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ABSTRACT 

Experiment-Driven Modeling of Plasmonic Nanostructures 

Alexander John Hryn 

 

Plasmonic nanostructures can confine light at their surface in the form of surface plasmon 

polaritons (SPPs) or localized surface plasmons (LSPs) depending on their geometry. SPPs are 

excited on nano- and micropatterned surfaces, where the typical feature size is on the order of the 

wavelength of light. LSPs, on the other hand, can be excited on nanoparticles much smaller than 

the diffraction limit. In both cases, far-field optical measurements are used to infer the excited 

plasmonic modes, and theoretical models are used to verify those results. Typically, these 

theoretical models are tailored to match the experimental nanostructures in order to explain 

observed phenomena. In this thesis, I explore incorporating components of experimental 

procedures into the models to increase the accuracy of the simulated result, and to inform the 

design of future experiments. First, I examine SPPs on nanostructured metal films in the form of 

low-symmetry moiré plasmonic crystals. I created a general Bragg model to understand and predict 

the excited SPP modes in moiré plasmonic crystals based on the nanolithography masks used in 

their fabrication. This model makes use of experimental parameters such as periodicity, azimuthal 

rotation, and number of sequential exposures to predict the energies of excited SPP modes and the 

opening of plasmonic band gaps. The model is further expanded to apply to multiscale gratings, 

which have patterns that contain hierarchical periodicities: a sub-micron primary periodicity, and 

microscale superperiodicity. A new set of rules was established to determine how superlattice SPPs 

are excited, and informed development of a new fabrication technique to create superlattices with 
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multiple primary periodicities that absorb light over a wider spectral range than other plasmonic 

structures. The second half of the thesis is based on development of finite-difference time-domain 

(FDTD) simulations of plasmonic nanoparticles. I created a new technique to model pyramidal 

bowtie nanoparticle dimers based on the experimental fabrication procedure. This model was used 

to sweep various experimental parameters to identify their effect on the LSP resonance of the 

bowties. Analyzing the near-field distribution around these particles revealed the origin of a 

miscategorized LSP mode to be an out-of-plane dipole. Finally, I developed a finite-difference 

time-domain model that simulates the images generated by differential interference contrast (DIC) 

microscopy of gold nanorods. I discovered that the image contrast of gold nanorods is dependent 

on the wavelength of incident light relative to the LSP resonance wavelength. Incorporating 

experimental parameters into the DIC model allowed me to find a correlation between the electric 

near-field and far-field image contrast, uncovering the origin of this wavelength dependence. 

Additionally, the simulated DIC image patterns aid in breaking the angular degeneracy associated 

with the rotation of symmetric nanorods and can be used as training data for future machine 

learning algorithms to predict the size, shape, and orientation of nanoparticles from far-field 

images alone. 
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1.1 Introduction to Plasmonics 

The field of plasmonics studies the confinement and manipulation of electromagnetic waves 

at length scales smaller than the wavelength of free-space light. For plasmons excited in the visible 

spectrum, the confinement exists on the nanoscale, having dimensions on the order of hundreds of 

nanometers or smaller. Advancements in plasmonics have grown over the last few decades with 

parallel improvements in nanofabrication techniques. These techniques have driven the use of 

plasmonic nanostructures in a wide range of applications across multiple disciplines. In the areas 

of chemistry and physics, plasmons have enhanced photovoltaics,1-2 chemical3 and biosensing,4-6 

subwavelength focusing7-8 and imaging,9-10 and nanoscale lasing.11-12 Plasmonic properties of 

nanoparticles have extended to the rapidly expanding field of nanobiology, where they have seen 

use in the identification13 and treatment of diseases through direct heating14-15 and light triggered 

drug release.16 

 The response of a metal nanostructure when exposed to incident light, is described as a surface 

plasmon: a collective oscillation of free electrons at the interface between a metal and dielectric 

material. The nature of the surface plasmon resonance is dependent on the metal used, the 

refractive index of the dielectric environment, and the nanoscale geometry of the interface. Two 

types of surface plasmons can be excited on a metal surface: surface plasmon polaritons (SPP), 

which propagate along continuous films, and localized surface plasmons (LSP), which surround 

isolated nanoparticles.  

This introduction will provide a brief overview of the fundamentals behind both SPPs and 

LSPs. We will discuss nanofabrication techniques that enable features that support surface 

plasmons; specifically, we focus on top-down nanofabrication techniques for the formation of 
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nanostructured metal films and particle arrays. Finally, we will explore different measurement 

techniques that are used to identify and characterize plasmonic structures.   

1.1.1 Surface plasmon polaritons 

The existence of surface plasmon polaritons can be shown by solving Maxwell’s equations at 

the metal-dielectric interface.17 The solution produces SPP modes that propagate along the 

interface, and display evanescent decay into both the metal substrate and the dielectric superstrate. 

Their dispersion is given by the following equation:17  

 
 

(1.1)   

where kSPP is the wavevector of the SPP, k0 = ω / c is the wavevector of free space light, and εm 

and εd are the complex permittivity of the metal and dielectric, respectively, which are functions 

of the optical frequency ω. The dielectric material is assumed to have a negligible absorption and 

therefore its permittivity has no complex component and can be described by εd = n2, where n is 

the refractive index. Boundary conditions at the metal–dielectric interface place restrictions on the 

permittivity of the metal, specifically that Re(εm) is negative. Based on equation (1.1), the 

wavevector of the SPP will exceed that of free-space light, resulting in a momentum mismatch that 

puts the SPPs outside of the light cone and must be overcome.  

Multiple ways exist to increase the momentum of incident light to overcome the momentum 

mismatch,18 but in the context of this thesis, we will discuss the use of grating coupling. A periodic 

structure on the metal surface creates Bragg boundary conditions along the interface. Similar to 

the influence of an atomic lattice on electrons, this periodicity allows the SPP modes to be reflected, 

or folded, into the light cone. The Bragg coupling condition describes this effect: 

kSPP = k0

r
"d"m

"d + "m
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  (1.2)   

where kSPP is the wave vector of the SPP mode, G is the grating vector, and k|| is the in-plane 

wavevector of light, described by 

  (1.3)   

With the addition of the grating momentum, the contribution to kSPP from incident light with 

wavevector k is dictated by the incident angle θ. The grating vector is defined by the reciprocal 

lattice of the grating, 

 
 

(1.4)    

where a0 is the periodicity of the grating, and c1 is an integer. For SPP excitations in the visible– 

NIR spectrum, as discussed in this thesis, strong modes are generated by gold and silver metals 

when coupled to light through periodic structures with characteristic a0 ≤ 1 µm.  

1.1.2 Localized surface plasmons 

Contrary to the propagating waves of SPPs, localized surface plasmons are characterized by 

confined evanescent fields around the surface of a nanoparticle. This confinement can produce 

local electric field intensities orders of magnitude larger than the incident fields.17, 19-20 Since the 

LSP is dominated by confinement effects, tuning the resonance wavelength is achievable not only 

by changing the material21-22 or dielectric environment,23 but also by tuning the size24-26 and 

shape24, 27 of the nanoparticles. Specifically, many different nanoparticle shapes such as spheres,28 

rods,29-30 prisms,31 pyramids,32 and stars16, 33-34 have been studied.  

The plasmonic response of a metal nanoparticle is observed as the scattering and absorption of 

incident light. For spherical nanoparticles that are much smaller than the wavelength of light, the 

incident light can be treated as uniform oscillating electric field that induces a dipole moment in 

kSPP = k|| �G

k|| = k sin ✓

G = c1
2⇡

a0
k̂
x
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the nanoparticle. The nanoparticle therefore emits an oscillating, dipolar electromagnetic field in 

response to the plasmonic excitation. As with SPPs, application of Maxwell’s equations give the 

solutions for the LSP in the form of scattering and absorption cross sections:17 

 
 

(1.5)  

 
 

(1.6)  

where a is the radius of the nanoparticle. The resonance maximum exists as |εm + 2εd| approaches 

0, where εm is the complex, frequency dependent permittivity of the metal. As nanoparticles 

become larger, e.g. ~100 nm in size for interactions with visible and near-infrared (NIR) light, the 

simple dipole approximation no longer applies, and Mie’s theory in electrodynamics must be 

applied.17 Dipole absorption and scattering still provide a good approximation on resonance, and 

will be used for the plasmonic systems discussed in this thesis.  

1.2 Fabrication of nanostructures 

As described in the previous section, nanostructures with dimensions near or below the 

wavelength of light are required for excitation of surface plasmons. In the visible and NIR region 

of the spectrum, these dimensions produce a challenge in the fabrication of such structures. Top-

down fabrication is a series of processes where features are defined first in photoresist (PR) using 

lithographic techniques, followed by transfer to silicon, metal, or dielectric materials. Large-scale 

fabrication of micron-scale features typically has been achieved by photolithography, the dominant 

technique in the semiconductor industry. The increased demand to reduce feature sizes in 

accordance with Moore’s Law35 has driven major advancements in photolithography technology, 

and similarly, the increase in associated cost and accessibility. Serial patterning techniques such 
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as electron-beam lithography (EBL)36 or focused ion-beam milling (FIB),37 have been developed 

as alternatives for producing subwavelength structures, but their total patterned areas are limited 

to the microscale. 

1.2.1 Phase-shifting photolithography 

Standard photolithography relies on differences in intensity of incident light to pattern 

photoresist. For example, a quartz plate is patterned with a thin layer of chromium metal and placed 

into contact with a PR-coated silicon wafer so that the PR is exposed only through transparent 

regions of the mask. Phase-shifting photolithography (PSP) is a variation of photolithography 

where a fully transparent mask manipulates the phase of an incident light wave to create 

interference patterns that dictate the patterns formed in PR.38-40 This technique uses soft 

elastomeric photomasks based on polydimethylsiloxane (PDMS) patterned with periodic features 

that can be created by multiple methods including traditional photolithography, interference 

lithography,41 or EBL. Soft PDMS alone is unable to replicate submicron features, so composite 

masks made of a patterned hard-PDMS layer (~100 µm thick) bonded to a slab of soft PDMS are 

required.42-43 With these composite masks, PSP is capable of producing feature sizes ≤ 100 nm, 

ideal for visible/NIR excitation of surface plasmons. 

1.2.2 Large-area plasmonic substrates 

Once features in PR can be patterned on the appropriate length scale, these features can be 

transferred into periodic nanostructured films to excite SPPs,44-45 or into periodic arrays of 

nanoparticles that support LSPs.46-47 To create patterned metal films with nanoscale periodicity, 

referred to as plasmonic crystals (PCs), several additional fabrication steps are required. First, the 

photoresist pattern is transferred into the silicon substrate. This transfer relies on the deposition of 
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an etch mask, typically a thin (10 nm) metal such as Cr, followed by a chemical or physical etch 

of the underlying Si. Anisotropic chemical etching is achieved with a mixture of KOH and 

isopropanol that produces smooth, square pyramidal pits in a Si[100] wafer.48 A physical/chemical 

etch can be achieved in a reactive ion etcher (RIE) or deep RIE (DRIE) with a plasma of fluorinated 

gasses, usually SF6, CHF3, and C4F8. The profile of the etched pits can be tuned from a rounded 

bowl-like shape to pits with steep sidewalls depending on the parameters of the etch.49 After the 

Si substrates are fabricated, SPP-supporting films such as nanohole arrays or gratings can be 

generated by deposition of a plasmonic metal.  

1.2.3 Masked deposition of metal nanoparticles 

The size and shape of nanoparticles greatly affects their plasmon resonance, thus the ability to 

create nanoparticles with well-controlled geometry is desired. The simplest means to create 

nanoparticles with arbitrary shape on a flat substrate is by using EBL to create the desired pattern 

in resist followed by metal deposition and lift-off. The limitations of available patterned area, as 

with PC fabrication, has enabled advanced fabrication techniques by masked deposition through 

large-area substrates. This process relies on fabrication of large area patterns elevated on a higher 

plane than the target surface. Self-assembly of polystyrene nanospheres into ordered hexagonal 

arrays provides a nanohole array suspended above a surface that can be used as a deposition mask 

for large-area arrays of nanoparticles.26 The same processes used to fabricate PCs by phase-shifting 

photolithography can also be used to create similar, elevated hole arrays. Nanopyramids32 and 

pyramidal particle assemblies50 can be fabricated by using the Si etch mask as a deposition mask 

as well. Additionally, the plasmonic hole arrays generated by Si templates can also be repurposed 

as deposition masks to create arrays of nanodisks on other substrates.51  
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1.3 Measurements and models of surface plasmons 

1.3.1 Microscopy and spectroscopy 

Refractive and diffractive spectroscopy in the visible spectrum have existed for hundreds of 

years to analyze the absorption and emission profiles of various materials. Some of the first 

evidence of surface plasmons was observed and described by Wood52 and Lord Raleigh53-54 at the 

beginning of the 20th century by studying the diffraction of light from metallic gratings. Since 

plasmons are excited in nanostructures over specific wavelength ranges, examining the reflection, 

scattering, and transmission spectra of such structures is required to deduce the plasmonic effects. 

Minima in reflection spectra of metal films indicate the trapping of light at the surface of the 

material by the excitation of SPPs. Transmission through sub-wavelength hole arrays in thin metal 

films at specific wavelengths, however, can be increased due to the excitation and coupling of 

SPPs.55 As described above, the excitation of SPPs on metal films is dispersive in nature, and the 

wavevector kSPP is dependent on the parallel component of incident light (equation (1.3)). To 

identify the full dispersive properties of SPPs, angle-resolved spectroscopy to high angle θ is 

required. A simple geometric analysis reveals that increasing the incident angle requires increased 

sample size in the direction of the incident plane. A custom rotational stage spectrometer system, 

combined with large-area nanofabrication, enables characterization of SPP modes.5, 45, 56-57 

On the other end of the size spectrum, LSPs can be identified by the scattering spectrum from 

a single nanoparticle. Darkfield microscopy is a technique where a hollow cone of light with high 

numerical aperture (NA = n sin θ) is focused onto a sample, and light is collected with an objective 

lens having a smaller NA. The difference in NA results in the incident light not entering the 

objective lens, and only light scattered by the sample is collected. For plasmonic nanoparticles, 
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the dipolar emission of light is collected, and a spectrometer is used to identify its wavelength 

distribution. Darkfield microscopy has been used to identify of various types of nanoparticles by 

their size and shape,58 orientation,59 and material composition,59 or to track their movement in 

biological environments.60 

1.3.2 Finite-difference time-domain simulations 

The previous section discussed ways to measure the far-field response of light interacting with 

a plasmonic system. In some cases, the far-field distribution alone is insufficient to determine the 

nature of the plasmon mode, and the near-field must also be studied. Examining the near-field 

distribution around nanoparticles is difficult to achieve experimentally compared to far-field 

properties, but experimental techniques to do so are available.61 An alternative approach is to 

generate numerical simulations of plasmonic systems, where the nearfield distribution can be 

calculated. A common approach for computations of plasmonic materials is the finite-difference 

time-domain (FDTD) method. Briefly, FDTD involves discretizing materials into cells then 

solving time-dependent Maxwell’s equations for the system.62 In practice for plasmonic materials, 

a broadband light pulse is incident on a nanostructure, and the natural evolution of the plasmonic 

response is simulated. Near-field visualization can provide information on the origin of LSP modes, 

or identify coupling between neighboring nanoparticles.24, 63 

1.4 Scope of this thesis 

This dissertation discusses the excitation of surface plasmons in both continuous and isolated 

nanostructures. We focus on how the plasmonic response of these nanostructures can be better 

understood and contextualized through calculations and modeling derived by experimental 

conditions. Incorporation of the experimental processing into the model as opposed to only 
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examining the final structures can improve the overall result and build intuition about the origin 

of plasmonic modes.  

The first chapter introduces surface plasmons and their excitation on both nanostructured 

surfaces as SPPs and isolated nanoparticles as LSPs. We introduce nanofabrication processes to 

create large area plasmonic substrates; continuous metal films that support SPPs, or arrays of 

individual nanoparticles with tunable LSPs. We finally discuss the tools available to measure and 

characterize the plasmonic response of these materials. 

The next two chapters cover large-area, micro- and nanostructured metal films. In the second 

chapter, we examine the fabrication and SPP excitation on quasiperiodic PCs. We identify the 

mechanism behind moiré nanolithography (MNL) and fabricate both high-symmetry and low-

symmetry quasiperiodic geometries. We develop a universal model for the Bragg coupling 

equation directly influenced by the steps in MNL to index and characterize SPP modes. The 

development of plasmonic band gaps at the intersection of different SPP modes can also be 

understood by the new model.  

The third chapter examines the fabrication of multiscale plasmonic gratings, or plasmonic 

superlattices. We combine traditional photolithography with PSP to fabricate PCs with 

periodicities on multiple length scales. The SPP modes excited on these multiscale gratings show 

different dispersion than expected, and we determine the origin of this difference to be directly 

related to the nanofabrication conditions. 

The following two chapters discuss the modeling of individual plasmonic nanoparticles. 

Chapter four describes a FDTD model of plasmonic bowtie antennas. The model is not based on 

the final shape of the nanoparticle, but instead only relies on the metal deposition parameters used 
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in the fabrication process. This new model predicts the far-field spectra of bowtie arrays, and is 

used to determine the origin of measured plasmonic resonances based on nearfield analysis. 

The final chapter is based on differential interference contrast (DIC) microscopy of gold 

nanorods (AuNR). We develop a FDTD model of the DIC microscope that predicts the far-field 

orientation-dependent images of the AuNR. An inversion of DIC image contrast as a function of 

wavelength was discovered, and nearfield analysis through the FDTD model revealed the origin 

to be fundamental to the localized plasmon resonance.  
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CHAPTER 2: 

LOW-SYMMETRY MOIRÉ 

PLASMONIC CRYSTALS 
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2.1 Background 

Light can be concentrated below the diffraction limit as surface plasmon polaritons (SPPs),64 

when incident light and conduction band electrons of a metal couple at a metal-dielectric interface.8, 

18 SPPs cannot be excited by free-space light incident on a flat metal film due to the difference of 

in-plane momentum between the two. One method to overcome this momentum mismatch is to 

pattern the metal surface with periodic, subwavelength 1D and 2D arrays, referred to as plasmonic 

crystals (PCs).8, 18, 56, 65 The SPP resonance modes of PCs are determined by the geometry of the 

patterns and by the dielectric function of the metal and dielectric.17-18 The tunability of these 

resonances has enabled use of PCs in a broad range of applications, such as biosensing,4, 66 far-

field focusing of light,55, 67-68 and plasmonic lasing.69 Since the number and range of SPP modes 

are mostly limited by the periodicity of the subwavelength pattern, however, other potential 

applications have not been realized, such as plasmon-enhanced photovoltaics, where broadband 

light trapping and waveguide effects are desired.1 One approach to increase the spectral range of 

SPP excitations is to change the symmetry of the PC to lift degeneracies among SPP modes or to 

increase the overall number of available modes.57, 70  

Periodic arrays in PCs are restricted to 6-fold symmetry due to the crystallographic restriction 

theorem,71 so further increasing the symmetry requires quasicrystalline patterns. High-symmetry 

patterns such as the 10-fold Penrose tiling72 or 12-fold Socolar tiling73 have demonstrated 

enhanced optical transmission due to SPPs when transferred to metal nanohole arrays.74-76 These 

structures were usually fabricated using focused ion beam (FIB) milling or e-beam lithography, 

limiting their total area (< 1 mm2) and available measurement techniques. Recently, we developed 
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a new nanofabrication technique to create high-symmetry nanoscale patterns over large areas: 

moiré nanolithography (MNL).77  

MNL has been used to fabricate high-symmetry lattices from 4-fold periodic arrays to 36-fold 

quasicrystals. Using MNL, patterns with 8-fold symmetry have been transferred into large-area 

quasiperiodic PCs, which contain over double the number of modes as a 4-fold, square lattice.57 

The analysis of the SPP modes required the derivation of an quasiperiodic Bragg coupling equation 

with a modified grating vector with four components. MNL and other quasiperiodic PCs, however, 

are not limited to high-symmetry lattices. Additionally, a general form of the Bragg coupling 

equation to describe any symmetry has not been established.  

Here we show the mechanism behind MNL and create a computational tool to predict and 

identify any arbitrary quasiperiodic pattern that can be fabricated. We develop a general form of 

the Bragg coupling equation with an indexing scheme that can predict the dispersion of SPP modes 

in PCs with any symmetry. These two models are tested on the fabrication and SPP excitation in 

a 10-fold PC. Finally, we fabricate low-symmetry quasiperiodic PCs with asymmetric rotational 

symmetry and multiple independent symmetries, index their SPP modes and identify the formation 

of plasmonic band gaps at first and second order Bragg lines of the lattice.  

2.2 Results and Discussion 

2.2.1 Fabrication and modeling of quasiperiodic patterns 

Fabrication of quasiperiodic nanopatterns was achieved by moiré nanolithography (Figure 

2.1). First, a Si wafer coated with photoresist (PR) was placed in conformal contact with a 

polydimethylsiloxane (PDMS) phase-shifting lithography38-39 mask and exposed to ultraviolet 

(UV) light. For any desired number of exposures n, this process was repeated. Each iteration used  
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Figure 2.1: Fabrication scheme for moiré nanolithography. PDMS masks with different 

periodicities ai and azimuthal angles φi are put into conformal contact with a PR-coated Si wafer 

and exposed to UV light. This process is repeated for the desired number of exposures. The 

resulting pattern is developed, then transferred to a Ag plasmonic crystal. 
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a PDMS mask with periodicity ai and a relative azimuthal angle φi. Each UV exposure was 

approximately 1/n × the standard exposure time, though the optimal timing was determined 

empirically. After the multiple exposures, the pattern was developed and a thin (~10 nm) Cr layer 

was deposited followed by PR lift-off. Using the Cr as an etch mask, 50-nm pits were etched into 

the Si, and the Cr was removed to reveal a bare Si template. A silver film (160 nm) was deposited 

on the template to form the PC. The relatively thick layer of Ag was chosen to ensure it was 

optically opaque, and SPPs would only be excited on the top (Ag/air) interface, and not on the 

backside (Ag/Si interface). 

Three types of quasiperiodic patterns were fabricated by MNL: high-symmetry quasicrystal 

(single periodicity with 10-fold rotational symmetry, Figure 2.2a), low-symmetry pattern with 

non-uniform rotational symmetry (single periodicity, Figure 2.2b), and low-symmetry pattern 

with multiple periodicities (6-fold rotational symmetry, Figure 2.2c). The top row of Figure 2.2 

shows scanning electron microscopy (SEM) images of the fabricated structures. All patterns are 

quasiperiodic in nature; that is, they do not possess translational symmetry, but show rotational 

symmetry. While the high-symmetry quasicrystal (Figure 2.2a) has 10-fold rotational symmetry, 

the other two patterns have at most 2-fold rotational symmetry on any given symmetry axis (though 

they contain multiple symmetry axes). Simulated real-space images are shown below the SEM 

images and agree well with the experimental structures. The bottom row of images are reciprocal 

space representations of the quasicrystals calculated by performing a Fourier transform (FT) on 

the real-space SEM images, and clearly reveal the rotational symmetry of each lattice.  

The simulated real-space images of the different patterns were obtained by modeling MNL. 

First, the intensity profile of each partial exposure was identified using finite-difference time- 
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Figure 2.2: Quasiperiodic moiré patterns. (a) High symmetry quasicrystals are fabricated with by 

5 exposures with PDMS masks having equal periodicities a0 = 480 nm equiangular azimuthal 

rotations (Δφ = π/5 = 36°) (b) Rotationally asymmetric patterns with asymmetric exposure angles 

fabricated by 4 exposures with equal periodicities a0 = 480 nm but all angles are within a single 

quadrant (φ4 – φ1 = π/2 = 90°). (c) Multiperiodic patterns fabricated by 3 exposures with different 

periodicities a1 = 480 nm, a2 = 645 nm, a3 = 730 nm, and equiangular rotations (Δφ = π/3 = 60°). 

(a-c) SEM images (top) of the Si template or PR pattern agree with simulated structures (middle). 

FT of the SEM images reveal the reciprocal lattice of the patterns (bottom).  
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domain (FDTD) simulations (Figure 2.3a). A 2D simulation environment was used with periodic 

boundaries in the x-direction and perfectly matched layers (PML) in the y-direction to simulate an 

infinite array of lines. The simulated PDMS mask had 400-nm periodicity with 50% duty cycle 

(i.e. 200-nm features) and a feature height of 200 nm. These parameters were chosen to replicate 

closely the dimensions of experimental masks. The simulated mask was placed above regions 

representing a 120-nm layer of photoresist and a Si substrate. A plane-wave light source at a single 

wavelength λ = 405 nm illuminated the material stack from above. Finally, a 2D monitor recorded 

the electric field intensity within the PR layer, as overlaid on the PR region in Figure 2.3a. These 

phase-shifting masks are known to create periodic intensity profiles,78 and the intensity cross-

section through the center of the photoresist (dotted white line) shows a near-sinusoidal line shape 

(Figure 2.3b). The simulated intensity profile shows a slightly narrower region of high intensity 

compared to the perfectly symmetric cosine wave for this specific geometry. The mean-squared 

error between the two curves is 0.016. 

Based on the exposure intensity profile for phase-shifting photolithography for a line-array 

mask, we developed a computational tool in MATLAB to simulate the exposures in photoresist 

for MNL (Figure 2.4 — full code available in Appendix XX). This tool was designed to test how 

various MNL parameters would affect final geometric structures, and to verify the geometry after 

fabrication. The available parameters for each exposure are: the geometry of the PDMS stamp 

(line, square, or hexagonal), its periodicity a0, and the azimuthal rotation angle φ. Each line 

exposure is assumed to have a sinusoidal profile, which closely approximates experimental 

conditions. The square and hexagonal options input two lines offset by a 90° rotation, or three lines 

offset by 60° rotations, respectively. When a moiré structure is generated, the final tuning  
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Figure 2.3: FDTD Simulation of phase-shifting photolithography. (a) Simulation scheme with 

electric field data from the 2D monitor overlaid onto the PR slab. 1D cross-section monitor is 

located in the center of the PR (white dashed line). (b) Cross sectional intensity from the 1D 

monitor in (a) compared to a sinusoidal profile. 
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Figure 2.4: Graphical user interface (GUI) for the MATLAB computational program to predict 

the resultant patterns from MNL. Parameters panel (left) indicate where values are input into the 

program and the structure is displayed in the axis (right). The displayed pattern is from the 

multiperiodic quasicrystal pattern. 
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parameter is the developing percentage. Since the optical intensity in the PR layer varies 

continuously instead of with a binary on/off profile as in traditional photolithography, the 

developing time can be tuned to adjust the overall density of patterned features. The simulated 

SEM images in Figure 2.2 were created using this tool, and the displayed parameters in Figure 

2.4 were used to generate the simulated structure for the varying periodicity quasicrystal (Figure 

2.2c). 

2.2.2 SPP excitations in high-symmetry 10-fold quasiperiodic PCs  

We described quasiperiodic PCs by their reciprocal lattices generated by the FT of their SEM 

images. To determine the dispersive behavior of excited SPP modes, we used the Bragg coupling 

condition:  

  (2.1)   

where kSPP is the momentum of the SPP mode, k0 is the momentum of free space light incident on 

the surface at angle θ, and G is the grating vector. G is related to the FT of a PC and therefore its 

overall geometry by 

 
 

(2.2)   

For 2D periodic patterns, k = c1kx + c2ky, a linear combination of the 2D basis vectors in reciprocal 

space: kx and ky. The Fourier transform of the 10-fold quasiperiodic lattice, however, revealed 5 

basis vectors (Figure 2.5a). We redefined k = c1k1 + c2k2 + c3k3 + c4k4 + c5k5, where c1, c2, c3, c4, 

and c5 are integers. By defining five basis vectors, the scattering order m of each mode, indexed as 

[c1 c2 c3 c4 c5], can be determined from the sum of the absolute values of each constant (i.e. 

m = |c1| + |c2| + |c3| + |c4| + |c5|). Notably, the reciprocal lattice vectors of quasiperiodic structures 

exhibit characteristics different from periodic arrays. For example, the vector magnitudes of  

kSPP = k0 sin ✓ �G
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Figure 2.5: Reflection spectra from high-symmetry quasiperiodic PC. (a) Calculated FT with 

basis vectors ki shown. (b) Angle-resolved reflection spectra for the 10-fold quasiperiodic pattern 

taken from θ = 10° to 60° converted to dispersion diagram. (c) Predicted SPP mode dispersion 

calculated from the Bragg coupling equation for a Ag/air interface with some first order modes 

labeled. In (a,c) blue objects represent first-order modes and orange objects represent second-order 

modes.  
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higher-order reciprocal vectors can be less than those of lower-order vectors.79 In Figure 2.5a, 

[1 -1 0 0 0] is a second-order reciprocal vector; however, its magnitude is less than that of the first-

order [1 0 0 0 0] family. This property of quasiperiodic lattices leads to a denser concentration of 

reciprocal vectors than in periodic lattices. 

Angle-resolved reflectance spectroscopy revealed the propagation of SPP modes associated 

with the 10-fold lattices (Figure 2.5b). Dispersion diagrams were constructed by stitching together 

a series of angle-resolved spectra and then converting them to energy and in-plane momentum to 

depict the band structures of the PCs. Figure 2.5c shows SPP modes on the 10-fold PC at the 

Ag/air interface, where minima in intensity of the reflected light indicate the excitation of plasmon 

modes. The strongest modes visible in the dispersion diagram correspond to first order (m = 1) 

modes, and several faint second order modes are also present. In several cases, most noticeable at 

a photon energy of 2.0 eV, plasmonic band gaps form at the intersections between first and second 

order SPP modes.  

While the dispersion diagram appears complex, the dispersion of SPP modes was understood 

by considering the FT of a given PC of any symmetry. A scheme of the angle-resolved 

spectroscopy measurement shows incident light with p-polarization and momentum k incident on 

a quasiperiodic PC (Figure 2.6a). The parallel component of the momentum of the photon k|| is 

displayed along the x-axis of the dispersion diagram, while the photon energy E µ |k| is displayed 

on the y-axis. At k|| = 0, when incident light is normal to the surface, several families of degenerate 

SPP modes were identified (Figure 2.6b). The first order modes are all described by the [1 0 0 0 0] 

family, and five families of second order modes exist for the 10-fold PC. Each family was grouped 

by the angular difference of its constituent first-order vectors. For example, the ring of modes with  
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Figure 2.6: Measurement scheme for plasmonic crystals. (left) Bragg coupling equation and 

incident light path for reflection spectra. (right) Relationship between FT and SPP dispersion for 

a 10-fold high-symmetry quasicrystal. First- (blue) and second- (orange) order mode families are 

indexed. Modes with energies beyond the measurement range are faded.  
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smallest radius (lowest energy on the dispersion diagram) contains second order modes where the 

two components are separated by 4π/5 radians, such as [1 0 0 0 1] or [-1 1 0 0 0]. 

Since quasiperiodic PCs with high rotational symmetry have several times the number of SPP 

modes compared to their periodic counterparts, indexing them and teasing out the origin of 

plasmonic band gaps provides a challenge. To improve this process, a second computational tool 

was developed, also built in MATLAB (Figure 2.7 – Full code in Appendix A: ). This tool was 

used to (1) process angle-resolved spectra and create dispersion diagrams, (2) display theoretical 

SPP modes calculated by the Bragg coupling condition, and (3) identify intersections of indexed 

SPP modes to analyze the formation of plasmonic band gaps. The top left panel is used to import 

experimental data, collected as a function of wavelength and input angle, and convert them to 

functions of photon energy and wave vector. The dispersion diagram and raw data are displayed 

in the bottom center and bottom right axes, respectively. The bottom left panel accepts input 

variables to the Bragg coupling equation, then overlays the expected SPP modes onto the 

dispersion diagram and wavelength–angle axes. SPP modes at the Ag/air (n = 1) interface for a 

10-fold symmetry lattice with periodicity a0 = 480 nm are currently displayed. Additionally, the 

expected FT is displayed in the top right axis. Selecting any SPP mode would display its index 

[c1 … cn] in the center of the window so that intersections between different modes can be 

identified. For example, the [-1 0 0 0 0] mode of the 10-fold PC is currently selected in Figure 2.7 

and displayed on bold on the dispersion diagram and simulated FT. 

2.2.3 Reducing SPP degeneracy with low-symmetry quasiperiodic lattices 

One method to reduce the symmetry in quasiperiodic lattices is by decreasing the angular 

degeneracy. We analyzed the angle-resolved reflection spectra of the quasiperiodic pattern with  
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Figure 2.7: GUI for MATLAB program to process reflection spectra and calculate SPP mode 

dispersion. Import data panel is where the raw reflection spectra are input to the program. SPP 

modes panel is used to provide parameters to the Bragg coupling equation for SPP mode 

calculation. Axes (bottom, center and right) display spectra and modes in E–k or λ–θ format. 

Fourier transform axes (top right) displays the reciprocal lattice of the given structure. First- and 

second-order modes are colored blue and orange respectively. 
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asymmetric angles (Figure 2.8). The simulated FT reflected the angle preference of the lattice 

towards 45°, though the first order SPP modes are still distributed equally across the entire 

spectrum, similar to the high-symmetry quasicrystal (Figure 2.8b). The direction of k|| in equation 

(2.1) is aligned to the x-axis and therefore mirror symmetry across this axis is required when 

calculating the excited SPP modes. The FT of the lattice reveals that for positive k1, k2, and k3, kx 

is positive, while for negative k1, k2, and k3, kx is negative (Figure 2.8a). Therefore, the rotational 

degeneracy of the SPP modes was removed with the exception of ± k4, where kx = 0.  

2.2.4 Multi-periodic quasicrystals and a general Bragg model 

Removing the angular symmetry from the SPP dispersion preserved the broad spectral range 

of first-order SPP excitations at large wavevector, but near normal incidence (k|| = 0) the SPP 

modes remained degenerate as illustrated in Figure 2.6b due to the single periodicity of the PDMS 

mask used to fabricate the pattern. To remove this final degeneracy, we fabricated quasiperiodic 

patterns with three (symmetric) exposure angles, but with PDMS masks containing different 

periodicities ai (Figure 2.2c). The FT reflects the varying periodicities as different magnitudes of 

primary vectors k1, k2, and k3 (Figure 2.9a). With the removal of periodicity and azimuthal 

symmetry in these quasicrystal patterns, we developed a general form of grating vector G for the 

Bragg coupling condition.  

 
 

(2.3)   

 
 

(2.4)   

In the general model, each basis vector ki includes unique periodicity ai and azimuthal angle φi 

terms. Importantly, we established a direct link between G and the MNL process, where each set  
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Figure 2.8: Reflection spectra from quasiperiodic PC with asymmetric rotation angles. (a) 

Calculated FT with basis vectors ki shown. (b) Angle-resolved reflection spectra taken from θ = 

10° to 80° converted to dispersion diagram. (c) Predicted SPP mode dispersion calculated from 

the Bragg coupling equation for a Ag/air interface with some first order modes labeled. In (a,c) 

blue objects represent first-order modes and orange objects represent second-order modes. 
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Figure 2.9: Reflection spectra from a multiperiodic patterned PC. (a) Calculated FT with basis 

vectors ki shown. (b) Angle-resolved reflection spectra taken from θ = 10° to 80° converted to 

dispersion diagram. (c) Predicted SPP mode dispersion calculated from the Bragg coupling 

equation for a Ag/air interface with some first order modes labeled. In (a,c) blue objects represent 

first-order modes and orange objects represent second-order modes. 
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of (ai, φi) directly corresponds to one MNL mask exposure. First-order SPP modes were observed 

over a wide range of energies, and intersecting at nonzero wavevector (Figure 2.9b). A similar 

indexing scheme was used to describe the SPP modes, and the predicted dispersion using equation 

(2.3) agrees with the experimentally spectra (Figure 2.9c). The [-1 0 0] mode based on the 480-nm 

periodicity shows the same dispersion as in the previous quasiperiodic lattices. The [0 ±1 0] and 

[0 0 ±1] modes, however, are at lower energies due to the increase in magnitudes of k2, and k3 

respectively. While, in general, the second order (m = 2) modes were weaker than in previous 

structures, several band gaps were observed at intersections between them and first-order modes. 

2.2.5 Plasmonic band gaps in low-symmetry PCs 

A closer examination of the dispersion diagram of the multiperiodic quasicrystalline PC 

revealed the origin of several band gaps (Figure 2.10). We demonstrated that the origin of 

plasmonic band gaps at first and second-order Bragg lines is not only true for high-symmetry 

quasicrystals,57 but also applies to other, low-symmetry patterns. Band gaps formed at I and II are 

second-order crossings between two first-order modes. In these cases, the strong [-1 0 0] mode 

from the 480-nm periodicity formed band gaps with the first-order modes from each of the other 

two periodicities. These band gaps opened at the (-1 1 0) and (-1 0 -1) Bragg lines respectively. 

Band gap III occurred at the first order Bragg line (-1 0 0) between the [0 0 -1] and [-1 0 -1] modes. 

This gap was the largest, likely due to the strength of [-1 0 0] mode, where the Bragg reflection 

takes place. The large gap for I, even though it occurred at a second order Bragg line, was likely 

enhanced due to the intersection between the [0 1 -1] and [0 1 0] modes (not shown) at the same 

E-k position. Finally, a second order band gap between the first-order [0 0 1] and unobservable 

third-order [0 -1 2] modes took place at IV. Again, the intersection of several SPP modes at similar  
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Figure 2.10: Plasmonic band gaps in multiperiodic patterned PC. (center) Zoom of dispersion 

diagram with overlaid relevant SPP modes. Numbered circles highlight plasmonic band gaps. (left, 

right) FT of the pattern with modes and Bragg lines highlighted for specific band gaps. Arrows 

represent direction and magnitude of k|| and kSPP for the given E–k coordinates. 
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E-k coordinates likely enhanced the size of band gap, since the third-order mode was relatively 

weak. 

2.3 Experimental methods 

2.3.1 Lithography procedure for MNL 

To create quasicrystalline moiré patterns, a PDMS photomask with 1D lines was placed into 

conformal contact with positive-tone, g-line photoresist (Shipley S1805) diluted with 

poly(ethylene glycol) methyl ethyl acrylate in a 1:2 ratio by volume (~120 nm thick) on a Si [100] 

wafer and exposed to UV light in a home-built narrow-band LED light source.80 After the exposure 

through the PDMS photomask, additional exposures were done with the same or alternate 

photomasks at various azimuthal rotation angles.  The alignment of the PDMS masks was typically 

within 2° of the target angle. The exposed PR was developed (1:5 dilution of Microposit 351 

developer) and resulted in arrays of PR posts on a Si substrate. 

2.3.2 FDTD simulations of phase-shifting lithography 

FDTD simulations were performed with commercial software (FDTD Solutions, Lumerical 

Inc.). A 2D simulation environment was used with periodic boundaries in the x-direction and PML 

boundaries in the y-direction. The PDMS material was represented as a uniform dielectric constant 

of n = 1.4.  The refractive index of the PR was modeled as a Cauchy material with coefficients 

provided by the manufacturer. Neither the absorption of PR nor a change in refractive index with 

exposure to UV light were considered. A mesh accuracy level of 5 was used for the simulation. A 

2D monitor recorded the electric field in the entire PR region, and a 1D monitor recorded the 

electric field only through the center of the PR. A plane wave source with free-space wavelength 

λ = 405 nm and polarization in the x-direction illuminated the sample from within the PDMS layer. 
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2.3.3 Pattern transfer to quasiperiodic PCs 

To clear away residual photoresist, the samples were exposed to an O2 plasma in an RIE (50 

sccm, 300 mtorr, 30 watts) for ~15 s. A 10-nm Cr sacrificial layer was deposited onto the substrate 

through line-of-sight physical vapor electron beam deposition with a Kurt J. Lesker PVD 75. The 

PR posts were lifted off with Microposit Remover 1165 leaving holes of bare Si in the Cr layer. 

Trenches with depths of ~50 nm were etched anisotropically using a C4F8/SF6 co-flow recipe with 

a STS LpX Pegasus Deep Reactive Ion Etcher. The Cr layer was removed with Cr etchant 

(Transene), and 160 nm of Ag were deposited in the PVD-75 onto the Si grating to create the 

plasmonic crystals. 

2.3.4 Angle-resolved reflectance spectroscopy 

Zero-order reflectance spectra were collected from θ = 10° to 60 or 80° in 1° or 0.5° increments 

using an automated, self-designed LightField software add-in (Princeton Instruments). Collimated, 

unpolarized white light from a halogen lamp (100 W) illuminated the sample with a spot size of 

2 mm. The reflected light was coupled into a bundled optical fiber connected to a Princeton 

Instruments Acton SP2500 spectrometer with a PIXIS:400 CCD detector. A linear interpolation 

algorithm in Matlab converted the measured optical data — wavelength (λ) and excitation angle 

(θ) — into dispersion diagrams — photon energy (Ephoton) and in-plane wavevector of light (k||) — 

using: Ephoton = hc/λ and k|| = (2π/λ) sin θ. 

2.4 Summary 

We have shown the fabrication of high- and low-symmetry moiré plasmonic crystals and 

analyzed the excitation of SPP modes on their surface. We modeled the nanofabrication technique 

MNL, and developed a computational tool to visualize the resultant quasiperiodic patterns. We 
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developed a general form of the Bragg coupling equation that incorporates experimental inputs 

from MNL and can describe the SPP modes on quasiperiodic PCs. Finally, we developed a general 

indexing scheme for the SPP modes and identified the origin of plasmonic band gaps at first- and 

second-order Bragg lines in low symmetry quasicrystalline patterns. 
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CHAPTER 3: 

SURFACE PLASMON POLARITONS 

ON MULTISCALE GRATINGS 

  



	 56 

3.1 Background 

Surface plasmons can be excited on the surface of a metal in the form of surface plasmon 

polaritons (SPPs), where incident light is trapped at the metal-dielectric interface through the 

assistance of submicron periodic patterns.8, 18 A momentum mismatch between free-space light 

and surface plasmons can be overcome by introducing this submicron periodic pattern to the metal 

surface. The SPP resonance wavelength is then dictated by the periodicity of the surface pattern.55 

SPPs typically show narrow resonances due to the strong confinement of localized electric fields. 

This localization can be beneficial for applications in photovoltaics,1, 81 refractive-index-based 

biosensing,4, 6 and plasmonic lasing.11, 69 One challenge is to maintain narrow resonances, while 

covering a large portion of the visible light spectrum. Since periodic nanopatterning is required for 

SPP excitation, one approach to expand the available wavelength range is to change the symmetry 

of the pattern. Low-symmetry lattices,70 quasicrystal geometries,57, 82 and superlattices83-84 have 

been shown to increase the number of available SPP modes while maintaining individual narrow 

resonances.  

Photonic and plasmonic superlattices contain hierarchical periodicities where the primary 

periodicity is near the wavelength of light (e.g. 400 nm), and the superperiodicity is larger by at 

least an order of magnitude (e.g. 10 µm). Nanowire superlattices have been studied to determine 

the effect of the hierarchical periodicity on the excited optical modes.85 These superlattices, 

fabricated by e-beam lithography (EBL), were commensurate in nature, i.e. each super period 

contained the same number and arrangement of sub-units, resulting in the conclusion that the 

primary periodicity selected certain high-order modes of the superperiodicity to be excited. Due 

to the limitations of EBL, these patterns covered small areas (100 × 100 µm2), restricting the 
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optical measurements to be done (e.g. off-angle reflection). A second variety of superlattices 

fabricated by multiscale patterning44 are incommensurate in nature, yet appeared to show similar 

optical properties.83, 86 The SPP modes excited in these multiscale arrays showed a strong 

resonance related to the primary periodicity and so-called satellite modes influenced by the 

superperiodicity. While the satellite modes are based on SPPs folded into the Brillouin zones of 

the superperiodicity, the explicit relationship between the primary and superperiodicities and its 

effect on SPPs is not fully understood. 

Here we show fabrication of multiscale gratings that support SPPs over a broad range in the 

visible spectrum. We develop and indexing model to relate the primary and superperiodicity SPP 

modes based on the reciprocal-space representation of the arrays. To validate the model, we 

systematically show the influence of primary and superperiodicity on the excited SPP modes. We 

identify that the origin of excited SPPs in multiscale arrays in fundamentally different from those 

in commensurate superlattices. Finally, we expand multiscale patterning with a modified litho-

etch-litho-etch (LELE) technique to create multiscale grating with two independent primary 

periodicities and analyze the SPP modes on these patterns. 

3.2 Results and Discussion 

3.2.1 Fabrication of multiscale arrays 

Multiscale gratings were fabricated over large areas (2 cm × 2 cm) with a double-exposure 

lithography + etch (LE) technique (Figure 3.1). First, multiscale arrays of photoresist (PR) lines 

were fabricated on a Si wafer by photolithography with two exposures and development followed 

by Si etch and Ag deposition. The first exposure was through a PDMS phase-shifting mask38, 87 

with primary periodicity a0, and the second exposure was through a standard contact mask with  
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Figure 3.1: Fabrication scheme for multiscale superlattices. Multiscale superlattices use two 

consecutive exposures of phase shifting lithography and traditional contact lithography for the 

primary and superperiodicities respectively. After the first round of etching, the process can be 

repeated to fabricate doubly patterned superlattices.  
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superperiodicity A0 and an azimuthal rotation of φ relative to the first mask. After development, a 

thin layer of Cr was deposited as an etch mask, and the pattern was transferred to 50-nm deep 

grooves in Si. Removal of the Cr layer left a bare Si template. A second iteration of LE can be 

done on this existing template to create double-patterned superlattices with two different primary 

periodicities, which will be discussed in detail later in the chapter. Finally, 160 nm of Ag was 

deposited on the Si template to create the plasmonic crystal. The relatively thick layer of Ag was 

chosen to ensure it was optically opaque, and excited SPPs would only exist on the top (Ag/air) 

interface, not on the backside (Ag/Si interface). Importantly, since the two exposures are 

independent of each other, the resulting superlattice is incommensurate except in the case where 

A0 is an integer multiple of a0 and perfect alignment yields φ = 0°. Each of the two periodicities, 

however, still has long range order as dictated by the initial lithography masks. 

This process was used to create a multiscale grating with primary periodicity a0 = 400 nm and 

superperiodicity A0 = 10 µm (Figure 3.2a). The duty cycle of the superperiodicity lithography-

mask was 50% resulting in patterned regions with the primary periodicity and unpatterned regions 

having equal areas. A Fourier transform (FT) was performed on this scanning electron microscopy 

(SEM) image to generate the reciprocal space representation of the structure (Figure 3.2b). The 

FT shows two three equally spaced groupings of peaks, where the peaks within each group also 

have a regular, smaller spacing. Reciprocal lattices are used to identify plasmonic crystals such 

that each peak in the FT can be represented by a grating vector G: 

 
 

(3.1)   G =
nX

i=1

ciki
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Figure 3.2: 1D Superlattice. A SEM (a) of a 1D plasmonic superlattice and (b) its Fourier 

transform. (c) The Bragg peaks in the Fourier transform can be indexed as combinations of the 

primary periodicity (a0) and superperiodicity (A0)  
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where |k| = 2π / a0 describes the periodicity of the lattice. In the case of plasmonic superlattices, 

we define G as 

  (3.2)   

where i and J are integers, |k| = 2π / a0 and |K| = 2π / A0. For the discussion of multiscale gratings, 

we use the notation that lower-case letters represent a property of the primary periodicity, while 

upper-case letters are related to the superperiodicity. Based on the equation for G, we were able to 

identify and index each of the peaks in the reciprocal lattice. We indexed each of the peaks with 

the notation iJ (e.g. –11) and defined the order of each mode m=|i|+|J| — e.g. –11 is 2nd order 

(m=2). Figure 3.2c shows how the peaks for the multiscale grating are identified and indexed 

according to the above rules. The peaks corresponding to the primary periodicity (i0) are 

surrounded by families of satellite peaks. 

3.2.2 SPP excitations on 1D plasmonic superlattices 

The excitation of SPPs on a nanostructured metal surface is given by the Bragg coupling 

condition88 

 
 

(3.3)   

where kSPP is the momentum of the SPP mode, k0 is the momentum of free space light incident on 

the surface at angle θ, G is the grating vector, and εm and εd are the complex permittivity of the 

metal and dielectric, respectively. Zero-order reflection spectra of a 400-nm/10-µm pattern with 

an angle of incidence θ = 20° showed several SPP modes, indicated as reflection minima (Figure 

3.3a). Applying the grating vector from equation (3.2) into equation (3.3), we identified the 

strongest modes as –10 and –11. The –10 mode, that is, the mode that only has a contribution from 

the primary periodicity, is consistent with the SPP mode of an infinite array with the same  

G = ik+ J K
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Figure 3.3: Reflection spectra of superlattices with indexed SPP modes. Reflection spectrum 

(θ = 20°) for a plasmonic superlattice with a0 = 400 nm and A0 = 10 µm and for an infinite 400-nm 

array (inset) (b) Dispersion diagram with the –10 SPP mode overlaid. (c) Zoom of the dispersion 

diagram in (b, dotted box) with SPP modes shown and labeled. The dashed white line indicates 

the light line (i.e. θ = 90°) 
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periodicity, a0 = 400 nm (Figure 3.3a inset). Angle-resolved reflection spectra over a large angle 

range (5–80°) were stitched together into dispersion diagrams according to  

 
 

(3.4)   

 
 

(3.5)   

to analyze the dispersive properties of the SPP modes (Figure 3.3b). The expected –10 SPP mode 

as calculated from equation (3.3) is indicated on the dispersion diagram. The calculated and 

experimental modes overlap well at high wavevector (large θ), but near k|| = 0, band banding can 

be observed.89 Due to the symmetry of the 1D superlattice, the energy spacing between the satellite 

modes remains constant at ΔE = 0.11, consistent with the magnitude |K|. 

The most prominent SPP modes for this plasmonic superlattice were evident at low energy and 

high wavevector (Figure 3.3c). For the –1J family of modes, several high order modes were visible 

up to –16, a seventh order (m = 7) mode. Additionally, while the –1J modes progressed from upper 

left to bottom right, there are sharp SPP resonances near the light line progressing from bottom 

left, to upper right. These SPP modes are part of the 0J family, i.e. their grating vector only has 

contributions from the superperiodicity. Several of the intersections between the –1J and 0J modes 

resulted in plasmonic band gaps, including those of high orders (e.g. 01 and –15). Previous studies 

on formation of plasmonic band gaps on high symmetry plasmonic crystals concluded that band 

gaps would only be observed if the two intersecting modes were within two orders of each other 

(i.e. Δm < 2).57 The SPPs in these plasmonic superlattices clearly go beyond this restriction, 

showing band gaps up to Δm = 5. These band gaps, including the observation of the 0J modes, 

k|| =
2⇡

�
sin ✓

E =
hc
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were only possible due to the large-scale fabrication techniques that enable large measurement 

areas at high angles of incidence (θ > 60°). 

3.2.3 Effects of alternate superperiodicity on SPPs 

The flexibility of multiscale patterning allowed for the modification of various fabrication 

parameters to create different superlattice structures and better understand the relationship between 

the primary periodicity and superperiodicity in the excitation of SPP modes. Using contact 

lithography masks with different periodicities A0, three additional superlattices were fabricated 

with the same primary periodicity a0 = 400 nm, but with varying superperiodicity A0 = 20 µm, 30 

µm, and 50 µm (Figure 3.4). All structures maintained the 50% duty cycle for the superperiodicity, 

and therefore the patterned regions increased in size with increasing A0. Slight misalignment in the 

azimuthal angle φ can be identified at the edges of the patterned regions, where some of the 

individual lines are cut-off. 

High-angle (θ = 65°) reflection spectra for all four of the plasmonic superlattices are shown in 

Figure 3.5. Since each superlattice had the same primary periodicity, the location of the –10 mode 

in each spectrum was at the same wavelength. Meanwhile, as the superperiodicity increased, the 

corresponding value of K decreased, thereby decreasing G according to equation (3.2) and 

decreasing the difference in wavelength between the resonance peaks. As with the spectra for the 

A0 = 10 µm superlattice, several high order modes were observable at these high angles of 

incidence. The A0 = 50 µm superlattice demonstrated the highest order SPP mode (–19, m = 10) 

ever reported for nanostructured metal films. The highest order mode observed before this work 

was m = 4 in a Au/Si system.90-91  
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Figure 3.4: Multiscale gratings with varying superperiodicity. SEM images of Si templates with 

primary periodicity a0 = 400 nm and A0 = 10 µm, 20 µm, 30 µm, and 50 µm (top to bottom). 
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Figure 3.5: Reflection spectra of multiscale gratings with varying superperiodicity. Reflection 

spectra (θ = 65°) of multiscale gratings with a0 = 400 nm and A0 = 10, 20, 30, and 50 µm (bottom 

to top). SPP modes are labeled according to their index. 
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The full dispersion diagrams clearly show a decrease in ΔE with increasing periodicity (Figure 

3.6), and share similar features with the spectra of the 10-µm superlattice in Figure 3.3. For each 

superperiodicity, ΔE between the individual satellite modes remains constant. The SPPs for each 

substrate also showed similar degrees of band bending at k|| = 0 indicating that the band banding 

is not influenced by the microscale periodicity, but is likely a result of the nanoscale geometry. 

Finally, each dispersion diagram showed several high order satellite modes at high angles, as 

shown in Figure 3.5, with clear bad gap formation at high wavevector and low energies where the 

–1J and 0J modes intersect. Remarkably, these high order modes and band gaps were prevalent 

even at the largest superperiodicity (A0 = 50 µm). The existence of strong SPPs influenced by this 

large periodicity can be better appreciated in the context of small area fabrication by EBL. In both 

experiments and simulations of plasmonic crystals, unit cells ≤ 50 µm are often used to mimic 

isolated structures. The strong coupling of SPP modes over 50-µm superperiodicity, however, 

indicated that SPPs can still interact across these unit cell dimensions, and care should be taken to 

exclude any superperiodicity effects in future work.  

3.2.4 Incommensurate multiscale arrays with varying azimuthal angle. 

We fabricated multiscale gratings with larger primary periodicity (a0 = 475 nm) such that the 

10-µm superperiodicity is explicitly not an integer multiple. A SEM image of the structure and its 

FT are shown in Figure 3.7a. As with the 400-nm primary periodicity superlattice, the FT shows 

groupings of peaks, where the spacing between satellite peaks is the based on the 10-µm 

periodicity as those in Figure 3.2, but the larger spacing between primary peaks was decreased 

due to the decrease (increase) in |k| (a0). This decrease in k was also observed in the primary –10 

SPP mode excitation occurring at lower energies in Figure 3.7b compared to in Figure 3.3b (e.g.  
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Figure 3.6: Dispersion diagrams of multiscale gratings with varying superperiodicity. Multiscale 

gratings have primary periodicity a0 = 400 nm and A0 = 10, 20, 30, and 50 µm as indicated. 
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Figure 3.7: Multiscale gratings with varying azimuthal angles (φ). (a,c,e) SEM (top) and FT 

(bottom) for superlattices with a0 = 475 nm and A0 = 10 µm, and φ = 0°, 45° and 90° respectively. 

(b,d,f) Dispersion diagrams of the above structures showing the decrease in ΔE for the satellite 

peaks with increasing φ. 
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for the –10 mode at k|| = 4 µm-1, E400 nm = 2.17 eV while E475 nm = 1.77 eV). The overall reduction 

in excitation photon energy also allowed a second-order primary periodicity mode and its satellite 

modes (–2J) to be visible at high wavevectors and high energy. While the 01 mode was not as 

prominent in this sample as in the 400-nm superlattice, the opening of band gaps between low-

order 0J modes and –1J modes was still apparent at low energies and high wavevector. Band gaps 

also appeared at high energies between 0J modes and –2J modes.  

While the two periodicities are incommensurate even when aligned at φ = 0°, increasing the 

relative azimuthal angle φ between the two lithography masks still affected the SPP mode 

excitation. Figure 3.7c shows the SEM and FT of a multiscale array with the same periodicities 

as Figure 3.7a, but with an azimuthal offset of φ = 45°. The orientation was such that the primary 

periodicity maintained the same alignment, while the superperiodicity was rotated. This rotation 

is reflected in the FT where the satellite peaks maintained the same spacing (i.e. |K| did not change), 

but the orientation of the peaks had rotated. The alignment and spacing of the primary periodicity 

spacing |k| was unchanged. The dispersion diagram of the 45° superlattice (Figure 3.7d) shows 

identical dispersive properties for the –10 mode, but the spacing between the satellite modes was 

reduced. This decrease existed because the direction of k|| is defined as the +kx direction. Even 

though |K| remained unchanged, the projection along kx is reduced according to cos(φ). For φ = 45°, 

therefore, the spacing between the satellite modes was reduced by a factor of ~cos(45°) = 0.707, 

while the dispersion remained parallel to the –10 mode. This effect of φ on the SPP modes was 

direct evidence that the behavior of SPPs in these incommensurate multiscale arrays is different 

from the optical modes of EBL-fabricated nanowire superlattices. If the primary periodicity 

selected which higher order superperiodicity modes were excited, then the dispersion diagram 
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would look very different. Figure 3.8 shows the calculated high-order modes of the 

superperiodicity alone at φ = 45° (red lines), which display different E–k dispersion than the 

observed satellite modes. Finally, multiscale gratings with φ = 90° were fabricated, as shown in 

Figure 3.7e. The fabrication of this superlattice had a slight misalignment, which is clearly visible 

in the FT as weak modes off-axis from the direction of the satellite peaks. These artifacts are due 

to pixilation in the SEM image being misaligned to the orientation of the primary periodicity. The 

dispersion diagram of this structure shows only one strong first-order resonance, and a second-

order resonance at higher energy (Figure 3.7f). Since the spacing between satellite peaks was 

nearly reduced to ΔE = 0, all the –1J modes were overlapped on the dispersion diagram and appear 

to be a single mode. Additionally, the 0J modes were also no longer visible at high wavevector due 

to their overlap with the fundamental 00 SPP mode, which exists beyond the light line. 

3.2.5 Double periodicity superlattices 

We took advantage of the 50% duty cycle of the superperiodicity to fabricate multiscale arrays 

with two independent superperiodicities. As stated earlier in the chapter, the Si template of a single 

multiscale array can be used in another phase of lithography + etch (Figure 3.1, right). This 

technique is similar to the standard LELE process in the semiconductor industry, but with modified 

double-exposure conditions during the litho steps. After reapplication of PR, exposure through a 

second PDMS mask with different periodicity (b0) was done. The second exposure used the same 

mask as in the first LE phase, and the alignment was inverted such that the unpatterned areas were 

blocked to preserve the second periodicity in these regions. After an additional round of Cr 

deposition, lift-off, and Si etch, the doubly patterned superlattice template was completed. A SEM 

image of this template is shown in Figure 3.9a where the two primary periodicities were  
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Figure 3.8: Comparison between high-order and satellite SPP modes. Dispersion diagram of a 

multiscale grating with a0 = 475 nm, A0 = 10 µm, and φ = 45°. Overlay (red lines) shows the 

expected dispersion of high order SPP modes from the superperiodicity alone 
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Figure 3.9: Multiscale gratings with two primary periodicities. (a) SEM of the multiscale array 

with a0 = 400 nm, b0 = 475 nm, A0 = 10 µm. (b) FT and (c) indexing scheme of the structure 

showing each primary periodicity with its own set of satellite peaks. (d) Dispersion diagram of the 

array with SPP modes from the primary periodicities only as overlay 
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a0 = 400 nm, and b0 = 475 nm with a superperiodicity of A0 = 10 µm. Good alignment of the 

contact lithography mask resulted in no overlap between the two regions. Over-exposure of the 

superperiodicity mask, however, resulted in a duty cycle < 50% and therefore some narrow areas 

remained unpatterned. The FT shows two families of primary periodicity peaks with identical 

satellite modes (Figure 3.9b). The spacing of the primary periodicities is described by |ka| = 2π / a0 

and |kb| = 2π / b0 with |ka| > |kb|. A zoom-out view of the FT is displayed in Figure 3.10 where the 

different spacings of |ka| and |kb| are apparent. A slight misalignment between the two PDMS 

masks was evident by an angular offset between the ka and kb groupings of peaks. Since the 

patterns shared the same superperiodicity, the satellite peaks were aligned even for high orders. 

The inclusion of the second primary periodicity modifies the equation of G:  

  (3.6)   

and provides a modified indexing scheme for the modes: (h, i)J (Figure 3.9c).  

The dispersion diagram shows excitation of both first order modes of the primary periodicity 

(–1, 0)0 and (0, –1)0 and their associated satellite modes (Figure 3.9d). The solid lines indicate the 

expected dispersion according to equation (3.6), which agrees well at high wavevector and deviates 

from the experimental spectra at low wavevector due to band bending. The energy spacing ΔE of 

the satellite modes around each (h,i)0 mode was constant and consistent with that of single 

periodicity pattern (Figure 3.3b) since it is based on the same value of |K|. One key difference 

between the (0, –1)J and (–1, 0)J modes is a decreased intensity for the SPP modes from the 475-nm 

periodicity. One cause of this difference could be the fewer number of units within a given 

superperiodicity compared to the 400-nm area85. According to Figure 3.9a, there are 12 units of 

400-nm periodicity patterns while, only 8 units of the 475-nm periodicity pattern.  

G = (hka + ikb) + J K
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Figure 3.10: Wide view FT for double patterned superlattices. The groupings for the two primary 

periodicities a0 = 400 nm and b0 = 475 nm are identified. The slight misalignment between the two 

periodicities is evident especially at high orders. The satellite modes are all aligned however, since 

there is only one superperiodicity A0 = 10 µm. 
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3.3 Experimental methods 

3.3.1 Lithography procedure for multiscale arrays 

To create periodic 1D photoresist patterns, a PDMS photomask with a linear feature-to-feature 

lattice spacing of 400 or 475 nm was placed into conformal contact with positive-tone, g-line 

photoresist (Shipley S1805) diluted with poly(ethylene glycol) methyl ethyl acrylate in a 1:2 ratio 

by volume (~120 nm thick) on a Si [100] wafer and exposed to a broadband Hg-vapor light source 

(SUSS MicroTec MA6) for 2.5 s at a power density of 11 mW/cm2. After the exposure with a 

PDMS photomask, a quartz photomask was placed into low-vacuum contact with the PR-coated 

wafer and exposed for 2.5 s. This hard mask consisted of four different periodicities (10 µm, 20 

µm, 30 µm, 50 µm) with 50% duty cycle of transparent and opaque linear regions. For these 

superlattices, the direction of the submicron pattern was manually aligned to be the desired 

azimuthal angle φ. The alignment accuracy was generally within 1°. 

3.3.2 Pattern transfer to plasmonic superlattice crystals 

The exposed PR was developed (1:5 dilution of Microposit 351 developer in water) and 

resulted in arrays of PR lines on a Si substrate. In order to clear away excess photoresist, the 

samples were exposed to an O2 plasma in an Samco reactive ion etcher (50 sccm, 300 mtorr, 30 

watts) for ~15 s. A 10-nm Cr sacrificial layer was deposited onto the substrate through line-of-

sight physical vapor electron beam deposition with a Kurt J. Lesker PVD 75. The PR was lifted 

off with Microposit Remover 1165 leaving lines of bare Si exposed in the Cr layer. Trenches with 

depths of ~50 nm were etched anisotropically using a C4F8/SF6 gas co-flow recipe in a STS LpX 

Pegasus Deep Reactive Ion Etcher. The Cr layer was removed, and 160 nm of Ag were deposited 

in the PVD 75 onto the Si template. 
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3.3.3 Angle-resolved reflectance spectroscopy 

Zero-order reflectance spectra were collected from θ = 5° to 80° in 0.5° increments using an 

automated, self-designed LightField software add-in (Princeton Instruments). Collimated, 

unpolarized white light from a halogen lamp (100 W) illuminated the sample with a spot size of 2 

mm. The reflected light was coupled into a bundled optical fiber connected to a Princeton 

Instruments Acton SP2500 spectrometer with a PIXIS:400 CCD detector. A linear interpolation 

algorithm in MATLAB converted the measured optical data – wavelength (λ) and excitation angle 

(θ) – into dispersion diagrams as photon energy (Ephoton) and in-plane wavevector of light (k||). 

3.4 Summary 

We have shown the fabrication of plasmonic multiscale gratings and investigated their optical 

properties. The addition of a superperiodicity to a plasmonic crystal generated satellite SPP modes 

that were explained by increasing the components of the grating vector G of the Bragg coupling 

equation. These terms are independent unlike in photonic superlattices, and varying the primary 

periodicity, superperiodicity or relative orientation between them altered the dispersion of SPP 

modes. Finally, we combined multiscale patterning with the LELE technique to fabricate 

superlattices with two primary periodicities. The inclusion of a superperiodicity and further a 

second primary periodicity to a plasmonic crystal greatly increased the spectral bandwidth 

available for exciting SPP modes in applications requiring broadband light trapping from 

photovoltaics to plasmonic lasing. 
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CHAPTER 4: 

PROCESS-BASED MODELS OF 

PLASMONIC BOWTIE ANTENNAS 
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4.1 Background 

Plasmonic nanostructures demonstrate large enhancement of optical fields in confined 

volumes.19 Assemblies of particles such as dimers can further increase the local field intensity by 

orders of magnitude due to near-field interactions between the nanoparticles at their localized 

surface plasmon (LSP) resonance wavelength. These high fields can show non-linear behavior of 

the nanoparticles,92-93 and have applications in sensing,94 surface enhanced Raman spectroscopy,95 

and plasmonic lasing.96 Understanding the origins of LSP modes and high field enhancement 

requires knowledge of the near-field distribution for a given structure. While the near-field can be 

measured directly, finite-difference time-domain (FDTD) simulations of the structures are a more 

appealing approach to visualize local fields due to their speed and ease of use.  

FDTD simulations of plasmonic nanoparticles determine the full electromagnetic fields in the 

simulation environment by solving time-dependent Maxwell’s equations.62 Results from FDTD 

simulations therefore include both near-field properties such as plasmonic field enhancement as 

well as far-field properties such as transmission or reflection spectra. The exact far-field spectra 

of specific nanoparticles can be replicated by making detailed measurements of the nanoparticles 

and using those measurements to create accurate simulation objects.97 Advancements in object 

design in FDTD simulation software has enabled modeling of particles with various shapes. 

Features on 2D shapes, or extruded 3D volumes can be modeled with a high degree of accuracy, 

including tapered edges and rounded corners. A downside to these advancements is that large 

degrees of freedom in the design of nanoparticles can produce large variations in both near-field 

and far-field properties.97 
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Here we design FDTD simulations of plasmonic systems that incorporate experimental 

processing parameters into construction of the object models. We model our simulation after the 

shapes of 3D bowtie dimers and show how varying the fabrication procedure alters the optical 

properties of the final structure. For specific nanofabrication parameters, FDTD simulations match 

trends in experimental far-field spectra, though non-uniformity in the real structures prevents high 

accuracy in modeling. Finally, we reveal the origin of an out-of-plane LSP mode that appears 

under specific geometric conditions. 

4.2 Results and Discussion 

4.2.1 Fabrication parameters in experiment and FDTD model 

Arrays of nanoparticle bowtie dimers are fabricated using a technique based on PEEL44 that 

has been reported previously.96, 98 The procedure is outlined in Figure 4.1. Briefly, square arrays 

of round photoresist (PR) posts were formed on the surface of a Si(100) wafer by phase-shifting 

photolithography with a soft, elastomeric mask followed by development. A thin, sacrificial layer 

of metal (typically Cr) to be used as an etch- and deposition-mask was deposited on the post array 

followed by lift-off to create a nanohole array. The exposed Si was anisotropically etched in a 

KOH-based solution to form a self-aligned array of pyramidal pits beneath the nanoholes. Two 

off-normal depositions of Au or Ag with deposition angle Ψ, azimuthal angles φ and φ + 180°, and 

thickness t created the templated bowtie dimer. For optical measurements, the particles were 

template-stripped onto a transparent substrate. 

Several aspects of the fabrication process affected the final optical response of the dimers. 

Since each nanoparticle was created by masked deposition through the hole array, the diameter of 

the initial PR posts (as determined by both the phase-shifting mask and exposure/development  
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Figure 4.1: Fabrication scheme. Steps of the bowtie fabrication procedure from lithography until 

bowtie deposition. The final 3D image shows the particle deposition direction through the 

nanohole mask (red arrow) characterized by the deposition angle Ψ, azimuthal angle φ, and 

thickness t. 
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conditions) directly influenced the size of the final particles. The thickness of the sacrificial metal 

layer affected the width of the nanoparticle in the plane of the deposition direction since a thicker 

layer would shadow a larger cross-sectional area of the hole. Finally, the three deposition 

parameters (Ψ, φ, t) were the dominating factors in the final particle shape. 

The fabrication parameters were used to create an FDTD model for the bowtie dimer based on 

geometric affine transformations. The basis of this technique is the orthogonal projection of a hole 

shape onto an arbitrary plane. First, the elliptical shape was determined based on the size of the 

hole, film thickness, and deposition angle. As the deposition occurred, the top film also increased 

in thickness according to t sin(Ψ), which shrinks the final hole shape. The hole was projected in 

3D onto the desired surface plane by the following matrix equation 

 
 

(4.1)   

where J is the basis vectors, Y is a matrix of vectors describing the coordinates of the hole, I3 is 

the 3×3 identity matrix, D is the projection direction vector, and N is the surface normal of the 

desired plane. The subscripts p and e represent the projected and starting bases respectively, and T 

denotes the transpose operator. A schematic diagram of this projection is shown in Figure 4.2a. 

The projection vector D was defined by the experimental deposition angle Ψ and azimuthal angle 

φ. The nanoparticle was created by stacking a series of slabs approximately 1 nm in thickness 

linearly changing size and shape from the starting hole shape to the final hole shape. Since this 

technique is generalized for any shape of hole and any target surface, it can be used for several 

applications (Figure 4.2b). For bowtie dimers, the hole was projected onto each of the 4 surfaces 

of the pyramidal pit (only two or three of the surfaces would contain real particles). Deposition  
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Figure 4.2: Flexibility of FDTD model. (a) Scheme for the nanohole projection in FDTD to 

generate the nanoparticle object. (b) FDTD layout images showing nanoparticle objects created 

with various hole shapes and projection planes. 
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from a hole onto the edge of a cylinder is more complex due to the curved walls. For this case, the 

cylinder is approximated as an extruded n-gon where n ≈ 100. Finally, this technique is also suited 

to simpler projections between parallel planes such as nanoparticle structures fabricated by 

nanosphere lithography.26 The particles shown in Figure 4.2b (right) are from three angled 

depositions through a hole at the intersection of three spheres. 

 The size of each particle of the bowtie dimer is set by the circular hole in the Cr mask, and 

these particles can be large compared to the size of pyramidal pit that contains them, limiting the 

available scope of angles Ψ and φ. The size of the Si pyramid created during the fabrication process 

was dictated by the diameter of the nanohole due to the anisotropic nature of the Si wet etch.48 

Specifically, longer etch times do not increase the size of the pyramid after the final shape has 

been formed. To increase the width of the pyramidal pit and allow for more flexibility in 

nanoparticle deposition, an isotropic etch must first be done. By treating the exposed Si wafer 

through the nanohole mask in a reactive ion etcher (RIE), the size of the Si pyramid after KOH 

etching was increased (Figure 4.3). The relationship between RIE time and increased pyramid size 

was found to be linear with a rate of 5.1 nm of increased width per second of RIE treatment. 

Initially, there was no change in width for RIE times below 10 s, since any etched volume would 

fall inside the boundary of the initial pyramidal pit. Scanning electron microscopy (SEM) images 

of several hole arrays on Si after both RIE and wet etching show the increase in width of the Si 

pyramid for similarly shaped holes (Figure 4.3b). Additionally, the quality of the final pyramidal 

pit was not damaged by the RIE treatment.  

4.2.2 Linear properties of bowties with various geometries 
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Figure 4.3: Effect of RIE etch on Si pyramidal pit shape. (a) Undercut distances between pyramid 

edge and hole edge for 10 different RIE etch times followed by anisotropic wet etching. Each point 

represents an average of 5–10 measurements on different holes in the same sample. (b) SEM 

images of samples with 4 different etch times.  
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A larger Si pyramid enables a wider range of angles and thicknesses for deposited 

nanoparticles. To discover the range of available LSP resonance wavelengths, a series of angles 

(Ψ) and thickness (t) were tested with typical dimensions for nanoholes and pyramidal pits (Figure 

4.4). We simulated bowties centered in the corners of the pyramids (i.e. φ1 = 45°) over a 10° range 

of Ψ from 30° to 40° (Figure 4.4a). These limits were chosen because for Ψ < 30°, the two bowtie 

particles would be in contact in the center of the pyramid, and for Ψ > 40°, the top of the bowtie 

would make contact with the upper film, forming a continuous structure. The transmission spectra 

showed two characteristic LSP peaks, though for decreasing Ψ, the second peak is redshifted 

beyond the wavelength range of the simulation, and likewise beyond the measureable range for a 

visible-wavelength spectrometer (Figure 4.4b). We observed that the redder of the two peaks 

shifted more significantly than the bluer peak, which remained relatively unchanged for 

36° < Ψ < 40°. At Ψ = 30°, the resonance near 800 nm showed a splitting into several lower 

intensity peaks. This change in line shape is likely due to simulation errors at the ~5-nm gap 

between two particles in the center of the pyramid — a precision that typically is not achievable 

in experiment.  

We then fixed the deposition direction, and varied the deposition thickness from 20 nm to 

50 nm in 5-nm intervals (Figure 4.4c). For this specific experiment, there were two competing 

factors to determine the spectrum of a bowtie dimer. Increasing the thickness of an isolated 

nanoparticle causes a blueshift of the LSP wavelength,99 however decreasing the spacing between 

two particles in a dimer produces a redshift.100 Increasing the thickness of the particles in the 

bowtie results in both effects as a consequence of the angled plane of the pyramid. The 

transmission spectra for this sweep of thicknesses (20 nm < t < 50 nm) shows that both LSP  
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Figure 4.4: Sweeps of Ψ and t for Au corner-centered bowties. (a,c) Schemes of the simulation 

parameters to generate the nanoparticle objects, with images representing the high and low 

extremes for Ψ (a) or t (c). (b,d) Simulated transmission spectra for bowties in the visible-NIR 

wavelength range. 
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Figure 4.5: FDTD and experimental comparison. (a,c) FDTD objects and SEM images of bowtie 

nanostructures using the same parameters. Simulation objects were made by using experimental 

conditions as inputs. (b,d) Experimental and simulated transmission spectra for each dimer. 
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resonances blueshift with increasing thickness, even though the gap between particles also 

decreases. Unlike with increasing the spacing between the particles with deposition angle (Ψ), both 

peaks in the bowtie spectrum showed equal wavelength shifts with changing (t).  

To verify the predictive ability of the FDTD simulations, we fabricated arrays of bowtie dimers 

with parameters near the extremes of the tested values of Ψ and t. The first bowtie was fabricated 

near the smallest values of each parameter, namely at Ψ = 31.3° and t = 30 nm. Top-down views 

of both the FDTD model and experimental structure by SEM show good agreement in the 

geometric shape (Figure 4.5a). To create the model, SEM images of the nanohole array were used 

to extract the diameter of the holes and the width of the pyramidal pits, found to be 220 nm and 

300 nm respectively. The experimental and simulated spectra are shown in Figure 4.5b. While an 

offset of ~50 nm existed between the observed LSP peaks, the two spectra showed similar trends. 

They both displayed a broad LSP mode in the 700–800-nm range, and the tail of a NIR-peak 

beyond 1000 nm. Additionally, the asymmetry on the blue side of the resonance peak was visible 

in both spectra, though more pronounced in the simulation results.  

Near the opposite end of the range of fabrication parameters, Ψ = 39.5° and t = 50 nm were 

used to fabricate the second array of bowties (Figure 4.5c). Top down images of the model and 

experimental structure again show good geometric agreement. The spectra between the simulation 

and experiment have similar features, but still lack a quantitative match (Figure 4.5d). Similar to 

the previous bowties, the experimental wavelength for the blue LSP was ~50 nm blueshifted 

compared to the simulated spectrum. For the longer wavelength peak, however, the experimental 

peak was redshifted compared to simulation. This relationship could not be observed for the 

previous bowties due to a resonance wavelength beyond 1000 nm. The two spectra showed similar 
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features such as the shoulder on the red side of the blue peak, near 750 nm. Also, both simulations 

displayed a narrower linewidth for the red peak near 850 nm compared to the blue peak near 

700 nm. 

While we expected the simulated spectra to match better with experiment, the variation in 

bowtie geometry across the substrate could have had a role in the differences. The fabrication 

technique generated large-area (~1 cm2) samples, and variations in hole diameter and shape existed 

across the sample (Figure 4.6a). Local variations showed a distribution in geometry for bowties 

that were in close proximity to each other (Figure 4.6b). The top particle in I showed an 

asymmetry towards the left, terminating in a sharp peak that decreased the gap size between the 

two particles. The bottom edge of the particles in II had a defect that was inserted into the central 

gap between particles. In bowtie III, both the size of the pyramidal pit and the size of the 

nanoparticles was less than those of the majority of other particles. As demonstrated in Figure 4.4, 

relatively small changes in the geometry produced dramatic shifts in the optical properties of the 

bowties. 

4.2.3 Out-of-plane bowtie LSP mode 

With the ability to freely tune the deposition parameters, we revealed the origin of an out-of-

plane plasmonic mode in the bowtie dimers. Previously, the LSP mode only visible for bowties 

deposited in the corners of pyramidal pits, and not for those deposited on the faces, was identified 

as the antibonding mode of the dimer.98 We reproduced this LSP mode in FDTD simulations of 

Ag bowties by varying the starting azimuthal angle φ1 of deposition from 0° (face-centered bowties) 

to 45° (corner-centered bowties) (Figure 4.7a). Two LSP resonance peaks were visible in the 

spectrum: The first was a NIR resonance near 796 nm that was largely unchanged in position or  
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Figure 4.6: Variations in experimental bowtie nanoparticle shapes. (a) Large-area SEM image of 

a bowtie dimer array. (b) Highlighted particles from (a) showing slight variations in geometry that 

could affect the bowtie LSP resonance. 
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Figure 4.7: LSP dependence on azimuthal deposition angle φ. (a) Transmission spectra for 10 

different azimuthal angles φ from 0° to 45° in 5° increments show an increase in LSP mode 

intensity at 662 nm with increasing angle. The LSP mode at 796 nm remains unchanged. (b) Cross-

sectional near-field intensity maps between the nanoparticles in the plane perpendicular to the 

dimer axis (dashed black lines). Dashed white lines show the boundaries of the pyramid. Near-

field intensity is plotted on a log scale.  
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intensity with changing φ. The other resonance, previously identified as the anti-bonding mode, 

was in the visible regime at 662 nm and gradually increased in intensity as φ approached 45°. The 

polarization state of incident light for each measurement was rotated to match the deposition angle 

φ, i.e. the polarization remained parallel to the dimer axis.  

To identify the nature of each LSP mode, we visualized the near-field intensity in the gap with 

a cross section perpendicular to the axis of the dimer (Figure 4.7b). For the face-centered bowties 

(φ = 0°), only a single LSP mode was visible in the transmission spectrum, at 796 nm. The cross-

sectional image shows a strong field enhancement in the gap between the two particles, centered 

at the tip of the pyramid. There was no significant evidence of an LSP at 662 nm. Conversely, 

there was strong field enhancement and a peak in the transmission spectrum for both modes in the 

transmission spectrum of corner-centered bowties (φ = 45°). The near-field intensity at the 796-nm 

peak had the same attributes as in the face-centered bowties, though the strongest regions of field 

enhancement were offset from the midpoint of the structure to match the local geometry of the 

particles. For the LSP at 662-nm, there was a strong field enhancement focused towards the bottom 

of the structure, in the gap between the edges of the particles, and much less intensity in the gap at 

the pyramid tip. 

The complex, 3D shape of the bowties required additional, 3D near-field visualizations of the 

electric near-field intensity to better understand the nature of the two modes. A 3D model of the 

electric near-field for the corner-centered bowties was used to classify the two LSP modes as in-

plane and out-of-plane (Figure 4.8). The near-field distribution for the LSP at 796 nm showed an 

in-plane bonding LSP mode between the two particles. The surface charge density of the 

nanoparticles was also calculated based on the gradient of the electric field vectors, displayed as  
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Figure 4.8: Geometric analysis of LSP modes for corner-centered dimers. Schemes of the overall 

dipolar charge distribution for the in-plane and out-of-plane LSP modes (left). The electric field 

vectors and charge distribution (red shows positive charge, blue shows negative charge) for each 

LSP mode on resonance (right).  
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red (+) and blue (–) shading. The charge and near-field distributions for the LSP at 662 nm revealed 

its origin to be an out-of-plane mode, caused by the folding of the nanoparticle in the corner of the 

pyramidal pit. The unique geometry of these pyramidal bowties allowed a single incident 

polarization to excite both the in-plane and out-of-plane modes simultaneously. The dependence 

of the out-of-plane mode on the folding of the nanoparticle also agreed with the transmission 

spectra (Figure 4.7a) where the intensity of the mode increased as the azimuthal angle (φ) 

increased and an increasing portion of the nanoparticle was folded by the corner of the pyramid. 

4.3 Experimental methods 

4.3.1 Bowtie fabrication 

To create 2D square arrays of photoresist posts, a PDMS photomask with feature-to-feature 

spacing of 400 nm was placed into contact with positive-tone, g-line photoresist (Shipley S1805) 

diluted with poly(ethylene glycol) methyl ethyl acrylate in a 1:2 ratio by volume (~120 nm thick) 

on a Si [100] wafer and exposed to UV light in a home-built narrow-band LED light source.80 

After development in a 1:5 dilution of Microposit 351 developer, a 10-nm layer of Cr was 

deposited through line-of-sight physical vapor electron beam deposition with a Kurt J. Lesker PVD 

75, followed by lift-off with Microposit Remover 1165 leaving holes of bare Si in the Cr layer. 

The substrates were exposed to a CF4/O2 (25:3 sccm ratio) plasma in a Samco RIE (13.3 Pa, 100 

W) for variable times. The samples were then placed in a bath of 4:1 solution of 30 wt% KOH to 

isopropanol for 90 s at 72 °C to complete the etch of the pyramidal pit. After Au/Ag depositions 

in the PVD 75, the top film was removed by etching the Cr layer in Cr etchant (Transene). A UV-

curable polymer (NOA 61, Norland Products Inc.) was used to template strip the bowties onto a 

glass slide for transmission measurement. 
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4.3.2 FDTD simulations 

FDTD simulations were carried out using commercial software (FDTD Solutions, Lumerical 

Inc.) FDTD regions had spans of 400 nm in x and y with periodic boundary conditions, and 2 µm 

in z with PML boundaries. A broadband plane-wave source illuminated the samples from the tip 

of the pyramid. The simulation region had an index of n = 1.525 below the bowtie and an index of 

n = 1 above the bowtie. The dielectric functions of the metal nanoparticles were given by Johnson 

and Christy.101 A mesh override region around the particle forced a 2-nm mesh in all dimensions. 

A 2D monitor recorded the full electric and magnetic fields 50 nm above the sample. A 3D monitor 

to cover the pyramidal pit recorded the nearfield distribution.  

4.4 Summary 

We have shown development of an FDTD simulation scheme of plasmonic nanoparticles 

following experimental process constraints. We verified the technique with simulations of 

pyramidal bowtie nanoparticle dimers, and expanded their nanofabrication process to increase the 

available range deposition parameters. Variations in the experimental structure placed limits on 

the agreement between simulated and measured spectral properties. Finally, we identified the 

origin of a geometry-dependent LSP mode for the pyramidal bowtie system with FDTD near-field 

analysis. 
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5.1 Background 

Nanoscale imaging probes in microscopy such as nanoparticles (NPs) and quantum dots (QDs) 

are an important tool to probe local properties and mechanisms in soft materials.102 NPs of noble 

metals, such as Au, are favorable probes due to strong optical cross-sections derived from their 

localized surface plasmon (LSP) resonance.29, 103 These plasmonic particles are non-emitting, 

unlike QDs or organic fluorophores, which suffer from difficulties in measurement due to QD 

blinking104-105 or fluorophore bleaching. AuNPs are therefore beneficial imaging probes, especially 

for biological applications,106-107 and various microscopy techniques have been developed to 

visualize them in biological systems such as thermal imaging,108-109 darkfield (DF) microscopy,58, 

60 phase contrast microscopy,110-111 and differential interference contrast (DIC) microscopy.112-113 

Additionally, AuNPs can be used in wide-field, low-light imaging which is beneficial for large-

area, long-term studies. AuNPs are also attractive multi-purpose probes that can be used for 

simultaneous targeting and imaging.15, 114-116 

Imaging with DIC microscopy has been recently identified as a strong candidate for AuNPs in 

biological systems due to it being a wide-field, low light, and high resolution technique.117-119 

Image contrast can be optimized based on the target specimen and use of high-numerical-aperture 

(NA) objective lenses makes optical sectioning practical. While darkfield microcopy has been used 

extensively to image plasmonic NPs in biological environments, it suffers from problems such as 

interference from strong scattering from cell membranes,120 and limited optical sectioning due to 

a required low-NA objective. 

DIC is a phase-contrast imaging technique, though unlike phase-contrast microscopy, which 

visualizes refractive index differences against a reference, DIC represents gradients in the optical 
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path length (i.e. refractive index) as intensity contrast. The mechanism of DIC microscopy stems 

from dual Nomarski prisms that coherently separate elliptically polarized light into two 

orthogonally polarized and spatially separated beams (the ordinary and extraordinary beams), 

direct them through a sample, and then recombine the beams into a new elliptical polarization state. 

The separation distance between the two intermediate beams is referred to as the shear distance, 

and is typically on the order of 100 nm or less. A linear polarizer before the camera with orientation 

parallel to the minor axis of the polarization ellipse maps the variable polarization states to an 

intensity distribution. 

Anisotropic nanoparticles, such as gold nanorods (AuNR), with dimensions near or below the 

shear distance show orientation-dependent properties when visualized under DIC.121-122 As the 

AuNR rotates, the intensity contrast alternates between “bright” and “dark” modes. This changing 

contrast can be used to track the movement, 3D orientation angle, and rotational speed of the 

particle.119  Though DIC image contrast is strongest near the LSP resonance wavelength (λLSP) of 

the AuNR,121 varying the LSP by changing size or aspect ratio of the AuNR has not been well 

studied. Typically, band-pass filters with narrow bandwidths (~10 nm) near the plasmon resonance 

are used to maximize the imaging of the NP. Previous wavelength-dependent studies on plasmonic 

nanospheres showed a reduction in overall intensity for DIC wavelengths far from λLSP.112 For 

AuNR, different DIC image contrast was observed at wavelengths corresponding to the 

longitudinal and transverse plasmon modes.121 Understanding the effect of LSP wavelength on 

DIC image contrast is necessary due to the inherent heterogeneity of solution-based NR synthesis 

techniques.123-125  
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Simulated DIC images can expand on the information gained from DIC microscopy by 

predicting full image patterns instead of relying on intensity levels alone. Experimental images are 

inherently noisy and limited in resolution, thus simulations can reveal the underlying intensity 

distribution for improved pattern recognition.126 The finite-difference time-domain (FDTD) 

method62 is commonly used to simulate plasmonic nanoparticles, but simulations that include 

macroscale optical systems together with plasmonic particles has been limited. Recently, FDTD 

models  have been developed for both darkfield127 and phase-contrast microscopy,110-111 but no 

simulations exist for plasmonic particles in DIC. Analytical models based on the point-spread 

function of a DIC microscope are not ideal since assumptions are required for the nanoparticle 

response.128 Analytical solutions to determine the optical scattering of isolated plasmonic 

nanoparticles, such as Mie’s theory, can be used for spheres and other simple shapes, but complex 

shapes or particle assemblies require FDTD simulations.17 

FDTD simulations can offer additional benefits to DIC microscopy of AuNR. Various particle 

sizes and aspect ratios can be systematically tested in simulations to build a DIC image library for 

automated identification and classifications of large-area distributions of nanoparticles. Second, 

since FDTD can visualize the electric near-field distribution as well as far-field images, 

correlations between the two can be established so that nanoscopic information such as size, shape, 

and LSP resonance wavelength can be deduced from DIC images alone without the need for 

additional measurements with other microscopy techniques (e.g. DF, scanning electron 

microscopy) Finally, the image patterns generated from DIC represent an ideal system, and 

specific images patters such as relative orientation between bright and dark intensity regions could 

be used in future studies as training data for advanced machine learning algorithms.  



	 101 

Here we show the development of an FDTD model for DIC microscopy. We verify the validity 

of the simulation with studies of single AuNR and expand the scope to AuNR dimers. We discover 

the phenomenon of DIC contrast inversion for plasmonic nanoparticles and determine its origin to 

be based on the inversion of the electric-near field distribution around the particles on either side 

of λLSP. Finally, we show that the DIC contrast inversion is common to all anisotropic AuNR, 

independent of aspect ratio or LSP wavelength.  

5.2 Results and Discussion 

5.2.1 DIC microscopy simulation scheme 

We developed a 3-stage FDTD simulation scheme for DIC microscopy of plasmonic 

nanoparticles (Figure 5.1a). The optics between the light source and the sample area are replicated 

in a pre-processing script that sets the initial conditions of the simulation. The initial polarization 

state of incident light is determined by the experimental settings of the first polarizer and quarter 

wave plate. The effect of the Nomarski prisms is set by preparing two simulation environments 

with opposite polarization and their contents shifted by the experimental shear distance (120 nm). 

The FDTD region exists between the condenser and objective, and simulates the interactions of 

light with the NP. The simulations are periodic, but large enough to avoid interactions between 

adjacent particles. Figure 5.2 shows simulated DIC images with different distances between 

boundaries. Distances between 2 and 12 µm were tested. Examining the entire simulation space 

(Figure 5.2a), showed that a stable background level exists for 12-µm separation. A 4-µm-wide 

window around the particles showed minimal influence of neighboring particles at periodicities 

greater than 6 µm. All simulations in this chapter used a distance of 12 µm. A 2D monitor records 

transmitted and scattered light leaving the simulation that is processed in a second script, which  
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Figure 5.1: FDTD scheme for DIC microscopy. (a) Side-view of the optical path for a DIC 

microscope. There are three components to the FDTD-DIC simulation environment: Setup, FDTD 

simulation, Processing. Each section produces optical polarization states corresponding to specific 

of the DIC microscope. (b) Top-down view of polarization state at different locations in the 

microscope. The phase shift in the intermediate beams induced by the AuNR causes the bright and 

dark contrast depending on particle orientation. 
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Figure 5.2: Simulated DIC images with different boundary conditions. (a) DIC images with height 

and width double the periodicity of the simulation. As the periodicity decreases, the background 

level between particles becomes smoother. (b) The same series of simulated DIC images as in (a) 

with only the center 4 µm × 4 µm square visible. 
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represents the optics between the sample and the detector. The light is projected to the farfield to 

isolate propagating waves, and then the image plane is reconstructed by a Fourier transform. 

5.2.2 DIC FDTD simulations of single AuNR and dimers 

The expected mechanism for a AuNR to generate bright and dark contrast as a function of 

orientation is illustrated in Figure 5.1b. The background intensity was defined by the initial 

elliptical polarization state, determined by the angle of the first polarizer with respect to the quarter 

wave plate. Bright and dark intensities of AuNR were achieved when the longitudinal axis of the 

particle was aligned to the polarization direction of one of the two beams. In both cases the 

nanoparticle induced a phase shift in transmitted light. The bright intensity resulted from the 

nanoparticle increasing the phase difference between the two light beams, causing the final 

elliptical polarization to be more circular. Similarly, the dark intensity occurred when the phase 

difference between the two beams was reduced (in the ideal case Δφ = 0), and the final polarization 

state was more linear.  

With the two intermediate beams implemented as separate simulations in FDTD, we examined 

the interaction of a AuNR with each beam separately. Specifically, by measuring the phase shift 

induced by the nanoparticle, we verified the proposed mechanism for orientation-dependent 

contrast (Figure 5.3). For the particle alignment that gives a dark-contrast image, the axis of the 

particle only caused a phase shift in the ordinary beam, resulting in a negative phase difference 

when the beams were recombined (Figure 5.3a). Conversely, when the particle was rotated by 90°, 

there was only a phase shift in the beam with perpendicular polarization, causing an opposite phase 

difference when the beams were recombined. For this type of AuNR with dimensions 40 × 90 nm, 

the maximum final phase difference was approximately 0.06 π.   
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Figure 5.3: Phase difference for intermediate and combined beams. Images displaying the phase 

induced by a dark-aligned (a) or bright-aligned (b) AuNR compared to the background for the two 

intermediate beams. The beams are recombined at the Nomarski prism and the final phase 

difference is shown. 



	 106 

We validated the FDTD simulation results with an in-plane rotational correlation study of 

AuNRs, combining scanning electron microscopy (SEM), DF, and DIC. DIC images of a single 

AuNR were taken over 180° of rotation in 5° increments (Figure 5.4a). SEM provided the 

dimensions of the nanoparticle, which were imported to the FDTD simulation. The same rotational 

angles were simulated and the resulting DIC images are displayed. The orientation dependent 

contrast of the AuNR was observed in both sets of images, with bright and dark maxima showing 

the same orientation — aligned to the shear axis of the Nomarski prisms. Additionally, the image 

patterns near 45° and 135° also show similar trends, with the 45°-images being dimmer, and the 

135°-images showing a more even 50/50 bright/dark pattern. Since FDTD does not have 

restrictions on particle geometry, more complex systems were studied.  

A self-assembled AuNR dimer was imaged by DIC and simulated in FDTD (Figure 5.4b). 

The orientation of the dimer was so that one of the particles (left) had the same orientation as the 

single nanoparticle — aligned to the shear axis of the microscope. The DIC images revealed a 

difference in the rotation angles corresponding to the maximum bright and dark images, however, 

compared to the single AuNR. Specifically, the maximum bright and dark intensities, were offset 

by approximately 40°. The FDTD-simulated images also show this trend, where the maximum 

intensities are offset by ~40°. The FDTD images also showed higher intensity scattering rings 

around the dimer than the single particle likely due to the simulations adding the combined 

scattering effect of both particles. The offset of the peak bright and dark intensities of the dimer 

was due to the dimer unit effectively acting as a single nanoparticle. In that scheme, the dimer 

would have a single longitudinal axis, offset by 40° from the axes of the two individual 

nanoparticles.  
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Figure 5.4: Rotation study of AuNRs. DIC images were measured and simulated for a single 

AuNR (a) and a V-shaped dimer (b) with rotation angles from θ = 0° to θ = 180° in 10° increments. 

The DIC images were correlated with SEM images and the SEM shown represents the particle 

orientation for θ = 0°. 
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Our simulations make no assumptions about the interaction between incident light and the 

AuNR. While previous analytical simulations based on a DIC point-spread-function assume a π/2 

phase shift between the two intermediate beams (i.e. circular polarization) and π/6 phase shift from 

the AuNR,128 we relied on experimental parameters to determine the phase differences. The phase 

offset between the two intermediate beams in this simulation was ~π/18, empirically determined 

to provide high DIC contrast, and in line with the calculated phase shift induced by the nanoparticle. 

The AuNR-induced phase shift is a consequence of the dielectric function of gold101 and the 

dimensions measured from SEM images. 

A primary advantage of FDTD simulations is that a broad parameter space can be explored 

with minimal effort. Sweeping different lengths and widths of AuNR resulted in particles with 

different LSP resonance wavelengths. This ability is necessary given that commercially available 

AuNR show a wide range of λLSP. Figure 5.5a shows a large-area, true-color DF microscopy image 

where each spot indicates a single nanoparticle (verified by correlated SEM). The color of each 

spot is representative of the scattering wavelength of an AuNR. Several particles were indexed 

with alphabetic labels, and a selection have their darkfield scattering spectra shown in Figure 5.5b. 

The wavelength range of λLSP for these particles spread approximately 300 nm. Additionally, the 

relative scattering intensity varied dramatically between nanoparticle. The intensity values are 

shown to-scale since identical acquisition settings were used for each NP spectrum. The ability to 

compare an experimental DIC image to a library of simulated AuNR leads to the use of DIC to 

determine AuNR geometry, even in diverse samples. 

5.2.3 Wavelength-dependent image contrast of AuNR 
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Figure 5.5: Distribution of LSP resonances for AuNR sample. (a) Darkfield image (true color) at 

100× magnification showing the scattering of several AuNR. (b) Scattering spectra from select 

labeled AuNR with λLSP ranging from ca. 550 nm to 850 nm. 
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Large-area processing of samples with nanoparticles having different LSP resonances required 

imaging at multiple DIC wavelengths (λDIC). Two wide-view images at different DIC wavelengths 

(λDIC = 640 nm and λDIC = 750 nm) are shown in Figure 5.6. With over 100 individual AuNR in a 

single image, the importance of computations tools to automate particle identification and tracking 

is obvious. Between these two DIC images, we discovered that the majority of AuNR switched 

between bright and dark contrast without changing rotation angle. To quantify this result, we 

examined the rotational dependence of DIC contrast for one of the AuNR (Figure 5.7). DF 

spectroscopy revealed that the LSP resonance wavelength was 678 nm, at the maximum scattering 

intensity (Figure 5.7a). SEM images of the AuNR determined its dimensions to be 43 × 78 nm, 

which were used to calculated the scattering cross section by FDTD. The two spectra matched 

well, with both showing a λLSP between the two DIC wavelengths (640 nm and 750 nm), indicating 

the FDTD model was an accurate representation of the AuNR.  

DIC images of the AuNR were taken for rotation angles between 0° and 180° at 10° increments 

for both values of λDIC (Figure 5.7b). At 640 nm (i.e. λDIC < λLSP), alignment of the particle to 0° 

resulted in a fully bright contrast image, while 90° alignment produced dark contrast. For 750 nm, 

the contrast at these angles was inverted, but the change in contrast did not correspond to a particle 

rotation. Angles near 45° or 135° for λDIC = 640 nm show regions of both bright and dark contrast 

in the DIC image. In these images, the dark contrast was in the lower left portion of the image 

compared to the bright contrast region. In the series of images at λDIC = 750 nm, at similar angles, 

the contrast in these regions is reversed. These images support that the change in contrast is due a 

flip between bright and dark, rather than a rotation about 90°. The simulated images (Figure 5.7c)  
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Figure 5.6: Large-area experimental DIC images of AuNR. A single set of AuNR with 

λDIC = 640 nm (a) and λDIC = 750 nm (b). Several particles show an inversion in contrast from 

bright to dark or vice versa between the two images. 
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Figure 5.7: Wavelength dependence of DIC images for a single AuNR. (a) SEM and scattering 

spectra for a single AuNR. Experimental (b) and simulated (c) DIC images at two DIC 

wavelengths: λDIC = 640 nm (top) and λDIC = 750 nm (bottom). (d) Contrast difference calculated 

from the DIC images showing the contrast inversion between the two wavelengths. Solid lines 

with markers are from experimental data; dotted lines are calculated from simulated DIC images. 
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showed similar image patterns, and also replicated the observed contrast inversion between 

λDIC < λLSP and λDIC > λLSP.  

To quantify the image contrast, we calculated the contrast difference of images in each 

rotational series (Figure 5.7d). First, we identified bright (dark) regions with intensity above 

(below) a threshold level relative to the local background intensity. The threshold was tunable, and 

typically 1–2 standard deviations away from the background mean. The average intensity level in 

these regions, after subtracting the average background level, defined the bright and dark signals. 

Then, the signals were divided by the background, giving the bright and dark contrast for each 

image, where the contrast is always a positive value. Bright and dark contrast were independently 

normalized to the range [0,1], and the contrast difference (CD) is defined as the difference between 

them. Therefore, an image with the largest bright intensity level has CD ≈ 1, the largest dark 

intensity has CD ≈ –1, and background-level bright and dark has CD ≈ 0. This metric is preferred 

to polarization anisotropy,118 which does not take into account the intensity of the local background. 

Variable background intensity across the field-of-view is inherent to DIC and the contrast 

difference metric corrects for these variations. 

We examined the near-field data recorded by the FDTD simulation to identify the origin of the 

contrast inversion at different wavelengths. For this analysis, we used a test particle with 

dimensions 25 × 75 nm in an oil (n = 1.525) environment, typical of a DIC microscopy sample. 

Figure 5.8a shows the scattering cross section for the longitudinal mode of the AuNR with its 

peak at 830 nm. The near field of the nanoparticle was recorded by both a 1D cross-section along 

the x-axis, and the 2D plane corresponding to z = 0. The particle was illuminated with a broadband 

plane wave propagating in the z-direction, polarized along the x-axis. We examined the amplitude  
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Figure 5.8: FDTD near-field analysis of DIC contrast inversion. (a) Scattering simulation for the 

longitudinal mode of AuNR (25 × 75 nm in oil) with a scheme of the 1D and 2D monitor locations 

(inset). (b) E-field amplitude (1D monitor) as a function of wavelength for the AuNR. (c) 2D cross-

sections of electric field amplitude at two wavelengths on the blue (square, λDIC = 808 nm) and red 

(triangle, λDIC = 856 nm) sides of the LSP wavelength. 
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of Re(Ex) as recorded by the 1D monitor as a function of wavelength (Figure 5.8b). Only the real-

part of the electric field was visualized since DIC depends on propagating waves into the farfield 

to generate an image of the NP. Figure 5.8b shows an inversion of the amplitude of Re(Ex) as a 

function of wavelength across the LSP resonance peak. For λ = 808 nm < λLSP, (Figure 5.8c, left) 

Re(Ex) was negative outside the particle, indicating a dipolar charge distribution with positive 

charge on the left surface of the particle and negative charge on the right. At λ = 856 nm > λLSP, 

however, the sign of Re(Ex) flipped, corresponding to a reversal of the charge distribution. For 

polarization in the perpendicular direction (along the y-axis), the scattering intensity was 3 orders 

of magnitude weaker, and Re(Ey) did not show an inversion in amplitude (Figure 5.9). The sign 

of Re(Ey) remained constant since the transverse LSP wavelength of the AuNR is below 600 nm 

and far from our test wavelengths. These near-field studies provided evidence that the DIC image 

contrast inversion is due to the change in sign of the local near-field and surface charge distribution 

on either side of the LSP wavelength.  

  We examined the DIC contrast at two wavelengths (λ1
DIC = 640 nm; λ2

DIC = 750 nm) for 

AuNR with different sizes and therefore different LSP resonance wavelengths: λI
LSP = 609 nm, 

λII
LSP = 694 nm, and λIII

LSP = 798 nm (Figure 5.10a). These three particles were chosen since they 

represent the three possible relationships between λLSP and λDIC. Particle I was always blue of the 

DIC wavelengths (λI
LSP < λ1

DIC < λ2
DIC), II was between them (λ1

DIC < λII
LSP < λ2

DIC), and III was 

always on the red side (λ1
DIC < λ2

DIC < λIII
LSP). DIC images for the three particles show the same 

relationship between image contrast and LSP wavelength. For λLSP < λDIC, DIC images showed 

fully dark contrast when the nanoparticle rotation was aligned to the shear axis of the microscope 

(0°), while bright contrast was observed at this orientation when λLSP > λDIC (Figure 5.10b). We  
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Figure 5.9: FDTD near-field analysis of DIC contrast inversion. (a) Scattering simulation for the 

transverse orientation of AuNR (25 × 75 nm in oil) with a scheme of the 1D and 2D monitor 

locations (inset). (b) E-field amplitude (1D monitor) as a function of wavelength for the AuNR. 

(c) 2D cross-sections of electric field amplitude at two wavelengths (square, λDIC = 808 nm) and 

red (triangle, λDIC = 856 nm). 
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Figure 5.10: DIC response of AuNR with three different resonance locations. (a) The measured 

scattering spectra (normalized) of three individual AuNR. (b) SEM of the AuNRs aligned to θ = 0° 

and DIC image sets for λDIC = 640 nm (blue border) and λDIC = 750 nm (red border) for θ = 0° to 

150°.  
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also observed a decrease in overall signal when λLSP was far from λDIC, such as for I at 750 nm and 

III at 640 nm. 

We expanded the rotation study of these three AuNR to include three additional DIC 

wavelengths 600 nm, 680 nm, and 700 nm. The full rotation series (0°–180° by 10° increments) 

of I is shown in Figure 5.11. Contrast inversion was visible between the 600-nm and 640-nm 

series, consistent with the 609-nm LSP resonance wavelength. The remaining angles all showed 

the same contrast difference, and similar image patterns. The rotation series of DIC images for II 

did not show a sudden shift in the image contrast as seen for I (Figure 5.12). Comparisons between 

image contrast for λDIC = 600 nm, 640 nm and 680 nm did not reveal significant differences in 

image patterns or contrast difference. The contrast was inverted at λDIC = 750 nm as seen in Figure 

5.10, but the images and contrast difference at λDIC = 700 nm showed only a partial inversion. For 

example, at 70° (160°), the image contrast progressed from fully bright (dark) at λDIC = 680 nm, 

to partial/dim contrast at λDIC = 700 nm, then to fully dark (bright) at λDIC = 750 nm. The origin 

for this partial shift is currently unknown, but has only been observed when λDIC ≈ λLSP. Finally, 

the DIC images and contrast difference for III are displayed in Figure 5.13. For this particle, λLSP > 

λDIC for all λDIC, and no inversion was observed. The only effect of changing DIC wavelength was 

the decrease in overall signal to noise ratio for blue wavelengths, far from the LSP wavelength. 

5.3 Experimental methods 

5.3.1 FDTD simulations of DIC microscopy 

Simulations were performed with commercially available software (FDTD Solutions, 

Lumerical Inc.). FDTD regions has spans of 12 µm in x and y with periodic boundary conditions, 

and 2 µm in z with PML boundaries. A plane wave source (broadband or single frequency)  
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Figure 5.11: Rotational correlation study for AuNR I. (a) DIC images (2.6-µm width) at 5 DIC 

wavelengths from 600 nm to 750 nm and 18 rotational angles from 0° to 180°. (b) contrast 

difference calculated from the DIC images in (a). 
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Figure 5.12: Rotational correlation study for AuNR II. (a) DIC images (2.6-µm width) at 5 DIC 

wavelengths from 600 nm to 750 nm and 18 rotational angles from 0° to 180°. (b) contrast 

difference calculated from the DIC images in (a). 
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Figure 5.13: Rotational correlation study for AuNR III. (a) DIC images (2.6-µm width) at 5 DIC 

wavelengths from 600 nm to 750 nm and 18 rotational angles from 0° to 180°. (b) contrast 

difference calculated from the DIC images in (a). 
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illuminated the AuNR from below. The AuNR was designed as the union of two spheres and a 

cylinder having dimensions taken from SEM images and material properties defined by a built-in 

model based on data from Johnson and Christy.101 A mesh override region around the particle 

forced a 2-nm mesh in all dimensions. A 2D monitor recorded the full electric and magnetic fields 

50 nm above the sample. A sweep object was used to generate the two simulations by changing 

the particle position and rotating the source polarization. A second sweep rotated the AuNR for 

the rotational studies. Results from the 2D monitor were processed in a Lumerical script, found in 

Appendix D:  

5.3.2 AuNR sample preparation 

Reference markers are created on #1.5 coverslips by shadow deposition of 5-nm Cr through an 

indexed TEM reference grid (Ted Pella). A 10x diluted solution of bare AuNR (40 × 92, 25 × 75, 

Nanopartz Inc.) are drop cast on the coverslips for one minute and then rinsed with deionized water 

and dried with nitrogen gas. The coverslip is taped to a glass slide either with an air gap or a drop 

of n = 1.52 immersion oil in the gap.  

5.3.3 DF imaging 

DF imaging was done on an inverted Nikon TE2000-U with an oil immersion 100× objective 

(variable NA = 0.7–1.3) and either an air darkfield condenser (NA = 0.8–0.95) or an oil darkfield 

condenser (NA = 1.2–1.5). The light source was an unfiltered, unpolarized 100 W tungsten-

halogen lamp. Transmitted light was sent to a spectrometer (Acton SP2300, Princeton Instruments) 

with a liquid nitrogen cooled CCD (Princeton Instruments).  

5.3.4 DIC imaging  
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DIC was done on an inverted Nikon TE2000-E with an oil immersion, NA = 1.4 condenser, 

and an oil immersion NA = 1.49, APO, TIRF, 100× objective. The light source was a 100 W 

unfiltered, unpolarized tungsten-halogen lamp. The light passed through a band pass filter (hard-

coated OD4, center wavelength = 600, 640, 680, 700, 750 nm with 10-nm bandwidth, Edmund 

Optics), a dé Senarmont compensator, one Nomarski prism, the condenser, sample, objective, 

second Nomarski prism, analyzer, then hit the detector (Andor Zyla 4.2 sCMOS). Metamorph 

software was used to collect the image files, and they were processed with ImageJ or custom 

MATLAB scripts. 

5.3.5 SEM imaging 

SEM images were obtained on untreated AuNR-on-glass samples with a FEI Quanta ESEM. 

Low-vacuum mode (1.2 torr) was used to enable imaging of the insulating samples. 

5.4 Summary 

We have shown FDTD simulations of DIC microscopy of AuNR. These simulations used 

parameters for the optics and nanoparticles directly from experimental conditions and produced 

DIC images that agreed with experimental results. We verified the expected mechanism for 

generating bright and dark image contrast by using FDTD simulations to determine the phase of 

the intermediate beams. We discovered DIC image contrast inversion of AuNR as a function of 

wavelength and analyzed the electric near-field distribution to identify its origin. Finally, we 

showed that the contrast inversion phenomenon is independent of resonance wavelength by 

measuring and simulating DIC images from several different sizes of AuNR. 
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APPENDIX A:  MATLAB CODE FOR MOIRÉ STRUCTURE GENERATION 

function Generate_Moire 
clc 
%Prevent more than one occurance of Program to run 
doesExist = findobj('name','Moire Structure Generator'); 
if ~isempty(doesExist) 
    figure(doesExist); 
    return 
end 
%% Initialize and Set Default Values 
width = 2; %um 
pixels = 2000+1; %1 nm resolution 
% pixels = 1000; 
maskChoices = {'Line','Square','Hex'}; 
typeOfMask = 'square'; 
periodicity = [400 400]; 
moireAngles = [0 90]; 
numSineFunctions = 1; 
developPercent = 55; 
randomShift = true; 
shift = [0 0]; 
cmap = [0 0 0]; 
data = 0; 
drawData = 0; 
BWimage = false; 
moireImage = []; 
%% Create figure window. 
mainFigure = figure('position',[200 200 800 500],... 
    'name','Moire Structure Generator'); 
mainAxes = axes('outerposition',[.45 0 .5 1],... 
    'dataAspectRatio',[1,1,1]); 
%FTAxes = axes('outerposition',[.65 0 .35 1],... 
%    'dataAspectRatio',[1,1,1]); 
contextMenu = uicontextmenu; 
subMenu1 = uimenu(contextMenu,... 
    'label','Toggle B/W image',... 
    'callback',@toggleBW); 
subMenu2 = uimenu(contextMenu,... 
    'label','Pop out figure',..., 
    'callback',@popOutFigure); 
inputPanel = uipanel(mainFigure,... 
    'title','Parameters',... 
    'pos',[.025 .025 .4 .95]); 
uicontrol(inputPanel,... 
    'style','text',... 
    'units','norm',... 
    'pos',[.05 .85 .4 .07],... 
    'string','Box width [um]'); 
widthBox = uicontrol(inputPanel,... 
    'style','edit',... 
    'units','norm',... 
    'pos',[.55 .85 .4 .1],... 
    'callback',@updateData); 
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typeOfMaskPop = uicontrol(inputPanel,... 
    'style','pop',... 
    'units','norm',... 
    'pos',[.05 .7 .35 .07],... 
    'string','Default',... 
    'callback',@updateData); 
periodicityBox =  uicontrol(inputPanel,... 
    'style','edit',... 
    'units','norm',... 
    'pos',[.4 .7 .45 .1],... 
    'string','400',... 
    'callback',@updateData); 
uicontrol(inputPanel,... 
    'style','text',... 
    'units','norm',... 
    'pos',[.85 .7 .1 .07],... 
    'string','nm'); 
uicontrol(inputPanel,... 
    'style','text',... 
    'units','norm',... 
    'pos',[.05 .55 .3 .08],... 
    'string','Exposures/ angles [deg]'); 
exposureBox = uicontrol(inputPanel,... 
    'style','edit',... 
    'units','norm',... 
    'pos',[.45 .55 .5 .1],... 
    'string','1',... 
    'callback',@updateData); 
uicontrol(inputPanel,... 
    'style','text',... 
    'units','norm',... 
    'pos',[.05 .4 .4 .08],... 
    'string','Number of FS terms per line'); 
numSineFunctionsBox = uicontrol(inputPanel,... 
    'style','edit',... 
    'units','norm',... 
    'pos',[.55 .4 .4 .1],... 
    'callback',@updateData); 
uicontrol(inputPanel,... 
    'style','text',... 
    'units','norm',... 
    'pos',[.05 .27 .7 .06],... 
    'string','Developing Percentage'); 
developPercentSlider = uicontrol(inputPanel,... 
    'style','slider',... 
    'units','norm',... 
    'pos',[.05 .25 .7 .02],... 
    'min',0,'max',100,... 
    'callback',@updateData); 
developPercentBox = uicontrol(inputPanel,... 
    'style','edit',... 
    'units','norm',... 
    'pos',[.8 .24 .15 .1],... 
    'callback',@updateData); 
generateStructuresButton = uicontrol(inputPanel,... 
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    'units','norm',... 
    'pos',[.05 .13 .4 .08],... 
    'string','Generate',... 
    'callback',@generateStructures); 
outputObjectsButton = uicontrol(inputPanel,... 
    'units','norm',... 
    'pos',[.05 .05 .4 .08],... 
    'string','Save Objects',... 
    'callback',{@outputObjects,moireImage,pixels,width,mainAxes}); 
randomShiftCheck = uicontrol(inputPanel,... 
    'style','check',... 
    'units','norm',... 
    'pos',[.5 .15 .45 .05],... 
    'string','Random Shifts',... 
    'callback',@updateData); 
randomShiftBox = uicontrol(inputPanel,... 
    'style','edit',... 
    'units','norm',... 
    'pos',[.5 .05 .45 .1],... 
    'callback',@updateData); 
drawnow; 
updateFigure; 
%% Nested functions for callbacks 
    function updateData(obj,~) 
        switch obj 
            case widthBox 
                width = str2double(get(obj,'string')); 
%                 pixels = width*1000+1; 
            case typeOfMaskPop 
                typeOfMask = maskChoices{get(obj,'value')}; 
                updateData(exposureBox); 
            case periodicityBox 
                periodicity = eval(['[' get(obj,'string') ']'] ); 
                if length(periodicity) == 1 
                    periodicity = repmat(periodicity,1,length(moireAngles)); 
                else 
                    multiples = 
strfind({'line','square','hex'},lower(typeOfMask)); 
                    multiples = 
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples))); 
                    periodicity = repmat(periodicity,1,multiples); 
                end 
            case exposureBox 
                exposures = eval(['[' get(obj,'string') ']']); 
                if length(exposures) == 1 
                    multiples = 
strfind({'line','square','hex'},lower(typeOfMask)); 
                    multiples = 
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples))); 
                    angles = linspace(0,180/multiples,exposures+1); 
                    angles(end) = []; 
                    moireAngles = angles; 
                    for ii = 1:multiples-1 
                        moireAngles = [moireAngles angles+ii*180/multiples]; 
                    end 
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                else 
                    multiples = 
strfind({'line','square','hex'},lower(typeOfMask)); 
                    multiples = 
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples))); 
                    for ii = 1:multiples-1 
                        exposures = [exposures exposures+ii*180/multiples]; 
                    end 
                    moireAngles = exposures; 
                end 
                updateData(periodicityBox); 
            case numSineFunctionsBox 
                numSineFunctions = str2double(get(obj,'string')); 
            case developPercentBox 
                developPercent = str2double(get(obj,'string')); 
            case developPercentSlider 
                developPercent = get(obj,'value'); 
            case randomShiftCheck 
                randomShift = get(obj,'value'); 
            case randomShiftBox 
                input = get(obj,'string'); 
                shift = [0 0 eval(input)]; 
        end 
        updateFigure 
    end 
    function updateFigure 
        set(widthBox,'string',num2str(width)); 
        setTypeOfMask; 
        function setTypeOfMask 
            set(typeOfMaskPop,'string',maskChoices); 
            drawnow; 
            switch lower(typeOfMask) 
                case 'line' 
                    set(typeOfMaskPop,'value',1); 
                case 'square' 
                    set(typeOfMaskPop,'value',2); 
                case 'hex' 
                    set(typeOfMaskPop,'value',3); 
            end 
        end 
        set(numSineFunctionsBox,'string',num2str(numSineFunctions)); 
        setDevelopPercent; 
        function setDevelopPercent 
            set(developPercentBox,'string',sprintf('%.0f',developPercent)); 
            set(developPercentSlider,'value',developPercent); 
            developPercent = round(developPercent); 
            if BWimage 
                colorVector = [zeros(1,developPercent-1) ones(1,100-
developPercent)]; 
            else 
                colorVector = [zeros(1,developPercent-1) linspace(0,1,100-
developPercent)]; 
            end 
            cmap = repmat(colorVector',1,3); 
            colormap(mainAxes,cmap); 
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            moireImage = data>=developPercent/100; 
            
set(outputObjectsButton,'callback',{@outputObjects,moireImage,pixels,width,ma
inAxes}); 
        end 
        set(randomShiftCheck,'value',randomShift); 
        if strcmpi(typeOfMask,'line') && ~randomShift 
            set(randomShiftCheck,'string','Set Shifts [um]'); 
            set(randomShiftBox,'string',['[ ' sprintf('%.2f ',shift(3:end)) 
']']); 
        else 
            set(randomShiftCheck,'string','Random Shifts'); 
        end 
    end 
    function generateStructures(~,~) 
        %identify the mask used 
        switch lower(typeOfMask) 
            case 'line' 
                if randomShift 
                    shift = rand(1,length(moireAngles))... 
                        .*(periodicity/1000); %1-d 
                    shift(1:2) = 0; 
                else 
                    shift = zeros(1,length(moireAngles)); 
                end 
            case 'square' 
                if randomShift 
                    shift = rand(2,length(moireAngles)/2); %2-d 
                    shift = [shift(1,:) shift(2,:)]... 
                        .*(periodicity/1000); 
                else 
                    shift = zeros(1,length(moireAngles)*2); 
                end 
            case 'hex' 
                if randomShift 
                    shift = rand(2,length(moireAngles)/3); %2-d w/ hex 
symmetry 
                    shift = [shift(1,:) ... 
                        shift(1,:)*cosd(60)+shift(2,:)*sind(60) ... 
                        shift(1,:)*cosd(120)+shift(2,:)*sind(120)]... 
                        .*(periodicity/1000); 
                else 
                    shift = zeros(1,length(moireAngles)*3); 
                end 
        end 
        theta = moireAngles; 
        numAngles = length(theta); 
        [drawX,drawY,drawData] = makedata(pixels); 
        save('image','drawData'); 
%         [X,Y,data] = makedata(pixels); 
        h = surf(mainAxes,drawX,drawY,drawData,'LineStyle','none'); 
        axes(mainAxes); 
        view(0,90), colormap(cmap),caxis([-
1,1]),xlabel('microns'),ylabel('microns') 
        set(mainAxes,'dataaspectratio',[1 1 2/width]); 
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        set([mainAxes,h],'uicontextmenu',contextMenu); 
        moireImage = data>=developPercent/100; 
        
set(outputObjectsButton,'callback',{@outputObjects,moireImage,pixels,width,ma
inAxes}); 
        function [X,Y,data] = makedata(pixels) 
            x = linspace(-width/2,width/2,pixels); 
            y = linspace(-width/2,width/2,pixels); 
            [X,Y] = meshgrid(x,y); 
            for jj = 1:numAngles 
                XX(:,:,jj) = X*cosd(theta(jj)) + Y*sind(theta(jj)); 
            end 
            data = 0; 
            for ii = 1:numSineFunctions 
                for kk = 1:numAngles 
                    func(:,:,kk) = 
(1/(numAngles*ii)*cos(2*pi/(periodicity(kk)/1000)*ii*(XX(:,:,kk)-
shift(kk)))); 
                end 
                data = data+sum(func,3); 
            end 
            %data = data-min(data(:)); 
            %data = data/max(data(:)); 
        end 
    end 
    function toggleBW(~,~) 
        BWimage = ~BWimage; 
        updateFigure; 
    end 
    function popOutFigure(~,~) 
        newfig = figure; 
        newaxes = copyobj(mainAxes,newfig); 
        set(newaxes,'units','normalized','position',[.13 .11 .775 .815],... 
            'dataAspectRatio',[1,1,2/width]) 
        colormap(newaxes,cmap); 
    end 
end 
function outputObjects(~,~,moireImage,pixels,width,mainAxes) 
if isempty(moireImage); 
    return 
end 
[B,L,~,A] = bwboundaries(moireImage); 
[objectList, objectNames] = sortObjects(A); 
removedObjects = []; 
% objectList = (max(objectList)-objectList+1); %to prepare for mesh order 
pixelFactor = width/(pixels-1); %fence post 
pixelShift = (pixels-1)/2 + 1; 
colors = ['b' 'y' 'r' 'c' 'm' 'g']; 
lineHandles = zeros(1,length(B)); 
hold(mainAxes,'all') 
% figure; newAxes = axes; 
% hold(newAxes,'all') 
[~,~,~] = rmdir('ObjectFolder','s'); %outputs are to prevent warning that 
directory exists 
mkdir('ObjectFolder'); 



	 141 

for jj = 1:length(B) 
    if ~isempty(find(B{jj}(:)==1,1))||~isempty(find(B{jj}(:)==pixels,1)) 
        removedObjects(end+1) = jj; 
        continue 
    end 
    clearvars temp temp2 
    convertedObject = fliplr((B{jj}-pixelShift).*pixelFactor); 
    temp(1,:) = convertedObject(1,:); 
    counter = 1; 
    for ii = 2:length(convertedObject) 
        if temp(counter,1)==convertedObject(ii,1) || ... 
                temp(counter,2)==convertedObject(ii,2) 
            continue 
        else 
            counter = counter+1; 
            temp(counter,1:2) = convertedObject(ii,:); 
        end 
    end 
    temp(1,:) = temp(end,:); 
    temp2(1,:) = convertedObject(end,:); 
    counter = 1; 
    for ii = length(convertedObject)-1:-1:1 
        if temp2(counter,1)==convertedObject(ii,1) || ... 
                temp2(counter,2)==convertedObject(ii,2) 
            continue 
        else 
            counter = counter+1; 
            temp2(counter,1:2) = convertedObject(ii,:); 
        end 
    end 
    temp(1,:) = []; temp2(1,:) = []; 
    averageTemp = (temp+flipud(temp2))/2; 
    % smooth data 
    averageTemp = [averageTemp(end-2:end,:); averageTemp; 
averageTemp(1:3,:)]; 
    smoothData = [smooth(averageTemp(:,1)), smooth(averageTemp(:,2))]; 
    smoothData = smoothData(4:end-3,:); 
    data = smoothData; 
    %     eval(sprintf('%s = averageTemp;',objectNames(ii,:))); %save as 
variables 
    
eval(sprintf('dlmwrite(''ObjectFolder/%1$s.txt'',averageTemp);',objectNames(j
j,:))); %save as text files 
    lineHandles(jj) = plot3(mainAxes,data(:,1),data(:,2),... 
        ones(1,length(data)),colors(objectList(jj))); 
    %     
plot(newAxes,data(:,1),data(:,2),temp(:,1),temp(:,2),temp2(:,1),temp2(:,2)); 
    %     plot(newAxes,convertedObject(:,1),convertedObject(:,2), 
temp(:,1),temp(:,2)); 
end 
objectList(removedObjects) = []; 
dlmwrite('ObjectFolder/objectList.txt',objectList); 
dlmwrite('ObjectFolder/width.txt',width); 
set(lineHandles,'uicontextmenu',get(mainAxes,'uicontextmenu')); 
hold(mainAxes,'off') 
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% save('objects.mat','object*'); 
end 
function [objectList,objectNames] = sortObjects(A) 
objectList = zeros(length(A),1); 
for object = 1:length(A) 
    level = 1; 
    findLevel(object); 
    objectList(object) = level; 
    objectNames(object,:) = sprintf('object%03d',object); 
end 
    function findLevel(object) 
        nextObject = find(A(object,:)); 
        if nextObject 
            level = level + 1; 
            findLevel(nextObject); 
        end 
    end 
end 
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APPENDIX B:  MATLAB CODE FOR SPP MODE CALCULATIONS 

function Rot_Stage_Proc_GUI 
%% Prevent more than one occurrenece of Program to run 
h = findobj('name','Rotational Stage Processing'); 
if ~isempty(h) 
    UserData = get(h,'userdata'); 
    H = UserData{1}; 
    D = UserData{2}; 
    S = UserData{3}; 
    figure(H.figure.main) 
    return 
end 
%% initialize data and set some defaults 
D.info.version = '4.3.0'; 
D.info.lastUpdated = 'June 7, 2013'; 
try 
    D.materials = load('matdata.mat'); 
catch exception 
    if strfind('couldNotReadFile',exception.identifier) 
        D.materials.matdate = ''; 
        D.materials.matdata = {}; 
    else 
        rethrow(exception); 
    end 
end 
D.graphType = 1; % 1: angle resolved spectra, 2: azimuthal stage, 3: single 
spectrumres 
D.currentGraph = 1; % 1: energy, 2: wavelength 
%Default axis for E-k, L-t 
D.axes.figureText{1} = { {'Wavevector:' 'Energy:'} {'Exc. Angle:' 
'Wavelength:'}}; 
D.axes.titles{1} = { 'Wavevector k_{//}  [1/\mum]' 'Photon Energy  [eV]'... 
    'Angle \theta  [deg]' 'Wavelength \lambda  [nm]'... 
    'Energy v. wavevector' 'Wavelength v. Excitation Angle'}; 
D.axes.limits{1} = {[0 18 1.24 3.1] [0 60 400 1000]}; 
% Default Axis for E-phi, L-phi (azim) 
D.axes.figureText{2} = {{'Azim. Angle:' 'Energy:'} {'Azim. Angle:' 
'Wavelength:'}}; 
D.axes.titles{2} = {'Azimuthal Angle \phi  [deg]' 'Photon Energy  [eV]' ... 
    'Azimuthal Angle \phi  [deg]' 'Wavelength \lambda  [nm]' ... 
    'Energy v. Azimuthal Angle' 'Wavelength v. Azimuthal Angle'}; 
D.axes.limits{2} = {[0 180 1.24 3.1] [0 180 400 1000]}; 
% Default Axis for I-E, I-L (azim) 
D.axes.figureText{3} = {{'Energy:' 'Intensity:'} {'Wavelength:' 
'Intensity:'}}; 
D.axes.titles{3} = {'Photon Energy [eV]' 'Intensity [arb. units]' ... 
    'Wavelength \lambda  [nm]' 'Intensity [arb. units]'... 
    'Intensity v. Energy' 'Intensity v. Wavelength'}; 
D.axes.limits{3} = {[1.24 3.1 0 1] [400 1000 0 1]}; 
figure;D.colors = repmat(get(gcf,'DefaultAxesColorOrder'),6,1);close; 
%D.colors([2 9],:) = [0 1 0;0 1 0]; %make the green brighter; 
D.axes.defaultLimits = D.axes.limits; 
D.defaultAngles.square = [0 90]; 
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D.defaultAngles.hex = [0 60 120]; 
D.dataType = 1; % 1: raw data, 2: processed data, 3: FDTD data 
D.isDataProcessed = false; 
D.filename = {0 0 0 0}; 
D.path = [pwd '/']; 
D.isFileLoaded = {false false false false}; 
D.data = []; 
D.backgroundData = []; 
D.scale = 1; 
D.FDTDwavelengths = []; 
D.FDTDangles = []; 
D.wavelengths = []; 
D.backgroundAngles = []; 
D.angles = []; 
D.smooth = {'' ''}; 
D.energyData = []; 
D.wavelengthData = []; 
D.isPIdata = false; 
D.angleInput = {0,0,0,0}; 
S.energyModes = []; 
S.wavelengthModes = []; 
S.wavevectorModes = []; 
S.brillouinZones = {{} {}}; 
S.isDataProcessed = false; 
S.zonesVisible = [false false]; 
S.kParallel = 0; 
S.handles = struct('energy',[],'wavelengths',[],'wavevector',[],... 
    'zones',struct('one',[],'two',[]),'arrows',[],'saved',[],'all',[]); 
S.material = ''; 
S.geometry = 'square'; 
S.graphType = 1; % 1: excitation, 2: azimuthal 
S.spacing = [400 400]; 
S.refractiveIndex = 1.56; 
S.angle = 0; 
S.maxOrders = 2; 
S.exposures = 1; 
S.moireAngles = [0 90]; 
S.drude = struct('e',1,'hw',1,'hg',1); 
%% Make the main figure and its menus 
H.figure.main = figure('name','Rotational Stage Processing',... 
    'NumberTitle','off',... 
    'Position',[20 20 960 640],... 
    'Toolbar','Figure'); 
set(H.figure.main,'units','normalized') 
colormap('gray'); 
H.menu.moire = uimenu(H.figure.main,'label','Set Moire Angles'); 
H.moireMenu.square = uimenu(H.menu.moire,'label','Square'); 
H.squareMenu.perfect = uimenu(H.moireMenu.square,... 
    'label','90',... 
    'callback',@updateData,... 
    'checked','on'); 
H.squareMenu.odom = uimenu(H.moireMenu.square,... 
    'label','88.93',... 
    'callback',@updateData,... 
    'checked','off'); 
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H.squareMenu.other = uimenu(H.moireMenu.square,... 
    'label','Other...',... 
    'callback',@updateData,... 
    'checked','off'); 
H.moireMenu.hex = uimenu(H.menu.moire,'label','Hex'); 
H.hexMenu.perfect = uimenu(H.moireMenu.hex,... 
    'label','60,120',... 
    'callback',@updateData,... 
    'checked','on'); 
H.hexMenu.other = uimenu(H.moireMenu.hex,... 
    'label','Other...',... 
    'callback',@updateData,... 
    'checked','off'); 
H.menu.about = uimenu(H.figure.main,'label','About','callback',@aboutMenu); 
%% Create the panels 
% SPPmodes panel Panel 
H.panel.sppModes = uipanel(H.figure.main,... 
    'title','SPP MODES',... 
    'Units','normalized',... 
    'Position',[ .02 .02 .303 .47 ]); 
% Status Window Panel 
H.panel.status = uipanel(H.figure.main,... 
    'Units','normalized',... 
    'Position',[0.343 0.69 0.303 0.07 ]); 
% Axes Properties Panel 
H.panel.axes = uipanel(H.figure.main,... 
    'title','AXES PROPERTIES',... 
    'Units','normalized',... 
    'Position',[0.343 0.78 0.303 0.2 ]); 
% Process Data Panel 
H.panel.processData = uipanel(H.figure.main,... 
    'title','IMPORT DATA',... 
    'units','normalized',... 
    'position',[.02 .51 .303 .47]); 
%% Make the Plot Buttons 
H.main.processData = uicontrol(H.figure.main,... 
    'callback',@processData,... 
    'units','normalized',... 
    'position',[.343 .55 .15 .13],... 
    'string','PROCESS DATA'); 
H.main.SPPmodes = uicontrol(H.figure.main,... 
    'callback',@processSPPmodes,... 
    'units','normalized',... 
    'position',[.497 .55 .15 .13],... 
    'string','SPP MODES'); 
H.main.smooth = uicontrol(H.figure.main,... 
    'callback',@updateData,... 
    'units','normalized',... 
    'position',[.343 .51 .15 .035],... 
    'style','check',... 
    'string','Smooth Data'); 
H.main.save = uicontrol(H.figure.main,... 
    'callback',@saveSPPmodes,... 
    'units','normalized',... 
    'position',[.497 .51 .15 .035],... 
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    'string','Save SPP Modes'); 
%% Create the axes 
%FT axes 
H.axes.wavevector = axes('outerposition',[.677 .51 .303 .47],'box','on');... 
    hold('all'),xlabel('k_x [1/\mum]'),ylabel('k_y [1/\mum]'),title('Fourier 
transform');... 
    axis([-1 1 -1 1]);... 
    set(H.axes.wavevector,'dataaspectratio',[1 1 1]); 
%Energy axes 
H.axes.energy = axes('outerposition',[.343 .02 .303 .47],'box','on');... 
    hold('all'),xlabel(D.axes.titles{1}{1}),ylabel(D.axes.titles{1}{2}),... 
    title(D.axes.titles{1}{5}),axis([D.axes.limits{1}{1}]); 
%Wavelength axes 
H.axes.wavelength = axes('outerposition',[.677 .02 .303 .47],'box','on');... 
    hold('all'),xlabel(D.axes.titles{1}{3}),ylabel(D.axes.titles{1}{4}),... 
    title(D.axes.titles{1}{6}), axis([D.axes.limits{1}{2}]); 
%% Create the context menus 
H.menu.context = uicontextmenu; 
H.contextMenu.SPPModes = uimenu(H.menu.context,... 
    'label','SPP Modes'); 
H.contextMenu.Graphs = uimenu(H.menu.context,... 
    'label','Pop Out Graph'); 
H.SPPcontext.Remove = uimenu(H.contextMenu.SPPModes,... 
    'label','Remove Unsaved Lines',... 
    'callback',@clearUnsaved); 
H.SPPcontext.Return = uimenu(H.contextMenu.SPPModes,... 
    'label','Return Unsaved Lines',... 
    'callback',@returnUnsaved); 
H.SPPcontext.Delete = uimenu(H.contextMenu.SPPModes,... 
    'label','Delete Saved Lines',... 
    'callback',@deleteSaved); 
H.graphsContext.wavevector = uimenu(H.contextMenu.Graphs,... 
    'label','Wavevector',... 
    'callback',@popOutFigure); 
H.graphsContext.energy = uimenu(H.contextMenu.Graphs,... 
    'label','Energy Graph',... 
    'callback',@popOutFigure); 
H.graphsContext.wavelength = uimenu(H.contextMenu.Graphs,... 
    'label','Wavelength Graph',... 
    'callback',@popOutFigure); 
H.contextMenu.hide = uimenu(H.menu.context,... 
    'label','Hide Data',... 
    'callback',@toggleShowData,... 
    'enable','off'); 
H.contextMenu.zones = uimenu(H.contextMenu.SPPModes,... 
    'label','Show Bragg Lines',... 
    'enable','off'); 
H.zonesContext.one = uimenu(H.contextMenu.zones,... 
    'label','1st order',... 
    'callback',@toggleShowZones,... 
    'checked','off'); 
H.zonesContext.two = uimenu(H.contextMenu.zones,... 
    'label','2nd order',... 
    'callback',@toggleShowZones,... 
    'checked','off'); 
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set(struct2array(H.axes),'uicontextmenu',H.menu.context); 
%% Populate the Process Data Panel 
H.processData.dataType = uicontrol(H.panel.processData,... 
    'callback',@updateData,... 
    'style','pop',... 
    'Units','normalized',... 
    'Position',[.05 .9 .5 .05],... 
    'String',{'Raw Data','Processed Data','FDTD Data'}); 
uicontrol(H.panel.processData,... 
    'style','text',... 
    'units','normalized',... 
    'position',[.6 .84 .35 .1],... 
    'horizontalalignment','left',... 
    'string','Data type'); 
H.processData.dataFile = uicontrol(H.panel.processData,... 
    'style','edit',... 
    'enable','inactive',... 
    'units','normalized',... 
    'position',[.05 .75 .65 .1],... 
    'string','Data file'); 
H.processData.selectData = uicontrol(H.panel.processData,... 
    'callback',@updateData,... 
    'units','normalized',... 
    'position',[.75 .75 .2 .1],... 
    'string','Select'); 
H.processData.backgroundFile = uicontrol(H.panel.processData,... 
    'style','edit',... 
    'enable','inactive',... 
    'units','normalized',... 
    'position',[.05 .65 .65 .1],... 
    'string','Background file'); 
H.processData.selectBackground = uicontrol(H.panel.processData,... 
    'callback',@updateData,... 
    'units','normalized',... 
    'position',[.75 .65 .2 .1],... 
    'string','Select'); 
H.processData.scale = uicontrol(H.panel.processData,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ .05 .55 0.4 0.1 ],... 
    'String','1',... 
    'Style','edit'); 
H.processData.scaleText = uicontrol(H.panel.processData,... 
    'Units','normalized',... 
    'Position',[ .5 0.55 0.45 0.08 ],... 
    'String','Scale',... 
    'HorizontalAlignment','left',... 
    'Style','text'); 
H.processData.wavelengthsFile = uicontrol(H.panel.processData,... 
    'style','edit',... 
    'enable','inactive',... 
    'units','normalized',... 
    'position',[.05 .45 .65 .1],... 
    'string','Wavelengths file',... 
    'visible','off'); 
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H.processData.selectWavelengths = uicontrol(H.panel.processData,... 
    'callback',@updateData,... 
    'units','normalized',... 
    'position',[.75 .45 .2 .1],... 
    'string','Select',... 
    'visible','off'); 
H.processData.anglesFile = uicontrol(H.panel.processData,... 
    'style','edit',... 
    'enable','inactive',... 
    'units','normalized',... 
    'position',[.05 .35 .65 .1],... 
    'string','Angles file',... 
    'visible','off'); 
H.processData.selectAngles = uicontrol(H.panel.processData,... 
    'callback',@updateData,... 
    'units','normalized',... 
    'position',[.75 .35 .2 .1],... 
    'string','Select',... 
    'visible','off'); 
H.processData.plotBackground = uicontrol(H.panel.processData,... 
    'callback',@plotBackground,... 
    'Units','normalized',... 
    'Position',[ .05 0.25 0.45 0.08 ],... 
    'String','Plot Background'); 
H.processData.saveBackground = uicontrol(H.panel.processData,... 
    'callback',@saveBackground,... 
    'Units','normalized',... 
    'Position',[ .05 0.15 0.45 0.08 ],... 
    'String','Save Background'); 
H.processData.saveData = uicontrol(H.panel.processData,... 
    'callback',@saveData,... 
    'Units','normalized',... 
    'Position',[ .05 0.05 0.45 0.08 ],... 
    'String','Save Data'); 
H.processData.loadFiles = uicontrol(H.panel.processData,... 
    'callback',@updateData,... 
    'units','normalized',... 
    'position',[ .55 .05 .4 .3],... 
    'string','Load Files'); 
%% Populate the SPPModes Panel 
% Material Selection 
if isempty(D.materials.matdata) 
    materialString = {'No Materials File Available','Diffraction 
Modes','Drude Model'}; 
else 
    materialString = {sprintf('Material list 
updated %s',D.materials.matdate),... 
        D.materials.matdata{:,2},'Drude Model','Diffraction Modes'}; 
end 
H.SPPmodes.materialList = uicontrol(H.panel.sppModes,... 
    'style','pop',... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[.05 .9 .9 .05],... 
    'String',materialString); 
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% Geometry Selection 
H.SPPmodes.geometryList = uicontrol(H.panel.sppModes,... 
    'style','popup',... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[.05 .8 .5 .05],... 
    'String',{'Line','Square','Hex'}); 
% Azim sweep checkbox 
H.SPPmodes.azim = uicontrol(H.panel.sppModes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ .6 .8 .35 .05 ],... 
    'String','Azim sweep',... 
    'Style','checkbox'); 
% Spacing 
H.SPPmodes.spacing = uicontrol(H.panel.sppModes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ .05 .65 0.4 0.1 ],... 
    'String','400',... 
    'Style','edit'); 
uicontrol(H.panel.sppModes,... 
    'Units','normalized',... 
    'Position',[ .5 0.65 0.45 0.08 ],... 
    'String','Spacing [nm]',... 
    'HorizontalAlignment','left',... 
    'Style','text'); 
% Index 
H.SPPmodes.refractiveIndex = uicontrol(H.panel.sppModes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ .05 .55 0.4 0.1 ],... 
    'String','1.56',... 
    'Style','edit'); 
uicontrol(H.panel.sppModes,... 
    'Units','normalized',... 
    'Position',[ .5 0.55 0.45 0.08 ],... 
    'String','Refractive index',... 
    'HorizontalAlignment','left',... 
    'Style','text'); 
%Angle 
H.SPPmodes.angle = uicontrol(H.panel.sppModes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ .05 .45 0.4 0.1  ],... 
    'String','0',... 
    'Style','edit'); 
H.SPPmodes.angleText = uicontrol(H.panel.sppModes,... 
    'Units','normalized',... 
    'Position',[ .5 0.45 0.45 0.08 ],... 
    'String','Azimuthal angle',... 
    'HorizontalAlignment','left',... 
    'Style','text'); 
%Max order to plot 
H.SPPmodes.orders = uicontrol(H.panel.sppModes,... 
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    'callback',@updateData,... 
    'style','edit',... 
    'units','normalized',... 
    'position',[.05 .35 0.4 0.1],... 
    'string','2'); 
uicontrol(H.panel.sppModes,... 
    'style','text',... 
    'unit','normalized',... 
    'position',[ .5 0.35 0.45 0.08],... 
    'HorizontalAlignment','left',... 
    'string','Max orders to plot'); 
%Moire Offset Angle 
H.SPPmodes.moireAngles = uicontrol(H.panel.sppModes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ .05 .25 0.4 0.1  ],... 
    'String','1',... 
    'Style','edit'); 
H.SPPmodes.moireAnglesText = uicontrol(H.panel.sppModes,... 
    'Units','normalized',... 
    'Position',[ .5 0.25 0.45 0.08 ],... 
    'String','Number of Exposures',... 
    'HorizontalAlignment','left',... 
    'Style','text'); 
%Drude Coefficients 
H.SPPmodes.drude.e = uicontrol(H.panel.sppModes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ 0.05 0.05 0.283 0.1 ],... 
    'String','1',... 
    'Style','edit',... 
    'visible','off'); 
H.SPPmodes.drude.eText = uicontrol(H.panel.sppModes,... 
    'Units','normalized',... 
    'Position',[ 0.05 0.15 0.283 0.08 ],... 
    'String','e',... 
    'Style','text',... 
    'visible','off'); 
H.SPPmodes.drude.hw  = uicontrol(H.panel.sppModes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ 0.358 0.05 0.283 0.1 ],... 
    'String','1',... 
    'Style','edit',... 
    'visible','off'); 
H.SPPmodes.drude.hwText  = uicontrol(H.panel.sppModes,... 
    'Units','normalized',... 
    'Position',[ 0.358 0.15 0.283 0.08 ],... 
    'String','h/w',... 
    'Style','text',... 
    'visible','off'); 
H.SPPmodes.drude.hg  = uicontrol(H.panel.sppModes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ 0.667 0.05 0.283 0.1 ],... 
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    'String','1',... 
    'Style','edit',... 
    'visible','off'); 
H.SPPmodes.drude.hgText  = uicontrol(H.panel.sppModes,... 
    'Units','normalized',... 
    'Position',[ 0.667 0.15 0.283 0.08 ],... 
    'String','h/g',... 
    'Style','text',... 
    'visible','off'); 
%% Populate the Axes Properties Panel 
H.axesProperties.graphList = uicontrol(H.panel.axes,... 
    'callback',@updateData,... 
    'style','popup',... 
    'Units','normalized',... 
    'Position',[0.05 0.7 0.6 0.2],... 
    'String',{'Energy Graph','Wavelength Graph'}); 
H.axesProperties.reset = uicontrol(H.panel.axes,... 
    'callback',@updateData,... 
    'units','normalized',... 
    'position',[.7 .7 .25 .2],... 
    'string','Reset'); 
H.axesProperties.XaxisText = uicontrol(H.panel.axes,... 
    'HorizontalAlignment','left',... 
    'Units','normalized',... 
    'Position',[ 0.02 0.43 0.28 0.15 ],... 
    'String','Wavevector:',... 
    'Style','text'); 
uicontrol(H.panel.axes,... 
    'HorizontalAlignment','left',... 
    'Units','normalized',... 
    'Position',[ 0.32 0.45 0.2 0.15 ],... 
    'String','from',... 
    'Style','text'); 
uicontrol(H.panel.axes,... 
    'HorizontalAlignment','left',... 
    'Units','normalized',... 
    'Position',[ 0.7 0.45 0.2 0.15 ],... 
    'String','to',... 
    'Style','text'); 
H.axesProperties.YaxisText = uicontrol(H.panel.axes,... 
    'HorizontalAlignment','left',... 
    'Units','normalized',... 
    'Position',[ 0.02 0.10 0.28 0.15 ],... 
    'String','Energy:',... 
    'Style','text'); 
uicontrol(H.panel.axes,... 
    'HorizontalAlignment','left',... 
    'Units','normalized',... 
    'Position',[ 0.32 0.08 0.2 0.15 ],... 
    'String','from',... 
    'Style','text'); 
uicontrol(H.panel.axes,... 
    'HorizontalAlignment','left',... 
    'Units','normalized',... 
    'Position',[ 0.7 0.08 0.2 0.15 ],... 
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    'String','to',... 
    'Style','text'); 
H.axesProperties.XaxisMin = uicontrol(H.panel.axes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ 0.42 0.4 0.25 0.25 ],... 
    'String',D.axes.limits{1}{2}(1),... 
    'Style','edit'); 
H.axesProperties.XaxisMax = uicontrol(H.panel.axes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ 0.75 0.4 0.25 0.25 ],... 
    'String',D.axes.limits{1}{2}(2),... 
    'Style','edit'); 
H.axesProperties.YaxisMin = uicontrol(H.panel.axes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ 0.42 0.03 0.25 0.25 ],... 
    'String',D.axes.limits{1}{1}(1),... 
    'Style','edit'); 
H.axesProperties.YaxisMax = uicontrol(H.panel.axes,... 
    'callback',@updateData,... 
    'Units','normalized',... 
    'Position',[ 0.75 0.03 0.25 0.25 ],... 
    'string',D.axes.limits{1}{1}(2),... 
    'Style','edit'); 
%% Status Message 
H.status = uicontrol(H.panel.status,... 
    'Units','normalized',... 
    'Position',[ 0.1 0.1 0.8 0.8 ],... 
    'String','This is the status!',... 
    'Style','text',... 
    'fontsize',14); 
%% Store the handles and data 
set(H.figure.main,'userdata',{H,D,S}); 
updateFigure; 
%% Nested Functions Used in Callbacks 
    function updateData(obj,~) 
        if ~exist('obj','var') 
            set(H.figure.main,'userdata',{H,D,S}); 
            updateFigure; 
            return 
        end 
        switch obj 
            case H.squareMenu.perfect 
                D.defaultAngles.square = [0 90]; 
            case H.squareMenu.odom 
                D.defaultAngles.square = [0 88.93]; 
            case H.squareMenu.other 
                D.defaultAngles.square = defineAngles(2); 
            case H.hexMenu.perfect 
                D.defaultAngles.hex = [0 60 120]; 
            case H.hexMenu.perfect 
                D.defaultAngles.hex = defineAngles(3); 
            case H.main.smooth 
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                if get(obj,'value') 
                    D.smooth = {defineSmoothParameters}; 
                else 
                    D.smooth = {'',''}; 
                end 
            case H.processData.dataType 
                D.dataType = get(obj,'value'); 
                D.isFileLoaded = {false false false false}; 
            case H.processData.selectData 
                [D.filename{1} D.path] = setFilename(D.path,'data'); 
                D.isFileLoaded{1} = false; 
            case H.processData.selectBackground 
                [D.filename{2} D.path] = setFilename(D.path,'background'); 
                D.isFileLoaded{2} = false; 
            case H.processData.selectWavelengths 
                [D.filename{3} D.path] = setFilename(D.path,'wavelengths'); 
                D.isFileLoaded{3} = false; 
            case H.processData.selectAngles 
                [D.filename{4} D.path] = setFilename(D.path,'angles'); 
                D.isFileLoaded{4} = false; 
            case H.processData.scale 
                D.scale = str2double(get(obj,'string')); 
            case H.processData.loadFiles 
                fields = 
{'data','backgroundData','FDTDwavelengths','FDTDangles'}; 
                for ii = 1:length(D.filename) 
                    if D.filename{ii} ~= 0 
                        [~,~,fileType] = fileparts(D.filename{ii}); 
                        switch lower(fileType) 
                            case '.txt' 
                                D.(fields{ii}) = load([D.path 
D.filename{ii}]); 
                                D.isPIdata = false; 
                            case '.mat' 
                                L = load([D.path D.filename{ii}]); 
                                graphType = strfind({'Dispersion 
Data','Azimuthal Sweep','Single Spectrum'},L.graphType); 
                                graphType = 
find(arrayfun(@(X)~isempty(graphType{X}),1:length(graphType))); 
                                wavelengths = L.wavelengths; 
                                angles = L.angles; 
                                if ii == 1 
                                    data = L.data; 
                                    D.data = [graphType-1, angles; 
wavelengths, data]; 
                                elseif ii==2 
                                    backgroundData = L.backgroundData; 
                                    D.backgroundData = sortrows([wavelengths 
backgroundData]); 
                                    D.backgroundData = [graphType-1, 
backgroundAngles; D.backgroundData]; 
                                end 
                            case '.csv' 
                                A = importdata([D.path 
D.filename{ii}],',',1); 
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                                if sum(strcmpi('frame',A.colheaders)) 
                                    angleAns = inputdlg('Please input 
[startAngle,endAngle,incriment]',... 
                                        'Define Angles',1,{'[0,70,1]'}); 
                                    D.angleInput{ii} = 
cell2mat(textscan(angleAns{1},'[%f,%f,%f]')); 
                                end 
                                D.(fields{ii}) = A.data; 
                                D.isPIdata = true; 
                            otherwise 
                                setStatus('Unsupported File type'); 
                        end 
                        D.isFileLoaded{ii} = true; 
                    else 
                        D.(fields{ii}) = []; 
                    end 
                end 
                D.isDataProcessed = false; 
            case H.SPPmodes.materialList 
                materials = get(obj,'string'); 
                choice = get(obj,'value'); 
                if choice == 1 
                    S.material = ''; 
                else 
                    S.material = materials{choice}; 
                end 
                S.isDataProcessed = false; 
            case H.SPPmodes.geometryList 
                geometry = get(obj,'string'); 
                choice = get(obj,'value'); 
                S.geometry = geometry{choice}; 
                updateData(H.SPPmodes.moireAngles); 
            case H.SPPmodes.azim 
                if get(obj,'value') 
                    S.graphType = 2; 
                else 
                    S.graphType = 1; 
                end 
            case H.SPPmodes.spacing 
                spacings = eval(['[' get(obj,'string') ']'] ); 
                if length(spacings) == 1 
                    S.spacing = repmat(spacings,1,length(S.moireAngles)); 
                else 
                    multiples = 
strfind({'line','square','hex'},lower(S.geometry)); 
                    multiples = 
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples))); 
                    S.spacing = repmat(spacings,1,multiples); 
                end 
            case H.SPPmodes.refractiveIndex 
                S.refractiveIndex = str2double(get(obj,'string')); 
                if isnan(S.refractiveIndex) 
                    string = get(obj,'string'); 
                    if strcmpi(string,'noa 61')||strcmpi(string,'noa61') 
                        S.refractiveIndex = 'noa 61'; 
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                        setStatus('This is the status!'); 
                    else 
                        setStatus('Invalid entry for Index'); 
                    end 
                end 
            case H.SPPmodes.angle 
                S.angle = str2double(get(obj,'string')); 
            case H.SPPmodes.orders 
                S.maxOrders = str2double(get(obj,'string')); 
            case H.SPPmodes.moireAngles 
                exposures = eval(['[' get(obj,'string') ']']); 
                if length(exposures) == 1 
                    multiples = 
strfind({'line','square','hex'},lower(S.geometry)); 
                    multiples = 
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples))); 
                    S.exposures = exposures; 
                    angles = linspace(0,180/multiples,exposures+1); 
                    angles(end) = []; 
                    S.moireAngles = angles; 
                    for ii = 1:multiples-1 
                        S.moireAngles = [S.moireAngles 
angles+ii*180/multiples]; 
                    end 
                else 
                    multiples = 
strfind({'line','square','hex'},lower(S.geometry)); 
                    multiples = 
find(arrayfun(@(X)~isempty(multiples{X}),1:length(multiples))); 
                    S.exposures = length(exposures); 
                    for ii = 1:multiples-1 
                        exposures = [exposures exposures+ii*180/multiples]; 
                    end 
                    S.moireAngles = exposures; 
                end 
                updateData(H.SPPmodes.spacing); 
            case H.SPPmodes.drude.e 
                S.drude.e = str2double(get(obj,'string')); 
            case H.SPPmodes.drude.hw 
                S.drude.hw = str2double(get(obj,'string')); 
            case H.SPPmodes.drude.hg 
                S.drude.hg = str2double(get(obj,'string')); 
            case H.axesProperties.graphList 
                D.currentGraph = get(obj,'value'); 
            case H.axesProperties.reset 
                D.axes.limits = D.axes.defaultLimits; 
                updateAxes; 
            case H.axesProperties.XaxisMin 
                D.axes.limits{D.graphType}{D.currentGraph}(1) = 
str2double(get(obj,'string')); 
                updateAxes; 
            case H.axesProperties.XaxisMax 
                D.axes.limits{D.graphType}{D.currentGraph}(2) = 
str2double(get(obj,'string')); 
                updateAxes; 
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            case H.axesProperties.YaxisMin 
                D.axes.limits{D.graphType}{D.currentGraph}(3) = 
str2double(get(obj,'string')); 
                updateAxes; 
            case H.axesProperties.YaxisMax 
                D.axes.limits{D.graphType}{D.currentGraph}(4) = 
str2double(get(obj,'string')); 
                updateAxes; 
            otherwise 
        end 
        set(H.figure.main,'userdata',{H,D,S,'H,D,S'}); 
        updateFigure; 
        function array = defineAngles(number) 
            answer = inputdlg(sprintf('Indicate the %i default angles to 
use',number)); 
            if isempty(answer) 
                array = 0:180/number:179; 
            else 
                array = eval(sprintf('[ %s ]',answer{1})); 
            end 
            if ~(length(answer)==number && isnumeric(answer)) 
                errordlg('Invalid imput') 
                defineAngles(number) 
            end 
        end 
        function [points, method] = defineSmoothParameters() 
            answer = inputdlg({'How many points to span? [odd number]' ... 
                'What method to use? [lowess, loess, rlowess, 
rloesss]'},'Smoothing',1, {'21' 'moving'}); 
            if isempty(answer) 
                points = ''; 
                method = ''; 
            else 
                points = str2double(answer{1}); 
                method = answer{2}; 
            end 
        end 
        function [filename, newPath] = setFilename(path,label) 
            [filename, newPath] = 
uigetfile('*.txt;*.mat;*.csv',sprintf('Select the %s file to 
load',label),path); 
            if newPath == 0 
                newPath = path; 
            end 
        end 
    end 
    function updateFigure 
        updateProcessDataPanel(D.dataType); 
        updateFilenames; 
        updateSPPmodesPanel(S.material); 
        updateAxesPanel; 
        switch S.graphType 
            case 1 %variable excitation angle 
                set(H.SPPmodes.angleText,'string','Azimuthal Angle') 
            case 2 %variable azimuthal angle 
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                set(H.SPPmodes.angleText,'string','Excitation Angle') 
        end 
        function updateAxesPanel 
            set(H.axesProperties.XaxisText,'string',... 
                D.axes.figureText{D.graphType}{D.currentGraph}{1}) 
            set(H.axesProperties.YaxisText,'string',... 
                D.axes.figureText{D.graphType}{D.currentGraph}{2}) 
            set(H.axesProperties.XaxisMin,'string',... 
                D.axes.limits{D.graphType}{D.currentGraph}(1)) 
            set(H.axesProperties.XaxisMax,'string',... 
                D.axes.limits{D.graphType}{D.currentGraph}(2)) 
            set(H.axesProperties.YaxisMin,'string',... 
                D.axes.limits{D.graphType}{D.currentGraph}(3)) 
            set(H.axesProperties.YaxisMax,'string',... 
                D.axes.limits{D.graphType}{D.currentGraph}(4)) 
        end 
        function updateProcessDataPanel(type) 
            switch type 
                case 1 % raw data 
                    set(H.processData.dataFile,'visible','on'); 
                    set(H.processData.selectData,'visible','on'); 
                    set(H.processData.backgroundFile,'visible','on'); 
                    set(H.processData.selectBackground,'visible','on'); 
                    set(H.processData.scale,'visible','on'); 
                    set(H.processData.scaleText,'visible','on'); 
                    set(H.processData.wavelengthsFile,'visible','off'); 
                    set(H.processData.selectWavelengths,'visible','off'); 
                    set(H.processData.anglesFile,'visible','off'); 
                    set(H.processData.selectAngles,'visible','off'); 
                    set(H.processData.plotBackground,'visible','on'); 
                    set(H.processData.saveBackground,'visible','on'); 
                    set(H.processData.saveData,'visible','on'); 
                    D.filename(3:4) = {0 0}; 
                case 2 % processed data 
                    set(H.processData.dataFile,'visible','on'); 
                    set(H.processData.selectData,'visible','on'); 
                    set(H.processData.backgroundFile,'visible','off'); 
                    set(H.processData.selectBackground,'visible','off'); 
                    set(H.processData.scale,'visible','off'); 
                    set(H.processData.scaleText,'visible','off'); 
                    set(H.processData.wavelengthsFile,'visible','off'); 
                    set(H.processData.selectWavelengths,'visible','off'); 
                    set(H.processData.anglesFile,'visible','off'); 
                    set(H.processData.selectAngles,'visible','off'); 
                    set(H.processData.plotBackground,'visible','off'); 
                    set(H.processData.saveBackground,'visible','off'); 
                    set(H.processData.saveData,'visible','off'); 
                    D.filename(2:4) = {0 0 0}; 
                case 3 % FDTD data 
                    set(H.processData.dataFile,'visible','on'); 
                    set(H.processData.selectData,'visible','on'); 
                    set(H.processData.backgroundFile,'visible','off'); 
                    set(H.processData.selectBackground,'visible','off'); 
                    set(H.processData.scale,'visible','off'); 
                    set(H.processData.scaleText,'visible','off'); 
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                    set(H.processData.wavelengthsFile,'visible','on'); 
                    set(H.processData.selectWavelengths,'visible','on'); 
                    set(H.processData.anglesFile,'visible','on'); 
                    set(H.processData.selectAngles,'visible','on'); 
                    set(H.processData.plotBackground,'visible','off'); 
                    set(H.processData.saveBackground,'visible','off'); 
                    set(H.processData.saveData,'visible','on'); 
                    D.filename(2) = {0}; 
            end 
        end 
        function updateFilenames 
            files = {'Data','Background','Wavelengths','Angles'}; 
            for ii = 1:length(D.filename) 
                if D.filename{ii} == 0 
                    set(H.processData.([lower(files{ii}) 
'File']),'string',[files{ii} ' File']); 
                else 
                    set(H.processData.([lower(files{ii}) 
'File']),'string',D.filename{ii}); 
                end 
                if D.isFileLoaded{ii} 
                    set(H.processData.([lower(files{ii}) 
'File']),'foregroundcolor','green') 
                else 
                    set(H.processData.([lower(files{ii}) 
'File']),'foregroundcolor','red') 
                end 
            end 
        end 
        function updateSPPmodesPanel(material) 
            if strcmpi(material,'drude model') 
                set(H.SPPmodes.drude.e,'visible','on'); 
                set(H.SPPmodes.drude.eText,'visible','on'); 
                set(H.SPPmodes.drude.hw,'visible','on'); 
                set(H.SPPmodes.drude.hwText,'visible','on'); 
                set(H.SPPmodes.drude.hg,'visible','on'); 
                set(H.SPPmodes.drude.hgText,'visible','on'); 
            else 
                set(H.SPPmodes.drude.e,'visible','off'); 
                set(H.SPPmodes.drude.eText,'visible','off'); 
                set(H.SPPmodes.drude.hw,'visible','off'); 
                set(H.SPPmodes.drude.hwText,'visible','off'); 
                set(H.SPPmodes.drude.hg,'visible','off'); 
                set(H.SPPmodes.drude.hgText,'visible','off'); 
            end 
            set(H.SPPmodes.azim,'value',S.graphType-1); 
            geometry = strfind({'line','square','hex'},lower(S.geometry)); 
            geometry = 
find(arrayfun(@(X)~isempty(geometry{X}),1:length(geometry))); 
            set(H.SPPmodes.geometryList,'value',geometry); 
        end 
    end 
    function updateAxes 
        axis(H.axes.energy,D.axes.limits{D.graphType}{1}) 
        axis(H.axes.wavelength,D.axes.limits{D.graphType}{2}) 
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        xlabel(H.axes.energy,D.axes.titles{D.graphType}{1}) 
        ylabel(H.axes.energy,D.axes.titles{D.graphType}{2}) 
        xlabel(H.axes.wavelength,D.axes.titles{D.graphType}{3}) 
        ylabel(H.axes.wavelength,D.axes.titles{D.graphType}{4}) 
        title(H.axes.energy,D.axes.titles{D.graphType}{5}) 
        title(H.axes.wavelength,D.axes.titles{D.graphType}{6}) 
    end 
    function resetSPPHandles 
        names = fieldnames(S.handles); 
        for ii = 1:length(names) 
            if strcmpi(names{ii},'zones') 
                S.handles.(names{ii}) = struct('one',[],'two',[]); 
                continue 
            end 
            S.handles.(names{ii}) = []; 
        end 
    end 
    function setStatus(string) 
        set(H.status,'string',string); 
    end 
% Toolbar Menus 
    function aboutMenu(~,~) %About menu 
        msgbox({'Rotational Stage Processing',... 
            'This GUI processes spectra taken from the Rotational Stage 
and',... 
            'calculates the associated optical properites',... 
            '','Design and Coding by: Alex Hryn','Contributions from: Mark 
Huntington and Steve Lubin',... 
            sprintf('You are using version %s',D.info.version),... 
            sprintf('Last updated on %s',D.info.lastUpdated)},'Program 
Information'); 
    end 
% Process Data Panel 
    function plotBackground(~,~) %Plot Background 
        if ~D.isDataProcessed 
            setStatus('Process Data First'); 
            return 
        end 
        figure; 
        plot(D.wavelengths,D.backgroundData) 
    end 
    function saveBackground(~,~) %Save Background 
        if ~D.isDataProcessed 
            setStatus('Process Data First'); 
            return 
        end 
        outName=sprintf('%s_proc_v%s.txt',D.filename{2}(1:end-4), 
strrep(D.info.version,'.','_')); 
        [savePath,outName,fileType] = saveFile(outName,D.path,'Background'); 
        setStatus('Writing background file...') 
        drawnow 
        switch fileType 
            case '.txt' 
                backgroundOutput = sortrows([D.wavelengths 
D.backgroundData]); 



	 160 

                backgroundOutput = [D.graphType-1, D.backgroundAngles; 
backgroundOutput]; 
                dlmwrite([savePath outName], backgroundOutput, 'precision', 
'%.4f', 'delimiter', '\t'); 
            case '.mat' 
                graphTypes = {'Dispersion Data','Azimuthal Sweep','Single 
Spectrum'}; 
                graphType = graphTypes{D.graphType}; 
                wavelengths = D.wavelengths; 
                angles = D.backgroundAngles; 
                backgroundData = D.backgroundData; 
                
save(outName,'graphType','wavelengths','angles','backgroundData'); 
            case '' 
                setStatus(''); 
                drawnow 
                return 
            otherwise 
                setStatus('Only .txt and .mat files currently supported'); 
                return 
        end 
        setStatus('Background file saved!') 
    end 
    function saveData(~,~) %Save Data 
        if ~D.isDataProcessed 
            setStatus('Process Data First'); 
            return 
        end 
        outName=sprintf('%s_proc_v%s.txt',D.filename{1}(1:end-4), 
strrep(D.info.version,'.','_')); 
        [savePath,outName,fileType] = saveFile(outName,D.path,'Data'); 
        setStatus('Writing data file...') 
        drawnow 
        switch fileType 
            case '.txt' 
                dataOutput = [D.graphType-1, D.angles; D.data]; 
                dlmwrite([savePath outName], dataOutput, 'precision', '%.4f', 
'delimiter', '\t'); 
            case '.mat' 
                graphType = {'Dispersion Data','Azimuthal Sweep','Single 
Spectrum'}; 
                graphType = graphType{D.graphType}; 
                wavelengths = D.wavelengths; 
                angles = D.angles; 
                data = D.data(:,2:end); 
                save([savePath 
outName],'graphType','wavelengths','angles','data'); 
            case '' 
                setStatus('') 
                drawnow; 
                return 
            otherwise 
                setStatus('Only .txt and .mat files currently supported'); 
                return 
        end 
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        setStatus('Data file saved!') 
    end 
    function saveSPPmodes(~,~) %Save SPP Modes 
        if ~S.isDataProcessed 
            setStatus('Calculate SPP Modes First'); 
            return 
        end 
        outNames = {'SPPModes_EnergyData.txt','SPPModes_WavelengthData.txt'}; 
        saveLabels  = {'Energy','Wavelength'}; 
        xVariable = {{'k','angle'},{'angle','angle'}}; 
        savePath = [pwd '/']; 
        % 
        for ii = 1:2 
            [savePath,outName,fileType] = 
saveFile(outNames{ii},savePath,['SPP ' saveLabels{ii}]); 
            setStatus(sprintf('Writing SPP %s file...',saveLabels{ii})) 
            drawnow 
            switch fileType 
                case '.txt' 
                    temp = vertcat(S.([lower(saveLabels{ii}) 'Modes']){1}, 
S.([lower(saveLabels{ii}) 'Modes']){2}); 
                    output = reshape(temp, size(S.([lower(saveLabels{ii}) 
'Modes']){1},1),[]); 
                    dlmwrite([savePath outName], output, 'precision', '%.4f', 
'delimiter', '\t'); 
                case '.mat' 
                    eval(sprintf('%s = S.([lower(saveLabels{ii}) 
''Modes'']){1};',xVariable{S.graphType}{ii})) 
                    eval(sprintf('%s = S.([lower(saveLabels{ii}) 
''Modes'']){2}(:,1);',saveLabels{S.graphType}{ii})) 
                    save([savePath 
outName],xVariable{S.graphType}{ii},saveLabels{S.graphType}{ii}); 
                case '' 
                    setStatus('') 
                    drawnow; 
                    return 
                otherwise 
                    setStatus('Only .txt and .mat files currently 
supported'); 
                    return 
            end 
        end 
        setStatus('SPP Modes saved!') 
    end 
    function [path,filename,extension] = 
saveFile(defaultFilename,defaultPath,titleString) 
        [filename,path] = uiputfile({'*.txt','Text Files 
(.txt)';'*.mat','Matlab Files (.mat)'}... 
            ,sprintf('Save %s Data',titleString),[defaultPath 
defaultFilename]); 
        if filename == 0 
            filename = ''; 
            path = defaultPath; 
            extension = ''; 
        else 
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            [~,~,extension] = fileparts(filename); 
        end 
    end 
% Figure Buttons 
    function processData(~,~) %Process data 
        if D.isDataProcessed 
            return 
        end 
        switch D.dataType 
            case 1 
                allFilesLoaded = D.isFileLoaded{1} && D.isFileLoaded{2}; 
            case 2 
                allFilesLoaded = D.isFileLoaded{1}; 
            case 3 
                allFilesLoaded = D.isFileLoaded{1} && D.isFileLoaded{3} && 
D.isFileLoaded{4}; 
        end 
        if ~allFilesLoaded 
            setStatus('Select and load files first'); 
            return 
        end 
        setStatus('Processing Data...'); 
        drawnow 
        try 
            [D.wavelengths, D.backgroundAngles, D.angles, D.backgroundData, 
D.data, energyData, wavelengthData, D.graphType] ... 
                = 
ProcessData(D.data,D.backgroundData,D.scale,D.dataType,D.isPIdata,D.angleInpu
t{1}, D.smooth{:},D.FDTDwavelengths,D.FDTDangles); 
        catch exception 
            %  exp = exception %for debugging errors 
            D.isDataProcessed = false; 
            switch exception.identifier 
                case 'MATLAB:dimagree' %dimension mismatch 
                    setStatus('Data and Background do not match'); 
                case 'MATLAB:load:couldNotReadFile' 
                    if strfind(exception.message,'calibration.mat') 
                        setStatus('No Calibration File') 
                    else 
                        rethrow(exception) 
                    end 
                otherwise 
                    rethrow(exception) 
            end 
            return 
        end 
        cla(H.axes.energy) 
        cla(H.axes.wavelength) 
        cla(H.axes.wavevector) 
        energies=1240./D.wavelengths; 
        switch D.graphType 
            case 1 % normal spectra 
                wavevectors=1000.*(2.* pi./D.wavelengths)*sind(D.angles); 
                D.energyData = image([min(wavevectors(:)), 
max(wavevectors(:))], [min(energies), max(energies)], ... 



	 163 

                    
energyData,'Parent',H.axes.energy,'CDataMapping','scaled'); 
                D.wavelengthData = image([D.angles(1) 
D.angles(end)],[D.wavelengths(1) D.wavelengths(end)], ... 
                    
wavelengthData,'Parent',H.axes.wavelength,'CDataMapping','scaled'); 
                D.axes.limits{1} = {[floor(min(wavevectors(:))) 
ceil(max(wavevectors(:))) min(energies) max(energies)] ... 
                    [min(D.angles) max(D.angles) min(D.wavelengths) 
max(D.wavelengths)]}; 
            case 2 % azim spectra 
                D.energyData = image([D.angles(1) D.angles(end)], 
[min(energies), max(energies)], ... 
                    
energyData,'Parent',H.axes.energy,'CDataMapping','scaled'); 
                D.wavelengthData = image([D.angles(1) 
D.angles(end)],[D.wavelengths(1) D.wavelengths(end)], ... 
                    
wavelengthData,'Parent',H.axes.wavelength,'CDataMapping','scaled'); 
                D.axes.limits{2} = {[min(D.angles) max(D.angles) 
min(energies) max(energies)] ... 
                    [min(D.angles) max(D.angles) min(D.wavelengths) 
max(D.wavelengths)]}; 
            case 3 % single spaectrum 
                D.energyData = plot(H.axes.energy,energies,energyData,'k'); 
                D.wavelengthData = plot(H.axes.wavelength, D.wavelengths, 
wavelengthData,'k'); 
                D.axes.limits{3} = {[min(energies) max(energies) 0 
max(wavelengthData)] ... 
                    [min(D.wavelengths) max(D.wavelengths) 0 
max(wavelengthData)]}; 
        end 
        set([D.energyData; D.wavelengthData],'uicontextmenu',H.menu.context); 
        uistack(D.energyData,'bottom') 
        uistack(D.wavelengthData,'bottom') 
        updateAxes; 
        setStatus('Data Processed!'); 
        resetSPPHandles; 
        D.isDataProcessed = true; 
        set(H.contextMenu.hide,'enable','on','label','Hide Data'); 
        updateAxes; 
        updateData; 
    end 
    function processSPPmodes(~,~) %Calcuate SPP Modes 
        if D.isDataProcessed && (S.graphType ~= D.graphType) 
            button = questdlg('Types of data do not match. Calculating SPP 
Modes will remove the processed data.',... 
                'Erase Processed Data?','Erase','Cancel','Erase'); 
            if strcmp(button,'Erase') 
                cla(H.axes.energy); 
                cla(H.axes.wavelength); 
                updateData(H.processData.loadFiles) 
                D.graphType = S.graphType; 
            else 
                return 
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            end 
        else 
            D.graphType = S.graphType; 
        end 
        if length(S.spacing)~=length(S.moireAngles) 
            setStatus('Spacings and exposures do not match'); 
            return 
        end 
        setStatus('Calculating SPP modes...'); 
        drawnow 
        [S.energyModes, S.wavelengthModes, S.wavevectorModes, indLab, 
modeOrder] = ... 
            SPPCalc(S.material, S.spacing, S.angle, S.refractiveIndex, 
S.moireAngles, S.graphType, S.drude, H.status, S.maxOrders); 
        if strcmp(get(H.status,'userdata'),'error') 
            set(H.status,'userdata',[]); 
            return 
        end 
        [S.brillouinZones] = 
BZcalc(S.wavevectorModes{1}(:,1:2),S.wavevectorModes{1}(:,3)); 
        for cc = 1:max(modeOrder)+1 
            colorInd = (modeOrder == cc); 
            SPPcolorOrd(colorInd,1:3) = 
repmat(D.colors(cc,:),sum(colorInd),1); 
        end 
        delete(S.handles.all); 
        delete(S.handles.arrows); 
        resetSPPHandles; 
        % Plot modes on Energy axes 
        for jj = 1:size(S.energyModes{1},2) 
            S.handles.energy(jj) = 
plot(H.axes.energy,S.energyModes{1}(:,jj),... 
                
S.energyModes{2}(:,jj),'color',SPPcolorOrd(jj,:),'linewidth',1); 
            set(S.handles.energy(jj),'UserData',indLab{jj}) 
        end 
        if S.graphType == 1 %Standard SPP calc 
            lightline_x = (0:0.01:6)./(1.05459e-34*299792458).*1e-
6.*1.60219e-19; 
            lightline_y = 0:0.01:6; 
            S.handles.energy(end+1) = 
plot(H.axes.energy,lightline_x,lightline_y,'--black','linewidth',1); 
            set(S.handles.energy(end),'UserData',{'light line!'}); 
        end 
        % Plot modes on Wavelength axes 
        for kk = 1:size(S.wavelengthModes{1},2) 
            S.handles.wavelengths(kk) = 
plot(H.axes.wavelength,S.wavelengthModes{1}(:,kk),... 
                
S.wavelengthModes{2}(:,kk),'color',SPPcolorOrd(kk,:),'linewidth',1); 
            set(S.handles.wavelengths(kk),'UserData',indLab{kk}) 
        end 
        % Plot modes on wavevector axes 
        XYcoordinates = S.wavevectorModes{1}; 
        FTlabel = S.wavevectorModes{2}; 
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        FT_colors = vertcat([0 0 0], D.colors); 
        cla(H.axes.wavevector); 
        for mm = 1:size(XYcoordinates,1) 
            if XYcoordinates(mm,3) <= S.maxOrders 
                n = XYcoordinates(mm,3); 
            else 
                continue 
            end 
            S.handles.wavevector(mm) = 
scatter(H.axes.wavevector,XYcoordinates(mm,1),XYcoordinates(mm,2),[],FT_color
s(n+1,:)); 
            set(S.handles.wavevector(mm),'userdata',{['[' 
int2str(FTlabel(mm,:)) ']']}); 
        end 
        limits = [min(XYcoordinates(:)) max(XYcoordinates(:))]; 
        set(H.axes.wavevector,'Xlim',limits,'Ylim',limits) 
        % Plot zones on wavevector axes 
        for oo = 1:2 
            zoneString = {'one','two'}; 
            for bb = 1:length(S.brillouinZones{oo}) 
                S.handles.zones.(zoneString{oo})(bb) = ... 
                    
plot(H.axes.wavevector,S.brillouinZones{oo}{bb}(:,1),S.brillouinZones{oo}{bb}
(:,2),... 
                    'color',D.colors(oo,:),'linestyle','--'); 
            end 
            uistack(S.handles.zones.(zoneString{oo}),'bottom'); 
            
set(S.handles.zones.(zoneString{oo}),'buttondownfcn',@BZButtonDownFcn); 
            if S.zonesVisible(oo) 
                set(S.handles.zones.(zoneString{oo}),'visible','on') 
            else 
                set(S.handles.zones.(zoneString{oo}),'visible','off') 
            end 
        end 
        set(H.contextMenu.zones,'enable','on'); 
        S.handles.all = [S.handles.energy(:)' S.handles.wavelengths(:)' 
S.handles.wavevector(:)']; 
        set(S.handles.all,'buttondownfcn',@SPPmodesButtonDownFcn); 
        S.handles.saved = []; 
        setStatus('SPP Modes plotted'); 
        S.isDataProcessed = true; 
        updateData; 
        updateAxes; 
    end 
% Plots 
    function popOutFigure(obj,~) % Copy figure submenu 
        switch obj %find out which one you want to copy 
            case H.graphsContext.wavevector 
                copyAxes('wavevector'); 
            case H.graphsContext.energy 
                copyAxes('energy'); 
            case H.graphsContext.wavelength 
                copyAxes('wavelength'); 
        end 
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        function copyAxes(type) 
            newfig = figure; 
            colormap('gray'); 
            newaxes = copyobj(H.axes.(type),newfig); 
            cla; 
            newlines = copyobj(get(H.axes.(type),'children'),newaxes); 
            if S.isDataProcessed 
                newlines(end) = []; %to clear data 
            end 
            set(newaxes,'units','normalized','position',[.13 .11 .775 .815]) 
            set(newlines(:),'buttondownfcn',{@newfig_bdfcn,newfig,newlines}); 
            dcm_obj = datacursormode(newfig); 
            set(dcm_obj,'UpdateFcn',@displayUserdata) 
            function txt = displayUserdata(~,obj) 
                line = obj.target; 
                txt = get(line,'UserData'); 
            end 
        end 
    end 
    function SPPmodesButtonDownFcn(obj,~) 
        selectSPPlines(obj); 
        switch get(obj,'parent') 
            case H.axes.wavevector 
            case H.axes.energy 
                currentPoint = get(gca,'currentpoint'); 
                S.kParallel = currentPoint(1,1); 
            case H.axes.wavelength 
                currentPoint = get(gca,'currentpoint'); 
                angle = currentPoint(1,1); 
                wavelength = currentPoint(1,2); 
                S.kParallel = 2*pi/(wavelength*1e-3)*sind(angle); 
        end 
        showKsppVectors; 
        if sum(S.zonesVisible) 
            set(S.handles.arrows,'visible','on') 
        end 
        function selectSPPlines(line) % SPP Line selection 
            mode = get(line,'UserData'); %get the indicies from that line's 
UserData 
            setStatus(sprintf('%s ',mode{:})); 
            if strcmpi(mode,'light line!') 
                return 
            end 
            [Ekind,FTind] = findLines(mode); 
            switch get(H.figure.main,'selectiontype') 
                case 'normal' 
                    S.handles.saved = unique([S.handles.saved 
S.handles.energy(Ekind) ... 
                        S.handles.wavelengths(Ekind) 
S.handles.wavevector(FTind)]); 
                case 'alt' 
                    remove = unique([S.handles.energy(Ekind) 
S.handles.wavelengths(Ekind) S.handles.wavevector(FTind)]); 
                    set(remove,'linewidth',1); 
                    erasedLines = arrayfun(@(X)find(S.handles.saved == 
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remove(X)),1:length(remove),'uni',false); 
                    erasedLines = [erasedLines{:}]; 
                    S.handles.saved(erasedLines) = []; 
                otherwise 
                    return 
            end 
            set(S.handles.saved,'linewidth',2); 
        end 
        function showKsppVectors() 
            %find out which FT points are saved 
            points = arrayfun(@(X)find(S.handles.wavevector == 
S.handles.saved(X)),1:length(S.handles.saved),'uni',false); 
            points = [points{:}]; 
            pointHandles = S.handles.wavevector(points); 
            colors = get(pointHandles,'cdata'); 
            if isnumeric(colors) 
                colors = {colors}; 
            end 
            %get the x,y data 
            coordinates = S.wavevectorModes{1}(points,1:2); 
            %add k// from graph 
            coordinates(:,1) = coordinates(:,1)+S.kParallel; 
            %convert to figure units for annotation 
            [Ox,Oy] = axescoord2figurecoord(0,0,H.axes.wavevector); 
            [x,y] = 
axescoord2figurecoord(coordinates(:,1),coordinates(:,2),H.axes.wavevector); 
            energyCoordinates = [[S.kParallel; S.kParallel], 
D.axes.limits{D.graphType}{1}(3:4)']; 
            wavelengthCoordinates(:,2) = 
linspace(D.axes.limits{D.graphType}{2}(3),D.axes.limits{D.graphType}{2}(4),20
0); 
            wavelengthCoordinates(:,1) = 
real(asind(S.kParallel/(2*pi)*wavelengthCoordinates(:,2)*1e-3)); 
            %plot the arrows 
            delete(S.handles.arrows) 
            S.handles.arrows = zeros(size(coordinates,1)+2,1); 
            for ii = 1:size(coordinates,1) 
                S.handles.arrows(ii) = annotation('arrow',... 
                    [Ox x(ii)],[Oy y(ii)],... 
                    'color',colors{ii},'linewidth',1.5,... 
                    'headwidth',6,'headlength',6,... 
                    'headstyle','plain','visible','off'); 
            end 
            uistack(S.handles.arrows(1:end-2),'bottom'); 
            S.handles.arrows(end-1) = plot(H.axes.energy,... 
                energyCoordinates(:,1),energyCoordinates(:,2),... 
                'color',[0 0 0],'linewidth',1.5,'visible','off'); 
            uistack(S.handles.arrows(end-1),'bottom'); 
            S.handles.arrows(end) = plot(H.axes.wavelength,... 
                wavelengthCoordinates(:,1),wavelengthCoordinates(:,2),... 
                'color',[0 0 0],'linewidth',1.5,'visible','off'); 
            uistack(S.handles.arrows(end),'bottom'); 
            if D.isDataProcessed 
                uistack(D.energyData,'bottom'); 
                uistack(D.wavelengthData,'bottom'); 



	 168 

            end 
        end 
        function [Ekind, FTind]  = findLines(mode) 
            Eklabels = get(S.handles.energy,'userdata'); %cell arrary of 
arrays 
            FTlabels = get(S.handles.wavevector,'userdata'); %cell array of 
cells of arrays 
            FTlabels = 
arrayfun(@(X)FTlabels{X}{1},1:length(FTlabels),'uni',false)'; %cell array of 
arrays 
            Ekind = []; 
            FTind = []; 
            for ii = 1:length(mode) 
                FTind(end+1) = find(strcmp(mode{ii},FTlabels)); 
                for jj = 1:length(Eklabels) 
                    if sum(strcmp(mode{ii},Eklabels{jj})); 
                        Ekind(end+1) = jj; 
                    end 
                end 
            end 
        end 
    end 
    function BZButtonDownFcn(obj,~) 
        switch get(H.figure.main,'selectiontype') 
            case 'normal' 
                set(obj,'linewidth',2) 
            case 'alt' 
                set(obj,'linewidth',1) 
            otherwise 
                return 
        end 
    end 
    function clearUnsaved(~,~) % Clear Unsaved submenu 
        if ~S.isDataProcessed 
            setStatus('Calculate SPPModes First'); 
            return 
        end 
        set([S.handles.energy S.handles.wavevector 
S.handles.wavelengths],'visible','off') 
        set(S.handles.saved,'visible','on') 
    end 
    function returnUnsaved(~,~) % Return Unsaved submenu 
        if ~S.isDataProcessed 
            setStatus('Calculate SPPModes First'); 
            return 
        end 
        set([S.handles.energy S.handles.wavevector 
S.handles.wavelengths],'visible','on') 
    end 
    function deleteSaved(~,~) % Delete Saved submenu 
        if ~S.isDataProcessed 
            setStatus('Calculate SPPModes First'); 
            return 
        end 
        set([S.handles.energy S.handles.wavevector 
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S.handles.wavelengths],'visible','on') 
        set(S.handles.all,'linewidth',1) 
        S.handles.saved = []; 
        delete(S.handles.arrows) 
        S.handles.arrows = []; 
        setStatus('SPP Modes plotted'); 
        updateData; 
    end 
    function toggleShowData(obj,~) % Show/Hide displayed data 
        str = get(obj,'label'); 
        if strcmp(str,'Hide Data') 
            set([D.energyData, D.wavelengthData],'visible','off'); 
            set(obj,'label','Show Data'); 
        elseif strcmp(str,'Show Data') 
            set([D.energyData, D.wavelengthData],'visible','on'); 
            set(obj,'label','Hide Data'); 
        end 
    end 
    function toggleShowZones(obj,~) % Show/Hide brillouin zones 
        switch obj 
            case H.zonesContext.one 
                if strcmp(get(obj,'Checked'),'on') 
                    set(S.handles.zones.one,'visible','off'); 
                    S.zonesVisible(1) = false; 
                    set(obj,'checked','off') 
                else 
                    set(S.handles.zones.one,'visible','on'); 
                    S.zonesVisible(1) = true; 
                    set(obj,'checked','on') 
                end 
            case H.zonesContext.two 
                if strcmp(get(obj,'Checked'),'on') 
                    set(S.handles.zones.two,'visible','off'); 
                    S.zonesVisible(2) = false; 
                    set(obj,'checked','off') 
                else 
                    set(S.handles.zones.two,'visible','on'); 
                    S.zonesVisible(2) = true; 
                    set(obj,'checked','on') 
                end 
        end 
        if sum(S.zonesVisible) 
            set(S.handles.arrows,'visible','on') 
        else 
            set(S.handles.arrows,'visible','off') 
        end 
    end 
end 
function [Ek_calc,Lt_calc,FT_calc,indLab,modeOrder] = ... 
    SPPCalc(material, spacing, angle, refractiveIndex, moireAngles, type, 
drudeFactors,statusHandle,maxOrder) 
% [Ek_calc, Lt_calc, indLab, modeOrder]  = SPPCalc(material, numberOfLines, 
spacing, azAngle, refractiveIndex, moireAngles, 
drudeFactors,statusHandle,maxOrder) 
%     material is the material 'Ag' and 'Au' are availible 
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%     Geometry is the lattice geometry 'Line', 'Hex', and 'Sq' are 
%     availible 
%     spacing is the spacing between lattice points in nm 
%     azAngle is the azimuthal angle in degrees 
%     refractiveIndex is the dielectric envivironment for the spp 
%     Created by Mark Huntington May 2011. 
%     Contributions from: Steve Lubin and Alex Hryn 
if type == 1 
    azimuthalAngle = angle; 
elseif type == 2 
    excitationAngle = angle; 
end 
nInterp = 10; %degree of interpolation 
hBar = 1.05459e-34; % Reduced Planck's constant = 1.05459e-34 m2 kg / s 
c = 299792458; %speed of light = 299,792,458 m / s 
spacing = spacing*1e-9; %from nm to m 
if strcmpi('drude model', material) 
    %make energy column 
    EmInt(:,1) = (0.6:0.01:4); %in eV 
    %make delectric column 
    w = EmInt(:,1).*1.51927e15; %0.6eV/hbar to 4eV/hbar 
    epsil = drudeFactors.e - ((drudeFactors.hw*1.51927e15)^2./(w.*(w + 
1i*(drudeFactors.hg*1.51927e15)))); 
    EmInt(:,2) = real(epsil); 
elseif strcmpi('diffraction modes',material) 
    %make energy column 
    EmInt(:,1) = (0.6:0.01:4); %in eV 
    %make dielectric column 
    EmInt(:,2) = inf; 
else 
    L = load('matdata.mat'); 
    %find the material 
    index = 
arrayfun(@(x)strcmpi(L.matdata{x,2},material),1:length(L.matdata),'UniformOut
put', false); 
    index = [index{:}]; 
    if sum(index) ~= 1 
        set(statusHandle,'string','Choose material','Userdata','error') 
        Ek_calc = 0; 
        Lt_calc = 0; 
        FT_calc = 0; 
        indLab = 0; 
        modeOrder = 0; 
        return 
    end 
    Em = L.matdata{index,1}; 
    if size(Em,2)==3 %imaginary part included 
        Em(:,2) = complex(Em(:,2),Em(:,3)); 
    end 
    EmInt(:,1) = interp1(1:length(Em), Em(:,1), 1:1/nInterp:length(Em), 
'spline');% energy 
    EmInt(:,2) = interp1(1:length(Em), Em(:,2), 1:1/nInterp:length(Em), 
'spline');% epsilon 
end 
Energy = EmInt(:,1); 
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lambda = 1240./Energy; 
EnergyJoule = EmInt(:,1).*1.60219e-19; 
if ischar(refractiveIndex) 
    if strcmpi(refractiveIndex,'noa 61') 
        refractiveIndex = 1.5375 + 8290.45./(lambda.^2) - 
2.11046e8./(lambda.^4); 
    end 
end 
dielectric = refractiveIndex.^2; 
numberOfLines = length(moireAngles); 
if numberOfLines == 0 
    set(statusHandle,'string','Choose Geometry','Userdata','error') 
    Ek_calc = 0; 
    Lt_calc = 0; 
    FT_calc = 0; 
    indLab = 0; 
    modeOrder = 0; 
    return 
end 
indicies = Modes(numberOfLines, maxOrder); 
indicies = double(indicies); 
newIndicies = indicies.*2.*pi./repmat(spacing,size(indicies,1),1); 
X_coord = sum(newIndicies .* repmat(cosd(moireAngles),size(indicies,1),1),2); 
Y_coord = sum(newIndicies .* repmat(sind(moireAngles),size(indicies,1),1),2); 
switch type 
    case 1 
        angle = zeros(length(EmInt),2,size(X_coord,1)); 
        k = zeros(length(EmInt),2,size(X_coord,1)); 
        for kk = 1:size(X_coord,1) 
            xx = X_coord(kk); 
            yy = Y_coord(kk); 
            LHS = 
(EnergyJoule./(hBar.*c)).^2.*1./(1./dielectric+1./EmInt(:,2)); % LHS=beta in 
Maier Ch. 2 
            LHS = real(LHS); 
            aa = 1; 
            bb = 2.*(xx.*cosd(azimuthalAngle) + yy.*sind(azimuthalAngle)); 
            cc = (xx.^2+yy.^2)-LHS; 
            kpos = (-bb+(bb.^2-4.*aa.*cc).^0.5)./(2.*aa); 
            kneg = (-bb-(bb.^2-4.*aa.*cc).^0.5)./(2.*aa); 
            kpos = real(kpos)./1e6; 
            kneg = real(kneg)./1e6; 
            k(:,1,kk)= kpos; 
            k(:,2,kk)= kneg; 
            angle(:,1,kk)= 
asin((real(kpos*1e6).*c)./(EnergyJoule./hBar)).*(180./pi); 
            angle(:,2,kk)= 
asin((real(kneg*1e6).*c)./(EnergyJoule./hBar)).*(180./pi); 
        end 
        orderTemp = sum(abs(indicies),2); 
        rotateMat = [cosd(-azimuthalAngle) -sind(-azimuthalAngle); sind(-
azimuthalAngle) cosd(-azimuthalAngle)]; 
        proj = [(rotateMat*[X_coord Y_coord].').'./1e6 orderTemp]; 
        kkind = (abs(real(diff(k))) < 1e-10); %look for ==0, but allow for 
rounding errors 
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        kkind = cat(1, kkind, true([1 size(kkind,2) size(kkind,3)])); 
        %%%% this "reals" thing breaks using line, dont know why right now... 
        %%%% the following 3 commented lines are removed to make it work 
        %%%%~Alex 11/29/2011 
        % reals = find(sum(kkind(:,1,:))~=1);%find the ones that are not all 
zero 
        k(kkind) = 0; 
        angle(kkind) = 0; 
        % k = k(:,:,reals); %only take the ones that are not all zero 
        % angle = angle(:,:,reals); %only take the ones that are not all zero 
        Ek_calc = {zeros(size(k,1),2*kk) zeros(size(k,1),2*kk)}; 
        Lt_calc = {zeros(size(angle,1),2*kk) zeros(size(angle,1),2*kk)}; 
        dd = 1; %counter 
        for mm = 1:size(k,3) 
            %only pick the ones that cross into the first brillouin zones 
            if max(real(k(:,1,mm)))>-pi/(min(spacing)*1e6) && 
min(real(k(:,1,mm))) < pi/(min(spacing)*1e6) %check positive solutions 
                real_k = real(k(:,1,mm)); 
                real_angle = real(angle(:,1,mm)); 
                if dd>1 
                    %find any degenerate vectors fom previous set 
                    degen = (abs(bsxfun(@minus,Ek_calc{1}(:,1:dd-
1),real_k))<1e-10); 
                    degen_ind=sum(~degen)==0; 
                    if sum(degen_ind) 
                        %if degenerate, append the indicies with new index 
                        indLab{degen_ind,1}{end+1} = ['[' 
int2str(indicies(mm,:)) ']']; 
                        modeOrder(degen_ind) = 
min(modeOrder(degen_ind),orderTemp(mm)); 
                    else 
                        %add to the list 
                        Ek_calc{1}(:,dd) = real_k; 
                        Ek_calc{2}(:,dd) = Energy; 
                        Lt_calc{1}(:,dd) = real_angle; 
                        Lt_calc{2}(:,dd) = lambda; 
                        indLab{dd,1} = {['[' int2str(indicies(mm,:)) ']']}; 
                        modeOrder(dd) = orderTemp(mm); 
                        dd = dd+1; 
                    end 
                else 
                    %add the first one to the list 
                    Ek_calc{1}(:,dd) = real_k; 
                    Ek_calc{2}(:,dd) = Energy; 
                    Lt_calc{1}(:,dd) = real_angle; 
                    Lt_calc{2}(:,dd) = lambda; 
                    indLab{dd,1} = {['[' int2str(indicies(mm,:)) ']']}; 
                    modeOrder(dd) = orderTemp(mm); 
                    dd = dd+1; 
                end 
            end 
            if max(real(k(:,2,mm)))>-pi/(min(spacing)*1e6) && 
min(real(k(:,2,mm))) < pi/(min(spacing)*1e6) %check negative solutions 
                real_k = real(k(:,2,mm)); 
                real_angle = real(angle(:,2,mm)); 
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                if dd>1 
                    %find any degenerate vectors fom previous set 
                    degen = (abs(bsxfun(@minus,Ek_calc{1}(:,1:dd-
1),real_k))<1e-10); 
                    degen_ind=sum(~degen)==0; 
                    if sum(degen_ind) 
                        %if degenerate, append the indicies with new index 
                        indLab{degen_ind,1}{end+1} = ['[' 
int2str(indicies(mm,:)) ']']; 
                        modeOrder(degen_ind) = 
min(modeOrder(degen_ind),orderTemp(mm)); 
                    else 
                        %add to the list 
                        Ek_calc{1}(:,dd) = Ek_calc{1}(:,dd)+real_k; 
                        Ek_calc{2}(:,dd) = Energy; 
                        Lt_calc{1}(:,dd) = Lt_calc{1}(:,dd)+real_angle; 
                        Lt_calc{2}(:,dd) = lambda; 
                        indLab{dd,1} = {['[' int2str(indicies(mm,:)) ']']}; 
                        modeOrder(dd) = orderTemp(mm); 
                        dd = dd+1; 
                    end 
                else 
                    %add the first one to the list 
                    Ek_calc{1}(:,dd) = Ek_calc{1}(:,dd)+real_k; 
                    Ek_calc{2}(:,dd) = Energy 
                    Lt_calc{1}(:,dd) = Lt_calc{1}(:,dd)+real_angle; 
                    Lt_calc{2}(:,dd) = lambda; 
                    indLab{dd,1} = {['[' int2str(indicies(mm,:)) ']']}; 
                    modeOrder(dd) = orderTemp(mm); 
                    dd = dd+1; 
                end 
            end 
        end 
        ordering = sortrows([proj indicies], -3); 
        proj = ordering(:,1:3); 
        indicies = ordering(:,4:end); 
        FT_calc = {proj indicies}; 
        %remove the empty rows (from preallocation) and turn all the zeros to 
NaN 
        %to show proper plot 
        Ek_calc{1}(:,dd:end) = []; 
        makeNaN = Ek_calc{1}==0; 
        Ek_calc{1}(makeNaN)=NaN; 
        Ek_calc{2}(:,dd:end) = []; 
        makeNaN = Ek_calc{2}==0; 
        Ek_calc{2}(makeNaN)=NaN; 
        Lt_calc{1}(:,dd:end) = []; 
        makeNaN = Lt_calc{1}==0; 
        Lt_calc{1}(makeNaN)=NaN; 
        Lt_calc{2}(:,dd:end) = []; 
        makeNaN = Lt_calc{2}==0; 
        Lt_calc{2}(makeNaN)=NaN; 
    case 2 
        phiout = zeros(2*length(EmInt),length(X_coord)); 
        for kk = 1:length(X_coord) 
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            ii = X_coord(kk); 
            jj = Y_coord(kk); 
            kspp = (EnergyJoule./(hBar.*c)).*(1./dielectric+1./EmInt(:,2)).^-
0.5; 
            magG = (ii^2+jj^2)^0.5; 
            kpar = EnergyJoule./(hBar*c).*sind(excitationAngle); 
            LHS = (kspp.^2-magG.^2-kpar.^2)./(2.*kpar.*magG); 
            im = imag(LHS)~=0; 
            LHS(im) = NaN; 
            chi = atan2(jj,ii)*(180/pi);%could be from -180 to 180 
            phi = asind(LHS)-chi; %could be from -270 to 270 
            phi = real(phi); 
            phi2 = (180-asind(LHS))-chi; %the upper half of asind 
            phi2 = real(phi2); 
            %shift phi and phi2 so that [0,180] is covered 
            if min(phi) < -180 
                phi = 360+phi; 
                phiout(:,kk) = [phi2; phi]; 
            elseif min(phi) < 0 
                phiout(:,kk) = [phi; phi2]; 
            elseif min(phi) < 180 
                phi2 = phi2-360; 
                phiout(:,kk) = [phi2; phi]; 
            else 
                phi = phi-360; 
                phi2 = phi2-360; 
                phiout(:,kk) = [phi; phi2]; 
            end 
        end 
        modeOrder = sum(abs(indicies),2); 
        proj = [X_coord./1e6 Y_coord./1e6 modeOrder]; 
        ordering = sortrows([proj indicies], -3); 
        proj = ordering(:,1:3); 
        indicies = ordering(:,4:end); 
        FT_calc = {proj indicies}; 
        phiind = (abs(diff(phiout)) < 1e-10); %look for ==0, but allow for 
rounding errors 
        phiind = cat(1,phiind, true([1 size(phiind,2)])) & cat(1, true([1 
size(phiind,2)]),phiind); 
        phiout(phiind) = NaN; 
        Energyout = repmat(Energy,2,size(phiout,2)); 
        Energyout(phiind) = NaN; 
        lambdaout = repmat(lambda,2,size(phiout,2)); 
        lambdaout(phiind) = NaN; 
        Ek_calc = {phiout Energyout}; 
        Lt_calc = {phiout lambdaout}; 
        indLab = arrayfun(@(X){['[' int2str(indicies(X,:)) 
']']},1:size(indicies,1),'uni',false); 
end 
ordering = sortrows([proj indicies], -3); 
proj = ordering(:,1:3); 
indicies = ordering(:,4:end); 
end 
function [wavelengths, backgroundAngles, dataAngles, backgroundData, 
saveData, energyData, wavelengthData, type] = ... 
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ProcessData(rawData,rawBackground,scale,dataType,isPIdata,angleInput,smoothSp
an,smoothType,FDTDwavelengths,FDTDangle) 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%CCD takes 1340 data points% 
%%%%%%%%%%%%%%%%%%%%%%%%%%%% 
%% Load the Background data 
switch dataType 
    case 2 %Processed Data 
        if ~isempty(rawBackground) 
            backgroundData = rawBackground; 
            if backgroundData(1,1) == 1 
                isAzimuthalData = true; 
                backgroundData(1,1) = 0; 
            else 
                isAzimuthalData = false; 
            end 
            if backgroundData(1,1) == 0 
                backgroundAngles = backgroundData(1,2:end); 
                backgroundData(1,:) = []; 
            else 
                reloadans = inputdlg({'What is the range of angles used? (In 
matlab syntax)'},'Angle Input',1,{'0'}); 
                backgroundAngles = eval(reloadans{1}); 
            end 
            wavelengths = backgroundData(:,1); 
            backgroundData(:,1) = []; 
        else 
            backgroundData = 0; 
            backgroundAngles = 0; 
        end 
    case 3 % FDTD Data 
        backgroundAngles = 0; 
        backgroundData = 0; 
        isAzimuthalData = false; 
    case 1 % Raw Data 
        if isPIdata 
            spectraLength = find(rawBackground(:,1)>rawBackground(1),1); 
            if isempty(spectraLength) 
                numberOfSpectra = length(rawBackground(:,2))/1340; 
            else 
                numberOfSpectra = (spectraLength-1)/1340; 
            end 
            backgroundAngles = 
rawBackground(1:(1340*numberOfSpectra):end,1)'; 
            wavelengths = rawBackground(1:(1340*numberOfSpectra),2); 
            backgroundData = 
reshape(rawBackground(:,3),length(wavelengths),length(backgroundAngles)); 
            isAzimuthalData = false; 
        else 
            
[backgroundAngles,backgroundCenterWavelength,backgroundGrating,backgroundData
,isAzimuthalData] = extractData(rawBackground); 
            wavelengths = 
pixel2wavelength(backgroundGrating,backgroundCenterWavelength); 
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            backgroundData = 
calibrateData(wavelengths,backgroundData,backgroundCenterWavelength,backgroun
dGrating); 
            isAzimuthalData = false; 
        end 
        %smooth background 
        backgroundData = sortrows([wavelengths (1:size(backgroundData,1))' 
backgroundData]); 
        numlist = backgroundData(:,2); 
        if ~isempty(smoothSpan) && ~isempty(smoothType) 
            for ii = 3:size(backgroundData,2) 
                backgroundData(:,ii) = 
smooth(backgroundData(:,ii),smoothSpan,smoothType); 
            end 
        end 
        backgroundData = sortrows([numlist backgroundData]); 
        backgroundData(:,1:3)=[]; 
end 
%% Process Data 
switch dataType 
    case 2 % Processed Data 
        data = rawData; 
        switch data(1,1) 
            case {0,1,2} 
                type = data(1,1)+1; 
                dataAngles = data(1,2:end); 
                data(1,:) = []; 
            otherwise % processed data before v3.0 
                reloadans = inputdlg({'What was the range of angles used? (In 
matlab syntax)'},... 
                    'Angle Input',1,{'10:60'}); 
                dataAngles = eval(['[' reloadans{1} ']']); 
        end 
        wavelengths = data(:,1); 
        saveData = data; 
        data = data(:,2:end); 
    case 3 %FDTD Data 
        data = rawData'; 
        dataAngles = FDTDangle'; 
        wavelengths = FDTDwavelengths; 
        %wavelengths = FDTDwavelengths.*1000; 
        %make data matrix 
        data = [wavelengths data]; 
        %data = flipud(data); 
        %wavelengths = flipud(wavelengths); 
        FDTDans = inputdlg({'What index to use for adjusting the angles?',... 
            sprintf('What range of angles to show of 
[%.1f, %0.1f]?',dataAngles(1),dataAngles(end))},... 
            'FDTD Data',1,{'1',sprintf('[%.1f, %.1f]',dataAngles(1), 
dataAngles(end))}); 
        %ask for dielectric index 
        if ~isempty(FDTDans) 
            FDTDind = str2double(FDTDans{1}); 
            dataAngles = asind(sind(dataAngles).*FDTDind); 
            range = eval(FDTDans{2}); 
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            angindex = (dataAngles>=range(1)) & (dataAngles<=range(2)); 
            data = data(:,[true angindex]); 
            dataAngles = dataAngles(angindex); 
        end 
        saveData = data; 
        data = data(:,2:end); 
        type = 1; 
    case 1 % Raw Data 
        if isPIdata 
            spectraLength = find(rawData(:,1)>rawData(1),1); 
            if isempty(spectraLength) 
                numberOfSpectra = length(rawData(:,2))/1340; 
            else 
                numberOfSpectra = (spectraLength-1)/1340; 
            end 
            dataAngles = rawData(1:(1340*numberOfSpectra):end,1)'; 
%             if ~isempty(angleInput) 
%                 dataAngles = angleInput(1):angleInput(3):angleInput(2); 
%             end 
            % wavelengths = rawData{2}(1:(1340*numberOfSpectra)); 
            data = 
reshape(rawData(:,3),length(wavelengths),length(dataAngles)); 
%             data = quickCalibrateData(wavelengths,data); 
        else 
            [dataAngles,centerWavelength,grating,data,isAzimuthalData] = 
extractData(rawData); 
            data = calibrateData(wavelengths,data,centerWavelength,grating); 
        end 
        if min(size(data))==1 
            type = 3; 
        elseif isAzimuthalData 
            type = 2; 
        else 
            type = 1; 
        end 
        %smooth data 
        data = sortrows([wavelengths (1:size(data,1))' data]); 
        numlist = data(:,2); 
        if ~isempty(smoothSpan) 
            for ii = 3:size(data,2) 
                data(:,ii) = smooth(data(:,ii),smoothSpan,smoothType); 
            end 
        end 
        data = sortrows([numlist data]); 
        data(:,1:3)=[]; 
        %scale data with background 
        if size(backgroundData,2) == 1 
            data = data./(repmat(backgroundData,1,size(data,2)).*scale); 
        else 
            data = data./(backgroundData.*scale); 
        end 
        saveData(:,2:(size(data,2)+1)) = data; 
        saveData(:,1) = wavelengths; 
        backgroundTemp(:,2:(size(backgroundData,2)+1)) = backgroundData; 
        backgroundTemp(:,1) = wavelengths; 
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        backgroundTemp = sortrows(backgroundTemp); 
        backgroundData = backgroundTemp(:,2:end); 
        saveData = sortrows(saveData); 
        wavelengths = saveData(:,1); 
        data = saveData(:,2:end); 
end 
%% Interpolate Data 
%Set image resolution (completely arbitrary)... 
Xpixels = (700*2); 
Ypixels = (1068*2); 
numberOfAngles = length(dataAngles); 
numberOfWavelengths = length(wavelengths); 
if type == 1 
    %Build photoenergy array 
    %Energy in eV = 1240/lamda(nm) 
    energies = 1240./wavelengths; 
    %Build the wavevector array (in 1/um)for the dispersion curve 
    wavevectors=1000.*(2.* pi./wavelengths)*sind(dataAngles); 
    %Build dispersion curve map 
    %vec_max=max(max(vectordata)); 
    maxWavevector=max(wavevectors(:)); 
    minWavevector=min(wavevectors(:)); 
    maxEnergy=max(energies); 
    minEnergy=min(energies); 
    XpixelWidth = (maxWavevector - minWavevector)/(Xpixels-1); 
    YpixelWidth = (maxEnergy - minEnergy)/(Ypixels-1); 
    %mapdata = zeros(Ypixels, Xpixels); 
    mapdata2 = NaN(Ypixels,Xpixels); 
    ncounter = zeros(1,Ypixels); 
    %loop for the interpolation between angles (columns) 
    for i=1:numberOfWavelengths 
        n = floor((energies(i)-minEnergy)/YpixelWidth)+1; 
%         if i == 1 
%             %this initializes the matrix, since evergies are high->low 
%             ncounter(1,n) = 0; 
%         end 
        %ncounter is how many data are crammed into this point 
        if ncounter(n) == 0 
            for j=1:numberOfAngles 
                m = floor((wavevectors(i,j)-minWavevector)/XpixelWidth)+1; 
                %mapdata(n,m)= data(i,j); 
                %interpolate along the row 
                if j~=1 
                    mapdata2(n,m_old:m)= linspace(data(i,j-1),data(i,j),m-
m_old+1); 
                end 
                m_old=m; 
            end 
        else 
            Nordata2 = mean(data(i-ncounter(n):i,:)); %average data instead 
of rewriting 
            for j=1:numberOfAngles 
                m = floor((wavevectors(i,j)-minWavevector)/XpixelWidth)+1; 
                %mapdata(n,m)= Nordata2(j); 
                %interpolate along the row 
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                if j~=1 
                    mapdata2(n,m_old:m)= linspace(Nordata2(j-
1),Nordata2(j),m-m_old+1); 
                end 
                m_old=m; 
            end 
        end 
        ncounter(n) = ncounter(n)+1; 
    end 
    %interpolate between rows 
    filledn = find(ncounter~=0); 
    energyData = 
interp2(1:Xpixels,filledn',mapdata2(filledn,:),1:Xpixels,(1:Ypixels)'); 
elseif type == 2 
    ind = [false; diff(wavelengths)<=1e-6]; 
    wavelengths = wavelengths(~ind); 
    data = data(~ind,:); 
    energies = sortrows(1240./wavelengths); 
    [X, Y] = meshgrid(dataAngles, energies); 
    
energyData=interp2(X,Y,flipud(data),linspace(dataAngles(1),dataAngles(end),Xp
ixels),linspace(energies(1),energies(end),Ypixels)'); 
elseif type == 3 
    ind = [false; diff(wavelengths)<=1e-6]; 
    wavelengths = wavelengths(~ind); 
    data = data(~ind); 
    energyData = flipud(data); 
end 
%interpolate angle data 
ind = [false; diff(wavelengths)<=1e-6]; 
wavelengths1 = wavelengths(~ind); 
data1 = data(~ind,:); 
if ~(backgroundData==0) 
    backgroundData = backgroundData(~ind,:); 
end 
if type == 1 || type == 2 
    [X, Y] = meshgrid(dataAngles, wavelengths1); 
    
wavelengthData=interp2(X,Y,data1,linspace(dataAngles(1),dataAngles(end),Xpixe
ls),linspace(wavelengths1(1),wavelengths1(end),Ypixels)'); 
elseif type == 3 
    wavelengthData = data; 
end 
end 
function [BZ] = BZcalc(XYcoordinates,order) 
Xlimits = [min(XYcoordinates(:,1)); max(XYcoordinates(:,1))]; 
tooHigh = (order > 2); %hard limit of 2 orders 
XYcoordinates(tooHigh,:) = []; 
order(tooHigh) = []; 
BZ = {cell(sum(order==1),1), cell(sum(order==2),1)}; 
counter1 = 1; 
counter2 = 1; 
for ii = 1:size(XYcoordinates,1) 
    % no zone for the zero order point 
    if order(ii) == 0 
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        continue 
    end 
    X0 = XYcoordinates(ii,1); Y0 = XYcoordinates(ii,2); 
    point = ([X0 Y0]/2); 
    slope = -X0/Y0; 
    if abs(slope) < 1 
        X = Xlimits; 
        Y = slope.*(X-point(1))+point(2); 
    else 
        Y = Xlimits; 
        X = 1./slope.*(Y-point(2))+point(1); 
    end 
    if order(ii) == 1 
        BZ{1}{counter1} = [X Y]; 
        counter1 = counter1 + 1; 
    else 
        BZ{2}{counter2} = [X Y]; 
        counter2 = counter2 + 1; 
    end 
end 
end 
function newfig_bdfcn(obj,~,fig,lines) 
seltype = get(fig,'selectiontype'); 
switch seltype 
    case 'normal' 
        width = 2; 
    case 'alt' 
        width = 1; 
    case 'open' 
        set(lines(:),'linewidth',1); 
        return 
    otherwise 
        width = get(obj,'linewidth'); 
end 
set(obj,'linewidth',width); 
drawnow; 
end 
function [angles, centerWavelengths, grating, data, isAzimuthalData] = 
extractData(rawData) 
%columns of angles, stacked gratings... 
if mod(size(rawData,1),1342)==2 && (size(rawData,2)==1 || 
rawData(4,1)==rawData(4,2)) %...azim included (check same center wavelength) 
    angles = rawData(2,:); %extract azimuthal angles 
    rawData(1:2,:) = []; %removes angles headers 
    grating = rawData(1:1342:end,1).'; %extract grating numbers 
    rawData(1:1342:end,:) = []; %removes grating headers 
    centerWavelengths = rawData(1:1341:end,1).'; %extract center wavelengths 
    rawData(1:1341:end,:) = []; %removes center headers 
    data = rawData; 
    isAzimuthalData = true; 
elseif mod(size(rawData,1),1342)==1 && (size(rawData,2)==1 || 
rawData(3,1)==rawData(3,2)) %...no azim (check same center wave) 
    angles = rawData(1,:); %extract angles 
    rawData(1,:) = []; %removes angle header 
    grating = rawData(1:1342:end,1).'; %extract grating numbers 
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    rawData(1:1342:end,:) = []; %removes grating header 
    centerWavelengths = rawData(1:1341:end,1).'; %extract center wavelengths 
    rawData(1:1341:end,:) = []; %removes center header 
    data = rawData; 
    isAzimuthalData = false; 
    %columns of gratings, stacked angles... 
elseif mod(size(rawData,1),1344)==0 && (size(rawData,2)==1 || 
rawData(4,1)~=rawData(4,2)) %...azim included (check diff center wavelength) 
    rawData(1:1343:end,:) = []; %removes angle header 
    angles = rawData(1:1343:end,1).'; %extract azimuthal angles 
    rawData(1:1343:end,:) = []; %removes azimuthal angle header 
    grating = rawData(1,:); %extract grating numbers 
    rawData(1:1342:end,:) = []; %removes grating header 
    centerWavelengths = rawData(1,:); %extract center wavelengths 
    rawData(1:1341:end,:) = []; %removes center header 
    %reposition data into appropriate columns/rows 
    temp = reshape(rawData, 1340, size(rawData,2)*size(angles,2)); 
    data(1340*size(rawData,2), size(angles,2)) = 0; 
    for ii = 1:(size(rawData,2)) 
        data(((ii-1)*1340+1):(ii*1340),:) = temp(:,((ii-
1)*size(angles,2)+1):(ii*size(angles,2))); 
    end 
    isAzimuthalData = true; 
elseif mod(size(rawData,1),1343)==0 && (size(rawData,2)==1 || 
rawData(3,1)~=rawData(3,2)) %...no azim (check diff center wavelength) 
    angles = rawData(1:1343:end,1).'; %extract angles 
    rawData(1:1343:end,:) = []; %removes angle header 
    grating = rawData(1,:); %extract grating numbers 
    rawData(1:1342:end,:) = []; %removes grating header 
    centerWavelengths = rawData(1,:); %extract center wavelengths 
    rawData(1:1341:end,:) = []; %removes center header 
    %reposition data into appropriate columns/rows 
    temp = reshape(rawData, 1340, size(rawData,2)*size(angles,2)); 
    data(1340*size(rawData,2), size(angles,2)) = 0; 
    for ii = 1:(size(rawData,2)) 
        data(((ii-1)*1340+1):(ii*1340),:) = temp(:,((ii-
1)*size(angles,2)+1):(ii*size(angles,2))); 
    end 
    isAzimuthalData=false; 
end 
%get rid of data beyond calibration 
switch grating(1) 
    case {2,3} 
        extra = sum(centerWavelengths > 990); 
    case 1 
        extra = sum(centerWavelengths > 1074); 
end 
grating(end-extra+1:end) = []; 
centerWavelengths(end-extra+1:end) = []; 
data(end-(1340*extra)+1:end,:) = []; 
end 
function data = quickCalibrateData(wavelengths,data) 
numberOfParts = size(data,1)/1340; 
numberOfAngles = size(data,2); 
scaleEff = ones(numberOfParts+1,numberOfAngles); 
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testdata = data; 
for pp = 1:numberOfParts-1 
    part1 = data(1340*(pp-1)+1:1340*pp,:); 
    part2 = data(1340*pp+1:1340*(pp+1),:); 
    wavelengthsPart1 = wavelengths(1340*(pp-1)+1:1340*pp); 
    wavelengthsPart2 = wavelengths(1340*pp+1:1340*(pp+1)); 
    overlapRegion1 = wavelengthsPart1>=wavelengthsPart2(1); 
    overlapRegion2 = wavelengthsPart2<=wavelengthsPart1(end); 
    interpNumber = round(min(sum(overlapRegion1),sum(overlapRegion2))./2); 
    for aa = 1:numberOfAngles 
        interpPart1 = 
interp1(wavelengthsPart1(overlapRegion1),part1(overlapRegion1,aa),linspace(mi
n(wavelengthsPart1(overlapRegion1)),max(wavelengthsPart2(overlapRegion2)),int
erpNumber)); 
        interpPart2 = 
interp1(wavelengthsPart2(overlapRegion2),part2(overlapRegion2,aa),linspace(mi
n(wavelengthsPart1(overlapRegion1)),max(wavelengthsPart2(overlapRegion2)),int
erpNumber)); 
        scaleEff(pp+1,aa) = lsqlin(interpPart2',interpPart1,[],[]); 
        data(1340*pp+1:end,aa) = data(1340*pp+1:end,aa).*scaleEff(pp+1,aa); 
    end 
end 
end 
function data = calibrateData(wavelengths,data,centerWavelength,grating) 
eff = []; 
centerWave = []; 
dark = []; 
load('calibration.mat') 
centerWave = centerWave{grating(1)}; 
eff = eff{grating(1)}; 
numberOfParts = size(data,1)/1340; 
numberOfAngles = size(data,2); 
%subtract dark current 
data = data - repmat(dark,numberOfParts,numberOfAngles); 
%apply spectrum calibration to data 
scaleEff = ones(numberOfParts+1,numberOfAngles); 
testdata = SpectScale(centerWavelength,data,centerWave,eff,scaleEff); 
%apply vertical scaling to parts of spectra 
for pp = 1:numberOfParts-1 
    part1 = testdata(1340*(pp-1)+1:1340*pp,:); 
    part2 = testdata(1340*pp+1:1340*(pp+1),:); 
    overlapRegion1 = wavelengths(1340*(pp-
1)+1:1340*pp)>=wavelengths(1340*pp+1); 
    overlapRegion2 = 
wavelengths(1340*pp+1:1340*(pp+1))<=wavelengths(1340*pp); 
    scaleEff(pp+1,:) = 
arrayfun(@(A)lsqlin(part2(overlapRegion2,A),part1(overlapRegion1,A),[],[]),1:
numberOfAngles); 
    % data(1340*pp+1:end,:) = 
data(1340*pp+1:end,:).*repmat(scaleEff(pp+1,:),1340*(numberOfParts-pp),1); 
end 
data = SpectScale(centerWavelength,data,centerWave,eff,scaleEff); 
end 
function wavelengths = pixel2wavelength(grating,center) 
%calibration from pixel to wavelength: W = m*P + b 
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%index is grating number (1 = 1200 groove/mm 500 nm blaze, 2 = 300 groove/mm 
%300 nm blaze,3 = 300 groove/mm 500 nm blaze) 
% 
%Calibration w/ Hg spectrum for gratings 1&3 by Alex Hryn: 28 May 2012 
m(1) = .02792; 
m(2) = .13046; 
m(3) = .13046; 
%------X 
offset(1) = m(1)*670.5 + 557.53 - 576.655; 
offset(2) = m(2)*670.5 + 433.90 - 524.12; 
offset(3) = m(3)*670.5 + 433.90 - 524.12; 
%------X 
b(1,:) = (center + offset(1)) - m(1).*670.5; 
b(2,:) = (center + offset(2)) - m(2).*670.5; 
b(3,:) = (center + offset(3)) - m(3).*670.5; 
waveconv = @(p,g,c) m(g).*p + b(g,c); 
%waveconv takes p: pixel , g: grating number, c: center wavelength and 
%gives the wavelength in nm 
%make wavelength vector 
temp = 
arrayfun(@(g,c)waveconv((1:1340)',g,c),grating,1:length(center),'UniformOutpu
t',false); 
wavelengths = vertcat(temp{:}); 
end 
function data = SpectScale(center,data,centerWave,eff,scaleEff) 
%data comes in as angle columns of stacked gratings 
for pp = 1:size(center,2) 
    ind=find(centerWave >= center(pp),1); 
    x = (center(pp)-centerWave(ind-1))/(centerWave(ind)-centerWave(ind-1)); 
    for ii = 1:size(data,2) 
        
factor=((prod(scaleEff(1:pp,ii)).^0.5)./(prod(scaleEff(pp+1:end,ii)).^0.5)).*
eff; 
        data(1340*(pp-1)+1:1340*pp,ii) = data(1340*(pp-
1)+1:1340*pp,ii).*(x.*factor(ind,:)+(1-x).*factor(ind-1,:))'; 
    end 
end 
end 
function totalSolutions = Modes(nLines, maxorder) 
nSolutions = 1; 
for ii = 1:maxorder 
    nSolutions = nSolutions + 
sum(arrayfun(@(X)nchoosek(nLines,X)*2^X*nchoosek(ii-1,(X-
1)),1:ii,'ErrorHandler',@(x,y)0)); 
    %     nSolutions = nSolutions + 
sum(arrayfun(@(X)nchoosek(nLines,X)*2^X*nchoosek(ii-1,(X-
1)),1:min(ii,nLines))); 
end 
solution = zeros(1,nLines,'int8'); 
totalSolutions = zeros(nSolutions,nLines,'int8'); 
nSolutions = 0; 
for order = 0:maxorder 
    check(nLines, order); 
end 
    function check(nLines, order) 
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        nLinesRemaining = nLines - 1; 
        if nLinesRemaining == 0 
            if order >=0 && order <=maxorder 
                nSolutions = nSolutions+1; 
                solution(nLines) = order; 
                totalSolutions(nSolutions,:) = solution; 
                if order > 0 
                    nSolutions = nSolutions+1; 
                    solution(nLines) = -order; 
                    totalSolutions(nSolutions,:) = solution; 
                end 
            end 
            return; 
        end 
        for numroll = -maxorder:maxorder 
            targetRemaining = order - abs(numroll); 
            if targetRemaining >= 0 && targetRemaining <= 
maxorder*nLinesRemaining 
                solution(nLines) = numroll; %record this value 
                check(nLinesRemaining,targetRemaining); 
            end 
        end 
    end 
end 
function [xfigure, yfigure]=axescoord2figurecoord(varargin) 
% AXESCOORD2FIGURECOORD Transform axes coordinates in current 
% figure units coordinate to the figure for annotation location 
% [xfigure, yfigure]=axescoord2figurecoord(xaxes,yaxes) 
% [xfigure, yfigure]=axescoord2figurecoord(xaxes,yaxes,handle_axes) 
% 
% Ex. 
%       % Create some data 
%       t = 0:.1:4*pi; 
%       s = sin(t); 
% 
%       % Add an annotation requiring (x,y) coordinate vectors 
%       plot(t,s);ylim([-1.2 1.2]) 
%       set(gcf,'Units','normalized'); 
%       xa = [1.6 2]*pi; 
%       ya = [0 0]; 
%       [xaf,yaf] = axescoord2figurecoord(xa,ya); 
%       annotation('arrow',xaf,yaf) 
% 
% Acknowledgments are due to Scott Hirsch (shirsch@mathworks.com) for is 
% function ds2nfu. Some part of the present function derived from ds2nfu. 
% 
% Valley Beno”t / Jan 2007 
% valley@erdw.ethz.ch 
% Process inputs 
narginchk(2, 3) 
if nargin==2 
    xaxes=varargin{1}; 
    yaxes=varargin{2}; 
    h_axes = get(gcf,'CurrentAxes'); 
else 
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    xaxes=varargin{1}; 
    yaxes=varargin{2}; 
    h_axes = varargin{3}; 
end 
% get axes properties 
funit=get(get(h_axes,'Parent'),'Units'); 
% get axes properties 
aunit=get(h_axes,'Units'); 
darm=get(h_axes,'DataAspectRatioMode'); 
pbarm=get(h_axes,'PlotBoxAspectRatioMode'); 
dar=get(h_axes,'DataAspectRatio'); 
pbar=get(h_axes,'PlotBoxAspectRatio'); 
xlm=get(h_axes,'XLimMode'); 
ylm=get(h_axes,'YLimMode'); 
xd=get(h_axes,'XDir'); 
yd=get(h_axes,'YDir'); 
% set the right units for h_axes 
set(h_axes,'Units',funit); 
axesoffsets = get(h_axes,'Position'); 
x_axislimits = get(h_axes, 'xlim');     %get axes extremeties. 
y_axislimits = get(h_axes, 'ylim');     %get axes extremeties. 
x_axislength = x_axislimits(2) - x_axislimits(1); %get axes length 
y_axislength = y_axislimits(2) - y_axislimits(1); %get axes length 
% mananged the aspect ratio problems 
set(h_axes,'units','centimeters'); 
asc=get(h_axes,'Position'); 
rasc=asc(4)/asc(3); 
rpb=pbar(2)/pbar(1); 
if rasc<rpb 
    xwb=axesoffsets(3)/rpb*rasc; 
    xab=axesoffsets(1)+axesoffsets(3)/2-xwb/2; 
    yab=axesoffsets(2); 
    ywb=axesoffsets(4); 
elseif rasc==rpb 
    xab=axesoffsets(1); 
    yab=axesoffsets(2); 
    xwb=axesoffsets(3); 
    ywb=axesoffsets(4); 
else 
    ywb=axesoffsets(4)*rpb/rasc; 
    yab=axesoffsets(2)+axesoffsets(4)/2-ywb/2; 
    xab=axesoffsets(1); 
    xwb=axesoffsets(3); 
end 
if strcmp(darm,'auto') & strcmp(pbarm,'auto') 
    xab=axesoffsets(1); 
    yab=axesoffsets(2); 
    xwb=axesoffsets(3); 
    ywb=axesoffsets(4); 
end 
% compute coordinate taking in account for axes directions 
if strcmp(xd , 'normal')==1 
    xfigure = xab+xwb*(xaxes-x_axislimits(1))/x_axislength; 
else 
    xfigure = xab+xwb*(x_axislimits(2)-xaxes)/x_axislength; 
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end 
if strcmp(funit,'normalized'); 
    xfigure(find(xfigure>1))=1; 
    xfigure(find(xfigure<0))=0; 
end 
if strcmp(yd , 'normal')==1 
    yfigure = yab+ywb*(yaxes-y_axislimits(1))/y_axislength; 
else 
    yfigure = yab+ywb*(y_axislimits(2)-yaxes)/y_axislength; 
end 
if strcmp(funit,'normalized'); 
    yfigure(find(yfigure>1))=1; 
    yfigure(find(yfigure<0))=0; 
end 
set(h_axes,'Units',aunit); % put axes units back to original state 
end 
function a = struct2array(s) 
%STRUCT2ARRAY Convert structure with doubles to an array. 
%   Author(s): R. Losada 
%   Copyright 1988-2013 The MathWorks, Inc. 
narginchk(1,1); 
% Convert structure to cell 
c = struct2cell(s); 
% Construct an array 
a = [c{:}]; 
end 
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APPENDIX C:  LUMERICAL SCRIPT TO CREATE BOWTIE DIMERS 

for (tl = 40) { 
for (th = 50) { 
#selectall;delete;clear; 
selectpartial("particle");delete; 
select("Si mask");delete; 
#eval("counter = 1;"); 
redrawoff; 
###################### 
# Change things here # 
###################### 
d = .350; #width of the pit - all is in microns 
w = 1; # width of the masked region 
d1 = .260; #diameter in +x direction of hole 
d2 = d1; #diameter in +y direction of hole 
nSides = 95; #number of sides of regular polygon 
defaultThicknesses = [th/2, th, th/2]*1e-3; #thicknesses of each step of 
particle 
resolution = 0.001; 
depositionAngles = [tl, tl, tl]; #degrees from +z axis towards +x axis 
azimAngles = [0, 180, 0]+45; #degrees from +x axis towards +y axis 
holeAzim = 0; #degrees from +x axis towards +y axis 
startFilmThickness = 0.008; #top film thickness 
startParticleHeight = [0, 0, 1]; #particle start for offset 
defaultMaterial = "Au (Gold) - Johnson and Christy"; 
meshOrder = 3; 
maskMaterial = "<Object defined dielectric>"; 
maskIndex = 1; 
maskMeshOrder = 2; 
numberOfDepositions = 3; 
drawParticle = [1, 1, 1]; 
###################### 
###################### 
numpoints = nSides+1; # +1 for linspace 
#Define the Si Pit properties 
if(getnamednumber("Si mask")==0) 
{ 
makeSiPyramid; 
select("Si mask"); 
adduserprop("pit size",0,d); 
} 
SiAngles = (0:90:360)*pi/180; 
SiAngles = SiAngles(1:length(SiAngles)-1); 
# organize the particle heights for offsets 
allParticleHeights = matrix(length(startParticleHeight),length(SiAngles)); 
defaultThickness=0; 
normalOffset=0; 
glancingOffset = matrix(1,numpoints); 
#make the initial hole 
r1 = d1/2; 
r2 = d2/2; 
holeAzim = holeAzim*pi/180; 
# make some regular 2D shapes in standard basis centered at origin 
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phi = linspace(0,2*pi,numpoints); #overlap the final point to close the shape 
x0 = r1 * cos(phi); 
y0 = r2 * sin(phi); 
hole = [x0,y0]; 
azimMatrix = [cos(holeAzim),-sin(holeAzim);sin(holeAzim),cos(holeAzim)]; 
hole = transpose(mult(azimMatrix,transpose(hole))); 
startHole = hole; 
for (nD = 1:numberOfDepositions) { 
counter = nD; 
defaultThickness = defaultThicknesses(nD); 
tilt = depositionAngles(nD); 
azim = azimAngles(nD); 
#gap = 0.030; 
#matlabput(d,d1,defaultThickness,holeCloseRate,gap); 
#matlab("tilt = 
fsolve(@(X)(findparticlegap(X,d,d1,defaultThickness,holeCloseRate)-
gap),50);"); 
#matlabget(tilt); 
tilt = (90-tilt)*pi/180; 
azim = azim*pi/180; 
if(startParticleHeight(nD)==0) { 
currentParticleHeight =  matrix(1,length(SiAngles)); 
} else { 
previousHeightIndex = startParticleHeight(nD); 
currentParticleHeight = 
allParticleHeights(previousHeightIndex,1:length(SiAngles)); 
} 
finalFilmThickness = startFilmThickness + defaultThickness*sin(tilt); 
# find total hole closing from deposition parameters 
normalClosing =  0.3*defaultThickness*sin(tilt); #nm/nm deposited at normal 
incidence 
glancingClosing = 0.3*defaultThickness*cos(tilt); #growth on one side of hole 
filmEdgeClosingI = startFilmThickness/tan(tilt); #shift due to tilted 
deposition 
filmEdgeClosingF = finalFilmThickness/tan(tilt); #shift due to tilted 
deposition 
# counter rotate shape against deposition direction 
depAzimMatrix = [cos(-azim),-sin(-azim);sin(-azim),cos(-azim)]; 
startHole = transpose(mult(depAzimMatrix,transpose(startHole))); 
## make the hole at start and end of deposition ## 
# get the coordinates 
x0=startHole(1:numpoints,1); 
y0=startHole(1:numpoints,2); 
#plot(x0,y0); 
# shrink due to glancing closing 
V1=[x0,y0]; 
V2=[x0+glancingClosing,y0]; 
V3=polyand(V1,V2); # polygon intersection 
s=size(V3); 
x3=V3(1:s(1),1); 
y3=V3(1:s(1),2); 
xG=interp(x3,linspace(1,numpoints,length(x3)),1:numpoints); 
yG=interp(y3,linspace(1,numpoints,length(y3)),1:numpoints); 
#plot(xG,yG); 
# shrink due to normal closing 
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newCenter = [mean(xG),mean(yG)]; 
xx=(xG-newCenter(1)); 
yy=(yG-newCenter(2)); 
rI = sqrt(xx^2+yy^2); 
phiI = atan2(yy,xx); 
rI=rI-normalClosing; 
xf = rI*cos(phiI)+newCenter(1); 
yf = rI*sin(phiI)+newCenter(2); 
#plot(xf,yf); 
finalHole = [xf,yf]; 
if (~drawParticle(nD)) { 
depAzimMatrix = [cos(azim),-sin(azim);sin(azim),cos(azim)]; 
startHole = transpose(mult(depAzimMatrix,transpose(startHole))); 
finalHole = transpose(mult(depAzimMatrix,transpose(finalHole))); 
startHole = finalHole; 
startFilmThickness=finalFilmThickness; 
} else { 
## make the shape used to project during deposition ## 
# do the starting shape 
x0=startHole(1:numpoints,1); 
y0=startHole(1:numpoints,2); 
plot(x0,y0); 
V1=[x0,y0]; 
V2=[x0-filmEdgeClosingI,y0]; 
V3=polyand(V1,V2); 
s=size(V3); 
x3=V3(1:s(1),1); 
y3=V3(1:s(1),2); 
xx=interp(x3,linspace(1,numpoints,length(x3)),1:numpoints); 
yy=interp(y3,linspace(1,numpoints,length(y3)),1:numpoints); 
xyShape = [xx,yy]; 
#plot(xx,yy); 
# do the ending shape 
x0=finalHole(1:numpoints,1); 
y0=finalHole(1:numpoints,2); 
plot(x0,y0); 
V1=[x0,y0]; 
V2=[x0-filmEdgeClosingF,y0]; 
V3=polyand(V1,V2); 
s=size(V3); 
x3=V3(1:s(1),1); 
y3=V3(1:s(1),2); 
xx=interp(x3,linspace(1,numpoints,length(x3)),1:numpoints); 
yy=interp(y3,linspace(1,numpoints,length(y3)),1:numpoints); 
xyShapeF = [xx,yy]; 
#plot(xx,yy); 
#plotxy(startHole(1:41,1),startHole(1:41,2),finalHole(1:41,1),finalHole(1:41,
2)); 
#plotxy(xyShape(1:41,1),xyShape(1:41,2),xyShapeF(1:41,1),xyShapeF(1:41,2)); 
# rotate everything back to normal from the deposition rotation 
depAzimMatrix = [cos(azim),-sin(azim);sin(azim),cos(azim)]; 
startHole = transpose(mult(depAzimMatrix,transpose(startHole))); 
finalHole = transpose(mult(depAzimMatrix,transpose(finalHole))); 
#plotxy(startHole(1:numpoints,1),startHole(1:numpoints,2),finalHole(1:numpoin
ts,1),finalHole(1:numpoints,2)); 
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startHole = finalHole; 
xyShape = mult(depAzimMatrix,transpose(xyShape)); 
xyShapeF = mult(depAzimMatrix,transpose(xyShapeF)); 
# put the shapes into the same oreintation 
x0=xyShape(1,1:numpoints); 
y0=xyShape(2,1:numpoints); 
newCenter = [mean(x0),mean(y0)]; 
xx=(x0-newCenter(1)); 
yy=(y0-newCenter(2)); 
phiI = atan2(yy,xx); # returns in range -pi to pi 
index = find(phiI,min(phiI)); 
x0=transpose([x0(index:numpoints);x0(1:index-1)]); 
y0=transpose([y0(index:numpoints);y0(1:index-1)]); 
xyShape=[x0;y0]; 
# put the shapes into the same oreintation 
x0=xyShapeF(1,1:numpoints); 
y0=xyShapeF(2,1:numpoints); 
newCenter = [mean(x0),mean(y0)]; 
xx=(x0-newCenter(1)); 
yy=(y0-newCenter(2)); 
phiI = atan2(yy,xx); # returns in range -pi to pi 
index = find(phiI,min(phiI)); 
x0=transpose([x0(index:numpoints);x0(1:index-1)]); 
y0=transpose([y0(index:numpoints);y0(1:index-1)]); 
xyShapeF=[x0;y0]; 
#plotxy(xyShape(1,1:numpoints),xyShape(2,1:numpoints),xyShapeF(1,1:numpoints)
,xyShapeF(2,1:numpoints)); 
# Give starting basis (unit) vectors (centered at origin) 
# unit vectors for 100 plane 
Ue = [1;0;0]; 
Ve = [0;1;0]; 
Ne = [0;0;1]; 
Je = [Ue, Ve]; 
basis_e = [Ue, Ve, Ne]; 
# build group for particle 
addstructuregroup; 
particleName = "particle"+num2str(counter); 
set("name",particleName); 
set("x",0); 
set("y",0); 
set("z",0); 
adduserprop("material",5,defaultMaterial); 
adduserprop("meshOrder",0,meshOrder); 
adduserprop("tilt",0,depositionAngles(nD)); 
adduserprop("thickness",0,defaultThicknesses(nD)); 
adduserprop("hole d1",0,d1); 
adduserprop("hole d2",0,d2); 
set("script", 
"selectall; 
set('material',material); 
set('meshOrder',meshOrder); 
"); 
for (ii=1:length(SiAngles)) { 
    ############## 
    # caclulate basis (unit) vectors projection plane (111) 
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    # 3 points form a plane 
    # These 3 points are for Si pyramid of sidewall length d 
    Ap = d/2*[-(cos(SiAngles(ii))+sin(SiAngles(ii))); cos(SiAngles(ii))-
sin(SiAngles(ii)); 0]; 
    Bp = d/2*[-cos(SiAngles(ii))+sin(SiAngles(ii)); -
(cos(SiAngles(ii))+sin(SiAngles(ii))); 0]; 
    Cp = [0;0;-d/sqrt(2)]; 
    #Cp = [0;0;-d/2]; 
    Np = cross(Cp-Bp,Ap-Bp); 
    Np = Np/sqrt(dot(Np,Np)); #normal unit vector (basis vector 3) 
    Vp = (Ap-Bp); 
    Vp = Vp/sqrt(dot(Vp,Vp)); #basis vector 2 
    Up = cross(Vp,Np); #basis vector 1 
    Jp = [Up, Vp]; 
    basis_p = [Up, Vp, Np]; 
    #Do the projection from old basis (e) to new basis (p) along D 
    # Direction of Projection 
    D = [cos(tilt)*cos(azim);cos(tilt)*sin(azim);sin(tilt)]; 
    # solve for new center (old center at origin) 
    t = dot(Ap,Np)/dot(D,Np); 
center = t*D; #this is the translation vector 
# solve for the 2D scale/rotation matrix from start basis to new basis 
# in *coordinates of new basis* 
I3=[1,0,0;0,1,0;0,0,1]; 
temp = I3-mult(D,transpose(Np))/dot(D,Np); 
A = mult(mult(transpose(Jp),temp),Je); 
# new coordinates including only scale/rotation 
xyNewShape = mult(A,xyShape); 
xyNewShapeF = mult(A,xyShapeF); 
newShapeAxes = [A;matrix(1,2)]; # make 3D 
newShapeAxes = [newShapeAxes,Ne]; # make 3D 
Rotation = mult(basis_p,newShapeAxes); # include transformation to new basis 
# rotations for new basis 
# euler angles (z,x',z'') 
x = atan2(basis_p(3,2), basis_p(3,3)); 
y = atan2(-basis_p(3,1), sqrt(basis_p(3,2)*basis_p(3,2) + 
basis_p(3,3)*basis_p(3,3))); 
z = atan2(basis_p(2,1), basis_p(1,1)); 
eulerAngles = [x,y,z]*180/pi; 
############## 
# only make particles that are in the pyramid 
if (center(3)<0) { 
    # This group will control translation 
    addstructuregroup; 
    set("name","part" + num2str(ii)); 
    adduserprop("material",5,defaultMaterial); 
    adduserprop("meshOrder",0,meshOrder); 
    set("script", 
    "selectall; 
    set('material',material); 
    set('meshOrder',meshOrder); 
    "); 
    set("x",center(1)*1e-6); 
    set("y",center(2)*1e-6); 
    set("z",center(3)*1e-6); 
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    # The next group layer controls rotation 
    addstructuregroup; 
    set("name","rotation group"); 
    adduserprop("material",5,defaultMaterial); 
    adduserprop("meshOrder",0,meshOrder); 
    set("script", 
    "selectall; 
    set('material',material); 
    set('mesh order',meshOrder); 
    "); 
    set("x",0); 
    set("y",0); 
    set("z",0); 
    set("first axis","z"); 
    set("rotation 1",eulerAngles(1)); 
    set("second axis","y"); 
    set("rotation 2",eulerAngles(2)); 
    set("third axis","z"); 
    set("rotation 3",eulerAngles(3)); 
    # Now come the polygons 
    # Calculate the centers, vertices, and thicknesses 
    D_thick = mult(inv(basis_p),D*defaultThickness); #find actual direction 
of deposition 
    actualStart = mult(inv(basis_p),D*currentParticleHeight(ii)); 
    numSlices = round((defaultThickness/resolution))+1; 
    slice_X = linspace(0,D_thick(1),numSlices)+actualStart(1); 
    slice_Y = linspace(0,D_thick(2),numSlices)+actualStart(2); 
    slice_Z = linspace(0,D_thick(3),numSlices)+actualStart(3); 
    currentParticleHeight(ii) = currentParticleHeight(ii)+defaultThickness; 
    # Make the shapes 
    for (jj = 1:(numSlices-1)) { 
        addpoly; 
        set("x",slice_X(jj)*1e-6); 
        set("y",slice_Y(jj)*1e-6); 
        set("z min",slice_Z(jj)*1e-6); 
        set("z max",slice_Z(jj+1)*1e-6); 
        V=(xyNewShape+(jj/numSlices*(xyNewShapeF-xyNewShape)))*1e-6; #convert 
from um 
        set("vertices",V); 
    } # jj+1 
    select("polygon"); 
    set("override mesh order from material database",1); 
    set("material",defaultMaterial); 
        set("mesh order",meshOrder); 
        set("detail",0.2); 
        addtogroup("rotation group"); 
        select("rotation group"); 
        addtogroup("part" + num2str(ii)); 
        select("part" + num2str(ii)); 
        addtogroup(particleName); 
    } # if (center(3)<0) 
} # ii+1 
allParticleHeights(nD,1:length(SiAngles)) = currentParticleHeight; 
startFilmThickness=finalFilmThickness; 
} #draw particle 
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} # nD 
redrawon; 
save("tilt_"+num2str(tl)+"-thick_"+num2str(th)+"perp.fsp"); }} #sweeps 
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APPENDIX D:  LUMERICAL SCRIPT TO PROCESS FDTD DIC IMAGES 

######################################################################### 
# based on phase_constrast_analysis by Lumerical Inc. 
######################################################################## 
willSaveToMatlab = true; 
willSaveRAWToMatlab = true; 
willSaveZToMatlab = false; 
matlabFilename = "DIC_periodic_NR_dimer"; 
##################################################### 
# calculate the specimen beam 
##################################################### 
# Objective NA (in air) 
NA = 1;  

#clear;  

maxI = matrix(1,18); 
maxI_mean = matrix(1,18); 
minI = matrix(1,18); 
minI_mean = matrix(1,18); 
bgI = matrix(1,18); 
numSimulations = 19; 
simulationAngles = linspace(0,180,numSimulations); 
load("particle_angle_1DIC_1"); 
f=getdata("Monitor2","f"); 
res = 201; # resolutions is res x res 
Zres = 1; 
ImageMatrix = matrix(res,res,length(f),numSimulations); 
RawDataMatrix = matrix(res,res,3,2,length(f),numSimulations); 
#ZProjectMatrix = matrix(res,res,Zres,length(f),numSimulations); 
for (ii=1:numSimulations-1) { #angle in degrees 
    ?"Analyzing simulation "+num2str(ii); 
    # choose the filename of the template file 
    filename = "particle_angle_"+num2str(ii)+"DIC"; 
    # the name of the monitor recording the data 
    mname = "Monitor2"; 
    f=getdata(mname,"f"); 
    lambda = c/f; 
    for (ff = 1:length(f)) { #multiple frequency points 
        # choose the resolution for far field projections 
        farfieldfilter(0); 
#if (1) {  

        load(filename+"_1"); 
        Ev = gratingvector(mname,ff); 
        Ex_near_1 = pinch(Ev,3,1); 
        Ey_near_1 = pinch(Ev,3,2); 
        Ez_near_1 = pinch(Ev,3,3); 
        load(filename+"_2"); 
        Ev = gratingvector(mname,ff); 
        Ex_near_2 = pinch(Ev,3,1); 
        Ey_near_2 = pinch(Ev,3,2); 
        Ez_near_2 = pinch(Ev,3,3); 
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        ux = gratingu1(mname,ff); 
        uy = gratingu2(mname,ff); 
        Ux = meshgridx(ux,uy); 
        Uy = meshgridy(ux,uy); 
        Uxy = sqrt(Ux^2+Uy^2)+1e-20; # add 1e-20 to avoid divide by zero 
problems 
        Uz  = sqrt(1-Uxy^2); 
        ## filter for propagating waves through aperture 
        filter = real(Uxy) < NA; 
        ##################################################### 
        # calculate field at image plane 
        ##################################################### 
        k=2*pi/lambda(ff); 
        ## define image plane (magnify object X2) 
        npts=res; 
        simulation; 
        xmin=getnamed("FDTD","x min"); 
        xmax=getnamed("FDTD","x max"); 
        ymin=getnamed("FDTD","y min"); 
        ymax=getnamed("FDTD","y max"); 
        x=linspace(xmin*2,xmax*2,npts); 
        y=linspace(ymin*2,ymax*2,npts); 
        x=linspace(-3e-6,3e-6,npts); 
        y=linspace(-3e-6,3e-6,npts); 
        # calculate the image, uzing chirped z-transform 
        kx = ux*k; 
        ky = uy*k; 
z_range = -50e-9; 
for (zz=1:Zres) { 
    z_project = z_range(zz); 
    z_phase = 1i*exp(1i*k*Uz*filter*(z_project)-1i*k*1); 
    Ex_1 = czt(filter*Ex_near_1*z_phase,kx,ky,x,y); 
    Ey_1 = czt(filter*Ey_near_1*z_phase,kx,ky,x,y); 
    Ez_1 = czt(filter*Ez_near_1*z_phase,kx,ky,x,y); 
    #image(x*1e6,y*1e6,imag(Ex_0)); 
    RawDataMatrix(1:res,1:res,1,1,ff,ii)=Ex_1; 
    RawDataMatrix(1:res,1:res,2,1,ff,ii)=Ey_1; 
    RawDataMatrix(1:res,1:res,3,1,ff,ii)=Ez_1; 
    Ex_2 = czt(filter*Ex_near_2*z_phase,kx,ky,x,y); 
    Ey_2 = czt(filter*Ey_near_2*z_phase,kx,ky,x,y); 
    Ez_2 = czt(filter*Ez_near_2*z_phase,kx,ky,x,y); 
    #image(x*1e6,y*1e6,imag(Ey_90)); 
    RawDataMatrix(1:res,1:res,1,2,ff,ii)=Ex_2; 
    RawDataMatrix(1:res,1:res,2,2,ff,ii)=Ey_2; 
    RawDataMatrix(1:res,1:res,3,2,ff,ii)=Ez_2; 
    #} #if 
    ## combine the beams (with source phase) and apply the analyzer via jones 
matrix 
    ## set up the polarization and phase of optics 
    # Nomarskis are fixed at 45 degrees. 
    # Incident light aligned to 0, exits at 90 
    for (testangle=8) { 
        # de Senarmont angle for phase shift (0=linear, 45 = RHCP, -45 = 
LHCP) 
        source_angle = testangle; 
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        # polarization angle on analyzer 
}#z  

analyzer_angle = 45; 
analyzer_radians = analyzer_angle*pi/180; 
source_radians = source_angle*pi/180; 
# recombine the beams into some elliptical polarization state 
Ex_final = Ex_1+Ex_2*exp(-1i*2*source_radians); 
Ey_final = Ey_1+Ey_2*exp(-1i*2*source_radians); 
#Ez = Ez_1 + Ez_2*exp(-1i*2*source_radians); 
## Apply the polarizer 
Ex_image = Ex_final * cos(analyzer_radians)^2 
Ey_image = Ex_final * sin(analyzer_radians)*cos(analyzer_radians) + Ey_final 
* sin(analyzer_ra 
#Ez_image = 0; 
## calculate |E|^2 at the image plane 
# adding up the intensities for all components 
E_image_total = abs(Ex_image)^2; 
#ZProjectMatrix(1:res,1:res,zz,ff,ii)=E_image_total; 
#E2_ref_image = E2_ref_image + abs(Ex_ref_image)^2 + abs(Ey_ref_image)^2 + 
abs(Ez_ref_image)^2 
#E2_scaled = E2_scaled + abs(Ex_scaled)^2 + abs(Ey_scaled)^2 + 
abs(Ez_scaled)^2; 
#  E2_pc_image(1:npts,1:npts,j) = pinch(E2_pc_image(1:npts,1:npts,j)) 
    # 
    # 
    # 
    #E2_int_image=abs(Ex_total)^2 + abs(Ey_total)^2 + abs(Ez_total)^2; 
    ## plot field at image plane with no re-interference, ie bright field 
result 
    #image(x*1e6,y*1e6,E_image_total,"x (microns)","y 
(microns)",num2str(simulationAngles(ii))+"-d 
    #setplot("grey scale",1); 
    #setplot("colorbar min",0.006); 
    #setplot("colorbar max",0.014); 
    #exportfigure(num2str(ii)+"deg"); 
}#test angle 
xx = meshgridx(x,y)*1e6; 
yy = meshgridy(x,y)*1e6; 
distances = sqrt((xx-0.0)^2+yy^2); 
distance_mask = distances>1e-6; 
#background = sum(E_image_total*distance_mask)/sum(distance_mask); 
background = mean(E_image_total); 
background_std = std(E_image_total); 
bright_filter = E_image_total>(background+2*background_std); 
dark_filter = E_image_total<(background-2*background_std); 
#?contrast_Michelson = (max(E_image_total)-
min(E_image_total))/(max(E_image_total)+min(E_image_tot 
#?contrast_absolute = (max(E_image_total)-min(E_image_total)); 
#((max(E_image_total)-background)+(background-
min(E_image_total)))/((max(E_image_total)-background 
#ii=ii*10; 
#maxI(ii/10+1)=max(E_image_total); 
#maxI_mean(ii/10+1) = sum(E_image_total*bright_filter)/sum(bright_filter); 
#minI(ii/10+1)=min(E_image_total); 
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#minI_mean(ii/10+1) = sum(E_image_total*dark_filter)/sum(dark_filter); 
#bgI(ii/10+1)=background; 
  + abs(Ex_image+exp(1i*phase_delay(j))*Ex_ref_image)^2 
 + abs(Ey_image+exp(1i*phase_delay(j))*Ey_ref_image)^2 
+ abs(Ez_image+exp(1i*phase_delay(j))*Ez_ref_image)^2; 
+ Ey_final * cos(analyzer_ra 
        ImageMatrix(1:res,1:res,ff,ii) = E_image_total; 
    } # ff 
} # ii 
#image(x*1e6,y*1e6,abs(Ex),"x (microns)","y (microns)","angle x"); 
#image(x*1e6,y*1e6,abs(Ey),"x (microns)","y (microns)","angle y"); 
#image(x*1e6,y*1e6,angle(Ex_90),"x (microns)","y (microns)","angle x-90"); 
#image(x*1e6,y*1e6,angle(Ex_90),"x (microns)","y (microns)","angle y-90"); 
# reload the template file 
#plot(0:10:350,[maxI,maxI],[minI,minI],[bgI,bgI]); 
#exportfigure("90deg_oop_sweep"); 
#zStack = matrixdataset("Z_stack"); 
#zStack.addparameter("x_um",x*1e6); 
#zStack.addparameter("y_um",y*1e6); 
#zStack.addparameter("z_um",z_range*1e6); 
#zStack.addparameter("f",f,"lambda_nm",lambda*1e9); 
#zStack.addparameter("particleAngle",simulationAngles); 
#zStack.addattribute("DIC_image",ZProjectMatrix); 
#visualize(zStack); 
images = matrixdataset("DIC_images"); 
images.addparameter("x_um",x*1e6); 
images.addparameter("y_um",y*1e6); 
images.addparameter("f",f,"lambda_nm",lambda*1e9); 
images.addparameter("particleAngle",simulationAngles); 
images.addattribute("DIC_image",ImageMatrix); 
#visualize(images); 
matlabsave("../"+matlabFilename,images); 
matlabsave("../"+matlabFilename+"RAW",RawDataMatrix,x,y,lambda,simulationAngl
es); 
#matlabsave("../"+matlabFilename+"Z",ZProjectMatrix,x,y,z_range,lambda,simula
tionAngles); 
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