPPs on nanostructured metal films in the form of

low-symmetry moiré plasmonic crystals. I created a general Bragg model to understand and predict

the excited SPP modes in moiré plasmonic crystals based on the nanolithography masks used in

their fabrication. This model makes use of experimental parameters such as periodicity, azimuthal

rotation, and number of sequential exposures to predict the energies of excited SPP modes and the

opening of plasmonic band gaps. The model is further expanded to apply to multiscale gratings,

which have patterns that contain hierarchical periodicities: a sub-micron primary periodicity, and

microscale superperiodicity. A new set of rules was established to determine how superlattice SPPs

are excited, and informed development of a new fabrication technique to create superlattices with

	 4

multiple primary periodicities that absorb light over a wider spectral range than other plasmonic

structures. The second half of the thesis is based on development of finite-difference time-domain

(FDTD) simulations of plasmonic nanoparticles. I created a new technique to model pyramidal

bowtie nanoparticle dimers based on the experimental fabrication procedure. This model was used

to sweep various experimental parameters to identify their effect on the LSP resonance of the

bowties. Analyzing the near-field distribution around these particles revealed the origin of a

miscategorized LSP mode to be an out-of-plane dipole. Finally, I developed a finite-difference

time-domain model that simulates the images generated by differential interference contrast (DIC)

microscopy of gold nanorods. I discovered that the image contrast of gold nanorods is dependent

on the wavelength of incident light relative to the LSP resonance wavelength. Incorporating

experimental parameters into the DIC model allowed me to find a correlation between the electric

near-field and far-field image contrast, uncovering the origin of this wavelength dependence.

Additionally, the simulated DIC image patterns aid in breaking the angular degeneracy associated

with the rotation of symmetric nanorods and can be used as training data for future machine

learning algorithms to predict the size, shape, and orientation of nanoparticles from far-field

images alone.

	 	

	 5

ACKNOWLEDGEMENTS

I would first like to thank my family starting with my parents, John and Roberta, for always

supporting me through many, many years of school, and being a source of confidence and

encouragement as I progressed through my time at Northwestern. My brother, David, has been a

great friend over the last 23 years, and has always been interested and supportive of my studies

and research. I thank my aunts, uncles, cousins, and grandparents for always encouraging my work

towards a PhD; it is a wonderful reminder of this accomplishment in the face of many challenges.

My advisor, Teri Odom, has always pushed me to work harder, write better, and make more

beautiful figures for any project I have worked on. She has been a wonderful role model, and

always supportive of my work. It has been a pleasure to work in her lab, and I take many lessons

into my personal and professional future. I also thank my committee members, George Schatz,

Bruce Wessels, Lincoln Lauhon, and Robert Chang, for providing helpful input during and after

my graduate exams.

I am grateful for Northwestern University, the Materials Science and Chemistry departments,

Argonne National Laboratory, and all the centers that I have been fortunate to have used during

my graduate work. The incredible facilities available to me, especially EPIC, NUFAB, CNM, and

their amazing staff helped make my research possible. I also acknowledge my various sources of

funding over the last six years including the NDSEG fellowship for providing the freedom to

pursue new and exciting research.

Finally, I give great thanks to all my friends, new and old, that have helped me make this

journey though grad school. My girlfriend Kayla has been with me since we met our first year,

and we have grown together both personally and professionally throughout our time at

	 6

Northwestern. There is no other person with whom I would have rather spent the last five years of

my life. My lab mates in The Odom Group have been a pleasure to work with, and several of us

have become good friends over the years. Specifically, Steve Lubin, Mark Huntington, Cliff Engel,

Angela Chang, Michael Knudson, and Kavita Chandra have been great friends both in and out of

lab, and I value the relationships we have built.

I have been incredibly fortunate to have so many people who supported me during my time at

Northwestern, and the work in this thesis was possible because of them.

	
	 	

	 7

LIST OF ABBREVIATIONS

AuNR Gold nanorod

DF Darkfield

DIC Differential interference contrast

EBL Electron-beam lithography

FDTD Finite-difference time-domain

FIB Focused ion-beam milling

FT Fourier transform

LELE Litho-etch-litho-etch

LSP Localized surface plasmon

MNL Moiré nanolithography

NIR Near-infrared

NP Nanoparticle

PC Plasmonic crystal

PDMS Polydimethylsiloxane

PML Perfectly matched layers

PR Photoresist

PSP Phase-shifting photolithography

RIE Reactive ion etcher

SPP Surface plasmon polariton

UV Ultraviolet

	 8

TABLE OF CONTENTS

ABSTRACT ..3	

ACKNOWLEDGEMENTS ..5	

LIST OF ABBREVIATIONS ...7	

TABLE OF CONTENTS ..8	

LIST OF FIGURES ...12	

CHAPTER 1 : INTRODUCTION TO PLASMONIC NANOSTRUCTURES21	

1.1	 Introduction to Plasmonics ... 22	

1.1.1	 Surface plasmon polaritons ... 23	

1.1.2	 Localized surface plasmons .. 24	

1.2	 Fabrication of nanostructures .. 25	

1.2.1	 Phase-shifting photolithography ... 26	

1.2.2	 Large-area plasmonic substrates ... 26	

1.2.3	 Masked deposition of metal nanoparticles .. 27	

1.3	 Measurements and models of surface plasmons ... 28	

1.3.1	 Microscopy and spectroscopy ... 28	

1.3.2	 Finite-difference time-domain simulations ... 29	

1.4	 Scope of this thesis .. 29	

CHAPTER 2 : LOW-SYMMETRY MOIRÉ PLASMONIC CRYSTALS32	

2.1	 Background ... 33	

2.2	 Results and Discussion ... 34	

	 9

2.2.1	 Fabrication and modeling of quasiperiodic patterns ... 34	

2.2.2	 SPP excitations in high-symmetry 10-fold quasiperiodic PCs 41	

2.2.3	 Reducing SPP degeneracy with low-symmetry quasiperiodic lattices 45	

2.2.4	 Multi-periodic quasicrystals and a general Bragg model 47	

2.2.5	 Plasmonic band gaps in low-symmetry PCs ... 50	

2.3	 Experimental methods .. 52	

2.3.1	 Lithography procedure for MNL .. 52	

2.3.2	 FDTD simulations of phase-shifting lithography ... 52	

2.3.3	 Pattern transfer to quasiperiodic PCs .. 53	

2.3.4	 Angle-resolved reflectance spectroscopy ... 53	

2.4	 Summary ... 53	

CHAPTER 3 : SURFACE PLASMON POLARITONS ON MULTISCALE GRATINGS .55	

3.1	 Background ... 56	

3.2	 Results and Discussion ... 57	

3.2.1	 Fabrication of multiscale arrays .. 57	

3.2.2	 SPP excitations on 1D plasmonic superlattices .. 61	

3.2.3	 Effects of alternate superperiodicity on SPPs ... 64	

3.2.4	 Incommensurate multiscale arrays with varying azimuthal angle. 67	

3.2.5	 Double periodicity superlattices ... 71	

3.3	 Experimental methods .. 76	

3.3.1	 Lithography procedure for multiscale arrays .. 76	

3.3.2	 Pattern transfer to plasmonic superlattice crystals .. 76	

	 10

3.3.3	 Angle-resolved reflectance spectroscopy ... 77	

3.4	 Summary ... 77	

CHAPTER 4 : PROCESS-BASED MODELS OF PLASMONIC BOWTIE ANTENNAS .78	

4.1	 Background ... 79	

4.2	 Results and Discussion ... 80	

4.2.1	 Fabrication parameters in experiment and FDTD model 80	

4.2.2	 Linear properties of bowties with various geometries 84	

4.2.3	 Out-of-plane bowtie LSP mode .. 90	

4.3	 Experimental methods .. 95	

4.3.1	 Bowtie fabrication ... 95	

4.3.2	 FDTD simulations ... 96	

4.4	 Summary ... 96	

CHAPTER 5 : CONTRAST INVERSION IN DIC OF GOLD NANORODS97	

5.1	 Background ... 98	

5.2	 Results and Discussion ... 101	

5.2.1	 DIC microscopy simulation scheme ... 101	

5.2.2	 DIC FDTD simulations of single AuNR and dimers 104	

5.2.3	 Wavelength-dependent image contrast of AuNR ... 108	

5.3	 Experimental methods .. 118	

5.3.1	 FDTD simulations of DIC microscopy ... 118	

5.3.2	 AuNR sample preparation ... 122	

5.3.3	 DF imaging ... 122	

	 11

5.3.4	 DIC imaging .. 122	

5.3.5	 SEM imaging .. 123	

5.4	 Summary ... 123	

REFERENCES ...124	

APPENDIX A: MATLAB CODE FOR MOIRÉ STRUCTURE GENERATION135	

APPENDIX B: MATLAB CODE FOR SPP MODE CALCULATIONS143	

APPENDIX C: LUMERICAL SCRIPT TO CREATE BOWTIE DIMERS187	

APPENDIX D: LUMERICAL SCRIPT TO PROCESS FDTD DIC IMAGES194	

CURRICULUM VITAE ..198	

	
	 	

	 12

LIST OF FIGURES

Figure 2.1: Fabrication scheme for moiré nanolithography. PDMS masks with different

periodicities ai and azimuthal angles φi are put into conformal contact with a PR-coated Si wafer

and exposed to UV light. This process is repeated for the desired number of exposures. The

resulting pattern is developed, then transferred to a Ag plasmonic crystal.35	

Figure 2.2: Quasiperiodic moiré patterns. (a) High symmetry quasicrystals are fabricated with by

5 exposures with PDMS masks having equal periodicities a0 = 480 nm equiangular azimuthal

rotations (Δφ = π/5 = 36°) (b) Rotationally asymmetric patterns with asymmetric exposure angles

fabricated by 4 exposures with equal periodicities a0 = 480 nm but all angles are within a single

quadrant (φ4 – φ1 = π/2 = 90°). (c) Multiperiodic patterns fabricated by 3 exposures with different

periodicities a1 = 480 nm, a2 = 645 nm, a3 = 730 nm, and equiangular rotations (Δφ = π/3 = 60°).

(a-c) SEM images (top) of the Si template or PR pattern agree with simulated structures (middle).

FT of the SEM images reveal the reciprocal lattice of the patterns (bottom).37	

Figure 2.3: FDTD Simulation of phase-shifting photolithography. (a) Simulation scheme with

electric field data from the 2D monitor overlaid onto the PR slab. 1D cross-section monitor is

located in the center of the PR (white dashed line). (b) Cross sectional intensiy from the 1D monitor

in (a) compared to a sinusoidal profile. ...39	

Figure 2.4: Graphical user interface (GUI) for the MATLAB computational program to predict

the resultant patterns from MNL. Parameters panel (left) indicate where values are input into the

program and the structure is displayed in the axis (right). The displayed pattern is from the

multiperiodic quasicrystal pattern. ...40	

	 13

Figure 2.5: Reflection spectra from high-symmetry quasiperiodic PC. (a) Calculated FT with basis

vectors ki shown. (b) Angle-resolved reflection spectra for the 10-fold quasiperiodic pattern taken

from θ = 10° to 60° converted to dispersion diagram. (c) Predicted SPP mode dispersion calculated

from the Bragg coupling equation for a Ag/air interface with some first order modes labeled. In

(a,c) blue objects represent first-order modes and orange objects represent second-order

modes. ..42	

Figure 2.6: Measurement scheme for plasmonic crystals. (left) Bragg coupling equation and

incident light path for reflection spectra. (right) Relationship between FT and SPP dispersion for

a 10-fold high-symmetry quasicrystal. First- (blue) and second- (orange) order mode families are

indexed. Modes with energies beyond the measurement range are faded.44	

Figure 2.7: GUI for MATLAB program to process reflection spectra and calculate SPP mode

dispersion. Import data panel is where the raw reflection spectra are input to the program. SPP

modes panel is used to provide parameters to the Bragg coupling equation for SPP mode

calculation. Axes (bottom, center and right) display spectra and modes in E–k or λ–θ format.

Fourier transform axes (top right) displays the reciprocal lattice of the given structure. First- and

second-order modes are colored blue and orange respectively. ..46	

Figure 2.8: Reflection spectra from quasiperiodic PC with asymmetric rotation angles. (a)

Calculated FT with basis vectors ki shown. (b) Angle-resolved reflection spectra taken from θ =

10° to 80° converted to dispersion diagram. (c) Predicted SPP mode dispersion calculated from

the Bragg coupling equation for a Ag/air interface with some first order modes labeled. In (a,c)

blue objects represent first-order modes and orange objects represent second-order modes.48	

	 14

Figure 2.9: Reflection spectra from a multiperiodic patterned PC. (a) Calculated FT with basis

vectors ki shown. (b) Angle-resolved reflection spectra taken from θ = 10° to 80° converted to

dispersion diagram. (c) Predicted SPP mode dispersion calculated from the Bragg coupling

equation for a Ag/air interface with some first order modes labeled. In (a,c) blue objects represent

first-order modes and orange objects represent second-order modes. ...49	

Figure 2.10: Plasmonic band gaps in multiperiodic patterned PC. (center) Zoom of dispersion

diagram with overlaid relevant SPP modes. Numbered circles highlight plasmonic band gaps. (left,

right) FT of the pattern with modes and Bragg lines highlighted for specific band gaps. Arrows

represent direction and magnitude of k|| and kSPP for the given E–k coordinates.51	

Figure 3.1: Fabrication scheme for multiscale superlattices. Multiscale superlattices use two

consecutive exposures of phase shifting lithography and traditional contact lithography for the

primary and superperiodicities respectively. After the first round of etching, the process can be

repeated to fabricate doubly patterned superlattices. ...58	

Figure 3.2: 1D Superlattice. A SEM (a) of a 1D plasmonic superlattice and (b) its Fourier

transform. (c) The Bragg peaks in the Fourier transform can be indexed as combinations of the

primary periodicity (a0) and superperiodicity (A0) ..60	

Figure 3.3: Reflection spectra of superlattices with indexed SPP modes. Reflection spectrum

(θ = 20°) for a plasmonic superlattice with a0 = 400 nm and A0 = 10 µm and for an infinite 400-nm

array (inset) (b) Dispersion diagram with the –10 SPP mode overlaid. (c) Zoom of the dispersion

	 15

diagram in (b, dotted box) with SPP modes shown and labeled. The dashed white line indicates

the light line (i.e. θ = 90°) ..62	

Figure 3.4: Multiscale gratings with varying superperiodicity. SEM images of Si templates with

primary periodicity a0 = 400 nm and A0 = 10 µm, 20 µm, 30 µm, and 50 µm (top to bottom). ...65	

Figure 3.5: Reflection spectra of multiscale gratings with varying superperiodicity. Reflection

spectra (θ = 65°) of multiscale gratings with a0 = 400 nm and A0 = 10, 20, 30, and 50 µm (bottom

to top). SPP modes are labeled according to their index. ..66	

Figure 3.6: Dispersion diagrams of multiscale gratings with varying superperiodicity. Multiscale

gratings have primary periodicity a0 = 400 nm and A0 = 10, 20, 30, and 50 µm as indicated.68	

Figure 3.7: Multiscale gratings with varying azimuthal angles (φ). (a,c,e) SEM (top) and FT

(bottom) for superlattices with a0 = 475 nm and A0 = 10 µm, and φ = 0°, 45° and 90° respectively.

(b,d,f) Dispersion diagrams of the above structures showing the decrease in ΔE for the satellite

peaks with increasing φ. ...69	

Figure 3.8: Comparison between high-order and satellite SPP modes. Dispersion diagram of a

multiscale grating with a0 = 475 nm, A0 = 10 µm, and φ = 45°. Overlay (red lines) shows the

expected dispersion of high order SPP modes from the superperiodicity alone72	

Figure 3.9: Multiscale gratings with two primary periodicities. (a) SEM of the multiscale array

with a0 = 400 nm, b0 = 475 nm, A0 = 10 µm. (b) FT and (c) indexing scheme of the structure

showing each primary periodicity with its own set of satellite peaks. (d) Dispersion diagram of the

array with SPP modes from the primary periodicities only as overlay ..73	

	 16

Figure 3.10: Wide view FT for double patterned superlattices. The groupings for the two primary

periodicities a0 = 400 nm and b0 = 475 nm are identified. The slight misalignment between the two

periodicities is evident especially at high orders. The satellite modes are all aligned however, since

there is only one superperiodicity A0 = 10 µm. ..75	

Figure 4.1: Fabrication scheme. Steps of the bowtie fabrication procedure from lithography until

bowtie deposition. The final 3D image shows the particle deposition direction through the

nanohole mask (red arrow) characterized by the deposition angle Ψ, azimuthal angle φ, and

thickness t. ..81	

Figure 4.2: Flexibility of FDTD model. (a) Scheme for the nanohole projection in FDTD to

generate the nanoparticle object. (b) FDTD layout images showing nanoparticle objects created

with various hole shapes and projection planes. ..83	

Figure 4.3: Effect of RIE etch on Si pyramidal pit shape. (a) Undercut distances between pyramid

edge and hole edge for 10 different RIE etch times followed by anisotropic wet etching. Each point

represents an average of 5–10 measurements on different holes in the same sample. (b) SEM

images of samples with 4 different etch times. ..85	

Figure 4.4: Sweeps of Ψ and t for Au corner-centered bowties. (a,c) Schemes of the simulation

parameters to generate the nanoparticle objects, with images representing the high and low

extremes for Ψ (a) or t (c). (b,d) Simulated transmission spectra for bowties in the visible-NIR

wavelength range. ..87	

	 17

Figure 4.5: FDTD and experimental comparison. (a,c) FDTD objects and SEM images of bowtie

nanostructures using the same parameters. Simulation objects were made by using experimental

conditions as inputs. (b,d) Experimental and simulated transmission spectra for each dimer.88	

Figure 4.6: Variations in experimental bowtie nanoparticle shapes. (a) Large-area SEM image of

a bowtie dimer array. (b) Highlighted particles from (a) showing slight variations in geometry that

could affect the bowtie LSP resonance. ...91	

Figure 4.7: LSP dependence on azimuthal deposition angle φ. (a) Transmission spectra for 10

different azimuthal angles φ from 0° to 45° in 5° increments show an increase in LSP mode

intensity at 662 nm with increasing angle. The LSP mode at 796 nm remains unchanged. (b) Cross-

sectional near-field intensity maps between the nanoparticles in the plane perpendicular to the

dimer axis (dashed black lines). Dashed white lines show the boundaries of the pyramid. Near-

field intensity is plotted on a log scale. ..92	

Figure 4.8: Geometric analysis of LSP modes for corner-centered dimers. Schemes of the overall

dipolar charge distribution for the in-plane and out-of-plane LSP modes (left). The electric field

vectors and charge distribution (red shows positive charge, blue shows negative charge) for each

LSP mode on resonance (right). ...94	

Figure 5.1: FDTD scheme for DIC microscopy. (a) Side-view of the optical path for a DIC

microscope. There are three components to the FDTD-DIC simulation environment: Setup, FDTD

simulation, Processing. Each section produces optical polarization states corresponding to specific

of the DIC microscope. (b) Top-down view of polarization state at different locations in the

	 18

microscope. The phase shift in the intermediate beams induced by the AuNR causes the bright and

dark contrast depending on particle orientation. ..102	

Figure 5.2: Simulated DIC images with different boundary conditions. (a) DIC images with height

and width double the periodicity of the simulation. As the periodicity decreases, the background

level between particles becomes smoother. (b) The same series of simulated DIC images as in (a)

with only the center 4 µm × 4 µm square visible. ...103	

Figure 5.3: Phase difference for intermediate and combined beams. Images displaying the phase

induced by a dark-aligned (a) or bright-aligned (b) AuNR compared to the background for the two

intermediate beams. The beams are recombined at the Nomarski prism and the final phase

difference is shown. ...105	

Figure 5.4: Rotation study of AuNRs. DIC images were measured and simulated for a single

AuNR (a) and a V-shaped dimer (b) with rotation angles from θ = 0° to θ = 180° in 10° increments.

The DIC images were correlated with SEM images and the SEM shown represents the particle

orientation for θ = 0°. ...107	

Figure 5.5: Distribution of LSP resonances for AuNR sample. (a) Darkfield image (true color) at

100× magnification showing the scattering of several AuNR. (b) Scattering spectra from select

labeled AuNR with λLSP ranging from ca. 550 nm to 850 nm. ..109	

Figure 5.6: Large-area experimental DIC images of AuNR. A single set of AuNR with

λDIC = 640 nm (a) and λDIC = 750 nm (b). Several particles show an inversion in contrast from

bright to dark or vice versa between the two images. ..111	

	 19

Figure 5.7: Wavelength dependence of DIC images for a single AuNR. (a) SEM and scattering

spectra for a single AuNR. Experimental (b) and simulated (c) DIC images at two DIC wavelengths:

λDIC = 640 nm (top) and λDIC = 750 nm (bottom). (d) Contrast difference calculated from the DIC

images showing the contrast inversion between the two wavelengths. Solid lines with markers are

from experimental data; dotted lines are calculated from simulated DIC images.112	

Figure 5.8: FDTD near-field analysis of DIC contrast inversion. (a) Scattering simulation for the

longitudinal mode of AuNR (25 × 75 nm in oil) with a scheme of the 1D and 2D monitor locations

(inset). (b) E-field amplitude (1D monitor) as a function of wavelength for the AuNR. (c) 2D cross-

sections of electric field amplitude at two wavelengths on the blue (square, λDIC = 808 nm) and red

(triangle, λDIC = 856 nm) sides of the LSP wavelength. ..114	

Figure 5.9: FDTD near-field analysis of DIC contrast inversion. (a) Scattering simulation for the

transverse orientation of AuNR (25 × 75 nm in oil) with a scheme of the 1D and 2D monitor

locations (inset). (b) E-field amplitude (1D monitor) as a function of wavelength for the AuNR. (c)

2D cross-sections of electric field amplitude at two wavelengths (square, λDIC = 808 nm) and red

(triangle, λDIC = 856 nm). ...116	

Figure 5.10: DIC response of AuNR with three different resonance locations. (a) The measured

scattering spectra (normalized) of three individual AuNR. (b) SEM of the AuNRs aligned to θ = 0°

and DIC image sets for λDIC = 640 nm (blue border) and λDIC = 750 nm (red border) for θ = 0° to

150°. ...117	

	 20

Figure 5.11: Rotational correlation study for AuNR I. (a) DIC images (2.6-µm width) at 5 DIC

wavelengths from 600 nm to 750 nm and 18 rotational angles from 0° to 180°. (b) contrast

difference calculated from the DIC images in (a). ...119	

Figure 5.12: Rotational correlation study for AuNR II. (a) DIC images (2.6-µm width) at 5 DIC

wavelengths from 600 nm to 750 nm and 18 rotational angles from 0° to 180°. (b) contrast

difference calculated from the DIC images in (a). ...120	

Figure 5.13: Rotational correlation study for AuNR III. (a) DIC images (2.6-µm width) at 5 DIC

wavelengths from 600 nm to 750 nm and 18 rotational angles from 0° to 180°. (b) contrast

difference calculated from the DIC images in (a). ...121	

	
	 	

	 21

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

CHAPTER 1:

INTRODUCTION TO PLASMONIC

NANOSTRUCTURES

	 22

1.1 Introduction to Plasmonics

The field of plasmonics studies the confinement and manipulation of electromagnetic waves

at length scales smaller than the wavelength of free-space light. For plasmons excited in the visible

spectrum, the confinement exists on the nanoscale, having dimensions on the order of hundreds of

nanometers or smaller. Advancements in plasmonics have grown over the last few decades with

parallel improvements in nanofabrication techniques. These techniques have driven the use of

plasmonic nanostructures in a wide range of applications across multiple disciplines. In the areas

of chemistry and physics, plasmons have enhanced photovoltaics,1-2 chemical3 and biosensing,4-6

subwavelength focusing7-8 and imaging,9-10 and nanoscale lasing.11-12 Plasmonic properties of

nanoparticles have extended to the rapidly expanding field of nanobiology, where they have seen

use in the identification13 and treatment of diseases through direct heating14-15 and light triggered

drug release.16

 The response of a metal nanostructure when exposed to incident light, is described as a surface

plasmon: a collective oscillation of free electrons at the interface between a metal and dielectric

material. The nature of the surface plasmon resonance is dependent on the metal used, the

refractive index of the dielectric environment, and the nanoscale geometry of the interface. Two

types of surface plasmons can be excited on a metal surface: surface plasmon polaritons (SPP),

which propagate along continuous films, and localized surface plasmons (LSP), which surround

isolated nanoparticles.

This introduction will provide a brief overview of the fundamentals behind both SPPs and

LSPs. We will discuss nanofabrication techniques that enable features that support surface

plasmons; specifically, we focus on top-down nanofabrication techniques for the formation of

	 23

nanostructured metal films and particle arrays. Finally, we will explore different measurement

techniques that are used to identify and characterize plasmonic structures.

1.1.1 Surface plasmon polaritons

The existence of surface plasmon polaritons can be shown by solving Maxwell’s equations at

the metal-dielectric interface.17 The solution produces SPP modes that propagate along the

interface, and display evanescent decay into both the metal substrate and the dielectric superstrate.

Their dispersion is given by the following equation:17

(1.1)

where kSPP is the wavevector of the SPP, k0 = ω / c is the wavevector of free space light, and εm

and εd are the complex permittivity of the metal and dielectric, respectively, which are functions

of the optical frequency ω. The dielectric material is assumed to have a negligible absorption and

therefore its permittivity has no complex component and can be described by εd = n2, where n is

the refractive index. Boundary conditions at the metal–dielectric interface place restrictions on the

permittivity of the metal, specifically that Re(εm) is negative. Based on equation (1.1), the

wavevector of the SPP will exceed that of free-space light, resulting in a momentum mismatch that

puts the SPPs outside of the light cone and must be overcome.

Multiple ways exist to increase the momentum of incident light to overcome the momentum

mismatch,18 but in the context of this thesis, we will discuss the use of grating coupling. A periodic

structure on the metal surface creates Bragg boundary conditions along the interface. Similar to

the influence of an atomic lattice on electrons, this periodicity allows the SPP modes to be reflected,

or folded, into the light cone. The Bragg coupling condition describes this effect:

kSPP = k0

r
"d"m

"d + "m

	 24

 (1.2)

where kSPP is the wave vector of the SPP mode, G is the grating vector, and k|| is the in-plane

wavevector of light, described by

 (1.3)

With the addition of the grating momentum, the contribution to kSPP from incident light with

wavevector k is dictated by the incident angle θ. The grating vector is defined by the reciprocal

lattice of the grating,

(1.4)

where a0 is the periodicity of the grating, and c1 is an integer. For SPP excitations in the visible–

NIR spectrum, as discussed in this thesis, strong modes are generated by gold and silver metals

when coupled to light through periodic structures with characteristic a0 ≤ 1 µm.

1.1.2 Localized surface plasmons

Contrary to the propagating waves of SPPs, localized surface plasmons are characterized by

confined evanescent fields around the surface of a nanoparticle. This confinement can produce

local electric field intensities orders of magnitude larger than the incident fields.17, 19-20 Since the

LSP is dominated by confinement effects, tuning the resonance wavelength is achievable not only

by changing the material21-22 or dielectric environment,23 but also by tuning the size24-26 and

shape24, 27 of the nanoparticles. Specifically, many different nanoparticle shapes such as spheres,28

rods,29-30 prisms,31 pyramids,32 and stars16, 33-34 have been studied.

The plasmonic response of a metal nanoparticle is observed as the scattering and absorption of

incident light. For spherical nanoparticles that are much smaller than the wavelength of light, the

incident light can be treated as uniform oscillating electric field that induces a dipole moment in

kSPP = k|| �G

k|| = k sin ✓

G = c1
2⇡

a0
k̂
x

	 25

the nanoparticle. The nanoparticle therefore emits an oscillating, dipolar electromagnetic field in

response to the plasmonic excitation. As with SPPs, application of Maxwell’s equations give the

solutions for the LSP in the form of scattering and absorption cross sections:17

(1.5)

(1.6)

where a is the radius of the nanoparticle. The resonance maximum exists as |εm + 2εd| approaches

0, where εm is the complex, frequency dependent permittivity of the metal. As nanoparticles

become larger, e.g. ~100 nm in size for interactions with visible and near-infrared (NIR) light, the

simple dipole approximation no longer applies, and Mie’s theory in electrodynamics must be

applied.17 Dipole absorption and scattering still provide a good approximation on resonance, and

will be used for the plasmonic systems discussed in this thesis.

1.2 Fabrication of nanostructures

As described in the previous section, nanostructures with dimensions near or below the

wavelength of light are required for excitation of surface plasmons. In the visible and NIR region

of the spectrum, these dimensions produce a challenge in the fabrication of such structures. Top-

down fabrication is a series of processes where features are defined first in photoresist (PR) using

lithographic techniques, followed by transfer to silicon, metal, or dielectric materials. Large-scale

fabrication of micron-scale features typically has been achieved by photolithography, the dominant

technique in the semiconductor industry. The increased demand to reduce feature sizes in

accordance with Moore’s Law35 has driven major advancements in photolithography technology,

and similarly, the increase in associated cost and accessibility. Serial patterning techniques such

�scatt =
8⇡

3
k4a6

����
"m � "d
"m + 2"d

����
2

�abs = 4⇡ka3 Im

"m � "d
"m + 2"d

�

	 26

as electron-beam lithography (EBL)36 or focused ion-beam milling (FIB),37 have been developed

as alternatives for producing subwavelength structures, but their total patterned areas are limited

to the microscale.

1.2.1 Phase-shifting photolithography

Standard photolithography relies on differences in intensity of incident light to pattern

photoresist. For example, a quartz plate is patterned with a thin layer of chromium metal and placed

into contact with a PR-coated silicon wafer so that the PR is exposed only through transparent

regions of the mask. Phase-shifting photolithography (PSP) is a variation of photolithography

where a fully transparent mask manipulates the phase of an incident light wave to create

interference patterns that dictate the patterns formed in PR.38-40 This technique uses soft

elastomeric photomasks based on polydimethylsiloxane (PDMS) patterned with periodic features

that can be created by multiple methods including traditional photolithography, interference

lithography,41 or EBL. Soft PDMS alone is unable to replicate submicron features, so composite

masks made of a patterned hard-PDMS layer (~100 µm thick) bonded to a slab of soft PDMS are

required.42-43 With these composite masks, PSP is capable of producing feature sizes ≤ 100 nm,

ideal for visible/NIR excitation of surface plasmons.

1.2.2 Large-area plasmonic substrates

Once features in PR can be patterned on the appropriate length scale, these features can be

transferred into periodic nanostructured films to excite SPPs,44-45 or into periodic arrays of

nanoparticles that support LSPs.46-47 To create patterned metal films with nanoscale periodicity,

referred to as plasmonic crystals (PCs), several additional fabrication steps are required. First, the

photoresist pattern is transferred into the silicon substrate. This transfer relies on the deposition of

	 27

an etch mask, typically a thin (10 nm) metal such as Cr, followed by a chemical or physical etch

of the underlying Si. Anisotropic chemical etching is achieved with a mixture of KOH and

isopropanol that produces smooth, square pyramidal pits in a Si[100] wafer.48 A physical/chemical

etch can be achieved in a reactive ion etcher (RIE) or deep RIE (DRIE) with a plasma of fluorinated

gasses, usually SF6, CHF3, and C4F8. The profile of the etched pits can be tuned from a rounded

bowl-like shape to pits with steep sidewalls depending on the parameters of the etch.49 After the

Si substrates are fabricated, SPP-supporting films such as nanohole arrays or gratings can be

generated by deposition of a plasmonic metal.

1.2.3 Masked deposition of metal nanoparticles

The size and shape of nanoparticles greatly affects their plasmon resonance, thus the ability to

create nanoparticles with well-controlled geometry is desired. The simplest means to create

nanoparticles with arbitrary shape on a flat substrate is by using EBL to create the desired pattern

in resist followed by metal deposition and lift-off. The limitations of available patterned area, as

with PC fabrication, has enabled advanced fabrication techniques by masked deposition through

large-area substrates. This process relies on fabrication of large area patterns elevated on a higher

plane than the target surface. Self-assembly of polystyrene nanospheres into ordered hexagonal

arrays provides a nanohole array suspended above a surface that can be used as a deposition mask

for large-area arrays of nanoparticles.26 The same processes used to fabricate PCs by phase-shifting

photolithography can also be used to create similar, elevated hole arrays. Nanopyramids32 and

pyramidal particle assemblies50 can be fabricated by using the Si etch mask as a deposition mask

as well. Additionally, the plasmonic hole arrays generated by Si templates can also be repurposed

as deposition masks to create arrays of nanodisks on other substrates.51

	 28

1.3 Measurements and models of surface plasmons

1.3.1 Microscopy and spectroscopy

Refractive and diffractive spectroscopy in the visible spectrum have existed for hundreds of

years to analyze the absorption and emission profiles of various materials. Some of the first

evidence of surface plasmons was observed and described by Wood52 and Lord Raleigh53-54 at the

beginning of the 20th century by studying the diffraction of light from metallic gratings. Since

plasmons are excited in nanostructures over specific wavelength ranges, examining the reflection,

scattering, and transmission spectra of such structures is required to deduce the plasmonic effects.

Minima in reflection spectra of metal films indicate the trapping of light at the surface of the

material by the excitation of SPPs. Transmission through sub-wavelength hole arrays in thin metal

films at specific wavelengths, however, can be increased due to the excitation and coupling of

SPPs.55 As described above, the excitation of SPPs on metal films is dispersive in nature, and the

wavevector kSPP is dependent on the parallel component of incident light (equation (1.3)). To

identify the full dispersive properties of SPPs, angle-resolved spectroscopy to high angle θ is

required. A simple geometric analysis reveals that increasing the incident angle requires increased

sample size in the direction of the incident plane. A custom rotational stage spectrometer system,

combined with large-area nanofabrication, enables characterization of SPP modes.5, 45, 56-57

On the other end of the size spectrum, LSPs can be identified by the scattering spectrum from

a single nanoparticle. Darkfield microscopy is a technique where a hollow cone of light with high

numerical aperture (NA = n sin θ) is focused onto a sample, and light is collected with an objective

lens having a smaller NA. The difference in NA results in the incident light not entering the

objective lens, and only light scattered by the sample is collected. For plasmonic nanoparticles,

	 29

the dipolar emission of light is collected, and a spectrometer is used to identify its wavelength

distribution. Darkfield microscopy has been used to identify of various types of nanoparticles by

their size and shape,58 orientation,59 and material composition,59 or to track their movement in

biological environments.60

1.3.2 Finite-difference time-domain simulations

The previous section discussed ways to measure the far-field response of light interacting with

a plasmonic system. In some cases, the far-field distribution alone is insufficient to determine the

nature of the plasmon mode, and the near-field must also be studied. Examining the near-field

distribution around nanoparticles is difficult to achieve experimentally compared to far-field

properties, but experimental techniques to do so are available.61 An alternative approach is to

generate numerical simulations of plasmonic systems, where the nearfield distribution can be

calculated. A common approach for computations of plasmonic materials is the finite-difference

time-domain (FDTD) method. Briefly, FDTD involves discretizing materials into cells then

solving time-dependent Maxwell’s equations for the system.62 In practice for plasmonic materials,

a broadband light pulse is incident on a nanostructure, and the natural evolution of the plasmonic

response is simulated. Near-field visualization can provide information on the origin of LSP modes,

or identify coupling between neighboring nanoparticles.24, 63

1.4 Scope of this thesis

This dissertation discusses the excitation of surface plasmons in both continuous and isolated

nanostructures. We focus on how the plasmonic response of these nanostructures can be better

understood and contextualized through calculations and modeling derived by experimental

conditions. Incorporation of the experimental processing into the model as opposed to only

	 30

examining the final structures can improve the overall result and build intuition about the origin

of plasmonic modes.

The first chapter introduces surface plasmons and their excitation on both nanostructured

surfaces as SPPs and isolated nanoparticles as LSPs. We introduce nanofabrication processes to

create large area plasmonic substrates; continuous metal films that support SPPs, or arrays of

individual nanoparticles with tunable LSPs. We finally discuss the tools available to measure and

characterize the plasmonic response of these materials.

The next two chapters cover large-area, micro- and nanostructured metal films. In the second

chapter, we examine the fabrication and SPP excitation on quasiperiodic PCs. We identify the

mechanism behind moiré nanolithography (MNL) and fabricate both high-symmetry and low-

symmetry quasiperiodic geometries. We develop a universal model for the Bragg coupling

equation directly influenced by the steps in MNL to index and characterize SPP modes. The

development of plasmonic band gaps at the intersection of different SPP modes can also be

understood by the new model.

The third chapter examines the fabrication of multiscale plasmonic gratings, or plasmonic

superlattices. We combine traditional photolithography with PSP to fabricate PCs with

periodicities on multiple length scales. The SPP modes excited on these multiscale gratings show

different dispersion than expected, and we determine the origin of this difference to be directly

related to the nanofabrication conditions.

The following two chapters discuss the modeling of individual plasmonic nanoparticles.

Chapter four describes a FDTD model of plasmonic bowtie antennas. The model is not based on

the final shape of the nanoparticle, but instead only relies on the metal deposition parameters used

	 31

in the fabrication process. This new model predicts the far-field spectra of bowtie arrays, and is

used to determine the origin of measured plasmonic resonances based on nearfield analysis.

The final chapter is based on differential interference contrast (DIC) microscopy of gold

nanorods (AuNR). We develop a FDTD model of the DIC microscope that predicts the far-field

orientation-dependent images of the AuNR. An inversion of DIC image contrast as a function of

wavelength was discovered, and nearfield analysis through the FDTD model revealed the origin

to be fundamental to the localized plasmon resonance.

	 	

	 32

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

CHAPTER 2:

LOW-SYMMETRY MOIRÉ

PLASMONIC CRYSTALS

	 33

2.1 Background

Light can be concentrated below the diffraction limit as surface plasmon polaritons (SPPs),64

when incident light and conduction band electrons of a metal couple at a metal-dielectric interface.8,

18 SPPs cannot be excited by free-space light incident on a flat metal film due to the difference of

in-plane momentum between the two. One method to overcome this momentum mismatch is to

pattern the metal surface with periodic, subwavelength 1D and 2D arrays, referred to as plasmonic

crystals (PCs).8, 18, 56, 65 The SPP resonance modes of PCs are determined by the geometry of the

patterns and by the dielectric function of the metal and dielectric.17-18 The tunability of these

resonances has enabled use of PCs in a broad range of applications, such as biosensing,4, 66 far-

field focusing of light,55, 67-68 and plasmonic lasing.69 Since the number and range of SPP modes

are mostly limited by the periodicity of the subwavelength pattern, however, other potential

applications have not been realized, such as plasmon-enhanced photovoltaics, where broadband

light trapping and waveguide effects are desired.1 One approach to increase the spectral range of

SPP excitations is to change the symmetry of the PC to lift degeneracies among SPP modes or to

increase the overall number of available modes.57, 70

Periodic arrays in PCs are restricted to 6-fold symmetry due to the crystallographic restriction

theorem,71 so further increasing the symmetry requires quasicrystalline patterns. High-symmetry

patterns such as the 10-fold Penrose tiling72 or 12-fold Socolar tiling73 have demonstrated

enhanced optical transmission due to SPPs when transferred to metal nanohole arrays.74-76 These

structures were usually fabricated using focused ion beam (FIB) milling or e-beam lithography,

limiting their total area (< 1 mm2) and available measurement techniques. Recently, we developed

	 34

a new nanofabrication technique to create high-symmetry nanoscale patterns over large areas:

moiré nanolithography (MNL).77

MNL has been used to fabricate high-symmetry lattices from 4-fold periodic arrays to 36-fold

quasicrystals. Using MNL, patterns with 8-fold symmetry have been transferred into large-area

quasiperiodic PCs, which contain over double the number of modes as a 4-fold, square lattice.57

The analysis of the SPP modes required the derivation of an quasiperiodic Bragg coupling equation

with a modified grating vector with four components. MNL and other quasiperiodic PCs, however,

are not limited to high-symmetry lattices. Additionally, a general form of the Bragg coupling

equation to describe any symmetry has not been established.

Here we show the mechanism behind MNL and create a computational tool to predict and

identify any arbitrary quasiperiodic pattern that can be fabricated. We develop a general form of

the Bragg coupling equation with an indexing scheme that can predict the dispersion of SPP modes

in PCs with any symmetry. These two models are tested on the fabrication and SPP excitation in

a 10-fold PC. Finally, we fabricate low-symmetry quasiperiodic PCs with asymmetric rotational

symmetry and multiple independent symmetries, index their SPP modes and identify the formation

of plasmonic band gaps at first and second order Bragg lines of the lattice.

2.2 Results and Discussion

2.2.1 Fabrication and modeling of quasiperiodic patterns

Fabrication of quasiperiodic nanopatterns was achieved by moiré nanolithography (Figure

2.1). First, a Si wafer coated with photoresist (PR) was placed in conformal contact with a

polydimethylsiloxane (PDMS) phase-shifting lithography38-39 mask and exposed to ultraviolet

(UV) light. For any desired number of exposures n, this process was repeated. Each iteration used

	 35

	

	

Figure 2.1: Fabrication scheme for moiré nanolithography. PDMS masks with different

periodicities ai and azimuthal angles φi are put into conformal contact with a PR-coated Si wafer

and exposed to UV light. This process is repeated for the desired number of exposures. The

resulting pattern is developed, then transferred to a Ag plasmonic crystal.

	 36

a PDMS mask with periodicity ai and a relative azimuthal angle φi. Each UV exposure was

approximately 1/n × the standard exposure time, though the optimal timing was determined

empirically. After the multiple exposures, the pattern was developed and a thin (~10 nm) Cr layer

was deposited followed by PR lift-off. Using the Cr as an etch mask, 50-nm pits were etched into

the Si, and the Cr was removed to reveal a bare Si template. A silver film (160 nm) was deposited

on the template to form the PC. The relatively thick layer of Ag was chosen to ensure it was

optically opaque, and SPPs would only be excited on the top (Ag/air) interface, and not on the

backside (Ag/Si interface).

Three types of quasiperiodic patterns were fabricated by MNL: high-symmetry quasicrystal

(single periodicity with 10-fold rotational symmetry, Figure 2.2a), low-symmetry pattern with

non-uniform rotational symmetry (single periodicity, Figure 2.2b), and low-symmetry pattern

with multiple periodicities (6-fold rotational symmetry, Figure 2.2c). The top row of Figure 2.2

shows scanning electron microscopy (SEM) images of the fabricated structures. All patterns are

quasiperiodic in nature; that is, they do not possess translational symmetry, but show rotational

symmetry. While the high-symmetry quasicrystal (Figure 2.2a) has 10-fold rotational symmetry,

the other two patterns have at most 2-fold rotational symmetry on any given symmetry axis (though

they contain multiple symmetry axes). Simulated real-space images are shown below the SEM

images and agree well with the experimental structures. The bottom row of images are reciprocal

space representations of the quasicrystals calculated by performing a Fourier transform (FT) on

the real-space SEM images, and clearly reveal the rotational symmetry of each lattice.

The simulated real-space images of the different patterns were obtained by modeling MNL.

First, the intensity profile of each partial exposure was identified using finite-difference time-

	 37

	

Figure 2.2: Quasiperiodic moiré patterns. (a) High symmetry quasicrystals are fabricated with by

5 exposures with PDMS masks having equal periodicities a0 = 480 nm equiangular azimuthal

rotations (Δφ = π/5 = 36°) (b) Rotationally asymmetric patterns with asymmetric exposure angles

fabricated by 4 exposures with equal periodicities a0 = 480 nm but all angles are within a single

quadrant (φ4 – φ1 = π/2 = 90°). (c) Multiperiodic patterns fabricated by 3 exposures with different

periodicities a1 = 480 nm, a2 = 645 nm, a3 = 730 nm, and equiangular rotations (Δφ = π/3 = 60°).

(a-c) SEM images (top) of the Si template or PR pattern agree with simulated structures (middle).

FT of the SEM images reveal the reciprocal lattice of the patterns (bottom).

	 38

domain (FDTD) simulations (Figure 2.3a). A 2D simulation environment was used with periodic

boundaries in the x-direction and perfectly matched layers (PML) in the y-direction to simulate an

infinite array of lines. The simulated PDMS mask had 400-nm periodicity with 50% duty cycle

(i.e. 200-nm features) and a feature height of 200 nm. These parameters were chosen to replicate

closely the dimensions of experimental masks. The simulated mask was placed above regions

representing a 120-nm layer of photoresist and a Si substrate. A plane-wave light source at a single

wavelength λ = 405 nm illuminated the material stack from above. Finally, a 2D monitor recorded

the electric field intensity within the PR layer, as overlaid on the PR region in Figure 2.3a. These

phase-shifting masks are known to create periodic intensity profiles,78 and the intensity cross-

section through the center of the photoresist (dotted white line) shows a near-sinusoidal line shape

(Figure 2.3b). The simulated intensity profile shows a slightly narrower region of high intensity

compared to the perfectly symmetric cosine wave for this specific geometry. The mean-squared

error between the two curves is 0.016.

Based on the exposure intensity profile for phase-shifting photolithography for a line-array

mask, we developed a computational tool in MATLAB to simulate the exposures in photoresist

for MNL (Figure 2.4 — full code available in Appendix XX). This tool was designed to test how

various MNL parameters would affect final geometric structures, and to verify the geometry after

fabrication. The available parameters for each exposure are: the geometry of the PDMS stamp

(line, square, or hexagonal), its periodicity a0, and the azimuthal rotation angle φ. Each line

exposure is assumed to have a sinusoidal profile, which closely approximates experimental

conditions. The square and hexagonal options input two lines offset by a 90° rotation, or three lines

offset by 60° rotations, respectively. When a moiré structure is generated, the final tuning

	 39

	

	

Figure 2.3: FDTD Simulation of phase-shifting photolithography. (a) Simulation scheme with

electric field data from the 2D monitor overlaid onto the PR slab. 1D cross-section monitor is

located in the center of the PR (white dashed line). (b) Cross sectional intensity from the 1D

monitor in (a) compared to a sinusoidal profile.

	 40

	

Figure 2.4: Graphical user interface (GUI) for the MATLAB computational program to predict

the resultant patterns from MNL. Parameters panel (left) indicate where values are input into the

program and the structure is displayed in the axis (right). The displayed pattern is from the

multiperiodic quasicrystal pattern.

	 41

parameter is the developing percentage. Since the optical intensity in the PR layer varies

continuously instead of with a binary on/off profile as in traditional photolithography, the

developing time can be tuned to adjust the overall density of patterned features. The simulated

SEM images in Figure 2.2 were created using this tool, and the displayed parameters in Figure

2.4 were used to generate the simulated structure for the varying periodicity quasicrystal (Figure

2.2c).

2.2.2 SPP excitations in high-symmetry 10-fold quasiperiodic PCs

We described quasiperiodic PCs by their reciprocal lattices generated by the FT of their SEM

images. To determine the dispersive behavior of excited SPP modes, we used the Bragg coupling

condition:

 (2.1)

where kSPP is the momentum of the SPP mode, k0 is the momentum of free space light incident on

the surface at angle θ, and G is the grating vector. G is related to the FT of a PC and therefore its

overall geometry by

(2.2)

For 2D periodic patterns, k = c1kx + c2ky, a linear combination of the 2D basis vectors in reciprocal

space: kx and ky. The Fourier transform of the 10-fold quasiperiodic lattice, however, revealed 5

basis vectors (Figure 2.5a). We redefined k = c1k1 + c2k2 + c3k3 + c4k4 + c5k5, where c1, c2, c3, c4,

and c5 are integers. By defining five basis vectors, the scattering order m of each mode, indexed as

[c1 c2 c3 c4 c5], can be determined from the sum of the absolute values of each constant (i.e.

m = |c1| + |c2| + |c3| + |c4| + |c5|). Notably, the reciprocal lattice vectors of quasiperiodic structures

exhibit characteristics different from periodic arrays. For example, the vector magnitudes of

kSPP = k0 sin ✓ �G

G =
2⇡

a0
k

	 42

	

Figure 2.5: Reflection spectra from high-symmetry quasiperiodic PC. (a) Calculated FT with

basis vectors ki shown. (b) Angle-resolved reflection spectra for the 10-fold quasiperiodic pattern

taken from θ = 10° to 60° converted to dispersion diagram. (c) Predicted SPP mode dispersion

calculated from the Bragg coupling equation for a Ag/air interface with some first order modes

labeled. In (a,c) blue objects represent first-order modes and orange objects represent second-order

modes.

	 43

higher-order reciprocal vectors can be less than those of lower-order vectors.79 In Figure 2.5a,

[1 -1 0 0 0] is a second-order reciprocal vector; however, its magnitude is less than that of the first-

order [1 0 0 0 0] family. This property of quasiperiodic lattices leads to a denser concentration of

reciprocal vectors than in periodic lattices.

Angle-resolved reflectance spectroscopy revealed the propagation of SPP modes associated

with the 10-fold lattices (Figure 2.5b). Dispersion diagrams were constructed by stitching together

a series of angle-resolved spectra and then converting them to energy and in-plane momentum to

depict the band structures of the PCs. Figure 2.5c shows SPP modes on the 10-fold PC at the

Ag/air interface, where minima in intensity of the reflected light indicate the excitation of plasmon

modes. The strongest modes visible in the dispersion diagram correspond to first order (m = 1)

modes, and several faint second order modes are also present. In several cases, most noticeable at

a photon energy of 2.0 eV, plasmonic band gaps form at the intersections between first and second

order SPP modes.

While the dispersion diagram appears complex, the dispersion of SPP modes was understood

by considering the FT of a given PC of any symmetry. A scheme of the angle-resolved

spectroscopy measurement shows incident light with p-polarization and momentum k incident on

a quasiperiodic PC (Figure 2.6a). The parallel component of the momentum of the photon k|| is

displayed along the x-axis of the dispersion diagram, while the photon energy E µ |k| is displayed

on the y-axis. At k|| = 0, when incident light is normal to the surface, several families of degenerate

SPP modes were identified (Figure 2.6b). The first order modes are all described by the [1 0 0 0 0]

family, and five families of second order modes exist for the 10-fold PC. Each family was grouped

by the angular difference of its constituent first-order vectors. For example, the ring of modes with

	 44

	

Figure 2.6: Measurement scheme for plasmonic crystals. (left) Bragg coupling equation and

incident light path for reflection spectra. (right) Relationship between FT and SPP dispersion for

a 10-fold high-symmetry quasicrystal. First- (blue) and second- (orange) order mode families are

indexed. Modes with energies beyond the measurement range are faded.

	

	 45

smallest radius (lowest energy on the dispersion diagram) contains second order modes where the

two components are separated by 4π/5 radians, such as [1 0 0 0 1] or [-1 1 0 0 0].

Since quasiperiodic PCs with high rotational symmetry have several times the number of SPP

modes compared to their periodic counterparts, indexing them and teasing out the origin of

plasmonic band gaps provides a challenge. To improve this process, a second computational tool

was developed, also built in MATLAB (Figure 2.7 – Full code in Appendix A:). This tool was

used to (1) process angle-resolved spectra and create dispersion diagrams, (2) display theoretical

SPP modes calculated by the Bragg coupling condition, and (3) identify intersections of indexed

SPP modes to analyze the formation of plasmonic band gaps. The top left panel is used to import

experimental data, collected as a function of wavelength and input angle, and convert them to

functions of photon energy and wave vector. The dispersion diagram and raw data are displayed

in the bottom center and bottom right axes, respectively. The bottom left panel accepts input

variables to the Bragg coupling equation, then overlays the expected SPP modes onto the

dispersion diagram and wavelength–angle axes. SPP modes at the Ag/air (n = 1) interface for a

10-fold symmetry lattice with periodicity a0 = 480 nm are currently displayed. Additionally, the

expected FT is displayed in the top right axis. Selecting any SPP mode would display its index

[c1 … cn] in the center of the window so that intersections between different modes can be

identified. For example, the [-1 0 0 0 0] mode of the 10-fold PC is currently selected in Figure 2.7

and displayed on bold on the dispersion diagram and simulated FT.

2.2.3 Reducing SPP degeneracy with low-symmetry quasiperiodic lattices

One method to reduce the symmetry in quasiperiodic lattices is by decreasing the angular

degeneracy. We analyzed the angle-resolved reflection spectra of the quasiperiodic pattern with

	 46

	

Figure 2.7: GUI for MATLAB program to process reflection spectra and calculate SPP mode

dispersion. Import data panel is where the raw reflection spectra are input to the program. SPP

modes panel is used to provide parameters to the Bragg coupling equation for SPP mode

calculation. Axes (bottom, center and right) display spectra and modes in E–k or λ–θ format.

Fourier transform axes (top right) displays the reciprocal lattice of the given structure. First- and

second-order modes are colored blue and orange respectively.

	

	 47

asymmetric angles (Figure 2.8). The simulated FT reflected the angle preference of the lattice

towards 45°, though the first order SPP modes are still distributed equally across the entire

spectrum, similar to the high-symmetry quasicrystal (Figure 2.8b). The direction of k|| in equation

(2.1) is aligned to the x-axis and therefore mirror symmetry across this axis is required when

calculating the excited SPP modes. The FT of the lattice reveals that for positive k1, k2, and k3, kx

is positive, while for negative k1, k2, and k3, kx is negative (Figure 2.8a). Therefore, the rotational

degeneracy of the SPP modes was removed with the exception of ± k4, where kx = 0.

2.2.4 Multi-periodic quasicrystals and a general Bragg model

Removing the angular symmetry from the SPP dispersion preserved the broad spectral range

of first-order SPP excitations at large wavevector, but near normal incidence (k|| = 0) the SPP

modes remained degenerate as illustrated in Figure 2.6b due to the single periodicity of the PDMS

mask used to fabricate the pattern. To remove this final degeneracy, we fabricated quasiperiodic

patterns with three (symmetric) exposure angles, but with PDMS masks containing different

periodicities ai (Figure 2.2c). The FT reflects the varying periodicities as different magnitudes of

primary vectors k1, k2, and k3 (Figure 2.9a). With the removal of periodicity and azimuthal

symmetry in these quasicrystal patterns, we developed a general form of grating vector G for the

Bragg coupling condition.

(2.3)

(2.4)

In the general model, each basis vector ki includes unique periodicity ai and azimuthal angle φi

terms. Importantly, we established a direct link between G and the MNL process, where each set

G =
nX

i=1

ciki

k
i

=

2⇡

a
i

⇣
cos'

i

ˆk
x

+ sin'
i

ˆk
y

⌘

	 48

	

Figure 2.8: Reflection spectra from quasiperiodic PC with asymmetric rotation angles. (a)

Calculated FT with basis vectors ki shown. (b) Angle-resolved reflection spectra taken from θ =

10° to 80° converted to dispersion diagram. (c) Predicted SPP mode dispersion calculated from

the Bragg coupling equation for a Ag/air interface with some first order modes labeled. In (a,c)

blue objects represent first-order modes and orange objects represent second-order modes.

	 49

	

Figure 2.9: Reflection spectra from a multiperiodic patterned PC. (a) Calculated FT with basis

vectors ki shown. (b) Angle-resolved reflection spectra taken from θ = 10° to 80° converted to

dispersion diagram. (c) Predicted SPP mode dispersion calculated from the Bragg coupling

equation for a Ag/air interface with some first order modes labeled. In (a,c) blue objects represent

first-order modes and orange objects represent second-order modes.

	 50

of (ai, φi) directly corresponds to one MNL mask exposure. First-order SPP modes were observed

over a wide range of energies, and intersecting at nonzero wavevector (Figure 2.9b). A similar

indexing scheme was used to describe the SPP modes, and the predicted dispersion using equation

(2.3) agrees with the experimentally spectra (Figure 2.9c). The [-1 0 0] mode based on the 480-nm

periodicity shows the same dispersion as in the previous quasiperiodic lattices. The [0 ±1 0] and

[0 0 ±1] modes, however, are at lower energies due to the increase in magnitudes of k2, and k3

respectively. While, in general, the second order (m = 2) modes were weaker than in previous

structures, several band gaps were observed at intersections between them and first-order modes.

2.2.5 Plasmonic band gaps in low-symmetry PCs

A closer examination of the dispersion diagram of the multiperiodic quasicrystalline PC

revealed the origin of several band gaps (Figure 2.10). We demonstrated that the origin of

plasmonic band gaps at first and second-order Bragg lines is not only true for high-symmetry

quasicrystals,57 but also applies to other, low-symmetry patterns. Band gaps formed at I and II are

second-order crossings between two first-order modes. In these cases, the strong [-1 0 0] mode

from the 480-nm periodicity formed band gaps with the first-order modes from each of the other

two periodicities. These band gaps opened at the (-1 1 0) and (-1 0 -1) Bragg lines respectively.

Band gap III occurred at the first order Bragg line (-1 0 0) between the [0 0 -1] and [-1 0 -1] modes.

This gap was the largest, likely due to the strength of [-1 0 0] mode, where the Bragg reflection

takes place. The large gap for I, even though it occurred at a second order Bragg line, was likely

enhanced due to the intersection between the [0 1 -1] and [0 1 0] modes (not shown) at the same

E-k position. Finally, a second order band gap between the first-order [0 0 1] and unobservable

third-order [0 -1 2] modes took place at IV. Again, the intersection of several SPP modes at similar

	 51

	

Figure 2.10: Plasmonic band gaps in multiperiodic patterned PC. (center) Zoom of dispersion

diagram with overlaid relevant SPP modes. Numbered circles highlight plasmonic band gaps. (left,

right) FT of the pattern with modes and Bragg lines highlighted for specific band gaps. Arrows

represent direction and magnitude of k|| and kSPP for the given E–k coordinates.

	 52

E-k coordinates likely enhanced the size of band gap, since the third-order mode was relatively

weak.

2.3 Experimental methods

2.3.1 Lithography procedure for MNL

To create quasicrystalline moiré patterns, a PDMS photomask with 1D lines was placed into

conformal contact with positive-tone, g-line photoresist (Shipley S1805) diluted with

poly(ethylene glycol) methyl ethyl acrylate in a 1:2 ratio by volume (~120 nm thick) on a Si [100]

wafer and exposed to UV light in a home-built narrow-band LED light source.80 After the exposure

through the PDMS photomask, additional exposures were done with the same or alternate

photomasks at various azimuthal rotation angles. The alignment of the PDMS masks was typically

within 2° of the target angle. The exposed PR was developed (1:5 dilution of Microposit 351

developer) and resulted in arrays of PR posts on a Si substrate.

2.3.2 FDTD simulations of phase-shifting lithography

FDTD simulations were performed with commercial software (FDTD Solutions, Lumerical

Inc.). A 2D simulation environment was used with periodic boundaries in the x-direction and PML

boundaries in the y-direction. The PDMS material was represented as a uniform dielectric constant

of n = 1.4. The refractive index of the PR was modeled as a Cauchy material with coefficients

provided by the manufacturer. Neither the absorption of PR nor a change in refractive index with

exposure to UV light were considered. A mesh accuracy level of 5 was used for the simulation. A

2D monitor recorded the electric field in the entire PR region, and a 1D monitor recorded the

electric field only through the center of the PR. A plane wave source with free-space wavelength

λ = 405 nm and polarization in the x-direction illuminated the sample from within the PDMS layer.

	 53

2.3.3 Pattern transfer to quasiperiodic PCs

To clear away residual photoresist, the samples were exposed to an O2 plasma in an RIE (50

sccm, 300 mtorr, 30 watts) for ~15 s. A 10-nm Cr sacrificial layer was deposited onto the substrate

through line-of-sight physical vapor electron beam deposition with a Kurt J. Lesker PVD 75. The

PR posts were lifted off with Microposit Remover 1165 leaving holes of bare Si in the Cr layer.

Trenches with depths of ~50 nm were etched anisotropically using a C4F8/SF6 co-flow recipe with

a STS LpX Pegasus Deep Reactive Ion Etcher. The Cr layer was removed with Cr etchant

(Transene), and 160 nm of Ag were deposited in the PVD-75 onto the Si grating to create the

plasmonic crystals.

2.3.4 Angle-resolved reflectance spectroscopy

Zero-order reflectance spectra were collected from θ = 10° to 60 or 80° in 1° or 0.5° increments

using an automated, self-designed LightField software add-in (Princeton Instruments). Collimated,

unpolarized white light from a halogen lamp (100 W) illuminated the sample with a spot size of

2 mm. The reflected light was coupled into a bundled optical fiber connected to a Princeton

Instruments Acton SP2500 spectrometer with a PIXIS:400 CCD detector. A linear interpolation

algorithm in Matlab converted the measured optical data — wavelength (λ) and excitation angle

(θ) — into dispersion diagrams — photon energy (Ephoton) and in-plane wavevector of light (k||) —

using: Ephoton = hc/λ and k|| = (2π/λ) sin θ.

2.4 Summary

We have shown the fabrication of high- and low-symmetry moiré plasmonic crystals and

analyzed the excitation of SPP modes on their surface. We modeled the nanofabrication technique

MNL, and developed a computational tool to visualize the resultant quasiperiodic patterns. We

	 54

developed a general form of the Bragg coupling equation that incorporates experimental inputs

from MNL and can describe the SPP modes on quasiperiodic PCs. Finally, we developed a general

indexing scheme for the SPP modes and identified the origin of plasmonic band gaps at first- and

second-order Bragg lines in low symmetry quasicrystalline patterns.

	

	 55

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

CHAPTER 3:

SURFACE PLASMON POLARITONS

ON MULTISCALE GRATINGS

	 56

3.1 Background

Surface plasmons can be excited on the surface of a metal in the form of surface plasmon

polaritons (SPPs), where incident light is trapped at the metal-dielectric interface through the

assistance of submicron periodic patterns.8, 18 A momentum mismatch between free-space light

and surface plasmons can be overcome by introducing this submicron periodic pattern to the metal

surface. The SPP resonance wavelength is then dictated by the periodicity of the surface pattern.55

SPPs typically show narrow resonances due to the strong confinement of localized electric fields.

This localization can be beneficial for applications in photovoltaics,1, 81 refractive-index-based

biosensing,4, 6 and plasmonic lasing.11, 69 One challenge is to maintain narrow resonances, while

covering a large portion of the visible light spectrum. Since periodic nanopatterning is required for

SPP excitation, one approach to expand the available wavelength range is to change the symmetry

of the pattern. Low-symmetry lattices,70 quasicrystal geometries,57, 82 and superlattices83-84 have

been shown to increase the number of available SPP modes while maintaining individual narrow

resonances.

Photonic and plasmonic superlattices contain hierarchical periodicities where the primary

periodicity is near the wavelength of light (e.g. 400 nm), and the superperiodicity is larger by at

least an order of magnitude (e.g. 10 µm). Nanowire superlattices have been studied to determine

the effect of the hierarchical periodicity on the excited optical modes.85 These superlattices,

fabricated by e-beam lithography (EBL), were commensurate in nature, i.e. each super period

contained the same number and arrangement of sub-units, resulting in the conclusion that the

primary periodicity selected certain high-order modes of the superperiodicity to be excited. Due

to the limitations of EBL, these patterns covered small areas (100 × 100 µm2), restricting the

	 57

optical measurements to be done (e.g. off-angle reflection). A second variety of superlattices

fabricated by multiscale patterning44 are incommensurate in nature, yet appeared to show similar

optical properties.83, 86 The SPP modes excited in these multiscale arrays showed a strong

resonance related to the primary periodicity and so-called satellite modes influenced by the

superperiodicity. While the satellite modes are based on SPPs folded into the Brillouin zones of

the superperiodicity, the explicit relationship between the primary and superperiodicities and its

effect on SPPs is not fully understood.

Here we show fabrication of multiscale gratings that support SPPs over a broad range in the

visible spectrum. We develop and indexing model to relate the primary and superperiodicity SPP

modes based on the reciprocal-space representation of the arrays. To validate the model, we

systematically show the influence of primary and superperiodicity on the excited SPP modes. We

identify that the origin of excited SPPs in multiscale arrays in fundamentally different from those

in commensurate superlattices. Finally, we expand multiscale patterning with a modified litho-

etch-litho-etch (LELE) technique to create multiscale grating with two independent primary

periodicities and analyze the SPP modes on these patterns.

3.2 Results and Discussion

3.2.1 Fabrication of multiscale arrays

Multiscale gratings were fabricated over large areas (2 cm × 2 cm) with a double-exposure

lithography + etch (LE) technique (Figure 3.1). First, multiscale arrays of photoresist (PR) lines

were fabricated on a Si wafer by photolithography with two exposures and development followed

by Si etch and Ag deposition. The first exposure was through a PDMS phase-shifting mask38, 87

with primary periodicity a0, and the second exposure was through a standard contact mask with

	 58

	

Figure 3.1: Fabrication scheme for multiscale superlattices. Multiscale superlattices use two

consecutive exposures of phase shifting lithography and traditional contact lithography for the

primary and superperiodicities respectively. After the first round of etching, the process can be

repeated to fabricate doubly patterned superlattices.

	 59

superperiodicity A0 and an azimuthal rotation of φ relative to the first mask. After development, a

thin layer of Cr was deposited as an etch mask, and the pattern was transferred to 50-nm deep

grooves in Si. Removal of the Cr layer left a bare Si template. A second iteration of LE can be

done on this existing template to create double-patterned superlattices with two different primary

periodicities, which will be discussed in detail later in the chapter. Finally, 160 nm of Ag was

deposited on the Si template to create the plasmonic crystal. The relatively thick layer of Ag was

chosen to ensure it was optically opaque, and excited SPPs would only exist on the top (Ag/air)

interface, not on the backside (Ag/Si interface). Importantly, since the two exposures are

independent of each other, the resulting superlattice is incommensurate except in the case where

A0 is an integer multiple of a0 and perfect alignment yields φ = 0°. Each of the two periodicities,

however, still has long range order as dictated by the initial lithography masks.

This process was used to create a multiscale grating with primary periodicity a0 = 400 nm and

superperiodicity A0 = 10 µm (Figure 3.2a). The duty cycle of the superperiodicity lithography-

mask was 50% resulting in patterned regions with the primary periodicity and unpatterned regions

having equal areas. A Fourier transform (FT) was performed on this scanning electron microscopy

(SEM) image to generate the reciprocal space representation of the structure (Figure 3.2b). The

FT shows two three equally spaced groupings of peaks, where the peaks within each group also

have a regular, smaller spacing. Reciprocal lattices are used to identify plasmonic crystals such

that each peak in the FT can be represented by a grating vector G:

(3.1) G =
nX

i=1

ciki

	 60

	

Figure 3.2: 1D Superlattice. A SEM (a) of a 1D plasmonic superlattice and (b) its Fourier

transform. (c) The Bragg peaks in the Fourier transform can be indexed as combinations of the

primary periodicity (a0) and superperiodicity (A0)

	 61

where |k| = 2π / a0 describes the periodicity of the lattice. In the case of plasmonic superlattices,

we define G as

 (3.2)

where i and J are integers, |k| = 2π / a0 and |K| = 2π / A0. For the discussion of multiscale gratings,

we use the notation that lower-case letters represent a property of the primary periodicity, while

upper-case letters are related to the superperiodicity. Based on the equation for G, we were able to

identify and index each of the peaks in the reciprocal lattice. We indexed each of the peaks with

the notation iJ (e.g. –11) and defined the order of each mode m=|i|+|J| — e.g. –11 is 2nd order

(m=2). Figure 3.2c shows how the peaks for the multiscale grating are identified and indexed

according to the above rules. The peaks corresponding to the primary periodicity (i0) are

surrounded by families of satellite peaks.

3.2.2 SPP excitations on 1D plasmonic superlattices

The excitation of SPPs on a nanostructured metal surface is given by the Bragg coupling

condition88

(3.3)

where kSPP is the momentum of the SPP mode, k0 is the momentum of free space light incident on

the surface at angle θ, G is the grating vector, and εm and εd are the complex permittivity of the

metal and dielectric, respectively. Zero-order reflection spectra of a 400-nm/10-µm pattern with

an angle of incidence θ = 20° showed several SPP modes, indicated as reflection minima (Figure

3.3a). Applying the grating vector from equation (3.2) into equation (3.3), we identified the

strongest modes as –10 and –11. The –10 mode, that is, the mode that only has a contribution from

the primary periodicity, is consistent with the SPP mode of an infinite array with the same

G = ik+ J K

k0

r
"d"m

"d + "m
= kSPP = |k0 sin ✓ +G|

	 62

	

Figure 3.3: Reflection spectra of superlattices with indexed SPP modes. Reflection spectrum

(θ = 20°) for a plasmonic superlattice with a0 = 400 nm and A0 = 10 µm and for an infinite 400-nm

array (inset) (b) Dispersion diagram with the –10 SPP mode overlaid. (c) Zoom of the dispersion

diagram in (b, dotted box) with SPP modes shown and labeled. The dashed white line indicates

the light line (i.e. θ = 90°)

	 63

periodicity, a0 = 400 nm (Figure 3.3a inset). Angle-resolved reflection spectra over a large angle

range (5–80°) were stitched together into dispersion diagrams according to

(3.4)

(3.5)

to analyze the dispersive properties of the SPP modes (Figure 3.3b). The expected –10 SPP mode

as calculated from equation (3.3) is indicated on the dispersion diagram. The calculated and

experimental modes overlap well at high wavevector (large θ), but near k|| = 0, band banding can

be observed.89 Due to the symmetry of the 1D superlattice, the energy spacing between the satellite

modes remains constant at ΔE = 0.11, consistent with the magnitude |K|.

The most prominent SPP modes for this plasmonic superlattice were evident at low energy and

high wavevector (Figure 3.3c). For the –1J family of modes, several high order modes were visible

up to –16, a seventh order (m = 7) mode. Additionally, while the –1J modes progressed from upper

left to bottom right, there are sharp SPP resonances near the light line progressing from bottom

left, to upper right. These SPP modes are part of the 0J family, i.e. their grating vector only has

contributions from the superperiodicity. Several of the intersections between the –1J and 0J modes

resulted in plasmonic band gaps, including those of high orders (e.g. 01 and –15). Previous studies

on formation of plasmonic band gaps on high symmetry plasmonic crystals concluded that band

gaps would only be observed if the two intersecting modes were within two orders of each other

(i.e. Δm < 2).57 The SPPs in these plasmonic superlattices clearly go beyond this restriction,

showing band gaps up to Δm = 5. These band gaps, including the observation of the 0J modes,

k|| =
2⇡

�
sin ✓

E =
hc

�

	 64

were only possible due to the large-scale fabrication techniques that enable large measurement

areas at high angles of incidence (θ > 60°).

3.2.3 Effects of alternate superperiodicity on SPPs

The flexibility of multiscale patterning allowed for the modification of various fabrication

parameters to create different superlattice structures and better understand the relationship between

the primary periodicity and superperiodicity in the excitation of SPP modes. Using contact

lithography masks with different periodicities A0, three additional superlattices were fabricated

with the same primary periodicity a0 = 400 nm, but with varying superperiodicity A0 = 20 µm, 30

µm, and 50 µm (Figure 3.4). All structures maintained the 50% duty cycle for the superperiodicity,

and therefore the patterned regions increased in size with increasing A0. Slight misalignment in the

azimuthal angle φ can be identified at the edges of the patterned regions, where some of the

individual lines are cut-off.

High-angle (θ = 65°) reflection spectra for all four of the plasmonic superlattices are shown in

Figure 3.5. Since each superlattice had the same primary periodicity, the location of the –10 mode

in each spectrum was at the same wavelength. Meanwhile, as the superperiodicity increased, the

corresponding value of K decreased, thereby decreasing G according to equation (3.2) and

decreasing the difference in wavelength between the resonance peaks. As with the spectra for the

A0 = 10 µm superlattice, several high order modes were observable at these high angles of

incidence. The A0 = 50 µm superlattice demonstrated the highest order SPP mode (–19, m = 10)

ever reported for nanostructured metal films. The highest order mode observed before this work

was m = 4 in a Au/Si system.90-91

	 65

	

Figure 3.4: Multiscale gratings with varying superperiodicity. SEM images of Si templates with

primary periodicity a0 = 400 nm and A0 = 10 µm, 20 µm, 30 µm, and 50 µm (top to bottom).

	 66

	

Figure 3.5: Reflection spectra of multiscale gratings with varying superperiodicity. Reflection

spectra (θ = 65°) of multiscale gratings with a0 = 400 nm and A0 = 10, 20, 30, and 50 µm (bottom

to top). SPP modes are labeled according to their index.

	 67

The full dispersion diagrams clearly show a decrease in ΔE with increasing periodicity (Figure

3.6), and share similar features with the spectra of the 10-µm superlattice in Figure 3.3. For each

superperiodicity, ΔE between the individual satellite modes remains constant. The SPPs for each

substrate also showed similar degrees of band bending at k|| = 0 indicating that the band banding

is not influenced by the microscale periodicity, but is likely a result of the nanoscale geometry.

Finally, each dispersion diagram showed several high order satellite modes at high angles, as

shown in Figure 3.5, with clear bad gap formation at high wavevector and low energies where the

–1J and 0J modes intersect. Remarkably, these high order modes and band gaps were prevalent

even at the largest superperiodicity (A0 = 50 µm). The existence of strong SPPs influenced by this

large periodicity can be better appreciated in the context of small area fabrication by EBL. In both

experiments and simulations of plasmonic crystals, unit cells ≤ 50 µm are often used to mimic

isolated structures. The strong coupling of SPP modes over 50-µm superperiodicity, however,

indicated that SPPs can still interact across these unit cell dimensions, and care should be taken to

exclude any superperiodicity effects in future work.

3.2.4 Incommensurate multiscale arrays with varying azimuthal angle.

We fabricated multiscale gratings with larger primary periodicity (a0 = 475 nm) such that the

10-µm superperiodicity is explicitly not an integer multiple. A SEM image of the structure and its

FT are shown in Figure 3.7a. As with the 400-nm primary periodicity superlattice, the FT shows

groupings of peaks, where the spacing between satellite peaks is the based on the 10-µm

periodicity as those in Figure 3.2, but the larger spacing between primary peaks was decreased

due to the decrease (increase) in |k| (a0). This decrease in k was also observed in the primary –10

SPP mode excitation occurring at lower energies in Figure 3.7b compared to in Figure 3.3b (e.g.

	 68

	

Figure 3.6: Dispersion diagrams of multiscale gratings with varying superperiodicity. Multiscale

gratings have primary periodicity a0 = 400 nm and A0 = 10, 20, 30, and 50 µm as indicated.

	 69

	

Figure 3.7: Multiscale gratings with varying azimuthal angles (φ). (a,c,e) SEM (top) and FT

(bottom) for superlattices with a0 = 475 nm and A0 = 10 µm, and φ = 0°, 45° and 90° respectively.

(b,d,f) Dispersion diagrams of the above structures showing the decrease in ΔE for the satellite

peaks with increasing φ.

	 70

for the –10 mode at k|| = 4 µm-1, E400 nm = 2.17 eV while E475 nm = 1.77 eV). The overall reduction

in excitation photon energy also allowed a second-order primary periodicity mode and its satellite

modes (–2J) to be visible at high wavevectors and high energy. While the 01 mode was not as

prominent in this sample as in the 400-nm superlattice, the opening of band gaps between low-

order 0J modes and –1J modes was still apparent at low energies and high wavevector. Band gaps

also appeared at high energies between 0J modes and –2J modes.

While the two periodicities are incommensurate even when aligned at φ = 0°, increasing the

relative azimuthal angle φ between the two lithography masks still affected the SPP mode

excitation. Figure 3.7c shows the SEM and FT of a multiscale array with the same periodicities

as Figure 3.7a, but with an azimuthal offset of φ = 45°. The orientation was such that the primary

periodicity maintained the same alignment, while the superperiodicity was rotated. This rotation

is reflected in the FT where the satellite peaks maintained the same spacing (i.e. |K| did not change),

but the orientation of the peaks had rotated. The alignment and spacing of the primary periodicity

spacing |k| was unchanged. The dispersion diagram of the 45° superlattice (Figure 3.7d) shows

identical dispersive properties for the –10 mode, but the spacing between the satellite modes was

reduced. This decrease existed because the direction of k|| is defined as the +kx direction. Even

though |K| remained unchanged, the projection along kx is reduced according to cos(φ). For φ = 45°,

therefore, the spacing between the satellite modes was reduced by a factor of ~cos(45°) = 0.707,

while the dispersion remained parallel to the –10 mode. This effect of φ on the SPP modes was

direct evidence that the behavior of SPPs in these incommensurate multiscale arrays is different

from the optical modes of EBL-fabricated nanowire superlattices. If the primary periodicity

selected which higher order superperiodicity modes were excited, then the dispersion diagram

	 71

would look very different. Figure 3.8 shows the calculated high-order modes of the

superperiodicity alone at φ = 45° (red lines), which display different E–k dispersion than the

observed satellite modes. Finally, multiscale gratings with φ = 90° were fabricated, as shown in

Figure 3.7e. The fabrication of this superlattice had a slight misalignment, which is clearly visible

in the FT as weak modes off-axis from the direction of the satellite peaks. These artifacts are due

to pixilation in the SEM image being misaligned to the orientation of the primary periodicity. The

dispersion diagram of this structure shows only one strong first-order resonance, and a second-

order resonance at higher energy (Figure 3.7f). Since the spacing between satellite peaks was

nearly reduced to ΔE = 0, all the –1J modes were overlapped on the dispersion diagram and appear

to be a single mode. Additionally, the 0J modes were also no longer visible at high wavevector due

to their overlap with the fundamental 00 SPP mode, which exists beyond the light line.

3.2.5 Double periodicity superlattices

We took advantage of the 50% duty cycle of the superperiodicity to fabricate multiscale arrays

with two independent superperiodicities. As stated earlier in the chapter, the Si template of a single

multiscale array can be used in another phase of lithography + etch (Figure 3.1, right). This

technique is similar to the standard LELE process in the semiconductor industry, but with modified

double-exposure conditions during the litho steps. After reapplication of PR, exposure through a

second PDMS mask with different periodicity (b0) was done. The second exposure used the same

mask as in the first LE phase, and the alignment was inverted such that the unpatterned areas were

blocked to preserve the second periodicity in these regions. After an additional round of Cr

deposition, lift-off, and Si etch, the doubly patterned superlattice template was completed. A SEM

image of this template is shown in Figure 3.9a where the two primary periodicities were

	 72

	

Figure 3.8: Comparison between high-order and satellite SPP modes. Dispersion diagram of a

multiscale grating with a0 = 475 nm, A0 = 10 µm, and φ = 45°. Overlay (red lines) shows the

expected dispersion of high order SPP modes from the superperiodicity alone

	 73

	

Figure 3.9: Multiscale gratings with two primary periodicities. (a) SEM of the multiscale array

with a0 = 400 nm, b0 = 475 nm, A0 = 10 µm. (b) FT and (c) indexing scheme of the structure

showing each primary periodicity with its own set of satellite peaks. (d) Dispersion diagram of the

array with SPP modes from the primary periodicities only as overlay

	 74

a0 = 400 nm, and b0 = 475 nm with a superperiodicity of A0 = 10 µm. Good alignment of the

contact lithography mask resulted in no overlap between the two regions. Over-exposure of the

superperiodicity mask, however, resulted in a duty cycle < 50% and therefore some narrow areas

remained unpatterned. The FT shows two families of primary periodicity peaks with identical

satellite modes (Figure 3.9b). The spacing of the primary periodicities is described by |ka| = 2π / a0

and |kb| = 2π / b0 with |ka| > |kb|. A zoom-out view of the FT is displayed in Figure 3.10 where the

different spacings of |ka| and |kb| are apparent. A slight misalignment between the two PDMS

masks was evident by an angular offset between the ka and kb groupings of peaks. Since the

patterns shared the same superperiodicity, the satellite peaks were aligned even for high orders.

The inclusion of the second primary periodicity modifies the equation of G:

 (3.6)

and provides a modified indexing scheme for the modes: (h, i)J (Figure 3.9c).

The dispersion diagram shows excitation of both first order modes of the primary periodicity

(–1, 0)0 and (0, –1)0 and their associated satellite modes (Figure 3.9d). The solid lines indicate the

expected dispersion according to equation (3.6), which agrees well at high wavevector and deviates

from the experimental spectra at low wavevector due to band bending. The energy spacing ΔE of

the satellite modes around each (h,i)0 mode was constant and consistent with that of single

periodicity pattern (Figure 3.3b) since it is based on the same value of |K|. One key difference

between the (0, –1)J and (–1, 0)J modes is a decreased intensity for the SPP modes from the 475-nm

periodicity. One cause of this difference could be the fewer number of units within a given

superperiodicity compared to the 400-nm area85. According to Figure 3.9a, there are 12 units of

400-nm periodicity patterns while, only 8 units of the 475-nm periodicity pattern.

G = (hka + ikb) + J K

	 75

	

s

Figure 3.10: Wide view FT for double patterned superlattices. The groupings for the two primary

periodicities a0 = 400 nm and b0 = 475 nm are identified. The slight misalignment between the two

periodicities is evident especially at high orders. The satellite modes are all aligned however, since

there is only one superperiodicity A0 = 10 µm.

	 76

3.3 Experimental methods

3.3.1 Lithography procedure for multiscale arrays

To create periodic 1D photoresist patterns, a PDMS photomask with a linear feature-to-feature

lattice spacing of 400 or 475 nm was placed into conformal contact with positive-tone, g-line

photoresist (Shipley S1805) diluted with poly(ethylene glycol) methyl ethyl acrylate in a 1:2 ratio

by volume (~120 nm thick) on a Si [100] wafer and exposed to a broadband Hg-vapor light source

(SUSS MicroTec MA6) for 2.5 s at a power density of 11 mW/cm2. After the exposure with a

PDMS photomask, a quartz photomask was placed into low-vacuum contact with the PR-coated

wafer and exposed for 2.5 s. This hard mask consisted of four different periodicities (10 µm, 20

µm, 30 µm, 50 µm) with 50% duty cycle of transparent and opaque linear regions. For these

superlattices, the direction of the submicron pattern was manually aligned to be the desired

azimuthal angle φ. The alignment accuracy was generally within 1°.

3.3.2 Pattern transfer to plasmonic superlattice crystals

The exposed PR was developed (1:5 dilution of Microposit 351 developer in water) and

resulted in arrays of PR lines on a Si substrate. In order to clear away excess photoresist, the

samples were exposed to an O2 plasma in an Samco reactive ion etcher (50 sccm, 300 mtorr, 30

watts) for ~15 s. A 10-nm Cr sacrificial layer was deposited onto the substrate through line-of-

sight physical vapor electron beam deposition with a Kurt J. Lesker PVD 75. The PR was lifted

off with Microposit Remover 1165 leaving lines of bare Si exposed in the Cr layer. Trenches with

depths of ~50 nm were etched anisotropically using a C4F8/SF6 gas co-flow recipe in a STS LpX

Pegasus Deep Reactive Ion Etcher. The Cr layer was removed, and 160 nm of Ag were deposited

in the PVD 75 onto the Si template.

	 77

3.3.3 Angle-resolved reflectance spectroscopy

Zero-order reflectance spectra were collected from θ = 5° to 80° in 0.5° increments using an

automated, self-designed LightField software add-in (Princeton Instruments). Collimated,

unpolarized white light from a halogen lamp (100 W) illuminated the sample with a spot size of 2

mm. The reflected light was coupled into a bundled optical fiber connected to a Princeton

Instruments Acton SP2500 spectrometer with a PIXIS:400 CCD detector. A linear interpolation

algorithm in MATLAB converted the measured optical data – wavelength (λ) and excitation angle

(θ) – into dispersion diagrams as photon energy (Ephoton) and in-plane wavevector of light (k||).

3.4 Summary

We have shown the fabrication of plasmonic multiscale gratings and investigated their optical

properties. The addition of a superperiodicity to a plasmonic crystal generated satellite SPP modes

that were explained by increasing the components of the grating vector G of the Bragg coupling

equation. These terms are independent unlike in photonic superlattices, and varying the primary

periodicity, superperiodicity or relative orientation between them altered the dispersion of SPP

modes. Finally, we combined multiscale patterning with the LELE technique to fabricate

superlattices with two primary periodicities. The inclusion of a superperiodicity and further a

second primary periodicity to a plasmonic crystal greatly increased the spectral bandwidth

available for exciting SPP modes in applications requiring broadband light trapping from

photovoltaics to plasmonic lasing.

	

	 78

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

CHAPTER 4:

PROCESS-BASED MODELS OF

PLASMONIC BOWTIE ANTENNAS

	 79

4.1 Background

Plasmonic nanostructures demonstrate large enhancement of optical fields in confined

volumes.19 Assemblies of particles such as dimers can further increase the local field intensity by

orders of magnitude due to near-field interactions between the nanoparticles at their localized

surface plasmon (LSP) resonance wavelength. These high fields can show non-linear behavior of

the nanoparticles,92-93 and have applications in sensing,94 surface enhanced Raman spectroscopy,95

and plasmonic lasing.96 Understanding the origins of LSP modes and high field enhancement

requires knowledge of the near-field distribution for a given structure. While the near-field can be

measured directly, finite-difference time-domain (FDTD) simulations of the structures are a more

appealing approach to visualize local fields due to their speed and ease of use.

FDTD simulations of plasmonic nanoparticles determine the full electromagnetic fields in the

simulation environment by solving time-dependent Maxwell’s equations.62 Results from FDTD

simulations therefore include both near-field properties such as plasmonic field enhancement as

well as far-field properties such as transmission or reflection spectra. The exact far-field spectra

of specific nanoparticles can be replicated by making detailed measurements of the nanoparticles

and using those measurements to create accurate simulation objects.97 Advancements in object

design in FDTD simulation software has enabled modeling of particles with various shapes.

Features on 2D shapes, or extruded 3D volumes can be modeled with a high degree of accuracy,

including tapered edges and rounded corners. A downside to these advancements is that large

degrees of freedom in the design of nanoparticles can produce large variations in both near-field

and far-field properties.97

	 80

Here we design FDTD simulations of plasmonic systems that incorporate experimental

processing parameters into construction of the object models. We model our simulation after the

shapes of 3D bowtie dimers and show how varying the fabrication procedure alters the optical

properties of the final structure. For specific nanofabrication parameters, FDTD simulations match

trends in experimental far-field spectra, though non-uniformity in the real structures prevents high

accuracy in modeling. Finally, we reveal the origin of an out-of-plane LSP mode that appears

under specific geometric conditions.

4.2 Results and Discussion

4.2.1 Fabrication parameters in experiment and FDTD model

Arrays of nanoparticle bowtie dimers are fabricated using a technique based on PEEL44 that

has been reported previously.96, 98 The procedure is outlined in Figure 4.1. Briefly, square arrays

of round photoresist (PR) posts were formed on the surface of a Si(100) wafer by phase-shifting

photolithography with a soft, elastomeric mask followed by development. A thin, sacrificial layer

of metal (typically Cr) to be used as an etch- and deposition-mask was deposited on the post array

followed by lift-off to create a nanohole array. The exposed Si was anisotropically etched in a

KOH-based solution to form a self-aligned array of pyramidal pits beneath the nanoholes. Two

off-normal depositions of Au or Ag with deposition angle Ψ, azimuthal angles φ and φ + 180°, and

thickness t created the templated bowtie dimer. For optical measurements, the particles were

template-stripped onto a transparent substrate.

Several aspects of the fabrication process affected the final optical response of the dimers.

Since each nanoparticle was created by masked deposition through the hole array, the diameter of

the initial PR posts (as determined by both the phase-shifting mask and exposure/development

	 81

	

Figure 4.1: Fabrication scheme. Steps of the bowtie fabrication procedure from lithography until

bowtie deposition. The final 3D image shows the particle deposition direction through the

nanohole mask (red arrow) characterized by the deposition angle Ψ, azimuthal angle φ, and

thickness t.

	 82

conditions) directly influenced the size of the final particles. The thickness of the sacrificial metal

layer affected the width of the nanoparticle in the plane of the deposition direction since a thicker

layer would shadow a larger cross-sectional area of the hole. Finally, the three deposition

parameters (Ψ, φ, t) were the dominating factors in the final particle shape.

The fabrication parameters were used to create an FDTD model for the bowtie dimer based on

geometric affine transformations. The basis of this technique is the orthogonal projection of a hole

shape onto an arbitrary plane. First, the elliptical shape was determined based on the size of the

hole, film thickness, and deposition angle. As the deposition occurred, the top film also increased

in thickness according to t sin(Ψ), which shrinks the final hole shape. The hole was projected in

3D onto the desired surface plane by the following matrix equation

(4.1)

where J is the basis vectors, Y is a matrix of vectors describing the coordinates of the hole, I3 is

the 3×3 identity matrix, D is the projection direction vector, and N is the surface normal of the

desired plane. The subscripts p and e represent the projected and starting bases respectively, and T

denotes the transpose operator. A schematic diagram of this projection is shown in Figure 4.2a.

The projection vector D was defined by the experimental deposition angle Ψ and azimuthal angle

φ. The nanoparticle was created by stacking a series of slabs approximately 1 nm in thickness

linearly changing size and shape from the starting hole shape to the final hole shape. Since this

technique is generalized for any shape of hole and any target surface, it can be used for several

applications (Figure 4.2b). For bowtie dimers, the hole was projected onto each of the 4 surfaces

of the pyramidal pit (only two or three of the surfaces would contain real particles). Deposition

JpYp =

I3 �

DNT
p

D ·Np

!
JeYe

	 83

	

Figure 4.2: Flexibility of FDTD model. (a) Scheme for the nanohole projection in FDTD to

generate the nanoparticle object. (b) FDTD layout images showing nanoparticle objects created

with various hole shapes and projection planes.

	 84

from a hole onto the edge of a cylinder is more complex due to the curved walls. For this case, the

cylinder is approximated as an extruded n-gon where n ≈ 100. Finally, this technique is also suited

to simpler projections between parallel planes such as nanoparticle structures fabricated by

nanosphere lithography.26 The particles shown in Figure 4.2b (right) are from three angled

depositions through a hole at the intersection of three spheres.

 The size of each particle of the bowtie dimer is set by the circular hole in the Cr mask, and

these particles can be large compared to the size of pyramidal pit that contains them, limiting the

available scope of angles Ψ and φ. The size of the Si pyramid created during the fabrication process

was dictated by the diameter of the nanohole due to the anisotropic nature of the Si wet etch.48

Specifically, longer etch times do not increase the size of the pyramid after the final shape has

been formed. To increase the width of the pyramidal pit and allow for more flexibility in

nanoparticle deposition, an isotropic etch must first be done. By treating the exposed Si wafer

through the nanohole mask in a reactive ion etcher (RIE), the size of the Si pyramid after KOH

etching was increased (Figure 4.3). The relationship between RIE time and increased pyramid size

was found to be linear with a rate of 5.1 nm of increased width per second of RIE treatment.

Initially, there was no change in width for RIE times below 10 s, since any etched volume would

fall inside the boundary of the initial pyramidal pit. Scanning electron microscopy (SEM) images

of several hole arrays on Si after both RIE and wet etching show the increase in width of the Si

pyramid for similarly shaped holes (Figure 4.3b). Additionally, the quality of the final pyramidal

pit was not damaged by the RIE treatment.

4.2.2 Linear properties of bowties with various geometries

	 85

	

Figure 4.3: Effect of RIE etch on Si pyramidal pit shape. (a) Undercut distances between pyramid

edge and hole edge for 10 different RIE etch times followed by anisotropic wet etching. Each point

represents an average of 5–10 measurements on different holes in the same sample. (b) SEM

images of samples with 4 different etch times.

	 86

A larger Si pyramid enables a wider range of angles and thicknesses for deposited

nanoparticles. To discover the range of available LSP resonance wavelengths, a series of angles

(Ψ) and thickness (t) were tested with typical dimensions for nanoholes and pyramidal pits (Figure

4.4). We simulated bowties centered in the corners of the pyramids (i.e. φ1 = 45°) over a 10° range

of Ψ from 30° to 40° (Figure 4.4a). These limits were chosen because for Ψ < 30°, the two bowtie

particles would be in contact in the center of the pyramid, and for Ψ > 40°, the top of the bowtie

would make contact with the upper film, forming a continuous structure. The transmission spectra

showed two characteristic LSP peaks, though for decreasing Ψ, the second peak is redshifted

beyond the wavelength range of the simulation, and likewise beyond the measureable range for a

visible-wavelength spectrometer (Figure 4.4b). We observed that the redder of the two peaks

shifted more significantly than the bluer peak, which remained relatively unchanged for

36° < Ψ < 40°. At Ψ = 30°, the resonance near 800 nm showed a splitting into several lower

intensity peaks. This change in line shape is likely due to simulation errors at the ~5-nm gap

between two particles in the center of the pyramid — a precision that typically is not achievable

in experiment.

We then fixed the deposition direction, and varied the deposition thickness from 20 nm to

50 nm in 5-nm intervals (Figure 4.4c). For this specific experiment, there were two competing

factors to determine the spectrum of a bowtie dimer. Increasing the thickness of an isolated

nanoparticle causes a blueshift of the LSP wavelength,99 however decreasing the spacing between

two particles in a dimer produces a redshift.100 Increasing the thickness of the particles in the

bowtie results in both effects as a consequence of the angled plane of the pyramid. The

transmission spectra for this sweep of thicknesses (20 nm < t < 50 nm) shows that both LSP

	 87

	

Figure 4.4: Sweeps of Ψ and t for Au corner-centered bowties. (a,c) Schemes of the simulation

parameters to generate the nanoparticle objects, with images representing the high and low

extremes for Ψ (a) or t (c). (b,d) Simulated transmission spectra for bowties in the visible-NIR

wavelength range.

	 88

	

Figure 4.5: FDTD and experimental comparison. (a,c) FDTD objects and SEM images of bowtie

nanostructures using the same parameters. Simulation objects were made by using experimental

conditions as inputs. (b,d) Experimental and simulated transmission spectra for each dimer.

	 89

resonances blueshift with increasing thickness, even though the gap between particles also

decreases. Unlike with increasing the spacing between the particles with deposition angle (Ψ), both

peaks in the bowtie spectrum showed equal wavelength shifts with changing (t).

To verify the predictive ability of the FDTD simulations, we fabricated arrays of bowtie dimers

with parameters near the extremes of the tested values of Ψ and t. The first bowtie was fabricated

near the smallest values of each parameter, namely at Ψ = 31.3° and t = 30 nm. Top-down views

of both the FDTD model and experimental structure by SEM show good agreement in the

geometric shape (Figure 4.5a). To create the model, SEM images of the nanohole array were used

to extract the diameter of the holes and the width of the pyramidal pits, found to be 220 nm and

300 nm respectively. The experimental and simulated spectra are shown in Figure 4.5b. While an

offset of ~50 nm existed between the observed LSP peaks, the two spectra showed similar trends.

They both displayed a broad LSP mode in the 700–800-nm range, and the tail of a NIR-peak

beyond 1000 nm. Additionally, the asymmetry on the blue side of the resonance peak was visible

in both spectra, though more pronounced in the simulation results.

Near the opposite end of the range of fabrication parameters, Ψ = 39.5° and t = 50 nm were

used to fabricate the second array of bowties (Figure 4.5c). Top down images of the model and

experimental structure again show good geometric agreement. The spectra between the simulation

and experiment have similar features, but still lack a quantitative match (Figure 4.5d). Similar to

the previous bowties, the experimental wavelength for the blue LSP was ~50 nm blueshifted

compared to the simulated spectrum. For the longer wavelength peak, however, the experimental

peak was redshifted compared to simulation. This relationship could not be observed for the

previous bowties due to a resonance wavelength beyond 1000 nm. The two spectra showed similar

	 90

features such as the shoulder on the red side of the blue peak, near 750 nm. Also, both simulations

displayed a narrower linewidth for the red peak near 850 nm compared to the blue peak near

700 nm.

While we expected the simulated spectra to match better with experiment, the variation in

bowtie geometry across the substrate could have had a role in the differences. The fabrication

technique generated large-area (~1 cm2) samples, and variations in hole diameter and shape existed

across the sample (Figure 4.6a). Local variations showed a distribution in geometry for bowties

that were in close proximity to each other (Figure 4.6b). The top particle in I showed an

asymmetry towards the left, terminating in a sharp peak that decreased the gap size between the

two particles. The bottom edge of the particles in II had a defect that was inserted into the central

gap between particles. In bowtie III, both the size of the pyramidal pit and the size of the

nanoparticles was less than those of the majority of other particles. As demonstrated in Figure 4.4,

relatively small changes in the geometry produced dramatic shifts in the optical properties of the

bowties.

4.2.3 Out-of-plane bowtie LSP mode

With the ability to freely tune the deposition parameters, we revealed the origin of an out-of-

plane plasmonic mode in the bowtie dimers. Previously, the LSP mode only visible for bowties

deposited in the corners of pyramidal pits, and not for those deposited on the faces, was identified

as the antibonding mode of the dimer.98 We reproduced this LSP mode in FDTD simulations of

Ag bowties by varying the starting azimuthal angle φ1 of deposition from 0° (face-centered bowties)

to 45° (corner-centered bowties) (Figure 4.7a). Two LSP resonance peaks were visible in the

spectrum: The first was a NIR resonance near 796 nm that was largely unchanged in position or

	 91

	

Figure 4.6: Variations in experimental bowtie nanoparticle shapes. (a) Large-area SEM image of

a bowtie dimer array. (b) Highlighted particles from (a) showing slight variations in geometry that

could affect the bowtie LSP resonance.

	 92

	

Figure 4.7: LSP dependence on azimuthal deposition angle φ. (a) Transmission spectra for 10

different azimuthal angles φ from 0° to 45° in 5° increments show an increase in LSP mode

intensity at 662 nm with increasing angle. The LSP mode at 796 nm remains unchanged. (b) Cross-

sectional near-field intensity maps between the nanoparticles in the plane perpendicular to the

dimer axis (dashed black lines). Dashed white lines show the boundaries of the pyramid. Near-

field intensity is plotted on a log scale.

	 93

intensity with changing φ. The other resonance, previously identified as the anti-bonding mode,

was in the visible regime at 662 nm and gradually increased in intensity as φ approached 45°. The

polarization state of incident light for each measurement was rotated to match the deposition angle

φ, i.e. the polarization remained parallel to the dimer axis.

To identify the nature of each LSP mode, we visualized the near-field intensity in the gap with

a cross section perpendicular to the axis of the dimer (Figure 4.7b). For the face-centered bowties

(φ = 0°), only a single LSP mode was visible in the transmission spectrum, at 796 nm. The cross-

sectional image shows a strong field enhancement in the gap between the two particles, centered

at the tip of the pyramid. There was no significant evidence of an LSP at 662 nm. Conversely,

there was strong field enhancement and a peak in the transmission spectrum for both modes in the

transmission spectrum of corner-centered bowties (φ = 45°). The near-field intensity at the 796-nm

peak had the same attributes as in the face-centered bowties, though the strongest regions of field

enhancement were offset from the midpoint of the structure to match the local geometry of the

particles. For the LSP at 662-nm, there was a strong field enhancement focused towards the bottom

of the structure, in the gap between the edges of the particles, and much less intensity in the gap at

the pyramid tip.

The complex, 3D shape of the bowties required additional, 3D near-field visualizations of the

electric near-field intensity to better understand the nature of the two modes. A 3D model of the

electric near-field for the corner-centered bowties was used to classify the two LSP modes as in-

plane and out-of-plane (Figure 4.8). The near-field distribution for the LSP at 796 nm showed an

in-plane bonding LSP mode between the two particles. The surface charge density of the

nanoparticles was also calculated based on the gradient of the electric field vectors, displayed as

	 94

	

Figure 4.8: Geometric analysis of LSP modes for corner-centered dimers. Schemes of the overall

dipolar charge distribution for the in-plane and out-of-plane LSP modes (left). The electric field

vectors and charge distribution (red shows positive charge, blue shows negative charge) for each

LSP mode on resonance (right).

	 95

red (+) and blue (–) shading. The charge and near-field distributions for the LSP at 662 nm revealed

its origin to be an out-of-plane mode, caused by the folding of the nanoparticle in the corner of the

pyramidal pit. The unique geometry of these pyramidal bowties allowed a single incident

polarization to excite both the in-plane and out-of-plane modes simultaneously. The dependence

of the out-of-plane mode on the folding of the nanoparticle also agreed with the transmission

spectra (Figure 4.7a) where the intensity of the mode increased as the azimuthal angle (φ)

increased and an increasing portion of the nanoparticle was folded by the corner of the pyramid.

4.3 Experimental methods

4.3.1 Bowtie fabrication

To create 2D square arrays of photoresist posts, a PDMS photomask with feature-to-feature

spacing of 400 nm was placed into contact with positive-tone, g-line photoresist (Shipley S1805)

diluted with poly(ethylene glycol) methyl ethyl acrylate in a 1:2 ratio by volume (~120 nm thick)

on a Si [100] wafer and exposed to UV light in a home-built narrow-band LED light source.80

After development in a 1:5 dilution of Microposit 351 developer, a 10-nm layer of Cr was

deposited through line-of-sight physical vapor electron beam deposition with a Kurt J. Lesker PVD

75, followed by lift-off with Microposit Remover 1165 leaving holes of bare Si in the Cr layer.

The substrates were exposed to a CF4/O2 (25:3 sccm ratio) plasma in a Samco RIE (13.3 Pa, 100

W) for variable times. The samples were then placed in a bath of 4:1 solution of 30 wt% KOH to

isopropanol for 90 s at 72 °C to complete the etch of the pyramidal pit. After Au/Ag depositions

in the PVD 75, the top film was removed by etching the Cr layer in Cr etchant (Transene). A UV-

curable polymer (NOA 61, Norland Products Inc.) was used to template strip the bowties onto a

glass slide for transmission measurement.

	 96

4.3.2 FDTD simulations

FDTD simulations were carried out using commercial software (FDTD Solutions, Lumerical

Inc.) FDTD regions had spans of 400 nm in x and y with periodic boundary conditions, and 2 µm

in z with PML boundaries. A broadband plane-wave source illuminated the samples from the tip

of the pyramid. The simulation region had an index of n = 1.525 below the bowtie and an index of

n = 1 above the bowtie. The dielectric functions of the metal nanoparticles were given by Johnson

and Christy.101 A mesh override region around the particle forced a 2-nm mesh in all dimensions.

A 2D monitor recorded the full electric and magnetic fields 50 nm above the sample. A 3D monitor

to cover the pyramidal pit recorded the nearfield distribution.

4.4 Summary

We have shown development of an FDTD simulation scheme of plasmonic nanoparticles

following experimental process constraints. We verified the technique with simulations of

pyramidal bowtie nanoparticle dimers, and expanded their nanofabrication process to increase the

available range deposition parameters. Variations in the experimental structure placed limits on

the agreement between simulated and measured spectral properties. Finally, we identified the

origin of a geometry-dependent LSP mode for the pyramidal bowtie system with FDTD near-field

analysis.

	 97

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

CHAPTER 5:

CONTRAST INVERSION IN DIC

OF GOLD NANORODS

	 98

5.1 Background

Nanoscale imaging probes in microscopy such as nanoparticles (NPs) and quantum dots (QDs)

are an important tool to probe local properties and mechanisms in soft materials.102 NPs of noble

metals, such as Au, are favorable probes due to strong optical cross-sections derived from their

localized surface plasmon (LSP) resonance.29, 103 These plasmonic particles are non-emitting,

unlike QDs or organic fluorophores, which suffer from difficulties in measurement due to QD

blinking104-105 or fluorophore bleaching. AuNPs are therefore beneficial imaging probes, especially

for biological applications,106-107 and various microscopy techniques have been developed to

visualize them in biological systems such as thermal imaging,108-109 darkfield (DF) microscopy,58,

60 phase contrast microscopy,110-111 and differential interference contrast (DIC) microscopy.112-113

Additionally, AuNPs can be used in wide-field, low-light imaging which is beneficial for large-

area, long-term studies. AuNPs are also attractive multi-purpose probes that can be used for

simultaneous targeting and imaging.15, 114-116

Imaging with DIC microscopy has been recently identified as a strong candidate for AuNPs in

biological systems due to it being a wide-field, low light, and high resolution technique.117-119

Image contrast can be optimized based on the target specimen and use of high-numerical-aperture

(NA) objective lenses makes optical sectioning practical. While darkfield microcopy has been used

extensively to image plasmonic NPs in biological environments, it suffers from problems such as

interference from strong scattering from cell membranes,120 and limited optical sectioning due to

a required low-NA objective.

DIC is a phase-contrast imaging technique, though unlike phase-contrast microscopy, which

visualizes refractive index differences against a reference, DIC represents gradients in the optical

	 99

path length (i.e. refractive index) as intensity contrast. The mechanism of DIC microscopy stems

from dual Nomarski prisms that coherently separate elliptically polarized light into two

orthogonally polarized and spatially separated beams (the ordinary and extraordinary beams),

direct them through a sample, and then recombine the beams into a new elliptical polarization state.

The separation distance between the two intermediate beams is referred to as the shear distance,

and is typically on the order of 100 nm or less. A linear polarizer before the camera with orientation

parallel to the minor axis of the polarization ellipse maps the variable polarization states to an

intensity distribution.

Anisotropic nanoparticles, such as gold nanorods (AuNR), with dimensions near or below the

shear distance show orientation-dependent properties when visualized under DIC.121-122 As the

AuNR rotates, the intensity contrast alternates between “bright” and “dark” modes. This changing

contrast can be used to track the movement, 3D orientation angle, and rotational speed of the

particle.119 Though DIC image contrast is strongest near the LSP resonance wavelength (λLSP) of

the AuNR,121 varying the LSP by changing size or aspect ratio of the AuNR has not been well

studied. Typically, band-pass filters with narrow bandwidths (~10 nm) near the plasmon resonance

are used to maximize the imaging of the NP. Previous wavelength-dependent studies on plasmonic

nanospheres showed a reduction in overall intensity for DIC wavelengths far from λLSP.112 For

AuNR, different DIC image contrast was observed at wavelengths corresponding to the

longitudinal and transverse plasmon modes.121 Understanding the effect of LSP wavelength on

DIC image contrast is necessary due to the inherent heterogeneity of solution-based NR synthesis

techniques.123-125

	 100

Simulated DIC images can expand on the information gained from DIC microscopy by

predicting full image patterns instead of relying on intensity levels alone. Experimental images are

inherently noisy and limited in resolution, thus simulations can reveal the underlying intensity

distribution for improved pattern recognition.126 The finite-difference time-domain (FDTD)

method62 is commonly used to simulate plasmonic nanoparticles, but simulations that include

macroscale optical systems together with plasmonic particles has been limited. Recently, FDTD

models have been developed for both darkfield127 and phase-contrast microscopy,110-111 but no

simulations exist for plasmonic particles in DIC. Analytical models based on the point-spread

function of a DIC microscope are not ideal since assumptions are required for the nanoparticle

response.128 Analytical solutions to determine the optical scattering of isolated plasmonic

nanoparticles, such as Mie’s theory, can be used for spheres and other simple shapes, but complex

shapes or particle assemblies require FDTD simulations.17

FDTD simulations can offer additional benefits to DIC microscopy of AuNR. Various particle

sizes and aspect ratios can be systematically tested in simulations to build a DIC image library for

automated identification and classifications of large-area distributions of nanoparticles. Second,

since FDTD can visualize the electric near-field distribution as well as far-field images,

correlations between the two can be established so that nanoscopic information such as size, shape,

and LSP resonance wavelength can be deduced from DIC images alone without the need for

additional measurements with other microscopy techniques (e.g. DF, scanning electron

microscopy) Finally, the image patterns generated from DIC represent an ideal system, and

specific images patters such as relative orientation between bright and dark intensity regions could

be used in future studies as training data for advanced machine learning algorithms.

	 101

Here we show the development of an FDTD model for DIC microscopy. We verify the validity

of the simulation with studies of single AuNR and expand the scope to AuNR dimers. We discover

the phenomenon of DIC contrast inversion for plasmonic nanoparticles and determine its origin to

be based on the inversion of the electric-near field distribution around the particles on either side

of λLSP. Finally, we show that the DIC contrast inversion is common to all anisotropic AuNR,

independent of aspect ratio or LSP wavelength.

5.2 Results and Discussion

5.2.1 DIC microscopy simulation scheme

We developed a 3-stage FDTD simulation scheme for DIC microscopy of plasmonic

nanoparticles (Figure 5.1a). The optics between the light source and the sample area are replicated

in a pre-processing script that sets the initial conditions of the simulation. The initial polarization

state of incident light is determined by the experimental settings of the first polarizer and quarter

wave plate. The effect of the Nomarski prisms is set by preparing two simulation environments

with opposite polarization and their contents shifted by the experimental shear distance (120 nm).

The FDTD region exists between the condenser and objective, and simulates the interactions of

light with the NP. The simulations are periodic, but large enough to avoid interactions between

adjacent particles. Figure 5.2 shows simulated DIC images with different distances between

boundaries. Distances between 2 and 12 µm were tested. Examining the entire simulation space

(Figure 5.2a), showed that a stable background level exists for 12-µm separation. A 4-µm-wide

window around the particles showed minimal influence of neighboring particles at periodicities

greater than 6 µm. All simulations in this chapter used a distance of 12 µm. A 2D monitor records

transmitted and scattered light leaving the simulation that is processed in a second script, which

	 102

	

Figure 5.1: FDTD scheme for DIC microscopy. (a) Side-view of the optical path for a DIC

microscope. There are three components to the FDTD-DIC simulation environment: Setup, FDTD

simulation, Processing. Each section produces optical polarization states corresponding to specific

of the DIC microscope. (b) Top-down view of polarization state at different locations in the

microscope. The phase shift in the intermediate beams induced by the AuNR causes the bright and

dark contrast depending on particle orientation.

	 103

	

Figure 5.2: Simulated DIC images with different boundary conditions. (a) DIC images with height

and width double the periodicity of the simulation. As the periodicity decreases, the background

level between particles becomes smoother. (b) The same series of simulated DIC images as in (a)

with only the center 4 µm × 4 µm square visible.

	 104

represents the optics between the sample and the detector. The light is projected to the farfield to

isolate propagating waves, and then the image plane is reconstructed by a Fourier transform.

5.2.2 DIC FDTD simulations of single AuNR and dimers

The expected mechanism for a AuNR to generate bright and dark contrast as a function of

orientation is illustrated in Figure 5.1b. The background intensity was defined by the initial

elliptical polarization state, determined by the angle of the first polarizer with respect to the quarter

wave plate. Bright and dark intensities of AuNR were achieved when the longitudinal axis of the

particle was aligned to the polarization direction of one of the two beams. In both cases the

nanoparticle induced a phase shift in transmitted light. The bright intensity resulted from the

nanoparticle increasing the phase difference between the two light beams, causing the final

elliptical polarization to be more circular. Similarly, the dark intensity occurred when the phase

difference between the two beams was reduced (in the ideal case Δφ = 0), and the final polarization

state was more linear.

With the two intermediate beams implemented as separate simulations in FDTD, we examined

the interaction of a AuNR with each beam separately. Specifically, by measuring the phase shift

induced by the nanoparticle, we verified the proposed mechanism for orientation-dependent

contrast (Figure 5.3). For the particle alignment that gives a dark-contrast image, the axis of the

particle only caused a phase shift in the ordinary beam, resulting in a negative phase difference

when the beams were recombined (Figure 5.3a). Conversely, when the particle was rotated by 90°,

there was only a phase shift in the beam with perpendicular polarization, causing an opposite phase

difference when the beams were recombined. For this type of AuNR with dimensions 40 × 90 nm,

the maximum final phase difference was approximately 0.06 π.

	 105

	

Figure 5.3: Phase difference for intermediate and combined beams. Images displaying the phase

induced by a dark-aligned (a) or bright-aligned (b) AuNR compared to the background for the two

intermediate beams. The beams are recombined at the Nomarski prism and the final phase

difference is shown.

	 106

We validated the FDTD simulation results with an in-plane rotational correlation study of

AuNRs, combining scanning electron microscopy (SEM), DF, and DIC. DIC images of a single

AuNR were taken over 180° of rotation in 5° increments (Figure 5.4a). SEM provided the

dimensions of the nanoparticle, which were imported to the FDTD simulation. The same rotational

angles were simulated and the resulting DIC images are displayed. The orientation dependent

contrast of the AuNR was observed in both sets of images, with bright and dark maxima showing

the same orientation — aligned to the shear axis of the Nomarski prisms. Additionally, the image

patterns near 45° and 135° also show similar trends, with the 45°-images being dimmer, and the

135°-images showing a more even 50/50 bright/dark pattern. Since FDTD does not have

restrictions on particle geometry, more complex systems were studied.

A self-assembled AuNR dimer was imaged by DIC and simulated in FDTD (Figure 5.4b).

The orientation of the dimer was so that one of the particles (left) had the same orientation as the

single nanoparticle — aligned to the shear axis of the microscope. The DIC images revealed a

difference in the rotation angles corresponding to the maximum bright and dark images, however,

compared to the single AuNR. Specifically, the maximum bright and dark intensities, were offset

by approximately 40°. The FDTD-simulated images also show this trend, where the maximum

intensities are offset by ~40°. The FDTD images also showed higher intensity scattering rings

around the dimer than the single particle likely due to the simulations adding the combined

scattering effect of both particles. The offset of the peak bright and dark intensities of the dimer

was due to the dimer unit effectively acting as a single nanoparticle. In that scheme, the dimer

would have a single longitudinal axis, offset by 40° from the axes of the two individual

nanoparticles.

	 107

	

Figure 5.4: Rotation study of AuNRs. DIC images were measured and simulated for a single

AuNR (a) and a V-shaped dimer (b) with rotation angles from θ = 0° to θ = 180° in 10° increments.

The DIC images were correlated with SEM images and the SEM shown represents the particle

orientation for θ = 0°.

	 108

Our simulations make no assumptions about the interaction between incident light and the

AuNR. While previous analytical simulations based on a DIC point-spread-function assume a π/2

phase shift between the two intermediate beams (i.e. circular polarization) and π/6 phase shift from

the AuNR,128 we relied on experimental parameters to determine the phase differences. The phase

offset between the two intermediate beams in this simulation was ~π/18, empirically determined

to provide high DIC contrast, and in line with the calculated phase shift induced by the nanoparticle.

The AuNR-induced phase shift is a consequence of the dielectric function of gold101 and the

dimensions measured from SEM images.

A primary advantage of FDTD simulations is that a broad parameter space can be explored

with minimal effort. Sweeping different lengths and widths of AuNR resulted in particles with

different LSP resonance wavelengths. This ability is necessary given that commercially available

AuNR show a wide range of λLSP. Figure 5.5a shows a large-area, true-color DF microscopy image

where each spot indicates a single nanoparticle (verified by correlated SEM). The color of each

spot is representative of the scattering wavelength of an AuNR. Several particles were indexed

with alphabetic labels, and a selection have their darkfield scattering spectra shown in Figure 5.5b.

The wavelength range of λLSP for these particles spread approximately 300 nm. Additionally, the

relative scattering intensity varied dramatically between nanoparticle. The intensity values are

shown to-scale since identical acquisition settings were used for each NP spectrum. The ability to

compare an experimental DIC image to a library of simulated AuNR leads to the use of DIC to

determine AuNR geometry, even in diverse samples.

5.2.3 Wavelength-dependent image contrast of AuNR

	 109

	

Figure 5.5: Distribution of LSP resonances for AuNR sample. (a) Darkfield image (true color) at

100× magnification showing the scattering of several AuNR. (b) Scattering spectra from select

labeled AuNR with λLSP ranging from ca. 550 nm to 850 nm.

	 110

Large-area processing of samples with nanoparticles having different LSP resonances required

imaging at multiple DIC wavelengths (λDIC). Two wide-view images at different DIC wavelengths

(λDIC = 640 nm and λDIC = 750 nm) are shown in Figure 5.6. With over 100 individual AuNR in a

single image, the importance of computations tools to automate particle identification and tracking

is obvious. Between these two DIC images, we discovered that the majority of AuNR switched

between bright and dark contrast without changing rotation angle. To quantify this result, we

examined the rotational dependence of DIC contrast for one of the AuNR (Figure 5.7). DF

spectroscopy revealed that the LSP resonance wavelength was 678 nm, at the maximum scattering

intensity (Figure 5.7a). SEM images of the AuNR determined its dimensions to be 43 × 78 nm,

which were used to calculated the scattering cross section by FDTD. The two spectra matched

well, with both showing a λLSP between the two DIC wavelengths (640 nm and 750 nm), indicating

the FDTD model was an accurate representation of the AuNR.

DIC images of the AuNR were taken for rotation angles between 0° and 180° at 10° increments

for both values of λDIC (Figure 5.7b). At 640 nm (i.e. λDIC < λLSP), alignment of the particle to 0°

resulted in a fully bright contrast image, while 90° alignment produced dark contrast. For 750 nm,

the contrast at these angles was inverted, but the change in contrast did not correspond to a particle

rotation. Angles near 45° or 135° for λDIC = 640 nm show regions of both bright and dark contrast

in the DIC image. In these images, the dark contrast was in the lower left portion of the image

compared to the bright contrast region. In the series of images at λDIC = 750 nm, at similar angles,

the contrast in these regions is reversed. These images support that the change in contrast is due a

flip between bright and dark, rather than a rotation about 90°. The simulated images (Figure 5.7c)

	 111

	

Figure 5.6: Large-area experimental DIC images of AuNR. A single set of AuNR with

λDIC = 640 nm (a) and λDIC = 750 nm (b). Several particles show an inversion in contrast from

bright to dark or vice versa between the two images.

	 112

	

Figure 5.7: Wavelength dependence of DIC images for a single AuNR. (a) SEM and scattering

spectra for a single AuNR. Experimental (b) and simulated (c) DIC images at two DIC

wavelengths: λDIC = 640 nm (top) and λDIC = 750 nm (bottom). (d) Contrast difference calculated

from the DIC images showing the contrast inversion between the two wavelengths. Solid lines

with markers are from experimental data; dotted lines are calculated from simulated DIC images.

	 113

showed similar image patterns, and also replicated the observed contrast inversion between

λDIC < λLSP and λDIC > λLSP.

To quantify the image contrast, we calculated the contrast difference of images in each

rotational series (Figure 5.7d). First, we identified bright (dark) regions with intensity above

(below) a threshold level relative to the local background intensity. The threshold was tunable, and

typically 1–2 standard deviations away from the background mean. The average intensity level in

these regions, after subtracting the average background level, defined the bright and dark signals.

Then, the signals were divided by the background, giving the bright and dark contrast for each

image, where the contrast is always a positive value. Bright and dark contrast were independently

normalized to the range [0,1], and the contrast difference (CD) is defined as the difference between

them. Therefore, an image with the largest bright intensity level has CD ≈ 1, the largest dark

intensity has CD ≈ –1, and background-level bright and dark has CD ≈ 0. This metric is preferred

to polarization anisotropy,118 which does not take into account the intensity of the local background.

Variable background intensity across the field-of-view is inherent to DIC and the contrast

difference metric corrects for these variations.

We examined the near-field data recorded by the FDTD simulation to identify the origin of the

contrast inversion at different wavelengths. For this analysis, we used a test particle with

dimensions 25 × 75 nm in an oil (n = 1.525) environment, typical of a DIC microscopy sample.

Figure 5.8a shows the scattering cross section for the longitudinal mode of the AuNR with its

peak at 830 nm. The near field of the nanoparticle was recorded by both a 1D cross-section along

the x-axis, and the 2D plane corresponding to z = 0. The particle was illuminated with a broadband

plane wave propagating in the z-direction, polarized along the x-axis. We examined the amplitude

	 114

	

Figure 5.8: FDTD near-field analysis of DIC contrast inversion. (a) Scattering simulation for the

longitudinal mode of AuNR (25 × 75 nm in oil) with a scheme of the 1D and 2D monitor locations

(inset). (b) E-field amplitude (1D monitor) as a function of wavelength for the AuNR. (c) 2D cross-

sections of electric field amplitude at two wavelengths on the blue (square, λDIC = 808 nm) and red

(triangle, λDIC = 856 nm) sides of the LSP wavelength.

	 115

of Re(Ex) as recorded by the 1D monitor as a function of wavelength (Figure 5.8b). Only the real-

part of the electric field was visualized since DIC depends on propagating waves into the farfield

to generate an image of the NP. Figure 5.8b shows an inversion of the amplitude of Re(Ex) as a

function of wavelength across the LSP resonance peak. For λ = 808 nm < λLSP, (Figure 5.8c, left)

Re(Ex) was negative outside the particle, indicating a dipolar charge distribution with positive

charge on the left surface of the particle and negative charge on the right. At λ = 856 nm > λLSP,

however, the sign of Re(Ex) flipped, corresponding to a reversal of the charge distribution. For

polarization in the perpendicular direction (along the y-axis), the scattering intensity was 3 orders

of magnitude weaker, and Re(Ey) did not show an inversion in amplitude (Figure 5.9). The sign

of Re(Ey) remained constant since the transverse LSP wavelength of the AuNR is below 600 nm

and far from our test wavelengths. These near-field studies provided evidence that the DIC image

contrast inversion is due to the change in sign of the local near-field and surface charge distribution

on either side of the LSP wavelength.

 We examined the DIC contrast at two wavelengths (λ1
DIC = 640 nm; λ2

DIC = 750 nm) for

AuNR with different sizes and therefore different LSP resonance wavelengths: λI
LSP = 609 nm,

λII
LSP = 694 nm, and λIII

LSP = 798 nm (Figure 5.10a). These three particles were chosen since they

represent the three possible relationships between λLSP and λDIC. Particle I was always blue of the

DIC wavelengths (λI
LSP < λ1

DIC < λ2
DIC), II was between them (λ1

DIC < λII
LSP < λ2

DIC), and III was

always on the red side (λ1
DIC < λ2

DIC < λIII
LSP). DIC images for the three particles show the same

relationship between image contrast and LSP wavelength. For λLSP < λDIC, DIC images showed

fully dark contrast when the nanoparticle rotation was aligned to the shear axis of the microscope

(0°), while bright contrast was observed at this orientation when λLSP > λDIC (Figure 5.10b). We

	 116

	

Figure 5.9: FDTD near-field analysis of DIC contrast inversion. (a) Scattering simulation for the

transverse orientation of AuNR (25 × 75 nm in oil) with a scheme of the 1D and 2D monitor

locations (inset). (b) E-field amplitude (1D monitor) as a function of wavelength for the AuNR.

(c) 2D cross-sections of electric field amplitude at two wavelengths (square, λDIC = 808 nm) and

red (triangle, λDIC = 856 nm).

	 117

	

Figure 5.10: DIC response of AuNR with three different resonance locations. (a) The measured

scattering spectra (normalized) of three individual AuNR. (b) SEM of the AuNRs aligned to θ = 0°

and DIC image sets for λDIC = 640 nm (blue border) and λDIC = 750 nm (red border) for θ = 0° to

150°.

	 118

also observed a decrease in overall signal when λLSP was far from λDIC, such as for I at 750 nm and

III at 640 nm.

We expanded the rotation study of these three AuNR to include three additional DIC

wavelengths 600 nm, 680 nm, and 700 nm. The full rotation series (0°–180° by 10° increments)

of I is shown in Figure 5.11. Contrast inversion was visible between the 600-nm and 640-nm

series, consistent with the 609-nm LSP resonance wavelength. The remaining angles all showed

the same contrast difference, and similar image patterns. The rotation series of DIC images for II

did not show a sudden shift in the image contrast as seen for I (Figure 5.12). Comparisons between

image contrast for λDIC = 600 nm, 640 nm and 680 nm did not reveal significant differences in

image patterns or contrast difference. The contrast was inverted at λDIC = 750 nm as seen in Figure

5.10, but the images and contrast difference at λDIC = 700 nm showed only a partial inversion. For

example, at 70° (160°), the image contrast progressed from fully bright (dark) at λDIC = 680 nm,

to partial/dim contrast at λDIC = 700 nm, then to fully dark (bright) at λDIC = 750 nm. The origin

for this partial shift is currently unknown, but has only been observed when λDIC ≈ λLSP. Finally,

the DIC images and contrast difference for III are displayed in Figure 5.13. For this particle, λLSP >

λDIC for all λDIC, and no inversion was observed. The only effect of changing DIC wavelength was

the decrease in overall signal to noise ratio for blue wavelengths, far from the LSP wavelength.

5.3 Experimental methods

5.3.1 FDTD simulations of DIC microscopy

Simulations were performed with commercially available software (FDTD Solutions,

Lumerical Inc.). FDTD regions has spans of 12 µm in x and y with periodic boundary conditions,

and 2 µm in z with PML boundaries. A plane wave source (broadband or single frequency)

	 119

Figure 5.11: Rotational correlation study for AuNR I. (a) DIC images (2.6-µm width) at 5 DIC

wavelengths from 600 nm to 750 nm and 18 rotational angles from 0° to 180°. (b) contrast

difference calculated from the DIC images in (a).

	 120

Figure 5.12: Rotational correlation study for AuNR II. (a) DIC images (2.6-µm width) at 5 DIC

wavelengths from 600 nm to 750 nm and 18 rotational angles from 0° to 180°. (b) contrast

difference calculated from the DIC images in (a).

	 121

Figure 5.13: Rotational correlation study for AuNR III. (a) DIC images (2.6-µm width) at 5 DIC

wavelengths from 600 nm to 750 nm and 18 rotational angles from 0° to 180°. (b) contrast

difference calculated from the DIC images in (a).

	 122

illuminated the AuNR from below. The AuNR was designed as the union of two spheres and a

cylinder having dimensions taken from SEM images and material properties defined by a built-in

model based on data from Johnson and Christy.101 A mesh override region around the particle

forced a 2-nm mesh in all dimensions. A 2D monitor recorded the full electric and magnetic fields

50 nm above the sample. A sweep object was used to generate the two simulations by changing

the particle position and rotating the source polarization. A second sweep rotated the AuNR for

the rotational studies. Results from the 2D monitor were processed in a Lumerical script, found in

Appendix D:

5.3.2 AuNR sample preparation

Reference markers are created on #1.5 coverslips by shadow deposition of 5-nm Cr through an

indexed TEM reference grid (Ted Pella). A 10x diluted solution of bare AuNR (40 × 92, 25 × 75,

Nanopartz Inc.) are drop cast on the coverslips for one minute and then rinsed with deionized water

and dried with nitrogen gas. The coverslip is taped to a glass slide either with an air gap or a drop

of n = 1.52 immersion oil in the gap.

5.3.3 DF imaging

DF imaging was done on an inverted Nikon TE2000-U with an oil immersion 100× objective

(variable NA = 0.7–1.3) and either an air darkfield condenser (NA = 0.8–0.95) or an oil darkfield

condenser (NA = 1.2–1.5). The light source was an unfiltered, unpolarized 100 W tungsten-

halogen lamp. Transmitted light was sent to a spectrometer (Acton SP2300, Princeton Instruments)

with a liquid nitrogen cooled CCD (Princeton Instruments).

5.3.4 DIC imaging

	 123

DIC was done on an inverted Nikon TE2000-E with an oil immersion, NA = 1.4 condenser,

and an oil immersion NA = 1.49, APO, TIRF, 100× objective. The light source was a 100 W

unfiltered, unpolarized tungsten-halogen lamp. The light passed through a band pass filter (hard-

coated OD4, center wavelength = 600, 640, 680, 700, 750 nm with 10-nm bandwidth, Edmund

Optics), a dé Senarmont compensator, one Nomarski prism, the condenser, sample, objective,

second Nomarski prism, analyzer, then hit the detector (Andor Zyla 4.2 sCMOS). Metamorph

software was used to collect the image files, and they were processed with ImageJ or custom

MATLAB scripts.

5.3.5 SEM imaging

SEM images were obtained on untreated AuNR-on-glass samples with a FEI Quanta ESEM.

Low-vacuum mode (1.2 torr) was used to enable imaging of the insulating samples.

5.4 Summary

We have shown FDTD simulations of DIC microscopy of AuNR. These simulations used

parameters for the optics and nanoparticles directly from experimental conditions and produced

DIC images that agreed with experimental results. We verified the expected mechanism for

generating bright and dark image contrast by using FDTD simulations to determine the phase of

the intermediate beams. We discovered DIC image contrast inversion of AuNR as a function of

wavelength and analyzed the electric near-field distribution to identify its origin. Finally, we

showed that the contrast inversion phenomenon is independent of resonance wavelength by

measuring and simulating DIC images from several different sizes of AuNR.

	 124

REFERENCES

1. Atwater, H. A.; Polman, A., Plasmonics for improved photovoltaic devices. Nature
Materials 2010, 9 (3), 205-213.

2. Ferry, V. E.; Munday, J. N.; Atwater, H. A., Design considerations for plasmonic
photovoltaics. Advanced Materials 2010, 22 (43), 4794-4808.

3. Haynes, C. L.; Van Duyne, R. P., Plasmon-sampled surface-enhanced raman excitation
spectroscopy†. American Chemical Society: 2003; Vol. 107, p 7426-7433.

4. Stewart, M. E.; Mack, N. H.; Malyarchuk, V.; Soares, J. A. N. T.; Lee, T. W.; Gray, S. K.;
Nuzzo, R. G.; Rogers, J. A., Quantitative multispectral biosensing and 1D imaging using quasi-
3D plasmonic crystals. Proceedings of the National Academy of Sciences of the United States of
America 2006, 103 (46), 17143-17148.

5. Gao, H.; Yang, J.-C.; Lin, J. Y.; Stuparu, A. D.; Lee, M. H.; Mrksich, M.; Odom, T. W.,
Using the angle-dependent resonances of molded plasmonic crystals to improve the sensitivities
of biosensors. Nano Letters 2010, 10 (7), 2549-2554.

6. Lin, J. Y.; Stuparu, A. D.; Huntington, M. D.; Mrksich, M.; Odom, T. W., Nanopatterned
substrates increase surface sensitivity for real-time biosensing. Journal of Physical Chemistry C
2013, 117 (10), 5286-5292.

7. Kawata, S.; Inouye, Y.; Verma, P., Plasmonics for near-field nano-imaging and
superlensing. Nature Photonics 2009, 3 (7), 388-394.

8. Barnes, W. L.; Dereux, A.; Ebbesen, T. W., Surface plasmon subwavelength optics. Nature
2003, 424 (6950), 824-830.

9. Liu, Z.; Lee, H.; Xiong, Y.; Sun, C.; Zhang, X., Far-field optical hyperlens magnifying
sub-diffraction-limited objects. Science 2007, 315 (5819), 1686.

10. Fang, N.; Lee, H.; Sun, C.; Zhang, X., Sub–diffraction-limited optical imaging with a silver
superlens. Science 2005, 308 (5721), 534.

11. Oulton, R. F.; Sorger, V. J.; Zentgraf, T.; Ma, R.-M.; Gladden, C.; Dai, L.; Bartal, G.;
Zhang, X., Plasmon lasers at deep subwavelength scale. Nature 2009, 461 (7264), 629.

12. Zhou, W.; Dridi, M.; Suh, J. Y.; Kim, C. H.; Co, D. T.; Wasielewski, M. R.; Schatz, G. C.;
Odom, T. W., Lasing action in strongly coupled plasmonic nanocavity arrays. Nature
Nanotechnology 2013, 8 (7), 506-511.

	 125

13. Rotz, M. W.; Culver, K. S. B.; Parigi, G.; MacRenaris, K. W.; Luchinat, C.; Odom, T. W.;
Meade, T. J., High relaxivity gd(iii)–DNA gold nanostars: Investigation of shape effects on proton
relaxation. ACS Nano 2015, 9 (3), 3385-3396.

14. Dickerson, E. B.; Dreaden, E. C.; Huang, X.; El-Sayed, I. H.; Chu, H.; Pushpanketh, S.;
McDonald, J. F.; El-Sayed, M. A., Gold nanorod assisted near-infrared plasmonic photothermal
therapy (pptt) of squamous cell carcinoma in mice. Cancer Letters 269 (1), 57-66.

15. Huang, X.; El-Sayed, I. H.; Qian, W.; El-Sayed, M. A., Cancer cell imaging and
photothermal therapy in the near-infrared region by using gold nanorods. J. Am. Chem. Soc 2006,
128 (6), 2115-2120.

16. Dam, D. H. M.; Lee, R. C.; Odom, T. W., Improved in vitro efficacy of gold nanoconstructs
by increased loading of g-quadruplex aptamer. Nano Letters 2014, 14 (5), 2843-2848.

17. Maier, S., Plasmonics: Fundamentals and applications. Springer Science 2007.

18. Raether, H., Surface-plasmons on smooth and rough surfaces and on gratings. Springer-
Verlag Berlin: 1988.

19. Kelly, K. L.; Coronado, E.; Zhao, L. L.; Schatz, G. C., The optical properties of metal
nanoparticles:  The influence of size, shape, and dielectric environment. Journal of Physical
Chemistry B 2003, 107 (3), 668-677.

20. Link, S.; El-Sayed, M. A., Shape and size dependence of radiative, non-radiative and
photothermal properties of gold nanocrystals. International Reviews in Physical Chemistry 2000,
19 (3), 409-453.

21. Jain, P. K.; El-Sayed, M. A., Plasmonic coupling in noble metal nanostructures. Chemical
Physics Letters 2010, 487 (4-6), 153-164.

22. Lee, K. S.; El-Sayed, M. A., Gold and silver nanoparticles in sensing and imaging:
Sensitivity of plasmon response to size, shape, and metal composition. The Journal of Physical
Chemistry B 2006.

23. Sun, Y.; Xia, Y., Increased sensitivity of surface plasmon resonance of gold nanoshells
compared to that of gold solid colloids in response to environmental changes. Analytical Chemistry
2002, 74 (20), 5297-5305.

24. Hao, E.; Schatz, G. C., Electromagnetic fields around silver nanoparticles and dimers. The
Journal of Chemical Physics 2004, 120 (1), 357-366.

25. Crozier, K. B.; Sundaramurthy, A.; Kino, G. S.; Quate, C. F., Optical antennas: Resonators
for local field enhancement. Journal of Applied Physics 2003, 94 (7), 4632.

	 126

26. Hulteen, J. C.; Treichel, D. A.; Smith, M. T.; Duval, M. L.; Jensen, T. R.; Van Duyne, R.
P., Nanosphere lithography: Size-tunable silver nanoparticle and surface cluster arrays. Journal
of Physical Chemistry B 1999, 103 (19), 3854-3863.

27. Orendorff, C. J.; Sau, T. K.; Murphy, C. J., Shape-dependent plasmon-resonant gold
nanoparticles. Small 2006, 2 (5), 636-639.

28. Brown, K. R.; Walter, D. G.; Natan, M. J., Seeding of colloidal au nanoparticle solutions.
2. Improved control of particle size and shape. Chemical Physics Letters 2000, 12 (2), 306-313.

29. Link, S.; El-Sayed, M. A., Spectral properties and relaxation dynamics of surface plasmon
electronic oscillations in gold and silver nanodots and nanorods. Journal of Physical Chemistry B
1999, 103 (40), 8410-8426.

30. Gao, J.; Bender, C. M.; Murphy, C. J., Dependence of the gold nanorod aspect ratio on the
nature of the directing surfactant in aqueous solution. Langmuir 2003, 19 (21), 9065-9070.

31. Nikoobakht, B.; El-Sayed, M. A., Preparation and growth mechanism of gold nanorods
(nrs) using seed-mediated growth method. Chemistry of Materials 2003, 15 (10), 1957-1962.

32. Henzie, J.; Kwak, E.-S.; Odom, T. W., Mesoscale metallic pyramids with nanoscale tips.
Nano Letters 2005, 5 (7), 1199-1202.

33. Webb, J. A.; Erwin, W. R.; Zarick, H. F.; Aufrecht, J.; Manning, H. W.; Lang, M. J.; Pint,
C. L.; Bardhan, R., Geometry-dependent plasmonic tunability and photothermal characteristics of
multibranched gold nanoantennas. Journal of Physical Chemistry C 2014, 118 (7), 3696-3707.

34. Xie, J.; Lee, J. Y.; Wang, D. I., Seedless, surfactantless, high-yield synthesis of branched
gold nanocrystals in hepes buffer solution. Chemistry of Materials 2007, 19 (11), 2823-2830.

35. Moore, G. E., Cramming more components onto integrated circuits, reprinted from
electronics, volume 38, number 8, april 19, 1965, pp.114 ff. IEEE Solid-State Circuits Society
Newsletter 2006, 11 (5), 33-35.

36. Vieu, C.; Carcenac, F.; Pepin, A.; Chen, Y.; Mejias, M.; Lebib, A.; Manin-Ferlazzo, L.;
Couraud, L.; Launois, H., Electron beam lithography: Resolution limits and applications. Applied
Surface Science 2000, 164, 111-117.

37. Volkert, C. A.; Minor, A. M., Focused ion beam microscopy and micromachining. MRS
Bulletin 2007, 32 (5), 389-395.

38. Rogers, J. A.; Paul, K. E.; Jackman, R. J.; Whitesides, G. M., Using an elastomeric phase
mask for sub-100 nm photolithography in the optical near field. Applied Physics Letters 1997, 70
(20), 2658.

	 127

39. Rogers, J. A.; Paul, K. E.; Jackman, R. J.; Whitesides, G. M., Generating∼ 90 nanometer
features using near-field contact-mode photolithography with an elastomeric phase mask. Journal
of Vacuum Science and Technology B 1998, 16, 59-68.

40. Aizenberg, J.; Rogers, J. A.; Paul, K. E.; Whitesides, G. M., Imaging profiles of light
intensity in the near field: Applications to phase-shift photolithography. Applied Optics 1998, 37
(11), 2145-2152.

41. Wolf, A. J.; Hauser, H.; Kübler, V.; Walk, C.; Höhn, O.; Bläsi, B., Origination of nano-
and microstructures on large areas by interference lithography. Microelectronic Engineering 2012,
98, 293-296.

42. Odom, T. W.; Love, J.; Wolfe, D.; Paul, K.; Whitesides, G., Improved pattern transfer in
soft lithography using composite stamps. Langmuir 2002, 18 (13), 5314-5320.

43. Odom, T. W.; Thalladi, V. R.; Love, J. C.; Whitesides, G. M., Generation of 30−50 nm
structures using easily fabricated, composite pdms masks. Journal of the American Chemical
Society 2002, 124 (41), 12112-12113.

44. Henzie, J.; Lee, M. H.; Odom, T. W., Multiscale patterning of plasmonic metamaterials.
Nature Nanotechnology 2007, 2 (9), 549.

45. Gao, H.; Henzie, J.; Lee, M. H.; Odom, T. W., Screening plasmonic materials using
pyramidal gratings. Proceedings of the National Academy of Sciences of the United States of
America 2008, 105 (51), 20146-20151.

46. Zhou, W.; Odom, T. W., Tunable subradiant lattice plasmons by out-of-plane dipolar
interactions. Nature Nanotechnology 2011, 6 (7), 423-427.

47. Zhou, W.; Hua, Y.; Huntington, M. D.; Odom, T. W., Delocalized lattice plasmon
resonances show dispersive quality factors. Journal Of Physical Chemistry Letters 2012, 3 (10),
1381-1385.

48. Yang, C.-R.; Chen, P.-Y.; Chiou, Y.-C.; Lee, R.-T., Effects of mechanical agitation and
surfactant additive on silicon anisotropic etching in alkaline koh solution. Sensors and Actuators
A: Physical 2005, 119 (1), 263-270.

49. Henry, M. D.; Walavalkar, S.; Homyk, A.; Scherer, A., Alumina etch masks for fabrication
of high-aspect-ratio silicon micropillars and nanopillars. Nanotechnology 2009, 20 (25), 255305.

50. Lin, J. Y.; Hasan, W.; Yang, J.-C.; Odom, T. W., Optical properties of nested pyramidal
nanoshells. The Journal of Physical Chemistry C 2010, 114 (16), 7432-7435.

	 128

51. Yang, A.; Hoang, T. B.; Dridi, M.; Deeb, C.; Mikkelsen, M. H.; Schatz, G. C.; Odom, T.
W., Real-time tunable lasing from plasmonic nanocavity arrays. Nature Communications 2015, 6,
6939.

52. Wood, R. W., On a remarkable case of uneven distribution of light in a diffraction grating
spectrum. Philosophical Magazine 1902, 4 (19-24), 396-402.

53. Rayleigh, On the dynamical theory of gratings. Proceedings of the Royal Society of London
Series a-Containing Papers of a Mathematical and Physical Character 1907, 79 (532), 399-416.

54. Rayleigh, L., Note on the remarkable case of diffraction spectra described by prof. Wood.
Philosophical Magazine 1907, 14 (79-84), 60-65.

55. Ebbesen, T. W.; Lezec, H. J.; Ghaemi, H. F.; Thio, T.; Wolff, P. A., Extraordinary optical
transmission through sub-wavelength hole arrays. Nature 1998, 391 (6668), 667-669.

56. Gao, H.; Zhou, W.; Odom, T. W., Plasmonic crystals: A platform to catalog resonances
from ultraviolet to near-infrared wavelengths in a plasmonic library. Advanced Functional
Materials 2010, 20 (4), 529-539.

57. Lubin, S. M.; Hryn, A. J.; Huntington, M. D.; Engel, C. J.; Odom, T. W., Quasiperiodic
moiré plasmonic crystals. ACS Nano 2013, 7 (12), 11035-11042.

58. Chaudhari, K.; Pradeep, T., Spatiotemporal mapping of three dimensional rotational
dynamics of single ultrasmall gold nanorods. Scientific Reports 2014, 4.

59. Sweeney, C. M.; Nehl, C. L.; Hasan, W.; Liang, T.; Eckermann, A. L.; Meade, T. J.; Odom,
T. W., Three-channel spectrometer for wide-field imaging of anisotropic plasmonic nanoparticles.
Journal of Physical Chemistry C 2011, 115 (32), 15933-15937.

60. Nan, X.; Sims, P. A.; Xie, X. S., Organelle tracking in a living cell with microsecond time
resolution and nanometer spatial precision. Chemphyschem : a European journal of chemical
physics and physical chemistry 2008, 9 (5), 707-712.

61. Dürig, U.; Pohl, D. W.; Rohner, F., Near-field optical-scanning microscopy. Journal of
Applied Physics 1986, 59 (10), 3318.

62. Taflove, A.; Hagness, S. C., Computational electrodynamics: The finite-difference time-
domain method. Artech House: 2005.

63. Zou, S. L.; Janel, N.; Schatz, G. C., Silver nanoparticle array structures that produce
remarkably narrow plasmon lineshapes. Journal of Chemical Physics 2004, 120 (23), 10871-
10875.

64. Genet, C.; Ebbesen, T. W., Light in tiny holes. Nature 2007, 445 (7123), 39-46.

	 129

65. Barnes, W. L.; Preist, T. W.; Kitson, S. C.; Sambles, J. R.; Cotter, N. P. K.; Nash, D. J.,
Photonic gaps in the dispersion of surface-plasmons on gratings. Physical Review B 1995, 51 (16),
11164-11167.

66. Chen, Y. C.; Chang, Y. T.; Chen, H. H.; Chuang, F. T.; Cheng, C. H.; Lee, S. C., Enhanced
transmission of higher order plasmon modes with random au nanoparticles in periodic hole arrays.
IEEE Photonics Technology Letters 2013, 25 (1), 47-50.

67. Gao, H.; Hyun, J. K.; Lee, M. H.; Yang, J.-C.; Lauhon, L. J.; Odom, T. W., Broadband
plasmonic microlenses based on patches of nanoholes. Nano Letters 2010, 10 (10), 4111-4116.

68. Huntington, M. D.; Lauhon, L. J.; Odom, T. W., Subwavelength lattice optics by
evolutionary design. Nano Letters 2014, 14 (12), 7195-7200.

69. Yang, A.; Li, Z.; Knudson, M. P.; Hryn, A. J.; Wang, W.; Aydin, K.; Odom, T. W.,
Unidirectional lasing from template-stripped two-dimensional plasmonic crystals. ACS Nano 2015,
9 (12), 11582-11588.

70. Zhou, W.; Gao, H.; Odom, T. W., Toward broadband plasmonics: Tuning dispersion in
rhombic plasmonic crystals. ACS Nano 2010, 4 (2), 1241-1247.

71. Hiller, H., The crystallographic restriction in higher dimensions. Acta Crystallogr. A 1985,
41 (6), 541-544.

72. Penrose, R., Pentaplexity a class of non-periodic tilings of the plane. The Mathematical
Intelligencer 1979, 2 (1), 32-37.

73. Socolar, J. E. S., Simple octagonal and dodecagonal quasicrystals. Physical Review B 1989,
39 (15), 10519-10551.

74. Przybilla, F.; Genet, C.; Ebbesen, T. W., Enhanced transmission through penrose
subwavelength hole arrays. Applied Physics Letters 2006, 89 (12).

75. Agrawal, A.; Matsui, T.; Vardeny, Z. V.; Nahata, A., Extraordinary optical transmission
through metallic films perforated with aperture arrays having short-range order. Optics Express
2008, 16 (9), 6267-6273.

76. Pacifici, D.; Lezec, H. J.; Sweatlock, L. A.; Walters, R. J.; Atwater, H. A., Universal optical
transmission features in periodic and quasiperiodic hole arrays. Optics Express 2008, 16 (12),
9222-9238.

77. Lubin, S. M.; Zhou, W.; Hryn, A. J.; Huntington, M. D.; Odom, T. W., High-rotational
symmetry lattices fabricated by moiré nanolithography. Nano Letters 2012, 12 (9), 4948-4952.

78. Toh, K. K., Proceedings of spie. In 10th Annual Symp. on Microlithography, SPIE: 1991;
Vol. 1496, pp 27-53.

	 130

79. Levine, D.; Steinhardt, P. J., Quasicrystals - a new class of ordered structures. Physical
Review Letters 1984, 53 (26), 2477-2480.

80. Huntington, M. D.; Odom, T. W., A portable, benchtop photolithography system based on
a solid-state light source. Small 2011, 7 (22), 3144-3147.

81. Munday, J. N.; Atwater, H. A., Large integrated absorption enhancement in plasmonic
solar cells by combining metallic gratings and antireflection coatings. Nano Letters 2011, 11 (6),
2195-2201.

82. Bauer, C.; Kobiela, G.; Giessen, H., Optical properties of two-dimensional quasicrystalline
plasmonic arrays. Physical Review B 2011, 84 (19), 193104.

83. Odom, T. W.; Gao, H. W.; McMahon, J. M.; Henzie, J.; Schatz, G. C., Plasmonic
superlattices: Hierarchical subwavelength hole arrays. Chemical Physics Letters 2009, 483 (4-6),
187-192.

84. Guo, J.; Leong, H., Mode splitting of surface plasmon resonance in super-period metal
nanohole array gratings. Applied Physics Letters 2012, 101 (24), 241115.

85. Zentgraf, T.; Christ, A.; Kuhl, J.; Gippius, N. A.; Tikhodeev, S. G.; Nau, D.; Giessen, H.,
Metallodielectric photonic crystal superlattices: Influence of periodic defects on transmission
properties. Physical Review B 2006, 73 (11), 115103.

86. Kichin, G.; Weiss, T.; Gao, H.; Henzie, J.; Odom, T. W.; Tikhodeev, S. G.; Giessen, H.,
Metal–dielectric photonic crystal superlattice: 1D and 2D models and empty lattice approximation.
Physica B-Condensed Matter 2012, 407 (20), 4037-4042.

87. Xia, Y. N.; Whitesides, G. M., Soft lithography. Annual Review of Materials Science 1998,
28, 153-184.

88. Barnes, W. L.; Murray, W. A.; Dintinger, J.; Devaux, E.; Ebbesen, T. W., Surface plasmon
polaritons and their role in the enhanced transmission of light through periodic arrays of
subwavelength holes in a metal film. Physical Review Letters 2004, 92 (10), 107401.

89. Abbas, M. N.; Chang, Y.-C.; Shih, M. H., Plasmon-polariton band structures of asymmetric
t-shaped plasmonic gratings. Optics Express 2010, 18 (3), 2509-2514.

90. Chen, Y.-B.; Ho, I.-C.; Chiu, F.-C.; Chang, C.-S., In-plane scattering patterns from a
complex dielectric grating at the normal and oblique incidence. JOSA A 2014, 31 (4), 879-885.

91. Chen, Y.-C.; Hsiao, H.-H.; Lu, C.-T.; Chang, Y.-T.; Chen, H.-H.; Chuang, F.-T.; Huang,
S.-Y.; Yu, C.-W.; Chang, H.-C.; Lee, S.-C., Effect of paired apertures in a periodic hole array on
higher order plasmon modes. IEEE Photonics Technology Letters 2012, 24 (22), 2052-2055.

	 131

92. Uchida, K.; Kaneko, S.; Omi, S.; Hata, C.; Tanji, H.; Asahara, Y.; Ikushima, A. J.; Tokizaki,
T.; Nakamura, A., Optical nonlinearities of a high concentration of small metal particles dispersed
in glass: Copper and silver particles. Journal of the Optical Society of America B 1994, 11 (7),
1236-1243.

93. Haraguchi, M.; Okamoto, T.; Inoue, T.; Nakagaki, M.; Koizumi, H.; Yamaguchi, K.; Lai,
C.; Fukui, M.; Kamano, M.; Fujii, M., Linear and nonlinear optical phenomena of metallic
nanoparticles. IEEE Journal of Selected Topics in Quantum Electronics 2008, 14 (6), 1540-1551.

94. Yang, A.; Huntington, M. D.; Cardinal, M. F.; Masango, S. S.; Van Duyne, R. P.; Odom,
T. W., Hetero-oligomer nanoparticle arrays for plasmon-enhanced hydrogen sensing. ACS Nano
2014, 8 (8), 7639-7647.

95. Tabatabaei, M.; Najiminaini, M.; Davieau, K.; Kaminska, B.; Singh, M. R.; Carson, J. J.
L.; Lagugné-Labarthet, F., Tunable 3D plasmonic cavity nanosensors for surface-enhanced raman
spectroscopy with sub-femtomolar limit of detection. ACS Photonics 2015, 2 (6),
150513111019000-759.

96. Suh, J. Y.; Kim, C. H.; Zhou, W.; Huntington, M. D.; Co, D. T.; Wasielewski, M. R.; Odom,
T. W., Plasmonic bowtie nanolaser arrays. Nano Letters 2012, 12 (11), 5769-5774.

97. McMahon, J. M.; Wang, Y.; Sherry, L. J.; Van Duyne, R. P.; Marks, L. D.; Gray, S. K.;
Schatz, G. C., Correlating the structure, optical spectra, and electrodynamics of single silver
nanocubes. The Journal of Physical Chemistry C 2009, 113 (7), 2731-2735.

98. Suh, J. Y.; Huntington, M. D.; Kim, C. H.; Zhou, W.; Wasielewski, M. R.; Odom, T. W.,
Extraordinary nonlinear absorption in 3D bowtie nanoantennas. Nano Letters 2012, 12 (1), 269-
274.

99. Henson, J.; DiMaria, J.; Paiella, R., Influence of nanoparticle height on plasmonic
resonance wavelength and electromagnetic field enhancement in two-dimensional arrays. Journal
of Applied Physics 2009, 106 (9), 093111.

100. Muskens, O. L.; Giannini, V.; Sánchez-Gil, J. A.; Gómez Rivas, J., Optical scattering
resonances of single and coupled dimer plasmonic nanoantennas. Optics Express 2007, 15 (26),
17736.

101. Johnson, P. B.; Christy, R. W., Optical constants of the noble metals. Physical Review B
1972, 6 (12), 4370-4379.

102. Ross, B. M.; Wu, L. Y.; Lee, L. P., Omnidirectional 3D nanoplasmonic optical antenna
array via soft-matter transformation. Nano Letters 2011, 11 (7), 2590-2595.

103. Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A., Calculated absorption and
scattering properties of gold nanoparticles of different size, shape, and composition: Applications

	 132

in biological imaging and biomedicine. Journal of Physical Chemistry B 2006, 110 (14), 7238-
7248.

104. Peterson, J. J.; Nesbitt, D. J., Modified power law behavior in quantum dot blinking: A
novel role for biexcitons and auger ionization. Nano Letters 2009, 9 (1), 338-345.

105. Nirmal, M.; Dabbousi, B. O.; Bawendi, M. G.; Macklin, J. J.; Trautman, J. K.; Harris, T.
D.; Brus, L. E., Fluorescence intermittency in single cadmium selenide nanocrystals. , Published
online: 31 October 1996; | doi:10.1038/383802a0 1996, 383 (6603), 802-804.

106. De Brabander, M.; Nuydens, R.; Geuens, G.; Moeremans, M.; De Mey, J., The use of
submicroscopic gold particles combined with video contrast enhancement as a simple molecular
probe for the living cell. Cell Motility and the Cytoskeleton 1986, 6 (2), 105-113.

107. Sönnichsen, C.; Alivisatos, A. P., Gold nanorods as novel nonbleaching plasmon-based
orientation sensors for polarized single-particle microscopy. Nano Letters 2005, 5 (2), 301-304.

108. Leduc, C.; Si, S.; Gautier, J.; Soto-Ribeiro, M.; Wehrle-Haller, B.; Gautreau, A.; Giannone,
G.; Cognet, L.; Lounis, B., A highly specific gold nanoprobe for live-cell single-molecule imaging.
Nano Letters 2013, 130306160416009-6.

109. Lasne, D.; Blab, G. A.; Berciaud, S.; Heine, M.; Groc, L.; Odom, T. W., Single nanoparticle
photothermal tracking (snapt) of 5-nm gold beads in live cells. Biophysical Journal 2006, 91 (12),
4598-4604.

110. Tanev, S.; Pond, J.; Paddon, P.; Tuchin, V. V.; Tanev, S.; Pond, J.; Paddon, P., A new 3D
simulation method for the construction of optical phase contrast images of gold nanoparticle
clusters in biological cells. Advances in Optical Technologies 2008, 2008 (7), 1-9.

111. Tanev, S.; Tuchin, V.; Cheben, P.; Bock, P.; Schmid, J.; Janz, S.; Xu, D.; Lapointe, J.;
Densmore, A.; Pond, J., Advances in the fdtd design and modeling of nano- and bio-photonics
applications. Photonics and Nanostructures - Fundamentals and Applications 2011, 9 (4), 315-
327.

112. Sun, W.; Wang, G.; Fang, N.; Yeung, E. S., Wavelength-dependent differential
interference contrast microscopy: Selectively imaging nanoparticle probes in live cells. Analytical
Chemistry 2009, 81 (22), 9203-9208.

113. Luo, Y.; Sun, W.; Gu, Y.; Wang, G.; Fang, N., Wavelength-dependent differential
interference contrast microscopy: Multiplexing detection using nonfluorescent nanoparticles.
Analytical Chemistry 2010, 82 (15), 6675-6679.

114. Lee, H.; Dam, D. H. M.; Ha, J. W.; Yue, J.; Odom, T. W., Enhanced human epidermal
growth factor receptor 2 degradation in breast cancer cells by lysosome-targeting gold
nanoconstructs. ACS Nano 2015, 9 (10), 9859-9867.

	 133

115. Jensen, S. A.; Day, E. S.; Ko, C. H.; Hurley, L. A.; Luciano, J. P.; Kouri, F. M.; Merkel, T.
J.; Luthi, A. J.; Patel, P. C.; Cutler, J. I.; Daniel, W. L.; Scott, A. W.; Rotz, M. W.; Meade, T. J.;
Giljohann, D. A.; Mirkin, C. A.; Stegh, A. H., Spherical nucleic acid nanoparticle conjugates as
an rnai-based therapy for glioblastoma. Science Translational Medicine 2013, 5 (209), 209ra152-
209ra152.

116. Mieszawska, A. J.; Mulder, W. J. M.; Fayad, Z. A.; Cormode, D. P., Multifunctional gold
nanoparticles for diagnosis and therapy of disease. Molecular Pharmaceutics 2013, 10 (3), 831-
847.

117. Wang, G.; Stender, A. S.; Sun, W.; Fang, N., Optical imaging of non-fluorescent
nanoparticle probes in live cells. Analyst 2010, 135 (2), 215-221.

118. Ha, J. W.; Sun, W.; Wang, G.; Fang, N., Differential interference contrast polarization
anisotropy for tracking rotational dynamics of gold nanorods. Chemical Communications 2011,
47 (27), 7743-7745.

119. Gu, Y.; Di, X.; Sun, W.; Wang, G.; Fang, N., Three-dimensional super-localization and
tracking of single gold nanoparticles in cells. Analytical Chemistry 2012, 84 (9), 4111-4117.

120. Tsunoda, M.; Isailovic, D.; Yeung, E. S., Real-time three-dimensional imaging of cell
division by differential interference contrast microscopy. J Microsc 2008, 232 (2), 207-11.

121. Wang, G.; Sun, W.; Luo, Y.; Fang, N., Resolving rotational motions of nano-objects in
engineered environments and live cells with gold nanorods and differential interference contrast
microscopy. J. Am. Chem. Soc 2010, 132 (46), 16417-16422.

122. Gu, Y.; Sun, W.; Wang, G.; Fang, N., Single particle orientation and rotation tracking
discloses distinctive rotational dynamics of drug delivery vectors on live cell membranes. Journal
of the American Chemical … 2011.

123. Akbulut, O.; Mace, C. R.; Martinez, R. V.; Kumar, A. A.; Nie, Z.; patton, M. R.; whitesides,
G. M., Separation of nanoparticles in aqueous multiphase systems through centrifugation. Nano
Letters 2012, 12 (8), 4060-4064.

124. Sharma, V.; Park, K.; Srinivasarao, M., Shape separation of gold nanorods using
centrifugation. Proceedings of the National Academy of Sciences of the United States of America
2009, 106 (13), 4981-4985.

125. Scarabelli, L.; Sánchez-Iglesias, A.; Pérez Juste, J.; Liz-Marzán, L. M., A “tips and tricks”
practical guide to the synthesis of gold nanorods. The Journal of Physical Chemistry Letters 2015,
6 (21), 4270-4279.

	 134

126. King, S. V.; Libertun, A.; Piestun, R.; Cogswell, C. J.; Preza, C., Quantitative phase
microscopy through differential interference imaging. Journal of Biomedical Optics 2008, 13 (2),
024020-024020-10.

127. Jiang, L.; Yin, T.; Dong, Z.; Liao, M.; Tan, S. J.; Goh, X. M.; Allioux, D.; Hu, H.; Li, X.;
Yang, J. K. W.; Shen, Z., Accurate modeling of dark-field scattering spectra of plasmonic
nanostructures. ACS Nano 2015, 9 (10), 10039-10046.

128. Stender, A. S.; Wang, G.; Sun, W.; Fang, N., Influence of gold nanorod geometry on optical
response. ACS Nano 2010, 4 (12), 7667-7675.

	 135

APPENDIX A: MATLAB CODE FOR MOIRÉ STRUCTURE GENERATION

function Generate_Moire
clc
%Prevent more than one occurance of Program to run
doesExist = findobj('name','Moire Structure Generator');
if ~isempty(doesExist)
 figure(doesExist);
 return
end
%% Initialize and Set Default Values
width = 2; %um
pixels = 2000+1; %1 nm resolution
% pixels = 1000;
maskChoices = {'Line','Square','Hex'};
typeOfMask = 'square';
periodicity = [400 400];
moireAngles = [0 90];
numSineFunctions = 1;
developPercent = 55;
randomShift = true;
shift = [0 0];
cmap = [0 0 0];
data = 0;
drawData = 0;
BWimage = false;
moireImage = [];
%% Create figure window.
mainFigure = figure('position',[200 200 800 500],...
 'name','Moire Structure Generator');
mainAxes = axes('outerposition',[.45 0 .5 1],...
 'dataAspectRatio',[1,1,1]);
%FTAxes = axes('outerposition',[.65 0 .35 1],...
% 'dataAspectRatio',[1,1,1]);
contextMenu = uicontextmenu;
subMenu1 = uimenu(contextMenu,...
 'label','Toggle B/W image',...
 'callback',@toggleBW);
subMenu2 = uimenu(contextMenu,...
 'label','Pop out figure',...,
 'callback',@popOutFigure);
inputPanel = uipanel(mainFigure,...
 'title','Parameters',...
 'pos',[.025 .025 .4 .95]);
uicontrol(inputPanel,...
 'style','text',...
 'units','norm',...
 'pos',[.05 .85 .4 .07],...
 'string','Box width [um]');
widthBox = uicontrol(inputPanel,...
 'style','edit',...
 'units','norm',...
 'pos',[.55 .85 .4 .1],...
 'callback',@updateData);

	 136

typeOfMaskPop = uicontrol(inputPanel,...
 'style','pop',...
 'units','norm',...
 'pos',[.05 .7 .35 .07],...
 'string','Default',...
 'callback',@updateData);
periodicityBox = uicontrol(inputPanel,...
 'style','edit',...
 'units','norm',...
 'pos',[.4 .7 .45 .1],...
 'string','400',...
 'callback',@updateData);
uicontrol(inputPanel,...
 'style','text',...
 'units','norm',...
 'pos',[.85 .7 .1 .07],...
 'string','nm');
uicontrol(inputPanel,...
 'style','text',...
 'units','norm',...
 'pos',[.05 .55 .3 .08],...
 'string','Exposures/ angles [deg]');
exposureBox = uicontrol(inputPanel,...
 'style','edit',...
 'units','norm',...
 'pos',[.45 .55 .5 .1],...
 'string','1',...
 'callback',@updateData);
uicontrol(inputPanel,...
 'style','text',...
 'units','norm',...
 'pos',[.05 .4 .4 .08],...
 'string','Number of FS terms per line');
numSineFunctionsBox = uicontrol(inputPanel,...
 'style','edit',...
 'units','norm',...
 'pos',[.55 .4 .4 .1],...
 'callback',@updateData);
uicontrol(inputPanel,...
 'style','text',...
 'units','norm',...
 'pos',[.05 .27 .7 .06],...
 'string','Developing Percentage');
developPercentSlider = uicontrol(inputPanel,...
 'style','slider',...
 'units','norm',...
 'pos',[.05 .25 .7 .02],...
 'min',0,'max',100,...
 'callback',@updateData);
developPercentBox = uicontrol(inputPanel,...
 'style','edit',...
 'units','norm',...
 'pos',[.8 .24 .15 .1],...
 'callback',@updateData);
generateStructuresButton = uicontrol(inputPanel,...

	 137

 'units','norm',...
 'pos',[.05 .13 .4 .08],...
 'string','Generate',...
 'callback',@generateStructures);
outputObjectsButton = uicontrol(inputPanel,...
 'units','norm',...
 'pos',[.05 .05 .4 .08],...
 'string','Save Objects',...
 'callback',{@outputObjects,moireImage,pixels,width,mainAxes});
randomShiftCheck = uicontrol(inputPanel,...
 'style','check',...
 'units','norm',...
 'pos',[.5 .15 .45 .05],...
 'string','Random Shifts',...
 'callback',@updateData);
randomShiftBox = uicontrol(inputPanel,...
 'style','edit',...
 'units','norm',...
 'pos',[.5 .05 .45 .1],...
 'callback',@updateData);
drawnow;
updateFigure;
%% Nested functions for callbacks
 function updateData(obj,~)
 switch obj
 case widthBox
 width = str2double(get(obj,'string'));
% pixels = width*1000+1;
 case typeOfMaskPop
 typeOfMask = maskChoices{get(obj,'value')};
 updateData(exposureBox);
 case periodicityBox
 periodicity = eval(['[' get(obj,'string') ']']);
 if length(periodicity) == 1
 periodicity = repmat(periodicity,1,length(moireAngles));
 else
 multiples =
strfind({'line','square','hex'},lower(typeOfMask));
 multiples =
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples)));
 periodicity = repmat(periodicity,1,multiples);
 end
 case exposureBox
 exposures = eval(['[' get(obj,'string') ']']);
 if length(exposures) == 1
 multiples =
strfind({'line','square','hex'},lower(typeOfMask));
 multiples =
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples)));
 angles = linspace(0,180/multiples,exposures+1);
 angles(end) = [];
 moireAngles = angles;
 for ii = 1:multiples-1
 moireAngles = [moireAngles angles+ii*180/multiples];
 end

	 138

 else
 multiples =
strfind({'line','square','hex'},lower(typeOfMask));
 multiples =
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples)));
 for ii = 1:multiples-1
 exposures = [exposures exposures+ii*180/multiples];
 end
 moireAngles = exposures;
 end
 updateData(periodicityBox);
 case numSineFunctionsBox
 numSineFunctions = str2double(get(obj,'string'));
 case developPercentBox
 developPercent = str2double(get(obj,'string'));
 case developPercentSlider
 developPercent = get(obj,'value');
 case randomShiftCheck
 randomShift = get(obj,'value');
 case randomShiftBox
 input = get(obj,'string');
 shift = [0 0 eval(input)];
 end
 updateFigure
 end
 function updateFigure
 set(widthBox,'string',num2str(width));
 setTypeOfMask;
 function setTypeOfMask
 set(typeOfMaskPop,'string',maskChoices);
 drawnow;
 switch lower(typeOfMask)
 case 'line'
 set(typeOfMaskPop,'value',1);
 case 'square'
 set(typeOfMaskPop,'value',2);
 case 'hex'
 set(typeOfMaskPop,'value',3);
 end
 end
 set(numSineFunctionsBox,'string',num2str(numSineFunctions));
 setDevelopPercent;
 function setDevelopPercent
 set(developPercentBox,'string',sprintf('%.0f',developPercent));
 set(developPercentSlider,'value',developPercent);
 developPercent = round(developPercent);
 if BWimage
 colorVector = [zeros(1,developPercent-1) ones(1,100-
developPercent)];
 else
 colorVector = [zeros(1,developPercent-1) linspace(0,1,100-
developPercent)];
 end
 cmap = repmat(colorVector',1,3);
 colormap(mainAxes,cmap);

	 139

 moireImage = data>=developPercent/100;

set(outputObjectsButton,'callback',{@outputObjects,moireImage,pixels,width,ma
inAxes});
 end
 set(randomShiftCheck,'value',randomShift);
 if strcmpi(typeOfMask,'line') && ~randomShift
 set(randomShiftCheck,'string','Set Shifts [um]');
 set(randomShiftBox,'string',['[' sprintf('%.2f ',shift(3:end))
']']);
 else
 set(randomShiftCheck,'string','Random Shifts');
 end
 end
 function generateStructures(~,~)
 %identify the mask used
 switch lower(typeOfMask)
 case 'line'
 if randomShift
 shift = rand(1,length(moireAngles))...
 .*(periodicity/1000); %1-d
 shift(1:2) = 0;
 else
 shift = zeros(1,length(moireAngles));
 end
 case 'square'
 if randomShift
 shift = rand(2,length(moireAngles)/2); %2-d
 shift = [shift(1,:) shift(2,:)]...
 .*(periodicity/1000);
 else
 shift = zeros(1,length(moireAngles)*2);
 end
 case 'hex'
 if randomShift
 shift = rand(2,length(moireAngles)/3); %2-d w/ hex
symmetry
 shift = [shift(1,:) ...
 shift(1,:)*cosd(60)+shift(2,:)*sind(60) ...
 shift(1,:)*cosd(120)+shift(2,:)*sind(120)]...
 .*(periodicity/1000);
 else
 shift = zeros(1,length(moireAngles)*3);
 end
 end
 theta = moireAngles;
 numAngles = length(theta);
 [drawX,drawY,drawData] = makedata(pixels);
 save('image','drawData');
% [X,Y,data] = makedata(pixels);
 h = surf(mainAxes,drawX,drawY,drawData,'LineStyle','none');
 axes(mainAxes);
 view(0,90), colormap(cmap),caxis([-
1,1]),xlabel('microns'),ylabel('microns')
 set(mainAxes,'dataaspectratio',[1 1 2/width]);

	 140

 set([mainAxes,h],'uicontextmenu',contextMenu);
 moireImage = data>=developPercent/100;

set(outputObjectsButton,'callback',{@outputObjects,moireImage,pixels,width,ma
inAxes});
 function [X,Y,data] = makedata(pixels)
 x = linspace(-width/2,width/2,pixels);
 y = linspace(-width/2,width/2,pixels);
 [X,Y] = meshgrid(x,y);
 for jj = 1:numAngles
 XX(:,:,jj) = X*cosd(theta(jj)) + Y*sind(theta(jj));
 end
 data = 0;
 for ii = 1:numSineFunctions
 for kk = 1:numAngles
 func(:,:,kk) =
(1/(numAngles*ii)*cos(2*pi/(periodicity(kk)/1000)*ii*(XX(:,:,kk)-
shift(kk))));
 end
 data = data+sum(func,3);
 end
 %data = data-min(data(:));
 %data = data/max(data(:));
 end
 end
 function toggleBW(~,~)
 BWimage = ~BWimage;
 updateFigure;
 end
 function popOutFigure(~,~)
 newfig = figure;
 newaxes = copyobj(mainAxes,newfig);
 set(newaxes,'units','normalized','position',[.13 .11 .775 .815],...
 'dataAspectRatio',[1,1,2/width])
 colormap(newaxes,cmap);
 end
end
function outputObjects(~,~,moireImage,pixels,width,mainAxes)
if isempty(moireImage);
 return
end
[B,L,~,A] = bwboundaries(moireImage);
[objectList, objectNames] = sortObjects(A);
removedObjects = [];
% objectList = (max(objectList)-objectList+1); %to prepare for mesh order
pixelFactor = width/(pixels-1); %fence post
pixelShift = (pixels-1)/2 + 1;
colors = ['b' 'y' 'r' 'c' 'm' 'g'];
lineHandles = zeros(1,length(B));
hold(mainAxes,'all')
% figure; newAxes = axes;
% hold(newAxes,'all')
[~,~,~] = rmdir('ObjectFolder','s'); %outputs are to prevent warning that
directory exists
mkdir('ObjectFolder');

	 141

for jj = 1:length(B)
 if ~isempty(find(B{jj}(:)==1,1))||~isempty(find(B{jj}(:)==pixels,1))
 removedObjects(end+1) = jj;
 continue
 end
 clearvars temp temp2
 convertedObject = fliplr((B{jj}-pixelShift).*pixelFactor);
 temp(1,:) = convertedObject(1,:);
 counter = 1;
 for ii = 2:length(convertedObject)
 if temp(counter,1)==convertedObject(ii,1) || ...
 temp(counter,2)==convertedObject(ii,2)
 continue
 else
 counter = counter+1;
 temp(counter,1:2) = convertedObject(ii,:);
 end
 end
 temp(1,:) = temp(end,:);
 temp2(1,:) = convertedObject(end,:);
 counter = 1;
 for ii = length(convertedObject)-1:-1:1
 if temp2(counter,1)==convertedObject(ii,1) || ...
 temp2(counter,2)==convertedObject(ii,2)
 continue
 else
 counter = counter+1;
 temp2(counter,1:2) = convertedObject(ii,:);
 end
 end
 temp(1,:) = []; temp2(1,:) = [];
 averageTemp = (temp+flipud(temp2))/2;
 % smooth data
 averageTemp = [averageTemp(end-2:end,:); averageTemp;
averageTemp(1:3,:)];
 smoothData = [smooth(averageTemp(:,1)), smooth(averageTemp(:,2))];
 smoothData = smoothData(4:end-3,:);
 data = smoothData;
 % eval(sprintf('%s = averageTemp;',objectNames(ii,:))); %save as
variables

eval(sprintf('dlmwrite(''ObjectFolder/%1$s.txt'',averageTemp);',objectNames(j
j,:))); %save as text files
 lineHandles(jj) = plot3(mainAxes,data(:,1),data(:,2),...
 ones(1,length(data)),colors(objectList(jj)));
 %
plot(newAxes,data(:,1),data(:,2),temp(:,1),temp(:,2),temp2(:,1),temp2(:,2));
 % plot(newAxes,convertedObject(:,1),convertedObject(:,2),
temp(:,1),temp(:,2));
end
objectList(removedObjects) = [];
dlmwrite('ObjectFolder/objectList.txt',objectList);
dlmwrite('ObjectFolder/width.txt',width);
set(lineHandles,'uicontextmenu',get(mainAxes,'uicontextmenu'));
hold(mainAxes,'off')

	 142

% save('objects.mat','object*');
end
function [objectList,objectNames] = sortObjects(A)
objectList = zeros(length(A),1);
for object = 1:length(A)
 level = 1;
 findLevel(object);
 objectList(object) = level;
 objectNames(object,:) = sprintf('object%03d',object);
end
 function findLevel(object)
 nextObject = find(A(object,:));
 if nextObject
 level = level + 1;
 findLevel(nextObject);
 end
 end
end
	
	 	

	 143

APPENDIX B: MATLAB CODE FOR SPP MODE CALCULATIONS

function Rot_Stage_Proc_GUI
%% Prevent more than one occurrenece of Program to run
h = findobj('name','Rotational Stage Processing');
if ~isempty(h)
 UserData = get(h,'userdata');
 H = UserData{1};
 D = UserData{2};
 S = UserData{3};
 figure(H.figure.main)
 return
end
%% initialize data and set some defaults
D.info.version = '4.3.0';
D.info.lastUpdated = 'June 7, 2013';
try
 D.materials = load('matdata.mat');
catch exception
 if strfind('couldNotReadFile',exception.identifier)
 D.materials.matdate = '';
 D.materials.matdata = {};
 else
 rethrow(exception);
 end
end
D.graphType = 1; % 1: angle resolved spectra, 2: azimuthal stage, 3: single
spectrumres
D.currentGraph = 1; % 1: energy, 2: wavelength
%Default axis for E-k, L-t
D.axes.figureText{1} = { {'Wavevector:' 'Energy:'} {'Exc. Angle:'
'Wavelength:'}};
D.axes.titles{1} = { 'Wavevector k_{//} [1/\mum]' 'Photon Energy [eV]'...
 'Angle \theta [deg]' 'Wavelength \lambda [nm]'...
 'Energy v. wavevector' 'Wavelength v. Excitation Angle'};
D.axes.limits{1} = {[0 18 1.24 3.1] [0 60 400 1000]};
% Default Axis for E-phi, L-phi (azim)
D.axes.figureText{2} = {{'Azim. Angle:' 'Energy:'} {'Azim. Angle:'
'Wavelength:'}};
D.axes.titles{2} = {'Azimuthal Angle \phi [deg]' 'Photon Energy [eV]' ...
 'Azimuthal Angle \phi [deg]' 'Wavelength \lambda [nm]' ...
 'Energy v. Azimuthal Angle' 'Wavelength v. Azimuthal Angle'};
D.axes.limits{2} = {[0 180 1.24 3.1] [0 180 400 1000]};
% Default Axis for I-E, I-L (azim)
D.axes.figureText{3} = {{'Energy:' 'Intensity:'} {'Wavelength:'
'Intensity:'}};
D.axes.titles{3} = {'Photon Energy [eV]' 'Intensity [arb. units]' ...
 'Wavelength \lambda [nm]' 'Intensity [arb. units]'...
 'Intensity v. Energy' 'Intensity v. Wavelength'};
D.axes.limits{3} = {[1.24 3.1 0 1] [400 1000 0 1]};
figure;D.colors = repmat(get(gcf,'DefaultAxesColorOrder'),6,1);close;
%D.colors([2 9],:) = [0 1 0;0 1 0]; %make the green brighter;
D.axes.defaultLimits = D.axes.limits;
D.defaultAngles.square = [0 90];

	 144

D.defaultAngles.hex = [0 60 120];
D.dataType = 1; % 1: raw data, 2: processed data, 3: FDTD data
D.isDataProcessed = false;
D.filename = {0 0 0 0};
D.path = [pwd '/'];
D.isFileLoaded = {false false false false};
D.data = [];
D.backgroundData = [];
D.scale = 1;
D.FDTDwavelengths = [];
D.FDTDangles = [];
D.wavelengths = [];
D.backgroundAngles = [];
D.angles = [];
D.smooth = {'' ''};
D.energyData = [];
D.wavelengthData = [];
D.isPIdata = false;
D.angleInput = {0,0,0,0};
S.energyModes = [];
S.wavelengthModes = [];
S.wavevectorModes = [];
S.brillouinZones = {{} {}};
S.isDataProcessed = false;
S.zonesVisible = [false false];
S.kParallel = 0;
S.handles = struct('energy',[],'wavelengths',[],'wavevector',[],...
 'zones',struct('one',[],'two',[]),'arrows',[],'saved',[],'all',[]);
S.material = '';
S.geometry = 'square';
S.graphType = 1; % 1: excitation, 2: azimuthal
S.spacing = [400 400];
S.refractiveIndex = 1.56;
S.angle = 0;
S.maxOrders = 2;
S.exposures = 1;
S.moireAngles = [0 90];
S.drude = struct('e',1,'hw',1,'hg',1);
%% Make the main figure and its menus
H.figure.main = figure('name','Rotational Stage Processing',...
 'NumberTitle','off',...
 'Position',[20 20 960 640],...
 'Toolbar','Figure');
set(H.figure.main,'units','normalized')
colormap('gray');
H.menu.moire = uimenu(H.figure.main,'label','Set Moire Angles');
H.moireMenu.square = uimenu(H.menu.moire,'label','Square');
H.squareMenu.perfect = uimenu(H.moireMenu.square,...
 'label','90',...
 'callback',@updateData,...
 'checked','on');
H.squareMenu.odom = uimenu(H.moireMenu.square,...
 'label','88.93',...
 'callback',@updateData,...
 'checked','off');

	 145

H.squareMenu.other = uimenu(H.moireMenu.square,...
 'label','Other...',...
 'callback',@updateData,...
 'checked','off');
H.moireMenu.hex = uimenu(H.menu.moire,'label','Hex');
H.hexMenu.perfect = uimenu(H.moireMenu.hex,...
 'label','60,120',...
 'callback',@updateData,...
 'checked','on');
H.hexMenu.other = uimenu(H.moireMenu.hex,...
 'label','Other...',...
 'callback',@updateData,...
 'checked','off');
H.menu.about = uimenu(H.figure.main,'label','About','callback',@aboutMenu);
%% Create the panels
% SPPmodes panel Panel
H.panel.sppModes = uipanel(H.figure.main,...
 'title','SPP MODES',...
 'Units','normalized',...
 'Position',[.02 .02 .303 .47]);
% Status Window Panel
H.panel.status = uipanel(H.figure.main,...
 'Units','normalized',...
 'Position',[0.343 0.69 0.303 0.07]);
% Axes Properties Panel
H.panel.axes = uipanel(H.figure.main,...
 'title','AXES PROPERTIES',...
 'Units','normalized',...
 'Position',[0.343 0.78 0.303 0.2]);
% Process Data Panel
H.panel.processData = uipanel(H.figure.main,...
 'title','IMPORT DATA',...
 'units','normalized',...
 'position',[.02 .51 .303 .47]);
%% Make the Plot Buttons
H.main.processData = uicontrol(H.figure.main,...
 'callback',@processData,...
 'units','normalized',...
 'position',[.343 .55 .15 .13],...
 'string','PROCESS DATA');
H.main.SPPmodes = uicontrol(H.figure.main,...
 'callback',@processSPPmodes,...
 'units','normalized',...
 'position',[.497 .55 .15 .13],...
 'string','SPP MODES');
H.main.smooth = uicontrol(H.figure.main,...
 'callback',@updateData,...
 'units','normalized',...
 'position',[.343 .51 .15 .035],...
 'style','check',...
 'string','Smooth Data');
H.main.save = uicontrol(H.figure.main,...
 'callback',@saveSPPmodes,...
 'units','normalized',...
 'position',[.497 .51 .15 .035],...

	 146

 'string','Save SPP Modes');
%% Create the axes
%FT axes
H.axes.wavevector = axes('outerposition',[.677 .51 .303 .47],'box','on');...
 hold('all'),xlabel('k_x [1/\mum]'),ylabel('k_y [1/\mum]'),title('Fourier
transform');...
 axis([-1 1 -1 1]);...
 set(H.axes.wavevector,'dataaspectratio',[1 1 1]);
%Energy axes
H.axes.energy = axes('outerposition',[.343 .02 .303 .47],'box','on');...
 hold('all'),xlabel(D.axes.titles{1}{1}),ylabel(D.axes.titles{1}{2}),...
 title(D.axes.titles{1}{5}),axis([D.axes.limits{1}{1}]);
%Wavelength axes
H.axes.wavelength = axes('outerposition',[.677 .02 .303 .47],'box','on');...
 hold('all'),xlabel(D.axes.titles{1}{3}),ylabel(D.axes.titles{1}{4}),...
 title(D.axes.titles{1}{6}), axis([D.axes.limits{1}{2}]);
%% Create the context menus
H.menu.context = uicontextmenu;
H.contextMenu.SPPModes = uimenu(H.menu.context,...
 'label','SPP Modes');
H.contextMenu.Graphs = uimenu(H.menu.context,...
 'label','Pop Out Graph');
H.SPPcontext.Remove = uimenu(H.contextMenu.SPPModes,...
 'label','Remove Unsaved Lines',...
 'callback',@clearUnsaved);
H.SPPcontext.Return = uimenu(H.contextMenu.SPPModes,...
 'label','Return Unsaved Lines',...
 'callback',@returnUnsaved);
H.SPPcontext.Delete = uimenu(H.contextMenu.SPPModes,...
 'label','Delete Saved Lines',...
 'callback',@deleteSaved);
H.graphsContext.wavevector = uimenu(H.contextMenu.Graphs,...
 'label','Wavevector',...
 'callback',@popOutFigure);
H.graphsContext.energy = uimenu(H.contextMenu.Graphs,...
 'label','Energy Graph',...
 'callback',@popOutFigure);
H.graphsContext.wavelength = uimenu(H.contextMenu.Graphs,...
 'label','Wavelength Graph',...
 'callback',@popOutFigure);
H.contextMenu.hide = uimenu(H.menu.context,...
 'label','Hide Data',...
 'callback',@toggleShowData,...
 'enable','off');
H.contextMenu.zones = uimenu(H.contextMenu.SPPModes,...
 'label','Show Bragg Lines',...
 'enable','off');
H.zonesContext.one = uimenu(H.contextMenu.zones,...
 'label','1st order',...
 'callback',@toggleShowZones,...
 'checked','off');
H.zonesContext.two = uimenu(H.contextMenu.zones,...
 'label','2nd order',...
 'callback',@toggleShowZones,...
 'checked','off');

	 147

set(struct2array(H.axes),'uicontextmenu',H.menu.context);
%% Populate the Process Data Panel
H.processData.dataType = uicontrol(H.panel.processData,...
 'callback',@updateData,...
 'style','pop',...
 'Units','normalized',...
 'Position',[.05 .9 .5 .05],...
 'String',{'Raw Data','Processed Data','FDTD Data'});
uicontrol(H.panel.processData,...
 'style','text',...
 'units','normalized',...
 'position',[.6 .84 .35 .1],...
 'horizontalalignment','left',...
 'string','Data type');
H.processData.dataFile = uicontrol(H.panel.processData,...
 'style','edit',...
 'enable','inactive',...
 'units','normalized',...
 'position',[.05 .75 .65 .1],...
 'string','Data file');
H.processData.selectData = uicontrol(H.panel.processData,...
 'callback',@updateData,...
 'units','normalized',...
 'position',[.75 .75 .2 .1],...
 'string','Select');
H.processData.backgroundFile = uicontrol(H.panel.processData,...
 'style','edit',...
 'enable','inactive',...
 'units','normalized',...
 'position',[.05 .65 .65 .1],...
 'string','Background file');
H.processData.selectBackground = uicontrol(H.panel.processData,...
 'callback',@updateData,...
 'units','normalized',...
 'position',[.75 .65 .2 .1],...
 'string','Select');
H.processData.scale = uicontrol(H.panel.processData,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[.05 .55 0.4 0.1],...
 'String','1',...
 'Style','edit');
H.processData.scaleText = uicontrol(H.panel.processData,...
 'Units','normalized',...
 'Position',[.5 0.55 0.45 0.08],...
 'String','Scale',...
 'HorizontalAlignment','left',...
 'Style','text');
H.processData.wavelengthsFile = uicontrol(H.panel.processData,...
 'style','edit',...
 'enable','inactive',...
 'units','normalized',...
 'position',[.05 .45 .65 .1],...
 'string','Wavelengths file',...
 'visible','off');

	 148

H.processData.selectWavelengths = uicontrol(H.panel.processData,...
 'callback',@updateData,...
 'units','normalized',...
 'position',[.75 .45 .2 .1],...
 'string','Select',...
 'visible','off');
H.processData.anglesFile = uicontrol(H.panel.processData,...
 'style','edit',...
 'enable','inactive',...
 'units','normalized',...
 'position',[.05 .35 .65 .1],...
 'string','Angles file',...
 'visible','off');
H.processData.selectAngles = uicontrol(H.panel.processData,...
 'callback',@updateData,...
 'units','normalized',...
 'position',[.75 .35 .2 .1],...
 'string','Select',...
 'visible','off');
H.processData.plotBackground = uicontrol(H.panel.processData,...
 'callback',@plotBackground,...
 'Units','normalized',...
 'Position',[.05 0.25 0.45 0.08],...
 'String','Plot Background');
H.processData.saveBackground = uicontrol(H.panel.processData,...
 'callback',@saveBackground,...
 'Units','normalized',...
 'Position',[.05 0.15 0.45 0.08],...
 'String','Save Background');
H.processData.saveData = uicontrol(H.panel.processData,...
 'callback',@saveData,...
 'Units','normalized',...
 'Position',[.05 0.05 0.45 0.08],...
 'String','Save Data');
H.processData.loadFiles = uicontrol(H.panel.processData,...
 'callback',@updateData,...
 'units','normalized',...
 'position',[.55 .05 .4 .3],...
 'string','Load Files');
%% Populate the SPPModes Panel
% Material Selection
if isempty(D.materials.matdata)
 materialString = {'No Materials File Available','Diffraction
Modes','Drude Model'};
else
 materialString = {sprintf('Material list
updated %s',D.materials.matdate),...
 D.materials.matdata{:,2},'Drude Model','Diffraction Modes'};
end
H.SPPmodes.materialList = uicontrol(H.panel.sppModes,...
 'style','pop',...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[.05 .9 .9 .05],...
 'String',materialString);

	 149

% Geometry Selection
H.SPPmodes.geometryList = uicontrol(H.panel.sppModes,...
 'style','popup',...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[.05 .8 .5 .05],...
 'String',{'Line','Square','Hex'});
% Azim sweep checkbox
H.SPPmodes.azim = uicontrol(H.panel.sppModes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[.6 .8 .35 .05],...
 'String','Azim sweep',...
 'Style','checkbox');
% Spacing
H.SPPmodes.spacing = uicontrol(H.panel.sppModes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[.05 .65 0.4 0.1],...
 'String','400',...
 'Style','edit');
uicontrol(H.panel.sppModes,...
 'Units','normalized',...
 'Position',[.5 0.65 0.45 0.08],...
 'String','Spacing [nm]',...
 'HorizontalAlignment','left',...
 'Style','text');
% Index
H.SPPmodes.refractiveIndex = uicontrol(H.panel.sppModes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[.05 .55 0.4 0.1],...
 'String','1.56',...
 'Style','edit');
uicontrol(H.panel.sppModes,...
 'Units','normalized',...
 'Position',[.5 0.55 0.45 0.08],...
 'String','Refractive index',...
 'HorizontalAlignment','left',...
 'Style','text');
%Angle
H.SPPmodes.angle = uicontrol(H.panel.sppModes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[.05 .45 0.4 0.1],...
 'String','0',...
 'Style','edit');
H.SPPmodes.angleText = uicontrol(H.panel.sppModes,...
 'Units','normalized',...
 'Position',[.5 0.45 0.45 0.08],...
 'String','Azimuthal angle',...
 'HorizontalAlignment','left',...
 'Style','text');
%Max order to plot
H.SPPmodes.orders = uicontrol(H.panel.sppModes,...

	 150

 'callback',@updateData,...
 'style','edit',...
 'units','normalized',...
 'position',[.05 .35 0.4 0.1],...
 'string','2');
uicontrol(H.panel.sppModes,...
 'style','text',...
 'unit','normalized',...
 'position',[.5 0.35 0.45 0.08],...
 'HorizontalAlignment','left',...
 'string','Max orders to plot');
%Moire Offset Angle
H.SPPmodes.moireAngles = uicontrol(H.panel.sppModes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[.05 .25 0.4 0.1],...
 'String','1',...
 'Style','edit');
H.SPPmodes.moireAnglesText = uicontrol(H.panel.sppModes,...
 'Units','normalized',...
 'Position',[.5 0.25 0.45 0.08],...
 'String','Number of Exposures',...
 'HorizontalAlignment','left',...
 'Style','text');
%Drude Coefficients
H.SPPmodes.drude.e = uicontrol(H.panel.sppModes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[0.05 0.05 0.283 0.1],...
 'String','1',...
 'Style','edit',...
 'visible','off');
H.SPPmodes.drude.eText = uicontrol(H.panel.sppModes,...
 'Units','normalized',...
 'Position',[0.05 0.15 0.283 0.08],...
 'String','e',...
 'Style','text',...
 'visible','off');
H.SPPmodes.drude.hw = uicontrol(H.panel.sppModes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[0.358 0.05 0.283 0.1],...
 'String','1',...
 'Style','edit',...
 'visible','off');
H.SPPmodes.drude.hwText = uicontrol(H.panel.sppModes,...
 'Units','normalized',...
 'Position',[0.358 0.15 0.283 0.08],...
 'String','h/w',...
 'Style','text',...
 'visible','off');
H.SPPmodes.drude.hg = uicontrol(H.panel.sppModes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[0.667 0.05 0.283 0.1],...

	 151

 'String','1',...
 'Style','edit',...
 'visible','off');
H.SPPmodes.drude.hgText = uicontrol(H.panel.sppModes,...
 'Units','normalized',...
 'Position',[0.667 0.15 0.283 0.08],...
 'String','h/g',...
 'Style','text',...
 'visible','off');
%% Populate the Axes Properties Panel
H.axesProperties.graphList = uicontrol(H.panel.axes,...
 'callback',@updateData,...
 'style','popup',...
 'Units','normalized',...
 'Position',[0.05 0.7 0.6 0.2],...
 'String',{'Energy Graph','Wavelength Graph'});
H.axesProperties.reset = uicontrol(H.panel.axes,...
 'callback',@updateData,...
 'units','normalized',...
 'position',[.7 .7 .25 .2],...
 'string','Reset');
H.axesProperties.XaxisText = uicontrol(H.panel.axes,...
 'HorizontalAlignment','left',...
 'Units','normalized',...
 'Position',[0.02 0.43 0.28 0.15],...
 'String','Wavevector:',...
 'Style','text');
uicontrol(H.panel.axes,...
 'HorizontalAlignment','left',...
 'Units','normalized',...
 'Position',[0.32 0.45 0.2 0.15],...
 'String','from',...
 'Style','text');
uicontrol(H.panel.axes,...
 'HorizontalAlignment','left',...
 'Units','normalized',...
 'Position',[0.7 0.45 0.2 0.15],...
 'String','to',...
 'Style','text');
H.axesProperties.YaxisText = uicontrol(H.panel.axes,...
 'HorizontalAlignment','left',...
 'Units','normalized',...
 'Position',[0.02 0.10 0.28 0.15],...
 'String','Energy:',...
 'Style','text');
uicontrol(H.panel.axes,...
 'HorizontalAlignment','left',...
 'Units','normalized',...
 'Position',[0.32 0.08 0.2 0.15],...
 'String','from',...
 'Style','text');
uicontrol(H.panel.axes,...
 'HorizontalAlignment','left',...
 'Units','normalized',...
 'Position',[0.7 0.08 0.2 0.15],...

	 152

 'String','to',...
 'Style','text');
H.axesProperties.XaxisMin = uicontrol(H.panel.axes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[0.42 0.4 0.25 0.25],...
 'String',D.axes.limits{1}{2}(1),...
 'Style','edit');
H.axesProperties.XaxisMax = uicontrol(H.panel.axes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[0.75 0.4 0.25 0.25],...
 'String',D.axes.limits{1}{2}(2),...
 'Style','edit');
H.axesProperties.YaxisMin = uicontrol(H.panel.axes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[0.42 0.03 0.25 0.25],...
 'String',D.axes.limits{1}{1}(1),...
 'Style','edit');
H.axesProperties.YaxisMax = uicontrol(H.panel.axes,...
 'callback',@updateData,...
 'Units','normalized',...
 'Position',[0.75 0.03 0.25 0.25],...
 'string',D.axes.limits{1}{1}(2),...
 'Style','edit');
%% Status Message
H.status = uicontrol(H.panel.status,...
 'Units','normalized',...
 'Position',[0.1 0.1 0.8 0.8],...
 'String','This is the status!',...
 'Style','text',...
 'fontsize',14);
%% Store the handles and data
set(H.figure.main,'userdata',{H,D,S});
updateFigure;
%% Nested Functions Used in Callbacks
 function updateData(obj,~)
 if ~exist('obj','var')
 set(H.figure.main,'userdata',{H,D,S});
 updateFigure;
 return
 end
 switch obj
 case H.squareMenu.perfect
 D.defaultAngles.square = [0 90];
 case H.squareMenu.odom
 D.defaultAngles.square = [0 88.93];
 case H.squareMenu.other
 D.defaultAngles.square = defineAngles(2);
 case H.hexMenu.perfect
 D.defaultAngles.hex = [0 60 120];
 case H.hexMenu.perfect
 D.defaultAngles.hex = defineAngles(3);
 case H.main.smooth

	 153

 if get(obj,'value')
 D.smooth = {defineSmoothParameters};
 else
 D.smooth = {'',''};
 end
 case H.processData.dataType
 D.dataType = get(obj,'value');
 D.isFileLoaded = {false false false false};
 case H.processData.selectData
 [D.filename{1} D.path] = setFilename(D.path,'data');
 D.isFileLoaded{1} = false;
 case H.processData.selectBackground
 [D.filename{2} D.path] = setFilename(D.path,'background');
 D.isFileLoaded{2} = false;
 case H.processData.selectWavelengths
 [D.filename{3} D.path] = setFilename(D.path,'wavelengths');
 D.isFileLoaded{3} = false;
 case H.processData.selectAngles
 [D.filename{4} D.path] = setFilename(D.path,'angles');
 D.isFileLoaded{4} = false;
 case H.processData.scale
 D.scale = str2double(get(obj,'string'));
 case H.processData.loadFiles
 fields =
{'data','backgroundData','FDTDwavelengths','FDTDangles'};
 for ii = 1:length(D.filename)
 if D.filename{ii} ~= 0
 [~,~,fileType] = fileparts(D.filename{ii});
 switch lower(fileType)
 case '.txt'
 D.(fields{ii}) = load([D.path
D.filename{ii}]);
 D.isPIdata = false;
 case '.mat'
 L = load([D.path D.filename{ii}]);
 graphType = strfind({'Dispersion
Data','Azimuthal Sweep','Single Spectrum'},L.graphType);
 graphType =
find(arrayfun(@(X)~isempty(graphType{X}),1:length(graphType)));
 wavelengths = L.wavelengths;
 angles = L.angles;
 if ii == 1
 data = L.data;
 D.data = [graphType-1, angles;
wavelengths, data];
 elseif ii==2
 backgroundData = L.backgroundData;
 D.backgroundData = sortrows([wavelengths
backgroundData]);
 D.backgroundData = [graphType-1,
backgroundAngles; D.backgroundData];
 end
 case '.csv'
 A = importdata([D.path
D.filename{ii}],',',1);

	 154

 if sum(strcmpi('frame',A.colheaders))
 angleAns = inputdlg('Please input
[startAngle,endAngle,incriment]',...
 'Define Angles',1,{'[0,70,1]'});
 D.angleInput{ii} =
cell2mat(textscan(angleAns{1},'[%f,%f,%f]'));
 end
 D.(fields{ii}) = A.data;
 D.isPIdata = true;
 otherwise
 setStatus('Unsupported File type');
 end
 D.isFileLoaded{ii} = true;
 else
 D.(fields{ii}) = [];
 end
 end
 D.isDataProcessed = false;
 case H.SPPmodes.materialList
 materials = get(obj,'string');
 choice = get(obj,'value');
 if choice == 1
 S.material = '';
 else
 S.material = materials{choice};
 end
 S.isDataProcessed = false;
 case H.SPPmodes.geometryList
 geometry = get(obj,'string');
 choice = get(obj,'value');
 S.geometry = geometry{choice};
 updateData(H.SPPmodes.moireAngles);
 case H.SPPmodes.azim
 if get(obj,'value')
 S.graphType = 2;
 else
 S.graphType = 1;
 end
 case H.SPPmodes.spacing
 spacings = eval(['[' get(obj,'string') ']']);
 if length(spacings) == 1
 S.spacing = repmat(spacings,1,length(S.moireAngles));
 else
 multiples =
strfind({'line','square','hex'},lower(S.geometry));
 multiples =
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples)));
 S.spacing = repmat(spacings,1,multiples);
 end
 case H.SPPmodes.refractiveIndex
 S.refractiveIndex = str2double(get(obj,'string'));
 if isnan(S.refractiveIndex)
 string = get(obj,'string');
 if strcmpi(string,'noa 61')||strcmpi(string,'noa61')
 S.refractiveIndex = 'noa 61';

	 155

 setStatus('This is the status!');
 else
 setStatus('Invalid entry for Index');
 end
 end
 case H.SPPmodes.angle
 S.angle = str2double(get(obj,'string'));
 case H.SPPmodes.orders
 S.maxOrders = str2double(get(obj,'string'));
 case H.SPPmodes.moireAngles
 exposures = eval(['[' get(obj,'string') ']']);
 if length(exposures) == 1
 multiples =
strfind({'line','square','hex'},lower(S.geometry));
 multiples =
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples)));
 S.exposures = exposures;
 angles = linspace(0,180/multiples,exposures+1);
 angles(end) = [];
 S.moireAngles = angles;
 for ii = 1:multiples-1
 S.moireAngles = [S.moireAngles
angles+ii*180/multiples];
 end
 else
 multiples =
strfind({'line','square','hex'},lower(S.geometry));
 multiples =
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples)));
 S.exposures = length(exposures);
 for ii = 1:multiples-1
 exposures = [exposures exposures+ii*180/multiples];
 end
 S.moireAngles = exposures;
 end
 updateData(H.SPPmodes.spacing);
 case H.SPPmodes.drude.e
 S.drude.e = str2double(get(obj,'string'));
 case H.SPPmodes.drude.hw
 S.drude.hw = str2double(get(obj,'string'));
 case H.SPPmodes.drude.hg
 S.drude.hg = str2double(get(obj,'string'));
 case H.axesProperties.graphList
 D.currentGraph = get(obj,'value');
 case H.axesProperties.reset
 D.axes.limits = D.axes.defaultLimits;
 updateAxes;
 case H.axesProperties.XaxisMin
 D.axes.limits{D.graphType}{D.currentGraph}(1) =
str2double(get(obj,'string'));
 updateAxes;
 case H.axesProperties.XaxisMax
 D.axes.limits{D.graphType}{D.currentGraph}(2) =
str2double(get(obj,'string'));
 updateAxes;

	 156

 case H.axesProperties.YaxisMin
 D.axes.limits{D.graphType}{D.currentGraph}(3) =
str2double(get(obj,'string'));
 updateAxes;
 case H.axesProperties.YaxisMax
 D.axes.limits{D.graphType}{D.currentGraph}(4) =
str2double(get(obj,'string'));
 updateAxes;
 otherwise
 end
 set(H.figure.main,'userdata',{H,D,S,'H,D,S'});
 updateFigure;
 function array = defineAngles(number)
 answer = inputdlg(sprintf('Indicate the %i default angles to
use',number));
 if isempty(answer)
 array = 0:180/number:179;
 else
 array = eval(sprintf('[%s]',answer{1}));
 end
 if ~(length(answer)==number && isnumeric(answer))
 errordlg('Invalid imput')
 defineAngles(number)
 end
 end
 function [points, method] = defineSmoothParameters()
 answer = inputdlg({'How many points to span? [odd number]' ...
 'What method to use? [lowess, loess, rlowess,
rloesss]'},'Smoothing',1, {'21' 'moving'});
 if isempty(answer)
 points = '';
 method = '';
 else
 points = str2double(answer{1});
 method = answer{2};
 end
 end
 function [filename, newPath] = setFilename(path,label)
 [filename, newPath] =
uigetfile('*.txt;*.mat;*.csv',sprintf('Select the %s file to
load',label),path);
 if newPath == 0
 newPath = path;
 end
 end
 end
 function updateFigure
 updateProcessDataPanel(D.dataType);
 updateFilenames;
 updateSPPmodesPanel(S.material);
 updateAxesPanel;
 switch S.graphType
 case 1 %variable excitation angle
 set(H.SPPmodes.angleText,'string','Azimuthal Angle')
 case 2 %variable azimuthal angle

	 157

 set(H.SPPmodes.angleText,'string','Excitation Angle')
 end
 function updateAxesPanel
 set(H.axesProperties.XaxisText,'string',...
 D.axes.figureText{D.graphType}{D.currentGraph}{1})
 set(H.axesProperties.YaxisText,'string',...
 D.axes.figureText{D.graphType}{D.currentGraph}{2})
 set(H.axesProperties.XaxisMin,'string',...
 D.axes.limits{D.graphType}{D.currentGraph}(1))
 set(H.axesProperties.XaxisMax,'string',...
 D.axes.limits{D.graphType}{D.currentGraph}(2))
 set(H.axesProperties.YaxisMin,'string',...
 D.axes.limits{D.graphType}{D.currentGraph}(3))
 set(H.axesProperties.YaxisMax,'string',...
 D.axes.limits{D.graphType}{D.currentGraph}(4))
 end
 function updateProcessDataPanel(type)
 switch type
 case 1 % raw data
 set(H.processData.dataFile,'visible','on');
 set(H.processData.selectData,'visible','on');
 set(H.processData.backgroundFile,'visible','on');
 set(H.processData.selectBackground,'visible','on');
 set(H.processData.scale,'visible','on');
 set(H.processData.scaleText,'visible','on');
 set(H.processData.wavelengthsFile,'visible','off');
 set(H.processData.selectWavelengths,'visible','off');
 set(H.processData.anglesFile,'visible','off');
 set(H.processData.selectAngles,'visible','off');
 set(H.processData.plotBackground,'visible','on');
 set(H.processData.saveBackground,'visible','on');
 set(H.processData.saveData,'visible','on');
 D.filename(3:4) = {0 0};
 case 2 % processed data
 set(H.processData.dataFile,'visible','on');
 set(H.processData.selectData,'visible','on');
 set(H.processData.backgroundFile,'visible','off');
 set(H.processData.selectBackground,'visible','off');
 set(H.processData.scale,'visible','off');
 set(H.processData.scaleText,'visible','off');
 set(H.processData.wavelengthsFile,'visible','off');
 set(H.processData.selectWavelengths,'visible','off');
 set(H.processData.anglesFile,'visible','off');
 set(H.processData.selectAngles,'visible','off');
 set(H.processData.plotBackground,'visible','off');
 set(H.processData.saveBackground,'visible','off');
 set(H.processData.saveData,'visible','off');
 D.filename(2:4) = {0 0 0};
 case 3 % FDTD data
 set(H.processData.dataFile,'visible','on');
 set(H.processData.selectData,'visible','on');
 set(H.processData.backgroundFile,'visible','off');
 set(H.processData.selectBackground,'visible','off');
 set(H.processData.scale,'visible','off');
 set(H.processData.scaleText,'visible','off');

	 158

 set(H.processData.wavelengthsFile,'visible','on');
 set(H.processData.selectWavelengths,'visible','on');
 set(H.processData.anglesFile,'visible','on');
 set(H.processData.selectAngles,'visible','on');
 set(H.processData.plotBackground,'visible','off');
 set(H.processData.saveBackground,'visible','off');
 set(H.processData.saveData,'visible','on');
 D.filename(2) = {0};
 end
 end
 function updateFilenames
 files = {'Data','Background','Wavelengths','Angles'};
 for ii = 1:length(D.filename)
 if D.filename{ii} == 0
 set(H.processData.([lower(files{ii})
'File']),'string',[files{ii} ' File']);
 else
 set(H.processData.([lower(files{ii})
'File']),'string',D.filename{ii});
 end
 if D.isFileLoaded{ii}
 set(H.processData.([lower(files{ii})
'File']),'foregroundcolor','green')
 else
 set(H.processData.([lower(files{ii})
'File']),'foregroundcolor','red')
 end
 end
 end
 function updateSPPmodesPanel(material)
 if strcmpi(material,'drude model')
 set(H.SPPmodes.drude.e,'visible','on');
 set(H.SPPmodes.drude.eText,'visible','on');
 set(H.SPPmodes.drude.hw,'visible','on');
 set(H.SPPmodes.drude.hwText,'visible','on');
 set(H.SPPmodes.drude.hg,'visible','on');
 set(H.SPPmodes.drude.hgText,'visible','on');
 else
 set(H.SPPmodes.drude.e,'visible','off');
 set(H.SPPmodes.drude.eText,'visible','off');
 set(H.SPPmodes.drude.hw,'visible','off');
 set(H.SPPmodes.drude.hwText,'visible','off');
 set(H.SPPmodes.drude.hg,'visible','off');
 set(H.SPPmodes.drude.hgText,'visible','off');
 end
 set(H.SPPmodes.azim,'value',S.graphType-1);
 geometry = strfind({'line','square','hex'},lower(S.geometry));
 geometry =
find(arrayfun(@(X)~isempty(geometry{X}),1:length(geometry)));
 set(H.SPPmodes.geometryList,'value',geometry);
 end
 end
 function updateAxes
 axis(H.axes.energy,D.axes.limits{D.graphType}{1})
 axis(H.axes.wavelength,D.axes.limits{D.graphType}{2})

	 159

 xlabel(H.axes.energy,D.axes.titles{D.graphType}{1})
 ylabel(H.axes.energy,D.axes.titles{D.graphType}{2})
 xlabel(H.axes.wavelength,D.axes.titles{D.graphType}{3})
 ylabel(H.axes.wavelength,D.axes.titles{D.graphType}{4})
 title(H.axes.energy,D.axes.titles{D.graphType}{5})
 title(H.axes.wavelength,D.axes.titles{D.graphType}{6})
 end
 function resetSPPHandles
 names = fieldnames(S.handles);
 for ii = 1:length(names)
 if strcmpi(names{ii},'zones')
 S.handles.(names{ii}) = struct('one',[],'two',[]);
 continue
 end
 S.handles.(names{ii}) = [];
 end
 end
 function setStatus(string)
 set(H.status,'string',string);
 end
% Toolbar Menus
 function aboutMenu(~,~) %About menu
 msgbox({'Rotational Stage Processing',...
 'This GUI processes spectra taken from the Rotational Stage
and',...
 'calculates the associated optical properites',...
 '','Design and Coding by: Alex Hryn','Contributions from: Mark
Huntington and Steve Lubin',...
 sprintf('You are using version %s',D.info.version),...
 sprintf('Last updated on %s',D.info.lastUpdated)},'Program
Information');
 end
% Process Data Panel
 function plotBackground(~,~) %Plot Background
 if ~D.isDataProcessed
 setStatus('Process Data First');
 return
 end
 figure;
 plot(D.wavelengths,D.backgroundData)
 end
 function saveBackground(~,~) %Save Background
 if ~D.isDataProcessed
 setStatus('Process Data First');
 return
 end
 outName=sprintf('%s_proc_v%s.txt',D.filename{2}(1:end-4),
strrep(D.info.version,'.','_'));
 [savePath,outName,fileType] = saveFile(outName,D.path,'Background');
 setStatus('Writing background file...')
 drawnow
 switch fileType
 case '.txt'
 backgroundOutput = sortrows([D.wavelengths
D.backgroundData]);

	 160

 backgroundOutput = [D.graphType-1, D.backgroundAngles;
backgroundOutput];
 dlmwrite([savePath outName], backgroundOutput, 'precision',
'%.4f', 'delimiter', '\t');
 case '.mat'
 graphTypes = {'Dispersion Data','Azimuthal Sweep','Single
Spectrum'};
 graphType = graphTypes{D.graphType};
 wavelengths = D.wavelengths;
 angles = D.backgroundAngles;
 backgroundData = D.backgroundData;

save(outName,'graphType','wavelengths','angles','backgroundData');
 case ''
 setStatus('');
 drawnow
 return
 otherwise
 setStatus('Only .txt and .mat files currently supported');
 return
 end
 setStatus('Background file saved!')
 end
 function saveData(~,~) %Save Data
 if ~D.isDataProcessed
 setStatus('Process Data First');
 return
 end
 outName=sprintf('%s_proc_v%s.txt',D.filename{1}(1:end-4),
strrep(D.info.version,'.','_'));
 [savePath,outName,fileType] = saveFile(outName,D.path,'Data');
 setStatus('Writing data file...')
 drawnow
 switch fileType
 case '.txt'
 dataOutput = [D.graphType-1, D.angles; D.data];
 dlmwrite([savePath outName], dataOutput, 'precision', '%.4f',
'delimiter', '\t');
 case '.mat'
 graphType = {'Dispersion Data','Azimuthal Sweep','Single
Spectrum'};
 graphType = graphType{D.graphType};
 wavelengths = D.wavelengths;
 angles = D.angles;
 data = D.data(:,2:end);
 save([savePath
outName],'graphType','wavelengths','angles','data');
 case ''
 setStatus('')
 drawnow;
 return
 otherwise
 setStatus('Only .txt and .mat files currently supported');
 return
 end

	 161

 setStatus('Data file saved!')
 end
 function saveSPPmodes(~,~) %Save SPP Modes
 if ~S.isDataProcessed
 setStatus('Calculate SPP Modes First');
 return
 end
 outNames = {'SPPModes_EnergyData.txt','SPPModes_WavelengthData.txt'};
 saveLabels = {'Energy','Wavelength'};
 xVariable = {{'k','angle'},{'angle','angle'}};
 savePath = [pwd '/'];
 %
 for ii = 1:2
 [savePath,outName,fileType] =
saveFile(outNames{ii},savePath,['SPP ' saveLabels{ii}]);
 setStatus(sprintf('Writing SPP %s file...',saveLabels{ii}))
 drawnow
 switch fileType
 case '.txt'
 temp = vertcat(S.([lower(saveLabels{ii}) 'Modes']){1},
S.([lower(saveLabels{ii}) 'Modes']){2});
 output = reshape(temp, size(S.([lower(saveLabels{ii})
'Modes']){1},1),[]);
 dlmwrite([savePath outName], output, 'precision', '%.4f',
'delimiter', '\t');
 case '.mat'
 eval(sprintf('%s = S.([lower(saveLabels{ii})
''Modes'']){1};',xVariable{S.graphType}{ii}))
 eval(sprintf('%s = S.([lower(saveLabels{ii})
''Modes'']){2}(:,1);',saveLabels{S.graphType}{ii}))
 save([savePath
outName],xVariable{S.graphType}{ii},saveLabels{S.graphType}{ii});
 case ''
 setStatus('')
 drawnow;
 return
 otherwise
 setStatus('Only .txt and .mat files currently
supported');
 return
 end
 end
 setStatus('SPP Modes saved!')
 end
 function [path,filename,extension] =
saveFile(defaultFilename,defaultPath,titleString)
 [filename,path] = uiputfile({'*.txt','Text Files
(.txt)';'*.mat','Matlab Files (.mat)'}...
 ,sprintf('Save %s Data',titleString),[defaultPath
defaultFilename]);
 if filename == 0
 filename = '';
 path = defaultPath;
 extension = '';
 else

	 162

 [~,~,extension] = fileparts(filename);
 end
 end
% Figure Buttons
 function processData(~,~) %Process data
 if D.isDataProcessed
 return
 end
 switch D.dataType
 case 1
 allFilesLoaded = D.isFileLoaded{1} && D.isFileLoaded{2};
 case 2
 allFilesLoaded = D.isFileLoaded{1};
 case 3
 allFilesLoaded = D.isFileLoaded{1} && D.isFileLoaded{3} &&
D.isFileLoaded{4};
 end
 if ~allFilesLoaded
 setStatus('Select and load files first');
 return
 end
 setStatus('Processing Data...');
 drawnow
 try
 [D.wavelengths, D.backgroundAngles, D.angles, D.backgroundData,
D.data, energyData, wavelengthData, D.graphType] ...
 =
ProcessData(D.data,D.backgroundData,D.scale,D.dataType,D.isPIdata,D.angleInpu
t{1}, D.smooth{:},D.FDTDwavelengths,D.FDTDangles);
 catch exception
 % exp = exception %for debugging errors
 D.isDataProcessed = false;
 switch exception.identifier
 case 'MATLAB:dimagree' %dimension mismatch
 setStatus('Data and Background do not match');
 case 'MATLAB:load:couldNotReadFile'
 if strfind(exception.message,'calibration.mat')
 setStatus('No Calibration File')
 else
 rethrow(exception)
 end
 otherwise
 rethrow(exception)
 end
 return
 end
 cla(H.axes.energy)
 cla(H.axes.wavelength)
 cla(H.axes.wavevector)
 energies=1240./D.wavelengths;
 switch D.graphType
 case 1 % normal spectra
 wavevectors=1000.*(2.* pi./D.wavelengths)*sind(D.angles);
 D.energyData = image([min(wavevectors(:)),
max(wavevectors(:))], [min(energies), max(energies)], ...

	 163

energyData,'Parent',H.axes.energy,'CDataMapping','scaled');
 D.wavelengthData = image([D.angles(1)
D.angles(end)],[D.wavelengths(1) D.wavelengths(end)], ...

wavelengthData,'Parent',H.axes.wavelength,'CDataMapping','scaled');
 D.axes.limits{1} = {[floor(min(wavevectors(:)))
ceil(max(wavevectors(:))) min(energies) max(energies)] ...
 [min(D.angles) max(D.angles) min(D.wavelengths)
max(D.wavelengths)]};
 case 2 % azim spectra
 D.energyData = image([D.angles(1) D.angles(end)],
[min(energies), max(energies)], ...

energyData,'Parent',H.axes.energy,'CDataMapping','scaled');
 D.wavelengthData = image([D.angles(1)
D.angles(end)],[D.wavelengths(1) D.wavelengths(end)], ...

wavelengthData,'Parent',H.axes.wavelength,'CDataMapping','scaled');
 D.axes.limits{2} = {[min(D.angles) max(D.angles)
min(energies) max(energies)] ...
 [min(D.angles) max(D.angles) min(D.wavelengths)
max(D.wavelengths)]};
 case 3 % single spaectrum
 D.energyData = plot(H.axes.energy,energies,energyData,'k');
 D.wavelengthData = plot(H.axes.wavelength, D.wavelengths,
wavelengthData,'k');
 D.axes.limits{3} = {[min(energies) max(energies) 0
max(wavelengthData)] ...
 [min(D.wavelengths) max(D.wavelengths) 0
max(wavelengthData)]};
 end
 set([D.energyData; D.wavelengthData],'uicontextmenu',H.menu.context);
 uistack(D.energyData,'bottom')
 uistack(D.wavelengthData,'bottom')
 updateAxes;
 setStatus('Data Processed!');
 resetSPPHandles;
 D.isDataProcessed = true;
 set(H.contextMenu.hide,'enable','on','label','Hide Data');
 updateAxes;
 updateData;
 end
 function processSPPmodes(~,~) %Calcuate SPP Modes
 if D.isDataProcessed && (S.graphType ~= D.graphType)
 button = questdlg('Types of data do not match. Calculating SPP
Modes will remove the processed data.',...
 'Erase Processed Data?','Erase','Cancel','Erase');
 if strcmp(button,'Erase')
 cla(H.axes.energy);
 cla(H.axes.wavelength);
 updateData(H.processData.loadFiles)
 D.graphType = S.graphType;
 else
 return

	 164

 end
 else
 D.graphType = S.graphType;
 end
 if length(S.spacing)~=length(S.moireAngles)
 setStatus('Spacings and exposures do not match');
 return
 end
 setStatus('Calculating SPP modes...');
 drawnow
 [S.energyModes, S.wavelengthModes, S.wavevectorModes, indLab,
modeOrder] = ...
 SPPCalc(S.material, S.spacing, S.angle, S.refractiveIndex,
S.moireAngles, S.graphType, S.drude, H.status, S.maxOrders);
 if strcmp(get(H.status,'userdata'),'error')
 set(H.status,'userdata',[]);
 return
 end
 [S.brillouinZones] =
BZcalc(S.wavevectorModes{1}(:,1:2),S.wavevectorModes{1}(:,3));
 for cc = 1:max(modeOrder)+1
 colorInd = (modeOrder == cc);
 SPPcolorOrd(colorInd,1:3) =
repmat(D.colors(cc,:),sum(colorInd),1);
 end
 delete(S.handles.all);
 delete(S.handles.arrows);
 resetSPPHandles;
 % Plot modes on Energy axes
 for jj = 1:size(S.energyModes{1},2)
 S.handles.energy(jj) =
plot(H.axes.energy,S.energyModes{1}(:,jj),...

S.energyModes{2}(:,jj),'color',SPPcolorOrd(jj,:),'linewidth',1);
 set(S.handles.energy(jj),'UserData',indLab{jj})
 end
 if S.graphType == 1 %Standard SPP calc
 lightline_x = (0:0.01:6)./(1.05459e-34*299792458).*1e-
6.*1.60219e-19;
 lightline_y = 0:0.01:6;
 S.handles.energy(end+1) =
plot(H.axes.energy,lightline_x,lightline_y,'--black','linewidth',1);
 set(S.handles.energy(end),'UserData',{'light line!'});
 end
 % Plot modes on Wavelength axes
 for kk = 1:size(S.wavelengthModes{1},2)
 S.handles.wavelengths(kk) =
plot(H.axes.wavelength,S.wavelengthModes{1}(:,kk),...

S.wavelengthModes{2}(:,kk),'color',SPPcolorOrd(kk,:),'linewidth',1);
 set(S.handles.wavelengths(kk),'UserData',indLab{kk})
 end
 % Plot modes on wavevector axes
 XYcoordinates = S.wavevectorModes{1};
 FTlabel = S.wavevectorModes{2};

	 165

 FT_colors = vertcat([0 0 0], D.colors);
 cla(H.axes.wavevector);
 for mm = 1:size(XYcoordinates,1)
 if XYcoordinates(mm,3) <= S.maxOrders
 n = XYcoordinates(mm,3);
 else
 continue
 end
 S.handles.wavevector(mm) =
scatter(H.axes.wavevector,XYcoordinates(mm,1),XYcoordinates(mm,2),[],FT_color
s(n+1,:));
 set(S.handles.wavevector(mm),'userdata',{['['
int2str(FTlabel(mm,:)) ']']});
 end
 limits = [min(XYcoordinates(:)) max(XYcoordinates(:))];
 set(H.axes.wavevector,'Xlim',limits,'Ylim',limits)
 % Plot zones on wavevector axes
 for oo = 1:2
 zoneString = {'one','two'};
 for bb = 1:length(S.brillouinZones{oo})
 S.handles.zones.(zoneString{oo})(bb) = ...

plot(H.axes.wavevector,S.brillouinZones{oo}{bb}(:,1),S.brillouinZones{oo}{bb}
(:,2),...
 'color',D.colors(oo,:),'linestyle','--');
 end
 uistack(S.handles.zones.(zoneString{oo}),'bottom');

set(S.handles.zones.(zoneString{oo}),'buttondownfcn',@BZButtonDownFcn);
 if S.zonesVisible(oo)
 set(S.handles.zones.(zoneString{oo}),'visible','on')
 else
 set(S.handles.zones.(zoneString{oo}),'visible','off')
 end
 end
 set(H.contextMenu.zones,'enable','on');
 S.handles.all = [S.handles.energy(:)' S.handles.wavelengths(:)'
S.handles.wavevector(:)'];
 set(S.handles.all,'buttondownfcn',@SPPmodesButtonDownFcn);
 S.handles.saved = [];
 setStatus('SPP Modes plotted');
 S.isDataProcessed = true;
 updateData;
 updateAxes;
 end
% Plots
 function popOutFigure(obj,~) % Copy figure submenu
 switch obj %find out which one you want to copy
 case H.graphsContext.wavevector
 copyAxes('wavevector');
 case H.graphsContext.energy
 copyAxes('energy');
 case H.graphsContext.wavelength
 copyAxes('wavelength');
 end

	 166

 function copyAxes(type)
 newfig = figure;
 colormap('gray');
 newaxes = copyobj(H.axes.(type),newfig);
 cla;
 newlines = copyobj(get(H.axes.(type),'children'),newaxes);
 if S.isDataProcessed
 newlines(end) = []; %to clear data
 end
 set(newaxes,'units','normalized','position',[.13 .11 .775 .815])
 set(newlines(:),'buttondownfcn',{@newfig_bdfcn,newfig,newlines});
 dcm_obj = datacursormode(newfig);
 set(dcm_obj,'UpdateFcn',@displayUserdata)
 function txt = displayUserdata(~,obj)
 line = obj.target;
 txt = get(line,'UserData');
 end
 end
 end
 function SPPmodesButtonDownFcn(obj,~)
 selectSPPlines(obj);
 switch get(obj,'parent')
 case H.axes.wavevector
 case H.axes.energy
 currentPoint = get(gca,'currentpoint');
 S.kParallel = currentPoint(1,1);
 case H.axes.wavelength
 currentPoint = get(gca,'currentpoint');
 angle = currentPoint(1,1);
 wavelength = currentPoint(1,2);
 S.kParallel = 2*pi/(wavelength*1e-3)*sind(angle);
 end
 showKsppVectors;
 if sum(S.zonesVisible)
 set(S.handles.arrows,'visible','on')
 end
 function selectSPPlines(line) % SPP Line selection
 mode = get(line,'UserData'); %get the indicies from that line's
UserData
 setStatus(sprintf('%s ',mode{:}));
 if strcmpi(mode,'light line!')
 return
 end
 [Ekind,FTind] = findLines(mode);
 switch get(H.figure.main,'selectiontype')
 case 'normal'
 S.handles.saved = unique([S.handles.saved
S.handles.energy(Ekind) ...
 S.handles.wavelengths(Ekind)
S.handles.wavevector(FTind)]);
 case 'alt'
 remove = unique([S.handles.energy(Ekind)
S.handles.wavelengths(Ekind) S.handles.wavevector(FTind)]);
 set(remove,'linewidth',1);
 erasedLines = arrayfun(@(X)find(S.handles.saved ==

	 167

remove(X)),1:length(remove),'uni',false);
 erasedLines = [erasedLines{:}];
 S.handles.saved(erasedLines) = [];
 otherwise
 return
 end
 set(S.handles.saved,'linewidth',2);
 end
 function showKsppVectors()
 %find out which FT points are saved
 points = arrayfun(@(X)find(S.handles.wavevector ==
S.handles.saved(X)),1:length(S.handles.saved),'uni',false);
 points = [points{:}];
 pointHandles = S.handles.wavevector(points);
 colors = get(pointHandles,'cdata');
 if isnumeric(colors)
 colors = {colors};
 end
 %get the x,y data
 coordinates = S.wavevectorModes{1}(points,1:2);
 %add k// from graph
 coordinates(:,1) = coordinates(:,1)+S.kParallel;
 %convert to figure units for annotation
 [Ox,Oy] = axescoord2figurecoord(0,0,H.axes.wavevector);
 [x,y] =
axescoord2figurecoord(coordinates(:,1),coordinates(:,2),H.axes.wavevector);
 energyCoordinates = [[S.kParallel; S.kParallel],
D.axes.limits{D.graphType}{1}(3:4)'];
 wavelengthCoordinates(:,2) =
linspace(D.axes.limits{D.graphType}{2}(3),D.axes.limits{D.graphType}{2}(4),20
0);
 wavelengthCoordinates(:,1) =
real(asind(S.kParallel/(2*pi)*wavelengthCoordinates(:,2)*1e-3));
 %plot the arrows
 delete(S.handles.arrows)
 S.handles.arrows = zeros(size(coordinates,1)+2,1);
 for ii = 1:size(coordinates,1)
 S.handles.arrows(ii) = annotation('arrow',...
 [Ox x(ii)],[Oy y(ii)],...
 'color',colors{ii},'linewidth',1.5,...
 'headwidth',6,'headlength',6,...
 'headstyle','plain','visible','off');
 end
 uistack(S.handles.arrows(1:end-2),'bottom');
 S.handles.arrows(end-1) = plot(H.axes.energy,...
 energyCoordinates(:,1),energyCoordinates(:,2),...
 'color',[0 0 0],'linewidth',1.5,'visible','off');
 uistack(S.handles.arrows(end-1),'bottom');
 S.handles.arrows(end) = plot(H.axes.wavelength,...
 wavelengthCoordinates(:,1),wavelengthCoordinates(:,2),...
 'color',[0 0 0],'linewidth',1.5,'visible','off');
 uistack(S.handles.arrows(end),'bottom');
 if D.isDataProcessed
 uistack(D.energyData,'bottom');
 uistack(D.wavelengthData,'bottom');

	 168

 end
 end
 function [Ekind, FTind] = findLines(mode)
 Eklabels = get(S.handles.energy,'userdata'); %cell arrary of
arrays
 FTlabels = get(S.handles.wavevector,'userdata'); %cell array of
cells of arrays
 FTlabels =
arrayfun(@(X)FTlabels{X}{1},1:length(FTlabels),'uni',false)'; %cell array of
arrays
 Ekind = [];
 FTind = [];
 for ii = 1:length(mode)
 FTind(end+1) = find(strcmp(mode{ii},FTlabels));
 for jj = 1:length(Eklabels)
 if sum(strcmp(mode{ii},Eklabels{jj}));
 Ekind(end+1) = jj;
 end
 end
 end
 end
 end
 function BZButtonDownFcn(obj,~)
 switch get(H.figure.main,'selectiontype')
 case 'normal'
 set(obj,'linewidth',2)
 case 'alt'
 set(obj,'linewidth',1)
 otherwise
 return
 end
 end
 function clearUnsaved(~,~) % Clear Unsaved submenu
 if ~S.isDataProcessed
 setStatus('Calculate SPPModes First');
 return
 end
 set([S.handles.energy S.handles.wavevector
S.handles.wavelengths],'visible','off')
 set(S.handles.saved,'visible','on')
 end
 function returnUnsaved(~,~) % Return Unsaved submenu
 if ~S.isDataProcessed
 setStatus('Calculate SPPModes First');
 return
 end
 set([S.handles.energy S.handles.wavevector
S.handles.wavelengths],'visible','on')
 end
 function deleteSaved(~,~) % Delete Saved submenu
 if ~S.isDataProcessed
 setStatus('Calculate SPPModes First');
 return
 end
 set([S.handles.energy S.handles.wavevector

	 169

S.handles.wavelengths],'visible','on')
 set(S.handles.all,'linewidth',1)
 S.handles.saved = [];
 delete(S.handles.arrows)
 S.handles.arrows = [];
 setStatus('SPP Modes plotted');
 updateData;
 end
 function toggleShowData(obj,~) % Show/Hide displayed data
 str = get(obj,'label');
 if strcmp(str,'Hide Data')
 set([D.energyData, D.wavelengthData],'visible','off');
 set(obj,'label','Show Data');
 elseif strcmp(str,'Show Data')
 set([D.energyData, D.wavelengthData],'visible','on');
 set(obj,'label','Hide Data');
 end
 end
 function toggleShowZones(obj,~) % Show/Hide brillouin zones
 switch obj
 case H.zonesContext.one
 if strcmp(get(obj,'Checked'),'on')
 set(S.handles.zones.one,'visible','off');
 S.zonesVisible(1) = false;
 set(obj,'checked','off')
 else
 set(S.handles.zones.one,'visible','on');
 S.zonesVisible(1) = true;
 set(obj,'checked','on')
 end
 case H.zonesContext.two
 if strcmp(get(obj,'Checked'),'on')
 set(S.handles.zones.two,'visible','off');
 S.zonesVisible(2) = false;
 set(obj,'checked','off')
 else
 set(S.handles.zones.two,'visible','on');
 S.zonesVisible(2) = true;
 set(obj,'checked','on')
 end
 end
 if sum(S.zonesVisible)
 set(S.handles.arrows,'visible','on')
 else
 set(S.handles.arrows,'visible','off')
 end
 end
end
function [Ek_calc,Lt_calc,FT_calc,indLab,modeOrder] = ...
 SPPCalc(material, spacing, angle, refractiveIndex, moireAngles, type,
drudeFactors,statusHandle,maxOrder)
% [Ek_calc, Lt_calc, indLab, modeOrder] = SPPCalc(material, numberOfLines,
spacing, azAngle, refractiveIndex, moireAngles,
drudeFactors,statusHandle,maxOrder)
% material is the material 'Ag' and 'Au' are availible

	 170

% Geometry is the lattice geometry 'Line', 'Hex', and 'Sq' are
% availible
% spacing is the spacing between lattice points in nm
% azAngle is the azimuthal angle in degrees
% refractiveIndex is the dielectric envivironment for the spp
% Created by Mark Huntington May 2011.
% Contributions from: Steve Lubin and Alex Hryn
if type == 1
 azimuthalAngle = angle;
elseif type == 2
 excitationAngle = angle;
end
nInterp = 10; %degree of interpolation
hBar = 1.05459e-34; % Reduced Planck's constant = 1.05459e-34 m2 kg / s
c = 299792458; %speed of light = 299,792,458 m / s
spacing = spacing*1e-9; %from nm to m
if strcmpi('drude model', material)
 %make energy column
 EmInt(:,1) = (0.6:0.01:4); %in eV
 %make delectric column
 w = EmInt(:,1).*1.51927e15; %0.6eV/hbar to 4eV/hbar
 epsil = drudeFactors.e - ((drudeFactors.hw*1.51927e15)^2./(w.*(w +
1i*(drudeFactors.hg*1.51927e15))));
 EmInt(:,2) = real(epsil);
elseif strcmpi('diffraction modes',material)
 %make energy column
 EmInt(:,1) = (0.6:0.01:4); %in eV
 %make dielectric column
 EmInt(:,2) = inf;
else
 L = load('matdata.mat');
 %find the material
 index =
arrayfun(@(x)strcmpi(L.matdata{x,2},material),1:length(L.matdata),'UniformOut
put', false);
 index = [index{:}];
 if sum(index) ~= 1
 set(statusHandle,'string','Choose material','Userdata','error')
 Ek_calc = 0;
 Lt_calc = 0;
 FT_calc = 0;
 indLab = 0;
 modeOrder = 0;
 return
 end
 Em = L.matdata{index,1};
 if size(Em,2)==3 %imaginary part included
 Em(:,2) = complex(Em(:,2),Em(:,3));
 end
 EmInt(:,1) = interp1(1:length(Em), Em(:,1), 1:1/nInterp:length(Em),
'spline');% energy
 EmInt(:,2) = interp1(1:length(Em), Em(:,2), 1:1/nInterp:length(Em),
'spline');% epsilon
end
Energy = EmInt(:,1);

	 171

lambda = 1240./Energy;
EnergyJoule = EmInt(:,1).*1.60219e-19;
if ischar(refractiveIndex)
 if strcmpi(refractiveIndex,'noa 61')
 refractiveIndex = 1.5375 + 8290.45./(lambda.^2) -
2.11046e8./(lambda.^4);
 end
end
dielectric = refractiveIndex.^2;
numberOfLines = length(moireAngles);
if numberOfLines == 0
 set(statusHandle,'string','Choose Geometry','Userdata','error')
 Ek_calc = 0;
 Lt_calc = 0;
 FT_calc = 0;
 indLab = 0;
 modeOrder = 0;
 return
end
indicies = Modes(numberOfLines, maxOrder);
indicies = double(indicies);
newIndicies = indicies.*2.*pi./repmat(spacing,size(indicies,1),1);
X_coord = sum(newIndicies .* repmat(cosd(moireAngles),size(indicies,1),1),2);
Y_coord = sum(newIndicies .* repmat(sind(moireAngles),size(indicies,1),1),2);
switch type
 case 1
 angle = zeros(length(EmInt),2,size(X_coord,1));
 k = zeros(length(EmInt),2,size(X_coord,1));
 for kk = 1:size(X_coord,1)
 xx = X_coord(kk);
 yy = Y_coord(kk);
 LHS =
(EnergyJoule./(hBar.*c)).^2.*1./(1./dielectric+1./EmInt(:,2)); % LHS=beta in
Maier Ch. 2
 LHS = real(LHS);
 aa = 1;
 bb = 2.*(xx.*cosd(azimuthalAngle) + yy.*sind(azimuthalAngle));
 cc = (xx.^2+yy.^2)-LHS;
 kpos = (-bb+(bb.^2-4.*aa.*cc).^0.5)./(2.*aa);
 kneg = (-bb-(bb.^2-4.*aa.*cc).^0.5)./(2.*aa);
 kpos = real(kpos)./1e6;
 kneg = real(kneg)./1e6;
 k(:,1,kk)= kpos;
 k(:,2,kk)= kneg;
 angle(:,1,kk)=
asin((real(kpos*1e6).*c)./(EnergyJoule./hBar)).*(180./pi);
 angle(:,2,kk)=
asin((real(kneg*1e6).*c)./(EnergyJoule./hBar)).*(180./pi);
 end
 orderTemp = sum(abs(indicies),2);
 rotateMat = [cosd(-azimuthalAngle) -sind(-azimuthalAngle); sind(-
azimuthalAngle) cosd(-azimuthalAngle)];
 proj = [(rotateMat*[X_coord Y_coord].').'./1e6 orderTemp];
 kkind = (abs(real(diff(k))) < 1e-10); %look for ==0, but allow for
rounding errors

	 172

 kkind = cat(1, kkind, true([1 size(kkind,2) size(kkind,3)]));
 %%%% this "reals" thing breaks using line, dont know why right now...
 %%%% the following 3 commented lines are removed to make it work
 %%%%~Alex 11/29/2011
 % reals = find(sum(kkind(:,1,:))~=1);%find the ones that are not all
zero
 k(kkind) = 0;
 angle(kkind) = 0;
 % k = k(:,:,reals); %only take the ones that are not all zero
 % angle = angle(:,:,reals); %only take the ones that are not all zero
 Ek_calc = {zeros(size(k,1),2*kk) zeros(size(k,1),2*kk)};
 Lt_calc = {zeros(size(angle,1),2*kk) zeros(size(angle,1),2*kk)};
 dd = 1; %counter
 for mm = 1:size(k,3)
 %only pick the ones that cross into the first brillouin zones
 if max(real(k(:,1,mm)))>-pi/(min(spacing)*1e6) &&
min(real(k(:,1,mm))) < pi/(min(spacing)*1e6) %check positive solutions
 real_k = real(k(:,1,mm));
 real_angle = real(angle(:,1,mm));
 if dd>1
 %find any degenerate vectors fom previous set
 degen = (abs(bsxfun(@minus,Ek_calc{1}(:,1:dd-
1),real_k))<1e-10);
 degen_ind=sum(~degen)==0;
 if sum(degen_ind)
 %if degenerate, append the indicies with new index
 indLab{degen_ind,1}{end+1} = ['['
int2str(indicies(mm,:)) ']'];
 modeOrder(degen_ind) =
min(modeOrder(degen_ind),orderTemp(mm));
 else
 %add to the list
 Ek_calc{1}(:,dd) = real_k;
 Ek_calc{2}(:,dd) = Energy;
 Lt_calc{1}(:,dd) = real_angle;
 Lt_calc{2}(:,dd) = lambda;
 indLab{dd,1} = {['[' int2str(indicies(mm,:)) ']']};
 modeOrder(dd) = orderTemp(mm);
 dd = dd+1;
 end
 else
 %add the first one to the list
 Ek_calc{1}(:,dd) = real_k;
 Ek_calc{2}(:,dd) = Energy;
 Lt_calc{1}(:,dd) = real_angle;
 Lt_calc{2}(:,dd) = lambda;
 indLab{dd,1} = {['[' int2str(indicies(mm,:)) ']']};
 modeOrder(dd) = orderTemp(mm);
 dd = dd+1;
 end
 end
 if max(real(k(:,2,mm)))>-pi/(min(spacing)*1e6) &&
min(real(k(:,2,mm))) < pi/(min(spacing)*1e6) %check negative solutions
 real_k = real(k(:,2,mm));
 real_angle = real(angle(:,2,mm));

	 173

 if dd>1
 %find any degenerate vectors fom previous set
 degen = (abs(bsxfun(@minus,Ek_calc{1}(:,1:dd-
1),real_k))<1e-10);
 degen_ind=sum(~degen)==0;
 if sum(degen_ind)
 %if degenerate, append the indicies with new index
 indLab{degen_ind,1}{end+1} = ['['
int2str(indicies(mm,:)) ']'];
 modeOrder(degen_ind) =
min(modeOrder(degen_ind),orderTemp(mm));
 else
 %add to the list
 Ek_calc{1}(:,dd) = Ek_calc{1}(:,dd)+real_k;
 Ek_calc{2}(:,dd) = Energy;
 Lt_calc{1}(:,dd) = Lt_calc{1}(:,dd)+real_angle;
 Lt_calc{2}(:,dd) = lambda;
 indLab{dd,1} = {['[' int2str(indicies(mm,:)) ']']};
 modeOrder(dd) = orderTemp(mm);
 dd = dd+1;
 end
 else
 %add the first one to the list
 Ek_calc{1}(:,dd) = Ek_calc{1}(:,dd)+real_k;
 Ek_calc{2}(:,dd) = Energy
 Lt_calc{1}(:,dd) = Lt_calc{1}(:,dd)+real_angle;
 Lt_calc{2}(:,dd) = lambda;
 indLab{dd,1} = {['[' int2str(indicies(mm,:)) ']']};
 modeOrder(dd) = orderTemp(mm);
 dd = dd+1;
 end
 end
 end
 ordering = sortrows([proj indicies], -3);
 proj = ordering(:,1:3);
 indicies = ordering(:,4:end);
 FT_calc = {proj indicies};
 %remove the empty rows (from preallocation) and turn all the zeros to
NaN
 %to show proper plot
 Ek_calc{1}(:,dd:end) = [];
 makeNaN = Ek_calc{1}==0;
 Ek_calc{1}(makeNaN)=NaN;
 Ek_calc{2}(:,dd:end) = [];
 makeNaN = Ek_calc{2}==0;
 Ek_calc{2}(makeNaN)=NaN;
 Lt_calc{1}(:,dd:end) = [];
 makeNaN = Lt_calc{1}==0;
 Lt_calc{1}(makeNaN)=NaN;
 Lt_calc{2}(:,dd:end) = [];
 makeNaN = Lt_calc{2}==0;
 Lt_calc{2}(makeNaN)=NaN;
 case 2
 phiout = zeros(2*length(EmInt),length(X_coord));
 for kk = 1:length(X_coord)

	 174

 ii = X_coord(kk);
 jj = Y_coord(kk);
 kspp = (EnergyJoule./(hBar.*c)).*(1./dielectric+1./EmInt(:,2)).^-
0.5;
 magG = (ii^2+jj^2)^0.5;
 kpar = EnergyJoule./(hBar*c).*sind(excitationAngle);
 LHS = (kspp.^2-magG.^2-kpar.^2)./(2.*kpar.*magG);
 im = imag(LHS)~=0;
 LHS(im) = NaN;
 chi = atan2(jj,ii)*(180/pi);%could be from -180 to 180
 phi = asind(LHS)-chi; %could be from -270 to 270
 phi = real(phi);
 phi2 = (180-asind(LHS))-chi; %the upper half of asind
 phi2 = real(phi2);
 %shift phi and phi2 so that [0,180] is covered
 if min(phi) < -180
 phi = 360+phi;
 phiout(:,kk) = [phi2; phi];
 elseif min(phi) < 0
 phiout(:,kk) = [phi; phi2];
 elseif min(phi) < 180
 phi2 = phi2-360;
 phiout(:,kk) = [phi2; phi];
 else
 phi = phi-360;
 phi2 = phi2-360;
 phiout(:,kk) = [phi; phi2];
 end
 end
 modeOrder = sum(abs(indicies),2);
 proj = [X_coord./1e6 Y_coord./1e6 modeOrder];
 ordering = sortrows([proj indicies], -3);
 proj = ordering(:,1:3);
 indicies = ordering(:,4:end);
 FT_calc = {proj indicies};
 phiind = (abs(diff(phiout)) < 1e-10); %look for ==0, but allow for
rounding errors
 phiind = cat(1,phiind, true([1 size(phiind,2)])) & cat(1, true([1
size(phiind,2)]),phiind);
 phiout(phiind) = NaN;
 Energyout = repmat(Energy,2,size(phiout,2));
 Energyout(phiind) = NaN;
 lambdaout = repmat(lambda,2,size(phiout,2));
 lambdaout(phiind) = NaN;
 Ek_calc = {phiout Energyout};
 Lt_calc = {phiout lambdaout};
 indLab = arrayfun(@(X){['[' int2str(indicies(X,:))
']']},1:size(indicies,1),'uni',false);
end
ordering = sortrows([proj indicies], -3);
proj = ordering(:,1:3);
indicies = ordering(:,4:end);
end
function [wavelengths, backgroundAngles, dataAngles, backgroundData,
saveData, energyData, wavelengthData, type] = ...

	 175

ProcessData(rawData,rawBackground,scale,dataType,isPIdata,angleInput,smoothSp
an,smoothType,FDTDwavelengths,FDTDangle)
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%CCD takes 1340 data points%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Load the Background data
switch dataType
 case 2 %Processed Data
 if ~isempty(rawBackground)
 backgroundData = rawBackground;
 if backgroundData(1,1) == 1
 isAzimuthalData = true;
 backgroundData(1,1) = 0;
 else
 isAzimuthalData = false;
 end
 if backgroundData(1,1) == 0
 backgroundAngles = backgroundData(1,2:end);
 backgroundData(1,:) = [];
 else
 reloadans = inputdlg({'What is the range of angles used? (In
matlab syntax)'},'Angle Input',1,{'0'});
 backgroundAngles = eval(reloadans{1});
 end
 wavelengths = backgroundData(:,1);
 backgroundData(:,1) = [];
 else
 backgroundData = 0;
 backgroundAngles = 0;
 end
 case 3 % FDTD Data
 backgroundAngles = 0;
 backgroundData = 0;
 isAzimuthalData = false;
 case 1 % Raw Data
 if isPIdata
 spectraLength = find(rawBackground(:,1)>rawBackground(1),1);
 if isempty(spectraLength)
 numberOfSpectra = length(rawBackground(:,2))/1340;
 else
 numberOfSpectra = (spectraLength-1)/1340;
 end
 backgroundAngles =
rawBackground(1:(1340*numberOfSpectra):end,1)';
 wavelengths = rawBackground(1:(1340*numberOfSpectra),2);
 backgroundData =
reshape(rawBackground(:,3),length(wavelengths),length(backgroundAngles));
 isAzimuthalData = false;
 else

[backgroundAngles,backgroundCenterWavelength,backgroundGrating,backgroundData
,isAzimuthalData] = extractData(rawBackground);
 wavelengths =
pixel2wavelength(backgroundGrating,backgroundCenterWavelength);

	 176

 backgroundData =
calibrateData(wavelengths,backgroundData,backgroundCenterWavelength,backgroun
dGrating);
 isAzimuthalData = false;
 end
 %smooth background
 backgroundData = sortrows([wavelengths (1:size(backgroundData,1))'
backgroundData]);
 numlist = backgroundData(:,2);
 if ~isempty(smoothSpan) && ~isempty(smoothType)
 for ii = 3:size(backgroundData,2)
 backgroundData(:,ii) =
smooth(backgroundData(:,ii),smoothSpan,smoothType);
 end
 end
 backgroundData = sortrows([numlist backgroundData]);
 backgroundData(:,1:3)=[];
end
%% Process Data
switch dataType
 case 2 % Processed Data
 data = rawData;
 switch data(1,1)
 case {0,1,2}
 type = data(1,1)+1;
 dataAngles = data(1,2:end);
 data(1,:) = [];
 otherwise % processed data before v3.0
 reloadans = inputdlg({'What was the range of angles used? (In
matlab syntax)'},...
 'Angle Input',1,{'10:60'});
 dataAngles = eval(['[' reloadans{1} ']']);
 end
 wavelengths = data(:,1);
 saveData = data;
 data = data(:,2:end);
 case 3 %FDTD Data
 data = rawData';
 dataAngles = FDTDangle';
 wavelengths = FDTDwavelengths;
 %wavelengths = FDTDwavelengths.*1000;
 %make data matrix
 data = [wavelengths data];
 %data = flipud(data);
 %wavelengths = flipud(wavelengths);
 FDTDans = inputdlg({'What index to use for adjusting the angles?',...
 sprintf('What range of angles to show of
[%.1f, %0.1f]?',dataAngles(1),dataAngles(end))},...
 'FDTD Data',1,{'1',sprintf('[%.1f, %.1f]',dataAngles(1),
dataAngles(end))});
 %ask for dielectric index
 if ~isempty(FDTDans)
 FDTDind = str2double(FDTDans{1});
 dataAngles = asind(sind(dataAngles).*FDTDind);
 range = eval(FDTDans{2});

	 177

 angindex = (dataAngles>=range(1)) & (dataAngles<=range(2));
 data = data(:,[true angindex]);
 dataAngles = dataAngles(angindex);
 end
 saveData = data;
 data = data(:,2:end);
 type = 1;
 case 1 % Raw Data
 if isPIdata
 spectraLength = find(rawData(:,1)>rawData(1),1);
 if isempty(spectraLength)
 numberOfSpectra = length(rawData(:,2))/1340;
 else
 numberOfSpectra = (spectraLength-1)/1340;
 end
 dataAngles = rawData(1:(1340*numberOfSpectra):end,1)';
% if ~isempty(angleInput)
% dataAngles = angleInput(1):angleInput(3):angleInput(2);
% end
 % wavelengths = rawData{2}(1:(1340*numberOfSpectra));
 data =
reshape(rawData(:,3),length(wavelengths),length(dataAngles));
% data = quickCalibrateData(wavelengths,data);
 else
 [dataAngles,centerWavelength,grating,data,isAzimuthalData] =
extractData(rawData);
 data = calibrateData(wavelengths,data,centerWavelength,grating);
 end
 if min(size(data))==1
 type = 3;
 elseif isAzimuthalData
 type = 2;
 else
 type = 1;
 end
 %smooth data
 data = sortrows([wavelengths (1:size(data,1))' data]);
 numlist = data(:,2);
 if ~isempty(smoothSpan)
 for ii = 3:size(data,2)
 data(:,ii) = smooth(data(:,ii),smoothSpan,smoothType);
 end
 end
 data = sortrows([numlist data]);
 data(:,1:3)=[];
 %scale data with background
 if size(backgroundData,2) == 1
 data = data./(repmat(backgroundData,1,size(data,2)).*scale);
 else
 data = data./(backgroundData.*scale);
 end
 saveData(:,2:(size(data,2)+1)) = data;
 saveData(:,1) = wavelengths;
 backgroundTemp(:,2:(size(backgroundData,2)+1)) = backgroundData;
 backgroundTemp(:,1) = wavelengths;

	 178

 backgroundTemp = sortrows(backgroundTemp);
 backgroundData = backgroundTemp(:,2:end);
 saveData = sortrows(saveData);
 wavelengths = saveData(:,1);
 data = saveData(:,2:end);
end
%% Interpolate Data
%Set image resolution (completely arbitrary)...
Xpixels = (700*2);
Ypixels = (1068*2);
numberOfAngles = length(dataAngles);
numberOfWavelengths = length(wavelengths);
if type == 1
 %Build photoenergy array
 %Energy in eV = 1240/lamda(nm)
 energies = 1240./wavelengths;
 %Build the wavevector array (in 1/um)for the dispersion curve
 wavevectors=1000.*(2.* pi./wavelengths)*sind(dataAngles);
 %Build dispersion curve map
 %vec_max=max(max(vectordata));
 maxWavevector=max(wavevectors(:));
 minWavevector=min(wavevectors(:));
 maxEnergy=max(energies);
 minEnergy=min(energies);
 XpixelWidth = (maxWavevector - minWavevector)/(Xpixels-1);
 YpixelWidth = (maxEnergy - minEnergy)/(Ypixels-1);
 %mapdata = zeros(Ypixels, Xpixels);
 mapdata2 = NaN(Ypixels,Xpixels);
 ncounter = zeros(1,Ypixels);
 %loop for the interpolation between angles (columns)
 for i=1:numberOfWavelengths
 n = floor((energies(i)-minEnergy)/YpixelWidth)+1;
% if i == 1
% %this initializes the matrix, since evergies are high->low
% ncounter(1,n) = 0;
% end
 %ncounter is how many data are crammed into this point
 if ncounter(n) == 0
 for j=1:numberOfAngles
 m = floor((wavevectors(i,j)-minWavevector)/XpixelWidth)+1;
 %mapdata(n,m)= data(i,j);
 %interpolate along the row
 if j~=1
 mapdata2(n,m_old:m)= linspace(data(i,j-1),data(i,j),m-
m_old+1);
 end
 m_old=m;
 end
 else
 Nordata2 = mean(data(i-ncounter(n):i,:)); %average data instead
of rewriting
 for j=1:numberOfAngles
 m = floor((wavevectors(i,j)-minWavevector)/XpixelWidth)+1;
 %mapdata(n,m)= Nordata2(j);
 %interpolate along the row

	 179

 if j~=1
 mapdata2(n,m_old:m)= linspace(Nordata2(j-
1),Nordata2(j),m-m_old+1);
 end
 m_old=m;
 end
 end
 ncounter(n) = ncounter(n)+1;
 end
 %interpolate between rows
 filledn = find(ncounter~=0);
 energyData =
interp2(1:Xpixels,filledn',mapdata2(filledn,:),1:Xpixels,(1:Ypixels)');
elseif type == 2
 ind = [false; diff(wavelengths)<=1e-6];
 wavelengths = wavelengths(~ind);
 data = data(~ind,:);
 energies = sortrows(1240./wavelengths);
 [X, Y] = meshgrid(dataAngles, energies);

energyData=interp2(X,Y,flipud(data),linspace(dataAngles(1),dataAngles(end),Xp
ixels),linspace(energies(1),energies(end),Ypixels)');
elseif type == 3
 ind = [false; diff(wavelengths)<=1e-6];
 wavelengths = wavelengths(~ind);
 data = data(~ind);
 energyData = flipud(data);
end
%interpolate angle data
ind = [false; diff(wavelengths)<=1e-6];
wavelengths1 = wavelengths(~ind);
data1 = data(~ind,:);
if ~(backgroundData==0)
 backgroundData = backgroundData(~ind,:);
end
if type == 1 || type == 2
 [X, Y] = meshgrid(dataAngles, wavelengths1);

wavelengthData=interp2(X,Y,data1,linspace(dataAngles(1),dataAngles(end),Xpixe
ls),linspace(wavelengths1(1),wavelengths1(end),Ypixels)');
elseif type == 3
 wavelengthData = data;
end
end
function [BZ] = BZcalc(XYcoordinates,order)
Xlimits = [min(XYcoordinates(:,1)); max(XYcoordinates(:,1))];
tooHigh = (order > 2); %hard limit of 2 orders
XYcoordinates(tooHigh,:) = [];
order(tooHigh) = [];
BZ = {cell(sum(order==1),1), cell(sum(order==2),1)};
counter1 = 1;
counter2 = 1;
for ii = 1:size(XYcoordinates,1)
 % no zone for the zero order point
 if order(ii) == 0

	 180

 continue
 end
 X0 = XYcoordinates(ii,1); Y0 = XYcoordinates(ii,2);
 point = ([X0 Y0]/2);
 slope = -X0/Y0;
 if abs(slope) < 1
 X = Xlimits;
 Y = slope.*(X-point(1))+point(2);
 else
 Y = Xlimits;
 X = 1./slope.*(Y-point(2))+point(1);
 end
 if order(ii) == 1
 BZ{1}{counter1} = [X Y];
 counter1 = counter1 + 1;
 else
 BZ{2}{counter2} = [X Y];
 counter2 = counter2 + 1;
 end
end
end
function newfig_bdfcn(obj,~,fig,lines)
seltype = get(fig,'selectiontype');
switch seltype
 case 'normal'
 width = 2;
 case 'alt'
 width = 1;
 case 'open'
 set(lines(:),'linewidth',1);
 return
 otherwise
 width = get(obj,'linewidth');
end
set(obj,'linewidth',width);
drawnow;
end
function [angles, centerWavelengths, grating, data, isAzimuthalData] =
extractData(rawData)
%columns of angles, stacked gratings...
if mod(size(rawData,1),1342)==2 && (size(rawData,2)==1 ||
rawData(4,1)==rawData(4,2)) %...azim included (check same center wavelength)
 angles = rawData(2,:); %extract azimuthal angles
 rawData(1:2,:) = []; %removes angles headers
 grating = rawData(1:1342:end,1).'; %extract grating numbers
 rawData(1:1342:end,:) = []; %removes grating headers
 centerWavelengths = rawData(1:1341:end,1).'; %extract center wavelengths
 rawData(1:1341:end,:) = []; %removes center headers
 data = rawData;
 isAzimuthalData = true;
elseif mod(size(rawData,1),1342)==1 && (size(rawData,2)==1 ||
rawData(3,1)==rawData(3,2)) %...no azim (check same center wave)
 angles = rawData(1,:); %extract angles
 rawData(1,:) = []; %removes angle header
 grating = rawData(1:1342:end,1).'; %extract grating numbers

	 181

 rawData(1:1342:end,:) = []; %removes grating header
 centerWavelengths = rawData(1:1341:end,1).'; %extract center wavelengths
 rawData(1:1341:end,:) = []; %removes center header
 data = rawData;
 isAzimuthalData = false;
 %columns of gratings, stacked angles...
elseif mod(size(rawData,1),1344)==0 && (size(rawData,2)==1 ||
rawData(4,1)~=rawData(4,2)) %...azim included (check diff center wavelength)
 rawData(1:1343:end,:) = []; %removes angle header
 angles = rawData(1:1343:end,1).'; %extract azimuthal angles
 rawData(1:1343:end,:) = []; %removes azimuthal angle header
 grating = rawData(1,:); %extract grating numbers
 rawData(1:1342:end,:) = []; %removes grating header
 centerWavelengths = rawData(1,:); %extract center wavelengths
 rawData(1:1341:end,:) = []; %removes center header
 %reposition data into appropriate columns/rows
 temp = reshape(rawData, 1340, size(rawData,2)*size(angles,2));
 data(1340*size(rawData,2), size(angles,2)) = 0;
 for ii = 1:(size(rawData,2))
 data(((ii-1)*1340+1):(ii*1340),:) = temp(:,((ii-
1)*size(angles,2)+1):(ii*size(angles,2)));
 end
 isAzimuthalData = true;
elseif mod(size(rawData,1),1343)==0 && (size(rawData,2)==1 ||
rawData(3,1)~=rawData(3,2)) %...no azim (check diff center wavelength)
 angles = rawData(1:1343:end,1).'; %extract angles
 rawData(1:1343:end,:) = []; %removes angle header
 grating = rawData(1,:); %extract grating numbers
 rawData(1:1342:end,:) = []; %removes grating header
 centerWavelengths = rawData(1,:); %extract center wavelengths
 rawData(1:1341:end,:) = []; %removes center header
 %reposition data into appropriate columns/rows
 temp = reshape(rawData, 1340, size(rawData,2)*size(angles,2));
 data(1340*size(rawData,2), size(angles,2)) = 0;
 for ii = 1:(size(rawData,2))
 data(((ii-1)*1340+1):(ii*1340),:) = temp(:,((ii-
1)*size(angles,2)+1):(ii*size(angles,2)));
 end
 isAzimuthalData=false;
end
%get rid of data beyond calibration
switch grating(1)
 case {2,3}
 extra = sum(centerWavelengths > 990);
 case 1
 extra = sum(centerWavelengths > 1074);
end
grating(end-extra+1:end) = [];
centerWavelengths(end-extra+1:end) = [];
data(end-(1340*extra)+1:end,:) = [];
end
function data = quickCalibrateData(wavelengths,data)
numberOfParts = size(data,1)/1340;
numberOfAngles = size(data,2);
scaleEff = ones(numberOfParts+1,numberOfAngles);

	 182

testdata = data;
for pp = 1:numberOfParts-1
 part1 = data(1340*(pp-1)+1:1340*pp,:);
 part2 = data(1340*pp+1:1340*(pp+1),:);
 wavelengthsPart1 = wavelengths(1340*(pp-1)+1:1340*pp);
 wavelengthsPart2 = wavelengths(1340*pp+1:1340*(pp+1));
 overlapRegion1 = wavelengthsPart1>=wavelengthsPart2(1);
 overlapRegion2 = wavelengthsPart2<=wavelengthsPart1(end);
 interpNumber = round(min(sum(overlapRegion1),sum(overlapRegion2))./2);
 for aa = 1:numberOfAngles
 interpPart1 =
interp1(wavelengthsPart1(overlapRegion1),part1(overlapRegion1,aa),linspace(mi
n(wavelengthsPart1(overlapRegion1)),max(wavelengthsPart2(overlapRegion2)),int
erpNumber));
 interpPart2 =
interp1(wavelengthsPart2(overlapRegion2),part2(overlapRegion2,aa),linspace(mi
n(wavelengthsPart1(overlapRegion1)),max(wavelengthsPart2(overlapRegion2)),int
erpNumber));
 scaleEff(pp+1,aa) = lsqlin(interpPart2',interpPart1,[],[]);
 data(1340*pp+1:end,aa) = data(1340*pp+1:end,aa).*scaleEff(pp+1,aa);
 end
end
end
function data = calibrateData(wavelengths,data,centerWavelength,grating)
eff = [];
centerWave = [];
dark = [];
load('calibration.mat')
centerWave = centerWave{grating(1)};
eff = eff{grating(1)};
numberOfParts = size(data,1)/1340;
numberOfAngles = size(data,2);
%subtract dark current
data = data - repmat(dark,numberOfParts,numberOfAngles);
%apply spectrum calibration to data
scaleEff = ones(numberOfParts+1,numberOfAngles);
testdata = SpectScale(centerWavelength,data,centerWave,eff,scaleEff);
%apply vertical scaling to parts of spectra
for pp = 1:numberOfParts-1
 part1 = testdata(1340*(pp-1)+1:1340*pp,:);
 part2 = testdata(1340*pp+1:1340*(pp+1),:);
 overlapRegion1 = wavelengths(1340*(pp-
1)+1:1340*pp)>=wavelengths(1340*pp+1);
 overlapRegion2 =
wavelengths(1340*pp+1:1340*(pp+1))<=wavelengths(1340*pp);
 scaleEff(pp+1,:) =
arrayfun(@(A)lsqlin(part2(overlapRegion2,A),part1(overlapRegion1,A),[],[]),1:
numberOfAngles);
 % data(1340*pp+1:end,:) =
data(1340*pp+1:end,:).*repmat(scaleEff(pp+1,:),1340*(numberOfParts-pp),1);
end
data = SpectScale(centerWavelength,data,centerWave,eff,scaleEff);
end
function wavelengths = pixel2wavelength(grating,center)
%calibration from pixel to wavelength: W = m*P + b

	 183

%index is grating number (1 = 1200 groove/mm 500 nm blaze, 2 = 300 groove/mm
%300 nm blaze,3 = 300 groove/mm 500 nm blaze)
%
%Calibration w/ Hg spectrum for gratings 1&3 by Alex Hryn: 28 May 2012
m(1) = .02792;
m(2) = .13046;
m(3) = .13046;
%------X
offset(1) = m(1)*670.5 + 557.53 - 576.655;
offset(2) = m(2)*670.5 + 433.90 - 524.12;
offset(3) = m(3)*670.5 + 433.90 - 524.12;
%------X
b(1,:) = (center + offset(1)) - m(1).*670.5;
b(2,:) = (center + offset(2)) - m(2).*670.5;
b(3,:) = (center + offset(3)) - m(3).*670.5;
waveconv = @(p,g,c) m(g).*p + b(g,c);
%waveconv takes p: pixel , g: grating number, c: center wavelength and
%gives the wavelength in nm
%make wavelength vector
temp =
arrayfun(@(g,c)waveconv((1:1340)',g,c),grating,1:length(center),'UniformOutpu
t',false);
wavelengths = vertcat(temp{:});
end
function data = SpectScale(center,data,centerWave,eff,scaleEff)
%data comes in as angle columns of stacked gratings
for pp = 1:size(center,2)
 ind=find(centerWave >= center(pp),1);
 x = (center(pp)-centerWave(ind-1))/(centerWave(ind)-centerWave(ind-1));
 for ii = 1:size(data,2)

factor=((prod(scaleEff(1:pp,ii)).^0.5)./(prod(scaleEff(pp+1:end,ii)).^0.5)).*
eff;
 data(1340*(pp-1)+1:1340*pp,ii) = data(1340*(pp-
1)+1:1340*pp,ii).*(x.*factor(ind,:)+(1-x).*factor(ind-1,:))';
 end
end
end
function totalSolutions = Modes(nLines, maxorder)
nSolutions = 1;
for ii = 1:maxorder
 nSolutions = nSolutions +
sum(arrayfun(@(X)nchoosek(nLines,X)*2^X*nchoosek(ii-1,(X-
1)),1:ii,'ErrorHandler',@(x,y)0));
 % nSolutions = nSolutions +
sum(arrayfun(@(X)nchoosek(nLines,X)*2^X*nchoosek(ii-1,(X-
1)),1:min(ii,nLines)));
end
solution = zeros(1,nLines,'int8');
totalSolutions = zeros(nSolutions,nLines,'int8');
nSolutions = 0;
for order = 0:maxorder
 check(nLines, order);
end
 function check(nLines, order)

	 184

 nLinesRemaining = nLines - 1;
 if nLinesRemaining == 0
 if order >=0 && order <=maxorder
 nSolutions = nSolutions+1;
 solution(nLines) = order;
 totalSolutions(nSolutions,:) = solution;
 if order > 0
 nSolutions = nSolutions+1;
 solution(nLines) = -order;
 totalSolutions(nSolutions,:) = solution;
 end
 end
 return;
 end
 for numroll = -maxorder:maxorder
 targetRemaining = order - abs(numroll);
 if targetRemaining >= 0 && targetRemaining <=
maxorder*nLinesRemaining
 solution(nLines) = numroll; %record this value
 check(nLinesRemaining,targetRemaining);
 end
 end
 end
end
function [xfigure, yfigure]=axescoord2figurecoord(varargin)
% AXESCOORD2FIGURECOORD Transform axes coordinates in current
% figure units coordinate to the figure for annotation location
% [xfigure, yfigure]=axescoord2figurecoord(xaxes,yaxes)
% [xfigure, yfigure]=axescoord2figurecoord(xaxes,yaxes,handle_axes)
%
% Ex.
% % Create some data
% t = 0:.1:4*pi;
% s = sin(t);
%
% % Add an annotation requiring (x,y) coordinate vectors
% plot(t,s);ylim([-1.2 1.2])
% set(gcf,'Units','normalized');
% xa = [1.6 2]*pi;
% ya = [0 0];
% [xaf,yaf] = axescoord2figurecoord(xa,ya);
% annotation('arrow',xaf,yaf)
%
% Acknowledgments are due to Scott Hirsch (shirsch@mathworks.com) for is
% function ds2nfu. Some part of the present function derived from ds2nfu.
%
% Valley Beno”t / Jan 2007
% valley@erdw.ethz.ch
% Process inputs
narginchk(2, 3)
if nargin==2
 xaxes=varargin{1};
 yaxes=varargin{2};
 h_axes = get(gcf,'CurrentAxes');
else

	 185

 xaxes=varargin{1};
 yaxes=varargin{2};
 h_axes = varargin{3};
end
% get axes properties
funit=get(get(h_axes,'Parent'),'Units');
% get axes properties
aunit=get(h_axes,'Units');
darm=get(h_axes,'DataAspectRatioMode');
pbarm=get(h_axes,'PlotBoxAspectRatioMode');
dar=get(h_axes,'DataAspectRatio');
pbar=get(h_axes,'PlotBoxAspectRatio');
xlm=get(h_axes,'XLimMode');
ylm=get(h_axes,'YLimMode');
xd=get(h_axes,'XDir');
yd=get(h_axes,'YDir');
% set the right units for h_axes
set(h_axes,'Units',funit);
axesoffsets = get(h_axes,'Position');
x_axislimits = get(h_axes, 'xlim'); %get axes extremeties.
y_axislimits = get(h_axes, 'ylim'); %get axes extremeties.
x_axislength = x_axislimits(2) - x_axislimits(1); %get axes length
y_axislength = y_axislimits(2) - y_axislimits(1); %get axes length
% mananged the aspect ratio problems
set(h_axes,'units','centimeters');
asc=get(h_axes,'Position');
rasc=asc(4)/asc(3);
rpb=pbar(2)/pbar(1);
if rasc<rpb
 xwb=axesoffsets(3)/rpb*rasc;
 xab=axesoffsets(1)+axesoffsets(3)/2-xwb/2;
 yab=axesoffsets(2);
 ywb=axesoffsets(4);
elseif rasc==rpb
 xab=axesoffsets(1);
 yab=axesoffsets(2);
 xwb=axesoffsets(3);
 ywb=axesoffsets(4);
else
 ywb=axesoffsets(4)*rpb/rasc;
 yab=axesoffsets(2)+axesoffsets(4)/2-ywb/2;
 xab=axesoffsets(1);
 xwb=axesoffsets(3);
end
if strcmp(darm,'auto') & strcmp(pbarm,'auto')
 xab=axesoffsets(1);
 yab=axesoffsets(2);
 xwb=axesoffsets(3);
 ywb=axesoffsets(4);
end
% compute coordinate taking in account for axes directions
if strcmp(xd , 'normal')==1
 xfigure = xab+xwb*(xaxes-x_axislimits(1))/x_axislength;
else
 xfigure = xab+xwb*(x_axislimits(2)-xaxes)/x_axislength;

	 186

end
if strcmp(funit,'normalized');
 xfigure(find(xfigure>1))=1;
 xfigure(find(xfigure<0))=0;
end
if strcmp(yd , 'normal')==1
 yfigure = yab+ywb*(yaxes-y_axislimits(1))/y_axislength;
else
 yfigure = yab+ywb*(y_axislimits(2)-yaxes)/y_axislength;
end
if strcmp(funit,'normalized');
 yfigure(find(yfigure>1))=1;
 yfigure(find(yfigure<0))=0;
end
set(h_axes,'Units',aunit); % put axes units back to original state
end
function a = struct2array(s)
%STRUCT2ARRAY Convert structure with doubles to an array.
% Author(s): R. Losada
% Copyright 1988-2013 The MathWorks, Inc.
narginchk(1,1);
% Convert structure to cell
c = struct2cell(s);
% Construct an array
a = [c{:}];
end
	
	 	

	 187

APPENDIX C: LUMERICAL SCRIPT TO CREATE BOWTIE DIMERS

for (tl = 40) {
for (th = 50) {
#selectall;delete;clear;
selectpartial("particle");delete;
select("Si mask");delete;
#eval("counter = 1;");
redrawoff;
######################
Change things here #
######################
d = .350; #width of the pit - all is in microns
w = 1; # width of the masked region
d1 = .260; #diameter in +x direction of hole
d2 = d1; #diameter in +y direction of hole
nSides = 95; #number of sides of regular polygon
defaultThicknesses = [th/2, th, th/2]*1e-3; #thicknesses of each step of
particle
resolution = 0.001;
depositionAngles = [tl, tl, tl]; #degrees from +z axis towards +x axis
azimAngles = [0, 180, 0]+45; #degrees from +x axis towards +y axis
holeAzim = 0; #degrees from +x axis towards +y axis
startFilmThickness = 0.008; #top film thickness
startParticleHeight = [0, 0, 1]; #particle start for offset
defaultMaterial = "Au (Gold) - Johnson and Christy";
meshOrder = 3;
maskMaterial = "<Object defined dielectric>";
maskIndex = 1;
maskMeshOrder = 2;
numberOfDepositions = 3;
drawParticle = [1, 1, 1];
######################
######################
numpoints = nSides+1; # +1 for linspace
#Define the Si Pit properties
if(getnamednumber("Si mask")==0)
{
makeSiPyramid;
select("Si mask");
adduserprop("pit size",0,d);
}
SiAngles = (0:90:360)*pi/180;
SiAngles = SiAngles(1:length(SiAngles)-1);
organize the particle heights for offsets
allParticleHeights = matrix(length(startParticleHeight),length(SiAngles));
defaultThickness=0;
normalOffset=0;
glancingOffset = matrix(1,numpoints);
#make the initial hole
r1 = d1/2;
r2 = d2/2;
holeAzim = holeAzim*pi/180;
make some regular 2D shapes in standard basis centered at origin

	 188

phi = linspace(0,2*pi,numpoints); #overlap the final point to close the shape
x0 = r1 * cos(phi);
y0 = r2 * sin(phi);
hole = [x0,y0];
azimMatrix = [cos(holeAzim),-sin(holeAzim);sin(holeAzim),cos(holeAzim)];
hole = transpose(mult(azimMatrix,transpose(hole)));
startHole = hole;
for (nD = 1:numberOfDepositions) {
counter = nD;
defaultThickness = defaultThicknesses(nD);
tilt = depositionAngles(nD);
azim = azimAngles(nD);
#gap = 0.030;
#matlabput(d,d1,defaultThickness,holeCloseRate,gap);
#matlab("tilt =
fsolve(@(X)(findparticlegap(X,d,d1,defaultThickness,holeCloseRate)-
gap),50);");
#matlabget(tilt);
tilt = (90-tilt)*pi/180;
azim = azim*pi/180;
if(startParticleHeight(nD)==0) {
currentParticleHeight = matrix(1,length(SiAngles));
} else {
previousHeightIndex = startParticleHeight(nD);
currentParticleHeight =
allParticleHeights(previousHeightIndex,1:length(SiAngles));
}
finalFilmThickness = startFilmThickness + defaultThickness*sin(tilt);
find total hole closing from deposition parameters
normalClosing = 0.3*defaultThickness*sin(tilt); #nm/nm deposited at normal
incidence
glancingClosing = 0.3*defaultThickness*cos(tilt); #growth on one side of hole
filmEdgeClosingI = startFilmThickness/tan(tilt); #shift due to tilted
deposition
filmEdgeClosingF = finalFilmThickness/tan(tilt); #shift due to tilted
deposition
counter rotate shape against deposition direction
depAzimMatrix = [cos(-azim),-sin(-azim);sin(-azim),cos(-azim)];
startHole = transpose(mult(depAzimMatrix,transpose(startHole)));
make the hole at start and end of deposition ##
get the coordinates
x0=startHole(1:numpoints,1);
y0=startHole(1:numpoints,2);
#plot(x0,y0);
shrink due to glancing closing
V1=[x0,y0];
V2=[x0+glancingClosing,y0];
V3=polyand(V1,V2); # polygon intersection
s=size(V3);
x3=V3(1:s(1),1);
y3=V3(1:s(1),2);
xG=interp(x3,linspace(1,numpoints,length(x3)),1:numpoints);
yG=interp(y3,linspace(1,numpoints,length(y3)),1:numpoints);
#plot(xG,yG);
shrink due to normal closing

	 189

newCenter = [mean(xG),mean(yG)];
xx=(xG-newCenter(1));
yy=(yG-newCenter(2));
rI = sqrt(xx^2+yy^2);
phiI = atan2(yy,xx);
rI=rI-normalClosing;
xf = rI*cos(phiI)+newCenter(1);
yf = rI*sin(phiI)+newCenter(2);
#plot(xf,yf);
finalHole = [xf,yf];
if (~drawParticle(nD)) {
depAzimMatrix = [cos(azim),-sin(azim);sin(azim),cos(azim)];
startHole = transpose(mult(depAzimMatrix,transpose(startHole)));
finalHole = transpose(mult(depAzimMatrix,transpose(finalHole)));
startHole = finalHole;
startFilmThickness=finalFilmThickness;
} else {
make the shape used to project during deposition ##
do the starting shape
x0=startHole(1:numpoints,1);
y0=startHole(1:numpoints,2);
plot(x0,y0);
V1=[x0,y0];
V2=[x0-filmEdgeClosingI,y0];
V3=polyand(V1,V2);
s=size(V3);
x3=V3(1:s(1),1);
y3=V3(1:s(1),2);
xx=interp(x3,linspace(1,numpoints,length(x3)),1:numpoints);
yy=interp(y3,linspace(1,numpoints,length(y3)),1:numpoints);
xyShape = [xx,yy];
#plot(xx,yy);
do the ending shape
x0=finalHole(1:numpoints,1);
y0=finalHole(1:numpoints,2);
plot(x0,y0);
V1=[x0,y0];
V2=[x0-filmEdgeClosingF,y0];
V3=polyand(V1,V2);
s=size(V3);
x3=V3(1:s(1),1);
y3=V3(1:s(1),2);
xx=interp(x3,linspace(1,numpoints,length(x3)),1:numpoints);
yy=interp(y3,linspace(1,numpoints,length(y3)),1:numpoints);
xyShapeF = [xx,yy];
#plot(xx,yy);
#plotxy(startHole(1:41,1),startHole(1:41,2),finalHole(1:41,1),finalHole(1:41,
2));
#plotxy(xyShape(1:41,1),xyShape(1:41,2),xyShapeF(1:41,1),xyShapeF(1:41,2));
rotate everything back to normal from the deposition rotation
depAzimMatrix = [cos(azim),-sin(azim);sin(azim),cos(azim)];
startHole = transpose(mult(depAzimMatrix,transpose(startHole)));
finalHole = transpose(mult(depAzimMatrix,transpose(finalHole)));
#plotxy(startHole(1:numpoints,1),startHole(1:numpoints,2),finalHole(1:numpoin
ts,1),finalHole(1:numpoints,2));

	 190

startHole = finalHole;
xyShape = mult(depAzimMatrix,transpose(xyShape));
xyShapeF = mult(depAzimMatrix,transpose(xyShapeF));
put the shapes into the same oreintation
x0=xyShape(1,1:numpoints);
y0=xyShape(2,1:numpoints);
newCenter = [mean(x0),mean(y0)];
xx=(x0-newCenter(1));
yy=(y0-newCenter(2));
phiI = atan2(yy,xx); # returns in range -pi to pi
index = find(phiI,min(phiI));
x0=transpose([x0(index:numpoints);x0(1:index-1)]);
y0=transpose([y0(index:numpoints);y0(1:index-1)]);
xyShape=[x0;y0];
put the shapes into the same oreintation
x0=xyShapeF(1,1:numpoints);
y0=xyShapeF(2,1:numpoints);
newCenter = [mean(x0),mean(y0)];
xx=(x0-newCenter(1));
yy=(y0-newCenter(2));
phiI = atan2(yy,xx); # returns in range -pi to pi
index = find(phiI,min(phiI));
x0=transpose([x0(index:numpoints);x0(1:index-1)]);
y0=transpose([y0(index:numpoints);y0(1:index-1)]);
xyShapeF=[x0;y0];
#plotxy(xyShape(1,1:numpoints),xyShape(2,1:numpoints),xyShapeF(1,1:numpoints)
,xyShapeF(2,1:numpoints));
Give starting basis (unit) vectors (centered at origin)
unit vectors for 100 plane
Ue = [1;0;0];
Ve = [0;1;0];
Ne = [0;0;1];
Je = [Ue, Ve];
basis_e = [Ue, Ve, Ne];
build group for particle
addstructuregroup;
particleName = "particle"+num2str(counter);
set("name",particleName);
set("x",0);
set("y",0);
set("z",0);
adduserprop("material",5,defaultMaterial);
adduserprop("meshOrder",0,meshOrder);
adduserprop("tilt",0,depositionAngles(nD));
adduserprop("thickness",0,defaultThicknesses(nD));
adduserprop("hole d1",0,d1);
adduserprop("hole d2",0,d2);
set("script",
"selectall;
set('material',material);
set('meshOrder',meshOrder);
");
for (ii=1:length(SiAngles)) {
 ##############
 # caclulate basis (unit) vectors projection plane (111)

	 191

 # 3 points form a plane
 # These 3 points are for Si pyramid of sidewall length d
 Ap = d/2*[-(cos(SiAngles(ii))+sin(SiAngles(ii))); cos(SiAngles(ii))-
sin(SiAngles(ii)); 0];
 Bp = d/2*[-cos(SiAngles(ii))+sin(SiAngles(ii)); -
(cos(SiAngles(ii))+sin(SiAngles(ii))); 0];
 Cp = [0;0;-d/sqrt(2)];
 #Cp = [0;0;-d/2];
 Np = cross(Cp-Bp,Ap-Bp);
 Np = Np/sqrt(dot(Np,Np)); #normal unit vector (basis vector 3)
 Vp = (Ap-Bp);
 Vp = Vp/sqrt(dot(Vp,Vp)); #basis vector 2
 Up = cross(Vp,Np); #basis vector 1
 Jp = [Up, Vp];
 basis_p = [Up, Vp, Np];
 #Do the projection from old basis (e) to new basis (p) along D
 # Direction of Projection
 D = [cos(tilt)*cos(azim);cos(tilt)*sin(azim);sin(tilt)];
 # solve for new center (old center at origin)
 t = dot(Ap,Np)/dot(D,Np);
center = t*D; #this is the translation vector
solve for the 2D scale/rotation matrix from start basis to new basis
in *coordinates of new basis*
I3=[1,0,0;0,1,0;0,0,1];
temp = I3-mult(D,transpose(Np))/dot(D,Np);
A = mult(mult(transpose(Jp),temp),Je);
new coordinates including only scale/rotation
xyNewShape = mult(A,xyShape);
xyNewShapeF = mult(A,xyShapeF);
newShapeAxes = [A;matrix(1,2)]; # make 3D
newShapeAxes = [newShapeAxes,Ne]; # make 3D
Rotation = mult(basis_p,newShapeAxes); # include transformation to new basis
rotations for new basis
euler angles (z,x',z'')
x = atan2(basis_p(3,2), basis_p(3,3));
y = atan2(-basis_p(3,1), sqrt(basis_p(3,2)*basis_p(3,2) +
basis_p(3,3)*basis_p(3,3)));
z = atan2(basis_p(2,1), basis_p(1,1));
eulerAngles = [x,y,z]*180/pi;
##############
only make particles that are in the pyramid
if (center(3)<0) {
 # This group will control translation
 addstructuregroup;
 set("name","part" + num2str(ii));
 adduserprop("material",5,defaultMaterial);
 adduserprop("meshOrder",0,meshOrder);
 set("script",
 "selectall;
 set('material',material);
 set('meshOrder',meshOrder);
 ");
 set("x",center(1)*1e-6);
 set("y",center(2)*1e-6);
 set("z",center(3)*1e-6);

	 192

 # The next group layer controls rotation
 addstructuregroup;
 set("name","rotation group");
 adduserprop("material",5,defaultMaterial);
 adduserprop("meshOrder",0,meshOrder);
 set("script",
 "selectall;
 set('material',material);
 set('mesh order',meshOrder);
 ");
 set("x",0);
 set("y",0);
 set("z",0);
 set("first axis","z");
 set("rotation 1",eulerAngles(1));
 set("second axis","y");
 set("rotation 2",eulerAngles(2));
 set("third axis","z");
 set("rotation 3",eulerAngles(3));
 # Now come the polygons
 # Calculate the centers, vertices, and thicknesses
 D_thick = mult(inv(basis_p),D*defaultThickness); #find actual direction
of deposition
 actualStart = mult(inv(basis_p),D*currentParticleHeight(ii));
 numSlices = round((defaultThickness/resolution))+1;
 slice_X = linspace(0,D_thick(1),numSlices)+actualStart(1);
 slice_Y = linspace(0,D_thick(2),numSlices)+actualStart(2);
 slice_Z = linspace(0,D_thick(3),numSlices)+actualStart(3);
 currentParticleHeight(ii) = currentParticleHeight(ii)+defaultThickness;
 # Make the shapes
 for (jj = 1:(numSlices-1)) {
 addpoly;
 set("x",slice_X(jj)*1e-6);
 set("y",slice_Y(jj)*1e-6);
 set("z min",slice_Z(jj)*1e-6);
 set("z max",slice_Z(jj+1)*1e-6);
 V=(xyNewShape+(jj/numSlices*(xyNewShapeF-xyNewShape)))*1e-6; #convert
from um
 set("vertices",V);
 } # jj+1
 select("polygon");
 set("override mesh order from material database",1);
 set("material",defaultMaterial);
 set("mesh order",meshOrder);
 set("detail",0.2);
 addtogroup("rotation group");
 select("rotation group");
 addtogroup("part" + num2str(ii));
 select("part" + num2str(ii));
 addtogroup(particleName);
 } # if (center(3)<0)
} # ii+1
allParticleHeights(nD,1:length(SiAngles)) = currentParticleHeight;
startFilmThickness=finalFilmThickness;
} #draw particle

	 193

} # nD
redrawon;
save("tilt_"+num2str(tl)+"-thick_"+num2str(th)+"perp.fsp"); }} #sweeps

	 194

APPENDIX D: LUMERICAL SCRIPT TO PROCESS FDTD DIC IMAGES

based on phase_constrast_analysis by Lumerical Inc.

willSaveToMatlab = true;
willSaveRAWToMatlab = true;
willSaveZToMatlab = false;
matlabFilename = "DIC_periodic_NR_dimer";

calculate the specimen beam

Objective NA (in air)
NA = 1;

#clear;

maxI = matrix(1,18);
maxI_mean = matrix(1,18);
minI = matrix(1,18);
minI_mean = matrix(1,18);
bgI = matrix(1,18);
numSimulations = 19;
simulationAngles = linspace(0,180,numSimulations);
load("particle_angle_1DIC_1");
f=getdata("Monitor2","f");
res = 201; # resolutions is res x res
Zres = 1;
ImageMatrix = matrix(res,res,length(f),numSimulations);
RawDataMatrix = matrix(res,res,3,2,length(f),numSimulations);
#ZProjectMatrix = matrix(res,res,Zres,length(f),numSimulations);
for (ii=1:numSimulations-1) { #angle in degrees
 ?"Analyzing simulation "+num2str(ii);
 # choose the filename of the template file
 filename = "particle_angle_"+num2str(ii)+"DIC";
 # the name of the monitor recording the data
 mname = "Monitor2";
 f=getdata(mname,"f");
 lambda = c/f;
 for (ff = 1:length(f)) { #multiple frequency points
 # choose the resolution for far field projections
 farfieldfilter(0);
#if (1) {

 load(filename+"_1");
 Ev = gratingvector(mname,ff);
 Ex_near_1 = pinch(Ev,3,1);
 Ey_near_1 = pinch(Ev,3,2);
 Ez_near_1 = pinch(Ev,3,3);
 load(filename+"_2");
 Ev = gratingvector(mname,ff);
 Ex_near_2 = pinch(Ev,3,1);
 Ey_near_2 = pinch(Ev,3,2);
 Ez_near_2 = pinch(Ev,3,3);

	 195

 ux = gratingu1(mname,ff);
 uy = gratingu2(mname,ff);
 Ux = meshgridx(ux,uy);
 Uy = meshgridy(ux,uy);
 Uxy = sqrt(Ux^2+Uy^2)+1e-20; # add 1e-20 to avoid divide by zero
problems
 Uz = sqrt(1-Uxy^2);
 ## filter for propagating waves through aperture
 filter = real(Uxy) < NA;
 ###
 # calculate field at image plane
 ###
 k=2*pi/lambda(ff);
 ## define image plane (magnify object X2)
 npts=res;
 simulation;
 xmin=getnamed("FDTD","x min");
 xmax=getnamed("FDTD","x max");
 ymin=getnamed("FDTD","y min");
 ymax=getnamed("FDTD","y max");
 x=linspace(xmin*2,xmax*2,npts);
 y=linspace(ymin*2,ymax*2,npts);
 x=linspace(-3e-6,3e-6,npts);
 y=linspace(-3e-6,3e-6,npts);
 # calculate the image, uzing chirped z-transform
 kx = ux*k;
 ky = uy*k;
z_range = -50e-9;
for (zz=1:Zres) {
 z_project = z_range(zz);
 z_phase = 1i*exp(1i*k*Uz*filter*(z_project)-1i*k*1);
 Ex_1 = czt(filter*Ex_near_1*z_phase,kx,ky,x,y);
 Ey_1 = czt(filter*Ey_near_1*z_phase,kx,ky,x,y);
 Ez_1 = czt(filter*Ez_near_1*z_phase,kx,ky,x,y);
 #image(x*1e6,y*1e6,imag(Ex_0));
 RawDataMatrix(1:res,1:res,1,1,ff,ii)=Ex_1;
 RawDataMatrix(1:res,1:res,2,1,ff,ii)=Ey_1;
 RawDataMatrix(1:res,1:res,3,1,ff,ii)=Ez_1;
 Ex_2 = czt(filter*Ex_near_2*z_phase,kx,ky,x,y);
 Ey_2 = czt(filter*Ey_near_2*z_phase,kx,ky,x,y);
 Ez_2 = czt(filter*Ez_near_2*z_phase,kx,ky,x,y);
 #image(x*1e6,y*1e6,imag(Ey_90));
 RawDataMatrix(1:res,1:res,1,2,ff,ii)=Ex_2;
 RawDataMatrix(1:res,1:res,2,2,ff,ii)=Ey_2;
 RawDataMatrix(1:res,1:res,3,2,ff,ii)=Ez_2;
 #} #if
 ## combine the beams (with source phase) and apply the analyzer via jones
matrix
 ## set up the polarization and phase of optics
 # Nomarskis are fixed at 45 degrees.
 # Incident light aligned to 0, exits at 90
 for (testangle=8) {
 # de Senarmont angle for phase shift (0=linear, 45 = RHCP, -45 =
LHCP)
 source_angle = testangle;

	 196

 # polarization angle on analyzer
}#z

analyzer_angle = 45;
analyzer_radians = analyzer_angle*pi/180;
source_radians = source_angle*pi/180;
recombine the beams into some elliptical polarization state
Ex_final = Ex_1+Ex_2*exp(-1i*2*source_radians);
Ey_final = Ey_1+Ey_2*exp(-1i*2*source_radians);
#Ez = Ez_1 + Ez_2*exp(-1i*2*source_radians);
Apply the polarizer
Ex_image = Ex_final * cos(analyzer_radians)^2
Ey_image = Ex_final * sin(analyzer_radians)*cos(analyzer_radians) + Ey_final
* sin(analyzer_ra
#Ez_image = 0;
calculate |E|^2 at the image plane
adding up the intensities for all components
E_image_total = abs(Ex_image)^2;
#ZProjectMatrix(1:res,1:res,zz,ff,ii)=E_image_total;
#E2_ref_image = E2_ref_image + abs(Ex_ref_image)^2 + abs(Ey_ref_image)^2 +
abs(Ez_ref_image)^2
#E2_scaled = E2_scaled + abs(Ex_scaled)^2 + abs(Ey_scaled)^2 +
abs(Ez_scaled)^2;
E2_pc_image(1:npts,1:npts,j) = pinch(E2_pc_image(1:npts,1:npts,j))
 #
 #
 #
 #E2_int_image=abs(Ex_total)^2 + abs(Ey_total)^2 + abs(Ez_total)^2;
 ## plot field at image plane with no re-interference, ie bright field
result
 #image(x*1e6,y*1e6,E_image_total,"x (microns)","y
(microns)",num2str(simulationAngles(ii))+"-d
 #setplot("grey scale",1);
 #setplot("colorbar min",0.006);
 #setplot("colorbar max",0.014);
 #exportfigure(num2str(ii)+"deg");
}#test angle
xx = meshgridx(x,y)*1e6;
yy = meshgridy(x,y)*1e6;
distances = sqrt((xx-0.0)^2+yy^2);
distance_mask = distances>1e-6;
#background = sum(E_image_total*distance_mask)/sum(distance_mask);
background = mean(E_image_total);
background_std = std(E_image_total);
bright_filter = E_image_total>(background+2*background_std);
dark_filter = E_image_total<(background-2*background_std);
#?contrast_Michelson = (max(E_image_total)-
min(E_image_total))/(max(E_image_total)+min(E_image_tot
#?contrast_absolute = (max(E_image_total)-min(E_image_total));
#((max(E_image_total)-background)+(background-
min(E_image_total)))/((max(E_image_total)-background
#ii=ii*10;
#maxI(ii/10+1)=max(E_image_total);
#maxI_mean(ii/10+1) = sum(E_image_total*bright_filter)/sum(bright_filter);
#minI(ii/10+1)=min(E_image_total);

	 197

#minI_mean(ii/10+1) = sum(E_image_total*dark_filter)/sum(dark_filter);
#bgI(ii/10+1)=background;
 + abs(Ex_image+exp(1i*phase_delay(j))*Ex_ref_image)^2
 + abs(Ey_image+exp(1i*phase_delay(j))*Ey_ref_image)^2
+ abs(Ez_image+exp(1i*phase_delay(j))*Ez_ref_image)^2;
+ Ey_final * cos(analyzer_ra
 ImageMatrix(1:res,1:res,ff,ii) = E_image_total;
 } # ff
} # ii
#image(x*1e6,y*1e6,abs(Ex),"x (microns)","y (microns)","angle x");
#image(x*1e6,y*1e6,abs(Ey),"x (microns)","y (microns)","angle y");
#image(x*1e6,y*1e6,angle(Ex_90),"x (microns)","y (microns)","angle x-90");
#image(x*1e6,y*1e6,angle(Ex_90),"x (microns)","y (microns)","angle y-90");
reload the template file
#plot(0:10:350,[maxI,maxI],[minI,minI],[bgI,bgI]);
#exportfigure("90deg_oop_sweep");
#zStack = matrixdataset("Z_stack");
#zStack.addparameter("x_um",x*1e6);
#zStack.addparameter("y_um",y*1e6);
#zStack.addparameter("z_um",z_range*1e6);
#zStack.addparameter("f",f,"lambda_nm",lambda*1e9);
#zStack.addparameter("particleAngle",simulationAngles);
#zStack.addattribute("DIC_image",ZProjectMatrix);
#visualize(zStack);
images = matrixdataset("DIC_images");
images.addparameter("x_um",x*1e6);
images.addparameter("y_um",y*1e6);
images.addparameter("f",f,"lambda_nm",lambda*1e9);
images.addparameter("particleAngle",simulationAngles);
images.addattribute("DIC_image",ImageMatrix);
#visualize(images);
matlabsave("../"+matlabFilename,images);
matlabsave("../"+matlabFilename+"RAW",RawDataMatrix,x,y,lambda,simulationAngl
es);
#matlabsave("../"+matlabFilename+"Z",ZProjectMatrix,x,y,z_range,lambda,simula
tionAngles);

	 198

CURRICULUM VITAE

Department of Materials Science and Engineering
2220 Campus Drive, Cook Hall 2036 Office: 847-491-7553
Evanston, IL 60208 ahryn@u.northwestern.edu

EDUCATION
Northwestern University, Evanston, IL December 2016
• PhD in Materials Science and Engineering
• GPA: 3.8/4.0
• Advisor: Teri W. Odom

University of Illinois, Urbana, IL May 2010
• BS in Materials Science and Engineering with Highest Honors
• GPA: 3.8/4.0
• Coursework included: concentration in electronic materials, minor in physics

RESEARCH EXPERIENCE
Graduate Research Assistant, Northwestern University: Teri W. Odom September 2010 – Present
• Generation of nanopatterned surfaces by photo- and soft- lithography
• Simulation of plasmonic structures in FDTD software
• Fabrication and measurement of Au and Ag plasmonic nanoparticle arrays
• Development of data acquisition and analysis software
• Identification of methods to describe optical properties of Moiré nanopatterns

Production Engineering Intern, Microlink Devices: Chris Youtsey June – August 2014
• Development of procedures to achieve PEC etching of GaN
• Achievement of uniform etch rates on cm-scale areas
• Coordination with industry and academia for processing and analysis

Short Term Appointment, Argonne National Laboratory: Alex B. F. Martinson May – August 2010
• Creation and testing of dye sensitized solar cells using new materials
• Building of Edwards A306 evaporator and new Savannah S200 ALD systems

NNIN REU Intern, University of Michigan – Ann Arbor: A. John Hart June – August 2009
• Growth and analysis of large-area carbon nanotube structures
• Coating of carbon nanotubes with oxide coatings by ALD

Research Intern, Kingston Process Metallurgy: Boyd R. Davis May – August 2008
• Research of new high-κ dielectric material based on barium titanate
• Design of experiments to synthesize barium titanate films

SRP REU Intern, Argonne National Laboratory: Jeffrey W. Elam June – August 2007
• Coating of nanoparticle networks with various TCO films by ALD for OLEDs
• Characterization of oxide films via spectroscopic ellipsometry

	 199

PCRP REU Intern, Argonne National Laboratory: Jeffrey W. Elam June – August 2006
• Deposition of TCO thin films by ALD for photovoltaics
• Identification of thin film composition with XPS

TEACHING EXPERIENCE
Graduate Teaching Assistant, Northwestern University September – December 2014
• Graduate course: Physics of Nanostructures
• Designed and presented a class lecture
• Led weekly discussion sections

Graduate Teaching Assistant, Northwestern University April – June 2012
• Undergraduate 4th-year course: Physics of Materials
• Led weekly discussion and laboratory sessions

Undergraduate Teaching Assistant, University of Illinois January – May 2010
• Undergraduate 3rd-year course: Electronic Properties of Materials
• Led weekly discussion sections

PROFICIENCIES AND SKILLS
Micro/Nanofabrication: Clean room operation, photolithography, soft lithography, interference
lithography, chemical etching, reactive ion etching, atomic layer deposition, physical vapor deposition
Materials analysis: Optical microscopy, scanning electron microscopy, spectroscopic ellipsometry, UV-
vis-NIR spectroscopy
Software: MATLAB, Lumerical FDTD Solutions, LabView, ImageJ, Blender, Adobe Illustrator, Adobe
Photoshop, MS Office
Programming: MATLAB (scripting, GUI design, OOP), UNIX/ bash scripting, Lumerical scripting,
Visual C#

PUBLICATIONS AND PRESENTATIONS
• Hryn, A. J.; Culver, K. S. B.; Odom, T. W., DIC image contrast dependence on gold nanoparticle

resonance wavelength. (In preparation).

• Hryn, A. J.; Odom, T. W., Low-symmetry plasmonic crystals. (In preparation).

• Hryn, A. J.; Lubin, S. M.; Odom, T. W., Surface Plasmon Polaritons in Multiscale Gratings. (In
preparation).

• Yang, A.; Hryn, A. J.; Bourgeois, M. R.; Lee, W.-K.; Hu, J.; Schatz, G. C.; Odom, T. W.
Programmable and Reversible Plasmon Mode Engineering. Proceedings of the National Academy of
Sciences, Online (2016).

• Yang, A.; Li, Z.; Knudson, M. P.; Hryn, A. J.; Wang, W.; Aydin, K.; Odom, T. W. Unidirectional
Lasing From Template-Stripped Two-Dimensional Plasmonic Crystals. ACS Nano 9, 11582–11588
(2015).

• Wang, D.; Yang, A.; Hryn, A. J.; Schatz, G. C.; Odom, T. W. Superlattice Plasmons in Hierarchical Au
Nanoparticle Arrays. ACS Photonics 2, 1789–1794 (2015)

	 200

• Hryn, A. J.; Lubin, S. M.; Odom, T. W., Plasmonic Crystals with High and Low Symmetry. Physical
Electronics Conference, Rutgers University, New Brunswick, NJ. June 16 – 19, 2015 (Poster
presentation)

• Lubin, S. M.; Hryn, A. J.; Huntington, M . D.; Engel, C. J.; Odom, T. W. Quasiperiodic Moiré
plasmonic crystals. ACS Nano 7, 11035-11042 (2013).

• Hryn, A. J., Plasmonic Quasicrystal Lattices. American Vacuum Society 60th Symposium, Long Beach,
CA. October 28 – 31, 2013 (Oral Presentation)

• Huntington, M. D; Hryn, A. J.; Divan, R.; Odom, T. W., Nanomanufacturing for Plasmonic and
Photonic Crystals. Center for Nanoscale Materials Users Meeting, Argonne National Laboratory,
Argonne, IL. May 6 – 8, 2013 (Poster Presentation)

• Huntington, M. D.; Engel, C. J.; Hryn, A. J.; Odom, T. W. Polymer nanowrinkles with continuously
tunable wavelengths. ACS Applied Materials and Interfaces 5, 6438-6442 (2013).

• Lubin, S. M.; Zhou, W.; Hryn, A. J.; Huntington, M. D.; Odom, T. W. High-rotational symmetry
lattices fabricated by Moiré nanolithography. Nano Letters 12, 4948-4952 (2012).

• Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Hryn, A. J.; Stafslien, S.; Chisholm, B.; Shih,
C.-C.; Shih, C.-M.; Lin, S.-J.; Su, Y.-Y.; Jin, C.; Zhang, J.; Monteiro-Riviere, N. A.; Elam, J. W.,
Atomic layer deposition-based functionalization of materials for medical and environmental health
applications. Philosophical Transactions of the Royal Society A: Mathematical, Physical and
Engineering Sciences 368, 2033-2064 (2010).

• Elam, J. W.; Baker, D. A.; Hryn, A. J.; Martinson, A. B. F.; Pellin, M. J.; Hupp, J. T., Atomic layer
deposition of tin oxide films using tetrakis(dimethylamino) tin. J Vac Sci Technol A 26, 244-252 (2008).

AWARDS
CNM Users Meeting Best Student Poster 2013
Argonne National Laboratory, Argonne, IL

National Defense Science and Engineering Graduate (NDSEG) Fellowship 2012 – 2015
Northwestern University, Evanston, IL

Hierarchical Materials Cluster Program 2012
Northwestern University, Evanston, IL

NSF Graduate Research Fellowship Honorable Mention 2011
Northwestern University, Evanston, IL

Larry D. and Carol Rakers Scholarship 2009
University of Illinois, Urbana, IL

Lucille and Charles Wert Scholarship 2008
University of Illinois, Urbana, IL

Kaiser-Materials Science Engineering Scholarship 2007
University, of Illinois, Urbana, IL

Ivan Racheff Scholarship 2006
University of Illinois, Urbana, IL
	

