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ABSTRACT 

 
Synchronization in Visual Attention and Binocular Rivalry 

 
Yee Joon Kim 

 
 
 

The human brain shows great flexibility to adjust itself to dynamically ever-changing 

environment. Despite more than 100 years of cognitive brain research, the dynamical aspect of 

cognitive process has remained poorly understood compared to the static aspect of that. 

This dissertation concerns the dynamic character and functional significance of 

periodically forced synchronization in visual attention and binocular rivalry. The hypotheses, 

experimental paradigms, data analyses, and interpretation of the results were inspired by recent 

insights from physics and neuroscience – most notable the theory of synchronization and the 

phenomenon of stochastic resonance whose applicability to cognitive processes is explained. 

In the first and the second electroencephalography (EEG) experiment, we show that 

voluntary sustained visual attention multiplicatively increases the stimulus-location selective 

population electrophysiological activity by monitoring frequency-tagged steady-state visual 

evoked potentials (SSVEP) in human brain. Furthermore, analyses of inter-trial phase coherence 

show that this attentional response gain is at least partially due to increased synchronization of 

SSVEPs to stimulus flicker. Finally, it is revealed that the harmonic-based topographic 

difference exists in that the scalp distribution of the fundamental harmonic is central/bilateral and 

that of the second harmonic is contralateral. In the third behavioral experiment, we demonstrate 

quantitative evidence of stochastic resonance in binocular rivalry by subjecting binocular rivalry 

to weak periodic contrast modulations spanning a range of frequencies. 
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We propose that the experimental findings in the frequency-locked SSVEP activities – 

the multiplicative response gain in SSVEPs by sustained visual attention, the harmonic-

dependent topographic differences – and the stochastic resonance in binocular rivalry may find a 

unifying explanation within the theory of synchronization. This theory offers a general 

mechanism for the emergence of collective dynamics in large networks with many units 

adjusting a given property of their motion due to a suitable coupling configuration, or to an 

external forcing. 

Based on the above results, we conjecture that a mechanism of synchronization in 

nonlinear dynamical systems may be a general organizing principle of great importance for 

cognitive processes and account for how we perceive and react to the outside world. 
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Synchronization in Visual Attention and Binocular Rivalry 

1. INTRODUCTION 

This dissertation concerns the nature of stimulus-induced synchronization in visual 

spatial attention and binocular rivalry. Especially the idea of forced synchronization by external 

periodic signals will be applied to the cognitive processes. The cognitive processes will be 

subjected to the dynamic sensory input to investigate how it can modulate or induce population 

electrophysiological activity and behavioral activity during the cognitive processes. The most 

fundamental prediction of the synchronization theory is an entrainment of temporal dynamics of 

these cognitive processes, which should be reflected in the frequency entrainment (time-scale 

matching) between the external periodic signal and the stimulus-induced activity in the brain. We 

further hypothesized that sustained voluntary visual attention increase the phase-locked 

electrophysiological activity to the external stimulus dynamics. The interaction between external 

signal and stimulus-induced activities is also hypothesized to give rise to stochastic resonance in 

perception and behavior.  

To summarize in neuroscientific terms, the aim of this dissertation is to characterize the 

state of the brain during sustained visual attention and binocular rivalry, as indexed by 

synchronized activity, and how this state is affected by and affects the processing of incoming 

information from our dynamic sensory environment. 

Outline 

Throughout this dissertation, I treat the relevance and limitations of certain theoretical 

frameworks of synchronization in nonlinear dynamical systems to three current experimental 

studies (Experiment 1- Experiment 3) that were taken in this thesis and review the main results 

of the studies. 
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Chapter 2 briefly reviews the theory of synchronization that is relevant to our current 

studies and discusses the applicability of synchronization ideas to cognitive processes to further 

understanding of the state of the human brain during processing incoming information from our 

dynamic sensory environment. The main aims, the general procedures, the main results, and the 

discussions of three experimental studies are described in Chapter 3 and 4, respectively. The 

main conclusion is found in Chapter 5. 

2. THEORY OF SYNCHRONIZATION AND THE BRAIN 

To appreciate the functional significance of synchronization in human brain function, it is 

instructive to specify the basic notions in the theory of synchronization and list several different 

forms of synchronization relevant to our current experiments. Finally the applicability of 

synchronization ideas to human brain functions, particularly cognitive processes, is discussed. 

The basic notions in synchronization 

Synchronization is a process where oscillating objects adjust their rhythms due to their 

interaction. In physics such oscillatory objects are meant by self-sustained oscillators. The main 

universal property of self-sustained oscillators is that they are active systems that are capable of 

generating their own rhythms even if they are isolated. This continuous oscillation is maintained 

by an internal source of energy until it dissipates in the system. When this oscillation is 

perturbed, the oscillation soon returns to its original shape. Mathematically, these oscillators are 

called autonomous (i.e. without explicit time dependence). Many natural systems such as single 

cells that fire action potentials, cardiac pacemakers that control human heartbeat, a firefly that 

emits light pulse, and biological clocks that generate circadian rhythms, etc. are considered as 

self-sustained systems. Only these kinds of systems have the ability to be synchronized. 
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Now we briefly summarize the key notions of synchronization of self-sustained 

oscillators. 

Frequency locking (or entrainment) is a phenomenon where nonidentical oscillators 

having their own frequencies when coupled together adjust their rhythms and start to oscillate 

with a common frequency.  

Coupling strength describes how weak (or how strong) the interaction among oscillators 

is. In an experimental situation it is not always clear how to measure this quantity. If oscillators 

do not interact, the coupling strength is zero. If coupling is too strong, that makes the whole 

system of oscillators unified. 

Frequency mismatch (or detuning) quantifies how different the uncoupled oscillators are. 

Synchronization takes place if the mismatch of uncoupled systems is not very large.  

Phase locking is a certain relationship between the phases of synchronized self-sustained 

oscillators. It means that the phase difference is constant when oscillators are synchronized. 

Based upon the above notions synchronization can be redefined as a phenomenon where 

nonidentical oscillators with initially different frequencies and independent phases adjust their 

rhythms and start to oscillate with a common frequency (frequency locking) when they are 

coupled together; this also implies a definite relation between the phases of systems (phase 

locking). The adjustment of rhythms occurs in a certain range of systems’ mismatch; in 

particular, if the frequency of one oscillator is slowly varied, the rest of the system follows this 

variation.  

Forms of synchronization 

There are numerous ways to affect oscillators. There is no standardized taxonomy of the 

mechanisms that modify oscillators. The forms of synchronization are usually classified by 
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paying more attention to certain general properties, e.g., whether the oscillations are periodic or 

irregular, or whether the coupling is unidirectional or bidirectional. A variety of synchronization 

phenomena, first discovered by Christiaan Huygens in the 17th century (Huygens, 1673), have 

been investigated in periodic, chaotic, and stochastic systems. 

In periodic system, there are two classical types of synchronization in general – a forced 

synchronization, i.e., the synchronization of oscillations by an external periodic signal, and a 

mutual synchronization, which is observed under the interaction of more than two self-oscillating 

systems. These two classical phenomena are characterized by the locking of natural frequencies 

(and, consequently, phases) of oscillations or the suppression of one of the two frequencies of 

quasiperiodic oscillations. 

In chaotic systems, many different kinds of synchronization phenomena take place, from 

complete synchronization (Fujisaka & Yamada, 1983), to phase (Rosenblum et al., 1996) and lag 

synchronization (Rosenblum et al., 1997), generalized synchronization (Rulkov et al., 1995), 

intermittent lag synchronization (Rosenblum et al., 1997), imperfect phase synchronization 

(Zaks et al., 1999), and almost synchronization (Femat & Solis-Perales, 1999). 

In stochastic systems, stochastic synchronization known as stochastic resonance has been 

observed in the systems with noise-induced switching (Gammaitoni et al., 1998). While noise is 

normally considered harmful to the optimal performance in many systems, in stochastic 

resonance, optimal noise added to nonlinear noise-induced oscillatory system improves its 

sensitivity to weak coherent signals. As one might expect, the amount of noise in stochastic 

resonance is critical for the proper amplification of the external weak coherent signal: too much 

noise increasingly corrupts the signal, whereas the signal does not get through when too little 

noise exists. This noise-based optimization is the essence of stochastic resonance. Thus, 
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stochastic resonance gives us a rare chance to see the nature of noise that is added to the external 

signal externally or internally by the system. 

Here we will look further at two classical types of synchronization (e.g. forced 

synchronization and mutual synchronization) and stochastic resonance for later application to 

three experimental studies. 

Forced synchronization 

This entrainment of a self-sustained oscillator by an external periodic force is the 

classical example of synchronization. Here the form of the periodic forcing can be harmonic, 

rectangular, or pulse-like. Probably the well-known examples of a living nature are the biological 

clocks that control the circadian rhythms of cells and the organisms controlled by the periodic 

rhythms originating from the rotation of the Earth around its axis and around the Sun. Obviously, 

the action here is unidirectional.  

From the mathematical point of view, the theory of phase synchronization of periodic 

self-sustained oscillators is well established (Andronov, 1966; Anishchenko et al, 2003; Hayashi, 

1964; Guckenheimer & Holmes, 1983, Pikovsky et al, 2003). If )(tΦ is the phase of a periodic 

oscillator and )(tΨ is the phase of an external periodic force, then the condition of 

synchronization can be formulated as  

.,)()( consttntm =Ψ−Φ                             (1) 

where m and n are integers. This condition defines the locking of two phases )(tΦ and )(tΨ and 

requires that the phase difference should be constant. Synchronization is also defined as 

frequency entrainment, provided that the frequencies of the oscillator and the driving force are in 

rational relation. Mostly the simplest case of 1:1 synchronization is considered. But 
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synchronization may occur in a more complicated form as long as the Ponicaré rotation number, 

the ratio of frequencies ωωθ /1= , satisfies rational relation. Here, 1ω  is the driving frequency 

and ω  is the frequency of the oscillator. In case of the synchronization at the fundamental mode, 

we have 1ωω = , and θ  is equal to unity. When nm :=θ , as 1ω  varies, the frequency ω  will 

follow the driving frequency so that their ratio remains fixed in a certain finite range of 

parameters of the system, called the domain of synchronization. In this case we call this 

synchronization of higher order as synchronization of the order nm : . Generally, synchronization 

of order nm :  can be observed in experiment. For large m and n the synchronization domains are 

very narrow so that it is not always possible to observe them experimentally. 

Mutual synchronization 

In contrast to forced synchronization the coupling in mutual synchronization is 

bidirectional. This mutual synchronization involves the interactions of more than two oscillating 

objects with different natural frequencies. They equally affect each other and mutually adjust 

their rhythms. The most spectacular example of mutual synchronization in nature is a large 

population of fireflies flashing in synchrony. This type of synchronization occurs in many other 

populations of biological oscillators such as the pacemaker cells of heart, networks of neurons in 

the circadian pacemaker and hippocampus, the insulin-secreting cells of the pancreas, crickets 

that chirp in unison, groups of women whose menstrual periods become mutually synchronized 

(Strogatz, 2003).  

The effect of mutually coupled oscillators is very similar to the case of external forcing. 

Both the forced and mutual synchronizations have a constant and rational value of the Poincaré 

rotation number nm :=θ , which is preserved in the synchronization domain. Also the phase 

locking in mutual synchronization satisfies Eq. (1). 
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But there are some specific features in mutually coupled systems. One of the interesting 

features in these systems is the formation of synchronous clusters. Suppose the oscillators have 

slightly different frequencies that are somehow distributed over the ensemble of oscillators. If the 

interaction is very weak, there will be no synchronization so that all the systems will oscillate 

with their own frequencies. Also if the coupling is sufficiently strong, it can synchronize the 

whole ensemble, provided the natural frequencies are not too different. For an intermediate 

coupling or a broader distribution of natural frequencies of elements some partially synchronous 

states can be expected. In this way several oscillators synchronize and oscillate with a common 

frequency, whereas their neighbors have their own different frequencies. This is how clusters of 

synchronized elements appear. 

In neuroscience literature this type of synchronization in large ensembles of neurons has 

been related to several central issues of neuroscience (Gray et al., 1989; Singer & Gray, 1995; 

Singer, 1999; Varela et al., 2001; Ward, 2003). Synchronization seems to be a central 

mechanism for neuronal information processing within a brain area as well as for communication 

among different brain areas. Their important message is that representation of the various 

attributes of the visual world by distributed neuronal assemblies can be bound together 

harmoniously in the time domain through oscillatory synchrony. 

Stochastic resonance / Stochastic synchronization 

There exist examples of systems in nature in which oscillations arise only under the 

influence of noise. Here we will discuss noise-induced oscillations excited by rapidly fluctuating 

forces. Unlike any other dynamical systems here the noise plays a crucial role in the dynamics: 

without fluctuations there are no oscillations at all. Because such systems oscillate without 

external periodic forcing, these systems can be referred to as self-sustained systems so that we 
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can expect to see synchronization-like phenomena in these systems. This phenomenon is known 

as stochastic resonance. Stochastic resonance is a noise-mediated cooperative phenomenon in 

which noise increases sensitivity to a weak periodic signal when the frequency of the periodic 

signal matches the intrinsic noise-dependent time-scale of the system (Bulsara et al., 1991; 

Longtin et al., 1991; Wiesenfeld & Moss, 1995; Gammaitoni et al., 1998). This paradoxical 

phenomenon has been observed in many systems including bistable ring lasers, semiconductor 

devices, chemical reactions, and physiological mechanoreceptors in the tail fan of a crayfish 

(Gammaitoni et al., 1998; Wiesenfeld & Moss, 1995). In order for a system to exhibit stochastic 

resonance, it needs three minimal ingredients: a) a weak coherent input (e.g. a periodic signal) 

input, b) a source of stochastic noise that is inherent in the system, or that adds to the coherent, 

and c) a potential barrier or threshold that needs to be overcome in order to activate the system. 

These three ingredients must act together in a synergetic manner to exhibit stochastic resonance. 

When the signal is strong enough to overcome the threshold, optimal amounts of noise added 

either to the system or the signal may occasionally suffice to trigger activation, therefore the term 

stochastic resonance (Gammaitoni et al., 1998) 

Stochastic resonance can be understood from the synchronization viewpoint.  Consider 

double-well potential well system with two stable equilibria, where the noise induces transitions 

from one state to the other. This can be represented as a particle in a potential that has two 

minima (Figure 1). The rate of transition of the particle between the two minima depends on the 

noise intensity. Small noise induces rare jumps; with increasing noise intensity the transition rate 

grows. If the noise is too strong, the particle moves back and forth in an erratic manner. A weak 

external force modifies the double-well potential, making one state more stable than the other. 

Here weak signal means that it is not strong enough to cause transition, but it increases transition 
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probability when combined with noise. Transition probability increases when the potential 

barrier is low. Consequently, for a certain range of noise intensities, noise-induced oscillations 

appear in approximate synchrony with the periodic force. In this sense, stochastic resonance can 

interpreted as synchronization of noise-induced oscillations similar to forced synchronization 

(Shulgin et al., 1995; Neiman et al., 1998, 1999a, 1999b, 1999c, 2002). The detail 

characterization of stochastic resonance will be discussed in chapter 4. 

The key observation allowing one to see stochastic resonance as synchronization is the 

existence of two time scales. One (microscopic) scale is related to the correlation time of the 

noise; it is small. The other one (macroscopic) is the characteristic time between macroscopic 

events (jumps in a bistable system); it is much larger than the correlation time of the noise. We 

are interested in the jumps and the times when they occur. The difference between the two time 

scales makes it possible for characteristic macroscopic events to occur at any time. By slightly 

changing the threshold at some instant of time, we can cause a transition at this time. This means 

that the phase of the macroscopic hopping events can be shifted by weak periodic force, and this 

is exactly the property yielding synchronization. 

The application of synchronization ideas to cognitive processes 

The brain is complex at all levels of organization from the morphology and activity 

patterns of the individual neurons to the circuitry and population activity of large-scale networks 

involving millions of neurons. The large-scale activity emerges from the cooperative action of 

many neurons. As one possible underlying mechanism for large-scale activity, “temporal 

correlation hypothesis” or “phase synchronization” using the idea of mutual synchronization 

among neurons was proposed (Gray et al., 1989; Singer & Gray, 1995; Singer, 1999; Varela et 

al., 2001; Ward, 2003).  
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Our external sensory environment is also full of ever-changing complex and dynamical 

signals –glittering neon lights, rippling water, trembling leaves, motion through a textured 

environment. How does the brain interact with this dynamical sensory environment and give rise 

to cognitive process? To investigate this problem under the laboratory condition, ever-changing 

signals can be simplified as periodic luminance modulations. This situation is very similar to the 

classical example of the entrainment by an external periodic force described in section forced 

synchronization and section stochastic resonance. The novel properties of the human brain can 

be revealed by entraining human visual system with periodically modulated signals as will be 

shown in Chapter 3 and Chapter 4. 

In summary, one may gain insight into how the complex dynamics at different levels of 

neuronal organization emerges in the human brain by employing the ideas of synchronization 

theory.  

3. SYNCHRONIZATION AT ELECTROPHYSIOLOGICAL LEVEL 

Experiment 1 - Attention induces synchronization-based response gain in steady-state 

visual evoked potentials 

Perceptual abilities vary immensely as a function of where an individual voluntarily 

allocates attention. How does attention increase sensitivity to visual stimuli that are presented at 

an attended location? Three competing hypotheses have been proposed to explain how attention 

modulates the activation of visual cortical networks. According to the contrast gain hypothesis, 

the effects of attention are equivalent to increasing stimulus contrast. Thus, this hypothesis 

predicts that attention should cause a leftward shift in the neural contrast-response function. 

Neural responses grow with increasing stimulus contrast, following a nonlinear sigmoidal 

contrast-response function. Therefore, attention should boost neural responses when stimulus 
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contrast is within or below the dynamic range of the neural contrast-response function, but not 

when stimulus contrast is above the point of response saturation (Figure 1-1A). According to two 

other hypotheses, the response gain and activity gain models, attention multiplicatively increases 

the responses of the visual neurons that selectively respond to the attended stimulus. Both of 

these hypotheses predict that attention should boost neural responses most strongly for stimuli 

with high contrast (Figure 1-1B). The response and activity gain hypotheses differ in terms of the 

effects of attention on spontaneous neural activity. The response gain hypothesis postulates that 

attention multiplicatively increases only the stimulus-driven component of neural responses, 

predicting that attention should have no effect on spontaneous neural activity, whereas the 

activity gain hypothesis postulates that attention multiplicatively boosts the net neural activity, 

including spontaneous activity (Figure 1-1B). 

To test these hypotheses, stimulus contrast must be varied from a sub-threshold level to a 

response-saturation level to obtain full contrast-response functions for attended and ignored 

stimuli. The contrast gain hypothesis predicts that the effects of attention should be largest for 

moderate-contrast stimuli (in the middle of the dynamic range), whereas the response and 

activity gain hypotheses predict that attention effects should be largest for high-contrast stimuli, 

either with (activity gain) or without (response gain) the boosting of spontaneous activity. 

Numerous electrophysiological and neuroimaging studies have demonstrated that attention 

increases neural activity for attended, relative to ignored, stimuli. Fixed stimulus contrasts, 

however, were typically used in these studies, so that the results are equivocal for evaluating the 

three hypotheses. Only rarely have the effects of attention on contrast-response functions been 

examined (Reynolds et al., 2000; Di Russo et al., 2001; Cameron et al., 2002; Ling & Carrasco, 
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2006; Huang & Dobkins, 2005; Carrasco et al., 2004; Williford & Maunsell, 2006; Morrone et 

al., 2002; Lee et al., 1999). 

For single neurons in areas V4 and MT, several studies reported that voluntary visual 

attention affected spiking activity, primarily on the basis of contrast gain (Reynolds et al., 2000; 

Reynolds & Chelazzi, 2004; Martinez-Trujillo & Treue, 2002); attention modulated the later 

component of responses (B200–450 ms after stimulus onset), even for high contrast stimuli 

(Reynolds et al., 2000; Fries et al., 2001), but not as strongly as for low- to moderate-contrast 

stimuli1. Recent recordings from a large number of V4 neurons, however, found a variety of 

attention effects on neuronal contrast response functions. The attention effect on each neuron 

was partially consistent with contrast, response or activity gain, yielding a statistical tie across 

the population, but slightly favoring response and activity gain (Williford & Maunsell, 2006). 

Behavioral results are also mixed with respect to the three hypotheses. Consistent with contrast 

gain, a recent study (Ling & Carrasco, 2006) reported that voluntary attention improved 

orientation discrimination for low to moderately high-contrast stimuli, corresponding to the 

dynamic range of the psychometric function (behavioral performance plotted as a function of 

contrast). However, attention did not affect performance for high-contrast stimuli, corresponding 

to the saturated portion of the psychometric function. If attention only operates through 

mechanisms that induce contrast gain (Figure 1-1A), then attention should be generally 

ineffective for high-contrast stimuli. Contrary to this prediction, robust behavioral attention 

effects are generally found with high-contrast stimuli, as such stimuli are more readily detected 

and processed when presented at the focus of attention (Morrone et al., 2002; Lee et al., 1999; 

Posner et al, 1980). Furthermore, some behavioral results provide evidence for multiplicative 

attention effects consistent with response gain (for example, attention improved the 
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discrimination of contrast, orientation and spatial frequency more for a higher-contrast than for a 

lower-contrast stimulus) (Morrone et al., 2002; Lee et al., 1999) or evidence for the involvement 

of both contrast gain and response gain (Huang & Dobkins, 2005). In sum, for both neuronal 

spike rates and behavioral performance, the evidence to date has been mixed as to whether 

voluntary visual attention primarily affects neural activity based on contrast (Reynolds et al., 

2000; Cameron et al., 2002; Ling & Carrasco, 2006; Huang & Dobkins, 2005; Carrasco et al., 

2004; Reynolds & Chelazzi, 2004; Martinez-Trujillo & Treue, 2002), response (Huang & 

Dobkins, 2005; Williford & Maunsell, 2006; Morrone et al., 2002; Lee et al., 1999), or activity 

(Williford & Maunsell, 2006) gain. 

The three hypotheses have not previously been examined at the level of the neural 

population. This examination is important for two reasons. First, it is intrinsically difficult to 

compare the contrast response functions of individual neurons with behavioral results because it 

is unclear how neural signals from different visual areas (or sub-areas) contribute to performing a 

specific behavioral task (Maunsell & Cook; 2002). An examination of neural population 

responses will identify the primary population activity that is induced by a given stimulus and 

determine how that population activity is affected by allocation of attention to the stimulus. 

Second, neural population activity takes on emergent characteristics that are not reflected in the 

spike rates of individual neurons. Response synchronization is one such example, and there is 

evidence that attention modulates synchronization. For example, visual attention led to increased 

35–90-Hz (gamma-frequency) synchronization among V4 neurons that were responding to an 

attended stimulus (Fries et al., 2001). For another example, attention to tactile (as opposed to 

visual) stimuli increased the synchronization among somatosensory neurons (Steinmetz et al., 

2000). Because the synchronization can increase the impact of the involved neurons on 
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postsynaptic targets (Azouz & Gray, 2000), these results suggest that response synchronization is 

one of the mechanisms that are important for attentional selection (Niebur & Koch, 1994; Buia & 

Tiesinga, 2006). Recent evidence suggesting that the coding of stimulus contrast in V1 involves 

synchronization (Henrie & Shapley, 2005) is also consistent with a function for neural response 

synchronization in modulating the strength of stimulus representation. Because response 

synchronization is not limited by the saturation of neuronal spike rates at high contrasts (Henrie 

& Shapley, 2005), we hypothesized that attentional modulations of the coherence of neural 

population responses might provide a mechanism that is especially effective for increasing the 

salience of high-contrast stimuli. This would complement the attentional modulations of 

neuronal spike rates, which may be potentially limited by response saturation at high contrast. 

Our strategy for investigating the effects of attention on the coherence of neural 

population activity in humans was to monitor SSVEPs that were elicited by flickering stimuli 

(Regan, 1989). These electroencephalographic (EEG) measures can index the increased 

synchronization of neural responses even if the firing rate of individual neurons is saturated 

because of high contrast. Hypothetically, if attention induced contrast gain in individual neurons, 

while also inducing multiplicative response (or activity) gain in terms of increased phase locking 

of population activity to stimulus flicker, SSVEP amplitudes might be sensitive enough to 

demonstrate response (or activity) gain. Indeed, some of the data reported in a prior SSVEP 

study (Di Russo et al., 2001) are suggestive of multiplicative attention effects on SSVEP 

amplitudes. Here we rigorously tested the attentional response and activity gain hypotheses for 

neural population activity by recording frequency-tagged SSVEPs from both attended and 

ignored stimuli simultaneously (thus controlling for influences on SSVEPs that were unrelated to 

attention), analyzing the scalp topography of attention effects (crucial for evaluating the 
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attentional response and activity gain hypotheses) and examining the effects of attention on 

response synchronization. 

The response and activity gain hypotheses predict that attention directly boosts visual 

responses that are elicited by the attended stimulus (Figure 1-1B). Evidence in support of these 

hypotheses must demonstrate that there is a multiplicative attention effect on population activity 

that is stimulus selective. Therefore, we recorded frequency-tagged SSVEPs from numerous 

scalp locations to identify patterns of activity that were specific to each of the competing stimuli. 

We then sought to demonstrate that attentional boosts in SSVEP amplitudes occur with a 

topographic pattern that is indicative of the selective enhancement of sensory activation and that 

this enhancement is multiplicative (Figure 1-1B). The presence or absence of attention effects on 

subthreshold activity allowed us to distinguish between response and activity gain. 

Care must be taken to ensure that SSVEP modulations can clearly be attributed to 

selective attention. This requires that attended and ignored conditions be equated in terms of 

arousal and the type of visual processes engaged. Accordingly, we presented two flickering 

circular gratings, one to be attended to and the other to be ignored, in the left and right visual 

hemifields (Figure 1-2A). When the observer attended to one grating, he or she simultaneously 

ignored the other grating, such that the level of arousal and general task requirements were 

comparable while we recorded SSVEPs from both the attended and ignored gratings 

simultaneously (Morgan et al., 1996).We made two gratings flicker at different frequencies so 

that the Fourier band-power value for each frequency could be extracted from the EEG activity 

to measure coherent neural responses to the respective gratings separately (Morgan et al., 1996; 

Müller et al., 2003; Müller et al., 2003). This frequency-tagging method allowed us to 

simultaneously monitor SSVEPs from attended and ignored stimuli so that we could determine 
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whether attentional modulation of stimulus selective population electrophysiological activity 

(recorded as EEG) reflected contrast gain (Figure 1-1A), response gain or activity gain (Figure 1-

1B). 

We found that (i) each grating elicited SSVEPs that were localized in the contralateral 

posterior scalp region, (ii) voluntary visual attention selectively andmultiplicatively boosted 

these stimulus-induced SSVEPs in a manner that was consistent with response gain and (iii) this 

attentional boosting was at least partially attributable to the enhancement of neural response 

synchronization by attention.  

Observers: 

Eight observers with normal or corrected-to-normal vision participated as paid volunteers 

after giving informed written consent. The group included five men and three women. Their ages 

ranged from 23 to 45 years. 

Stimuli: 

We displayed stimuli on a 19-inch CRT monitor set to a 100-Hz refresh rate. We 

presented two identical square-wave modulated circular gratings (1.1 cycles per degree in 

fundamental spatial frequency) to the left and right visual hemifields (Figure 1-2A). We always 

flickered the two gratings at different frequencies (12.50 Hz and 16.67 Hz, with assignment to 

visual hemifield randomized across trials). We induced flicker by modulating the luminance of 

the concentric rings symmetrically (darker and lighter) against the mid-gray (64.7 cd m–2) 

background, which prevented the creation of negative afterimages. Because visual neurons are 

primarily driven by luminance changes, we define the contrast, C, of the flickered gratings as, 

1)()( −+×−= darklightdarklight LLLLC , where lightL and darkL  indicate the luminance during the light 

and dark phases, respectively. 
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Experimental procedure: 

The observer initiated each trial by a button press (Figure 1-2B). A central arrow 

(attention cue) then appeared for 2 s to indicate which grating (left or right) the observer was to 

attend to during that trial. Following a 1-s fixation screen, the two flickering gratings appeared. 

During the subsequent 4.8-s period, the observer voluntarily attended to the cued grating, while 

maintaining eye fixation at the central fixation marker and attempting to withhold blinks. We 

directly manipulated attention by instructing the observers to sustain attention to the cued grating 

and ignore the other grating. We chose this method, rather than indirectly manipulating attention 

by using a visual task, so that SSVEP modulations could be attributable to voluntary spatial 

attention without potential task-related confounding factors. Behavioral (Ling & Carrasco, 2006; 

Posner et al., 1980; Sperling & Melchner, 1978; Suzuki, 2001) as well as fMRI (O’Craven et al., 

1997) results have provided evidence that human observers can reliably allocate attention when 

instructed to do so. The fact that we obtained substantial attentional boosting of stimulus-

selective contralateral SSVEPs provides evidence that our observers successfully allocated 

attention to the cued grating. 

To verify that our manipulation of attention produced behavioral effects that were 

independent of grating contrast, we conducted the following control experiment. The trials were 

identical to those in the SSVEP experiment (Figure 1-2B), except that we presented a cue 

instructing the observer to attend to both gratings on half of the trials and we measured the 

effects of attention using a probe display that was flashed for 100 ms. We presented the probe 

display (Figure 1-8) 500 ms after the grating onset, as the time course of ITPC (Figure 1-6B) 

indicated that observers fully allocated their attention by 500 ms. The target in the probe display 

was defined by a pair of oblique lines, identical in orientation, that occurred at the location of 
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one of the gratings. The target always occurred at the location of the attended grating when the 

observer attended to only one grating (cue validity was 100%). Because we presented the targets 

among feature-matched distractors, they did not attract attention, nor were they easily detectable 

when the observer distributed attention across the display (Treisman & Sato, 1990). Thus, the 

experiment provided a sensitive measure of attention allocation, where successfully focused 

attention should have resulted in faster and more accurate target detection at the location of the 

cued grating. We adjusted the contrast of the probe display for each grating contrast and for each 

observer so that the target-detection performance in the distributed-attention condition was 

equivalent for all of the grating contrasts. We tested three of the eight observers who participated 

in the SSVEP experiment, using 5%, 20% and 80% randomly intermixed grating contrasts, with 

384 trials per observer. All of the observers produced both faster response time and greater 

accuracy in the focused-attention condition (while attending to only one grating) than in the 

distributed-attention condition (while attending to both gratings) for all of the grating contrasts. 

Average response times were: 769 ms (focused) versus 982 ms (distributed) for the 5% contrast 

grating (a 213-ms advantage), 831 ms versus 950 ms for the 20% contrast grating (a 119-ms 

advantage) and 781 ms versus 972 ms for the 80% contrast grating (a 191-ms advantage). 

Average accuracies were: 85% (focused) versus 73% (distributed) for the 5% contrast grating (a 

12% advantage), 85% versus 74% for the 20% contrast grating (an 11% advantage) and 89% 

versus 73% for the 80% contrast grating (a 16% advantage). Thus, these results verified that our 

instructional manipulation of attention produced similar behavioral effects at different grating 

contrast levels, suggesting that our observers allocated a comparable amount of attention to 

gratings of different contrasts. In the SSVEP experiment, there were 32 trial types: 2 directions 

of attention (left or right), 2 assignments of flicker frequencies (12.50 Hz on the left and 16.67 
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Hz on the right, and vice versa) and 8 contrast levels (0.00625, 0.0125, 0.025, 0.05, 0.10, 0.20, 

0.40, or 0.80). We ran each trial type 20 times while randomly varying and counterbalancing the 

3 factors across trials. We tested each observer for a total of 640 trials in blocks of 160 trials. We 

initially ran several practice trials and also gave breaks as necessary. 

Data recording and analysis:  

We recorded EEG activity using tin electrodes embedded in an elastic cap at locations 

distributed relatively evenly across the scalp. For 59 EEG channels, the right mastoid served as 

the reference. We used four additional channels for monitoring vertical and horizontal electro-

oculographic (EOG) activity. We lowered electrode impedances to 5 kΩ, amplified signals with 

a bandpass of 0.3–200 Hz and digitized them at 1,000 Hz. 

We rejected individual trials from further analysis on the basis of blink or muscle-activity 

artifacts detected by vertical EOG activity. In addition, to retain only the trials in which central 

eye fixation was maintained, we recursively rejected trials with the highest horizontal EOG 

activity until the average horizontal EOG activity for each condition (defined by each 

combination of attention allocation, flicker-frequency assignment, and contrast) for each 

observer was less than 5 μV during the entire 4.8-s trial period. This criterion approximately 

corresponds to maintained central fixation within a visual angle (Müller et al., 1998a; Luck et al., 

1994) of 0.5°. Following these artifact-rejection procedures, we retained a mean of 89% of the 

trials. 

To exclude the initial transient response to the grating onset, we analyzed EEG 

waveforms recorded from 526 ms to 4,621 ms after grating onset (except for the time course 

analysis of ITPC which included the entire trial period). This yielded 4,096 (212) data points per 

trial. Reducing the number of EEG data points from each trial to a power of 2 is optimal for fast 
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Fourier transform (FFT) analysis. We averaged EEG waveforms from the 59 scalp electrodes 

separately for each condition and for each observer and then we re-referenced the average 

waveforms to the average of left and right mastoid recordings. 

To extract SSVEP activity that was synchronized to the stimulus flicker, we subjected 

each re-referenced average waveform (corresponding to a specific condition) from each scalp 

electrode to an FFT. We then computed the SSVEP amplitude as the Fourier band-power within 

the range of 0.976 Hz centered at the second harmonic of the stimulus flicker frequency. Because 

the luminance flicker we used was symmetric about the mid-gray background (Figure 1-2), the 

fundamental-frequency responses (for example, first harmonic) from the non–frequency 

doubling cortical simple cells would have mostly averaged out in SSVEPs due to the random 

spatial distribution of the ON and OFF sub-regions of their receptive fields with respect to the 

flickered stimuli (Di Russo et al., 2001; Campbell & Maffei, 1970; Hou et al., 2003; De Valois et 

al., 1982). Any remaining power at the fundamental frequencies would then be due to overall 

unequal activation of the ON and OFF sub-regions, unbalanced amplitudes of ON and OFF 

responses or both. The effects of attention on such residual responses would be difficult to 

interpret. In contrast, frequency-doubling responses from cortical complex cells50 are largely 

spatial-phase invariant and they contribute robustly to SSVEPs (Campbell & Maffei, 1970; Hou 

et al., 2003). 

Because the absolute values of EEG signals vary widely from observer to observer, we 

standardized the data from the eight observers before combining them. Specifically, we z-

transformed the SSVEP amplitude from each electrode, in each condition and for each observer 

based on the observer’s overall average and standard deviation of SSVEP amplitudes across all 

scalp electrodes and across all of the conditions. 
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Results: 

We elicited SSVEPs by using circular gratings flickering at 12.5 Hz and 16.67 Hz. Two 

gratings appeared simultaneously in the left and right visual hemifields (Figure 1-2A), with 

flicker frequency randomly assigned to each hemifield on each trial. Each trial lasted 4.8 s, 

during which the observer maintained fixation at a central marker while voluntarily attending to 

the grating that was indicated by a central arrow that was presented prior to each trial (Figure 1-

2B).We contrasted SSVEPs that were derived from the second-harmonic EEG responses (see 

Date recording and analysis) for attended and ignored conditions. 

The SSVEP topographies for the responses to the 16.67-Hz grating (Figure 1-3A) showed 

that the maximal SSVEP amplitudes occurred contralateral to the stimulus over posterior cortical 

regions and that attention boosted these localized responses. The topography of the SSVEP 

differences between the attended and ignored conditions showed that the contralateral posterior 

focus of attentional enhancement closely resembled the SSVEP topographies for the attended 

and ignored conditions. This topographic similarity between SSVEP responses and SSVEP 

enhancement suggests that the attentional modulation occurred in the same brain regions that 

were selectively activated by the grating. A parallel set of results for SSVEPs that were 

synchronized to the 12.50-Hz grating (Figure 1-3B) showed a similar pattern, except that the 

SSVEP amplitudes were generally larger. 

These findings demonstrated that the stimuli elicited focal SSVEPs at contralateral 

posterior scalp regions and that voluntary spatial attention boosted these localized visual 

responses. We next evaluated whether this attentional boost of stimulus-evoked population 

electrophysiological activity was consistent with contrast gain (Figure 1-1A), response gain or 

activity gain (Figure 1-1B). To evaluate SSVEP contrast-response functions, we used data from 
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ten scalp locations (five on each side of the scalp; Figure 1-4A) that were selected to correspond 

to the foci of maximal sensory activation and attentional boost. We averaged SSVEPs separately 

for locations contralateral and ipsilateral to the side of stimulation (combining left and right 

stimulus presentations). 

For SSVEPs that were elicited by the 16.67-Hz grating, the contralateral contrast-

response functions for the attended and ignored conditions showed that the effect of attention 

monotonically increased with increasing stimulus contrast, with attention having no effect at the 

lowest contrasts (Figure 1-4B). This finding is consistent with the response gain hypothesis 

(Figure 1-1B). To quantitatively confirm the multiplicative attention effect, we first fit both the 

attended and ignored contrastresponse functions using the Naka-Rushton equation, which is 

typically used to fit neural contrast response functions (Figure 1-4). If attention multiplicatively 

boosted visual responses, then the difference between the attended and ignored contrast-response 

functions should also be well fit by the Naka-Rushton equation1. This was indeed the case 

(Figure 1-4B; F1,7 = 41.582, P < 0.001). Attention had negligible effects on the weak responses 

recorded from ipsilateral locations, which confirmed the spatial selectivity of the attention effect 

(Figure 1-4B). 

We found essentially the same pattern of results for SSVEPs that were elicited by the 

12.50-Hz grating (Figure 1-4C). The attentional boosting of SSVEPs was spatially selective 

(confined to contralateral locations) and the contrast-response functions indicated response gain; 

the difference between the attended and ignored contrast-response functions grew monotonically 

with increasing stimulus contrast, conforming to the Naka-Rushton equation (Figure 1-4C; F1,7 = 

9.107, P < 0.02), with attention having no effect at the lowest contrasts. 
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In addition to these primary results that consistently supported the idea that the effects of 

attention on SSVEPs have response gain characteristics, we also found some frequency 

dependencies. First, SSVEPs were generally stronger for the 12.50-Hz grating than for the 16.67-

Hz grating (compare Figures 1-3A and 1-3B). This could be related to differences in perceived 

contrast. Although the amplitude of luminance modulation was physically identical for the two 

flicker frequencies, subjectively the 12.50-Hz grating appeared slightly higher in contrast than 

the 16.67-Hz grating, probably owing to a higher perceptual sensitivity to the slower flicker. 

Second, the effects of attention were generally greater for the 16.67-Hz grating than for the 

12.50-Hz grating (compare Figures 1-4B and 1-4C). Indeed, the magnitude of the attention 

effects might depend systematically on flicker frequency24.We note that the examined EEG 

second-harmonic responses (33.33 Hz) were in the gamma range for the 16.67-Hz grating and 

that some evidence suggests that gamma-range synchronization is closely associated with 

attention (Fries et al., 2001; Fell et al., 2003). Third, within the contrast range used, SSVEP 

contrast response functions saturated for the 16.67-Hz grating (Figure 1-4B), but not for the 

12.50-Hz grating (Figure 1-4C). Perhaps the higher-frequency grating activated a higher ratio of 

magno-type to parvo-type neurons than did the lower-frequency grating. Magno-type neurons 

may disproportionately contribute to the perception of a faster flicker (Schiller et al., 1990; but 

see Levitt et al., 1994; Hawken et al., 1996) and they also tend to saturate at a lower contrast 

(Edwards et al., 1995). 

These frequency dependencies merit further investigation, and it is unclear how SSVEP 

results might differ for frequencies that were not tested in this experiment. Nevertheless, our 

SSVEP results provided strong evidence that is pertinent to the response gain hypothesis. Both 

the 16.67- and 12.50-Hz gratings elicited electrophysiological responses that were localized to 
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the contralateral posterior scalp regions, and attention boosted these focal responses in a manner 

that was consistent with the response gain hypothesis. 

Discussion: 

To understand how the voluntary allocation of spatially focused attention modulates 

neural activity, previous research has considered three hypotheses: contrast gain (the effects of 

attention being equivalent to increasing stimulus contrast), response gain (attention 

multiplicatively boosting stimulus-evoked neural activity) and activity gain (attention 

multiplicatively boosting the net neural activity). As discussed above, to date the evidence at the 

level of single neurons has been mixed. Here we investigated these hypotheses at the neural 

population level by using flickered stimuli and monitoring the corresponding SSVEPs. Voluntary 

visual attention multiplicatively increased the synchronized electrophysiological activity, which 

likely arose from contralateral neocortical regions in response to these stimuli. As attention did 

not affect the baseline activity, we have demonstrated attentional response gain at the neural 

population level. 

There are at least two possible ways by which attention could increase SSVEPs in accord 

with response gain, even if attention increased neuronal spike rates predominantly in accord with 

contrast gain. First, a response gain pattern might emerge for a neural population when responses 

are averaged across neurons with a variety of contrast response functions (showing different 

half-saturation contrasts and maximum responses) and various magnitudes of attention-based 

contrast gain. Note that we cannot make any firm predictions about SSVEPs on the basis of 

single-cell spike rate activity because SSVEPs reflect aggregate local field potentials, which are 

more closely associated with the synaptic activity of a neural population than with spike rates 

(Henrie & Shapley, 2005; Varela et al., 2001). Nevertheless, we conducted a simulation analysis 
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to show that attentional response gain at the population level cannot emerge from a linear 

summation of attentional contrast gain on single-cell spike rate activity. We assumed that each 

neural contrast-response function was reasonably approximated by the Naka-Rushton equation (a 

neural response, R, as a function of contrast, C; equation (1)) (Geisler & Albrecht, 1997) and that 

the parameters a (maximum response relative to baseline), C50 (half-saturation contrast), n 

(steepness of the contrast response function) and b (spontaneous baseline response) were 

normally distributed across the responding population of neurons. 
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We considered a wide range of population means and standard deviations for the 

distributions of these contrast-response parameters, including published values for monkey V1 

(Geisler & Albrecht, 1997) and V4 (Williford & Maunsell, 2006) neurons. In simulating the 

effects of attention, we assumed that the magnitude of attentional contrast gain (the reduction in 

the C50 parameter with attention) was normally distributed across the responding neurons, and 

we tested a wide range of population means and standard deviations for the attention effect (the 

mean percentage reduction in C50 was varied from 0% (no attentional contrast gain) to 100% 

(maximum attentional contrast gain) with the standard deviations ranging from 0% to 1,000%). 

For each simulated neural population, we computed the average attention effect (the difference 

between attended and ignored responses) as a function of contrast. All of our simulated 

population-averaged attention effects peaked at mid-range contrasts (Figure 1-5), consistent with 

contrast gain (Figure 1-1A). This indicates that the average population responses from neurons 

with a variety of contrast-response functions and attentional contrast gain magnitudes should still 

produce an overall contrast gain effect. Thus, it is unlikely that the attentional response gain 
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effects we observed on SSVEPs were due to the simple averaging of contrast gain effects from 

individual neurons. 

An alternative possibility is that attention increases the phase coherence of neural 

responses at the population level, in addition to producing contrast gain or a mixture of contrast, 

response and activity gain at the neuronal level. Because SSVEPs are measured as frequency-

locked electrophysiological responses to flickered stimuli, increased SSVEPs could arise from 

increased amplitudes or from an increase in the coherence of underlying neural responses (Rager 

& Singer, 1998; Srinivasan et al., 1999). One way to evaluate whether attention increased neural 

response synchronization is to examine intertrial phase coherence (ITPC) (Tallon-Baudry et al., 

1996; Delorme & Makeig, 2004). ITPC provides an amplitude-independent measure of the 

degree towhich stimulus-evoked EEG responses are phase-locked to the stimulus volleys. For 

example, when the neuronal responses underlying SSVEPs are not synchronized, there will be 

substantial random variability in the phase lags among those responses, producing SSVEPs with 

large variability in phase from one stimulus volley to another. In contrast, when the neuronal 

responses underlying SSVEPs become more synchronized to stimulus dynamics, there will be 

less random variability in the phase lags among those responses, producing coherent SSVEPs 

with less variability in phase from one stimulus volley to another. ITPC provides a measure of 

this phase consistency in terms of the degree to which EEG responses of a specific frequency are 

time-locked to stimulus dynamics. ITPC values vary from 0 (a complete absence of 

synchronization) to 1 (perfect synchronization). 

Voluntary attention increased the average ITPC in the contralateral focal electrodes by 

B10% for both 16.67-Hz and 12.50-Hz gratings at the higher end of the stimulus contrast range 

(40% and 80%; Figure 1-6A). The time course of the ITPC (averaged across 40% and 80% 
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contrasts) shows that the effect of attention emerged within 300–500ms (Figure 1-6B), which is 

within the temporal range of voluntary attention effects reported for single-cell spike rates 

(Reynolds et al., 2000; Fries et al., 2001; Reynolds et al., 1999; Chelazzi et al., 1998). 

A previous single-cell study (Fries et al., 2001) reported faster (within 50–150 ms) 

attentional boosting of gamma-range synchronization (and reduction of low-frequency 

synchronization) between single-cell spikes and local field potentials in V4. It is possible that it 

takes longer for synchronization to develop over the large population of neurons that generate 

SSVEPs. Additionally, the two studies examined different types of neural synchronization; 

whereas the single-cell study found attentional modulations of local neuronal synchronizations 

within intrinsic frequencies, we found attentional enhancement of population synchronization to 

stimulus dynamics. Future research is necessary to clarify the relationship between these two 

types of synchronization. We also acknowledge the need to be cautious in comparing SSVEP 

results with single-cell results. Specifically, single-cell studies have examined attention effects 

when stimuli are presented within the neurons’ classical receptive fields, whereas SSVEPs 

combine responses from a large population of neurons, including those for which the stimulus 

falls on the border of, or outside, their classical receptive fields. Future single-cell research, in 

which attention effects are examined using large stimuli spanning multiple receptive fields, 

would be necessary to understand how our SSVEP results relate to attention effects on single 

neurons. 

An important aspect of our results is that the attentional boosting of ITPC increased with 

contrast, indicating that attention enhanced population synchronization most strongly for high-

contrast stimuli (Figure 1-7). This response gain–type attentional enhancement of ITPC occurred 

throughout the time period of sustained attention (200–400-ms, 400–1,000-ms and 1,000–4,800-
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ms intervals), except for the initial period (50–200 ms), in which no attentional modulation of 

ITPC occurred (Figure 1-7). Overall, converging evidence from our simulation (Figure 1-5) and 

ITPC analyses suggests that the observed attention-based multiplicative boost in SSVEPs is 

attributable to attentional modulation of neural response synchronization. Further research will 

be necessary to understand how voluntary attention increases neural response synchronization, 

but a recent computational study suggests that one possible mechanism might be for attention to 

reduce the driving current to inhibitory neurons (Buia & Tiesinga, 2006). 

Our results might be criticized on the grounds that natural images are not flickered. In 

fact, rapid luminance modulations frequently occur in both natural and artificial environments—

rippling water, motion through a textured environment, rapid saccades, micro saccades that 

always occur even during voluntary eye fixation38, TV displays and artificial illuminations that 

generate periodic flicker. Thus, one might argue that flickered stimuli are more ecologically 

valid (Müller et al., 2003) than the briefly flashed stimuli that are often used in visual attention 

research. Furthermore, our ITPC analysis has shown that attention increases phase-locking of 

SSVEPs to rapid changes in luminance, suggesting that attention increases the synchronization 

of neural population responses to dynamic signals from an attended stimulus. Because retinal 

stimulation is nearly always dynamic, it is plausible that the synchronization-based multiplicative 

attention mechanism demonstrated here is also operational in natural situations. 

To conclude, visual sensitivity is enhanced for stimuli presented at the focus of attention. 

Many previous studies have investigated the neural mechanisms underlying the beneficial effects 

of attention on performance. The present findings add to this body of research by implicating 

separate functions for the effects of attention on neural population activity and neuronal spike 

rate activity. 
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On a fine spatial scale—that is, when attended and ignored stimuli activate many of the 

same neurons—attention appears to increase the influence of the attended stimulus relative to the 

influence of the ignored stimulus in determining neuronal activity. This mechanism has been 

formalized in the biased-competition model (Reynolds et al., 1999; Kastner & Ungerleider, 

2001). In this model, attention can affect the relative weighting of signals from attended and 

ignored stimuli and can mediate attention effects on high-contrast and low-contrast stimuli if 

both attended and ignored stimuli fall within a single receptive field. For example, when a high-

contrast preferred stimulus and a high-contrast null stimulus both fall within a single neural 

receptive field, attention can boost the neuron’s response by preferentially weighting the signal 

from the preferred stimulus and can reduce the neuron’s response by preferentially weighting the 

signal from the null stimulus; the response would be intermediate if both stimuli were ignored. 

Some suggest that this biased-competition mechanism is closely associated with contrast gain 

because both selective attention and the relative contrast of competing stimuli similarly modulate 

the relative influence from within-receptive-field stimuli (Reynolds et al., 2004; Martinez-

Trujillo & Treue, 2002). A biased competition–contrast gain mechanism can thus mediate 

attentional boosts in visual sensitivity for low- to moderate-contrast stimuli in general (Figure 1-

1A) and also for high-contrast stimuli when the competing stimuli are near enough to activate a 

single receptive field. Note that increasing neuronal activity via response or activity gain would 

be ineffective for selecting among within-receptive-field stimuli; in that case, input modulation 

would be necessary to accomplish attentional selection, either via contrast gain or via response 

(or activity) gain occurring in the previous processing stage in which the competing stimuli fall 

in separate receptive fields. 
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The biased competition–contrast gain mechanism, however, would be ineffective when 

attended and ignored stimuli were both high contrast and presented relatively far apart, so as not 

to fall within a single neuron’s receptive field. For example, in our experiment, the two gratings 

were presented in opposite visual hemifields. The attended and ignored gratings would have 

activated separate receptive fields in nearly all of the cortical visual areas throughout the ventral 

pathway (V1, V2, V4, through the inferotemporal cortex) thought to be closely associated with 

object perception and pattern visibility (Mishkin et al., 1983; Leopold & Logothetis, 1999; Grill-

Spector & Malach, 2004). Even in the inferotemporal cortex, where visual neurons have very 

large receptive fields, neurons respond primarily to contralateral stimuli regardless of the 

direction of attention (Chelazzi et al., 1998). In such circumstances, our results implicate a 

synchronization-based attention mechanism that multiplicatively enhances population neural 

activity. 

In summary, a biased competition–contrast gain mechanism can modulate neuronal spike 

rates for both low- to moderate-contrast stimuli and spatially proximate stimuli (regardless of 

contrast). Subpopulations of neurons showing response and activity gain properties may extend 

attention effects across a broader range of contrasts (Williford & Maunsell, 2006). However, an 

additional synchronization-based response gain mechanism, operating at the neural population 

level, allows robust attentional selection of the high-contrast stimuli typically encountered in 

everyday life even when attended and ignored stimuli are too far apart to be detected by the same 

neuron’s receptive field. Both neuronal and synchronization-based mechanisms of attention may 

operate concurrently to fulfill the demands of attentional regulation in diverse environmental 

circumstances. 

Experiement 2 – Parallel visual processing revealed by evoked oscillatory neural harmonics 
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Parallel processing streams are a fundamental characteristic of the visual system. They 

allow separate, often conflicting, computations to be concurrently performed on sensory signals. 

Classic examples include magno (extracting temporal information) versus parvo (extracting 

spectral information) pathways (e.g., Merigan & Maunsell, 1993; Schiller et al., 1990; Shapley, 

1995; Yoshikawa et al., 1994), and dorsal (extracting spatial, spatio-temporal, and action-related 

information) versus ventral (extracting object information) streams (e.g., Goodale et al., 1991; 

Goodale & Westwood, 2004; Fang & He, 2005; Mishkin, Ungerleider, & Macko, 1983; 

Ungerleider & Mishkin, 1982). 

Here we report potential parallel processing based on neural response harmonics. 

Because the visual environment is dynamic, responses of visual neurons typically include a 

broad range of temporal frequencies. To understand how visual neurons respond to dynamic 

stimuli, periodic stimuli (e.g., flickered patterns, drifting gratings) have typically been used to 

systematically characterize how visual neurons respond to individual Fourier components. 

Harmonic responses are observed as early as in V1 where the simple cells typically respond at 

the flicker frequency (1st harmonic) whereas the complex cells typically respond at twice the 

flicker frequency (2nd harmonic) (e.g., De Valois et al., 1982; Hubel & Wiesel, 1968; Levitt et 

al., 1994). These harmonic responses (neural responses at integer multiples of the flicker 

frequency) have been observed in many areas of the brain (e.g., Rager & Singer, 1998), and are 

also prevalent in neural population responses measured with scalp electrodes, known as steady-

state visual-evoked potentials (SSVEPs) (e.g., Di Russo et al., 2007; Hermann, 2001; Kim et al., 

2007). 

Given the ubiquity of harmonic responses, it is reasonable to speculate that different 

harmonics may support separate processes in response to conflicting behavioral demands. We 
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investigated this possibility by analyzing SSVEPs elicited by a broad range of flicker frequencies 

in human observers using 64 scalp electrodes. We analyzed the first two harmonics because 

SSVEP amplitudes, and corresponding signal-to-noise ratios, diminish for higher harmonics (e.g., 

Hermann, 2001).  

We sought evidence of functionally distinct parallel processes mediated by the 1st and 2nd 

harmonics by focusing on SSVEP topography and top-down modulations. We first determined 

whether the 1st and 2nd harmonics exhibited anatomically segregated foci of activation as 

anatomical segregation generally implies functional segregation. We then determined whether 

the two harmonics resolved conflicting functional demands. We focused on attention effects 

because not only does attention play a fundamental role in signal selection (e.g., Desimone & 

Duncan, 1995; Kastner & Ungerleider, 2000), but attentional modulation of neural activation 

also imposes conflicting demands on visual processing. Whereas strong top-down modulation of 

neural responses is desirable for the purpose of stimulus selection, such modulation must occur 

without substantially distorting information about the intensity (e.g., contrast) of visual stimuli. 

We examined the possibility that the 1st and 2nd harmonics might segregate these conflicting 

demands. In other words, one harmonic might be especially susceptible to top-down attentional 

modulations —mediating attention effects— whereas the other harmonic might be relatively 

immune to attentional modulations —preserving undistorted sensory qualities. 

Our experiments yielded three key findings. First, the 1st and 2nd harmonics were 

topographically segregated in EEG recordings, with the 1st harmonic most prominent in the 

medial posterior scalp regions whereas the simultaneously generated 2nd harmonic most 

prominent in the contralateral posterior scalp regions. Second, this topographic segregation was 

harmonic specific and frequency independent within a broad range of flicker frequencies (~8.33 
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Hz to 25 Hz). Third, voluntary spatial attention strongly modulated the 2nd harmonic without 

significantly modulating the 1st harmonic. 

We focused on the first two harmonics because SSVEP amplitudes, and corresponding 

signal-to-noise ratios, diminish for higher response frequencies (Regan, 1989). To investigate the 

possible topographic segregation of the two harmonics, we analyzed SSVEP topographies 

resulting from a broad range of stimulus flicker frequencies. To investigate the potential 

functional differences between the two harmonics, we analyzed attentional modulations of those 

harmonics.  

The topographic analysis focused on the extent to which the contralateral organization of 

visual processing was reflected in the 1st and 2nd harmonics of SSVEPs. To examine SSVEP 

topography independent of the specific flicker frequency, we compared the 1st and 2nd harmonics 

elicited by multiple flicker frequencies. For example, a 25-Hz SSVEP can be produced as the 1st 

harmonic by a 25-Hz flicker or as the 2nd harmonic by a 12.5-Hz flicker. 

Further analysis focused on the possibility that attention might preferentially modulate 

one of the two harmonics. We speculated that one harmonic might be strongly modulated by 

attention, mediating top-down modulations of sensory signals, whereas another harmonic might 

be relatively unaffected by attention, preserving sensory information. In this way, strong top-

down modulations of sensory signals can be accomplished while simultaneously preserving 

undistorted sensory information. 

Our experiments yielded three key findings. First, the 1st harmonic was most prominent 

in EEG recordings from medial posterior scalp regions whereas the simultaneously generated 2nd 

harmonic was most prominent in EEG recordings from contralateral posterior scalp regions. 

Second, this topographic segregation was harmonic specific and frequency independent within a 
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broad range of flicker frequencies (~8.33 Hz to 25 Hz). Third, voluntary spatial attention 

strongly modulated the 2nd harmonic without significantly modulating the 1st harmonic. 

Observers: 

Twelve observers (9 men and 3 women, ages ranging from 23 to 46) participated in the 

primary experiment; data from two observers (1 man and 1 woman) were excluded from the 

analyses due to excessive blinking. Eight observers (5 men and 3 women, ages ranging from 23 

to 45) participated in the attention experiment (the 2nd harmonic data reported in Kim et al., 

2007). All observers had normal or corrected-to-normal visual acuity, gave informed consent to 

participate as paid volunteers, and were tested individually in a dimly lit room.  

Stimuli: 

Square-wave modulated circular gratings (1.1 cycle/degree in fundamental spatial 

frequency) were shown on a 19" CRT monitor set to a 100-Hz refresh rate (Figure 2-1). The 

diameter and retinal eccentricity of each grating was 5.9° and 4.47°, respectively. 

Each grating was presented against a mid-gray background (64.7 cd/m2) and was 

flickered at different frequencies, 6.25 Hz, 8.33 Hz, 12.5 Hz, 16.67 Hz, or 25 Hz in the main 

experiment, and 12.5 Hz or 16.67 Hz in the attention experiment. Flicker was generated by 

modulating the luminance of the concentric rings symmetrically (darker and lighter) against the 

mid-gray background, which prevented the creation of negative afterimages, produced no 

sensation of motion (unlike counterphase flickered gratings), and produced robust SSVEPs at 

both the 1st and 2nd harmonics. Because visual neurons are primarily driven by luminance 

changes, we define the contrast, C, of the flickered gratings as, C =
Llight − Ldark

Llight + Ldark

, where Llight and 

Ldark indicate the luminance during the light and dark phases, respectively. The contrast was 0.80 



43 
in the main experiment. The contrast was varied between 0.0625 and 0.80 in the attention 

experiment (see Kim et al., 2007). 

Experimental Procedure: 

Each trial was initiated by the observer’s button press. In the main experiment, a single 

grating was presented on each trial either in the left or right visual hemifield. The hemifield and 

flicker frequency of the grating (6.25 Hz, 8.33 Hz, 12.5 Hz, 16.67 Hz, or 25 Hz) were randomly 

intermixed across the 300 trials, and each condition occurred with an equal probability. Several 

practice trials were given initially and breaks were provided as appropriate. The grating was 

presented following 1 sec of a fixation screen displaying a central bull’s eye. The flickered 

grating lasted 4.8 sec during which time the observer attempted to maintain eye fixation at the 

central fixation marker and withhold eye blinks. 

In the attention experiment, two gratings were presented, one in the left and the other in 

the right visual hemifield. One grating flickered at 12.5 Hz and the other at 16.67 Hz. 

Assignment of frequency to visual hemifield was randomized across trials. An arrow cue 

presented in the initial fixation screen indicated to the observer the grating to which he or she 

voluntarily attended during the 4.8-sec period (see Kim et al., 2007 for additional details). 

Data Recording and Analysis: 

Electroencephalographic activity was recorded using tin electrodes embedded in an 

elastic cap at locations distributed relatively evenly across the scalp. For 59 EEG channels, the 

right mastoid served as the reference. Four additional channels were used for monitoring vertical 

and horizontal eye movements in order to reject trials contaminated by electro-oculographic 

(EOG) artifacts. Electrode impedances were lowered to 5 kΩ. Signals were amplified with a 

bandpass of 0.3 –200 Hz and digitized at 1000 Hz.  
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Individual trials were rejected from further analysis on the basis of blink or muscle-

activity artifacts detected by vertical EOG activity. In addition, to retain only the trials in which 

central eye fixation was maintained, we recursively rejected trials with the highest horizontal 

EOG activity until the average horizontal EOG activity for each condition (i.e., each flicker 

frequency presented to each visual hemifield) for each observer was less than 5 μV during the 

entire 4.8-sec trial period. This criterion approximately corresponds to central fixation within 

0.5° visual angle (Müller et al., 1998a; Luck et al., 1994). Following these artifact-rejection 

procedures, we retained a mean of 88% for the main experiment and 89% for the attention 

experiment. 

To exclude the initial transient response to the grating onset, we analyzed EEG 

waveforms recorded from 526 ms to 4621 ms after grating onset. This yielded 4096 (212) data 

points per trial. Reducing the number of EEG data points from each trial to a power of 2 is 

optimal for Fast Fourier Transform (FFT) analysis. EEG waveforms from the 59 scalp electrodes 

were averaged separately for each condition for each observer, and were then re-referenced to 

the average of left and right mastoid recordings. 

To extract SSVEP activity synchronized to the stimulus flicker, each re-referenced 

average waveform (corresponding to a specific condition) from each scalp electrode was 

subjected to an FFT. The SSVEP amplitude was then computed as the Fourier band-power 

within the range of 0.976 Hz centered at the 1st and the 2nd harmonic of the stimulus flicker.  

Because the absolute values of EEG signals vary widely from observer to observer, partly 

due to individual differences in scalp conductivity, data were standardized prior to combining 

across observers. The SSVEP amplitude from each electrode in each condition for each observer 

was z-transformed based on the observer’s overall average and standard deviation of SSVEP 
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amplitudes across all scalp electrodes and all conditions. We normalized each harmonic 

separately so that we could evaluate the topographic distribution and attentional modulation of 

each harmonic in standardized units of signal-to-noise ratio (i.e., controlling for the differences 

in the overall amplitude and variability between the two harmonics). 

Result 1: Topographic segregation of the 1st and 2nd harmonics 

SSVEPs were elicited by circular gratings flickered at one of five different frequencies: 

6.25, 8.33, 12.5, 16.67, or 25 Hz. Gratings were presented one at a time in the left or right visual 

hemifield (Figure 2-1). Selection of frequency and hemifield was randomized across trials. Each 

trial lasted 4.8 s, during which time the observer viewed a flickered grating while maintaining 

eye fixation at a central marker. 

The SSVEPs averaged across all flicker frequencies showed a clear topographic 

segregation based on response harmonics. The 1st harmonic showed a medial posterior 

localization regardless of whether the grating was located in the left or right visual hemifield 

(Figure 2-2A, upper row). In contrast, the 2nd harmonic showed a clear contralateral posterior 

localization (Figure 2-2A, lower row).   

To statistically evaluate this topographic segregation, we analyzed responses from ten 

posterior electrodes, five from each cerebral hemisphere (illustrated in Figure 2-2B). These 

locations correspond to the overall posterior focus of the SSVEPs (Figure 2-2A). The degree of 

response lateralization was measured as the difference in SSVEP amplitudes between the 

contralateral and ipsilateral sets of electrodes. Whereas the 1st harmonic was similar for the 

contralateral and ipsilateral electrodes, the 2nd harmonic was substantially stronger for the 

contralateral than for the ipsilateral electrodes (Figure 2-2B). This harmonic-based difference in 

SSVEP lateralization was confirmed by a significant interaction between the response harmonic 



46 
(1st vs. 2nd) and scalp location (contralateral vs. ipsilateral), F1,9 = 10.72, P < 0.01. The overall 

data (averaged across all flicker frequencies) thus clearly demonstrates a topographic segregation 

of the 1st and 2nd harmonics, with the 1st harmonic localized to a medial-posterior scalp region 

and the 2nd harmonic localized to a contralateral-posterior scalp region. 

We next determined whether the harmonic-based SSVEP lateralization occurred over and 

above any frequency dependencies of SSVEPs. We quantified the degree of response 

lateralization as the contralateral minus ipsilateral responses, with a larger positive value 

indicating stronger contralateral localization and a value near zero indicating no lateralization. 

The degree of response lateralization for the 1st (dashed line) and 2nd (solid line) harmonics is 

plotted as a function of flicker frequency in Figure 2-2C. Note that the response frequencies are 

twice the flicker frequencies for the 2nd harmonics.  

It is clear that the 1st harmonic was never lateralized across all flicker frequencies. In 

contrast, lateralization of the 2nd harmonic exhibited an inverted U-shaped dependence on 

frequency. Whereas the 2nd harmonic was strongly lateralized for the mid-range response 

frequencies (16.67 Hz to 33.33 Hz), the lateralization disappeared for the lowest (12.5 Hz) and 

highest (50 Hz) response frequencies. Note that these harmonic and frequency dependencies of 

SSVEP lateralization cannot be simply accounted for by the frequency dependence of SSVEP 

amplitudes. It was not the case that lateralization was weak when the overall response amplitude 

was weak. Specifically, the overall amplitude of the 2nd harmonic monotonically decreased with 

increasing frequency (Figure 2-2D, right panel), whereas the lateralization (the difference 

between the solid and dashed curve) disappeared at both the highest and lowest frequencies. The 

1st harmonic peaked at 8.33 Hz, but there was no lateralization regardless of its amplitude 

(Figure 2-3B, left panel). Our results thus suggest that the 2nd harmonic is selectively lateralized 



47 
for the mid-range (16.67 Hz to 33.33 Hz) response frequencies, whereas the 1st harmonic is 

generally non-lateralized. 

Finally, we statistically confirmed that the medial versus contralateral segregation of the 

1st and 2nd harmonics are indeed due to differences in harmonics rather than due to differences in 

absolute frequencies. Within the range of frequencies in which the 2nd harmonic was lateralized 

(Figure 2-2C), both the 1st harmonic elicited by the 16.67 Hz flicker and the 2nd harmonic elicited 

by the 8.33 Hz flicker had an identical response frequency of 16.67 Hz, and both the 1st harmonic 

elicited by the 25 Hz flicker and the 2nd harmonic elicited by the 12.5 Hz flicker had an identical 

response frequency of 25 Hz. In both cases, the crucial harmonic (1st vs. 2nd) by scalp location 

(contralateral vs. ipsilateral) interactions were significant (F1,9 = 25.54, P < 0.001 for 16.67 Hz 

and F1,9 = 11.47, P < 0.01 for 25 Hz), confirming the harmonic-based (rather than frequency-

based) topographic segregation of SSVEPs into medial posterior (1st harmonic) and contralateral 

posterior (2nd harmonic) scalp regions. Given the relatively coarse spatial resolution of EEG 

signals, the clear harmonic-based topographic segregation demonstrated here is remarkable, 

suggesting that the visual system channels the 1st and 2nd harmonics into well-separated neural 

assemblies. 

Result 2: Attentional modulations of the 1st and 2nd harmonics 

We next examined the possibility that this harmonic-based segregation of population 

neural activity might reflect an adaptive strategy for resolving conflicting demands in relation to 

attentional modulations of sensory signals. Whereas the ability to selectively enhance 

behaviorally relevant aspects of the signals is important, it is also important to preserve 

undistorted sensory qualities. 
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We manipulated spatial attention while the observer viewed two circular gratings of 

different contrasts (one flickering at 16.67 Hz and the other at 12.5 Hz) presented to the left and 

right visual hemifields (Figure 2-3). The observer voluntarily attended to either the left or right 

grating while we recorded the SSVEPs elicited by both gratings. The two gratings were flickered 

at different frequencies (one at 12.5 Hz and the other at 16.67 Hz) so that we could separately 

monitor the SSVEPs elicited by the attended and ignored gratings based on frequency tagging 

(the data for the 2nd harmonic were reported in Kim et al., 2007). Because the two flicker 

frequencies produced similar patterns of results with respect to attention effects on the 1st and 2nd 

harmonics, we averaged the data from the two frequencies.  

We first confirmed that the 1st and 2nd harmonics were medially and contralaterally 

localized, respectively, even when two gratings with different flicker frequencies were 

simultaneously presented (Figure 2-4A). We then compared the attentional modulation of the 1st 

harmonic recorded from the medial posterior electrodes with the attentional modulation of the 

2nd harmonic recorded from the contralateral posterior electrodes. Voluntary spatial attention 

selectively boosted the 2nd harmonic without affecting the 1st harmonic (Figure 2-4B, upper row). 

This asymmetric effect of attention on the two harmonics was confirmed by the significant 

harmonic (1st vs. 2nd) by attention (attended vs. ignored) interaction, F1,7 = 44.39, P < 0.0005. 

Note that prior studies reported attentional modulations of the 1st harmonic, using on-off 

flickered stimuli which primarily generated the 1st harmonic (e.g., Müller et al., 1998ab, 2003). 

Here, using light-dark flickered stimuli which generated robust 2nd and 1st harmonics, thereby 

simultaneously measuring attention effects on both harmonics, we have demonstrated that spatial 

selective attention modulates the 2nd harmonic substantially more strongly than it modulates the 

1st harmonic. Furthermore, the contrast response functions (SSVEP amplitudes as a function of 
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stimulus contrast) show that, whereas attention multiplicatively boosts the 2nd harmonic (Figure 

2-4B, lower right panel), undistorted contrast information is simultaneously preserved in the 1st 

harmonic (Figure 2-4B, lower left panel). 

Discussion: 

Dynamic stimuli are typical in our visual environment and they generate complex Fourier 

spectra in neural responses. To understand the role of temporal structure in visual coding, we 

examined electrophysiological responses to individual Fourier components using flickered 

stimuli. We have found evidence that the harmonics of neural responses may form a basis for 

parallel visual pathways that subserve complementary functions. The first evidence derives from 

the topographical segregation of the 1st and 2nd harmonics; whereas the 1st harmonic is localized 

in the medial posterior scalp region, the simultaneously generated 2nd harmonic is localized in 

the contralateral posterior scalp region. Importantly, this topographical segregation is based on 

response harmonics rather than on absolute response frequencies. Given the relatively coarse 

spatial resolution of EEG, the robust scalp segregation of the two harmonics (Figures 2-2A and 

2-4A) implies a substantial anatomical segregation of the processes mediated by the 1st and 2nd 

harmonics.  

Prior research has suggested that the 1st harmonic originates primarily from the non-

frequency-doubling cortical simple cells whereas the 2nd harmonic originates primarily from the 

frequency-doubling cortical complex cells (De Valois et al., 1982; Hubel & Wiesel, 1968; Levitt 

et al., 1994). However, because distributions of simple and complex cells overlap in the primary 

visual cortex (e.g., Shapley, 2004), it is unlikely that the topographically segregated 1st and 2nd 

harmonics are generated by population responses from simple and complex cells. The lateralized 

2nd harmonic might still originate from the frequency-doubling complex cells as they provide 
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primary input to higher-level visual areas such as V4 and MT (e.g., Pollen et al., 2002; Priebe et 

al., 2006; Cadieu et al., 2007) where the representations of the left and right visual hemifields are 

substantially more anatomically segregated than they are in the primary visual cortex. 

Irrespective of the exact origin of the 1st and 2nd harmonics, our demonstration of the anatomical 

segregation of the “1st-harmonic-tuned” and “2nd-harmonic-tuned” neural processes (clearly 

detectable with the low spatial resolution of EEG) raises the possibility that complementary 

visual functions might be mapped onto the two dominant harmonics. 

Our attention results suggest these complementary functions are related to the conflicting 

goals inherent in the attentional control of visual signals. On one hand, substantial attentional 

modulation of visual processing is desirable to selectively process behaviorally relevant signals. 

On the other hand, it is also necessary to preserve relatively undistorted sensory signals to 

correctly encode contrast information. Behavioral results indicate that these goals are generally 

met in the human visual system; they have demonstrated substantial attentional modulations of 

stimulus salience and detectability (e.g., Blaser et al., 1999; Simons, 2000; Suzuki, 2003) with 

relatively modest attentional modulations of perceived contrast (e.g., Carrasco et al., 2004; 

Prinzmetal et al., 1997). Our result suggests that attentional control of salience is mediated by the 

2nd harmonic localized in the contralateral posterior scalp region (Figures 2-2A and 2-4A, lower 

row), which is substantially modulated by top-down influence (Figure 2-4B, lower right panel), 

whereas preservation of contrast information is mediated by the 1st harmonic localized in the 

medial posterior scalp region (Figures 2-2A and 2-4A, upper row), which carries accurate 

contrast information relatively undistorted by the variability in the observer’s cognitive state 

such as level of attention (Figure 2-4B, lower right panel). 
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Uncovering this division of labor provides a potential resolution to the more than 100-

year-old debate as to whether attention affects the intensity of sensation. For example, Fechner 

strongly denied this possibility, stating that, “gray paper appears to us no lighter, the pendulum-

beat of a clock no louder, no matter how much we increase the strain of our attention upon them. 

No one, by doing this, can make the gray paper look white…” (James, 1890). James (1890), in 

contrast, asserted that, “attention makes a sense-impression more intense.” To give credit to both 

Fechner and James, attention may intensify sensation and influence stimulus selection by 

substantially modulating the 2nd harmonic, while simultaneously preserving the accuracy of 

sensation in the 1st harmonic. 

4. SYNCHRONIZATION AT BEHAVIORAL LEVEL 

Experiment 3 – Stochastic resonance in binocular rivalry 

Making flexible decisions requires consideration of multiple potential interpretations of a 

given situation. It is therefore crucial to maintain conscious awareness in a meta-stable state in 

which each state of awareness is only marginally stable, such that awareness can shift among 

multiple interpretations compatible with a given stimulus environment. In the visual domain, this 

translates to dynamic perceptual switching among alternative scene interpretations, for example, 

seeing “the trees within the forest” and “the forest made up of the trees.” This flexibility is 

important because behaviorally significant information may exist at different levels of scene 

organization (e.g., a tiger hidden behind a tree, a layout of the trees indicating a path; see 

Leopold & Logothetis, 1999, for a discussion of the functional significance of perceptual 

multistability).  

A classic psychophysical paradigm used to study spontaneous perceptual switching is 

binocular rivalry. When a different image is presented to each eye using a stereoscope, the 
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perceived image, rather than being a superposition of the two images, tends to spontaneously 

alternate between them, typically every 0.5-3 s (e.g., Blake, 1989; Logothetis, 1998; Blake, 

2001; Blake & Logothetis, 2002). Binocular rivalry can also be multi-stable (involving more 

than two interpretations; e.g., Suzuki & Grabowecky, 2002a). The observer typically views a 

rivalrous display continuously, and presses a key corresponding to the visible (dominant) image 

whenever the percept switches. Data from binocular rivalry thus typically consist of a time series 

of perceptual-dominance durations for the two competing images. Because the physical stimuli 

remain constant during binocular rivalry and the dynamics of rivalry are similar whether or not 

images are stabilized on the retina (e.g., Blake et al., 1971; Wade, 1974), perceptual alternations 

during binocular rivalry reveal brain mechanisms involved in controlling states of visual 

awareness. 

Spontaneous perceptual alternations in binocular rivalry are thought to result from 

adaptation and inhibitory interactions occurring at multiple processing stages involving neural 

populations responsive to different aspects of the competing images. For example, behavioral 

studies have provided evidence for both eye-based competition (presumably mediated by 

monocular neurons in V11; e.g., Blake & Fox, 1974; Lack, 1974; Blake et al., 1980; Lee & Blake, 

1999) and pattern-based competition (presumably mediated by binocular neurons in higher 

visual areas; e.g., Logothetis et al., 1996). Human brain imaging (fMRI) studies suggest a 

prominent role of V1 and/or a prominent role of feedback signals to V1 from higher visual areas 

(e.g., Polonsky et al., 2000; Tong & Engel, 2001) in resolving perceptual competition. Primate 

single-cell recording studies (measuring spike rates) found that all-or-none type competition did 

not occur until inferotemporal cortex while the lower visual areas played intermediate roles (e.g. 
                                                 
1 Eye preferences are also preserved to some degree in higher cortical visual areas (e.g., Gross et al., 1972; see the 
discussion section of Schröder et al., 2002 for a brief review). 
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Leopold & Logothetis, 1996; Sheinberg & Logothetis, 1997; Logothetis, 1998). 

Electrophysiological studies (e.g., EEG and MEG) have suggested that overall neural activity 

was stronger and more coherent for a visible image than for a suppressed image during binocular 

rivalry (e.g., Brown & Norcia, 1997; Tononi et al., 1998; Srinivasan et al., 1999). A full 

understanding of the intricate multi-stage neural interactions underlying perceptual switching 

requires a deeper understanding of how neural population activity measured by fMRI, EEG, and 

MEG are related to single-cell activity (e.g., Hämäläinen et al., 1993; Logothetis, 2003; Vanni et 

al., 2004).  

To tackle perceptual multistability from an implementation perspective, computational 

models of binocular rivalry have focused on simplified systems that can account for behavioral 

results to date, aiming to understand the core mechanisms underlying spontaneous perceptual 

switching. These “macroscopic” models typically involve inhibitory interactions between two 

pools of neural units preferentially tuned to the competing images (e.g., Sugie, 1982; Lehky, 

1988; Blake, 1989; Wilson, 1999). Appropriate implementations of non-linearity in these 

inhibitory interactions (potentially mediated by spike-frequency adaptation and synaptic 

depression; e.g., Laing & Chow, 2002) allow a model system to exhibit the mutually exclusive, 

all-or-none, perceptual switches typically observed in binocular rivalry (e.g., Wilson, 1999). The 

existing models are successful in generating spontaneous oscillatory behavior and in simulating 

time-averaged behaviors of binocular rivalry such as how average dominance durations of the 

competing images depend on their absolute and relative luminance contrasts (e.g., Lehky, 1988; 

Mueller, 1990; Laing & Chow, 2002; Wilson, 2003). However, these models have not been 

rigorously tested with respect to their dynamics. 
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Binocular rivalry as well as other forms of perceptual multistability (e.g., monocular 

rivalry and figural multistability; see Leopold & Logothetis, 1999, and Blake & Logothetis, 2002 

for reviews) exhibit stochastic dynamics; that is, though the time series of perceptual alternations 

tend to be roughly periodic, the current duration of perceptual dominance cannot be predicted on 

the basis of the prior dynamics of dominance durations (e.g., lack of autocorrelation, Lathrop 

values not significantly different from 1, and no evidence of deterministic chaos; e.g., Lathrop, 

1966; Fox & Herrmann, 1967; Blake et al., 1971; Borsellino et al., 1972; Taylor & Aldridge, 

1974; Richards et al., 1994; Lehky, 1995). Because of these stochastic dynamics, it has been 

speculated that internal neural noise (in addition to adaptation and inhibitory neural interactions) 

might play a crucial role in initiating spontaneous perceptual switches (e.g., Sugie, 1982; Lehky, 

1988; Haken, 1995; Blake, 2001). Accordingly, random noise was typically added to the activity 

of the simulated neural units. The dynamic behaviors of the models were then verified by 

successful fits of the positively skewed frequency distributions of dominance durations obtained 

from spontaneous binocular rivalry (e.g., Lehky, 1988; Wilson, 1999; Laing & Chow, 2002). 

The shapes of spontaneous dominance-duration distributions, however, do not provide 

adequately rigorous constraints for testing model dynamics; any model that has adaptation, 

inhibitory interactions, and noise as free parameters can generate appropriately positively skewed 

dominance-duration distributions. Thus, there is a need for new empirical constraints on the 

dynamics of binocular rivalry to both distinguish among and improve existing models. 

Furthermore, despite the hypothesized role of internal noise in initiating perceptual switches, 

there has been little evaluation of the nature of this internal neural noise. We thus actively probed 

the dynamics of perceptual switches using a perturbation technique to determine whether the 

underlying neural adaptation and inhibitory interactions were coupled with noise in such a way 
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that the system produced stochastic resonance. As we will discuss later, a demonstration of 

stochastic resonance in binocular rivalry provides novel dynamic constraints on the existing and 

future computational models of spontaneous perceptual switching. 

The two most prominent features of binocular rivalry, (1) mutually exclusive (non-linear) 

perceptual switches and (2) the stochastic nature of the time series of the dominance durations, 

are compatible with a double-well potential framework (e.g., Haken, 1995; Gammaitoni et al., 

1998; Suzuki & Grabowecky, 2002a; see Sperling, 1970, for an early theoretical application of a 

double-well potential framework to the dynamics of binocular fusion, stereopsis, and rivalry). In 

this framework, the two potential wells correspond to the two alternating, marginally stable 

percepts. Intuitively, the perceptual state can be considered to be like a ball (depicted with a 

smiley-face in Figure 3-1) that temporarily gets trapped in one of the two wells. The ball jitters 

due to random noise, and when the amplitude of the jitter happens to exceed the potential barrier 

between the two wells, the ball hops to the other well and the percept switches. Thus, greater 

noise (relative to the height of the potential barrier) should on average produce faster perceptual 

switches. In addition, neural adaptation and inhibitory interactions could raise the well that has 

the ball, making the ball more likely to hop to the other well. Thus, stronger adaptation and 

inhibitory interactions could also increase the switching rate.  

All dynamic models of binocular rivalry are overall consistent with a double-well 

potential framework by virtue of successfully generating two marginally stable states (e.g., 

Wilson, 1999). However, if the switching between the marginally stable states were generated by 

a particular type of coupling between neural interactions and noise, spontaneous alternations 

between the two states could be probabilistically influenced by an applied periodic perturbation 

that modulates the strengths of the two states (i.e., the depth of the two wells) in opposite phase. 
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Specifically, a resonance should occur when the frequency of the periodic signal matches the 

average spontaneous alternation rate of the system (see Gammaitoni et al., 1998, for 

mathematical derivations). This phenomenon is generally known as stochastic resonance—a 

noise-mediated cooperative phenomenon in which noise increases sensitivity to a weak periodic 

signal when the frequency of the periodic signal matches the intrinsic noise-dependent time-scale 

of the system (e.g., Bulsara et al., 1991; Longtin et al., 1991; Wiesenfeld & Moss, 1995; 

Gammaitoni et al., 1998).  

To determine whether the mechanisms underlying binocular rivalry supported stochastic 

resonance, we perturbed the relative strength of the two perceptual states by modulating the 

luminance contrast of the competing stimuli in opposite phase. It is known that the dominance 

duration is on average longer for the image with higher luminance contrast when other factors 

such as motion, contour density, and grouping are held constant (see Blake & Logothetis, 2002, 

for a review). Specifically, increasing and decreasing the contrast of one image primarily 

decreases and increases, respectively, the dominance duration of the competing image (Levelt’s 

2nd proposition, Levelt, 1965). A longer dominance duration implies a deeper potential well 

because it takes longer for the perceptual state to hop out of a deeper well than out of a shallower 

well. Thus, increasing and decreasing the contrast of one image should make the potential well 

for the competing image shallower and deeper, respectively. Because we varied the contrast of 

the competing images simultaneously in opposite phase, the depth of the two potential wells 

should have been modulated in opposite phase. Thus, if adaptation, inhibitory modulations, and 

noise underlying binocular rivalry interacted in a specific way that satisfied the requirements for 

stochastic resonance, rivalry should be maximally influenced by a periodic contrast modulation 

when the modulation frequency matches the average spontaneous rate of perceptual switching.   
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In previous studies in which stochastic resonance was induced in biological systems (the 

central and peripheral nervous systems of paddlefish, crayfish, crickets, and humans), an 

appropriate level of external noise was added to adjust the system’s dynamics to match the 

specific frequency of a weak periodic signal (e.g., Douglass et al., 1993; Levin & Miller, 1996; 

Cordo et al., 1997; Simonotto et al., 1997; Russell et al., 1999; Mori & Kai, 2002). Theoretically, 

internal noise should be just as effective as external noise in producing stochastic resonance (e.g., 

Riani & Simonotto, 1994; Gluckman et al., 1996; Hänggi, 2002). In particular, Riani and 

Simonotto (1994) reported computer simulation results predicting that the internal neural noise in 

an appropriate double-well-potential framework could support both spontaneous perceptual 

switching and stochastic resonance in perception of ambiguous figures. We tested this prediction 

by attempting to induce internal-noise-based stochastic resonance in the human visual system for 

mechanisms that control spontaneous perceptual switches in binocular rivalry. 

In attempting to induce stochastic resonance in perceptual switching, it is technically 

difficult to systematically vary the magnitude of the relevant internal neural noise. For example, 

rapidly and randomly fluctuating the image contrast would not generate corresponding neural 

noise at the processing stages critical to perceptual switching because binocular rivalry exhibits a 

wide (several hundred milliseconds) window of temporal summation (O’Shea & Crassini, 1984). 

Thus, instead of varying the internal noise to adjust the dynamics of spontaneous perceptual 

switching to match the frequency of a periodic signal, we varied the frequency of a periodic 

signal to attempt to match the existing internal-noise-based dynamics of perceptual switching.  

We first induced clear spontaneous perceptual alternations between a “+” shape and an 

“x” shape by projecting them to different eyes (using a stereoscope). We then applied periodic 

signals by modulating the luminance contrasts of the two shapes in opposite phase (i.e., when 
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one shape was higher contrast, the other shape was lower contrast). This hypothetically 

corresponds to modulating the depths of the two potential wells, one corresponding to the 

percept of “+” and other corresponding to the percept of “x,” in opposite phase (see Figure 3-1 

and the discussion above). We then predicted that binocular rivalry should exhibit stochastic 

resonance when the contrast-modulation frequency matched the average rate of spontaneous 

perceptual switching.  

It is important to note that the amplitude of contrast modulation must be appropriately 

tuned to the magnitude of the internal noise (e.g. Ward, 2002). On the one hand, when the 

modulation amplitude is substantially lower than the internal noise, the signal is too weak to 

influence binocular rivalry because perceptual alternations will be predominantly influenced by 

internal noise; on the other hand, when the modulation amplitude is substantially higher than the 

internal noise, binocular rivalry will be completely captured by the contrast modulation (e.g., 

O’Shea & Crassini, 1984). Note that a signal that is too weak to modulate perceptual switching 

may still be clearly visible (i.e., above sensory threshold). The requirement that the contrast-

modulation amplitude must be appropriately tuned to the magnitude of the internal noise for 

induction of stochastic resonance provides a method to probe the internal noise that influences 

the dynamics of perceptual switching. Specifically, by finding an appropriate amplitude of 

contrast modulation that induces stochastic resonance in binocular rivalry, we can estimate the 

magnitude of the relevant internal noise in terms of the equivalent contrast-modulation amplitude. 

If the mechanisms underlying binocular rivalry support stochastic resonance, in addition 

to the strong resonance that occurs when the signal frequency matches the spontaneous rate of 

perceptual alternation, higher-order resonance peaks should be observed (when modulation 

frequencies are appropriate) in the dominance-duration distributions at the odd-integer multiples 
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of the half-period of contrast modulation. Although the reader is referred to Gammaitoni et al. 

(1998) for the mathematical derivations, we present the following intuitive description. In our 

cartoon illustration of an appropriate double-well potential framework shown in Figure 1, the 

noise is coupled linearly with the periodic signal; in other words, while the depth of the two 

potential wells oscillate in opposite phase (due to the periodic signal), the noise adds random 

jitter that probabilistically tosses the state across the middle barrier. The primary peak of the 

dominance duration distribution should occur exactly at the modulation half-period as a 

consequence of a tendency for the perceptual state (i.e., the perceived shape) to change in 

synchrony with the oscillation of the wells (i.e., the changes in the relative contrast of the two 

shapes) (Figure 3-1A). This primary peak should become predominant at resonance when the 

contrast-modulation half-period matches the average half-period of spontaneous perceptual 

switching. A second peak (if any) should occur at 3 times the modulation half-period when 

perception fails to shift at the first favorable change in the relative contrast, and shifts at the next 

favorable change (Figure 3-1B). Similarly, a third peak should occur at 5 times the modulation 

half-period when perception fails to shift at two consecutive favorable changes in contrast, and 

so on. The higher order peaks should occur with diminishing gains. 

To summarize, if the mechanisms underlying perceptual alternations in binocular rivalry 

are characterized by a particular type of double-well potential landscape and noise that supports 

stochastic resonance, the relevant differential equations make the following quantitative 

predictions. When binocular rivalry is subjected to contrast modulation of an amplitude tuned to 

the magnitude of internal noise, (1) a resonance should occur when the frequency of contrast 

modulation matches the average spontaneous alternation rate of binocular rivalry, and (2) 

dominance-duration distributions should exhibit peaks at the odd-integer multiples of the half-
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period of contrast modulation. By psychophysically demonstrating these predicted phenomena, 

we revealed internal-noise-based stochastic resonance in perceptual switching, and provided 

insights into the nature of the relevant internal noise (its magnitude, locus, and calibration). 

Furthermore, by evaluating how some representative dynamic models of binocular rivalry are 

constrained by the current results, we demonstrated the importance and usefulness of the 

requirement of stochastic resonance in modeling perceptual switching. 

Observers: 

Two psychophysically trained observers, YS and ET, who were naïve to the purpose of 

the experiments, and author SS, participated. 

Stimuli & procedure: 

A dark “+” shape and a light “x” shape were used as rivaling patterns (see Figure 3-2). 

They were presented against a gray immediate background (70 cd/m2 in the blink-allowed 

condition [YS only] or 46 cd/m2 in the no-blink condition [all observers]) on a 21” color monitor 

(75Hz) in a dimly lit room, using Vision Shell software (Micro ML, Inc.). A stereoscope 

consisting of four front-surface mirrors and a central divider was used to present stimuli 

dichoptically. To facilitate exclusive binocular rivalry (i.e., clear alternations of “+” and “x” 

without perception of mixed parts from both shapes), the rivaling patterns were small (< 1° 

visual angle), opposite in luminance polarity, consisted of differentially oriented edges, and were 

presented parafoveally (~0.35° eccentricity). 

All observers were tested in the no-blink condition (no blinking allowed during each 

continuous stimulus observation). YS was also tested in the blink-allowed condition (natural 

blinking) to verify that the pattern of results was not influenced by blinking. All the results 

discussed were equivalent whether or not blinking was allowed.   
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In each trial in the blink-allowed condition, YS continuously viewed the rivalry display for 

60 sec while indicating, by pressing joystick buttons, the perceived shape (“+” or “x”) whenever 

it changed; in no case were perceptual alternations too rapid to be reported with manual button 

presses. In the no-blink condition (all observers), each 60 sec run was replaced by a pair of 16 

sec runs with a short break in between; trials in which blinking occurred were replaced. 

The luminance contrasts of the two shapes were square-wave2 modulated in opposite phase 

(i.e., when one shape was higher contrast, the other shape was lower contrast). We defined the 

higher contrast as the baseline contrast because the amplitude of the contrast modulation was 

always varied by choosing a different value for the lower contrast; we used the usual definition 

of image contrast, C =
LStimulus − LBackground

LStimulus + LBackground

, where L indicates luminance.  

In the blink-allowed condition (YS only), the baseline contrast, CBaseline, was always 0.50. 

The lower contrast, CLower, was chosen such that the percent contrast modulation, defined as 

CBaseline − CLower

CBaseline

×100% , was either 40% or 20%.  

                                                 
2 We used square-wave rather than sinusoidal contrast modulations partly to keep the impacts of the rising and 
falling components of the contrast signals constant across different modulation frequencies. Higher harmonics in the 
square wave (i.e., 3rd, 5th, 7th…) could have produced multiple primary resonances at 3, 5, 7…, times faster than the 
modulation frequency. These resonances could have shown up in the dominance duration distributions as peaks 
faster than the primary peak for the fundamental frequency. Such peaks were not evident in the data (see Figure 2) 
presumably because the amplitudes of the higher harmonics (falling by 1/k for the kth harmonic) would have been 
too small to generate detectable resonance. Furthermore, the higher harmonics would have been irrelevant when the 
modulation half period was 600 ms or faster because even the 3rd harmonic would have had the half period of 200 
ms or shorter. This would have been too fast to exert any influence because even when the fundamental had the half 
period of 200 ms, no corresponding peak occurred (see the lack of resonance peak corresponding to the modulation 
half period, HP, in the rightmost dominance-duration distribution shown in Figure 2). This is important because we 
obtained evidence of odd-integer multiple peaks in the dominance-duration distributions most strongly for half 
periods of 400 ms and 600 ms, for which the higher harmonics of the square waves would have made no 
contributions. Finally, we note that a transient signal presented to one eye can induce dominance of the 
corresponding stimulus (e.g., Wolfe, 1984). In our design, such transient effects were cancelled out because the 
contrasts in the two eyes were simultaneously modulated. 
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In the no-blink condition (all observers), two baseline contrasts, CBaseline = 0.50 and CBaseline 

= 0.25, were use to test the possibility that the influence of contrast modulation on binocular 

rivalry might depend on the percent contrast modulation independently of the baseline contrast. 

For each baseline contrast, the percent contrast modulation was either 30% (tested for all 

observers) or 20% (tested for SS and YS).  

Due to normal monitor drift over time, the contrasts slightly varied across sessions 

(SD=0.004). The contrast-modulation frequency was constant during each trial. 

Each experimental session consisted of a sweep of contrast-modulation frequencies from 

0.28 Hz to 2.48 Hz. The frequencies were varied either in the ascending or descending order 

while the baseline contrast and the amplitude of contrast modulation remained constant. The 

order of modulation frequency (ascending or descending), the amplitude of modulation, and the 

baseline contrast were counterbalanced across sessions.  

Control data were collected at the beginning and end of each session. In these control trials, 

the contrast was modulated more slowly than the maximum spontaneous dominance duration 

(using a half-period = 6 sec for the blink-allowed and a half-period = 8 sec for the no-blink 

conditions). This procedure was used to measure spontaneous alternation rates while the static 

image contrasts were matched to the experimental conditions in which contrast-modulation 

frequencies were varied within the range of spontaneous alternation rates. At least a 2-min break 

was given between trials, and each session lasted 1-2 hours (typically, not more than one session 

per day). The 2-min breaks were sufficient to allow the visual system to recover from contrast 

adaptation from each trial (e.g., Suzuki & Grabowecky, 2004).  

Observer YS completed 20 sessions (in 47 days) of the blink-allowed condition (yielding 

an average number of perceptual alternations, N = 453, for each combination of contrast-
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modulation frequency, modulation amplitude, and baseline contrast) and 32 sessions (in 139 

days) of the no-blink condition ( N = 182); SS completed 32 sessions (in 83 days) of the no-blink 

condition ( N = 246); ET completed 16 sessions (in 80 days) of the no-blink condition ( N = 213). 

The N  for YS in the blink-allowed condition was large because of the longer viewing time per 

trial and the larger number of trials. 

Results: 

Each graph in the lower half of Figure 3-3 shows the dominance-duration distribution when 

binocular rivalry was subjected to contrast modulation at a given frequency (indicated at the top 

of Figure 3-3). The data have been averaged across the three observers and the 0.50 and 0.25 

baseline contrasts. All characteristics of the data discussed below were present in the individual 

cases except that the distributions were noisier due to the smaller number of data points. The 

contrast-modulation amplitude was 30% to 40% of the baseline contrasts, which was within an 

appropriate range to induce stochastic resonance (a 20% modulation was ineffective; see Figures 

3-4 and 3-5).  

The leftmost graph shows the spontaneous (control) dominance-duration distribution in the 

absence of an effective contrast modulation. In the graphs to the right, the dominance-duration 

distributions are shown for increasing contrast-modulation frequencies. In each graph, the odd-

integer multiples of the modulation half-period are indicated by the vertical lines. 

It is clear that the peaks in the dominance-duration distributions occurred at the odd-integer 

multiples of the half-period of contrast modulation. When the contrast modulation was slow 

(0.28-0.31 Hz), only the primary peak at the modulation half-period was evident and the peak 

was small. The primary peak grew in size as the modulation frequency was increased toward 

resonance (at about 0.50 Hz; see Figures 3 and 5). As the modulation frequency was increased 
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beyond the primary resonance frequency, higher-order peaks began to appear at the odd integer 

multiples of the modulation half-period (see 0.63-2.48 Hz modulations). In the upper graphs in 

Figure 3-3, the leftmost control distribution, reflecting spontaneous perceptual alternations, has 

been subtracted from each distribution to more clearly show the peaks attributable to the periodic 

contrast modulations. 

Note that when the contrast-modulation frequency was 2.48 Hz (the rightmost graph in 

Figure 3-3), the primary peak at the modulation half-period was missing and the first peak was at 

three times the modulation half-period. Interestingly, the 2.48 Hz contrast modulation was 

clearly visible, and attention mechanisms are known to track much faster stimulus alternations, 

up to 4 Hz or even 10 Hz (see Suzuki & Grabowecky, 2002b for a review). The absence of the 

primary peak at 2.48 Hz thus suggests that the mechanisms underlying perceptual alternations in 

binocular rivalry have their own slow time constraints. 

The odd-integer multiple peaks characteristic of stochastic resonance were clearly 

demonstrated in perceptual alternations in binocular rivalry. We next examined the other 

signature of stochastic resonance, that maximum resonance (i.e., the maximum influence of 

contrast modulation) should occur when the contrast-modulation frequency matches the average 

spontaneous rate of perceptual switching. We first examined intuitive evidence of resonance on 

the basis of a non-monotonic gain as a function of the modulation frequency. We then verified 

that the resonance frequency followed variations in the average spontaneous alternation rate. 

The influence of each contrast-modulation frequency on perceptual switching can be 

indexed by the size of the induced primary peak in the dominance-duration distribution at the 

modulation half-period, which is called P1 (Gammaitoni et al., 1989; 1998). Typically, P1 is 

defined as the proportion of the area under the dominance-duration distribution curve within the 
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range of HP ± HP/2, where HP indicates the modulation half-period. P1 is plotted as a function 

of the contrast-modulation frequency for the three observers in the upper panels of Figure 3-4 

(solid curves). Because the dominance-duration distributions were peaked even without contrast 

modulation (see the leftmost graph in Figure 3-3), the corresponding proportions of area of the 

control distribution (dashed curves) must be subtracted to obtain the gain in P1 attributable to the 

periodic contrast modulations (e.g., Giacomelli, et al., 1999). This P1 gain (the solid curve minus 

the dashed curve) is shown in the lower panels of Figure 4 as a function of the contrast-

modulation frequency. For the 30% and 40% contrast modulations (the primary graphs in Figure 

3-4), the presence of resonance is clearly indicated by the fact that the P1 gain functions were 

non-monotonic and strongly peaked (e.g., Gammaitioni et al., 1995). In contrast, the evidence of 

resonance was much reduced (or absent) when the modulation amplitude was 20% (see the inset 

graphs in Figures 3-4A and 3-4B, showing nearly overlapping P1  and control functions in the 

upper panels, and the flattened P1 gain functions in the lower panels).  

Non-monotonic (i.e., peaked) P1  and P1 gain functions are intuitively appealing for 

revealing the presence of resonance. However, they may not be appropriate for estimating 

resonance frequencies (e.g., Choi et al, 1998). This is partly because P1 functions and the 

corresponding control functions peak at similar frequencies (upper panels of Figure 3-4). The 

peak of a P1 function might thus be primarily due to the peak of the corresponding control 

function, and the peak of a P1 gain function is likely to be distorted around the peak of the 

control function due to ceiling effects (note P1 ≤ 1).  

To circumvent this problem in estimating the resonance frequency, we used the coefficient 

of variation (CV), a typically used index of resonance, which is the ratio of the standard deviation 

to the mean of a dominance-duration distribution (e.g., Pikovsky & Kurths, 1997). This index, 
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also known as the noise-to-signal ratio, is commonly used in neurophysiology to quantify the 

regularity of neural responses. CV is defined independently of the shape of a time-interval 

distribution, and has been applied to positively skewed distributions such as ours (e.g., Gabbiani 

& Koch, 1999; Koch, 1999; Dayan & Abbott, 2001). CV is particularly useful in cases such as 

ours where the magnitude of the internal noise is unknown (note that computation of the signal-

to-noise ratio, SNR, for example, requires knowledge of both the noise magnitude and the signal 

amplitude). Because a lower CV indicates greater periodicity, resonance is indicated by a sharp 

dip in the CV value3 as a function of the contrast-modulation frequency (Figure 3-5). The 

modulation frequency corresponding to the bottom of the dip is the resonance frequency. As can 

be seen in Figure 5, the resonance frequency approximately matched the average spontaneous 

alternation rate (indicated by the vertical gray bands in Figure 3-5) for all observers and for both 

0.50 and 0.25 baseline contrasts. The CV resonance dips were evident when the contrast-

modulation amplitude was 30% (the primary graphs in Figure 3-5), but they were substantially 

reduced (or absent) when the modulation amplitude was 20% (the inset graphs in Figure 3-5, 

shown for observers SS and YS). Thus, the analyses of P1 , P1 gain, and the CV resonance dip 

consistently indicate that 30% and 40% contrast modulations were effective, whereas 20% 

modulations were too weak for inducing stochastic resonance in the mechanisms that control 

perceptual alternations in binocular rivalry. 

Because the matching of the resonance frequency to the average spontaneous alternation 

rate is a critical signature of stochastic resonance, we verified this property in greater detail. It is 

                                                 
3 Means and standard deviations of perceptual-dominance durations are substantially affected by the rare 
occurrences of unusually slow dominance durations. Thus, for each contrast-modulation frequency and baseline 
contrast for each observer, dominance durations over three standard deviations from the respective means were 
excluded when computing the CV. This resulted in exclusion of less than 2% of the data. Note that the conclusions 
drawn from the data remain the same even when the longer durations are de-emphasized using a log transform rather 
than trimming outliers.  
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known that image alternation rates gradually slow during the course of a continuous observation 

of binocular rivalry, presumably due to concurrent contrast adaptation (e.g., Lehky, 1995; Suzuki 

& Grabowecky, 2004). We thus split each trial into the first and second halves and examined 

those separately. As expected, the alternation rates slowed in the second half-trials; we note that, 

though the alternation rates gradually slowed within each continuous-viewing trial, the average 

rates did not slow across trials; apparently, the 2 min. break inserted between trials was sufficient 

to induce recovery from contrast adaptation (see also Suzuki & Grabowecky, 2004).  

The critical prediction was that the resonance frequency (i.e., the contrast-modulation 

frequency that minimized the CV) should follow this within-trial slowing of the spontaneous 

alternation rate. Figure 3-6 plots the relationship between the resonance frequency and the 

average spontaneous alternation rate. Each pair of connected symbols represents the first half-

trials (upper right symbol) and the second half-trials (lower left symbol) for each observer under 

each baseline contrast shown in Figure 3-5. Note that all pairs have positive slopes that lie in the 

vicinity of the diagonal with a slope of 1, indicating that the resonance frequency followed the 

within-trial slowing as well as other variations in spontaneous alternation rates due to different 

baseline contrasts and individual differences. 

Discussion: 

To understand how neural adaptation and inhibitory interactions are coupled with noise to 

generate spontaneous perceptual alternations in binocular rivalry, we investigated whether the 

underlying system supported a specific noise-mediated phenomenon known as stochastic 

resonance. We confirmed this by demonstrating: (1) that the maximum resonance occurred in 

perceptual switching when the frequency of the applied periodic signal matched the average rate 

of spontaneous perceptual switching, and (2) that the distribution of perceptual-dominance 
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durations exhibited multiple resonance peaks at the odd-integer multiples of the half-period of 

the periodic signal. 

Constraining computational models 

Existing computational models have been successful in explaining the detailed time-

averaged behavior of binocular rivalry (see Laing & Chow, 2002 for a review). In contrast, those 

models have not been tested rigorously with respect to their dynamic behavior, primarily due to a 

lack of stringent behavioral constraints on the dynamics of binocular rivalry. The apparently 

stochastic time series and the Gamma and/or log-normal shape of dominance-duration 

distributions did not pose rigorous challenges because most models could fit these properties by 

adding random noise and adjusting the parameters of adaptation and/or inhibitory interactions. 

Our demonstration of stochastic resonance in binocular rivalry (in particular the characteristic 

peaks in the dominance-duration distributions at the odd-integer multiples of the contrast-

modulation half-period) provides strict dynamic constraints as well as insights into the roles of 

adaptive and inhibitory neural interactions, internal noise, and a threshold, in generating 

spontaneous perceptual switching.  

To illustrate these points, we examined behaviors of representative models of binocular 

rivalry that have been developed to simulate the dynamics of perceptual switching. In particular, 

we contrasted the astable multivibrator model (Lehkey, 1988), based on a Schmitt trigger that 

exhibits stochastic resonance (e.g., Melnikov, 1993; Gammaitoni et al., 1998), with often-cited 

winner-take-all models of the type developed by Wilson (Wilson, 1999; 2003; Wilson et al., 

2000; 2001) and Mueller (1990). These models basically capture macroscopic aspects of the 

spiking neuronal network developed by Laing and Chow (2002). Whereas simulating large 

populations of neurons (as in a spiking neuronal network model) is beyond the scope of this 
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primarily empirical study, simplified models are suited for deriving analytical inferences. The 

comparative analyses of the three representative models provide insights into how our empirical 

results constrain models of the mechanisms underlying perceptual switches in binocular rivalry.  

Despite their critical differences, it is assumed in all three models that spontaneous 

perceptual switching is primarily driven by neural adaptation and inhibitory interactions 

described by the following differential equation, 

τ dEA

dt
= signA[ ]• EA + fA SA ,HA ,IB( ) —Eq. 1, 

where the two rivaling images are labeled by A and B, EA is the activation (or excitation) of the 

A-unit (preferentially responsive to image A), SA is the strength (e.g., contrast) of image A, HA is 

the slow self-adaptation (or habituation) of the A-unit, IB is the inhibitory input from the 

competing B-unit, and 　 is the time constant of primary adaptation. The dynamics of the B-unit 

(EB) are given by exchanging the A and B labels. 

The three models differ in terms of (1) whether or not adaptation ([sign] = –1) and 

recovery-from-adaptation ([sign] = +1) are yoked to perceptual dominance, (2) the exact forms 

of contrast response, adaptation, and inhibitory interactions—embedded in the fA SA ,HA ,IB( ) 

term, and implementations of perceptual non-linearity (i.e., how the all-or-none perceptual 

transitions between the competing images are implemented). We compared these representative 

models (Lehky, 1988; Wilson, 2003, and its predecessors; and Mueller, 1990) in terms of 

whether or not they could generate stochastic resonance, and how that depended on their specific 

implementations of adaptation, inhibitory interactions, noise, and/or perceptual non-linearity. 

The astable multivibrator model (Lehky, 1988). In this model, it is assumed that the state 

of perceptual dominance determines whether competing neurons adapt or recover from 
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adaptation. For example, when image A is perceptually dominant, the A-unit adapts (i.e., [signA] 

= –1) while the B-unit recovers from adaptation (i.e., [signB] = +1). Influences of self-adaptation, 

stimulus strength, and inhibitory interactions are all subsumed in the term, sign[ ]• E ; thus, the 

parameters H (slow self-adaptation), S (direct stimulus input), and I (competitive inhibition) are 

not explicit in this model. In order to implement the contrast modulations of the competing 

images, we made a simple assumption that increasing the strength of one image has a 

proportional inhibitory influence on the units responding to the competing image. That is, 

fA SA ,HA ,IB( )= −IB = −I •ΔSB  —Eq. 2, 

where ΔSB  is a change in the strength of image B (relative to some default value), and I is a 

constant that scales stimulus strength to an inhibitory neural influence. The A and B labels can 

be exchanged to obtain the equation for fB.  

Except for the added inhibition term, (inhibition of the A-unit from the B-unit) and  

(inhibition of the B-unit from the A-unit), the formulation is identical to the original astable 

multivibrator model (Lehky, 1988). Note that increasing (or decreasing) the contrast of image B 

decreases (or increases) the activity of the A-unit (EA) due to the −I • ΔSB  term, while increasing 

(or decreasing) the contrast of image A decreases (or increases) the activity of the B-unit (EB) 

due to the −I • ΔSA  term. Thus, this modified astable multivibrator model obeys Levelt’s 2nd 

proposition (increasing [or decreasing] contrast of one image decreases [or increases] the 

dominance duration of the other image). As in Lehky (1988), a random-walk noise, D•δ  (D is 

noise intensity and 　 randomly assumes –1 or +1 at each time update t + t [where t << ] 　 　 　
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in our Euler numerical simulation)4, is directly added to the differential equations for the neural 

responses (EA and EB) representing the competing stimuli. 

The all-or-none characteristic of perceptual switching between the competing images A and 

B is implemented by a threshold. For example, when image A is perceptually dominant, the A-

unit adapts and the B-unit recovers from adaptation. Image A remains dominant until the activity 

of the A-unit falls to threshold. At that point, image B becomes perceptually dominant. 

In simulating our results, we first fit the control condition (e.g., the leftmost distribution in 

Figure 3-3) using 　 and D as the fitting parameters5. We then implemented the square-wave 

contrast modulation as, ΔS t( )= h • SW f ,φ,t( ), where h corresponds to the neurally transduced 

amplitude6 of the contrast modulation, and SW f ,φ, t( ) flips between –1 and +1 with a specific 

frequency f  and phase φ  (180° apart for the two images). As shown in Figure 3-7, the astable 

multivibrator model produces a good fit for both the odd-integer multiple peaks and the relative 

height of those peaks, with h used as the only fitting parameter. 
                                                 
4 We used random-walk noise because it was the form of noise used in Lehky (1988). Random-walk noise is a 
discrete version (i.e., randomly assuming two discrete values without intermediate values) of random noise. The two 
forms of noise are virtually equivalent for our purposes because the time steps we used for updating noise were 
orders of magnitude smaller than τ and the contrast-modulation frequency (i.e., both forms of noise effectively 
approached normal distribution in the time scale of perceptual alternations). Furthermore, induction of stochastic 
resonance should not depend on the form of noise being random-walk or random. We also verified that the use of 
random noise did not change our results. 
5 To produce good fits to the control distributions with the astable multivibrator model, we let τ diminish 
monotonically starting at the beginning of each dominant percept (this is equivalent to assuming initially accelerated 
adaptation relative to exponential). This manipulation, however, was not crucial for this model to produce the 
multiple stochastic-resonance peaks. τ was a constant parameter for fitting with Mueller (1990) and Wilson (2003), 
but these models had more free parameters than the astable multivibrator model to fit the control distributions. We 
imposed a refractory period (the minimum time required to complete a perceptual switch) to avoid unrealistically 
rapid perceptual switches and to improve fits for all three models. In the astable multivibrator and Mueller (1990) 
models, the unit of time is arbitrary. Thus, when we fit these models to the control distributions, we scaled the mean 
of the simulated data to the mean of the actual data. For all models, we ran 1500-5000 simulated perceptual switches 
to fit each dominance-duration distribution. 
6 Because the visual system responds strongly to transient changes in luminance, it is possible that the primary 
influences of contrast modulation occur at the rising and falling edges of the square-wave modulation. Thus, in fine-
tuning the fits, we set h to zero except for a specified duration following the rising and falling transitions of the 
square-wave; this duration was adjusted to improve the overall fit, but it was kept constant across all contrast 
modulation frequencies. The implementation of transient responses improved fits in some cases, but it was not 
critical for producing the odd-integer multiple peaks. 
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Winner-take-all model 1 (Wilson, 20037, and its predecessors). In these models, the 

[sign] factor in Eq. 1 is always –1; the primary adaptation factor is thus not yoked to perceptual 

dominance. Because these models were partly designed to reflect the neurophysiology of the 

visual system, they use an elaborated form of fA SA ,HA ,IB( ), including implementations of HA 

(self -adaptation), SA (direct stimulus input), and IB (competitive inhibition). We have, 

fA SA ,HA ,IB( )=
100• max SA − g• IB{ },0[ ]( )2

10 + HA( )2 + max SA − g• IB{ },0[ ]( )2  —Eq. 3, 

τ I
dIB

dt
= −IB + EB  —Eq. 4, 

τ H
dHA

dt
= −HA + b • EA  —Eq. 5, 

where 　I and 　H are the time constants of inhibitory interactions and slow self-adaptation, 

respectively, and max[X,Y] returns the larger of the two values, X and Y. The A and B labels 

can be exchanged to obtain the equation for fB. Levelt’s 2nd proposition is obeyed because of the 

competitive inhibition term, IB. 

The all-or-none characteristic of perceptual switching is implemented by a winner-take-all 

rule. Perceptual dominance is determined by the relative strength of the A-unit and B-unit; that 

is, image A is perceptually dominant when EA > EB and image B is perceptually dominant when 

EB > EA. 

As with the astable multivibrator model, we added noise directly to the differential 

equations for EA and EB. Because perceptual dominance is determined by the relative activity of 

                                                 
7 We used only the 1st stage of the model; the 2nd stage would have been redundant because the pattern presented to 
each eye was constant in our study. 
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EA and EB (the neural units responding to the competing stimuli), fluctuations in their activity 

seem to be the natural locus of the relevant noise influencing perceptual switches. 

We first fit the baseline conditions using SA, SB, 　, 　I, 　H, b, g and D as the free 

parameters. We then implemented the square-wave contrast modulation as 

S t( )= S + h • SW f ,φ,t( ), where S is the baseline contrast and h is the contrast-modulation 

amplitude. As with the astable multivibrator model, we used h as the free parameter to fit the 

odd-integer multiple peaks. We were unable to obtain the primary or higher-order stochastic 

resonance peaks. Nor were we able to obtain the asymptotic behavior, that is, we were unable to 

obtain the strong peak expected at the contrast-modulation half period when the amplitude of the 

modulation was 100% (i.e., presenting the left-eye and right-eye images sequentially). 

Note that, in Wilson’s model, the locus of noise could be other than the responses of the 

competing neural units. We verified that this model could simulate Gamma-like spontaneous 

dominance-duration distributions whether the noise was added to the responses of the competing 

neural units (i.e., to the differential equations for EA and EB —Eq. 1), to adaptation of these units 

(i.e., to the differential equations for HA and HB —Eq. 5), or to their inhibitory interactions (i.e., 

to the differential equations for IA and IB —Eq. 4). Wilson’s model simulated our data well when 

the noise was added to the adaptation equations. Adding noise to the inhibitory-interaction 

equations also produced some of the resonance peaks and the asymptotic behavior, but the 

quality of fit was inferior (e.g., we failed to produce more than two resonance peaks). 

Furthermore, although adding noise to the adaptation equations for H (affecting the speed of 

adaptation) produced good fits to our data, adding noise directly to the H term in Eq. 3 (affecting 

the impact of adaptation) failed to produce the resonance peaks or the asymptotic behavior. Thus, 
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if Wilson’s model captured the underlying mechanisms of perceptual switching, the noise must 

primarily affect the speed of adaptation of the competing neural units.   

Winner-take-all model 2 (Mueller, 1990). This model is overall similar to Wilson (2003) 

with differences in the forms of the contrast-response function (logarithmic rather than Naka-

Rushton) and inhibitory interactions: 

fA SA ,HA ,IB( )= ln SA( )− aA 1− cA
ln SA( )
ln 100( )

⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ • IB − HA  —Eq. 9, 

IB = max EB ,0[ ] —Eq. 10, 

τ H
dHA

dt
= HA + b• max EA ,0[ ] —Eq. 11, 

where max[X,Y] returns the larger of the two values, X and Y. The A and B labels can be 

exchanged to obtain the equation for fB. Levelt’s 2nd proposition is obeyed because of the 

competitive inhibition term, IB, which is directly proportional to activation of the competing B-

unit. 

As with Wilson (2003), the all-or-none characteristic of perceptual switching between the 

competing images A and B is implemented by a winner-take-all rule (i.e., image A is 

perceptually dominant when EA > EB and image B is perceptually dominant when EB > EA). 

We first fit the baseline conditions using SA, SB, 　, T, aA, aB, b, cA, cB and D as free 

parameters (note that SA = SB, aA = aB, and cA = cB as in Mueller, 1990), and then implemented 

the square-wave contrast modulation as S t( )= S + h • SW f ,φ,t( ). The simulation results were 

similar to those for Wilson (2003). When the noise was added to the differential equations for the 

neural responses, we were unable to obtain the resonance peaks or the asymptotic behavior. 
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When the noise was added to the differential equations for adaptation (Eq. 11), we were then 

able to fit the data well. 

In summary, while all three dynamic models of perceptual switching are consistent with 

Levelt’s 2nd proposition and the general double-well-potential framework, and they can simulate 

Gamma-shaped dominance duration distributions from spontaneous binocular rivalry, our 

stochastic resonance results provide additional insights into their implementations of noise and 

all-or-none perceptual switching. The success of the astable multivibrator model (Lehky, 1988) 

suggests that the mechanisms underlying perceptual switches might be characterized by simple 

linear interactions among stimulus input, adaptation, inhibitory modulations, and response noise 

of the competing neural units, with threshold crossing being the source of all-or-none perceptual 

switching8. Alternatively, our simulation results with Wilson’s (2003) and Mueller’s (1990) 

models suggest that if the mechanisms of perceptual switches are characterized by a winner-take-

all algorithm coupled with the non-linear interactions among stimulus input, adaptation, and 

inhibitory modulations implemented in these models, the locus of the critical noise must be in the 

speed of adaptation rather than in the responses of the competing neural units. Future 

neurophysiological research might resolve these alternatives by investigating (1) whether 

perceptual switches are initiated by the reduction to threshold of the activity of the neural units 

responding to the currently perceptually dominant image or by changes in the sign of the relative 

activity of the competing units, and (2) whether the rate of perceptual switches is primarily 

influenced by the response noise in the competing neural units or by fluctuations in the speeds of 

their adaptation. 

                                                 
8 We verified the importance of threshold crossing in the astable multivibrator model by demonstrating that the 
model failed to produce the resonance peaks (except for the primary peak) when the algorithm for perceptual 
switching was changed from threshold-crossing to winner-take all. 
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Estimating the internal noise influencing perceptual switching. 

 Our results also provide insights into the nature of the internal noise that contributes to 

perceptual switching. In particular, the magnitude of resonance (i.e., the size of the CV dips 

shown in Figure 3-5) depended on the relative rather than the absolute amplitude of contrast 

modulation. In all of the experiments reported here, the contrast was modulated between the 

baseline contrast and a reduced contrast. If we define the percent contrast modulation as,  

[ ] [ ]
[ ] %100

contrast baseline
contrastlower contrast baselinemodulationcontrast Percent ×

−
= , 

contrast modulations of 30% to 40% clearly produced resonance (see the primary graphs in 

Figures 3-4 and 3-5), whereas the P1 , P1 gain, and resonance dips were all weak or absent with 

20% modulation (see the inset graphs in Figures 3-4 and 3-5).  

Two points are noteworthy. First, both 30% and 20% contrast modulations were clearly 

visible, suggesting that both levels of contrast modulation were above threshold, that is, they 

were greater than the sensory noise that limits detectability of contrast modulation. This in turn 

suggests that the system that controls perceptual switching in binocular rivalry has its own noise 

and threshold which are greater than the sensory noise and threshold that control the visibility of 

contrast modulations. The fact that 30% contrast modulation clearly produced stochastic 

resonance but 20% modulation did not, also provides a signal-based estimate of the magnitude of 

the relevant internal noise, equivalent to somewhere between 20% and 30% of contrast 

modulation. 

Second, the strength of resonance (i.e., the size of resonance dip) was similar for rather 

different baseline contrasts, 0.50 and 0.25, as long as the percent contrast modulation was the 

same (Figure 3-5). We subsequently verified this ratio-wise (divisive) normalization of the 
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perceptual-switching mechanisms to these baseline contrasts for a wide range of contrast-

modulation amplitudes (0%-100%). Thus, internal noise, threshold, and gain of the contrast 

modulation appear to be calibrated to the baseline contrast in such a way that the mechanisms 

underlying perceptual switches respond to the proportion of contrast modulation (at least when 

different baseline contrasts are blocked, allowing time for the visual system to adapt to the 

baseline contrast). 

Summary 

We have demonstrated internal-noise based stochastic resonance in binocular rivalry by 

applying weak periodic contrast modulations to the competing images. Spontaneous perceptual 

switches in binocular rivalry have been thought to be mediated by interactions among stimulus 

input, neural adaptation, mutual inhibition, and noise that together generate competing 

marginally stable states consistent with a double-well potential framework. Our results have 

shown that these interactions must occur in such a way that the system supports stochastic 

resonance. Our computational simulations have shown how this stochastic-resonance 

requirement constrains the current dynamic models of binocular rivalry in terms of the locus of 

the relevant noise and the algorithm of perceptual switching. The results also suggest that the 

magnitude of the internal noise involved in perceptual switches is equivalent to approximately 

20%-30% of contrast modulation, and that the locus of this noise is beyond the processing stage 

where sensory noise influences pattern detection. Because the noise magnitude appears to 

calibrate to baseline contrast, it is possible that the magnitude of internal noise might be 

adaptively maintained in the brain such that it is low enough to prevent hyper-sensitive responses 

to small fluctuations in the environment (thus providing sufficient time and stability to analyze 
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each perceptual interpretation), but high enough to keep the system from getting mired in a 

single state. 

5. CONCLUSION 

This dissertation has presented evidence that concepts and theories of synchronization are 

useful to further understanding of the state of the human brain during processing incoming 

information from our dynamic sensory environment. 

In particular, we monitored frequency-tagged steady-state visual evoked potentials 

(SSVEPs) in humans and found that voluntary sustained attention multiplicatively increased the 

stimulus-driven population electrophysiological activity. Analyses of inter-trial phase coherence 

showed that this attentional response gain was at least partially due to increased synchronization 

of SSVEPs to stimulus flicker. These results suggest that attention operates in a complementary 

manner at different levels; attention appears to increase single-neuron spike rates in a variety of 

ways including contrast, response, and activity gain, while also inducing a multiplicative boost 

on neural population activity via enhanced response synchronization. 

It was also discovered that flickered stimuli generated SSVEPs which typically include 

Fourier components at the flicker frequency (the 1st harmonic) and twice the flicker frequency 

(the 2nd harmonic). Our results suggest that these harmonics mediate parallel processing that 

subserves complementary functions. The 1st and 2nd harmonics exhibited clearly divergent 

posterior scalp topography for a broad range of frequencies, with the 1st harmonic medially 

maximal and the 2nd harmonic contralaterally maximal. Furthermore, voluntary visual attention 

modulated the 2nd harmonic substantially more strongly than the 1st harmonic. These results 

suggest that the visual system may primarily use frequency-doubled signals for top-down 

modulations while simultaneously preserving relatively undistorted sensory qualities in the 1st 
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harmonic. This harmonic-based topographic difference might be due to the formation of 

synchronous clusters where one cluster prefers 1:1 synchronization (the 1st harmonic) and 

another cluster prefers 1:2 synchronization (the 2nd harmonic).  

Moreover, we demonstrated quantitative evidence of stochastic resonance in binocular 

rivalry by subjecting binocular rivalry to weak periodic contrast modulations spanning a range of 

frequencies. Our behavioral results combined with computational simulations provided insights 

into the nature of the internal noise (its magnitude, locus, and calibration) that is relevant to 

perceptual switching, as well as provided novel dynamic constraints on computational models 

designed to capture the neural mechanisms underlying perceptual switching. 

All of these findings may find a unifying explanation within a mechanism of 

synchronization in nonlinear dynamical systems, which may be a general organizing principle of 

great importance for cognitive processes and account for how we perceive and react to the 

outside world. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



80 
 

REFERENCES 
 
Andronov, A. A., Vitt, E. A., & Khaikin, S. E. (1966). Theory of oscillations. Pergamon Press, 

Oxford. 
Anishchenko, V. S., Astakhov, V. V., Neiman, A. B., Vadivasova, T. E., & Schimansky-Geier, 

L. (2003). Nonlinear dynamics of chaotic and stochastic systems: Tutorial and modern 
developments. Springer-Verlag, Berlin. 

Azouz, R. & Gray, C. M. (2000). Dynamic spike threshold reveals a mechanism for synaptic 
coincidence detection in cortical neurons in vivo. Proceedings of the National Academy 
of Sciences USA, 97, 8110-8115. 

Blake, R. (1989). A neural theory of binocular rivalry. Psychological Review, 96, 145-167. 
Blake, R. (2001). A primer on binocular rivalry, including current controversies. Brain and 

Mind, 2, 5-38. 
Blake, R. & Fox, R. (1974). Binocular rivalry suppression: insensitive to spatial frequency and 

orientation change. Vision Research, 14, 687-692. 
Blake, R., Fox, R. & McIntyre, C. (1971). Stochastic properties of stabilized-image binocular 

rivalry alternations. Journal of Experimental Psychology, 88, 327-332. 
Blake, R. & Logothetis, N. K. (2002). Visual competition. Nature Neuroscience, 3, 1-11. 
Blake, R., Westendorf, D. H., & Overton, R. (1980). What is suppressed during binocular 

rivalry? Perception, 9, 223-231. 
Borsellino, A., De Marco, A., Allazetta, A., Rinesi, S. & Bartolini, B. (1972). Reversal time 

distribution in the perception of visual ambiguous stimuli. Kybernetik 10, 139-144. 
Brown, R. J., & Norcia, A. M. (1997). A method for investigating binocular rivalry in real-time 

with the steady-state VEP. Vision Research, 37(170), 2401-2408. 
Buia, C. & Tiesinga, P. (2006). Attentional modulation of firing rate and synchrony in a model 

cortical network. Journal of Computational Neuroscience, 20, 247-264. 
Buschman, T. J., and Miller, E. K. (2007) Top-down versus bottom-up control of attention in the 

prefrontal and posterior parietal cortices. Science, 315, 1860-1862. 
Bulsara, A., Jacobs, E. W., Zhou, T., Moss, F. & Kiss, L. (1991). Stochastic resonance in a single 

neuron model: theory and analog simulation. Journal of Theoretical Biology, 152(4), 
531-55. 

Buzsáki, G. & Draguhn, A. (2004). Neuronal oscillations in cortical networks. Science, 304, 
1926-1929. 

Cameron, E. L., Tai, J. C., & Carrasco, M. (2002). Covert attention affects the psychometric 
function of contrast sensitivity. Vision Research, 42, 949-967. 

Campbell, F. W. & Maffei, L. (1970). Electrophysiological evidence for the existence of 
orientation and size detectors in the human visual system. Journal of Physiology 
(London), 207, 635-652. 

Canolty, R. T., Edwards, E., Dalal, S. S., Soltani, M., Nagarajan, S. S. Kirsch, H. E., Berger, M. 
S., Barbaro, N. M. & Knight, R. T. (2006). High gamma power is phase-locked to theta 
oscillations in human neocortex. Science, 313, 1626-1628. 

Carrasco, M., Ling, S., & Read, S. (2004). Attention alters appearance. Nature Neuroscience, 7, 
308-313. 



81 
Chelazzi, L., Duncan, J., Miller, E. K., & Desimone, R. (1998). Responses of neurons in inferior 

temporal cortex during memory-guided visual search. Journal of Neurophysiology, 80, 
2918-2940. 

Choi, M.H., Fox, R.F., & Jung, P. (1998). Quantifying stochastic resonance in bistable systems: 
Response vs. residence-time distributions. Physical Review E, 57, 6335-6344.  

Cordo, P., Inglis, J. T., Verschueren, S., Collins, J. J., Merfeld, D.M., Rosenblum, S., Buckley, S. 
& Moss, F. (1997). Noise in human muscle spindles. Nature 383, 769-770. 

Dayan, P. & Abbott, L. F. (2001). Theoretical Neuroscience: Computational and Mathematical 
Modeling of Neural Systems. MIT Press: Cambridge, MA; London, England. 

Delorme, A. & Makeig, S. EEGLAB: an open source toolbox for analysis of single-trial EEG 
dynamics including independent component analysis. Journal of Neuroscience Methods, 
134, 9-21. 

Desimone, R., & Duncan, J. (1995). Neural mechanisms of selective visual attention. Annual 
Review of Neuroscience, 18, 193-222. 

De Valois, R. L., Albrecht, D. G. & Thorell, L. G. (1982). Spatial frequency selectivity of cells 
in macaque visual cortex. Vision Research 22, 545-559. 

Ding, J., Sperling, G., & Srinivasan, R. (2005). Attentional modulation of SSVEP power depends 
on the network tagged by the flicker frequency. Cerebral Cortex, 16, 1016-1029. 

Di Russo, F., Spinelli, D., & Morrone, M. C. (2001). Automatic gain control contrast 
mechanisms are modulated by attention in humans: evidence from visual evoked 
potentials. Vision Research, 41, 2435-2447. 

Di Russo, F., Pitzalis, S., Aprile, T., Spitoni, G., Patria, F., Stella, A., Spinelli, D., & Hillyard, S. 
A. (2007). Spatiotemporal analysis of the cortical sources of the steady-state visual 
evoked potential. Human Brain Mapping 28(4), 323-334. 

Douglass, J. K., Wilkens, L., Pantazelou, E. & Moss, F. (1993). Noise enhancement of 
information transfer in crayfish mechanoreceptors by stochastic resonance. Nature, 365, 
337-340. 

Edwards, D. P., Purpura, K. P., & Kaplan, E. (1995). Contrast sensitivity and spatial frequency 
response of primate cortical neurons in and around the cytochrome oxidase blobs. Vision 
Research, 35, 1501-1523. 

Engel, A. K. & Singer, W. (2001). Temporal binding and the neural correlate of sensory 
awareness. Trends in Cognitive Sciences, 5(1), 16-25. 

Engel, A.K., Fries, P., & Singer, W. (2001). Dynamic predictions: oscillations and synchrony in 
top-down processing. Nature Reviews Neuroscience, 2, 704-716. 

Fell, J., Frenandez, G., Klaver, P., Elger, C. E., & Fries, P. (2003). Is synchronized neuronal 
gamma activity relevant for selective attention? Brain Research Reviews, 42, 265-272. 

Femat, R., & Solis-Perales, G. (1999). On the chaos synchronization phenomena. Physics letters 
A. 262(1), 50-60. 

Fox, R. & Herrmann, J. (1967). Stochastic properties of binocular alternations. Perception & 
Psychophysics, 2, 432-436. 

Fries, P., Reynolds, J. H., Rorie, A. E., & Desimone, R. (2001). Modulation of oscillatory 
neuronal synchronization by selective visual attention. Science, 291, 1560-1563. 

Fries, P. (2005). A mechanism for cognitive dynamics: neuronal communication through 
neuronal coherence. Trends in Cognitive Sciences, 9(10), 474-480. 



82 
Fujisaka, H., & Yamada, T. (1983). Stability of synchronized motion in coupled-oscillator 

systems. Progress of theoretical physics. 69(1), 32-47. 
Gabbiani, F. & Koch, C. (1999). Principles of Spike Train Analysis. In C. Koch & I. Segev 

(Eds.) Methods in Neural Modeling (pp.313-360), MIT Press: Cambridge, MA. 
Gammaitoni, L., Hanggi, P., Jung, P. & Marchesoni, F. (1998). Stochastic resonance. Reviews of 

Modern Physics, 70, 223-287. 
Gammaitoni, L., Marchesoni, F., Menichiella-Saetta, E. & Santuci, S. (1989). Stochastic 

Resonance in Bistable Systems. Physical Review Letters, 62, 349-352. 
Gammaitoni, L., Marchesoni, F. & Santuci, S. (1995). Stochastic Resonance as a Bona Fide 

Resonance. Physical Review Letters, 74, 1052-1055. 
Geisler, W. S. & Albrecht, D. G. (1997). Visual cortex neurons in monkeys and cats: detection, 

discrimination, and identification. Visual Neuroscience, 14, 897-919. 
Giacomelli, G. Marin, F. & Rabbiaosi, I. (1999). Stochastic and Bona Fide Resonance: An 

Experimental Investigation. Physical Review Letters, 82(4) 675-678. 
Gluckman, B. J., Netoff, T. I., Neel, E. J., Ditto, W. L., Spano, M. & Schiff, S. J. (1996). 

Stochastic Resonance in a Neuronal Network from Mammalian Brain. Physical Review 
Letters, 77, 4098-4101. 

Goodale, M. A., Milner, A. D., Jakobson, L. S., & Carey, D. P. (1991). A neurological 
dissociation between perceiving objects and grasping them. Nature, 349, 154-156. 

Goodale, M. A., & Westwood, D. A. (2004). An evolving view of duplex vision: separate but 
interacting cortical pathways for perception and action. Current Opinion in 
Neurobiology, 14, 203-211. 

Gray, C. M., Konig, P., Engel, A. K., & Singer, W. (1989). Oscillatory responses in cat visual 
cortex exhibit inter-columnar synchronization which reflects global stimulus properties. 
Nature, 338, 334-337. 

Grill-Spector, K., & Malach, R. (2004). The human visual cortex. Annual Review of 
Neuroscience, 27, 649-677. 

Gross, C. G., Rocha-Miranda, C. E., & Bender, D. B. (1972). Visual properties of neurons in 
inferotemporal cortex of the macaque. Journal of Neurophysiology, 35, 96-111. 

Guckenheimer, J., & Holmes, P. (1983). Nonlinear oscillations, dynamical systems, and 
bifurcations of vector fields. Springer-Verlag, New York. 

Hänggi, P. (2002). Stochastic resonance in biology. ChemPhysChem, 3, 285. 
Haenny, P. E. & Schiller, P. H. (1988). State dependent activity in monkey visual cortex. I. 

Single cell activity in V1 and V4 on visual tasks. Experimental Brain Research, 69, 225-
244.  

Haken, H. (1995). Some basic concepts of synergetics with respect to multistability in 
perception, phase transitions and formation of meaning. In P. Kruse & M. Stadler (Eds.) 
Ambiguity in Mind and Nature ) (pp.23-43), Springer-Verlag New York. 

Hämäläinen, M., Hari, R., Ilmoniemi, R., Knuutila, J., & Lounasmaa, O. V. (1993). 
Magnetoencephalography—theory, instrumentation, and applications to noninvasive 
studies of the working human brain. Reviews of Modern Physics, 65, 413-497. 

Hawken, M. J., Shapley, R. M., & Grosof, D. H. (1996). Temporal-frequency sensitivity in 
monkey visual cortex. Visual Neuroscience, 13, 477-492. 

Hayashi, C. (1964). Nonlinear oscillations in physical systems. McGraw-Hill, NY. 



83 
Henrie, J. A. & Shapley, R. (2005). LFP power spectra in V1 cortex: the graded effect of 

stimulus contrast. Journal of Neurophysiology, 94, 479-490. 
Hermann, C. S. (2001). Human EEG responses to 1-100 Hz flicker: resonance phenomena in 

visual cortex and their potential correlation to cognitive phenomena. Experimental Brain 
Research, 137, 346-353. 

Hou, C., Pettet, M. W., Sampath, V., Candy, T. R., & Norcia, A. M. (2003). Development of the 
spatial organization and dynamics of lateral interactions in the human visual system. 
Journal of Neuroscience, 23, 8630-8640. 

Hubel, D. H. & Wiesel, T. N. (1968). Receptive fields and functional architecture of monkey 
striate cortex. Journal of Physiology 195, 215-243. 

Huang, L. & Dobkins, K. R. (2005). Attentional effects on contrast discrimination in humans: 
evidence for both contrast gain and response gain. Vision Research, 45, 1201-1212. 

Huygens (Hugenii), C. (1673). Horologium Oscillatorium. Apud F. Muguet, Parisiis, France. 
James, W. (1890). The principles of psychology. New York: Henry Holt. 
Kastner, S, & Ungerleider, L. G. (2000). Mechanisms of visual attention in the human cortex. 

Annual Review of Neuroscience, 23, 315-341. 
Kastner, S, & Ungerleider, L. G. (2001). The neural basis of biased attention in human visual 

cortex. Neuropsychologia, 39, 1263-1276. 
Kim, Y-J., Grabowecky, M., & Suzuki, S. (2006). Stochastic resonance in binocular rivalry. 

Vision Research, 46, 392-406. 
Kim, Y-J., Grabowecky, M., Paller, K. A., Muthu, K., & Suzuki, S. (2007). Attention induces 

synchronization-based response gain in steady-state visual evoked potentials. Nature 
neuroscience. 10, 117-125. 

Kim, Y-J., Grabowecky, M., Paller, K. A., & Suzuki, S. (2008). Parallel visual processing 
revealed by evoked oscillatory neural harmonics. To be submitted. 

Knight, R. T. (2007). Neural networks debunk phrenology. Science. 316, 1578-1579. 
Koch, C. (1999). Biophysics of Computation: Information Processing in Single Neurons. Oxford 

University Press: Oxford. 
Lack, L. C. (1974). Selective attention and the control of binocular rivalry. Perception & 

Psychophysics, 15(1), 193-200. 
Laing, C. R. & Chow, C. C. (2002). A spiking neuron model for binocular rivalry. Journal of 

Computational Neuroscience, 12, 39-53. 
Lathrop, R. G. (1966). First-order response dependencies at a differential brightness threshold. 

Journal of Experimental Psychology, 72, 120-124. 
Lee, D. K., Itti, L., Koch, C., & Braun, J. (1999). Attention activates winner-take-all competition 

among visual filters. Nature Neuroscience, 2, 375-381. 
Lee, S.-H. & Blake, R. (1999). Rival ideas about binocular rivalry. Vision Research, 39, 1447-

1454. 
Lehky, S. R. (1988) An astable multivibrator model of binocular rivalry. Perception, 17, 215-

228. 
Lehky, S. R. (1995). Binocular rivalry is not chaotic. Proceedings of the Royal Society of London 

B: Biological Sciences, 259, 71-76. 
Leopold, D. A. & Logothetis, N. K. (1996). Activity changes in early visual cortex reflect 

monkey’s percepts during binocular rivalry. Nature, 379, 549-553. 



84 
Leopold, D. A. & Logothetis, N. K. (1999). Multistable phenomena: changing views in 

perception. Trends in Cognitive Sciences, 3, 254-264. 
Levelt, W. J. M. (1965). On Binocular Rivalry (Soesterberg, The Netherlands: Institute for 

Perception RVO-TNO). 
Levin, J. E. & Miller, J. P. (1996). Broadband neural encoding in the cricket cercal sensory 

system enhanced by stochastic resonance. Nature, 380, 165-168. 
Levitt, J. B., Kiper, D. C. & Movshon, J. A. (1994). Receptive fields and functional architecture 

of macaque V2. Journal of Neurophysiology 71, 2517-2542. 
Ling, S. & Carrasco, M. (2006). Sustained and transient covert attention enhance the signal via 

different contrast response functions. Vision Research, 46, 1210-1220. 
Logothetis, N.K. (1998). Single units and conscious vision. Philosophical Transactions of the 

Royal Society of London B: Biological Sciences, 353, 1801-1818. 
Logothetis, N. K. (2003). The underpinnings of the BOLD functional magnetic resonance 

imaging signal. Journal of Neuroscience, 23(10), 3963-3971. 
Logothetis, N. K., Leopold, D. A., & Sheinberg, D. L. (1996). What is rivaling during binocular 

rivalry? Nature, 380, 621-624. 
Longtin, A., Bulsara, A. & Moss, F. (1991). Time-interval sequences in bistable systems and the 

noise-induced transmission of information by sensory neurons. Physical Review Letters, 
67, 656–659. 

Luck, S. J., Hillyard, S. A. Mouloua, M., Woldorff, M. G., Clark, V. P., & Hawkins, H. L. 
(1994). Effects of spatial cuing on luminance detectability: psychophysical and 
electrophysiological evidence for early selection. Journal of Experimental Psychology: 
Human Perception and Performance, 20(4), 887-904. 

Martinez-Conde, S., Macknik, S. L., & Hubel, D. H. (2004). The role of fixational eye 
movements in visual perception. Nature Reviews Neuroscience, 5, 229-240. 

Martinez-Trujillo, J. & Treue, S. (2002). Attentional modulation strength in cortical area MT 
depends on stimulus contrast. Neuron, 35, 365-370. 

Maunsell, J. H. & Cook, E. P. (2002). The role of attention in visual processing. Philosophical 
Transactions of the Royal Society of London B, 357, 1063-1072. 

Maunsell, J. H. R., & Treue, S. (2006). Feature-based attention in visual cortex. Trends in 
Neurosciences, 29(6), 317-322. 

Melnikov, V. I. (1993). Schmitt trigger: A solvable model of stochastic resonance. Physical 
Review E, 48, 2481-2489. 

Merigan, W. H. & Maunsell, J. H. R. (1993). How parallel are the primate visual pathways? 
Annual Review of Neuroscience, 16, 369-402. 

Mishkin, M., Ungerleider, L. G., & Macko, K. A. (1983). Object vision and spatial vision: Two 
central pathways. Trends in Neuroscience, 6, 414-417. 

Morgan, S. T., Hansen, J. C. & Hillyard, S. A. (1996). Selective attention to stimulus location 
modulates the steady-state visual evoked potential. Proceedings of the National Academy 
of Sciences of the United States of America, 93, 4770-4. 

Mori, T. & Kai, S. (2002). Noise-induced entrainment and stochastic resonance in human brain 
waves. Physical Review Letters, 88, 218101/1-4. 

Morrone, M. C., Denti, V., & Spinelli, D. (2002). Color and luminance contrasts attract 
independent attention. Current Biology, 12, 1134-1137. 



85 
Motter, B. C. (1993). Focal attention produces spatially selective processing in visual cortical 

areas V1, V2, and V4 in the presence of competing stimuli. Journal of Neurophysiology, 
70, 909-919. 

Mueller, T. J. (1990). A physiological model of binocular rivalry. Visual Neuroscience, 4, 63-73. 
Müller, M. M. et al. (1998a). Effects of spatial selective attention on the steady-state visual 

evoked potential in the 20-28 Hz range. Cognitive Brain Research 6, 249-261. 
Müller, M. M., Teder-Sälejärvi, W. & Hillyard, S. A. (1998b). The time course of cortical 

facilitation during cued shifts of spatial attention. Nature neuroscience 1, 631-634. 
Müller, M. M., Malinowski, P., Gruber, T. & Hillyard, S. A. (2003). Sustained division of the 

attentional spotlight. Nature 424, 309-312.  
Neiman, A., Silchenko, A., Anishchenko, V. S., & Schimansky-Geier, L. (1998). Stochastic 

resonance: Noise-enhanced phase coherence. Physical Review E, 58(6), 7118-7125. 
Neiman, A., Pei, X., Russell, D. F., Wojtenek, W., Wilkens, L., Moss, F., Braun, H. A., Huber, 

M. T., & Voigt, K. (1999a). Synchronization of the noisy electrosensitive cells in the 
paddlefish. Physical Review Letters, 82(3), 660-663. 

Neiman, A., Schimansky-Geier, L., Cornell-Bell, A., & Moss, F. (1999b). Noise-enhanced phase 
synchronization in excitable media. Physical Review Letters, 83(23), 4896-4899. 

Neiman, A., Schimansky-Geier, Moss, F., Shulgin, B., & Collins, J. J. (1999c). Synchronization 
of noisy systems by stochastic signals. Physical Review E, 60(1), 284-292. 

Neiman, A. and Russell, D. F. (2002). Synchronization of noise-induced bursts in noncoupled 
sensory neurons. Physical Review Letters, 88, 138103. 

Niebur, E. & Koch, C. (1994). A model for the neuronal implementation of selective visual 
attention based on temporal correlation among neurons. Journal of Computational 
Neuroscience, 1, 141-158. 

O’Craven, K. M., Rosen, B. R., Kwong, K. K., Treisman, A. & Savoy, R. L. (1997). Voluntary 
attention modulates fMRI activity in human MT-MST. Neuron, 18, 591-598. 

O’Shea, R. P., & Crassini, B. (1984). Binocular rivalry occurs without simultaneous presentation 
of rival stimuli. Perception & Psychophysics, 36(3), 266-276. 

Phillips, W. A., & Singer, W. (1997). In search of common foundations for cortical computation. 
Behavioral and Brain Sciences, 20, 657-722. 

Pikovsky, A. S. & Kurths, J. (1997). Coherence Resonance in a Noise-Driven Excitable System. 
Physical Review Letters, 78, 775–778. 

Pikovsky, A., Rosenbaum, M., & Kurths, J. (2003). Synchronization: A universal concept in 
nonlinear sciences. Cambridge University Press, Cambridge. 

Pollen (2002) 
Polonsky, A., Blake, R., Braun, J., & Heeger, D. J. (2000). Neuronal activity in human primary 

visual cortex correlates with perception during binocular rivalry. Nature Neuroscience, 
3(11), 1153-1159. 

Posner, M. I., Snyder, C. R., & Davidson, B. J. (1980). Attention and the detection of signals. 
Journal of Experimental Psychology, 109, 160-174. 

Rager, G. & Singer, W. (1998). The response of cat visual cortex to flicker stimuli of variable 
frequency. European Journal of Neuroscience. 10, 1856-1877. 

Regan, D. (1989). Human brain electrophysiology: Evoked potentials and evoked magnetic fields 
in science and medicine. Elsevier, New York. 



86 
Regan, D. & Spekreijse, H. (1986). Evoked potentials in vision research: 1961-1985. Vision 

Research, 26, 1461-1480. 
Reynolds, J. H., Chelazzi, L., & Desimone, R. (1999). Competitive mechanisms subserve 

attention in macaque areas V2 and V4. Journal of Neuroscience, 19, 1736-1735. 
Reynolds, J. H., Pasternak, T. & Desimone, R. (2000). Attention increases sensitivity of V4 

neurons. Neuron, 26, 703-714. 
Reynolds, J. H. & Chelazzi, L. (2004). Attentional modulation of visual processing. Annual 

Review of Neuroscience, 27, 611-647.  
Riani, M. & Simonotto, E. (1994). Stochastic resonance in the perceptual interpretation of 

ambiguous figures : A neural network model. Phys. Rev. Lett. 72, 3120-3123. 
Richards, W., Wilson, H.R., and Sommer, M.A. (1994). Chaos in percepts? Biological 

Cybernetics, 70, 345-349. 
Rosenblum, M., Pikovsky, A. &Kurths, J. (1996). Phase synchronization of chaotic oscillators. 

Physical review letters. 76, 1804. 
Rosenblum, M., Pikovsky, A. &Kurths, J. (1997). From phase to lag synchronization in coupled 

chaotic oscillators. Physical review letters. 78, 4193-4196. 
Rulkov, N. F., Sushchik, M. M., Tsimring, L. S., & Abarbanel, H. D. I. (1995). Generalized 

synchronization of chaos in directionally coupled chaotic systems. Physical review E. 
51(2), 980-994. 

Russell, D. F., Wilkens, L. A. & Moss, F. (1999). Use of stochastic resonance by paddle fish for 
feeding. Nature, 402, 291-294. 

Saalmann, Y. B., Pigareve, I. V., & Vidyasagar, T. R. (2007). Neural mechanisms of visual 
attention: How top-down feedback highlights relevant locations. Science. 316, 1612-
1615. 

Schiller, P. H., Logothetis, N. K., & Charles, E. R. (1990). Role of the color-opponent and broad-
band channels in vision. Visual Neuroscience, 5, 321-346. 

Schröder, J.-H., Fries, P., Roelfsema, P. R., & Singer, W., & Engel, A. K. (2002). Ocular 
dominance in extrastriate cortex of strabismic amblyopic cats. Vision Research, 42, 29-
39. 

Shapley, R. (1995). Parallel neural pathways and visual function. In M. S. Gazzaniga (Ed.), The 
Cognitive Neurosciences (pp. 315-342). Cambridge, MA: MIT Press. 

Shapley, R. (2004). A new view of the primary visual cortex. Neural Networks, 17, 615-623.  
Sheinberg, D. L. & Logothetis, N. K. (1997). The role of temporal cortical areas in perceptual 

organization. Proceedings of the National Academy of Sciences USA, 94, 3408-3413. 
Shulgin, B., Neiman, A., & Anishchenko, V. (1995). Mean switching frequency locking in 

stochastic bistable systems driven by a periodic force. Physical Review Letters, 75(23), 
4157-4160. 

Simonotto, E., Riani, M., Seife, C., Roberts, M., Twitty, J. & Moss, F. (1997). Visual perception 
of stochastic resonance. Physical Review Letters, 78, 1186-1189. 

Singer, W. (1999). Striving for coherence. Nature, 397(4), 391-393. 
Singer, W. & Gray, C. M. (1995) Visual feature integration and the temporal correlation 

hypothesis. Annual Review of Neuroscience, 18, 555-586. 
Sperling, G. (1970). Binocular vision: A physical and neural theory. American Journal of 

Psychology, 83, 461-534. 



87 
Sperling, G. & Melchner, M. J. (1978). The attention operating characteristic: examples from 

visual search. Science, 202, 315-318. 
Spitzer, H., Desimone, R. & Moran, J. Increased attention enhances both behavioral and 

neuronal performance. Science 240, 338-40 (1988). 
Srinivasan, R., Russell, D. P., Edelman, G. M., & Tononi, G. (1999). Increased synchronization 

of neuromagnetic responses during conscious perception. Journal of Neuroscience, 
19(13), 5435-5448. 

Steinmetz, P. N. et al. (2000). Attention modulates synchronized neuronal firing in primate 
somatosensory cortex. Nature, 404, 187-190. 

Strogatz, S. (2003). Sync: The emerging science of spontaneous order. Hyperion 
Sugie, N. (1982). Neural models of brightness perception and retinal rivalry in binocular vision. 

Biological Cybernetics, 43, 13-21. 
Suzuki, S. (2001). Attention-dependent brief adaptation to contour orientation: a high-level 

aftereffect for convexity? Vision Research, 41, 3883-3902. 
Suzuki, S. & Grabowecky, M. (2002a). Evidence for perceptual “trapping” and adaptation in 

multistable binocular rivalry. Neuron, 36, 143-157. 
Suzuki, S., & Grabowecky, M. (2002b). Overlapping features can be parsed on the basis of rapid 

temporal cues that produce stable emergent percepts. Vision Research, 42, 2669-2692. 
Suzuki, S. & Grabowecky, M. (2004). Long-term speeding of alternations in binocular rivalry: 

potential mediation by primary visual cortex. Annual meeting of the Vision Sciences 
Society, Sarasota, FL, U.S.A. 

Tallon-Baudry, C., Bertrand, O., Delpuech, C., & Premier, J. (1996). Stimulus specificity of 
phase-locked and non-phase-locked 40 Hz visual responses in human. Journal of 
Neuroscience, 16, 4240-4249. 

Taylor, M.M., and Aldridge, K.D. (1974). Stochastic processes in reversing figure perception. 
Perception & Psychophysics, 16, 9-27. 

Tong, F. & Engel, S. A. (2001). Interocular rivalry revealed in the human cortical blind-spot 
representation. Nature, 411, 195-199. 

Tononi, G., Srinivasan, R., Russell, D. P., & Edelman, G. M. (1998). Investigating neural 
correlates of conscious perception by frequency-tagged neuromagnetic responses. 
Proceedings of the National Academy of Sciences USA, 95, 3198-3203. 

Treisman, A. & Sato. S. (1990). Conjunction search revisited. Journal of Experimental 
Psychology: Human Perception and Performance, 16, 459-478. 

Ungerleider, L. G. & Mishkin, M. (1982). Two cortical visual systems. In D. J. Ingle, M. A. 
Goodale, and R. J. W. Mansfield (Eds.), Analysis of Visual Behavior (pp. 549-586). 
Cambridge, MA: MIT Press. 

Vanni, S., Warnking, J., Dojat, M., Delon-Martin, C., Bullier, J., & Segebarth, C. (2004). 
Sequence of pattern onset responses in the human visual areas: an fMRI constrained VEP 
source analysis. NeuroImage, 21, 801-817. 

Varela, F., Lachaux, J-P., Rodriguez, E, & Martinerie, J. (2001). The brainweb: phase 
synchronization and large-scale integration. Nature Reviews Neuroscience. 2, 229-239. 

Wade, N. J. (1974). The effect of orientation in binocular contour rivalry of real images and 
afterimages. Perception & Psychophysics, 15(2), 227-232. 

Ward, L. (2002). Dynamical Cognitive Science, MIT Press: Cambridge, MA. 



88 
Ward, L. M. (2003). Synchronous neural oscillations and cognitive processes. Trends in 

Cognitive Sciences, 7(12), 553-559. 
Wiesenfeld, K. & Moss, F. (1995). Stochastic resonance and the benefits of noise: from ice ages 

to crayfish and SQUIDS. Nature, 373, 33-36. 
Williford, T. & Maunsell, J. H. (2006). Effects of spatial attention on contrast response functions 

in macaque area V4. Journal of Neurophysiology, 96, 40-54. 
Wilson, H. R. (1999). Spikes, decisions and actions: The dynamical foundations of neuroscience. 

Oxford University Press, (p. 131-134). 
Wilson, H. R. (2003). Computational evidence for a rivalry hierarchy in vision. Proceedings of 

the National Academy of Sciences USA, 100(24), 14499-14503. 
Wilson, H. R., Krupa, B., & Wilkinson, F. (2000). Dynamics of perceptual oscillations in form 

vision. Nature Neuroscience, 3(2), 170-176. 
Wilson, H. R. Blake, R., & Lee, S-H. (2001). Dynamics of traveling waves in visual perception. 

Nature, 412, 907-910. 
Wolfe, J. M. (1984). Reversing ocular dominance and suppression in a single flash. Vision 

Research, 24, 471-478. 
Womelsdorf, T., Schoffelen, J-M., Oostenveld, R., Singer, W., Desimone, R., Engel, A. K., & 

Fries, P. (2007). Modulation of neuronal interactions through neuronal synchronization. 
Science. 316, 1609-1612. 

Yoshikawa, T., Levitt, J. B., & Lund, J. S. (1994). Independence and merger of thalamocortical 
channels within macaque monkey primary visual cortex: anatomy of interlaminar 
projections. Visual Neuroscience, 11, 467-489. 

 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 



89 
FIGURES 

 
Figure 1  
Motion of a particle in a double-well potential. Noise induces irregular transitions between two 
stable states (dashed line). A symmetric bistable potential is periodically rocked by a weak 
signal. The presence of an optimal amount of noise (so that the average stochastic escape time 
approximately matches half the period of the signal) will statistically induce synchronized 
hopping events between the two locally stable states. 

 

Figure 1-1 
The contrast-, response-, and activity-gain hypotheses regarding how voluntary visual spatial 
attention boosts neural responses. A. According to the contrast-gain hypothesis, attention 
increases the effective contrast of attended stimuli, shifting the contrast response function to the 
left. B. According to the response- and activity-gain hypotheses, attention multiplicatively 
increases neural responses to attended stimuli, either with (activity gain) or without (response 
gain) attention effects on spontaneous neural activity. The upper panels show hypothetical 
contrast-response functions for attended and ignored conditions, and the bottom panels show the 
difference between attended and ignored contrast-response functions. 
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Figure 1-2 
Stimuli and a trial sequence. A. Two circular gratings were presented in opposite hemifields. 
Both gratings were flickered (one at 12.50 Hz and the other at 16.67 Hz) between a dark phase 
and a light phase; for illustration, the dark phase is shown on the left and the light phase is shown 
on the right. B. Each trial was initiated by a button press, followed by a central arrow (attention 
cue) indicating the grating to be attended, a fixation screen, and then a 4.8-s presentation of the 
flickered gratings. 
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Figure 1-3 
Topographic plots of 2nd harmonic of the standardized SSVEPs to the 16.67-Hz grating (A) and 
the 12.50-Hz grating (B), averaged across observers and stimulus contrasts. Color-scale data 
were interpolated based on a fine Cartesian grid. Positive and negative values indicate responses 
above and below the mean level, respectively, in z units. The left column shows SSVEP 
topographies when the relevant grating was presented to the right visual field, whereas the right 
column shows SSVEP topographies when the relevant grating was presented to the left visual 
field. Separate rows show conditions in which the relevant grating was attended (upper row), the 
relevant grating was ignored (middle row), or show the difference between attended and ignored 
conditions (lower row). Maximal responses and maximal attention effects at contralateral 
posterior locations are apparent in all cases. 
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Figure 1-4 
SSVEP contrast-response functions for the 16.67-Hz grating (B) and the 12.50-Hz grating (C), 
computed from the 10 scalp electrodes (illustrated in A) from which strong stimulus responses 
and attention effects were obtained (see Figure 1-3). Contralateral responses are shown on the 
left and ipsilateral responses are shown on the right. Contrast-response functions obtained when 
the relevant grating was attended are shown in red solid lines. Contrast-response functions 
obtained when the relevant grating was ignored are shown in blue dotted lines. For the 
contralateral responses, contrast dependencies of the attention effects (i.e., attended minus 
ignored conditions) are shown in the insets. The continuous curves indicate fits based on the 
Naka-Rushton equation; for the 16.67-Hz grating, r2 for the fits are 0.995 (contralateral 
attended), 0.991 (contralateral ignored), 0.982 (ipsilateral attended), and 0.956 (ipsilateral 
ignored); for the 12.50-Hz grating, the corresponding r2 are 0.994, 0.987, 0.975 and 0.992. The 
error bars indicate ±1 SEM. 
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Figure 1-5 
Representative simulation results showing that averaging neuronal attentional contrast-gain 
effects over a population of neurons with a range of contrast-response functions and attentional 
contrast-gain magnitudes produces contrast gain. This indicates that attentional response gain 
cannot emerge at the population level from averaging attentional contrast-gain effects on 
individual neurons. The average attention effect (i.e., the average attended contrast-response 
function minus the average ignored contrast-response function) is plotted for each simulated 
neural population (N = 1000) with a distribution of neuronal contrast-response functions and 
attentional contrast-gain magnitudes. To clearly show the shape of each attention-effect curve, 
the values are normalized relative to the peak value. The 48 representative attention-effect curves 
shown are based on even sampling of population parameter statistics from the following ranges. 
Because neurons in higher visual areas tend to saturate at lower contrasts (see Suzuki 2001 for a 
review), mean C50 was sampled between 0.43 (a published value for V1 (Geisler & Albrecht, 
1997)) and zero, while its standard deviation was fixed at 0.31 (a published value for V1 (Geisler 
& Albrecht, 1997)). Mean neuronal attentional contrast gain (i.e., mean percentage reduction in 
C50 due to attention) was sampled between 0% (no attention effect) and 100% (maximal attention 
effect), while its standard deviation was sampled between 0% and 200%. The mean and standard 
deviation for the parameter n were 2.5 and 1.4 (published values for V1 (Geisler & Albrecht, 
1997)), those for b were 0.1 and 0.2; a was set to unity. See text and Eq. 1-1 for explanation of 
these parameters. Simulation results still showed peaked attention-effect curves consistent with 
contrast gain when we sampled from wider ranges of means and standard deviations for the 
parameter values including the values reported for V4 neurons (Williford & Maunsell, 2006). 
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Figure 1-6 
ITPC for second-harmonic SSVEPs averaged across contralateral focal electrodes, which are 
illustrated in Figure 4a. (a) Time-averaged ITPCs (averaged over the entire trial period) when 
gratings were attended versus ignored. ITPCs are shown separately for the two flicker 
frequencies (16.67-Hz and 12.50-Hz) and for the two highest contrasts (40% and 80%). 
Attention significantly increased ITPC in all conditions; t7 = 2.758, P < 0.03 and t7 = 2.409, P < 
0.05 for 40% and 80% contrasts, respectively, for the 16.67-Hz flickered grating, and t7 = 3.608, 
P < 0.01 and t7 = 2.878, P < 0.03 for 40% and 80% contrasts, respectively, for the 12.50-Hz 
grating. (b) Time course of ITPCs when gratings were attended versus ignored. ITPCs (averaged 
across 40% and 80% contrasts) are shown separately for the 16.67-Hz grating (upper) and the 
12.50-Hz grating (lower). Time zero corresponds to the grating onset. Note that it takes a few 
hundred milliseconds for the effects of attention on synchronization to emerge after the grating 
onset. The data have been averaged across observers and the error bars shown in a indicate ± 1 
s.e.m., with individual variability in baseline ITPC removed. 
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Figure 1-7 
Contrast dependence of inter-trial phase coherence (ITPC) for SSVEPs (averaged across 
contralateral focal electrodes, see Figure 1-4A) when gratings were attended (solid lines) and 
ignored (dashed lines). Top. ITPC contrast-dependence functions (averaged across 16.67-Hz and 
12.50-Hz gratings) averaged from 50 to 4800 ms. Bottom. ITPC contrast-dependence functions 
shown separately for different time periods during sustained attention. The continuous curves 
indicate fits based on the Naka-Rushton equation; r2 for the fits are 0.991 (attended) and 0.987 
(ignored) for the 50-4800 ms period (red), 0.692 (attended) and 0.933 (ignored) for the 50-200 
ms period (black), 0.946 (attended) and 0.951 (ignored) for the 200-400 ms period (orange), 
0.985 (attended) and 0.967 (ignored) for the 400-1000 ms period (purple), and 0.994 (attended) 
and 0.985 (ignored) for the 1000-4800 ms period (green). Note that, except for the earliest 
interval that shows no attention effect, ITPC contrast-dependence functions for all other periods 
show a response-gain-type profile. 
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Figure 1-8 
Examples of probe displays for the control experiment. A target-present display is shown in A 
(the target is the pair of identically oriented oblique lines at the location of the left grating). A 
target-absent display (oblique lines are differently oriented within each pair) is shown in B. 
Vertical distractors were added so that grouping did not create an easily detectable emergent 
feature. 
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Figure 2-1 
Stimuli and a trial sequence. On each trial, a circular grating was presented in either the left or 
right visual hemifield. The grating was flickered between a light phase and a dark phase at 
various frequencies (6.25, 8.33, 12.5, 16.7, and 25 Hz). Each trial was initiated by a button press, 
followed by a fixation screen, and then a 4.8-sec presentation of the flickered grating. 
 

 
 
Figure 2-2 
A. Topographic plots of the 1st (upper row) and 2nd (lower row) harmonics of the standardized 
SSVEPs elicited by the flickered grating, averaged across observers and flicker frequencies. 
Color-scale data were interpolated based on a fine Cartesian grid. Positive and negative values 
indicate responses above and below the mean level, respectively, in z units. The left column 
shows SSVEP topographies when the grating was presented to the right visual hemifield, and the 
right column shows SSVEP topographies when the grating was presented to the left visual 
hemifield. B. Contralateral (gray bars) and ipsilateral (white bars) SSVEPs for the 1st and 2nd 
harmonics averaged from the 10 illustrated posterior scalp electrodes from which strong SSVEPs 
were obtained (see A). The graphs confirm that the 1st harmonic was medial (non-lateralized) 
whereas the 2nd harmonic was strongly contralateral. C. The degree of lateralization 
(contralateral minus ipsilateral standardized SSVEPs) for the 1st (dashed curve) and 2nd (solid 
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curve) harmonics as a function of the flicker frequency. The numbers within the plot represent 
the corresponding response frequencies (the same as the flicker frequencies for the 1st harmonic 
and doubled for the 2nd harmonic). The asterisks indicate statistically significant lateralization 
(i.e., significant deviations from zero) at P < 0.05. D. The contralateral (solid line) and ipsilateral 
(dashed line) standardized SSVEPs for the 1st (left panel) and 2nd (right panel) harmonics. All 
error bars represent ±1 SEM with the variance due to the overall differences across observers 
removed.         
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Figure 2-3 
Stimuli and a trial sequence (adapted from Kim et al., 2007). On each trial two circular gratings 
were presented in opposite hemifields. Gratings were flickered (between a light and dark phase) 
at different frequencies, one at 12.50 Hz and the other at 16.67 Hz. Each trial was initiated by a 
button press, followed by a central arrow indicating the grating to be attended, a fixation screen, 
and then a 4.8-s presentation of the flickered gratings. 

 
 
 
Figure 2-4 
Topographic plots of the 1st harmonic (upper row) and the 2nd harmonic (lower row) of the 
standardized SSVEPs elicited by the gratings presented in the left or right visual hemifield 
(indicated by the circle around the grating icon), averaged across observers, grating contrast, 
flicker frequencies, and attention conditions (i.e., attended or ignored). Color-scale data were 
interpolated based on a fine Cartesian grid. Positive and negative values indicate responses above 
and below the mean level, respectively, in z units. The left column shows SSVEP topographies 
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elicited by the gratings presented in the right visual hemifield, whereas the right column shows 
SSVEP topographies elicited by the gratings presented in the left visual hemifield. B. Upper 
panel. The 1st and 2nd harmonics of the standardized SSVEPs elicited by the attended and ignored 
gratings, averaged across observers, grating contrast, and flicker frequencies. The 1st and 2nd 
harmonics were averaged from the posterior scalp electrodes based on their characteristic 
topographies (see A); the 1st harmonic was averaged from the five central posterior scalp 
electrodes, whereas the 2nd harmonic was averaged from the five contralateral posterior scalp 
electrodes (see the illustration). Attention modulated the 2nd harmonic but not the 1st harmonic. 
Lower panels. The contrast response functions (i.e., standardized SSVEPs as a function of 
stimulus contrast) for the 1st harmonic (left panel) and 2nd harmonic (right panel) elicited by the 
attended and ignored gratings. All error bars represent ±1 SEM with the variance due to the 
overall differences across observers removed. 
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Figure 3-1 
A cartoon illustration of a double-well potential framework describing binocular rivalry under 
periodic contrast modulations. The left and right wells correspond to representations of the ‘‘+’’ 
and ‘‘x’’ shapes, respectively. The depths of the two wells were periodically modulated in 
opposite phase by modulating the luminance contrasts of the two images in opposite phase (see 
text for details). The position of the smiley face represents the perceptual state (i.e., the perceived 
shape). If the neural mechanisms underlying the double-well potential landscape interacted 
appropriately with noise to produce stochastic resonance under appropriate conditions, the 
dominance-duration distribution should show resonance peaks at (A) one times the contrast-
modulation half-period, HP, (B) three times the modulation half-period, 3 HP, and at other odd-
integer multiples of the modulation half-period. 
 

 
 
Figure 3-2 
The stimuli used to induce binocular rivalry. The two images were presented dichoptically using 
a four-mirror stereoscope. The high-contrast textured frames were binocularly presented around 
the rivaling shapes to facilitate stable binocular alignment. Perception spontaneously alternated 
between ‘‘+’’ and ‘‘x’’ shapes. To induce stochastic resonance, the luminance contrasts of the 
two shapes were temporally modulated in opposite phase at various frequencies. A non-rivaling 
grating was presented binocularly on the right side (as shown in the figure) to balance the overall 
stimulus configuration and help stabilize fixation (the grating was not presented in the blink-
allowed condition). 
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Figure 3-3 
Distributions of perceptual dominance duration in binocular rivalry when the contrasts of the 
competing images were modulated in opposite phase at frequencies of 0.28–2.48 Hz (with the 
corresponding half-periods [HP] of 1800–200 ms). The distributions have been averaged for the 
three observers, the 0.50 and 0.25 baseline contrasts, and the blink-allowed and no-blink 
conditions (the overall patterns were similar when each condition from each observer was 
examined separately). The bottom graphs show peaks in the dominance-duration distributions at 
the odd-integer multiples of the contrast-modulation half-period (indicated by the vertical lines), 
consistent with the presence of stochastic resonance. In the top graphs, the control distribution 
has been subtracted to isolate gains due to the periodic contrast-modulation signal. 
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Figure 3-4 
P1 amplitude and gain due to periodic contrast-modulation signals. Upper panels: P1 amplitude 
for the dominance-duration distributions as a function of the contrast-modulation frequency 
(solid curve), and the corresponding area proportions for the control distributions (dashed curve). 
Lower panels: P1 gain computed as the difference between the solid and dashed curves from the 
upper panels. (A) Observer SS, 0.25 baseline contrast with no blinking. (B) Observer YS, 0.50 
baseline contrast with blinking allowed. (C) Observer YS, 0.50 baseline contrast with no 
blinking. (D) Observer ET, 0.50 baseline contrast with no blinking. The primary graphs show the 
results with contrast-modulation amplitudes of 30% (A, C, and D) and 40% (B). The inset graphs 
(A and C) show the results with 20% contrast modulations. For all observers, the results with 
other baseline contrasts were similar. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 



104 
 
 
Figure 3-5 
Coefficient of variation (CV = standard deviation/mean) as a function of the contrast-modulation 
frequency (Hz). The data (the no-blink conditions only) are shown for the baseline contrasts of 
0.50 (left panels) and 0.25 (right panels) for each observer. The gray bands represent the average 
spontaneous alternation rates (the lower and upper bounds derived from the mean and median 
dominance durations, respectively). The primary graphs show the results with 30% contrast 
modulations. The inset graphs (for observers SS and YS) show the results with 20% contrast 
modulations. 
 

 
 
Figure 3-6 
The relationship between the resonance frequency (the contrast-modulation frequency that 
minimizes CV) and the mean spontaneous alternation rate. A positive correlation is apparent (r2 
= 0.735). Furthermore, the data points lie close to the diagonal (with slope = 1), indicating that 
the resonance frequency closely followed the average spontaneous alternation rate while the 
latter varied due to individual differences, the use of different baseline contrasts (0.25 or 0.50), 
and the within-trial slowing of binocular rivalry. Connected pairs of symbols represent the first 
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half-trials (upper right) and the second half-trials (lower left) for each baseline contrast for each 
observer. 
 

 
 
Figure 3-7 
Fitting the dominance-duration distributions for contrast-modulation frequencies from 0.28 to 
2.48 Hz (with the corresponding half-periods [HP] from 1800 to 200 ms), using the astable 
multivibrator model based on a Schmitt trigger (known to exhibit stochastic resonance). The thin 
curves show the data and the thick curves show the fits. Note that the locations of the peaks at 
the odd-integer multiples of the modulation half-period (indicated by the vertical lines), the 
number of the peaks, and the relative amplitude of the peaks are simulated reasonably well. 
Observer YS’s data for 0.50 baseline contrast (blinking allowed) are shown as an example. The 
fits to other data are similar. 
 

 
 
 

 


