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ABSTRACT

Superconducting qubits are among the leading competitors in the race towards building the

first full-fledged quantum computer. Using this platform, researchers have for the first time

demonstrated computational capability that is beyond the reach of the current classical machines.

(This achievement is nicknamed “Quantum Supremacy”.) Up to date, however, the performance

of superconducting quantum processors still fails to fully satisfy the requirement for efficient

and useful quantum computation, which is largely due to their decoherence induced by the

environmental noise. The challenge posed by the noise motivates researchers to put intensive

efforts into understanding, mitigating and even leveraging the noise that affects superconducting

qubits.

In this thesis, we will discuss several strategies that we have developed recently for both

noise engineering and mitigation in superconducting qubits. Specifically, we present a strategy

based on the tunable coupling between a qubit and a noisy ancilla to universally stabilize the

former in arbitrary single-qubit states. For noise mitigation, we propose a scheme based on

dynamical sweet spots to protect superconducting qubits from the ubiquitous and detrimental

1/ 5 noise. Using this framework, we further introduce a novel qubit design, the revolver qubit,

which is predicted to enjoy protection from both dephasing due to 1/ 5 noise and depolarization.
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List of Notations

Below, we list a number of symbols that are frequently used in this thesis.

Symbol Description
4 Electron charge
:B Boltzmann constant
Φ0 Magnetic flux quantum
�̂@ (C) Hamiltonian of the system (qubit)
�̂� Hamiltonian of the bath
�̂� Hamiltonian of the system-bath interaction
T Time-ordering operator
*̂@ (C) System propagator defined by *̂@ (C) =

T exp[−8
∫ C

0 �̂@ (C
′)3C′]

*̂� (C) Bath propagator defined by *̂� (C) =exp[−8
∫ C

0 �̂�3C
′]

d̃@ (C), d̃� (C) Density operator of the system and bath in the interaction
picture

�̃� (C) Interaction Hamiltonian in the interaction picture
ÂU, B̂U System and bath operators describing the interaction be-

tween the system and the Uth bath
ÃU (C), B̃U (C) The above operators in the interaction picture
ÂU (l) l-frequency component of ÃU (C)
|F 9 (C)〉, n 9 9 th Floquet state and its quasi-energy
|F 9 ,= (C)〉, n 9 ,= Redundant Floquet state and its quasi-energy, defined by

|F 9 ,= (C)〉 = |F 9 (C)〉 exp(−8=l3) and n 9 ,= = n 9 + =l3
n01 The quasi-energy difference defined by n01 = n1 − n0

(UV (l) Noise spectrum defined by (UV (l) =∫ ∞
−∞ 3g exp(8lg)〈B̃U (g)B̃V (0)〉

f̂±,I Pauli +,−, I operators
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2̂±,q (C) Pauli +,−, I operators defined in the Floquet basis [See
Eq. (2.20)], which will be abbreviated as 2̂±,q if C = 0

f̂, [̂ Qubit and bath operators throughwhich the two-level system
and the bath are coupled

6:` Fourier coefficient of the matrix elements of the noise oper-
ator in the Floquet basis [See Eq. (2.22)] (` = ±, q)

)env Environmental temperature
W± Excitation and decay rates
Wq Pure-dephasing rate
)1, )q Depolarization and pure-dephasing times
)2� , )2' Dephasing times obtained from echo and Ramsey experi-

ments
l3 Driving frequency
� Driving amplitude
l̄:,` Filter frequencies, defined in Eq. (2.21)
) Driving period, defined by ) = 1/l3
|6〉, |4〉 Qubit ground and first excited state
Ω64 Energy difference between the qubit states |6〉 and |4〉
f64, f66, f44 Matrix elements of the operator f̂ in terms of the qubit

energy states |6〉 and |4〉
��,!,� Charging, inductive and Josephson energies of a supercon-

ducting qubit
î, =̂ Phase and charge operators of a superconducting qubit
=6 Offset charge in a superconducting qubit
Φ4, q4 External flux and its reduced version that penetrates the

circuit loop, related by q4 = 2cΦ4/Φ0

lA , l@ Resonator and qubit frequencies
0̂, 0̂†, 1̂, 1̂† Lowering and Raising operators of two harmonic oscillators

0 and 1
j Dispersive shift
^ Resonator loss rate
qdc, qac DC and AC amplitudes defined by q4 (C) = qdc + qac cosl3C
lir Infrared cutoff introduced for regularizing 1/ 5 noise spec-

trum
Δ,Δ< Gap size at the avoided crossing in the eigenenergy and

quasi-energy spectrum of an undriven and driven qubit
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F Function space of )-periodic functions 5 : R → C# (# is
the dimension of the system Hilbert space)

$̄@ Operator defined in F , which is mapped to by the time-
periodic operator $̂ (C) defined in the original qubit Hilbert
space

|F̄ 9 ,=〉 Vector inF , which corresponds to the Floquet state |F 9 ,= (C)〉
Z+, Z−1 , Z

−
2 Strength of coupling between the two qubits induced by the

Revolver coupler, first shown in Eq. (4.29)
|kins, 9 (C)〉, �ins, 9 9 th instantaneous eigenstates and its instantaneous eigenen-

ergy
®_ Set of parameters that control a driven system
K Function space that contains 2c-periodic functions 5 : R→

C# (N is the dimension of the system Hilbert space)
 ̂ (C) Quasi-energy operator defined in K
|ΦK (C)〉〉 Time-dependent vector defined in K
RWA Abbreviation for “rotation wave approximation”
SQUID Abbreviation for “superconducting quantum interference de-

vice”
DD Abbreviation for “dynamical decoupling”
ODE Abbreviation for “ordinary differential equation”
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CHAPTER 1

Introduction

Quantum bits (qubits) based on superconducting circuits have drawn significant research at-

tention in recent decades, thanks to their potential of becoming building blocks of near-future

quantum computers [1–3]. Compared with other competing architectures, superconducting-

circuit devices enjoy convenient controllability via microwave signals [1, 3–7]. Furthermore,

almost all building elements of a superconducting circuit are configurable, which offers a flexible

tuning range of the qubit parameters (e.g., the qubit transition frequency) [8–11]; Fabricating

many copies of a qubit is straightforward with this 2d solid-state platform, given the mature

and economic fabrication techniques [1, 3–7]. Leveraging these advantages, the development of

superconductor-based quantum-information processors has reached a milestone, by demonstrat-

ing a clear advantage of a superconducting quantum computer over classical supercomputers in

the implementation of a specific quantum algorithm (often referred to as “quantum supremacy”)

[12].

To date, however, a number of challenges remain for building a full-fledged quantum com-

puter based on superconducting qubits. One imminent problem is that environmental noise

considerably restricts the qubits’ coherence times and gate fidelities [3, 13, 14]. The reason is

traced back to the relatively strong electromagnetic interaction between superconducting circuits

and the environment, which is a double-edged sword [10]. On one hand, strong interactions

make it easier to control and manipulate the qubit states. (Typically, single-qubit gates take ∼

5 ns, and two-qubit gates take ∼ 50 ns [5–7]). On the other hand, strong interactions induce
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increased qubit decoherence in superconducting devices [10, 13]. Especially, imperfections

in the material bulk and on the many interfaces of the device (metal-to-air, metal-to-substrate,

substrate-to-air, etc.) may interact with the qubit degree of freedom uncontrollably [11], yield-

ing limited coherence times in many widely-used superconducting qubits. Based on the most

recent research results, the coherence times of superconducting qubits can currently reach 1 ms

[3, 15–17]. (In several experiments [18–20], qubit depolarization times well exceed 1ms, but

dephasing times are still limited to the order of 10 `s). The ratio of qubit coherence time to

the typical duration of a qubit gate is still considered low (103–104) [8]. Largely limited by

decoherence, the fidelity of two-qubit gates, which is usually considered one important metric

for assessing the performance of a qubit platform, is still below 99.9% on superconducting qubits

[3, 21–23]. Quantum error correction for large-scale superconducting circuits is still beyond

our reach, partly due to the limited coherence times and gate fidelities. These problems place

superconducting qubits, although one of the leading competitors, in the noisy intermediate-scale

quantum (NISQ) era [3, 24]. To help readers understand the advantages and disadvantages of

the superconducting qubits in a more quantitative manner, in TABLE 1.1 we directly compare

several important metrics of superconducting qubits and trapped-ion qubits, another leading and

well established competitor.

Earlier works have identified multiple relevant noise channels, including dielectric loss [26–

28], charge noise [13, 29], flux noise [30, 31], critical current fluctuations [32], photon-shot

noise [33, 34], quasi-particle tunneling [35, 36], etc. To date, methods to eliminate some or all of

these noise channels have yet to be discovered, but researchers have made tremendous progress

in mitigating noise, specifically by optimizing qubit designs [37–41], improving materials [16,

28, 42], and inventing new control protocols [43–46]. We showcase a list of noticeable advances
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Table 1.1. A comparison between superconducting and trapped-ion qubits on several
important metrics. The range of parameters shown in the table entries indicate the
typical values from some state-of-the-art experiments, as summarized in recent reviews
[3, 8]. Approximate ranges are meant to give the readers a sense of their difference in
magnitude. *This number has been increased to 66 according to a recent preprint [12].
**This number has been updated to 32 according to IonQ’s recent news [25].

Superconducting qubit Trapped-ion qubit
Coherence time 10-2 – 1 ms 10-1 – 103 s

Single-qubit gate infidelity 10-4 – 10-2 10-6 – 10-3

Single-qubit gate duration 1 – 10 ns 1– 10 `s
Two-qubit gate infidelity 10-3– 10-2 10-3 – 10-2

Two-qubit gate duration 10 – 103 ns 1 – 103 `s
Largest size of fully controlled systems 53* 20**

in these directions in the following. Toward the optimization of circuit configurations, Koch

et al. [37] and Manucharyan et al. [47] proposed the designs of the transmon and fluxonium

qubits, which are especially used to tackle the harmful 1/ 5 charge noise. To date, these two

types of qubits are still leading in coherence times over all other variants of superconducting

qubit [15–17]. (Recently, Somoroff et al. have demonstrated over 1 ms )1 and )2 in a fluxonium

qubit [15].) Beside these two types of qubits, a number of novel qubit designs, usually referred

to as protected qubits, have gained increased research momentum due to their potentially much

enhanced coherence times [20, 38, 41, 48, 49]. Noticeably, the first zero-pi qubit, originally

proposed by Brooks et al. [50], has been manufactured by Gyenis et al. [20] and exhibited a long

depolarization time as well as a favorable dephasing time. Toward the improvement of materials,

Place et al. have shown that replacing niobium by tantalum as the superconducting metal can

reduce the microwave loss at metal surfaces and significantly improve the transmon relaxation

time to 0.3 ms [16]. Following this work, Wang et al. recently have demonstrated 0.5 ms )1 by

improving metal processing [17]. On control protocols, schemes based on continuous drives and
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pulse sequences are developed to especially mitigate the ubiquitous 1/ 5 noise [45, 46, 51–55].

Among them, the demonstrations of the dynamical decoupling technique and dynamical-sweet-

spot operation have both raised the dephasing time by at least an order of magnitude [46, 51,

56]. All the efforts combined have continuously pushed the coherence times of superconducting

qubits to new levels. We use Fig. 1.1 to demonstrate the trend of these improvements over the

last two decades.

C
C

C(Quantronium)

Fx

Fx

T

Fm

Fx

T(3d)
T(3d)

T

Fm

Fm(3d)
Fm(3d)

Fm

T

T

Fm(3d)

T(3d)

Fx

Figure 1.1. The evolution of the coherence times of superconducting qubits based on
start-of-art demonstrations over the last two decades. Most of the data are obtained
by the courtesy and permission of M. Kjaergaard. Some additional data reflects the
progress after the publication of Ref. [3], showing the experimental measurements from
Refs. [15–19, 28, 29, 40, 47, 51, 57–66]. Note that in this plot, we only showcase the
results of superconducting qubits in the narrow sense, i.e., the Josephson-junction based
qubits. We acknowledge that researchers have also made remarkable progress in hybrid
qubits and cavity-based qubits [67–77]. The dephasing-time data shown in this plot
are obtained by Ramsey or echo measurement. We use “C”, “T”, “Fx” and “Fm” to
abbreviate the charge, transmon, flux and fluxonium qubits.

The discussion above has been centered around the downside of noise and mitigation strate-

gies. However, it would not only be unrealistic but also unwise to think of eliminating all noise
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Noise

Bad for

Good for

State storage
Gate operations
Readout
Active QEC

Resetting
State preparation
Passive QEC

Figure 1.2. A schematic showing the different roles of noise in quantum information
processing based on superconducting qubits.

channels. In fact, the engineered energy loss in the superconducting circuits is crucial for the

initialization and measurement of the qubit states [78]. Beyond the simplest applications, many

research groups have also explored using carefully designed qubit-environment coupling to de-

sign or optimize quantum control and noise protection protocols. For example, researchers have

used noise engineering to realize state cooling, arbitrary state stabilization and autonomous error

correction [70, 78–84]. The last application has been a research hot spot in quantum information

processing based on bosonic qubits, where much enhanced coherence has been observed using

such passive correction schemes [70, 80, 84, 85]. In short, carefully tuned noise can render

qubits insensitive to the unwanted and unavoidable noise. Fig. 1.2 summarizes the discussion

above.

Both positive and negative roles of noise have placed it in the spotlight of research on

superconducting qubits. This motivates the theme of this thesis: developing strategies to

not only mitigate harmful effects of noise, but also leverage it to the advantage of quantum
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information processing with superconducting qubits. In the following, we will give an outline

of this thesis.

In Chapter 2, we introduce in detail the quantum master equation, which is a useful tool

for describing qubit state evolution in an open system. We particularly focus on the Floquet

version of this equation, which deals with a periodically driven system. One can reduce this

equation to one that describes an undriven system by replacing the time-periodic Hamiltonian

by a time-independent one. In Chapter 3, we review in more detail the development of two

aforementioned superconducting qubits, namely, the transmon and fluxonium qubits. They are

the workhorses behind the research that will be presented in this thesis. In Chapter 4, we first

introduce our progress on noise engineering. We present in detail our theory and experimental

work on the universal stabilization of single-qubit states, with a tunable coupler tailoring the

interaction between the qubit and the noisy bath. In Chapter 5, we turn to the direction of noise

mitigation, and introduce a novel noise-protection scheme using the dynamical version of qubit

sweet spots. We develop the connection between such sweet spots and the quasi-energy extrema

of the Floquet states. In Chapter 6, we extend our single-qubit system to a composite one,

and introduce the concept of a revolver qubit. Using this dynamically encoded qubit, we could

achieve double protection from both depolarization and pure dephasing. In the appendices,

we present some details about rotating wave approximation, Born-Oppenheimer approximation,

adiabatic Floquet theory and discussion of other 1/ 5 noise protection schemes.
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CHAPTER 2

Quantum Master Equation

2.1. Secular Redfield Floquet master equation

The quantum master equation is a widely-used tool for simulating an open quantum system.

In this section, we first focus on a more general scenario, where a time-periodically driven

system is coupled to a large bath, to derive the Floquet quantum master equation [86, 87]. This

equation lays the basis for the discussion in Chapter 5 and 6. By removing the time dependence

in the Hamiltonian, the equation will naturally reduce to the usual master equation describing

an undriven system.

We start the derivation by writing the Hamiltonian that describes the total system, which is

composed of the subsystem of interest, the bath and their coupling, as

�̂ = �̂@ (C) + �̂� + �̂� . (2.1)

Above, the qubit Hamiltonian is periodic in time, i.e., �̂@ (C + )) = �̂@ (C), where ) denotes

the driving period. We restrict our discussion to the case where �̂� and �̂� are both time-

independent, although the scenario where either or both of them vary with time could also be of

interest [46, 88]. To approach, we need information about the closed-system dynamics governed

only by Hamiltonian �̂@ (C), which can be easily derived if we know the Floquet states and their
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quasi-energies. By solving the Floquet equation,[
�̂@ (C) − 8

m

mC

]
|F 9 (C)〉 = n 9 |F 9 (C)〉, (2.2)

we obtain the Floquet states |F 9 (C)〉 with corresponding quasi-energies n 9 . Note that the solution

of |F 9 (C)〉 is required to be time-periodic with the same period ) . Using the solutions, we can

straightforwardly express the closed-system propagation operator as

*̂@ (C, 0) =T exp
[
−8

∫ C

0
�̂@ (C′)3C′

]
=

∑
9

|kF(C)〉〈kF(0) |, (2.3)

with |kF(C)〉 ≡ |F 9 (C)〉 exp(−8n 9 C), and T is the time-ordering operator. Beside the propagator

for the system, we also define the bath propagator *̂� (C, 0) = exp[−8
∫ C

0 �̂�3C
′]. The two of them

combined give us the unperturbed propagator of the full system *̂0(C, 0) = *̂@ (C, 0)*̂� (C, 0). The

density operator in the interaction picture, defined by d̃(C) ≡ *̂†0 (C)d(C)*̂0(C) [here d(C) denotes

the density operator in the lab frame] satisfies the von Neumann equation

3d̃(C)
3C

= −8[�̃� (C), d̃(C)], (2.4)

where �̃� (C) = *̂0(C)†�̂�*̂0(C). The next two steps are standard [86]: we first integrate the two

sides of Eq. (2.4) and obtain

d̃(C) = d̃(0) − 8
∫ C

0
3B

[
�̃� (B), d̃(B)

]
; (2.5)
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then we insert Eq. (2.5) back into the right-hand side of Eq. (2.4) and trace over the bath degrees

of freedom, to arrive at

3d̃@ (C)
3C

= −
∫ C

0
3BTr�

[
�̃� (C),

[
�̃� (B), d̃(B)

] ]
. (2.6)

Here, we define d̃@ (C) ≡ Tr� d̃(C).

In principle, we could insert Eq. (2.5) into the von Neumann equation iteratively. However,

such an operation will only over-complicate the problem, especially when the system-bath

coupling is considered weak. Here, we introduce the first approximation.

Born approximation.– If the system-bath interaction is sufficiently weak, and the size of the

bath is sufficiently large, the dynamics of the system only negligibly affects the bath. In this

situation, we can safely neglect the correlation between the system and bath, and approximate

the total density operator as d̃(B) ≈ d̃@ (B) ⊗ d̃� on the right-hand side of Eq. (2.6), where d̃�

describes the thermal equilibrium state of the bath (still in the interaction picture). This will

yield an integro-differential equation, which is still not sufficiently simplified.

After the replacement of d̃(B) by d̃@ (B) ⊗ d̃�, the von Neumann equation for d̃@ (C) has no

dynamics of the bath degree of freedom anymore. The new problem is that, the evolution of

the system’s density operator depends on its full history, which makes this equation numerically

challenging to solve. We further assume that the decay time of the bath correlation is much

shorter compared to that of the system. In this case, the bath correlation function already

approaches zero before d̃@ significantly changes. In this situation, the integration over B where

d̃@ (B) differs significantly from d̃@ (C) will minimally contribute to the whole integral, which

allows us to further replace d̃@ (B) ⊗ d̃� by d̃@ (C) ⊗ d̃�. After this, we finally obtain an ordinary

differential equation that is local in time. The approximation described here is also considered
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part of the Markovian approximation in literature [86]. Note that the system-bath correlation

could be important if the system-bath coupling is not sufficiently weak, or the size of the bath is

not sufficiently large [89].

By completing these steps, we arrive at the equation governing the evolution of the partially

traced density operator in the interaction picture,

3d̃@ (C)
3C

= −
∫ C

0
3gTr�

[
�̃� (C),

[
�̃� (C − g), d̃@ (C) ⊗ d̃�

] ]
, (2.7)

where B is replaced by C − g. This equation is called the Redfield equation. One caveat of this

equation is that it does not always conserve positivity of the density matrix, especially under

a strong system-bath coupling. This problem will be later discussed in more detail after we

make an appropriate secular approximation. For this approximation, the information about the

Floquet states and quasi-energies will be required. Up to the step of Eq. (2.7), the derivation is

not different from that of an undriven system given in many textbooks.

To prepare for the secular approximation, we first expand the lab-frame interaction Hamil-

tonian as

�̂� =
∑
U

ÂU ⊗ B̂U, (2.8)

where ÂU only acts on the system and B̂U only acts on the bath. We can require ÂU and B̂U to

be traceless (if they are not traceless, we can take out the trace and incorporate that part with

�̂@ or �̂�). In the interaction picture, they are transformed to ÃU (C) = *̂†@ (C, 0)ÂU*̂@ (C, 0)

and B̃U (C) = *̂†� (C, 0)B̂U*̂� (C, 0). Toward the secular approximation, it is important to identify

the fast-rotating terms in the differential equation. For this purpose, we resolve the different
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frequency components of ÃU (C) by using Eq. (2.3) to expand ÃU (C) as

ÃU (C) =
∑
9 9 ′
〈F 9 ′ (C) |ÂU |F 9 (C)〉 exp[−8(n 9 − n 9 ′)C] |F 9 (0)〉〈F 9 ′ (0) |

=
∑
9 9 ′:

AU 9 9 ′: exp[−8(n 9 − n 9 ′ + :l3)C] |F 9 (0)〉〈F 9 ′ (0) |, (2.9)

where

AU 9 9 ′: ≡
1
)

∫ )

0
3C〈F 9 (C) |ÂU |F 9 ′ (C)〉 exp(8:l3C) (2.10)

is the :th Fourier component of the time-periodic function 〈F 9 (C) |ÂU |F 9 ′ (C)〉. We further

define l̄ 9 9 ′: ≡ n 9 − n 9 ′ + :l3 for later convenience (these frequencies are called the filter

frequencies). Some filter frequencies are identical, for example, l̄ 9 9 : = l̄ 9 ′ 9 ′: for any 9 , 9 ′ =

0, 1, · · · # . It is convenient to define a set that contains all different filter frequencies F = {l|l =

l̄ 9 9 ′: for all applicable 9 , 9 ′, :}. Using this notation, we expand

ÃU (C) =
∑
l∈�
ÂU (l) exp(−8lC), (2.11)

where the coefficient �U (l) is derived as

ÃU (l) =
∑

9 , 9 ′,: 3 l̄ 9 9 ′:=l
ÃU 9 9 ′: |F 9 (0)〉〈F 9 ′ (0) |. (2.12)

We insert Eq. (2.9) into (2.7), and find

3d̃@ (C)
3C

=
∑
U,V

∑
l,l′∈F

exp[8(l′ − l)C]Γ+UV (l)

×
(
ÂV (l) d̃( (C)Â†U (l′) − Â†U (l′)ÂV (l) d̃( (C)

)
+ H.c., (2.13)
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where we define

Γ+UV (l, C) =
∫ C

0
3g exp[−8l(g − C)]〈B̃U (C)B̃V (g)〉

=

∫ C

0
3g exp(8lg)〈B̃U (g)B̃V (0)〉 (variable change C − g → g)

=

∫ ∞

−∞

3D

2c
(UV (D)

∫ C

0
exp[8(l − D)g]3g

=

∫ ∞

−∞

3D

2c
(UV (D)C sinc

[
(l − D)C

2

]
exp

[
8(l − D)C

2

]
, (2.14)

and (UV (l) =
∫ ∞
−∞ 3g exp(8lg)〈B̃U (g)B̃V (0)〉.

Secular approximation.–We assume that for any pair of filter frequencies (l, l′) that belong

to F, if they are not exactly the same and ÂU (l) and ÂU (l′) is finite, their difference |l − l′|

is always sufficiently large compared with the inverse of the time we are interested in (this time

is usually the system decay time). In this scenario, the rotating-wave approximation allows us to

neglect the terms in Eq. (2.13) with l ≠ l′. (See detailed discussion of RWA in Appendix A.)

If the assumption about the filter frequencies accidentally fails, we need to find another strategy

to carry out the secular approximation.

Let us assume that the above assumptions hold. The approximated equation can still be

further simplified, using the following two facts, namely (UV (D) = (∗
VU
(D) and sinc[(l −

D)C/2] exp[8(l − D)C/2] + C.c. = 2sinc[(l − D)C]. After this step, we finally have

3d̃@ (C)
3C

=
∑
U,V

∑
l

ΓUV (l, C)
(
ÂV (l) d̃@ (C)Â†U (l) −

1
2
Â†U (l)ÂV (l) d̃@ (C) −

1
2
d̃@ (C)Â†U (l)ÂV (l)

)
−

∑
U,V

∑
l

(∫ ∞

−∞

3D

2c
(UV (D)C sinc

[
(l − D)C

2

]
sin

[
(l − D)C

2

] )
× 8

[
Â†U (l)ÂV (l), d̃@ (C)

]
,

(2.15)
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where

ΓUV (l, C) ≡ 2
∫ ∞

−∞

3D

2c
(UV (D)C sinc [(l − D)C] . (2.16)

Eq. (2.15) is the secular Floquet Redfield equationwe have aimed for. We have two comments

before we proceed to the application of this equation. First, the last line of Eq. (2.15) contains

terms that are referred to as the Lamb shift. Researchers have experimentally studied the Lamb

shift in superconducting qubits induced by their coupling to a transmission line [90, 91]. As

usual, we will omit these terms in the following discussion. Our second comment is that, in the

definition Eq. (2.16), Csinc[(l − D)C] serves as a filter function over the noise spectrum (UV (D).

This function is peaked at D = l, with the peak width given by 2c/C. Therefore, the filter

function peak will grow narrower for longer times C.

At the end of this section, we briefly demonstrate how to reduce this equation for an undriven

system. In fact, the scenario of a static system is only a special case of that of a periodic drive.

Naturally, the eigenstates and eigenenergies derived from the time-independent Hamiltonian of

the static system are also the Floquet states and the quasi-energies. We only need to replace

|F0(C)〉 and n 9 by the eigenstate | 9〉 and eigenenergy � 9 in Eq. (2.3), which gives the propagator

*̂@ (C) =
∑
9 9 ′
| 9〉〈 9 | exp(−8� 9 C). (2.17)

The most noteworthy difference between the driven and undriven problems is that, for the latter

case the component AU 9 9 ′: with : ≠ 0 vanishes, since now the eigenstates are constant over

time. The filter frequencies will just take the values of � 9 − � 9 ′.
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2.2. Markovian approximation

When the bath’s correlation time is much shorter compared with the time of interest, we are

allowed to make another import approximation, the Markovian approximation.

In terms of the noise power and the filter function, the previous statement is reworded as

follows. A short bath correlation time implies that 〈B̃U (C)B̃V (0)〉 decays quickly with time, such

that the time domain the correlation function has a narrow peak width, which we denote as g'.

Then in the frequency domain, the peak width will be contrarily broad, approximately 2c/g'.

Recall that the filter function peak width is given by 2c/C. Therefore, if the time of interest,

which is usually the system decay time, is much longer than the bath correlation time, the filter

function cannot resolve the variation in ((D) due to a much broader peak width. This fact allows

us to replace the filter function by a Dirac delta function, which corresponds to replacing C by∞

in Eq. (2.16).

This step yields the Floquet Markovian master equation,

3d̃@ (C)
3C

=
∑
U,V

∑
l

(U,V (l)
(
ÂV (l) d̃@ (C)Â†U (l) −

1
2
Â†U (l)ÂV (l) d̃@ (C) −

1
2
d̃@ (C)Â†U (l)ÂV (l)

)
.

(2.18)

Note that the terms corresponding to the Lamb shift have been neglected here. We need to

point out that in a number of experiments, especially those where 1/ 5 noise is an important

contributor to the qubit decoherence, using the Markovian master equation will not give us the

correct description of the evolution of the qubit’s density matrix.
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2.3. Coherence times of a two-level system

In this last section of the chapter, we present a concrete example where we apply the Floquet

master equation to estimate qubit coherence time. We will finally arrive at expressions of the

qubit depolarization and pure-dephasing rates, given that the system is coupled to a Markovian

noise source where the Markovian master equation is applicable. The treatment of a system

coupled to a non-Markovian noise sourcewill be delayed toChapter 5whenwe discuss dynamical

sweet spots.

We first specify the Hamiltonian in Eq. (2.1) that governs the evolution of this system.

We assume that �̂@ (C) is a time-periodic Hamiltonian describing a driven two-level system,

and the qubit-bath coupling is given by �̂� = f̂[̂, where f̂ and [̂ are qubit and bath oper-

ators, respectively. To derive the propagator *̂@ (C), we use the Hamiltonian �̂@ (C) to solve

for the Floquet states and quasi-energies. Since the dimension of the Hilbert space is 2,

we only have two independent Floquet states denoted by |F 9 (C)〉 ( 9 = 0, 1). In the interac-

tion picture, the qubit-bath coupling is �̃� (C) = *̂
†
0 (C)�̂�*̂0(C), where *̂0(C) = *̂@ (C)*̂� (C),

*̂@ (C) =
∑
9=0,1 |F 9 (C)〉〈F 9 (0) | exp(−8n 9 C), and *̂� (C) = exp(−8�̂�C). The interaction term can

be further expressed as �̃� (C) = f̃(C)[̃(C), where f̃(C) = *†@ (C)f̂*̂@ (C) and [̃(C) = *†� (C)[̂*̂� (C).

The expansion in Eq. (2.9) is specified by

f̃(C) =
∑

:∈Z,`=±,q
6:` 2̂` (0) exp(−8l̄:`C). (2.19)
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Here, we define the Floquet counterparts of the Pauli matrices by

2̂+(C) = |F1(C)〉〈F0(C) |,

2̂−(C) = |F0(C)〉〈F1(C) |,

2̂q (C) = |F1(C)〉〈F1(C) | − |F0(C)〉〈F0(C) |. (2.20)

The frequencies l̄:,` appearing in Eq. (2.19) are the filter frequencies defined in Section 2.1,

namely

l̄:± = ∓n01 + :l3 , l̄:q = :l3 . (2.21)

Furthermore, the Fourier-transformed coupling matrix elements are given by

6:± =
l3

2c

∫ 2c/l3

0
3C 48:l3 C Tr@ [f̂2̂∓(C)] ,

6:q =
l3

4c

∫ 2c/l3

0
3C 48:l3 C Tr@

[
f̂2̂q (C)

]
, (2.22)

where Tr@ is the partial trace over the qubit degrees of freedom.

Inserting Eq. (2.19) into Eq. (2.15), we find the secular Redfield equation for this two-level

system

3d̃@ (C)
3C

=
∑
`=±,q

Z`

[∫ ∞

−∞
3l�` (l, C)((l)

]
D[2̂`] d̃@ (C), (2.23)

where

�` (l, C) = Z−1
`

∑
:

c−1C sinc[(l − l̄:`)C] |6:` |2 (2.24)
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denotes the filter functions from Section III, D[!̂] d̃@ = !̂ d̃@ !̂
† − ( !̂† !̂ d̃@ + d̃@ !̂† !̂)/2 is the

usual damping superoperator, and ((l) =
∫ ∞
−∞ 3C 4

8lC Tr� [[̃(C)[̃(0) d̃�] is the noise spectrum.

We have further introduced the abbreviations Z± ≡ 1 and Zq ≡ 1/2, and used 2̂` (0) → 2̂`.

The simplified Redfield equation (2.23) is reminiscent of the Lindblad form, and includes

three distinct terms ` = ± and ` = q that describe relaxation, excitation and pure dephasing of

the Floquet qubit. However, in place of fixed rates associated with the individual jump terms,

Eq. (2.23) still involves time-dependent rate coefficients given by

 ` (C) =
∫ ∞

−∞
3l�` (l, C)((l). (2.25)

This C-dependent integral implies that the instantaneous decay rates are also time-dependent

in general, unless the noise spectrum is exactly flat. Note that  ` (C) is not guaranteed to be

positive. Although ((l) is positive for all frequencies l [86], the function C sinc[(l − l̄:`)C]

can take on negative values. Therefore, the secular Redfield equation we have derived still does

not in general satisfy the Lindblad form, which implies that the density matrix obtained from

this equation is not strictly guaranteed to be positive. Fortunately, we only rarely encounter

cases of equation yields non-positive density matrices. Furthermore, certain choices of ((l)

and �` (l, C) will yield  ` (C) > 0 for relevant times C. For example, if the noise spectrum is

regular and the time we are interested in is sufficiently long, the narrowly peaked filter function

Csinc[(D − l)C] cannot well resolve the variation in the noise spectrum. Under this condition,

 ` (C) will be positive, given that
∫ ∞
−∞ C sinc[(D −l)C]3l = c is positive. (We have verified this

numerically using a couple of examples.)

If we further assume a short bath correlation time, we can carry out the Markovian ap-

proximation by taking C → ∞ in Eq. (2.25), and arrive at the two-level-system version of
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Eq. (2.18)

3d̃@ (C)
3C

=
∑

:∈Z,`=±,q
|6:` |2((l̄:`)D[2̂`] d̃@ (C). (2.26)

This formallows one to directly read off the resulting rateswhich are given by W± =
∑
: |6:` |2((l̄:±)

and Wq =
∑
: 2|6:q |2((l̄:q).

To help the reader connect these equations to more familiar results, we next briefly show how

the Floquet decoherence rates reduce to the ones for an undriven two-level system. The static

qubit Hamiltonian is given by �̂@ = Ω64f̂I/2, where Ω64 denotes the qubit transition frequency,

and f̂I is defined by |4〉〈4 | − |6〉〈6 |. This choice yields,

6:− = f64X0,: , 6:+ = f46X0,: , 6:q =
1
2
(f44 − f66)X0,:

l̄0± = ∓Ω64 l̄0q = 0.

Here, we define f9 9 ′ ≡ 〈 9 ′|f̂ | 9〉. Finally, we find

W± = |f64 |2((∓Ω64),

Wq = |f44 − f66 |2((0)/2, (2.27)

which replicates the usual results derived using Fermi’s golden rule.
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CHAPTER 3

Introduction to the Transmon and Fluxonium Qubits

In this section, we present a short introduction to two of the most successful superconducting

qubits, namely, the transmon and fluxonium qubits. Both of these qubits are leading in qubit

performance, especially in coherence times and gate fidelities. More importantly, we particularly

choose to introduce these two qubit variants because these two types of qubits provide the

hardware on which we base our following research work.

Our very short review does not pursue an experimental perspective with detailed discussion

of the circuit’s architectural layout, fabrication and control and readout techniques. We will

rather focus on the lumped-element models of these qubits, and especially address the topic

of qubit coherence times, which is in line with the theme of this thesis. We acknowledge that

most of the simulations shown below are assisted by the python toolbox scqubits developed

by Koch, Groszkowski and collaborators.

3.1. Transmon

The transmon qubit is a derivative of an earlier qubit design – the Cooper pair box [29,

57, 92–95]. In 1999, Nakamura et al. first observed coherent oscillations in this type of qubit

[57]. We show the lumped-element circuit diagram of the Cooper-pair box in Fig. 3.1 (a). The

standard circuit quantization procedure yields the following qubit Hamiltonian

�̂t = 4�� (=̂ − =6)2 − �� cos(î). (3.1)
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Transmon Fluxonium

(a) (b)

Figure 3.1. Lumped-element circuit diagrams of the transmon and fluxonium qubits.
The different coloring in the diagrams indicates the separate superconducting islands in
these circuits. (We imagine that we have a linear geometric inductor in the fluxonium
circuit.) Because of different circuit topology, the transmon circuit consists of two islands
weakly linked by a Josephson junction, while the fluxonium has no separate island.

Above, �� = 42/2� denotes the qubit charging energy (� is the total capacitance across the

junction), and �� is the Josephson energy related to the junction. The Cooper pair box can

usually be controlled by a gate voltage, which allows us to tune the parameter =6 in Eq. (3.1).

As shown in Fig. 3.1, the Cooper pair box has two separate islands, connected only by a weak

junction. Since the Josephson junction can only tunnel electrons in pairs (called Cooper pairs),

the charge operator =̂, which describes the number of Cooper pairs transferred between the

islands, only takes discrete eigenvalues. Meanwhile, q̂ is a periodic operator that denotes the

gauge invariant phase difference between the two islands. The commutation relation of this pair

of operators is [4±8î, =̂] = ±4±8î.

Before the proposal of the transmon qubit, researchers mostly explored the Cooper-pair

boxes in the charge-qubit regime (�� ' ��) [29, 57, 95]. In this regime, the qubit enjoys

large anharmonicity, especially at =6 = 1/2, as shown in Fig. 3.2 (a). However, the benefit of

anharmonicity comes at the cost of strong noise sensitivity, especially to 1/ 5 charge noise. The
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interaction of the qubit with this noise source can be modeled as fluctuations of the gate charge

=6. In the charge-qubit regime, the variation of the transition energies with respect to different

charge offset =6, which we call the charge dispersion, is significant as shown in Fig. 3.2 (a),

which makes the qubit especially sensitive to this type of noise.

Researchers have found optimal working points to suppress the qubit’s first-order charge

dispersion to zero [95]. We can easily check in Fig. 3.2 that at the “sweet spot” =6 = 0.5, the

linear energy dispersion equals zero, i.e., mΩ64/m=6 = 0. Indeed, in Ref. [13], researchers have

observed over an order of magnitude improvement of )2 by tuning the gate charge to the sweet

spot. However, the coupling strength between the qubit and 1/ 5 charge noise source is so strong

that the fluctuations induced by 1/ 5 charge noise (and quasi-particle tunneling) constantly moves

the qubit off the sweet spot [37]. In this situation, suppressing the linear charge dispersion is not

enough. These effects limited the pure-dephasing time of charge qubits at the sweet spot to the

order of 1 `s [13, 95]. The spectrum shown in Fig. 3.2 (a) is simulated using the same circuit

parameters as in Ref. [95].

In 2007, Koch et al. found that, going to the limit of �� � �� exponentially suppresses the

charge dispersion of a Cooper-pair box [37], which motivates the design of the transmon qubit.

To see this, we simulate the energy spectrum of an experimentally realized transmon qubit in

Ref. [61], with ��/�� = 70. The energy dispersion in this parameter regime is exponentially

suppressed, which offers the transmon excellent insensitivity to charge noise. The cost is that

the transmon qubit has a much smaller anharmonicity compared with that of the charge qubit

(the anharmonicity is approximated by −�� in the �� � �� limit). Fortunately, the reduction

is only polynomial compared with the exponential suppression of the charge dispersion [37].
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(a) (b)

Sweet
 Spot

Figure 3.2. Numerically calculated spectra of Cooper pair boxes with respect to offset
charge from two experiments [61, 95]. (a) shows the results for a Cooper pair box with
��/�� = 1.27, which yields significant charge dispersion. The double-headed arrows
indicate the locations of the sweet spots used in Ref. [95]. (b) shows the spectrum of a
transmon with ��/�� = 70, which yields almost flat energy levels as a function of the
offset charge =6.

Increasing the ratio of ��/�� is usually realized by adding a shunting capacitor across the

two islands separated by the Josephson junction, to reduce the effective charging energy of the

Cooper pair box. By optimizing the size and shape of the shunting capacitors to reduce the

participation at the lossy surfaces, researchers have significantly reduced the surface loss in

the transmon qubit, which helps improve the transmon depolarization time [3, 11, 16, 27, 28].

Probably because of the much improved coherence times and relatively simple circuit structure,

the transmon qubit is today’s most widely-used superconducting qubit not only in academia but

also in industry.
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3.2. Fluxonium

The strategy of sacrificing qubit anharmonicity for longer coherence times has enabled a

series of important experiments on quantum information processing using the transmon qubits [4,

23, 82, 96–98]. However, the limited anharmonicity also causes trouble to quantum information

processing in a larger qubit network, especially to the implementation of multi-qubit gates [4].

To avoid the trade-off relation between qubit anharmonicity and charge-noise sensitivity, we

need a circuit that is beyond the framework of Cooper pair boxes. One alternative strategy to

add an inductor across the junction, instead of shunting the charge qubit by a capacitor. This

idea gives us the design of a fluxonium qubit, which was first proposed by Manucharyan et al.

[47]. The lumped-element fluxonium circuit is shown in Fig. 3.1 (b), whose Hamiltonian is

�̂f (=6, q4) = 4�� (=̂ − =6)2 − �� cos î + 1
2
�! (î + q4)2, (3.2)

where �! = (Φ0/2c)2/! is the inductive energy of the fluxonium, ! denotes the linear in-

ductance, and Φ0 is the flux quantum. Note that a new control parameter q4 = 2cΦ4/Φ0 is

introduced to the Hamiltonian, which denotes the reduced flux that penetrates the fluxonium

loop.

Different from capacitive shunting, introducing an inductor to the circuit abruptly changes

the circuit topology. As illustrated in Fig. 3.1, the fluxonium circuit does not have separate

islands (considering an ideal geometric inductor). Given the new circuit topology, the charge

operator =̂ no longer takes on discrete eigenvalues. Also, the phase operator î, which now

describes the phase difference across the inductor, is no longer periodic. Both of the operators

take on continuous eigenvalues from −∞ to ∞. The new boundary conditions imply that the
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conjugate pair now satisies the commutation relation [î, =̂] = 8, which is similar to that satisfied

by the position and momentum operators of an elementary particle.

The new commutation relation renders the fluxonium spectrum independent of =6 [99]. To

see this, we first define a unitary transformation *̂6 (=6) = exp(−8=6 î), and then transform the

Hamiltonian according to it. We find *̂6 (=6) =̂ *̂†6 (=6) = =̂+=6, and *̂6 î *̂†6 (=6) = î, therefore,

*̂6 (=6)�̂f (=6, q4)*̂†6 (=6) = �̂f (0, q4). This relation reveals that the DC offset in =6 does not

modify the qubit’s eigenenergies at all. Because of this, the fluxonium qubit can be considered

intrinsically protected from dephasing by 1/ 5 charge noise. Such protection scheme is not

available to Cooper-pair boxes due to a different commutation relation.

The special commutation relation also leads to a useful relation between the charge and

phase matrix elements

〈 9 |=̂| 9 ′〉 = (−8) × 1
8��
〈 9 | [î, �̂f] | 9 ′〉

= (−8) × 1
8��
(� 9 ′ − � 9 )〈 9 |î| 9 ′〉. (3.3)

(We have already set =6 = 0 since this parameter is irrelevant for a fluxonium.) This relation

will be of interest when we discuss the revolver qubit in Chapter 6. Note that Eq. (3.3) does not

hold for transmon qubits or Cooper pair boxes in general.

Compared with the transmon qubit, the fluxonium has three circuit parameters to tune.

Particularly, it allows us to choose parameters that yield much larger anharmonicity than the

transmon, while still maintaining charge-noise insensitivity. However, the cost of introducing

the additional inductor is that the junction and the inductor closes the circuit loop, leaving the

fluxonium qubit subject to fluctuations of the penetrating flux q4. The noise spectrum that
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(a) (b)

Sweet spot

Figure 3.3. Energy spectrum and charge matrix element of a fluxonium qubit. (a)
shows the fluxonium spectrum as a function of the external flux. The red arrow points
to the sweet spot at q4 = c. (b) presents the charge matrix elements as a function of
flux. We can observe that there is a dip of the off-diagonal matrix element around the
aforementioned sweet spot. We use the circuit parameters of the qubit in Ref. [15], which
has coherence times over 1 ms at the sweet spot.

characterizes such fluctuations also has a 1/ 5 behavior at low frequencies. We can observe the

relatively strong flux dispersion of the fluxonium qubit in Fig. 3.3. Fortunately, it has been found

that the typical amplitude of flux fluctuations (∼ 10−6Φ0) is much weaker than that for charge

(∼ 10−4 4) [100]. The relatively weak noise amplitude renders the 1/ 5 flux noise’s higher-order

contribution to decoherence subdominant compared with that from several other noise channels.

Because of this, sweet-spot operation by biasing the penetrating flux for a vanishing derivative

of energy difference has proven to be impressively successful in improving the dephasing time

of a fluxonium qubit [see Fig. 3.5 (b) for experimental evidence] [40, 66].

To date, the most favorable fluxonium working point is probably the sweet spot at half-

integer flux quantum [15, 40, 66, 101]. At that sweet spot, i.e., q4 = c, the fluxonium qubit is

to the first order insensitive to the low-frequency flux noise. (There is also interesting physics
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with the flux slightly away from the sweet spot, which we will sketch in the next paragraph.)

We list a couple of possible advantages of operating the fluxonium at this sweet spot rather

than at q4 = 0. First, at this particular sweet spot, the off-diagonal charge matrix element

〈6 |=̂|4〉 is small, which potentially leads to less capacitive loss [15] [See Fig. 3.3(b) for the

matrix element’s magnitude over different fluxes]. Second, quasi-particle tunneling minimally

contribute to fluxonium depolarization at q4 = c [102]. Essentially, we find that the matrix

element 〈6 | sin(î/2) |4〉 reaches zero at the half-integer sweet spots. Third, the fluxonium

usually has large anharmonicity at the sweet spots with half-integer flux quantum [see spectrum

in Fig. 3.3 (a)]. One disadvantage may be that the frequency is too low for qubit operations

including initialization, gates, and readout. However, Zhang et al. have demonstrated several

strategies to solve these problems [66].

(a)

(b)

(c)

(d)

Figure 3.4. Schematic of the energy spectrum and wave functions of a fluxonium qubit
operated close to half-integer flux. The central plot shows the spectrum around q4 = c.
On the sides, we plot the wave functions of fluxonium at two different fluxes: (a) and
(b) show the wavefunctions of the ground and first excited states at the sweet spot, i.e.,
q4 = c; (c) and (d) plot those at q4 = 0.52 × 2c. (We use Δ to denote the fluxonium
splitting at the sweet spot.)
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Interestingly, even in the small vicinity of that sweet spot, the qubit coherence times can

differ characteristically [66]. To help illustrate this, we draw the spectrum and wavefunctions

with the control flux located in the aforementioned flux range. Away from the flux sweet spot,

the qubit has wavefunctions with disjoint support, as shown in Fig. 3.4 (c) and (d). This leads to

a suppression of the off-diagonal matrix elements 〈6 |î |4〉, relevant for relaxation and excitation,

and hence to a relatively long depolarization time. The pure-dephasing time will be short, on

the other hand, since the flux dispersion mΩ64/mqdc is significant away from the flux sweet

spot (see the central plot of Fig. 3.4). At the flux sweet spot (q4 = c), the situation changes:

disjointness of eigenfunctions is lost, and depolarization times are correspondingly shorter.

Since the flux dispersion mΩ64/mqdc vanishes at the sweet spot, the qubit is less sensitive to

1/ 5 noise, resulting in much longer pure-dephasing times. The behavior of coherence times

described above is clearly observed in a recent experiment [66].
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Figure 3.5. The coherence times of a heavy fluxonium realized in Ref. [66]. (a) and
(b) show the measurement of depolarization and dephasing times (by echo experiments),
respectively. Insets in (a) and (b) show the population decay from the excited state and
an echo measurement, both at the sweet spot.



46

CHAPTER 4

Noise Engineering: Universal Stabilization of Single-Qubit States

4.1. Bath engineering and tunable coupler

In this chapter, we focus on the positive roles of noise. As a recap of the discussion in

Chapter 1, dissipation in superconducting elements plays an essential role in qubit operations

including initialization, state preparation and autonomous quantum error correction [78–83, 85,

104–106].

The simplest example is probably the ground-state initialization of a qubit whose energy

splitting is much larger than the temperature. In this case, nature willingly does us the favor of

cooling the qubit to the ground state. However, nature cannot help us with the reset of qubits

with a smaller splitting, or the preparation of qubit states other than the ground state. Bath

engineering is a technique developed to solve these problems [66, 79, 83]. An early impressive

demonstration of this [79] shows that the engineering of the coupling between the qubit and the

bath can counteract unwanted thermal noise in a flux qubit and reduce the effective temperature

as much as 100 times. The stabilization in a qubit’s excited state is later achieved by carefully

engineering the qubt-resonator coupling and adding another drive [106]. In 2012, Murch et al.

[82] demonstrated a scheme which can stabilize arbitrary single-qubit states.

In the meantime, the application of tunable couplers in superconducting qubits also attracted

a significant amount of research effort [22, 96, 103, 107–115]. Couplers are widely used to tune

Author contribution: This chapter summarizes the work published in Refs. [96, 103]. Ziwen Huang provided
theoretical support for the experiment shown in in [96], and carried out the majority of the calculations and
simulations in [103].
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the coupling strength between two quantum elements (e.g., between two qubits, or between one

qubit and one resonator). They are particularly useful for readout and two-qubit gates [21, 22,

108, 109, 111, 112, 115, 116]. Recently, researchers have carried out a series of experiments

using this technique to demonstrate two-qubit gates in transmon qubits with state-of-the-art

fidelities [21, 22].

The convenient tuning of the coupling strength motivates us to consider whether we can

apply the tunable coupling technique in bath engineering to provide alternatives or even improve

the previous qubit stabilization schemes.

4.2. Model of the composite system

This thought motivated our collaborators and us to explore qubit stabilization schemes

that employ tunable couplers. In Ref. [96], our collaborators experimentally demonstrated a

scheme for stabilizing a transmon qubit in an arbitrary superposition state, for which we provided

theoretical support. Following thiswork, we further explore theoretically alternative stabilization

schemes for higher stabilization fidelities, and investigate more carefully the stabilization time

[103]. Different from the earlier experimental work, the theory project focused on stabilizing a

fluxonium qubit.

In Fig. 4.1, we show the diagrams of the lumped-element circuits that we use for qubit

stabilization in these two references. A full analysis of the circuit and a detailed derivation of the

circuit Hamiltonian is lengthy, therefore we decide to relocate them to later parts of this chapter.

In the first few sections, we will focus on the effective and much simplified Hamiltonian that

describes the coupled qubit and resonator, with the coupler integrated out. The effective model

is essential identical for the two circuits.
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Figure 4.1. Lumped-element diagrams for circuits used in Ref. [96] and [103]. The
different coloring indicates different components of the circuit. In both diagrams, ele-
ments in red coloring belong to the qubit degree of freedom, those in blue belong to the
coupler mode, and the purple elements form the resonator. The three nodes are denoted
by 0,1 and 2.

In fact, both of the circuits in (a) and (b) share the “qubit-coupler-resonator” structure,

where the coupler has a much higher excitation energy, such that only the ground state of the

coupler mode will be occupied. The high-energy coupler only serves as a passive mediator.

Adiabatic elimination of this mode can be carried out by either Born-Oppenheimer approxi-

mation or Schrieffer-Wolff transformation truncated to leading order, and the resulting effective

Hamiltonian only has the resonator and qubit modes. For the purpose of qubit state stabilization,
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the resonator is designed to be much lossier than the qubit. The static coupling between the

two active elements is dispersive, since the detuning between the qubit and resonator is much

larger than the coupling strength. Importantly, such coupling will introduce dispersive shifts

to the qubit. To see this, we further adiabatically eliminate the static coupling, and find the

Hamiltonian in the dressed basis

�̂eff = lA 0̂
†0̂ + l@f̂+f̂− − jf̂I 0̂†0̂ + 6(C) (0̂† + 0̂) (f̂+ + f̂−), (4.1)

where 0̂ (0̂†) and f̂−(f̂+) correspond to the lowering (raising) operators for the resonator and

qubit, respectively. The third Pauli operator fI is related to the lowering and raising operators

by f̂I = 2f̂+f̂− − 1. The coefficient j is the dispersive shift between the qubit and resonator

modes. We use 6(C) to denote the effective coupling strength between the two active elements.

4.3. Photon conserving and non-conserving interaction

To prepare for the discussion of state stabilization, we first introduce the two key building

blocks of our stabilization schemes, the photon conserving and non-conserving coupling between

the qubit and resonator. InRefs. [96, 103]we refer to themas the red- and blue-sideband coupling.

These two types of coupling can be activated by modulating the coupling strength 6(C) at the

qubit-resonator difference or sum frequencies. This will become evident after we move to an

appropriate rotating frame.

First, we study the case 6(C) = 26n' cos(l3C) with the modulation frequency given byl3 =

|lA − l@ | to activate the photon-conserving or red-sideband coupling. (The factor 2 is used to

simplify the notation in the following discussion.) The rotating-frame transformation is defined

by the time-dependent unitary *̂rot = exp[8lA 0̂†0̂C + 8l@f̂+f̂−C], and the effective Hamiltonian
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(4.1) is transformed by

�̃nonRWA = *̂ (C)�̂eff*̂
†(C) + 8 ¤̂* (C)*̂†(C)

= 6n' (0̂4−8lA C + H.c.) (f̂−4−8l@C + H.c.) (48l3 + H.c.) − jf̂I 0̂†0̂. (4.2)

In the parameter regime 6n', j � 2l3 , |lA +l@ −l3 |, |lA +l@ +l3 |, we are allowed to neglect

all oscillatory terms above, and only keep the following

�̃eff = 6n' (0̂f̂+ + 0̂†f̂−) − jf̂I 0̂†0̂. (4.3)

The first term is the red-sideband coupling that we referred to previously. The second term, i.e.,

the dispersive shift, is not particularly useful here and should be made small. This specific type

of coupling brings states |< + 1, 4〉 and |<, 6〉 into resonance. Here < stands for the photon

occupation number in the resonator and 6 and 4 denote the qubit ground and first excited state.

To activate the blue-sideband coupling, we instead choose 6(C) = 26n� cosl3C, where

l3 = lA +l@ (disregarding the dispersive shift term). The rotating-frame transformation is the

same as before, but the fast-rotating terms to neglect are different. The effective Hamiltonian in

this case is given by

�̃eff = 6n� (0̂†f̂+ + 0̂f̂−) − jf̂I 0̂†0̂. (4.4)

In this case, the states |<, 6〉 and |< + 1, 4〉 are brought into resonance (again disregarding the

dispersive shift term).

Ref. [96] presents the experimental evidence of these two type of couplings by measuring

the resonator’s transmission signal with an extra weak probing tone applied to the resonator.
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|0, g〉

|1, e〉
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Figure 4.2. Transmission measurement through the resonator in the circuit shown in
the top plot of Fig. 4.1. The figures are adapted from the Ref. [96]. (a) and (b) present
transmission signals with the red- and blue-sideband coupling turned on, respectively.
The lower half of (b) shows the numerical simulation of the transmission data using the
effective Hamiltonian 4.4. (c) presents a four-level diagram to illustrate how the system
population is trapped in state |1, 4〉 in (b). (d) uses a more complicated level diagram to
explain the novel structure in (b) with an extra probing turned on.

We show the transmission data in Fig. 4.2 and explain in detail the roles played by these two

different types of interaction.

In (a), the red-sideband coupling is activated, which hybridizes |0, 4〉 and |1, 6〉. We observe a

typical vacuum Rabi splitting, showing transitions from |0, 6〉 to ( |0, 4〉 ± |1, 6〉)/
√

2. Repeating
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the same measurement with the blue-sideband coupling turned on yields characteristically

different structures of resonance bands. The features shown in Fig.4.2 (b) can be understood

conceptually by considering the energy level diagram of the qubit-resonator system. We first

focus only on the blue-sideband coupling, using Fig. 4.2 (c). The figure shows the relevant energy

eigenstates and processes leading to coherent and incoherent transitions among them. For the

stabilization schemewhichwewill discuss later to work, the blue-sideband coupling strength 6n�

and resonator dissipation rate ^ are chosen to be much larger than the qubit decay and dephasing

rates W, Wq. To assess the dynamics of the system, consider a quantum trajectory starting in the

ground state |0, 6〉. The blue-sideband coupling quickly shifts occupation amplitude to the state

|1, 4〉 on the timescale ∼ (6n�)−1. The |1, 4〉 state will typically lose its photon in a short time

∼ ^−1 and thus enter the target state |0, 4〉. Relative to the timescales involved so far, qubit decay

is slow. Whenever the qubit induces the system to return to the ground state |0, 6〉, the described

process starts over, thus making |0, 4〉 the state predominantly occupied during the dynamics.

In other words, the system will be stabilized in |0, 4〉.

Given such a stable state, the weak probing tone will excite the transition between |0, 4〉 to

a pair of hybridized states ( |1, 4〉 ± |0, 6〉)/
√

2 [see points C on Fig. 4.1(d)]. The hybridization

is again due to the activated blue-sideband coupling. The excitation frequency is approximately

lA − j, shifted down by the ac-Stark shift. If the blue-sideband coupling is not activated, then

the dominant transition is from the ground state, i.e., |0, 6〉, to the state |1, 6〉, corresponding to

the transition frequency lA + j, 2j higher than that for the previous resonance [see points A on

Fig. 4.1(d)]. There are other interesting structures shown in this figure, such as point D, but we

decide to omit here. Interested readers are directed to Ref. [96] for more details.
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4.4. Excited-state stabilization

Based on our discussion in the last section, the resonance in the transmission signal shown

in Fig. 4.2 (b) provides clear evidence of the success of excited state stabilization. This idea was

first proposed in Ref. [106], and has been implemented in experiments [96, 106]. Meanwhile,

it was not clear to us how high the stabilization fidelity would be using this scheme. A method

to calculate this fidelity is particularly useful for the optimization of the reset operations. In the

following discussion, we will study how the fidelity is determined by the loss rates and coupling

strength.

For our analytic treatment, we neglect population in |1, 6〉, since quick photon decay is

expected to prevent occupation amplitude to build up in this state. We thus consider the

dynamics of the system in the subspace spanned by |0, 6〉, |0, 4〉 and |1, 4〉. The evolution of the

system, at zero temperature, is governed by the Lindblad master equation,

3d̃

3C
= −8[�̃eff , d̃] + ^D[0̂] d̃ + WD[f̂−] d̃ +

Wq

2
D[f̂I] d̃, (4.5)

where we truncate the rotating-frame density matrix d̃ and all other operators to the three

levels of relevance. In the equation above, the damping superoperator is defined by D[!̂] d̃ =

(2!̂ d̃ !̂† − !̂† !̂ d̃ − d̃ !̂† !̂)/2. We assess the stabilization performance by calculating the state

fidelity for the qubit’s excited state, FI =
√
〈4 | d̃@ |4〉, where d̃@ is the qubit’s reduced density

matrix. By solving for the steady state, 3d̃/3C = 0, we obtain an analytical expression for this

stabilization fidelity:

FI =

√
1 −

[
26n�
^
+

(
1
2
^ + Wq

)
1
6n�

]
�, (4.6)
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where

� = Im[〈0, 6 |d |1, 4〉]

=

[
26n�
W
+ 26n�

^
+

(
1
2
^ + Wq

)
1
6n�

]−1
. (4.7)

The detailed derivation of Eq. (4.6) is postponed to Section 4.7 where we discuss the fidelity of

stabilization in an arbitrary pure state. Here we focus on the expression itself and discuss the

dependence of the fidelity on different parameters.

In the parameter regime that we are interested in, the coupling strength 6n� and resonator

decay rate ^ are much larger the qubit decoherence rates W and Wq. Such regime enables one to

obtain the more compact approximation

FI ≈

√
1 −

[
26n�
^
+ ^

26n�

]
W

26n�
. (4.8)

For given qubit dissipation rates, we can optimize the state fidelity by tuning the resonator

dissipation rate ^ and modulation strength 6n�. First, considering fixed ^, the fidelity increases

monotonically with 6n� and approaches an upper limit set by lim6n�→∞ FI =
√

1 − W/^. For

fixed 6n�, Eq. (4.8) shows that the fidelity approximately reaches its maximum for ^ = 26n�,

namely

max
^>0
FI ≈

√
1 − W

6n�
. (4.9)

Fig. 4.3 (a) shows numerical results for the fidelity as a function of 6n� and ^, obtained by a

full simulation of the steady state based on Eq. (4.4). We find that high stabilization fidelities
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exceeding 99.5% can be reached with realistic parameters. The optimum condition ^ = 26n� is

shown as the dashed line in the ^-6n� plane, which yields the maximum fidelity values.

We note from Eq. (4.8) that larger resonator decay rates will ultimately suppress the sta-

bilization fidelity when ^ > 26n�. This fact can be understood when considering the system

dynamics at the level of quantum trajectories: fast resonator decay leads to frequent jumps

projecting the system state to a quantum state with definite photon number – an effect similar

to that of repeated projective measurements of the resonator’s occupation number. For a large

resonator decay rate, the coherent evolution between states |0, 6〉 and |1, 4〉 will thus be persis-

tently interrupted, trapping the system in |0, 6〉 through the quantum Zeno effect. Therefore,

exceedingly large resonator decay rates will ultimately slow down the increase of the magnitudes

of population in state |1, 4〉 and |0, 4〉, which will lead to lower stabilization fidelities.

4.5. Stabilization in arbitrary mixed states along the I−axis

A combination of both red and blue-sideband couplings enables the stabilization of mixed

states centered on the I-axis of the Bloch sphere. With the two types of coupling turned on, the

effective Hamiltonian is

�̃eff = 6n� (0̂†f̂+ + 0̂f̂−) + 6n' (0̂†f̂− + 0̂f̂+) − jf̂I 0̂†0̂. (4.10)

As depicted in Fig. 4.4 (a), the interactions between states now become more complicated,

since the three-level approximation is no longer appropriate. Different from blue-sideband

coupling, red-sideband coupling promotes amplitude transfer between states |<, 4〉 and |<+1, 6〉

and may thus allow the system to access states with more than one photon inside the resonator.
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Figure 4.3. (a) Fidelity for stabilization in the excited state |4〉, as a function of resonator
dissipation rate ^ and blue-sideband coupling strength 6n�. The dotted line is the
approximated maximum line from Eq. (4.8). (Qubit dissipation rates are chosen as
W = Wq = 0.1MHz.) (b) Expectation of f̂I for different 6n' and 6n�, see Eq. (4.10), with
a fixed ^/2c = 4MHz. All results shown assume j/2c = 0.5 MHz and a temperature of
15mK.
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The particular qubit mixed state which is stabilized now depends on the magnitudes and

relative phases of the red- and blue-sideband coupling. We fully characterize this mixed state

by computing the ensemble averages 〈f̂G,H,I〉, and discuss their dependence on the couplings

strengths. The ensemble average of f̂I in the non-equilibrium steady state is shown in Fig. 4.3

(b) as a function of the modulation strengths 6n' and 6n�, using a fixed resonator decay rate.

On average, the qubit acquires a larger portion of the excited state |4〉 for increasing n�/n',

and a larger portion of the ground state |6〉 for decreasing n�/n'. We note that the plot is

approximately symmetric under exchange of 6n' and 6n� and, simultaneously, transforming f̂I

to −f̂I. Indeed, if we momentarily neglect the slow qubit dissipation, then the Lindblad master

equation becomes invariant under interchange of f̂− with f̂+, and n' with n�. The qubit will be

stabilized into a mixed state with equal weights of |4〉 and |6〉 with 〈f̂I〉 ≈ 0, when 6n' equals

6n�. This symmetry breaks down when sideband coupling strengths become so small that qubit

dissipation rates and the spurious ac-Stark shift cannot be neglected anymore.

Our numerical simulations show that ensemble averages of f̂G and f̂H vanish in the steady

state. This can be understood as follows. Based on Fig. 4.4 (a), we can divide the system into

two groups of states,

1. |0, 6〉, |1, 4〉, |2, 6〉, |3, 4〉 · · ·

2. |0, 4〉, |1, 6〉, |2, 4〉, |3, 6〉 · · ·

The generation of coherent qubit superposition states of |4〉 and |6〉 would require hybridization

of system states |<, 4〉 and |<, 6〉 with the same resonator occupation number <. However, red-

and blue-sideband couplings can only hybridize states within each of the two groups, which
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Figure 4.4. (a) Ladder diagram with both red- and blue-sideband coupling turned on.
System states with different total photon numbers are interconnected by these two types
of interaction. (b) Diagram of the arbitrary-axis stabilization scheme. With ^ � W̃−, W̃+,
the population in |1,−n̂〉 can be safely neglected, and the system is stabilized in |0, n̂〉.
In both of these plots, the red- and blue-dashed lines represent the connection between
states induced by the red- and blue-sideband coupling. The solid-black arrows indicate
the fast resonator loss, while the dashed arrows describe the slow qubit loss.

excludes superpositions of |<, 4〉 and |<, 6〉. (Even if the initial state should present a nonzero

matrix element 〈<, 4 |d |<, 6〉, decoherence processes will effectively erase any such coherence.)

4.6. Universal qubit stabilization strategies

So far, we have discussed stabilization of the qubit in states along the I-axis of the Bloch

sphere. It is desirable to generalize this scheme to stabilization along an arbitrary axis through

the Bloch sphere. Toward this goal, our collaborators proposed and demonstrated one scheme
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in Refs. [96]. Following that work, we introduce a more sophisticated method which is aimed

for higher stabilization fidelities and shorter stabilization times [103].

We point out that the strategies provided in these two references are crucially different.

The first chooses a simpler experimental implementation with only the blue-sideband coupling

activated, together with a resonant qubit Rabi drive. In the later theory work, we leverage two

modulation tones to activate both red- and blue-sideband coupling. We show that the access to

both types of coupling offers more flexibility in designing a fast and high-fidelity stabilization

scheme over all target states. In the following, we will only sketch the method used in Ref. [96],

but lay more emphasis on the strategy used in the theory paper.

In the simpler stabilization method used in Ref. [96], a near-resonance Rabi drive has been

added on the qubit, which yields a modified rotating-frame Hamiltonian

�̃eff,� =
1
2
Ω'f̂G +

1
2
ΩIf̂I + 6n� (0̂†f̂+ + 0̂f̂−) − jf̂I 0̂†0̂. (4.11)

Here, Ω' is the Rabi drive strength, ΩI = l@ −l' is the small detuning between the Rabi drive

and the qubit frequency (l' is the Rabi drive frequency). In the rotating frame, the eigenstates of

the Rabi-driven qubit, given by the Hamiltonian (Ω'f̂G +ΩIf̂I)/2, are the superpositions of the

bare eigenstates given by |6̃〉 = cos(\̃/2) |6〉 − sin(\̃/2) |4〉 and |4̃〉 = sin(\̃/2) |6〉 + cos(\̃/2) |4〉.

Here, the angle \̃ = arccos(ΩI/Ω') depends on the drive detuning and Rabi strength. The

change of the qubit eigenstates in the rotating frame certainly affects the stabilization target

state. This scheme can be described by the diagram in Fig. 4.2 (c), with the replacement of

|<, 6(4)〉 by |<, 6̃(4̃)〉. If so, the stabilization target state is |6̃〉, which is different from the

excited state without the Rabi drive. (The exact mechanism is much more complicated than the
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description given above. We choose to omit the detailed discussion of this, but only direct our

readers to the Supplementary Information of Ref. [96].)

This simple method has led to a successful demonstration of universal stabilization of the

single-qubit states, with a fidelity for all sampled stabilization angles over 80%. But this scheme

is not convenient for the stabilization of states in the vicinity of the |6〉 state. Specifically, the

effective two-photon pumping rate drops to zero when |6̃〉 approaches the real ground state |6〉.

Also, the time required for this stabilization scheme is not optimized. In the following, we will

present another scheme with both blue- and red-sideband interactions turned on, which is aimed

to solve the issues raised above.

The scheme we introduce in Ref. [103] is a natural generalization to qubit stabilization

along an arbitrary axis through the Bloch sphere. Before launching into a detailed discussion,

we first employ the convention that the qubit excited state |4〉 resides at the north pole of the

Bloch sphere. The axis specified by the unit vector n̂ has polar and azimuthal angles \ and q,

respectively, with the pure qubit states | ± n̂〉 located at the two points where the axis intercepts

the Bloch sphere. Explicitly, the two pure states are given by

|n̂〉 = sin
\

2
|6〉 + 4−8q cos

\

2
|4〉,

|−n̂〉 = −4−8q sin
\

2
|4〉 + cos

\

2
|6〉. (4.12)

Points along the axis n̂ in the interior of the Bloch sphere represent mixed states composed of

|n̂〉 and |−n̂〉, as usual.
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We start by presenting how to stabilize the qubit in the pure state |n̂〉 on the Bloch sphere.

Inspired by Fig. 4.2 (c), we aim for a Hamiltonian of the form

�̂n̂� = 6n (0̂†f̂+n̂ + 0̂f̂
−
n̂ ), (4.13)

analogous to Eq. (4.4). Here, f̂±n̂ are defined via f̂±n̂ |∓n̂〉 = |±n̂〉. For the special case of \ = 0,

Hamiltonian (4.13) reduces to the blue-sideband coupling. We call this Hamiltonian an effective

blue-sideband coupling for state |n̂〉, as it couples the system states |< + 1, n̂〉 to |<,−n̂〉.

As before, we require the resonator decay rate ^ and the coupling strength 6n to be much

greater than the qubit dissipation rates. As shown in Fig. 4.4 (b), the effective blue-sideband

coupling for axis n̂ opens up a decay channel from |0,−n̂〉 to |0, n̂〉 via hybridization of |0,−n̂〉

and |1, n̂〉 and fast resonator decay from |1, n̂〉 to |0, n̂〉. Relative to these fast dynamics, qubit

relaxation and dephasing are slow, leading to infrequent transitions between the states |<, n̂〉

and |<,−n̂〉. The resulting effective rates are given by [96]

W̃− = W cos4 \

2
+
Wq

2
sin2 \,

W̃+ = W sin4 \

2
+
Wq

2
sin2 \,

W̃q =
W

2
sin2 \ + Wq cos2 \, (4.14)

where W̃∓ are the transition rates from qubit state |n̂〉 to |−n̂〉 (and reverse), and W̃q is the effective

dephasing rate. Since all three are much smaller than the resonator decay rate ^ and sideband

coupling strength 6n , the effective decay from |0,−n̂〉 to |0, n̂〉 dominates the dynamics and thus

stabilizes the qubit in the state |n̂〉.
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We next show how to generate the desired Hamiltonian in Eq. (4.13) with our circuit-QED

device. We first expand f̂±n̂ in the Pauli matrix basis as

f̂±n̂ = exp
(
−8 q

2
f̂I

)
exp

(
−8 \

2
f̂H

)
f̂± exp

(
8
\

2
f̂H

)
exp

(
8
q

2
f̂I

)
=

1
2
f̂±(cos \ + 1)4∓8q + 1

2
f̂∓(cos \ − 1)4±8q − 1

2
f̂I (sin \). (4.15)

For simplicity (and without loss of generality) we set the azimuthal angle q = 0 and defer the

discussion of nonzero q to the subsequent subsection. This way, we can plug the expression of

f±n̂ into Eq. (4.13) to obtain

�̂n̂� =
1
2
6n (cos \ − 1) (0̂†f̂− + 0̂f̂+)

+ 1
2
6n (cos \ + 1) (0̂†f̂+ + 0̂f̂−)

− 1
2
6n sin \ (0̂† + 0̂)f̂I . (4.16)

Here, �̂n̂� denotes the effective blue-sideband coupling for state |n̂〉. This Hamiltonian is a

combination of the red- and blue-sideband couplings, as well as a longitudinal coupling between

the qubit and the resonator [117]. The latter can be generated by switching on a Rabi drive,

�̂3 = b (f̂−48lA C + f̂+4−8lA C), (4.17)

driving the qubit at the resonator frequency lA with strength b. This drive gives rise to a

longitudinal coupling of the form

�̂′3 = −6
′b (0̂† + 0̂)f̂I, (4.18)
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written in the dressed basis of the appropriate rotating frame. (We have dropped several fast-

oscillating terms here.) We will discuss in Section 4.10.

Therefore, the Hamiltonian in Eq. (4.16) can be generated by tuning the strengths of the red-

and blue-sideband couplings as well as the Rabi drive to match

6n' =
1
2
6n (cos \ − 1),

6n� =
1
2
6n (cos \ + 1),

6′b =
1
2
6n sin \, (4.19)

respectively.

4.7. Pure-state stabilization fidelities

Using the scheme proposed above, we next show by analytical and numerical calculation

that, with realistic experimental parameters, this scheme yields high stabilization fidelities over

all polar angle \. Specifically, for a sideband coupling strength of 6n/2c = 2 MHz and resonator

decay rate of ^ = 26n , we can obtain state fidelities for |n̂〉 of up to 99.5%, see Fig.4.5 (a). The

results are obtained using Eq. (4.5), with �̂eff replaced by Eq. (4.13). (the dispersive shift is also

added for completeness.)

Similarly, we base our discussion of stabilization fidelity and time on a three-level model

shown in Fig. 4.4(b). Specifically, we neglect residual population of state |1,−n̂〉 and confine

the dynamics of the system to a subspace spanned by |0,−n̂〉, |0, n̂〉 and |1, n̂〉. In the case of

arbitrary-state stabilization, the stabilization dynamics is effectively described by the Lindblad
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(a)

θ
|ˆ

(b)

n

Figure 4.5. (a) Stabilization fidelity for states along an axis n̂ in the G-I plane, as
a function of the polar angle \ (see in subplot). The three curves depict results for
different strengths of the effective blue-sideband coupling. (Temperature and resonator
decay rate are chosen as )env = 15mK, ^/2c = 4MHz.) (b) Dependence of the fidelity
on temperature, using ^/2c = 26n/2c = 4MHz. Dashed curves show the analytical
prediction from Eq. (4.25). In both graphs, we choose W = 0.1MHz, Wq = 0.1MHz and
j/2c = 0.5MHz. Excitation energies for the resonator and qubit are set to 4.89GHz
and 5.99GHz, respectively.
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master equation

3d̃

3C
= − 8[�̂eff , d̃] + ^D[0̂] d̃

+ W̃−D[f̂−n̂ ] d̃ + W̃
+D[f̂+n̂ ] d̃ +

W̃q

2
D[f̂n̂] d̃, (4.20)

where �̂eff refers to Eq. (4.13), and f̂n̂ is defined as f̂n̂ = 2f̂+n̂ f̂
−
n̂ − 1. The decoherence rates

W̃−, W̃+ and W̃q were defined in Eq. (4.14). The time evolution of the density matrix d̃ can be

described in terms of four key components:

3d̃11
3C

= − 26n� + W̃− d̃22 − W̃+ d̃11,

3 d̃22
3C

= ^d̃33 − W̃− d̃22 + W̃+ d̃11,

3 d̃33
3C

= 26n� − ^d̃33,

3�

3C
= 6n ( d̃11 − d̃33) − (

1
2
^ + 1

2
W̃+ + W̃q)�. (4.21)

Here, d̃11, d̃22 and d̃33 give the probability amplitudes for the states |0,−n̂〉, |0, n̂〉 and |1, n̂〉,

and � = Im[〈0,−n̂| d̃ |1, n̂〉]. Due to the constraint d̃11 + d̃22 + d̃33 = 1, only three of these

four equations are independent. Except for 〈0,−n̂| d̃ |1, n̂〉, other off-diagonal components of the

density matrix do not affect the evolution of d̃88 (8 = 1, 2, 3). These elements will decay to zero

when the qubit is stabilized in state |0, n̂〉, i.e., when d̃22 ≈ 1.

By setting all time derivatives in Eq. (4.21) to zero, we obtain an exact expression for the

stabilization fidelity:

Fn̂ =

√
1 −

[
26n
^
+

(
1
2
^ + 1

2
W̃+ + W̃q

)/
6n

]
�, (4.22)
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where

� =
W̃−/(W̃+ + W̃−)

26n
^
+ 26n
W̃++W̃− (1 +

W̃−

^
) + ( 12^ +

1
2 W̃
+ + W̃q) 1

6n

. (4.23)

The approximate result for the stabilization fidelity of the qubit excited state |4〉, given inEq. (4.6),

is recovered by taking W̃+ = 0 and W̃− = W. Similar to the approximation given in Eq. (4.8), if

the coupling strength and resonator decay rate are much larger than the qubit decoherence rates,

i.e., 6n, ^ � W̃+, W̃−, W̃q, the stabilization fidelity can be further approximately given by

Fn̂ =
√
〈n̂| d̃@ |n̂〉 ≈

√
1 −

[
26n
^
+ ^

26n

]
W̃−

26n
. (4.24)

The most important difference between this equation and Eq. (4.8) may be that the qubit decay

rate in the latter is replaced by W̃− in the former, which is defined in Eq. (4.14). The conclusions

we have reached about the fidelity maximum can be easily generalized to the stabilization in an

arbitrary state.

The discussion above does not include possible thermal excitation in the qubit and the

resonator. Within the same approximation described, we can further predict the stabilization

fidelity at finite temperatures, and confirm that our scheme is robust to realistic levels of thermal

excitations. The approximate relation between the stabilization fidelity and temperature is given

by

Fn̂()env) ≈
√
F 2

n̂ (0) − exp(−ℏlA/:B)env)d(0)22 . (4.25)



67

where Fn̂()env) denotes the state fidelity of |n̂〉 obtained at temperature )env. The quantity d(0)22

represents the occupation probability for the state |0, n̂〉 at zero temperature, and is very close

to 1 in our scheme.

The influence of temperature can be assessed by a perturbative treatment within the three-

levelmodel. For finite temperatures, we add the terms ^th D[0̂†]d and Wth D[f+]d to theLindblad

master equation (4.20), where ^th = ^ exp(−ℏlA/:B)env) and Wth = W exp(−ℏl@/:B)env). In

the low-temperature limit (^th � ^ and Wth � W), we maintain 〈0, n̂|d |0, n̂〉 ≈ 1. Further, for

lA ∼ l@ and W � ^, we also have Wth � ^th. As a result, we expect the leading corrections due

to thermal excitations to be given by the excitation from |0, n̂〉 to |1, n̂〉 at rate ^th. We treat the

term that describes such thermal excitation as perturbation, and solve for d̃88 (8 = 1, 2, 3) and �

to leading orders. We denote the ?th order solutions by d̃(?)
88
(8 = 1, 2, 3) and � (?) . The zeroth-

and first-order corrections to our zero-temperature solutions obey:

0 = −26n� (1) + W̃− d̃(1)22 − W̃
+ d̃(1)11 ,

0 = ^th d̃
(0)
22 + 26n� (1) − ^d̃(1)33 ,

0 = 6n ( d̃(1)11 − d̃
(1)
33 ) − (

1
2
^ + 1

2
W̃+ + Wq)� (1) . (4.26)

With 6n and ^ far exceeding the qubit dissipation rates, we can infer from the first equation that

� (1) should be much smaller than d̃(1)11 and d̃(1)22 , and thus can be neglected in the second and

third equation. As a result, we find the relation

d̃
(1)
11 ≈ d̃

(1)
33 ≈

^th
^
d̃
(0)
22 , (4.27)

shown in Eq. (4.25).
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The above expression shows that, to leading order, the influence of finite temperatures is

directly determined by the comparison between resonator excitation energy ℏlA and thermal

excitation energy :B)env. We can thus suppress the influence of temperature by using a resonator

with sufficiently large frequency while preserving the parameters of the qubit. Results shown

in Fig. 4.5(b) confirm that our scheme is robust with respect to thermal fluctuations at realistic

operating temperatures and practical circuit parameters.

4.8. Azimuthal angle and stabilization in arbitrary mixed state

So far, we have set the phases of the modulation and drive tones to zero at C = 0, i.e.,

6(C) = 26n' cos( |lA − l@ |C) + 26n� cos( |lA + l@ |C) and �̂3 (C) = b [f̂− exp(8lA C) + C.c.]. This

special choice only enables stabilization in the q = 0 plane. To generalize this and stabilize

states with arbitrary azimuthal angle q, detailed control of the phases is needed. We shall denote

the phases of the three tones at time C by

%= = l=C + a=, (4.28)

where = = 1, 2 stand for red- and blue-sideband modulation tones, and = = 3 for the Rabi drive

tone. For the latter, we set a3 = 0 without loss of generality. The choice of the three frequencies,

i.e., l1 = |lA + l@ |, l2 = |lA + l@ |, and l3 = lA , yields the relations l1 + l2 = 2l3

and l2 − l1 = 2l@. In the dressed bases of the appropriately rotating frame, the effective

Hamiltonian in the presence of all three drives is then given by

�̂ = 6n1(0̂†f̂−4−8a1 + H.c.) + 6n2(0̂†f̂+4−8a2 + H.c.)

− 6
′b

Δ
(0̂† + 0̂)f̂I . (4.29)
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Calculation shows that by tuning the strengths and phases of the three tones the Hamiltonian in

Eq. (4.29) can indeed generate the effective blue-sideband Hamiltonian

�̂n̂� = 6n (0̂†f̂+n̂ + H.c.), (4.30)

if the drive strengths and phases satisfy the following conditions. First, the three phases from

Eq. (4.28) must obey

%1 + %2 − 2%3 = a1 + a2 = 0. (4.31)

This relation reduces to one among the initial phases due to the frequency match among the

three tones, i.e., l1 + l2 = 2l3. Second, for the azimuthal angle q, we require

(%2 − %1)/2 − l@C = (a2 − a1)/2 = q. (4.32)

Since l2 − l1 = 2l@, the azimuthal angle is simply determined by the initial phases of the

modulation tones, a1 and a2. Third, the strengths of the three tones must meet the conditions of

Eq. (4.19) to set the desired polar angle \.

Above, we have devised amethod to stabilize the qubit in an arbitrary pure state. To complete

the task of full universal stabilization, we still hope to stabilize in any mixed state inside the

Bloch sphere. Toward this goal, one can in addition generate an effective red-sideband coupling

for |n̂〉, defined as �̂n̂' = 6n (0̂†f̂−n̂ + 0̂f̂
+
n̂ ). (Note that with f̂

±
n̂ = f̂

∓
−n̂, we have �̂n̂' = �̂−n̂�.)

A combination of �̂n̂� and �̂n̂' can then stabilize the qubit in a mixed state of |n̂〉 and | − n̂〉,

similar to our previous discussion and results in Figs. 4.4(a) and 4.3(b). In other words, we can

stabilize the qubit in a state corresponding to an arbitrary point along the axis defined by n̂.
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With the discussion in the previous sections, we claim that our scheme can effectively stabilize

the qubit in any pure and mixed state, i.e., at any point on and inside the Bloch sphere, at will.

4.9. Fast stabilization and critical damping

The time needed for stabilizing the qubit in a desired pure state is crucial for applications

such as fast qubit initialization and reset. The timescale for pure-state stabilization is mainly

set by 6n and ^. To make this statement more quantitative, we follow the dynamics of the axis

n̂ stabilization scheme as described by the Lindblad master equation in Eq. (4.21). Neglecting

the population amplitude associated with |1,−n̂〉, the stabilization process can be approximately

described by the following set of differential equations:

3d̃33
3C

= 26n� − ^d33,

3 d̃11
3C

= − 26n�, (4.33)

3�

3C
= 6n ( d̃11 − d̃33) −

1
2
^�.

These three first-order differential equations can be turned into a third-order differential

equation for d̃11,

33 d̃11

3C3
+ 3

2
^
32 d̃11

3C2
+ (462n2 + 1

2
^2) 3d̃11

3C
+ 2^62n2 d̃11 = 0, (4.34)

with an associated characteristic equation

(_ + 1
2
^) (_2 + ^_ + 462n2) = 0. (4.35)
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Similar to the classical damped harmonic oscillator, the stabilization process can be under-

damped, critically-damped, or over-damped, depending on the nature of the roots of Eq. (4.35).

Critically-damped stabilization occurs for ^ = 46n , at which point all three roots of Eq. (4.35)

become real. Resonator dissipation rates deviating from this working point lead to under-damped

or over-damped stabilization instead. For a fixed resonator dissipation rate, different sideband

coupling strengths can also lead to all three damping types.

Fig. 4.6 shows the stabilization processes for different coupling strengths 6n at fixed ^, for

stabilizing the qubit in its excited state |4〉 and in the superposition |G〉 = 1√
2
( |4〉 + |6〉). As

6n is decreased, we find behavior characteristic of the three damping types. Compared with

critically-damped stabilization, a slightly under-damped case may help the system reach the

steady state faster, since the tiny oscillations, arising from complex roots of Eq. (4.35), are

almost negligible as evidenced by numerical simulations. For our chosen system parameters,

we find that 6n ≈ ^/2.6 yields the quickest stabilization.

The stabilization time is set by 2/^ which is the characteristic time for the critically-damped

stabilization process. With realistic parameters, as chosen for Fig. 4.6, the stabilization can be

completed within around 100 ns.

4.10. Circuit quantization

In this last section, we derive the effective Hamiltonian from the circuit presented in Fig. 4.1

(b). We direct the reader to Ref. [96] for the analysis of the first circuit. This circuit contains

a fluxonium qubit (red), a resonator (purple) and a SQUID (blue) which serves as a coupler.

Based on standard quantization procedure, the Lagrangian that describes the circuit of interest



72

(b)

(a)

Figure 4.6. Stabilization processes in time domain. The qubit is initialized in the
ground state. Shown is the expectation of 〈f̂n̂〉 when targeting (a) the excited state and
(b) state |G〉. The insets show the stabilization dynamics in terms of d(C). (^/2c is set to
8MHz, )env = 15mK, W = 0.1MHz, Wq = 0.1MHz, and j/2c = 0.5MHz.)

is given by

! =
1
2
�A ¤Φ2

0 +
1
2
��1 ¤Φ2

1 +
1
2
�B ( ¤Φ1 − ¤Φ2)2 +

1
2
�@ ¤Φ2

2

+ 1
2
�@A ( ¤Φ0 − ¤Φ2)2 −

1
2!A
(Φ0 −Φ1)2 −

1
2!@

Φ2
2

+ ��2 cos
(
2c
Φ2 +Φe,fl

Φ0

)
+ ��1eff (C) cos

2cΦ1
Φ0

. (4.36)
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The SQUID loop’s Josephson energy ��1eff (C) = 2��1 cos[qsq(C)/2] is tuned by the reduced

external flux qsq(C) = 2cΦe,sq(C)/Φ0 which is modulated around its DC value using two modu-

lation tones, i.e., qsq(C) = qsq−3' cosl1C−3� cosl2C, with 31, 32 � 1. As long as modulation

amplitudes for the external flux remain small, we can expand ��1eff (C) into its DC value and a

small time-varying part,

��1eff (C) = � (0)�1eff + �
′
�1eff (C), (4.37)

where � (0)
�1eff is the time-average of ��1eff (C). �′�1eff (C) can be approximated as

�′�1eff (C) ≈ (2n' cosl1C + 2n� cosl2C)� (0)�1eff , (4.38)

where 2n= ≈ sin(i4/2)3=/2 (= = ', �). (In this definition of n=, a factor of 2 is included for

more convenient notation in the main text.) The Hamiltonian can be obtained from Eq. (4.36)

by a Legendre transformation.

The coupler mode only serves a passive role by tuning the coupling between the resonator

and qubit. For this purpose, we choose the energy scales of the relevant circuit parameters as

listed in Table 4.1. By design, the Josephson energy � (0)
�1eff is the largest energy scale so that

the coupler mode 1 has excitation energies far exceeding those of the qubit and resonator. The

Table 4.1. Energy scales of circuit parameters used in this chapter.

Parameters Energy Scale
�
(0)
�1eff/2c ∼ 1000GHz
�!A/2c ∼ 50GHz
��2/2c ∼ 10GHz
�2/2c ∼ 4GHz

�!@, �02, �12/2c ∼ 300MHz
�0, �1/2c ∼ 100MHz
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potential energy of the mode 1 is dominated by the term −� (0)
�1eff cos î1 and, since � (0)�1eff � �1,

low-lying wave functions will be localized around i1 = 0. The corresponding oscillator length

is given by (8�1/� (0)�1eff)
1/4 � 1. We approximate the Hamiltonian by a second-order expansion

in î1 which gives

�̂ =

[
4�1=̂2

1 +
1
2
(�!A + ��1eff (C)) î2

1

]
+

[
4�2=̂2

2 − ��2 cos(î2 + qfl) +
�!@

2
î2
2

]
+

[
4�0=̂2

0 +
�!A

2
î2
0

]
+ �02=̂0=̂2 + �12=̂1=̂2

− �!A î0 î1 . (4.39)

In terms of annihilation and creation operators for the 0 and 1 modes as well as eigenstates {| 9〉}

of the 2 (qubit) mode, the Hamiltonian can be rewritten in the form

�̂ ≈ Ω0 0̂†0̂ +Ω1 1̂†1̂ +
∑
9

� 9 | 9〉〈 9 |

+ 8(0̂† − 0̂)
∑
9 ,:

(60; 9 : | 9〉〈: | + H.c.)

+ 8(1̂† − 1̂)
∑
9 ,:

(61; 9 : | 9〉〈: | + H.c.)

+Ω01 (0̂† + 0̂) (1̂† + 1̂) +Ωmod(C) (1̂† + 1̂)2. (4.40)

Here, Ω0 and Ω1 are the excitation energies of the resonator and coupler, and � 9 is the energy

of fluxonium eigenstate | 9〉. We design Ω1 to be the largest excitation energy among the three

degrees of freedom, setting Ω1 ∼ 2c × 20 GHz and Ω0, �1 − �0 ∼ 2c × 5 GHz. Ω01 is the
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coupling strength between the resonator and coupler due to the î0 î1 term in Eq. (4.39). The

coupling strengths between the qubit and resonator (60; 9 : ) or coupler (61; 9 : ) are due to terms

involving =̂0=̂1 and =̂1=̂2 in Eq. (4.39). These coefficients are given by

Ω01 = �!

[
2�0
�!

] 1
4
[

2�1
�! + � (0)�1eff

] 1
4

,

60; 9 : = �02〈 9 |=̂2 |:〉
[
�!A

32�0

] 1
4

,

61; 9 : = �12〈 9 |=̂2 |:〉
[
�!A + � (0)�1eff

32�1

] 1
4

. (4.41)

All of them are small quantities compared with the excitation energies of the three modes, and

can be treated perturbatively. Ωmod(C) =
√

2�1/(�! + � (0)�1eff)�
′
�1eff (C) denotes the strength of

the time-dependent modulation on the coupler mode.

Since the coupler remains in its ground state, we may eliminate it adiabatically from the

Hamiltonian. To this end, we adopt a Bogoliubov transformation [118] removing the static

coupling term between resonator and coupler. As a result of the transformation, the coefficients

of the remaining terms in Eq. (4.40) will be shifted. Second, a Schrieffer-Wolff transformation

[37, 119, 120] decoupling the qubit from the other two modes is applied. Switching to the

new dressed basis, all static couplings among the three modes are removed. The coupler’s

annihilation operator 1̂ is transformed into

1̂ → 1̂ − Ω01
Δ01

0̂ − Ω01
Σ01

0̂† +
∑
9 ,:

861;: 9

Δ1;: 9
| 9〉〈: |, (4.42)
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where Δ01 = Ω1 −Ω0, Σ01 = Ω0 +Ω1, Δ1;: 9 = Ω1 − (�: −� 9 ). The time-dependent modulation

term Ωmod(C) (1̂† + 1̂)2 is transformed, to leading order, into

Ωmod(C)
(1̂ + 1̂†) + [0 (0̂ + 0̂†) +

∑
9 :

([ 9 : | 9〉〈: | + H.c.)


2

,

where [0 ≈ −2Ω1Ω01/(Ω2
1
−Ω2

0), and

[ 9 : ≈
861;: 9

Δ1;: 9
−
861; 9 :

Δ1; 9 :
.

With this, we finally obtain the effective Hamiltonian

�̂ = Ω0 0̂
†0̂ +

∑
9

� 9 | 9〉〈 9 |

+
∑
9

j0, 9 0̂
†0̂ | 9〉〈 9 | +

∑
9

^ 9 | 9〉〈 9 |

+Ωmod(C)
[2
0 (0̂ + 0̂†)2 +

©­«
∑
9 :

[ 9 : | 9〉〈: | + H.c.
ª®¬

2
+ 2Ωmod(C)[0 (0̂† + 0̂)

(∑
9

[ 9 : | 9〉〈: | + H.c.
)
, (4.43)

describing the resonator and qubit modes only, where j0, 9 and ^ 9 stand for the dispersive shifts

and the Lamb shifts to the qubit [119]. When approximating the fluxonium qubit as a two-level
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system, we recover the Hamiltonian in Eq. (4.1), with the coefficients given by

lA = Ω0 +
j0,0 + j0,1

2
,

l@ = (�1 + ^1) − (�0 + ^0),

j =
j0,0 − j0,1

2
. (4.44)

In Eq. (4.43), the second to last line introduces small oscillations in the resonator and qubit

energies, but can be neglected within the rotating-wave approximation. Terms in the last line of

Eq. (4.43) give rise to time-dependent coupling between the resonator and qubit, and lead to the

expression of 6(C). The magnitude 6 of that coupling is given by

6 = 2[0[01�
(0)
�1eff

√
2�1

�! + � (0)�1eff

. (4.45)

Slight modulation of the fluxonium’s reduced penetrating flux, qfl(C) = 33 cosl3C, yields

the Rabi drive in Eq. (4.17). To see this, we approximate 1

cos(î2 + qfl(C)) ≈ cos î2 − 33 cosl3C
∑
9 :

5 9 : | 9〉〈: |,

where 5 9 : = 〈 9 | sin î2 |:〉. In the dressed basis, this drive gives terms involving (0̂† + 0̂) |0〉〈0|

and (0̂† + 0̂) |1〉〈1|, leading to the longitudinal coupling in Eq. (4.18). The coefficient 6′ in

Eq. (4.18) is given by

6′ =
U0 − U1

2 501
, (4.46)

1Actually, the choice of the circuit element with which we group the time-dependent flux qfl (C) is an important
question, which has been discussed in detail in Refs. [121, 122]. Fortunately, both choices will lead to linear drive
terms. The existence of these terms has been confirmed by two recent experiments [46, 66].
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where

U0 =
∑
9

5 90

(
−
860;0 9

Δ0;0 9

)
− 50 9

(
−
860; 90

Δ0; 90

)
,

U1 =
∑
9

5 91

(
−
860;1 9

Δ0;1 9

)
− 51 9

(
−
860; 91

Δ0; 91

)
, (4.47)

and Δ0; 9 : = Ω0 − (� 9 − �: ).

In conclusion, we and our collaborators present stabilization schemes based on tunable

couplers. These schemes enable us to prepare qubits in an arbitrary superposition state, and

potentially also in an arbitrary mixed state. In the theory work, we also investigate the time

required for qubit stabilization, and conclude that high-fidelity stabilization can be completed

within 100 ns using realistic noise and circuit parameters. Our work could provide useful

tools for applications including qubit initialization, resetting, and autonomous quantum error

correction.
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CHAPTER 5

Noise Mitigation: Driving Superconducting Qubits at Dynamical Sweet

Spots

5.1. Protecting qubits from low-frequency noise

The last chapter has presented a scheme where noise is used to the advantage of quantum

control, specifically, stabilization of arbitrary quantum state. Starting from this chapter, we

discuss strategies to mitigate noise present in superconducting qubits.

Our first focus is the ubiquitous low-frequency noise. This type of noise has been a limiting

factor for dephasing times of many solid-state based qubits [13, 18, 19, 29, 31, 37, 40, 48,

51, 53–55, 63, 66, 76, 123–143]. Superconducting qubits especially suffer from 1/ 5 charge

and flux noise [13, 18, 19, 29, 31, 37, 40, 51, 53–55, 63, 66, 76, 123–130]. A conventional

way to improve dephasing times is to operate the qubit at so-called sweet spots [13, 37, 40,

66, 125]. These sweet spots correspond to extrema of the qubit’s transition frequency [13],

see Fig. 5.1(a) for an example. Another established method for improving dephasing times is

dynamical-decoupling (DD) [44, 51, 144–147], which is well-known in the context of NMR

echo sequences [148–150], and has been successfully applied to superconducting qubits [44,

51].

Author contribution: This chapter is mainly based on the theory work published in Ref. [45], where the majority
of the calculations and simulations were carried out by Ziwen Huang. The last section reflects some of the
experimental results published in [46], which Ziwen Huang contributed to by providing theoretical support.
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Figure 5.1. (a) Static fluxonium spectrum as a function of magnetic flux. Insets show
the qubit eigenfunctions at the sweet spot and slightly away from it (qdc/2c = 0.52).
The parameters used are: ��/ℎ = 0.5GHz, ��/ℎ = 4.0GHz and �!/ℎ = 1.3GHz for
the capacitive, Josephson and inductive energy, respectively. (b) Quasi-energy spectrum
of the driven qubit for flux qac/2c = 0.028 and drive frequency l3/2c = 490MHz.
The highlighted regions in both panels mark the flux sweet spots. The drive produces
numerous dynamical sweet spots at different DC flux values, as opposed to only one in
the static case.

Generalizing the concept of static sweet spots, we propose a qubit protection protocol

based on dynamical sweet spots [53–55, 130–132]. Inspired by static sweet-spot operation and

dynamical decoupling, this protocol employs a periodic drive to mitigate the dephasing usually

induced by 1/ 5 noise. Utilizing Floquet theory, we show that dynamical sweet spots represent

extrema in the qubit’s quasi-energy difference, and [Fig. 5.1(b)]. Notably, dynamical sweet spots

are generally not isolated points, but rather form extended sweet-spot manifolds in parameter

space. The multi-dimensional nature of dynamical sweet spots provides additional freedom to

tune qubit properties such as the transition frequency while maintaining dynamical protection.

We show that dynamical sweet-spot operation can simultaneously yield both long depolarization

()1) and pure-dephasing times ()q).
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This protection scheme can also be interpreted as a continuous version of DD [151]. Here,

the sequences of ultra-short pulses widely used in many DD experiments are replaced by a

periodic drive on the qubit, which is much easier to realize experimentally. In addition to

earlier explorations in this direction [13, 43, 52–55, 130–135, 152, 153], we here provide a

systematic and general framework for locating dynamical sweet-spot manifolds in the control

parameter space. This framework is general enough to cover a variety of qubit systems beyond

the specific example discussed here, and can be adapted to different types of drives as well as

noise environments. Indeed, some of the previously developed protection schemes [13, 43, 52–

55, 130, 131, 152, 153] based on qubit-frequency modulation or on-resonant Rabi drives, can be

understood as special limits of the framework presented here (see Appendix B). The theoretical

approach we develop allows us not only to predict the improvement of pure-dephasing times, but

also to assess how dynamical depolarization times are affected by the driving. In an experimental

paper [46] following our theory work, the theoretical proposals are demonstrated to lead to a

significant improvement in the dephasing time of a flux-modulated fluxonium qubit.

In the following sections, we consider the superconducting fluxonium qubit a platform for

illustrating the dynamical-protection protocol. To simplify the problem, we first demonstrate

how to model a fluxonium as a two-level system. Then, focusing on this two-level system,

we discuss the dynamical coherence times and sweet spots using the framework developed in

Chapter 2. Following the discussion of qubit coherence, we turn to gate operations and readout

of this qubit.
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5.2. Two-level system subject to 1/ 5 noise

Fluxonium qubits biased close to half-integer flux, as also pointed out in Chapter 3, exhibit

attractive properties including increased coherence times as compared to other superconducting

qubits [18, 19, 40, 46, 66, 102]. However, this sweet spot is point-like, and the qubit regains

sensitivity to 1/ 5 flux noise when the external flux is tuned slightly away from the half-integer

point [18, 19, 40, 66, 76, 129]. This sensitivity leads to increased pure dephasing of the

fluxonium qubit.

Our protection scheme is based on introducing a modulation of the external flux close to the

static sweet spot, i.e., q4 (C) = qac cos(l3C) + qdc. Here, q4 = 2cΦ4/Φ0 denotes the reduced

external flux, Φ0 is the flux quantum, and qac, qdc are its AC modulation amplitude and DC

offset, respectively. The flux-modulated fluxonium is described by the following Hamiltonian

[121]

�̂@,full(C) = 4�� =̂2 + 1
2
�! [î + q4 (C)]2 − �� cos î, (5.1)

where q4 (C) = qdc + qac cos(l3C). The strong anharmonicity of the fluxonium allows us to

reduce this system to an effective two-level model. We next derive such simplified model by

appropriate truncation of the full fluxonium Hamiltonian.

The static eigenenergies Ω; and corresponding eigenstates |;〉 (; = 6, 4, 5 , · · · ) are obtained

by diagonalizing �̂@,full, and depend on the DC flux component qdc. We will refer to the specific

solutions at the static sweet spot qdc = c by Ωc,; and
��;〉c. These eigenstates, expressed in the

phase basis, have alternating parities (for example, |6〉c and |4〉c have even and odd parities

respectively).
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To avoid leakage into higher fluxonium states under flux modulation, we choose fluxonium

parameters resulting in a large anharmonicity at half-integer flux, Ωc, 5 − Ωc,4 � Ωc,4 − Ωc,6.

If we limit the external flux q4 (C) to values in the vicinity of qdc = c, and avoid resonance with

the 4 − 5 transition, l3 � Ωc, 5 − Ωc,4, then Eq. (5.1) can be approximated by the effective

two-level Hamiltonian

�̂@ (C) =
Δ

2
f̂G +

(
� cosl3C +

�

2

)
f̂I, (5.2)

where Δ = Ωc,4 −Ωc,6, � = �!qaci
c
64, � = 2�! (qdc − c)ic64, and ic64 = |〈6 |c î |4〉c |. Different

from the usual convention, we define the Pauli matrices as,

f̂G = |4〉c〈4 |c − |6〉c〈6 |c, fI = |6〉c〈4 |c + |4〉c〈6 |c, (5.3)

which is a common choice in the context of flux qubits [154, 155].

The resulting eigenenergies of the static qubit (qac = 0) are plotted in Fig. 5.1 (a) as a function

of qdc. The full Hamiltonian including the qubit-bath coupling is given by �̂ = �̂@ (C) + �̂� + �̂� ,

where �̂� and �̂� denote the Hamiltonian of the bath and the qubit-bath interaction. We

consider two major noise sources that often limit fluxonium coherence times: 1/ 5 flux noise and

dielectric loss [19, 40, 66, 76, 127, 128]. The fluxonium’s interaction with the 1/ 5 flux noise

source can be modeled as mutual inductance between the fluxonium’s inductor and the bath,

hence the coupling to the noise is via the qubit operator î. Experimental results are further

consistent with dielectric noise coupling to the qubit’s phase operator [19, 40, 66, 76, 128].

Note that operator î only couples states with different parities. Therefore, based on Eq. (5.3),

it is projected to f̂I in the two-level subspace, which results in the �̂� used in our model. The

corresponding interaction Hamiltonian thus takes the form �̂� = ([̂f + [̂3)f̂I, where [̂f and [̂3
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are the bath operators through which 1/ 5 flux noise and dielectric loss are induced. The noise

spectra characterizing these channels are given by 1

(f (l) = A2
f |l/2c |

−1, (3 (l) = U(l,)env)A3 (l/2c)2. (5.4)

Here, U(l,)env) = | coth(l/2:B)env)+1|/2 is a thermal factor, :B and)env denote theBoltzmann

constant and temperature, and Af and A3 denote the noise amplitudes.

5.3. Dynamical coherence times and sweet spots

As reference for our discussion of dynamical coherence times, we first briefly review the

static coherence times of the undriven qubit. Based on our discussion in Section 2.3, the

decoherence rates depend on the matrix elements of the qubit operator coupling to the noise

as well as the noise spectra. For a non-singular noise spectrum ((l), the rates for relaxation,

excitation and pure dephasing are

W∓ = |f64I |2 ((±Ω64), (5.5)

Wq = |f44I − f
66
I |2 ((0)/2. (5.6)

Here, Ω64 =
√
Δ2 + �2 the corresponding eigenenergy difference, and f;; ′I ≡ 〈; |f̂I |;′〉 (;, ;′ =

6, 4) the relevant matrix elements. (Since these matrix elements will appear rather frequently,

we choose to introduce this slightly more compact notation.) The quantity |f44I −f
66
I | governing

the pure-dephasing rate Wq turns out to be proportional to the flux dispersion of the eigenenergy

difference |mΩ64/mqdc |, in agreement with the well-known proportionality Wq ∝ (mΩ64/mqdc)2

1At low frequenciesl � :B)env, the asymmetry in the spectrum is negligible, and a symmetric 1/ 5 noise spectrum
may be used.
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[13, 37]. For the realistic noise spectrum ((l) = (3 (l) + (f (l), however, there is a divergence

atl = 0 from the 1/ 5 flux noise. In this case, our evaluation of dephasing times includes careful

consideration of frequency cutoffs, see Refs. [13, 37, 38, 55].

To make a quantitative comparison of coherence times between the driven and undriven

qubits, we use realistic circuit and noise parameters to show numerical calculated coherence

times (see Table 5.1 caption for our specific choice of parameters). Away from the flux sweet

spot, the qubit has wavefunctions with disjoint support [insets of Fig. 5.1(a)]. This leads to

a suppression of the coefficient |f64I |2 relevant for relaxation and excitation, and hence to a

relatively long depolarization time of )1 = 770 `s. The pure-dephasing time of )q = 0.88 `s is

rather short, on the other hand, since the flux dispersion mΩ64/mqdc is significant away from the

flux sweet spot. At the flux sweet spot, the situation changes: disjointness of eigenfunctions is

lost, and depolarization times are correspondingly shorter,)1 = 360 `s. Since the flux dispersion

mΩ64/mqdc vanishes at the sweet spot, the qubit is less sensitive to 1/ 5 noise, resulting in a pure-

dephasing time exceeding 10ms [40, 41], limited only by second-order contributions from 1/ 5

flux noise. 2

When including a periodic drive acting on the qubit, the analysis of coherence times must

be modified. Based on an open-system Floquet theory [86, 87], the coherence times are most

conveniently characterized in the basis formed by the qubit’s Floquet states. The quasi-energies

n 9 and time-periodic Floquet states |F 9 (C)〉 of the driven qubit, labeled by index 9 , are the

counterparts of the ordinary eigenstates and eigenenergies in the undriven case [86, 154–156].

2In realistic settings, the pure-dephasing times will be limited by other sources including photon shot noise, critical
current noise, etc [33, 62, 142, 143].
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They are obtained as solutions of the Floquet equation[
�̂@ (C) − 8

m

mC

]
|F 9 (C)〉 = n 9 |F 9 (C)〉. (5.7)

In the absence of noise, the evolution operator *̂@ (C, 0) =
∑
9=0,1 |F 9 (C)〉〈F 9 (0) | exp(−8n 9 C)

governs the evolution of the driven qubit. As a result, the population in each Floquet state

remains invariant, while the relative phase accumulates at a rate given by the quasi-energy

difference n01 ≡ n1 − n0. In the following, we will use the framework presented in Chapter 5

to study the coherence times of this periodically driven qubit. This framework is based on a

secular Redfield equation, which can definitely capture the effect from a non-Markovian noise

source. Note that it is only applicable if the system coupling to the noise bath is sufficiently

weak, such that the higher-order effect from the noise, especially the 1/ 5 noise, can be safely

neglected. Since the noise amplitude of 1/ 5 flux noise is considered much weaker compared

with its charge counterpart [100], we believe that our assumption is valid.

The central elements that used in that framework are the matrix elements and noise frequen-

cies relevant for the decoherence. We note that they differ crucially from those of the undriven

qubit. This difference can be clearly understood using the language of filter functions. We first

investigate a case with a sufficiently flat noise spectrum ((l) (certainly no singularity is present

in this spectrum). In this case, the decoherence rates are given by

W` =

∫ ∞

−∞
�` (l, C)((l)3l, (5.8)

where �` (l, C) is the filter function and C should be taken to infinity, defined in Eq. (2.24). (Due

to the nonexponential decay for 1/f noise, the relationship between rate and filter function has
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to be modified [127]). Here, ` = ∓, q denotes the different noise channels corresponding to

relaxation, excitation and pure dephasing.

For the undriven qubit, �` (l, C) is strongly peaked at the filter frequencies l = ±Ω64 and

l = 0. The integrated peak areas, referred to as weights, are given by the quantities |f64I |2,

|f46I |2 and |f44I − f
66
I |2/2 associated with the three noise channels. By contrast, for the driven

qubit, �` (l) ∼
∑
: |6:` |2X(l − l̄:`) develops additional sideband peaks, resulting in filter

frequencies l̄:∓ = ±n01 + :l3 and l̄:q = :l3 (: ∈ Z). The corresponding weights are |6:∓ |2

and 2|6:q |2. These coefficients are defined in Eq. (2.22), but for the readers’ convenience, we

show the definitions again

6:± =
l3

2c

∫ 2c/l3

0
3C 48:l3 C Tr@ [f̂I 2̂∓(C)] ,

6:q =
l3

4c

∫ 2c/l3

0
3C 48:l3 C Tr@

[
f̂I 2̂q (C)

]
. (5.9)

This yields the explicit expression of the decoherence rates given below Eq. (2.26).

The simple estimation based on Eq. (5.8) does not apply to the case where the noise spectrum

has divergence. Specifically, the spectrum we consider, ((l), diverges at l = 0, while it is

relatively flat at other frequencies. Our strategy to treat such spectrum is sketched as follows.

Away from zero frequency, the filter function still behaves like a X function, therefore the

treatment is the same as before. Since filter frequencies for depolarization l̄:± are away from

0, the resulting expressions of W± is the same.

The appearance of a zero filter frequency for dephasing motivates us to separate the integral

 q (C) =
∫ ∞

−∞
3l�q (l, C)((l). (5.10)



88

into a low-frequency and a high-frequency part. We focus on the low-frequency part first, which

is given by

� (C) = 2|60q |2
∫ c/C

−c/C
3l

C

c
sinc(lC)(f (l), (5.11)

where the integration range is set by the peak width 2c/C. To regularize the logarithmic

divergence of this integral, we employ infrared cutoffs ±lir [13, 38, 55, 129]. The cutoff is of

the order of 1Hz [129], much smaller than the inverse of the measurement time. In this case,

the integral can be approximated by

� (C) ≈ 8A2
f C | lnlirC | |60q |2. (5.12)

For the integral over the remaining high-frequency range, the X-function approximation is

again valid. After combining the low and high-frequency contributions, the approximated  q (C)

is a time-dependent function, given by

 q (C) ≈ � (C) + 2
∑
:≠0
|6:q |2((l̄:q). (5.13)

According to this,  q (C) is reminiscent of a time-dependent rate for pure dephasing that grows

linearly in time (up to logarithmic corrections). Consequently, the off-diagonal elements of the

density matrix do not follow an exponential decay. Instead, the decay is given by

d̃@,01 ∼ exp
[
− 4A2

f |60q |2C2 | lnlirC | −
∑
:≠0

2|6:q |2((l̄:q)C
]
, (5.14)
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which is a product of a Gaussian (again, up to logarithmic corrections) and pure exponential.

(Note that to estimate the pure-dephasing rate, the contribution of depolarization to the decay of

d̃@,01 is excluded in the expression above.) Based on the 1/4 decay time, we obtain

Wq ' Af |260q |
√
| lnlirCm | +

∑
:≠0

2|6:q |2((l̄:q), (5.15)

as a simple approximation bounding the pure-dephasing rate from above. Here, Cm is the

characteristic measurement time; a representative value of the factor
√
| lnlirCm | found in a

recent experiment [129] is close to 4.

Finally, we arrive at the decoherence rates

W∓ =
∑
:∈Z
|6:∓ |2((:l3 ± n01), (5.16)

Wq =A 5 |260q |
√
| lnlirCm | +

∑
:≠0

2|6:q |2((:l3), (5.17)

It is instructive to mention that the expressions for the dynamical rates [Eqs. (5.16) and (5.17)]

reduce to the rates obtained for the static case when the drive is switched off (� = 0). To see

this, note that the Floquet states are time-independent for � = 0. As a result, the filter weights

vanish for : ≠ 0 [see, for example, Eq. (2.22)]. The remaining quantities to be identified are

simply: ±Ω64 ↔ l̄0∓, 0↔ l̄0q, and |f64I |2, |f46I |2, |f44I − f
66
I |2/2 ↔ |60∓ |2 and 2|60q |2.

5.4. Numerical calculation of dynamical coherence times

Wenumerically calculate the dynamical coherence times as a function of drive frequency and

amplitude, for a flux bias fixed close to the half-integer point. Results of pure-dephasing times
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are presented in Fig. 5.2 (a), and show broad regions where )q = W−1
q

remains close to the value

of the undriven qubit, but also exhibit well-defined maxima where pure-dephasing times exceed

1ms. (This value is based on the noise sources included in our analysis, but may ultimately

be limited by other noise channels.) Fig. 5.2(b) shows the corresponding depolarization times

)1 = (W+ + W−)−1. While there are point-like dropouts of )1 for certain drive parameters,

the majority of the predicted )1’s are well over 100 `s. Table 5.1 summarizes the coherence

times for two example working points 1O and 2O aligned with local maxima of )q. The pure-

dephasing times for both points exceed 1ms, much longer than those of the undriven qubit. The

depolarization times at those two points are around 500 `s, which are favorable compared to the

static sweet-spot value.

The regions where )q becomes maximal, form curves in the plane spanned by the drive

frequency and amplitude, with distinct behavior in the two regimes of weak driving, � � Ω64

[bottom of Fig. 5.2(a)], and strong driving, � & Ω64 [top of Fig. 5.2(a)]. These curves are

Table 5.1. Calculated coherence times for four operating points. Without a drive and
operated away from the sweet spot (Xqdc = 0.02), the qubit has the longest )q but the
shortest )1. At the sweet spot, this behavior reverses: the static )1 reaches maximum
values, but )q becomes relatively short. By comparison, Floquet operation at dynamical
sweet spots yields )1 and )q values that do not exceed the static maximal values, but
are well above the minimal ones. [Underlying parameter choices: The noise amplitudes
used are A3 = c2 tan XC |ic64 |2/�� and Af = 2cXf�! |ic64 |, where ic64 = 〈6 |î|4〉 is
evaluated at qdc/2c = 0.5, and î is the phase operator. We assume the loss tangent
tan XC = 1.1 × 10−6, flux-noise amplitude Xf = 1.8 × 10−6, and a temperature of 15mK.
The noise parameters used here are typical for recent fluxonium experiments, see e.g.,
Ref. [40, 66].]

Working points )1 (`s) )q (`s)
Away from the static sweet spot 770 0.88

Dynamical sweet spot 1O 590 1200
Dynamical sweet spot 2O 490 1750

Static sweet spot 360 >104
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Figure 5.2. (a) Dynamical pure-dephasing time )q (color-coded) as a function of drive
frequency l3 (horizontal axis) and drive amplitude � (vertical axis). Results are calcu-
lated via Eq. (5.17) for flux Xqdc/2c = 0.02. The curves visible by their bright-yellow
coloring are the dynamical sweet spots characterized by large)q. In the weak (� � Ω64)
and strong drive limit (� & Ω64) these curves asymptotically line up with l3 = Ω64/<
and l3 = �/< (black arrows). The curves formed by the dynamical sweet spots are
interrupted by cuts marked by white arrows. The overlaid white dotted curves depict
the AC dynamical sweet spots corresponding to mn01/mqac = 0. (b) Depolarization time
)1 calculated by Eq. (5.16). The majority of the obtained )1 values are at the order of
500 `s, except for point-like dropouts shown by the dark-blue coloring. The red star and
triangle specify the dynamical sweet spots 1O and 2O. The noise parameters used for the
calculation are given in the caption of Table 5.1.

the cross-sections of the sweet-spot manifolds at a fixed DC flux value Xqdc, see Fig. 5.2(c).

The curves of maximal pure-dephasing times show simple asymptotic behavior in these two

limits, where they approach fixed-frequency intercepts in the �–ld plane. In the strong-drive

limit, these curves are interrupted by cuts (see white arrows) where the width of the peak in



92

)q (ld) |�=const goes to zero. No such cuts are present in the weak-drive regime; rather, the peak

width gradually decreases as drive amplitude � is lowered.

This behavior of pure-dephasing times of the driven qubit can be explained and approximated

analytically using Floquet theory. In the next few sections, we will introduce in detail an

analytical framework to solve the Floquet equation, based on which we use perturbation theory

to understand the band-like structures of calculated )1 and )q shown in Fig. 5.2.

5.5. Relating dynamical sweet spots to extrema of the quasi-energy difference

Away from dynamical sweet manifolds, )q is limited by contributions from the (regularized)

pole of the 1/ 5 spectrum, see the first term on the right-hand side of Eq. (5.17). Thus, we

have Wq ∝ |60q |. The dynamical sweet spots then correspond to the operating points where

|60q | vanishes. Finding the condition for |60q | = 0 is then crucial for understanding the high-)q

structure in Fig. 5.1 (a). For this goal, we prove a key relation,

mn01
mqdc

∝ |60q |, (5.18)

i.e., the dynamical flux-noise sensitivity given by the flux dispersion of the Floquet quasi-energy

difference. We emphasize that this result is analogous to the more familiar case of the undriven

qubit, where the pure-dephasing rate is proportional to the static flux dispersion mΩ64/mqdc,

with quasi-energies replaced by eigenenergies.

Toward the proof of Eq. (5.18), we first note that in solving the Floquet equation (5.7),

solutions |F 9 (C)〉 are required to be time-periodic in 2c/l3 . Each such wavefunction can be

considered an element in the vector space F of 2c/l3-periodic functions of the type 5 : R→

C2. The basis vectors of F can be chosen to be | 5f,: (C)〉 = |f〉 exp(−8:l3C), where |f = I±〉
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are the eigenvectors of the operator f̂I and : ∈ Z. In this basis, the Floquet state |F 9 (C)〉 has the

decomposition

|F 9 (C)〉 =
∑
:∈Z

∑
f=I±

D 9f: |f〉4−8:l3 C , (5.19)

which is the Fourier expansion of |F 9 (C)〉 with D 9f: as Fourier coefficients. It is useful to define

an inner product for elements of F via the time average of their product over one drive period.

Based on this definition, the basis {| 5f,: (C)〉} is orthonormal, since

l3

2c

∫ 2c/l3

0
3C 〈 5f,: (C) | 5f′,: ′ (C)〉 = Xff′X:: ′ . (5.20)

The decomposition (5.19) maps the periodic function |F 9 (C)〉 ∈ F to a vector ®u 9 ∈ V =

C2 ⊗ C∞. Here, the basis vectors | 5f,: (C)〉 of F are mapped to the canonical unit vectors,

(®u)f′,: ′ = Xff′X:: ′, which we also denote by |f, :〉. Following this basis change, the Floquet

state Eq. (5.19) is now represented as a vector inV,

|F̄ 9 〉 =
∑
f=I±

∑
:∈Z

D 9f: |f, :〉. (5.21)

Applying the basis change to the Floquet equation, one finds that it converts to an ordinary

eigenvalue problem. To carry out this step, we consider the two operators �̂@ (C) and −8m/mC

acting on |F 9 (C)〉 on the left-hand side of Eq. (5.7). Both of them map basis functions | 5f,: (C)〉

to other time-periodic functions in F , and hence correspond to matrices acting on elements in
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V. Specifically, we have

�̂@ (C) | 5f,: (C)〉 =
∑

f,f′=I±

∑
: ′∈Z

ℎf′f: ′ | 5f′,:+: ′ (C)〉,

−8 m
mC
| 5f,: (C)〉 = − :l3 | 5f,: (C)〉, (5.22)

where

ℎf′f: ′ =
l3

2c

∫ 2c/l3

0
3C 48:

′l3 C 〈f′|�̂@ (C) |f〉.

Using Eq. (5.22), we can easily express the matrices representing �̂@ (C) and −8m/mC as

�̄@ =
∑

f,f′=I±

∑
:,: ′∈Z

ℎf′f′: ′ |f′, : + :′〉〈f, : |, (5.23)

Λ̄ = −
∑
f=I±

∑
:∈Z

:l3 |f, :〉〈f, : |.

With this the Floquet equation takes on the form

�̄ |F̄ 9 〉 = n 9 |F̄ 9 〉, (5.24)

where �̄ = �̄@ + Λ̄.

Solving this eigenvalue equation yields an infinite number of eigenvectors and corresponding

eigenvalues (quasi-energies). The structure of this equation is such that any given eigenpair |F̄ 9 〉,
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n 9 generates an infinite set of solutions defined via

|F̄ 9 ,=〉 =
∑
f=I±

∑
:∈Z

D 9f,: |f, : − =〉,

n 9 ,= = n 9 + =l3 (= ∈ Z). (5.25)

Reverting back to the function spaceF , the above states have the form |F 9 ,= (C)〉 = |F 9 (C)〉 exp(−8=l3C).

Accordingly, at the level of the underlying Hilbert space of quantum states, only two of these

states ( 9 = 0, 1) are linearly independent.

In the following, we employ this Floquet framework to the specific Hamiltonian (5.2). For

this analysis, it is useful to provide explicit expressions for the transformed �̄@ from �̂@ (C). �̂@ (C)

involves three distinct operations: f̂G , f̂I, and f̂I cosl3C which are all valid linear operators

on the function space F . Applying again the basis transformation that led from Eq. (5.22) to

Eq. (5.23), these operators are transformed to the following matrices in the |f, :〉 basis:

f̄G =
∑
:∈Z
|I+, :〉〈I−, : | + |I−, :〉〈I+, : |,

f̄I =
∑
:∈Z
|I+, :〉〈I+, : | − |I−, :〉〈I−, : |, (5.26)

f̄I,3 =
1
2

∑
: ′=±1

∑
:∈Z
|I+, : + :′〉〈I+, : | − |I−, : + :′〉〈I−, : |.

The resulting �̄@ can then be compactly written as

�̄@ =
Δ

2
f̄G +

(
�f̄I,3 +

�

2
f̄I

)
. (5.27)

After these preparations, we establish the relation between the derivative mn01/m� ∼

mn01/mqdc and the coefficients 6:`. We consider a small perturbation affecting the Floquet
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Hamiltonian (5.27) of the type �̄@ → �̄@ + X� f̄I/2. The first-order correction to the quasi-

energy difference n01 is given by

Xn
(1)
01 =

X�

2
(〈F̄1 |f̄I |F̄1〉 − 〈F̄0 |f̄I |F̄0〉) . (5.28)

Making use of the definition of f̄I in Eq. (5.26) and the inner product, we find

〈F̄ 9 |f̄I |F̄ 9 ′〉 =
l3

2c

∫ 2c/l3

0
3C 〈F 9 (C) |f̂I |F 9 ′ (C)〉, (5.29)

and thus arrive at the identity

Xn
(1)
01 =

X�

2
× l3

2c

∫ 2c/l3

0
3C Tr@ [f̂I 2̂I (C)] = X� 60q, (5.30)

where the last step uses the definition of 60q from Eq. (5.9). We thus conclude that mn01/m� =

60q.

Back to the )q-plot in Fig. 5.2, now we confirm that the maximal )q corresponds to the

extrema of the qubit’s quasi-energy difference. We will later see that these extrema generically

occur at avoided crossings in the extended quasi-energy spectrum [Fig. 5.1 (b)]. The latter,

analogous to the extended Brillouin zone in spatially periodic systems, consists of the extended

set of quasi-energies n 9 ,= = n 9 + =l3 (= ∈ Z) [86, 154, 157]. This extended spectrum shows

numerous avoided level crossings, and hence a multitude of regions of maximal )q. These

operation points are called dynamical sweet spots; see Refs. [53, 131, 132] for previous studies

of this concept. Here, we specifically use this term to refer to the working points where the

derivative of n01 with respect to the noise parameter vanishes. As shown in Fig. 5.2(a), these

spots form a set of curves with maximal)q in the �-ld plane. Once we account for the additional
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Figure 5.3. Sweet-spot manifolds embedded in the 3d parameter space, with axes
corresponding tol3 , Xqdc and qac. The semi-transparent plane given by Xqdc/2c = 0.02,
intersects the manifolds and thus yields the sweet-spot curves shown in (a) as cross-
sections (bright-yellow coloring).

perpendicular axis representing �, we find that each curve is the cross-section of a continuous

surface of sweet spots, which we refer to as a sweet-spot manifold [see Fig. 5.3].

In the next section, we predict the locations of sweet spots in the limits of weak and strong

drive, by treating either the drive � cosl3C f̂I or the transverse qubit Hamiltonian Δ f̂G/2

perturbatively.

5.6. Strong-drive limit

In this and the following sections, we locate the avoided crossings in the quasi-energy

spectrum, in the strong-drive (� & Ω64) and weak-drive (� � Ω64) limit. We further employ

perturbation theory to estimate the gap sizes of avoided crossings, which are closely related to

the stability of the dynamical sweet spots.
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In the strong-drive limit, we treat the first term +̄ = Δf̄G/2 in (5.27) perturbatively while

�̄0 = �̄ − +̄ acts as the unperturbed Hamiltonian. The exact eigenstates and eigenvalues of �̄0

are [154, 156, 158, 159].

��F̄ (0)±,=〉 = ∑
:∈Z

�:

(
∓ �
l3

)
|I±, : − =〉, (5.31)

n±,= = ±�/2 + =l3 .

Here, we have chosen to adjuster notation according to 9 = 0, 1 → ± which helps keep

expressions in the following more compact, but should not be confused with the notation I±.

Whenever the drive frequencymatchesl3 = �/< (< ∈ N), one finds that the unperturbed quasi-

energies n+,= become n−,=+< degenerate. This degeneracy is lifted when including corrections

of first order in Δ, thus generating avoided crossings. At the center of these avoided crossings,

the derivative of the quasi-energy difference vanishes, which results in dynamical sweet spots.

Given the condition pointed out above, it is straightforward to see that resulting sweet spots

asymptotically line up with vertical intercepts l3 = �/<, as shown in Fig. 5.2(a)

We next focus on the width the the sweet manifolds. The width of maxima in )q (l3)

is significant for the issue of parameter deviations: the wider the maximum, the larger is the

robustness of the coherence-time increase with respect to small detunings from the dynamical

sweet spot. (We give more details about this claim in the last section of this chapter, i.e., Section

5.8) Perturbation theory yields

Δ
(1)
< = 2

��〈F̄ (0)+,0��+̄ ��F̄ (0)−,<〉�� = Δ��〈F̄ (0)+,0��f̄G ��F̄ (0)−,<〉��.
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To proceed, we convert the Floquet states back into the time domain via

��F (0)±,= (C)〉 = exp
(
∓8 �
l3

sinl3C + 8=l3C
)
|I±〉. (5.32)

(Note that Eqs. (5.31) and (5.32) are related through the Jacobi-Anger expansion.) This enables

the evaluation of the leading-order gap size:

Δ
(1)
< =Δ

�����l32c

∫ 2c/l3

0
3C

〈
F
(0)
+,0(C)

��f̂G ��F (0)−,< (C)〉�����
=Δ

�����< (
2�
l3

)���� . (5.33)

Whenever Δ(1)< = 0, i.e., 2�/l3 is one of the roots of the Bessel function �<, the width goes to

zero and the sweet-spot curve is interrupted with a cut.

The dropouts of )1 visible in Fig. 5.2(b) are similarly related to the vanishing gap size of the

avoided crossings. If the gap opening of the avoided crossing, i.e., the quasi-energy difference

of the qubit at the dynamical sweet spot becomes smaller, the terms |60∓ |2((±n01) in Eq. (5.16)

rapidly increase in magnitude as the regularized divergence of ((l) is sampled. In other words,

the low-frequency 1/ 5 noise significantly suppresses the dynamical )1 whenever n01 vanishes.

Therefore, the low-)1 features observed in Fig. 5.2(b) match the locations of strong narrowing of

the maximal )q regions in Fig. 5.2(a) (Δ< → 0), including the discussed cuts in the strong-drive

limit, as well as the gradual narrowing in the weak-drive limit. In our example, the widths of

)q peaks surrounding the sweet-spot manifolds are generally sufficiently wide and, hence, gap

sizes sufficiently large, such that 1/ 5 flux noise does not limit the dynamical )1.
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5.7. Weak-drive limit

In the weak-drive limit (� � Ω64), we instead treat the drive-related term +̄ = � f̄I,3

perturbatively. The unperturbed eigenvalues and eigenstates of �̄0 = �̄ − +̄ are given by

��F̄ (0)±,=〉 = cos
\

2
|I±,−=〉 ± sin

\

2
|I∓,−=〉, (5.34)

n±,= = ±Ω64/2 + =l3 . (5.35)

These are closely related to the eigenstates and eigenvalues of the undriven qubit. Here, we

employ the definitions \ = tan−1(Δ/�), and Ω64 =
√
Δ2 + �2.

Whenever the drive frequency obeys l3 = Ω64/< (< ∈ N), the quasi-energies n+,= = n−,=+<

become degenerate. Again, this degeneracy is lifted by the perturbation +̄ , and thus avoided

crossings are generated. As a result, the sweet spots observed towards the bottom of Fig. 5.2(a)

asymptotically take the form of vertical lines at drive frequencies set by l3 = Ω64/<. This

width of the maximal is proportional to the gap size of the avoided crossing and given by

Δ< ≈ �< | sin \ cos<−1 \ |/l<−1
3
(< − 1)! in the weak-drive limit, where \ = tan−1(Δ/�). We

next show in detail how this expression is derived.

For < = 1, the calculation resembles the one for the strong-drive limit and results in a

leading-order gap size of

Δ
(1)
<=1 = 2

��〈F̄ (0)+,0��+̄ ��F̄ (0)−,1〉�� = �| sin \ |. (5.36)

The calculation of the gap sizes for < > 1 requires higher-order degenerate perturbation theory,

which we perform using Brillouin-Wigner expansion. This approach converts Eq. (5.24) into a

reduced equation that only involves the degenerate eigenvector pair |F̄ (0)+,0〉 and |F̄
(0)
−,<〉.
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To facilitate the derivation of the reduced equation, we define the projection operators

%̄ =
��F̄ (0)+,0〉〈F̄ (0)+,0�� + ��F̄ (0)−,<〉〈

F̄
(0)
−,<

��
and &̄ = ¯̂

1− %̄, which project vectors inV onto the degenerate subspace, and onto the subspace

orthogonal to it, respectively. Here, ¯̂
1 is the identity operator on V. According to Brillouin-

Wigner theory, the two exact eigenvectors |F̄ 9 〉 with quasi-energy n 9 obey the equation

�̄deg |F̄ 9 〉 = n 9 |F̄ 9 〉, (5.37)

where

�̄deg = %̄(+̄ + +̄)̄+̄ + +̄)̄+̄)̄+̄ + · · · )%̄, (5.38)

and

)̄ =
&̄

n 9 − �̄0
. (5.39)

Note that despite its appearance, Eq. (5.37) is not an ordinary eigenvalue problem, since both

sides contain the eigenvalue n 9 . It is possible to find a solution for the eigenvalues iteratively.

To avoid excessive notation, we focus on the 9 = 0 eigenvalue and omit unnecessary subscripts

in the following. In the first iteration, we insert the unperturbed quasi-energy n (0) = n+,0 into

the left-hand side of Eq. (5.37), and solve for n (1) on the right-hand side. Using the new quasi-

energy approximation, we then repeat these steps to include higher-order corrections. With this
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procedure, we find that, to leading order in �, the gap size is given by

Δ< ≈ | sin \ cos<−1 \ | �<

(< − 1)!l<−1
3

. (5.40)

For decreasing drive strength �, the width narrows with ∼ �< consistent with the behavior

observed in Fig. 5.2(a).

We made a final remark before we move to the next section. Recent experimental evidence

points to the relevance of additional noise in the AC drive amplitude [46, 53–55, 130]. While

the magnitude and power spectrum of this noise are not well established, it is useful to note

that there exist simultaneous sweet spots for the DC and AC flux amplitude, mn01/mqdc =

mn01/mqac = 0. These doubly-sweet spots correspond to intersection points of the white dotted

curves (mn01/mqac = 0) and the underlying DC sweet-spot curves obtained for mn01/mqdc = 0

[see Fig. 5.2(a)] 3. Depending on the magnitude of this AC noise, we expect such doubly-sweet

spots to form the optimal working points.

5.8. Gap size and the width of )q peaks surrounding sweet-spot manifolds

In short section, we establish the relation between the gap size Δ< and the width of the )q

peaks along the drive-frequency axis surrounding sweet-spot manifolds. We derive this relation

only for the strong-drive limit; the derivation for the weak-drive limit is analogous.

Generically, the pure-dephasing rate of a Floquet qubit is likely to be dominated by the 1/ 5

noise contributions away from sweet spots. In our case, that noise correspond to flux noise

which limits the system, whenever the derivative of the quasi-energy difference with respect to

3The stability of the doubly sweet spots with respect to the DC flux bias can be estimated by the second derivative
of the quasi-energy difference. We have verified numerically that our protection scheme does not significantly
deteriorate the sweet-spot stability.
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flux is nonzero, mn01/m� ≠ 0. Under these conditions, Eq. (5.17) implies that )q is inversely

proportional to |mn01/m� |. Therefore, to find the drive-frequency width of the )q peaks, it is

useful to first explore how |mn01/m� | depends on l3 .

For a dynamical sweet spot in the strong-drive limit, �0 � Ω64, the drive parameters satisfy

l3,< = �0/<. At the sweet spot, the quasi-energy derivative vanishes, mn01/m� = 0. Let us

consider values � and l3 in the vicinity of the sweet-spot point given by �0 and l3,<. Using

Eq. (5.31), we see that the Hamiltonian in the relevant subspace is

�̄ = �̄0 + +̄ (5.41)

= n+,0 |F̄ (0)+,0〉〈F̄
(0)
+,0 | + n−,< |F̄

(0)
−,<〉〈F̄ (0)−,< | + Δf̄G/2,

which results in the quasi-energy difference

n01 ≈
√
Δ2
< + (� − <l3)2. (5.42)

The derivative of n01 with respect to � is thus

mn01
m�
≈ � − <l3

n01
. (5.43)

Since we are interested in the width of the sweet manifold along the l3-axis, we set � = �0,

and consider variations of l3 around l3,<. As a function of l3 , the derivative |mn01/m� | takes

on its minimum value of zero at l3 = l3,<. Away from this sweet spot, |mn01/m� | has an upper

bound of 1, which is reached asymptotically in the limit < |l3 − l3,< | � Δ<. Based on this,

we can use the full width at half minimum (FWHm) of |mn01/m� | as an estimate of the peak

width of )q. The condition |mn01/m�| = 1/2 for reaching the half-minimum value, results in the
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equation

< |l3 − l3,< |√
Δ2
< + <2(l3 − l3,<)2

=
1
2
. (5.44)

The corresponding two solutionsl(1,2)d yield the FWHm |l(2)d −l
(1)
d |. Due to the dependence of

Δ< on ld involving a Bessel function [Eq. (5.33)], the above equation (5.44) is transcendental.

We can obtain analytical approximations as follows. We rewrite Eq. (5.44) in the form
√

3< |l3 − l3,< | = Δ<, and expanding the latter in ld around ld,<. The result of this is

another transcendental equation, in which the problematic Bessel function term can, however,

be neglected if mΔ</ml3 �
√

3< holds. We have verified the validity of this inequality for our

parameters numerically, and this way finally obtain the approximate FWHm

ΔlFWHm = 2Δ<,0/
√

3<, (5.45)

where Δ<,0 = Δ|�< (2�0/l3,<) |.

5.9. Interpretation of coherence times in terms of filter functions

We observe that, although the obtained dynamical )1 and )q times in the sweet manifolds

do not exceed the maximal values at the two static working points (see Table 5.1), they are well

above the corresponding static minimal values. To understand this behavior, it is instructive

to interpret the decoherence rates in terms of the sampling of the noise spectrum by the filter

function [Eq. (5.8)]. For that purpose, Fig. 5.4 shows the noise spectrum ((l) along with

information characterizing the filter function �` (l) in terms of the relevant filter frequencies

and weights. The noise spectrum (black curve) is peaked at l = 0 due to the 1/ 5 flux
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1© 2©

Figure 5.4. Noise spectra and filter weights centered at the corresponding filter frequen-
cies. The panels refer to four different working points: (a) the static sweet spot, (b) static
operation away from the sweet spot (qdc/2c = 0.52), (c)-(d)dynamical sweet-spot oper-
ation at the working points 1O and 2O. The symbols represent relaxation (blue squares),
excitation (red diamonds), and pure dephasing (purple dots). The noise spectrum is plot-
ted concurrently in (a)-(d). The positions of filter frequencies and the associated filter
weights determine which components of the noise spectrum contribute significantly to
the rates W± and Wq [see Eqs. (5.16) and (5.17)]. (See the main text for the discussion of
filter frequencies marked by arrows.)

noise; away from that peak, dielectric loss dominates. For each filter frequency, the value

of the corresponding filter weight is shown and marked by symbols distinguishing between

depolarization and pure-dephasing channels. While there are only three filter frequencies in

the static case, the dynamical case in principle produces an infinite number of filter frequencies

l̄:`. The appearance of additional filter frequencies corresponds to the sampling of the noise

spectral density at sideband frequencies, a point previously discussed for weakly driven systems

in Refs. [52, 152, 153].
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We first interpret the behavior of pure-dephasing times. Theweight related to filter frequency

l̄0q is suppressed to zero for both static and dynamical sweet spots [see Fig. 5.4(a),(c),(d)], but

is large for the working point away from sweet spot [see Fig. 5.3(a) and (b)]. This weight reflects

the qubit’s sensitivity to 1/ 5 flux noise. Therefore, the )q times at the sweet spots (both static

and dynamical) are significantly longer than the one at the non-sweet spot. Compared with )q

at the static sweet spot, the dynamical sweet spots exhibit somewhat lower values of )q. This

is related to the small but nonzero pure-dephasing weights at filter frequencies l̄:q ≠ 0, absent

for static sweet spots. Figure 5.4(c) illustrates this for the working point 1O, where the relevant

weights resulting in the dynamical )q ≈ 1ms are marked by single-headed arrows. (The same

reasoning applies to the other working point 2O.)

The behavior of depolarization times )1 at and away from sweet spots is reversed relative

to that of )q. Specifically, )1 is longest at the static non-sweet spot, where disjoint support of

wave functions leads to the strongly suppressed weights marked by double-headed arrows in

Fig. 5.4(b). By contrast, depolarization weights for sweet spots [both static and dynamical, Figs.

5.4(a),(c)] are not subject to this suppression and produce correspondingly lower )1. [The )1

trend obtained from the analysis of weight suppression is partially offset by the fact that ((l) is

filtered at different frequencies in the sweet-spot vs. non-sweet-spot case.] Next, the comparison

shows that the static depolarization time at the sweet spot is smaller than the dynamical )1. The

reason for this can be traced to the difference in filter frequencies and corresponding magnitudes

of the noise power spectrum, see Fig. 5.4(a) vs. (c). In the static case, the filter frequencies

for depolarization are ±Ω64, and ((±Ω64) is relatively large compared to the dynamical case in

5.4(c) where the dominant contributions arise from ((l̄0±). Indeed, these latter contributions
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closely match the minima of the noise power spectrum – a situation which can be established

simply by tuning the drive parameters.

5.10. Conservation of the sum of filter weights

Inspection of Tab. 5.1 reveals a trend of )1 and )q being anti-correlated: larger )1 tend to

coincide with smaller )q and vice versa. This trend originates from the conservation of the

cumulative filter weight,

(,+ +,−) +,q = 2, (5.46)

where,± =
∑
: |6:± |2 governs depolarization and,q =

∑
: 2|6:q |2 pure dephasing. Below we

provide a short proof of this conservation law.

Since the law does not only apply to the noise operator f̂I, for a more general interest, this

proof will not be limited to this specific variable. We assume a more abstract system-bath inter-

action �̂� = f̂[̂. Without loss of generality, we take the qubit coupling operator f̂ in �̂� = f̂[̂

to be traceless with eigenvalues ±1. (Any trace contribution renormalizes the bath Hamiltonian,

and the scale factor rendering the eigenvalues ±1 can be absorbed into [̂.) Employing the

decomposition of the identity in terms of the Floquet states, 1̂ =
∑
9=0,1 |F 9 (C)〉〈F 9 (C) |, and

making use of Eqs. (2.20) and (5.9), we find

Trq(f̂2) = Trq(f̂1̂f̂1̂) =
∑

9 , 9 ′=0,1
|〈F 9 (C) |f̂ |F 9 ′ (C)〉|2

=
1
2
�� Trq [f̂2̂I (C)]

��2 + ∑̀
=±

�� Trq [f̂2̂±(C)]
��2

=
∑
`=±,q

Z−1
`

�����∑
:∈Z

6:` 4
−8:l3 C

�����2 = 2. (5.47)
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(The definitions of Z± ≡ 1 and Zq ≡ 1/2 are consistent with those in Section 2.3.) Time averaging

this expression over one drive period 2c/l3 finally yields the claimed conservation rule

,+ +,− +,q =
∑
:∈Z

(
|6:+ |2 + |6:− |2 + 2|6:q |2

)
= 2. (5.48)

We further note that Eq. (5.48) also imposes a constraint on the filter functions, namely

∑
`=±,q

∫ ∞

−∞
3l�` (l, C) = 2. (5.49)

Increases in depolarization weights thus go along with decreases in the pure-dephasing

weight, creating a tendency for trade-off between depolarization and dephasing which is exact

only in the special case of white noise. This conservation rule is analogous to the sum rule that

emerges in the context of dynamical decoupling [51, 145]. It is crucial that the conservation rule

applies to filter weights rather than the rates. This enables one to manipulate the distribution of

weights and filter frequencies to our advantage, putting the largest weights at or near minima in

the noise spectrum.

For simplicity, our discussion has been based exclusively on a two-level approximation of

the fluxonium qubit. In general, the presence of higher qubit levels can induce leakage to states

outside the computational subspace. This concern is less significant for qubits with relatively

large anharmonicity like the fluxonium circuit considered here. Through numerical calculations

including higher levels, we have confirmed that this leads to quantitative changes of the dynamical

decoherence rates above, but does not affect the results reported above qualitatively.
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d

|〈ψ(t)|w1(t)〉|2 |〈ψ(t)|ψ+(t)〉|2

Figure 5.5. Concurrent gates for the Floquet qubit. (a) Adding a secondary pulse (inset)
to the Floquet drive induces Rabi oscillations, which are sufficient for implementing -
gate operations. The plot shows the final population in Floquet eigenstate |F1(C)〉 as a
function of pulse duration gRabi and carrier frequency l′

3
, for the initial state |F0(C)〉.

Full Rabi oscillations are observed when the secondary drive frequency matches the
quasi-energy difference n01 (dashed line) (b) Phase gates can be realized by a temporary
increase in the Floquet drive strength (inset). The change in drive strength modulates the
quasi-energy and thus enables phase gates such as ( (c/2) and ) (c/4). The plot shows
the final population in |k+(C)〉, as a function of the pulse duration gphase and the drive
amplitude variation X�, with the qubit initialized in |k−(C)〉 (see main text for definition
for |k±(C)〉).

5.11. Gates and readout of a single Floquet qubit

The above results suggest that use of the driven Floquet states as computational qubit states

can be advantageous due to the long coherence times reached at the dynamical sweet spots.

We refer to this dynamically protected qubit as the Floquet qubit, which belongs to the broader

class of dressed-state qubits. A host of previous work has studied gate operations on such

dynamically encoded qubits [133, 134, 160–162]. Here, we specifically discuss how to maintain

dynamical-sweet-spot operation while performing gates in order to maximize protection from

1/ 5 noise. In the following, we show that Floquet qubits can easily be integrated into gate and

readout protocols necessary for quantum-information processing.
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5.11.1. Single-qubit gates

We show that we can realize direct single-qubit gates on the Floquet qubit. For example, -

and
√
- gates can be realized by inducing Rabi oscillations among Floquet eigenstates. This is

accomplished by applying an additional pulse with carrier frequency l′
3
≈ n01, duration gRabi,

andmaximal amplitude 3Rabi, see inset of Fig. 5.5(a). We verify the presence of Rabi oscillations

numerically by simulating the time evolution for the working point 1O. For a fixed initial state

|F0(C)〉, the final population of |F1(C)〉 shows oscillatory behavior as a function of gRabi and l′3 ,

see Fig. 5.5(a). Full Rabi cycles only occur when l′
3
matches n01. Computation of the gate

fidelities for the examples of - and
√
- gates yields a value of 99.99% in both cases.

Single-qubit phase gates can be implemented by modulating the quasi-energy difference

n01 through a temporary increase X� of the drive amplitude [see inset of Fig. 5.5(b)]. This

modifies the dynamical phase acquired over the gate duration gphase, enabling ( and ) gates, for

example. For numerical verification, we initialize the qubit in one of the Floquet superposition

states |k±(C)〉 = [|F0(C)〉 ± |F1(C)〉4−8n01C]/
√

2 (equator of the Bloch sphere) and monitor the

population in the orthogonal state as a function of gphase and X�. The observed oscillations

[Fig. 5.5(b)] in this population indicates that the computational states accumulate a relative

phase as expected. The computed fidelity for ( (c/2) and ) (c/4) gates realized both exceed

99.99%.

5.11.2. Readout

Floquet states can be adiabatically mapped [155, 163] to the eigenstates of the driven qubit by

slowly ramping down the flux modulation, provided that gaps in the quasi-energy spectrum are
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sufficiently large. Interested readers can find our detailed discussion on this topic in Appendix

C.

For 1O, Fig. 5.6(a) shows that quasi-energy gaps do not close as � is decreased to 0, thus

enabling the adiabatic state transfer. We verify this mapping numerically by simulating the

closed-system evolutionwith either of the driven Floquet qubit eigenstates |F0(1) (C)〉 as the initial

state and a smooth ramp-down of duration Cramp. Fig. 5.6(b) shows the calculated population in

the undriven qubit eigenstates |6(4)〉 as a function of time. The resulting state-transfer fidelity is

high for ramp times of the order of tens of ns, (99.6% for Cramp = 30 ns). Conventional dispersive

readout techniques, applicable to fluxonium qubits [18, 19, 40, 66, 76], can then be employed

subsequently in order to infer the original dynamical state.

1©

Figure 5.6. Adiabatic mapping protocol for readout. (a) shows the quasi-energy spec-
trum as a function of � (from 0 to �1O), with Floquet drive frequency fixed at l

3 1O.
(�1O and l

3 1O are the drive parameters at working point 1O.) Red and blue star symbols
mark the two Floquet states at the point 1O, whereas dots of the same color represent
the states |6〉 and |4〉 of the undriven fluxonium. An adiabatic mapping from Floquet
states to static qubit eigenstates can be realized with a sufficiently slow switch-off of the
drive from �1O to 0, given the nonzero gap between the quasi-energies. (b) Simulation
of the adiabatic mapping achieved by continuously switching off the drive (ramp-down
in inset). The final population in |6〉 is plotted as a function of the ramp time Cramp, with
the qubit initiated in |F0(C)〉 (blue) or |F1(C)〉 (green). The results confirm the feasibility
of an adiabatic mapping with high fidelity, thus enabling readout of the Floquet states.



112

In future work, it may be interesting to explore alternative readout protocols similar to the

one presented in [66]. In an extension of that scheme, a higher fluxonium level that produces

a large dispersive shift on the readout resonator would be excited conditionally, based on the

occupied computational Floquet state.

5.12. Floquet two-qubit gates

The fact that dynamical sweet spots form entire manifolds in the control-parameter space

provides sufficient flexibility to perform two-qubit gates among Floquet qubits without ever

giving up the dynamical protection. Thanks to the one-to-one relation between quasi-energies

and Floquet states on one hand, and ordinary eigenenergies and eigenstates on the other hand, it

is possible to transfer existing protocols for two-qubit gates to the case of Floquet qubits. In the

following, we present a protocol for implementing a
√
8SWAP gate between two Floquet qubits,

again based on flux-modulated fluxonium qubits. Related protocols for implementing two-qubit

gates with dynamical protection have been discussed for slightly different systems involving

either near-adiabatic parametric modulation of the qubit frequency [53–55, 131] or requiring a

tunable coupler between qubits [115, 164]. The two-qubit gate proposed here is designed for the

protected Floquet regime discussed above. It is compatible with direct driving of the qubit and

circumvents the need for tunable coupling, thus providing a relatively simple scheme for future

experimental realization.

5.12.1. Analytical description

A simple method of implementing
√
8SWAP gates, for example among two transmon qubits,

consists of bringing the pair of weakly coupled qubits into resonance for a certain gate duration.
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For two Floquet qubits, we show that
√
8SWAP gates can be realized in a similar manner by

tuning the quasi-energy differences into and out of resonance. An important advantage of the

Floquet two-qubit gate is the ability to keep both qubits within the dynamical sweet manifolds

for the complete duration of the gate, thus reducing the error due to the qubits’ coupling to 1/ 5

noise.

We establish this Floquet-gate protocol for a composite system of two coupled fluxonium

qubits, each of which is flux-modulated, described by

�̂!' = �̂! (C) + �̂' (C) + �̂� . (5.50)

Here, �̂! (C) and �̂' (C) denote the Hamiltonians of the two periodically driven fluxonium qubits,

and �̂� is the time-independent coupling between them. The flux-modulation frequencies

associated with the two qubits are given by l!
3
and lR

3
, respectively. As appropriate for a

fluxonium with large anharmonicity, we may simplify the description by truncating the Hilbert

space to a two-level subspace. We propose to induce the necessary qubit-qubit interaction �̂� via

a mutual inductance between the two fluxonium loops. In this case, the coupling term takes the

form �̂� = �f̂
!
I f̂

'
I , with � denoting the coupling strength. For later convenience, we introduce

the abbreviation �̂0(C) = �̂! (C) + �̂' (C) for the bare qubit Hamiltonian.

When the two Floquet qubits are in resonance, i.e., their quasi-energies are degenerate, the

static coupling induces excitation swapping between the Floquet states (rather than between

bare qubit eigenstates). To describe this process, we move to the interaction picture using the

time-dependent unitary *̂0(C) = T exp[−8
∫ C

0 �̂0(C′)3C′] = *̂!
q (C) ⊗ *̂'

q (C). Here, *̂! (')
q (C) =∑

9=0,1 |F
! (')
9
(C)〉〈F! (')

9
(0) | exp[−8n ! (')

9
C], and |F! (')

9
(C)〉 and n ! (')

9
denote the 9 th Floquet

state and corresponding quasi-energy of the left (right) qubit. In this interaction picture, the
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Hamiltonian is given by

�̃LR(C) =� *̂†0 (C)f̂
!
I f̂

'
I *̂0(C)

=�
∑
:,: ′∈Z

∑
`,`′=±,q

6!:`6
'
: ′`′ 2̂

!
` 2̂

'
`′ exp

[
−8(l̄!:`+l̄

'
: ′`′)C

]
, (5.51)

where l̄! (')
:`

and 6! (')
:`

are the filter frequencies and the Fourier coefficients of the f̂! (')I ’s matrix

elements in the Floquet basis, associated with the left (right) qubit, respectively. The operators

2̂
! (')
` denote the Pauli matrices defined in the Floquet basis (see Section 5.3 for details).

Following the conventional strategy, we perform a
√
8SWAP gate by bringing the Floquet

qubits into resonance (n !01 = n'01) through a suitable change of the drive parameters. After

rotating-wave approximation, the effective Hamiltonian at the degeneracy point reduces to

�̃′ = � 6!0+6
'
0−2̂

!
+ 2̂

'
− + h.c., (5.52)

which is the flip-flop interaction necessary for the
√
8SWAP gate. We note that the term

proportional to 6!0q6
'
0q 2̂

!
q
2̂'
q
corresponds to an unwanted // interaction between Floquet qubits.

This term exactly vanishes as soon as at least one of the qubits is at a dynamical sweet spot

where 6!,'0q = 0 [Eq. (5.18)].

Based on the full interaction Hamiltonian (5.51), we next verify numerically that this simple

strategy indeed yields high-fidelity two-qubit gates.

5.12.2. Numerical simulation

To construct our
√
8SWAP gate, we first identify appropriate drive parameters for sweet-spot

operation and for bringing the qubits into and out of resonance. Fig. 5.7(a) and (b) show the
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d d

On Resonance

Figure 5.7. Simulation of a Floquet-
√
8SWAP gate for two inductively coupled flux-

onium qubits. (a) and (b) show the dynamical sweet manifolds corresponding to the
two driven fluxonium qubits, at given DC flux biases. The red and blue dots in (a)
indicate the gate and idle points for the left fluxonium, which is tuned along the path
marked by the black-dashed curve. The red square in (b) represents the operating point
for the right fluxonium qubit. (c) shows the drive pulses realizing this gate operation
with gwait and Cramp denoting gate duration and ramp time, respectively. (d) depicts the
calculated gate fidelity as a function of ramp time and gate duration, where the red star
marks the position of maximal gate fidelity. (Parameters are as follows: left fluxonium
– �!

�
/ℎ = 1.2GHz, �!

�
/ℎ = 6.0GHz; right fluxonium – �!

!
/ℎ = 0.95 GHz, while

�'
�
/ℎ = 1.0GHz, �'

�
/ℎ = 4.1GHz, and �'

!
/ℎ = 0.7 GHz. The interaction strength is

set by �/ℎ = 4.8MHz. The DC fluxes are fixed to q! (')dc /2c = 0.529(0.520), and noise
parameters are the same as in Table 5.1.)

relevant sweet-spot manifolds for the two fluxonium qubits. Within these manifolds, the quasi-

energy difference n !,'01 varies continuously, making it possible to establish degeneracy of the two

Floquet qubit quasi-energies, n !01 = n
'
01. In the example we selected, the right qubit is maintained

at a fixed dynamical sweet spot [Fig. 5.7(b), red square] while the left qubit can be tuned within
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its sweet-spot manifold from an idle point (blue dot) into resonance at the gate point (red dot)

and back [Fig. 5.7(a)].

The detailed pulse shapes of the drives enacting the gate are shown in Fig. 5.7(c). For the

left fluxonium qubit, amplitude and frequency of the flux modulation are adjusted in a way to

smoothly tune the qubit from its idle point to the gate point (within the ramp time Cramp). Pulse

shaping allows one to choose a path (black-dashed curve) that keeps the Floquet qubit within

the sweet manifold [Fig. 5.7(a)]. After leaving the qubit at the gate point for a suitable waiting

time gwait, the drive parameters are tuned back to the idle point. We calculate the
√
8SWAP-gate

fidelity by an open-system simulation of this composite system (again taking into account of 1/ 5

flux noise and dielectric loss). The results in Fig. 5.7(d) show a broad region of gate parameters

gwait and Cramp with high gate fidelities up to 99.96%. (The discussion of the effect of stray

two-qubit interactions at the idle point is beyond the scope of this paper, but see Refs. [22, 97,

98, 115, 116] for mitigation strategies.)

5.13. Experimental demonstration of the proposed protection scheme

In a following experimental paper [46], our theoretical results are demonstrated to lead to a

40-fold improvement in the dephasing time of a flux-modulated fluxonium qubit. The longest

dynamical dephasing time measured is 23±5 `s, which is located at the dark spot in Fig. 5.8(b).

Crucially, the sweet-spot curves in Fig. 5.2 shrink to points, since the low-frequency fluctua-

tion of qac also significantly affect the qubit dephasing time. Therefore, the experimental sweet

spot only occurs if both mn01/mqdc and mn01/mqac vanish.
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Figure 5.8. Theory prediction and experimental demonstration of the dephasing time
at and away from the dynamical sweet spot in a flux-modulated fluxonium qubit. The
figure is adapted from our companion experimental paper [46]. The fluxonium used
in that experiment are characterized by the following parameters: ��/ℎ = 1.17 GHz,
�!/ℎ = 0.54 GHz and ��/ℎ = 2.65 GHz. The DC flux is set at qdc/2c = 0.451.
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CHAPTER 6

Noise Mitigation: The Revolver Qubit

6.1. Double protection from pure dephasing and depolarization

In the previous chapter, we have focused on using a drive to protect a superconducting qubit

from low-frequency noise. The concept of dynamical sweet spots has extended the conventional

protection schemes, which are based on static sweet spots, to a much broader regime. Although

both the static and dynamical methods have successfully reduced the qubit dephasing from low-

frequency noise [40, 46, 66], these strategies do not specifically deal with qubit depolarization

[45].

Since a good quantum information processor should possess both long depolarization and

dephasing times, a strategy that can protect superconducting qubits simultaneously from both

depolarization and pure dephasing is in high demand. The ideal way to minimize qubit depo-

larization is to engineer disjoint support between the two computational states of qubits [18–20,

38]. Specifically, assuming that the qubit is coupled to a depolarization noise source by operator

$̂, we can minimize the relaxation and thermal excitation of the qubit if we suppress the matrix

element |〈6 |$̂ |4〉|.

However, disjoint support of qubit states and the sweet-spot operation are not always compat-

ible with each other [see our discussion of a driven two-level system in Section 5.10]. A simple

example is the heavy fluxonium. When operated away from the sweet spot, the fluxonium has

Author contribution: This chapter summarizes results from an unpublished project Ziwen Huang has worked on
recently. Jens Koch, David I. Schuster, Rudolph J. Magyar and David Ferguson have also contributed to this work.
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long)1 due to the exponentially suppressed depolarizationmatrix element (∼ 10ms [18, 19]), but

1/ 5 noise strongly dephases it at these working points ()2 ∼ 1 `s) [see discussion in Section 3.2].

On the contrary, when the penetrating flux is tuned to half a flux quantum (Φ4 = Φ0/2), the qubit

is maximally insensitive to the low-frequency flux noise, but the suppression of off-diagonal

matrix element |〈6 |$̂ |4〉| no longer remains.

The double protection of qubits from depolarization and pure dephasing requires not only

clever control schemes, but also novel hardware design. Toward this direction, several qubit

designs have been proposed, with some of them already experimentally realized [20, 38, 41,

48–50, 165]. For example, in the zero-pi circuit [20, 38, 50], the two computational states can

be both disjoint and operated at a flux sweet spot. Using this qubit, researchers have achieved

over 1.5 ms )1 and over 25 `s )2 (measured using the standard single c-pulse echo sequence),

which clearly demonstrates the feasibility of a double protection scheme. However, many such

protected qubits pose challenging requirements on the circuit hardware for their full protection.

Up to date, there has not been an experiment on such qubits that demonstrates a longer coherence

time (considering both )1 and )2) than that of the most recent transmon and fluxonium qubits

[15, 16].

The research efforts mentioned above are mainly focused on operating the qubits at static

sweet spots. The combination of the dynamical version of sweet-spot and disjoint-support

protection in a superconducting qubits has yet to be explored, which leaves the question open

about whether this alternative option can yield more favorable )1 and )q and/or lower the

requirement on the hardware side. In the following sections, we will describe our efforts on the

first proposal of such qubit. We will start from an abstract model to sketch the mechanism of

this scheme. After this, we will introduce a physical realization of the revolver qubit, using a
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pair of coupled heavy fluxonium qubits. Finally, we will analyze the coherence times based on

realistic noise models.

(a)

(b)

a

b

Figure 6.1. A schematic that compares a revolver qubit with a heavy fluxonium. (a)
shows the potential of a heavy fluxonium whose flux is biased slightly away from half
flux quantum. The wavefunctions of the ground and first excited states are plotted in
dark green and pink, respectively. The solid brown curve shows the fluxonium potential,
while the dashed one indicates how the potential is shifted by flux noise. (b) sketches
the wavefunctions and 2d potential for the proposed revolver qubit. The dark green and
pink circles represent the wavefunctions of the ground and the first excited states that are
intended to rotate circularly. The 2d potential at one snapshot is plotted in brown. The
inset at the bottom shows how the potential landscape is affected by noise. See main text
for detailed explanation.
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6.2. The revolving wavefunctions

We first sketch the basic idea behind a revolver qubit. From an abstract perspective, an ideal

revolver qubit is imagined to have two computational wavefunctions that are always disjoint

and rotate circularly in a 2d potential plane. In this way, the qubit is certainly protected from

depolarization. Meanwhile, the rotation of the wavefunctions may suppress low-frequency noise

induced dephasing.

To have a more intuitive picture, it is useful to compare the revolver qubit with a heavy

fluxonium qubit. We illustrate this comparison in Fig. 5.1. To start with, the two lowest

eigenstates of a heavy fluxonium, whose external flux is parked slightly away from half a flux

quantum, have disjoint support [see Fig. 5.1 (a)]. Although the disjoint support of the qubit

wavefunctions yields a low depolarization rate, the qubit at this operating point is sensitive to the

low-frequency fluctuations in the penetrating flux. To see this, imagine that the noise introduces

a small perturbation Xq4 in the external flux, which distorts the potential (as shown with the

black-dashed line in Fig. 6.1) [see fluxonium Hamiltonian in Eq. (3.2)]. To first order in this

small perturbation, the energies of the eigenstate on the left and on the right get shifted upward

and downward, respectively, due to the change of the depth of the wells. This results in a shift

in the energy difference between the two eigenstates (the value is approximated by 2c�!Xq4

to leading order). These random shifts cause strong dephasing of the qubit, especially if the

fluctuations have a 1/ 5 type of spectrum.

Rotating wavefunctions circularly, as shown in Fig. 6.1 (b), could suppress the energy shift

described above. To see this, consider that the lowest energy states |6(C)〉 and |4(C)〉 derived

using the time-varying Hamiltonian, can move in a circle In fact, the computational basis should

be formed by two of the Floquet states of the periodically modulated system, which will only
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be identical to the instantaneous eigenstates if the system evolution is perfectly adiabatic. [as

shown in Fig. 6.1 (b)]. In the 2d case, the perturbation introduced by the noise tilts the 2d

potential to be lower toward one direction [see the bottom inset of Fig. 6.1 (b)]. Without loss of

generality, we assume that the perturbation is proportional to Xq4,0 q̂0. This perturbation term

will still shift the energies of the instantaneous eigenstates. However, the averaged energy shift,

XΩ64,avg ∝ Xq4,0 ×
1
)

∫ )

0
3C [〈4(C) |î0 |4(C)〉 − 〈6(C) |î0 |6(C)〉],

will be zero if the wavefunctions rotate circularly at a constant speed. (Here, ) is the revolving

period.) Then, if the revolving period ) is sufficiently short such that Xq4,0 does not vary

significantly over one revolving period, the averaged energy shift XΩ64,avg will be approximately

zero. In this way, the computational states of the qubit enjoy disjoint support while gaining

protection from 1/ 5 noise.

However, the ideal picture where the two wavefunctions rotate circularly is not straightfor-

ward to realize with superconducting qubits. In the next section, we will introduce how to use a

simple circuit to mimic the strategy described above.

6.3. Two heavy fluxonium qubits connected by a tunable coupler

Certainly, we cannot use a single fluxonium to create a two-dimensional potential. A naive

way to increase the dimension of the potential is to double the number of the fluxonium qubits.

The rotation of the potential wells as shown in Fig. 6.1 (b) requires interaction between the two

fluxonium qubits. One can check that, if there is no interaction, we can still tune the fluxonium

fluxes such that the deepest well rotates (although not circularly), but the second-deepest well

will not “tango” with the deepest one as shown in Fig. 6.1 (b). Therefore, introducing interaction
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between the two fluxonium qubits is necessary for realizing a revolver qubit. The interaction

should also be tunable and time-dependent, so that the qubit state does not always favor one

diagonal over the other during one revolving period.

In Fig. 6.2, we show one exemplar circuit that fulfills the requirements described above,

which will be the platform for our following discussion. In this circuit, the two fluxonium

qubits are connected by a SQUID, which mediates the interaction between the two qubits. The

analysis of this circuit is slightly involved, therefore we relocate it to Section 6.9, and only

sketch the derivation here. We first follow the standard circuit quantization technique [166] to

derive the full Hamiltonian of this circuit. Following this step, we use the Born-Oppenheimer

approximation to adiabatically eliminate the high-energy coupler mode (see Appendix D for

details about this approximation). This approximation yields effective interaction between the

two fluxonium qubits, and the coupling strength depends on the coupler control fluxes. The final

effective Hamiltonian is then given by

�̂eff = �̂slow + Z+ [î0 + î1]2 + Z−1 (q�,2, q4,2) [î0 − î1] + Z
−
2 (q�,2, q4,2) [î0 − î1]

2, (6.1)

where

�̂slow =

[
4��0 =̂

2
0 +

�!0

2
(î0 + q4,0)2 − 2��0 cos

(
q�,0

2

)
cos î0 + (0 → 1)

]
. (6.2)

Readers can find detailed definitions of all coefficients in Section 6.9. We specifically point

out that the coefficients Z−1 and Z−2 are controlled by the reduced fluxes q� (4),2 = 2cΦ� (4),2/Φ0.

One important note is that we should design the circuit such that we can tune Z2 ≡ Z+ − Z−2 to

either positive and negative values during a revolving period, to equally favor the two diagonals.
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Figure 6.2. Lumped-element circuit diagram of the revolver qubit. This circuit contains
two fluxonium qubits which are connected by a coupler SQUID. The symbols shown in
the figure are explained as follows. We use ��@ (@ = 0, 1, 2) to denote the Josephson
energy of each junction in the SQUID that belongs to fluxonium 0, 1 and the coupler 2.
Similarly, �@ (@ = 0, 1, 2) represents the effective capacitance across the three SQUIDs.
The inductance of the four inductors are denoted by !0, !1, !1 and !2. We assume
that there are also capacitors that shunt the inductors !1 and !2, whose capacitances are
denoted by �1 and �2, respectively. The symbols Φ� ,@ and Φ4,@ denote the effective
control fluxes threading the SQUID loops and the fluxonium/coupler loops.

If so, Z2 should be tunable through zero. In the following, we will fix q4,2 to zero such that

Z−1 = 0.

Focusing on the effective Hamiltonian (6.1), in the next section we will discuss one scheme

to mimic the revolving potential in Fig. 6.1 (b).

6.4. Control pulses and potential

It is challenging to use the model described by Hamiltonian (6.1) to exactly emulate the

circular rotation of the potential wells shown in Fig. 6.1. However, by tuning the barrier height

and the mutual coupling strength, we find it possible to let the deepest two wells periodically

move along the four sides of a square in the potential plane.
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Figure 6.3. Five snapshots (a)-(e) of the time-dependent revolver potential, from the
first half of a revolving period. Column (1) shows the two-dimensional potential at
different times. The blue and red crosses indicate the locations of the deepest and the
second-deepest potential wells, respectively. The columns (2)-(4) demonstrate how to
realize the potential structures shown in column (1). The curves shown in (2) and (3)
are the corresponding single-fluxonium potentials of the left and right fluxonium qubits,
with the choices of q� ,0 (1) and q4,0 (1) given on the side. In column (4), we use ellipses
and circles to indicate the sign of the mutual coupling. An ellipse whose long axis is
along the “�” or “�” diagonal indicate the direction with lower potential energy, while
a circle means zero coupling.
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We sketch the scheme we use to realize the trajectory in Fig. 6.3. (We only show half of the

revolving period due to constraint of the page size. The second half is easy to infer based on the

first half.) Using this figure, we also explain in detail how we tune the control fluxes and how

the potential wells travel accordingly during one revolving period.

First, we take a look at the chosen starting point (a). The potential has a two-well structure

at this point, which can be realized by tuning q4,1 to c while q4,0 to 0, such that ��1 ,eff =

2��1 cos(q4,1) vanishes but ��0 ,eff takes its maximal value. Also, both q4,0 and q4,1 are kept

close to c. This particular choice of control fluxes yields a degenerate double-well potential.

To ensure that there is always one well that is deeper than the others, we intend to let the left

well lie slightly lower than the right one, by tuning q4,0 slightly away from c. The respective

single-fluxonium potential is sketched in the second and third columns of Fig. 6.3. No mutual

coupling is needed at this point.

Our next move is to rotate the deepest two wells clockwise to the corners. Toward this goal,

we tune ��1 ,eff as well as the mutual coupling Z2. During this process, we ramp q�,1 from c

towards 0, such that at the time C = )/8 () is the whole revolving period), there exist four nearly

degenerate wells. We need to ensure that the two wells along the “�” diagonal have higher

energy. To achieve this, we set Z2 > 0 such that the “�” diagonal is lower than “�” in terms of

potential energy. Together with the tuning of Z2, we also carefully choose the tilting fluxes q4,0

and q4,1 to ensure that the deepest well has no degeneracy, as shown in the plots in (b,2) and

(b,3).

After understanding the first two steps, readers can follow the steps (c)-(e) more easily.

To further rotate the deepest wells clockwise, this time we tune ��0 ,eff to zero, and make the

potential energy lower in the upper part of i0-i1 plane. We will see the four-well structure
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again in (d) and then go back to the double-well landscape in (e). At snapshot (e), the deepest

well is on the right, opposite its position shown in (a). This means that the revolver qubit has

completed half of the whole revolving period. In the following steps, the deepest well will move

in the lower half of the plane and finally come back to its starting point as shown in (a), while

the second deepest one will travel in the upper half of the potential plane.

This scheme can roughly mimic the rotation depicted in Fig. 6.1. Up to this point, we have

primarily discussed the potential rather than the wavefunctions. The rotating potential wells

do not necessarily “drag” the wavefunctions (Floquet states) with them. Therefore, we should

further confirm that the computational states, i.e., the Floquet states, do rotate as we wish. In the

next section, we will discuss numerical methods to solve for the computational Floquet states.

6.5. Methods to calculate the Floquet states

For a periodically driven quantum system, the natural choice of the computational basis

should be the Floquet states, since the qubit populations in these states will stay unchanged if

no noise or additional control is present. Furthermore, they are important for estimating the

dynamical coherence times of the driven qubit, based on our work in Chapter 5. Therefore,

solving for the Floquet states of the revolver qubit is an indispensable step for any quantitative

study of the revolver qubit’s coherence.

For efficient numerical computation of the Floquet states, it is crucial to choose a proper basis,

with which the Hilbert space can be safely truncated to a lower dimension without significantly

affecting the accuracy. We find it convenient to use the instantaneous eigenstates to form that

basis [167]. The reason is that, since the plasmonic energies of the two fluxonium qubits are

designed to have much higher energies than the revolving frequency, the occupation in those
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much higher states should be negligible. In this case, the instantaneous eigenstates with much

higher energies can be omitted in the calculation.

The details of this calculation are given as follows. We first solve for the instantaneous

eigenstates |kins, 9 (C)〉 and eigenenergies �ins, 9 (C) of the time-periodic Hamiltonian �̂eff (C).

Specifically, they satisfy �̂eff (C) |kins, 9 (C)〉 = �ins, 9 (C) |kins, 9 (C)〉. Using them, we perform a

rotating-frame transformation, which is defined by

*̂ins(C) =
∑
9

|kins, 9 (C)〉〈kins, 9 (0) |. (6.3)

Note that |kins(C)〉 and *̂ins(C) are not uniquely defined, since the phases of states |kins, 9 (C)〉 at

different times are arbitrary. For an efficient numerical calculation, we require this unitary to be

(a) differentiable in time, and (b) periodic in ) . The second requirement ensures that the period

of the Hamiltonian in the new frame stays unchanged, important for finding the proper Floquet

states. We are always able to find such a basis if the variation of the Hamiltonian is continuous

and if there is no degeneracy in the instantaneous energy spectrum. The unitary that satisfies

these requirements, however, is still not unique: a transformation on one allowed |kins(C)〉,

|kins, 9 (C)〉 → |kins, 9 (C)〉 exp[8 j̃ 9 (C)], yields another unitary that satisfies the aforementioned

requirements, where the phase function j̃ 9 (C) only needs to be differentiable and periodic. In

practice, we should choose a transformation such that the transformed Hamiltonian has the

minimal variation in time, which is the most beneficial for numerical simulation.
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In one of such frames, the effective Hamiltonian becomes

�̃eff (C) = *̂†ins(C) �̂eff (C) *̂ins(C) + 8 ¤*†ins(C)*̂ins(C)

=
∑
9

�ins, 9 (C) |kins, 9 (0)〉〈kins, 9 (0) | + 8
∑
9 9 ′
〈 ¤kins, 9 (C) |kins, 9 ′ (C)〉|kins, 9 (0)〉〈kins, 9 ′ (0) |.

(6.4)

We can check that �̃eff (C) is indeed periodic since *̂ins(C) and ¤̂*ins(C) share the same periodicity

with �̂eff (C). We group the terms in the first sum as the adiabatic Hamiltonian �̂adiab(C) and those

in the second as the diabatic part �̂diab(C). Obviously, if the revolving frequency is extremely

low and �̂diab(C) → 0, we find that the Floquet states for this Hamiltonian approach the qubit’s

instantaneous eigenstates.

Based on our previous assumption regarding the fluxonium plasmonic energies, the popula-

tion in the plasmonic states with high excitation energies should be negligible for a sufficiently

low revolving frequency. In this case, we should be allowed to truncate the Hilbert space to

a relevant dimension, which makes the calculation of the Floquet states and corresponding

quasi-energies efficient.

Before we launch into further details, we want to give the reader a glance at the Floquet states

of a revolver qubit calculated using this method, which along with the time-dependent potential

are shown in Fig. 6.4. The plots of the Floquet states certainly demonstrate the disjoint support

over the whole revolving period. As designed, the two Floquet states move around the four sides

of a square. In the following sections, we will discuss quantitatively how the merry-go-round

behavior of the Floquet states indeed improves the coherence times.
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(a)

(b)

(c)

(d)

U(t)

Figure 6.4. Instantaneous eigenenergies, potential landscape and Floquet states of one
example revolver qubit. (a) shows the lowest four instantaneous eigenenergies over the
revolving period. It is difficult to distinguish between the energies of states in the lowest
and second-lowest eigenstate pairs due to the tiny splitting (∼MHz). (b) shows five
snapshots of the potential energy at C = 0, )/8, )/4, 3)/8, )/2. (c) and (d) present the
wavefunctions of the two computational Floquet states in the phase representation, at the
aforementioned times.

6.6. Noise channels and estimation of coherence times

The first step towards calculating the coherence times is to model the system-noise coupling.

In Chapter 1, we mentioned that multiple types of noise sources have been identified as causing
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qubit decoherence. Since the revolver qubit we study is still based on the fluxonium qubit, we

focus on the noise types that are particularly important for this specific type of qubit [40, 66].

1/ 5 flux noise. –Different from a single fluxonium, the revolver circuit shown in Fig. 6.2 has

six independent loops. Because of this, we should in principle consider six flux noise sources,

which affect the qubit by inducing fluctuations of the external fluxes: q4,@ → q4,@ + Xq4,@ and

q�,@ → q�,@ + Xq�,@ (@ = 0, 1, 2). These fluctuations perturb the Hamiltonian (6.1), by adding

the sum of the following terms:

�!0Xq4,0 î0, �!1Xq4,1 î1, (6.5)

��0 sin[q�,0 (C)/2] cos î0 Xq0,� , ��1 sin[q�,1 (C)/2] cos î1 Xq1,� , (6.6)

[mZ−1 /mq�,2]Xq�,2 (î0 − î1), [mZ−2 /mq�,2]Xq�,2 (î0 − î1)
2, (6.7)

[mZ−1 /mq4,2]Xq4,2 (î0 − î1), [mZ−2 /mq4,2]Xq4,2 (î0 − î1)
2. (6.8)

Among these many perturbation terms, we particularly focus on the ones in the first three lines.

The last two, which are related to the fluctuations of q4,2, are less important if we always fix q4,2

at its sweet spot q4,2 = 0. The noise spectra associated with the fluctuations in q4,@ and q�,@

(@ = 0, 1, 2) are defined by

(4@ (l) =
∫ ∞

−∞
3C 48lC 〈Xq4,@ (C)q4,@ (0)〉

and similarly for (�@ (l).

Capacitive loss. – We consider two fluxonium qubits each coupled capacitively to a noise

source. The interaction terms describing such coupling are given by =̂0[̂cap,0 and =̂1[̂cap,1, where

the noise spectra associated with the operator [̂cap,0(1) are denoted by (=0 (1) (l). To evaluate
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the decoherence rates contributed by the capacitive noise, we need to first calculate the charge

operator’s matrix elements. We find that these matrix elements can be conveniently obtained

using the phase matrix elements. In fact, if the only capacitive energy terms in Eq. (6.1) are

4��0 =̂2
0 and 4��0 =̂2

1
, we can relate the charge and phase matrix elements in terms of the Floquet

states by the following relation:

=F
0(1), 9 9 ′ (C) ≡ 〈F 9 (C) |=̂0(1) |F 9 ′ (C)〉

=
1

8��0 (1)
〈F 9 (C) | [î0(1) , �̂eff (C)] |F 9 ′ (C)〉

=
1

8��0 (1)
〈F 9 (C) |î0(1)�̂eff (C) − �̂eff (C)î0(1) |F 9 ′ (C)〉

=
1

8��0 (1)
〈F 9 (C) |î0(1)

[
8

−→
m

mC
+ n 9 ′

]
−

[
−8
←−
m

mC
+ n 9

]
î0(1) |F 9 ′ (C)〉

=
1

8��0 (1)
×

[
8
m

mC
iF
0(1), 9 9 ′ (C) + (n 9 ′ − n 9 )i

F
0(1), 9 9 ′ (C)

]
. (6.9)

where we also define iF
0(1), 9 9 ′ (C) ≡ 〈F 9 (C) |î0(1) |F 9 ′ (C)〉, and l3 denotes the modulation fre-

quency. (Note that the arrows indicate which object that the time derivative acts on.) According

to this equation, the Fourier coefficients of =F
0(1), 9 9 ′ (C) and i

F
0(1), 9 9 ′ (C), denoted by =

F
0(1), 9 9 ′,: and

iF
0(1), 9 9 ′,: are related by

=F
0(1), 9 9 ′,: =

1
8��,0(1)

(:l3 + n 9 ′ − n 9 ) iF
0(1), 9 9 ′,: . (6.10)

This is reminiscent of Eq. (3.3), which relates the charge and phase matrix elements in terms

of the eigenstates of the undriven fluxonium. Eq. (6.10) allows us to calculate the contribution

from capacitive noise and flux noise with the same set of phase matrix elements.
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Using the noise assumptions we have made above, we are ready to give the expressions of

revolver decoherence rates via the Floquet framework discussed in Chapter 5. The dynamical

W1 and Wq contributed by noise channel e are

W1,e =
∑
:

∑
±
|6e,:,± |2(e (∓n01 + :l3),

Wq.e =
∑
:

1
2
|26e,:,q |2(e (:l3), (6.11)

where 6e,:,±(q) is the Fourier coefficient of the matrix element of the noise operator related to

the e noise channel (e = 40, 41, 42, �0, �1, �2, =0, =1).

The definitions of 6e,:,±(q) is very similar to that in Eq. (2.22), except that some of the noise

operators are time-dependent. We use the noise channel e = �0 as an example. The noise

operator associated with the fluctuations Xq�,0 is ��0 sin[q�,0 (C)/2] cos(î0). For this noise

channel, 6�0 ,:,±(q) is given by

6�0 ,:,± =
l3

2c

∫ 2c/l3

0
3C 48:l3 C Tr@

[
��0 sin[q�,0 (C)/2] cos î0 2̂∓(C)

]
,

6�0 ,:,q =
l3

4c

∫ 2c/l3

0
3C 48:l3 C Tr@

[
��0 sin[q�,0 (C)/2] cos î0 2̂q (C)

]
. (6.12)

The definitions of 2̂±(C) and 2̂q (C) are analogous to Eq. (2.20).

According to Eq. (6.10), we can rewrite the expression of the decoherence rate contributed

by the capacitive loss in terms of the phase matrix elements. For convenience, we group the

coefficients on the right-hand side of Eq. (6.10) with the noise spectrum (=0 (1) (l), and define
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the effective noise spectra

(=0 (1) ,i (l) =
(

1
8��,0(1)

)2
l2(=0 (1) (l). (6.13)

This relation will be useful when we analyze the different contributions to the total decoherence

rates.

The successful implementation of the revolver qubit requires us to maximally suppress the

sum of the decoherence rates contributed by all these noise channels. Particularly, the mitigation

of the hazardous 1/ 5 noise is crucial for an enhanced coherence time, considering how this

type of noise limits coherence times of a heavy fluxonium. In the next section, we will use the

Floquet framework to develop strategies to mitigate this type of noise in the revolver qubit.

6.7. Using symmetry to design the revolving pulses for 1/ 5 noise cancellation

For a heavy fluxonium, the static sweet spot is extremely narrow, which means that one

needs to fine tune the control flux to observe the optimal coherence time. Analogously, the

mitigation of low-frequency noise in a revolver qubit requires a careful design of control pulses.

In the following, we will demonstrate how two symmetries satisfied by the Hamiltonian and the

Floquet states are particularly useful for mitigating 1/ 5 noise, which will guide us in designing

the control pulses.

Mitigating “odd noise”.– We can characterize the 1/ 5 flux noise channels that the revolver

qubit is subject to as “odd” and “even” based on how their noise operators transform under a

point-reflection transformation. To describe this transformation, we define a reflection operator

%̂, which satisfies %̂ |i0, i1〉 = | − i0,−i1〉. [Here, |i0, i1〉 is the simultaneous eigenstate of

î0 and î1, satisfying î0(1) |i0, i1〉 = i0(1) |i0, i1〉.] We list a few important relations that %̂
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satisfies

%̂%̂† = 1̂, %̂†=̂0,1 %̂ = −=̂0,1, %̂†î0,1 %̂ = −î0,1 .

We call a noise operator $̂ and the noise coupled through it “odd” (“even”) if $̂ satisfies the

relation %̂†$̂%̂ = −(+)$̂.

We first focus on the “odd” noise, which we can mitigate if we require the Hamiltonian to

satisfy one special dynamical symmetry. This symmetry requires %̂�̂eff (C + )/2)%̂† = �̂eff (C).

If this relation holds, a similar symmetry will be satisfied by the resulting Floquet states, which

leads to the suppression of certain noise matrix elements. To see this, we start from writing the

Floquet equation, [
�̂eff (C) − 8

m

mC

]
|F 9 (C)〉 = n 9 |F 9 (C)〉. (6.14)

This is an eigenvalue equation. For a more convenient description, we define an enlarged

Hilbert space, which is the tensor product of (a) the Hilbert space of the qubit and (b) a function

space that contains square-integrable functions 5 : [0, )) → C, which have periodic boundary

conditions. Rigorously, the new Hilbert space is defined by F = H ⊗ !2((1, C), where H is

the qubit Hilbert space and !2((1, C) stands for the function space containing square-integrable

functions whose domain is a circle (1 with length ) , and codomain is C. To avoid the confusion

about objects defined in these two different Hilbert space, we add a bar (“–”) over the symbols

denoting the operators and vectors defined in the enlarged Hilbert space (such as |F̄ 9 〉 and

�̄ which will appear below). The basis vectors spanning this enlarged Hilbert space form

the set {|i0, i1〉 ⊗ |C〉|i0, i1 ∈ R, C ∈ [0, ))}. Here, |C〉 is an improper vector defined by

|C〉 = ∑
=∈Z 4

8=C |=〉, where |=〉 is an element in !2((1, C) that maps C to 4−8=C/
√
) . The vector |C〉
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is improper because it is not normalizable (similar to the position and momentum eigenstate

of an elementary particle), but this notation is convenient for expressing the Hamiltonian and

wavefunctions.

In terms of this new Hilbert space, the Floquet equation (6.14) is equivalent to an eigenvalue

problem of the operation 1

�̄ =

∫ )

0
3C�̂eff (C) ⊗ |C〉〈C | − 81@ ⊗

∫ )

0
3C

∫ )

0
3C′

[
m

mC′
X(C′ − C)

]
|C〉〈C′|.

To discuss the symmetry of the Hamiltonian �̄, we define two operations in this enlarged Hilbert

space,

%̄ |i0, i1, C〉 = |−i0,−i1, C〉 ,

)̄ |i0, i1, C〉 =
��� i0, i1, C + )/2 (mod))

〉
, (6.15)

which correspond to a point-reflection transformation of a wavefunction in the phase repre-

sentation, and a time displacement, respectively. These linear operations satisfy [%̄, )̄] = 0,

%̄2 = %̄%̄† = 1̄, )̄2 = )̄)̄† = 1̄. The symmetry that �̂eff (C) satisfies is translated into the following

relation %̄)̄ �̄)̄†%̄† = �̄, or [�̄, %̄)̄] = 0. Then, if the quasi-energy spectrum is non-degenerate,

each Floquet state should be an eigenstate of %̄)̄ . Since %̄)̄ %̄)̄ = 1̂, the eigenvalues of %̄)̄ have

to be ±1, therefore %̄)̄ |F̄ 9 〉 = ±|F̄ 9 〉. Equivalently, the time-parametrized wavefunctions satisfy

%̂ |F 9 (C + )/2)〉 = ±|F 9 (C)〉.

1The delta function is here defined by X(C ′ − C) = ∑
:∈Z 4

−8:l3 (C′−C)/) .
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Such symmetry ensures the vanishing of
∫ )

0 3C〈F 9 (C) |$̂ |F 9 (C)〉, if $̂ is an odd noise operator.

This can verified as follows∫ )

0
3C〈F 9 (C) |$̂ (C) |F 9 (C)〉 =

∫ )/2

0
3C〈F 9 (C) |$̂ |F 9 (C)〉 +

∫ )

)/2
3C〈F 9 (C) |$̂ (C) |F 9 (C)〉

=

∫ )/2

0
3C〈F 9 (C) |%̂†%̂$̂%̂†%̂ |F 9 (C)〉 +

∫ )

)/2
3C〈F 9 (C) |q̂0,1 |F 9 (C)〉

= −
∫ )/2

0
3C〈F 9 (C + )/2) |$̂ |F 9 (C + )/2)〉

+
∫ )

)/2
3C〈F 9 (C) |$̂ |F 9 (C)〉 = 0. (6.16)

Examining the definitions in Eq. (6.12), one can verify that the vanishing of this integral yields

6e,0,q = 0. Looking back at Eq. (6.11), we find that this further results in the vanishing of the

sampling weight at zero frequency in the 1/ 5 noise spectrum.

Therefore, if the Hamiltonian satisfies this dynamical symmetry, the revolver qubit should

be insensitive to the low-frequency flux fluctuations described by Eq. (6.5). Fortunately, such

a Hamiltonian is relatively straightforward to realize by carefully designing the control pulses.

Note that if the noise operator is time-dependent, one can check that this protection scheme still

works if the time-dependent noise operator $̂ (C) satisfies %̂$̂ (C)%̂† = $̂ (C + )/2).

Mitigating “even noise”. – The noise operators given in Eq. (6.5)-(6.8) are not all “odd”

– for example, ��0 sin[q�,0 (C)/2] cos î0 in Eq. (6.6) is an “even” noise operator and is also

time-dependent. The mechanism discussed above will fail in mitigating noise coupled to the

qubit through such operators.

One can mitigate this type of noise by enforce another approximate symmetry of the Floquet

states. Specifically, we require |F0(C)〉 ≈ 48 j̄(C) %̂ |F1(C)〉 [j̃(C) is an unimportant phase]. More
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rigorously, the Floquet states should satisfy |〈F0(C) |%̂ |F1(C)〉| ≈ 1 at any time C. If this relation

holds, we find

〈F0(C) |$̂ (C) |F0(C)〉 − 〈F1(C) |$̂ (C) |F1(C)〉

= 〈F0(C) |%̂†%̂$̂ (C)%̂†%̂ |F0(C)〉 − 〈F1(C) |$̂ (C) |F1(C)〉

= 〈F0(C) |%̂†$̂ (C)%̂ |F0(C)〉 − 〈F1(C) |$̂ (C) |F1(C)〉 ≈ 0. (6.17)

As a result, the integral of the first line in this equation over one revolving period is also close

to zero, which further yields 6e,0,q ≈ 0.

Our device, which is based on two heavy fluxoniumqubits, can be used to conveniently realize

such an approximate symmetry among Floquet states. If we choose the circuit parameters and

control pulses such that the two lowest and almost degenerate potential wells are only slightly

different in their depth, the lowest two instantaneous eigenstates will satisfy |4(C)〉 ≈ %̂ |6(C)〉

[see Fig. 6.1 (a) for the wavefunctions of a heavy fluxonium]. According to the discussion

surrounding Eq. (6.4), the Floquet states approach the instantaneous eigenstates if we modulate

the fluxes at a sufficiently low revolving frequency. If so, |F0(C)〉 and |F1(C)〉 will also satisfy

a similar symmetry as long as we keep the state evolution mostly adiabatic. We can see the

point-reflection symmetry between |F0(C)〉 and |F1(C)〉 clearly in Fig. 6.4 (c) and (d).

In the next section, we will present results of the coherence times for the revolver qubit,

whose circuit parameters and control pulses are designed according to the findings discussed

above.
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6.8. Coherence times

The findings discussed in the last section give us useful instructions on designing the revolver

qubit and the control pulses. After some trials, we find several successful schemes which yield

favorable coherence times. Here, we will only present the results of one example to showcase

the competitive coherence times in a revolver qubit. The detailed control pulses and circuit

parameters can be found in the Section 6.9.

The depolarization and pure-dephasing times of the revolver qubit are plotted in Fig. 6.5 (a)

and (b), as a function of the revolving frequency. We observe that the dynamical )1’s of this

qubit at different frequencies are mostly of the order of 1 second, thanks to the disjoint support

between the two Floquet states. Different from the situation for a heavy fluxonium, the revolver

qubit maintains a favorable )q, which is of the order of 1 millisecond, due to the operation at

dynamical sweet spots. In Fig. 6.5 (a) and (b), we use red stars to mark an example working

point, where the qubit is predicted to have 812 ms )1 and 1.08 ms )q. In both (a) and (b), we

observe peculiar dips and spikes, which we believe are given by stray resonances between the

modulation tones and transitions from the lowest two instantaneous eigenstates to higher ones.

If we disregard the strange dips and spikes, we find that the pure-dephasing time appears to

saturate for l3/2c & 50 MHz.

We turn to Fig. 6.5 (b) and (c) to better understand such saturation. In (b), we plot the inverse

of the pure-dephasing rates contributed by the fluctuation of Xq40 (1) and the dielectric noise that

is capacitively coupled to the qubit in brown and purple, respectively. These are the two noise

channels that we find contribute the most to the pure dephasing of the qubit. For higher l3 ,

although 1/ 5 flux noise contributes less to pure dephasing, the capacitive noise contributes

more. The opposite trends of these two curves can be explained using the “lollipop” plot [see
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(a)

(b)

(c)

812 ms

1.08 ms

Figure 6.5. Coherence times of a revolver qubit as a function of the revolving frequency.
(a) and (b) show the depolarization and pure-dephasing times of the revolver qubit,
respectively. In both (a) and (b), the red star marks the position of an example working
point. (b) also plots the inverse of the decoherence rates contributed by the low-frequency
fluctuations of q4,0 (1) and dielectric noise sources that are coupled through the operator
=̂0 (1) , in brown and purple, respectively. In (c), the magnitudes of the filter weights
related to e = 40 and =0 are centered at the corresponding filter frequencies. We also
plot the noise spectrum of the capacitive loss (purple coloring), (=0 ,q (l) and the 1/ 5
flux noise (brown coloring), (40 (l). The solid black curve shows the sum of these two
noise spectra. We make similar assumptions about the noise magnitudes as stated in the
caption of Fig. 5.1.
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Fig. 5.4 for a similar plot]. We show one such plot in Fig. 6.5 (c) which corresponds to the

example working point marked by the red stars in (a) and (b). To focus on the most important

noise sources, we only show the filter weights related to the low-frequency fluctuations of q4,0

and the capacitive loss coupled through =̂0. (The contributions from the noise sources affecting

the “1” mode are identical to those for “0”, if we assume a symmetric circuit.) The relation we

have derived in Eq. (6.10) allows us to conveniently use the phase matrix elements to evaluate

the contributions from capacitive noise. On top of them, we show the noise spectra (40 (l) and

(=0 ,q (l) [defined in Eq. (6.13)].

We observe that, the weights related to depolarization are negligible, due to the disjoint

support between the two Floquet states. The largest filter weights instead belong to pure

dephasing, and the corresponding sampling frequencies are the revolving frequencies ±l3 .

Since the noise spectrum of the 1/ 5 noise decays rapidly with an increasing sampling frequency,

the qubit is indeed less sensitive to 1/ 5 noise if we revolve the Floquet states sufficiently fast.

This is reminiscent of the effect of dynamical decoupling. Different from the case of 1/ 5

flux noise, the noise power describing capacitive noise becomes stronger at a higher frequency.

Therefore, increasing l3 makes the qubit on one hand less sensitive to the 1/ 5 flux noise, on the

other hand more susceptible to the capacitive noise. The opposite trends of the contributions

from 1/ 5 flux noises and dielectric loss finally yield the saturation of the pure-dephasing times.

To see this, we also plot the sum noise power spectrum by a solid black curve in Fig. 6.5 (c). As

one can observe, the rapid decrease of the noise power is replaced by a slow increase when the

sampling frequency exceeds ∼ 50 MHz. Because of this behavior of the sum noise power, )q as

a function of l3 has a maximal value around l3 ≈ 50 MHz.
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To conclude the main discussion of this chapter, we predict by one example that the revolver

qubit can have extremely long )1 together with also excellent )q. However, we have not yet

found an example that predicts a much longer coherence time than that of the state-of-the-art

fluxonium qubit [15]. We point out that there is still plenty of space for further improvement

of the coherence times. The technique of quantum optimal control [168] could help in this

direction.With this technique, we can optimize the control pulses such that the resulting filter

functions can give the qubit minimal decoherence rate given the noise spectra. Furthermore, the

special combination of second-level)1 andmillisecond-level)q is rarely seen in the research field

of superconducting circuit. This combination makes the revolver qubit especially interesting as a

candidate for the biased-noise qubit [169, 170]. Specifically, the dephasing errors in such qubits

dominates over all the other types of errors. The situation of biased noise could be advantageous

(as compared to unbiased noise) in the context of implementing quantum error correction.
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6.9. Circuit quantization

The Lagrangian of this circuit, whose generalized coordinates are the combination of node

fluxes: i0, i1, i+ ≡ (i1 + i2)/2, i− ≡ i2 − i1, is given by

L =�0
2

(
Φ0
2c

)2
¤i2
0 +

�1

2

(
Φ0
2c

)2
¤i2
1 +

�2

2

(
Φ0
2c

)2
¤i2
− (6.18)

−
(
Φ0
2c

)2 [
(i0 − i+ + i−/2)2

2!0
+ (i1 − i+ − i−/2)

2

2!1

]
+1

2

(
Φ0
2c

)2
[�1( ¤i+ − ¤i−/2)2 + �2( ¤i+ + ¤i−/2)2]

−
(
Φ0
2c

)2 (i+ + i−/2)2
2!1

−
(
Φ0
2c

)2 (i+ − i−/2)2
2!2

+2��0 cos(q�,0/2) cos(i0 − q4,0) + 2��1 cos(q�,0/2) cos(i1 − q4,1)

+2��2 cos(q�,2/2) cos(i− + q4,2).

A Legendre transformation and the following quantization give us the Hamiltonian

�̂full =

[
4��0 =̂

2
0 +

�!0

2
(î0 + q4,0)2 − 2��0 cos

(
q�,0

2

)
cos(î0 − q4,0) + (0 → 1)

]
+ 4��+=̂2

+ + 4��− =̂
2
− +

�!

2

(
î2
+ +

î2
−

4

)
− 2��2 cos

(
q�,2

2

)
cos(î− + q4,2)

− �!0 î0 (î+ + î−/2) − �!1 î1 (î+ − î−/2), (6.19)

where î@ and =̂@ denote the promoted phase and charge operators. They satisfy [î@, =̂@′] = X@@′

(@, @′ = 0, 1, 2). Above, we have assumed symmetric parameters for a simpler treatment, i.e.,

�1 = �2, �0 = �1, !1 = !2, !0 = !1, and ��0 = ��1 . The coefficients denote the effective
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capacitive and inductive energies

��0 (1) =
42

2�0(1)
, ��− =

42

2�� + �1/2 + �2/2
, ��+ =

42

2�1 + 2�2
,

�!0 (1) =

(
Φ0
2c

)2 1
!0(1)

, �! =

(
Φ0
2c

)2 (
1
!0
+ 1
!1
+ 1
!1
+ 1
!2

)
, �!0 (1) =

(
Φ0
2c

)2 1
!0(1)

.

The quantum system governed by Hamiltonian (6.19) is described by four degrees of free-

dom. Meanwhile, the revolver qubit we have in mind only has two modes. We intend to make

the remaining two have much higher excitation energy and only mediate the interaction between

the former pair. In this situation, we can reduce the full model to a simpler one by proper approx-

imations. One crucial tool useful for this derivation is the Born-Oppenheimer approximation.

More discussion of this type of approximation can be found in Appendix D. Here, we will list

the important steps.

STEP 1: Separating the low-energy and high-energy modes. The i+ and i− modes are

designed to have much higher excitation energies compared with those of i0 and i1. We refer

to the former pair as the high-energy modes and the latter pair as the low-energy ones. The first

step is to separate the Hamiltonian into the high-energy and low-energy parts, where the former

is given by

�̂high = 4��+=̂2
+ + 4��− =̂

2
− +

�!

2

(
î2
+ +

î2
−

4

)
− ��2 cos

(
q�,2

2

)
cos(î− + q4,2)

− �!coup (i0 + i1)î+ −
1
2
�!coup (i0 − i1)î−. (6.20)

Above, we use �!coup to replace �!0 and �!1 for convenience, since they have the equal value

under the assumption of symmetric parameters. The remaining terms in Eq. (6.19) are grouped

into �̂low.
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STEP 2: Calculating the ground state energy of the high-energy modes. In the spirit of

Born-Oppenheimer approximation, we treat the quantum operators of the low-energy modes, î0

and î1, as classical variables in Eq. (6.20). The shift of the resulting eigenenergy of the ground

state due to the variation of i0 and i1 will be added as a perturbation to the low-energy modes’

Hamiltonian in the next step.

We choose the eigenenergies of the low-energy modes with i0 = 0 and i1 = 0 as an offset.

The shift of the ground-state energy of the “+” mode, induced by nonzero i0 and i1, is

Δ�6,+(i0, i1) = −
�2
!coup

2�!
(i0 + i1)2. (6.21)

The calculation of the energy shift to the “−” mode is more complicated, since this degree of

freedom is no longer harmonic. In fact, its Hamiltonian is identical to that of a fluxonium. If

we design �!coup to be much smaller than the excitation energies of the “−” mode, we can treat

the term �!coup (i0 − i1)î− perturbatively. The first and second-order corrections are given by

Δ�
(1)
6,−(i0, i1) = −

1
2
�!coup (i0 − i1)〈k−0 |î− |k

−
0 〉, (6.22)

Δ�
(2)
6,−(i0, i1) = −

1
4
�2
!coup
(i0 − i1)2

∑
<≠0

|〈k−0 |î− |k
−
<〉|2

�−< − �−0
. (6.23)

Above, we use |k−<〉 and �−< to denote the < th eigenstate and corresponding eigenenergy of the

“−” mode, which are derived with both i0 = i1 = 0 . For the convenience of the following

discussion, we denote the coefficients associated with (i0 − i1) and (i0 − i1)2 as Z1 and Z2,

respectively. Obviously, these coefficients are mediated by the control flux q�,2 and q4,2.

STEP 3: Deriving the effective Hamiltonian for the low-energy modes. The final step of

this approximation is to add the shifted energy to the Hamiltonian, meanwhile recovering the
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(a)

(b)

(c)

Figure 6.6. The time-dependent control fluxes and mutual coupling strength used in
the simulation in Fig. 6.4 and 6.5.

quantum operators î0 and î1 from classical variables. After this step, we finally arrive at the

effective Hamiltonian in Eq. (6.1).

Finally, we list the circuit parameters used for all the simulations shown above. The control

Table 6.1. Circuit parameters used for the simulation in this chapter.

Parameters Energy
��0 , ��1/2c 4.3 GHz
�!0 , �!1/2c 0.36 GHz
��0 , ��1/2c 1.0×102 GHz
��2/2c 5.0 GHz
��−/2c 9.0 GHz
�!/2c 1.4 GHz

pulses and engineered time-dependent mutual coupling are shown in Fig. 6.6.



147

CHAPTER 7

Outlook

In the late 20th century, quantum computationwasmore like a dream to scientists. Some even

described quantum computing “a nightmare” for experimentalists, due to concerns about strong

decoherence [171]. After decades of continuous efforts, these concerns have been partially

addressed by significant improvements of coherence times in several quantum platforms. One

of these is the superconducting-circuit platform [172].

The impressive progress in recent years toward building full-fledged quantum computers has

brought our dream one step closer to reality. It has ignited the popularity of quantum computation

not only among scientists, but also the public. However, despite all the hype created by the media

about how powerful quantum computers can be and how close their arrival might be, we need

to recognize that current quantum machines still cannot outperform widely-available classical

computers in useful tasks. (Although some research has claimed quantum supremacy over

classical computers [12, 111], it is still debatable whether the algorithm implemented in these

experiments is useful.)

To fully realize the dream of quantum computing, experimentalists and theorists are still

working hard to improve the performance of qubits. Specifically, researchers have invested

tremendous efforts into improving materials, circuit designs and control protocols to enhance

the control fidelities for superconducting qubits, as summarized in Chapter 1. In this thesis,

we have introduced our own efforts which have been focused on designing state-preparation

protocols, protecting qubits from low-frequency noise, and designing a noise-protected qubit.
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Obviously, muchmore endeavors are still required. To contribute to this fieldmore efficiently,

it is necessary for us to look for directions that can further push the research frontier. Aside

from popular topics already under intensive exploration, here are several directions we believe

to be useful for advancing quantum information technologies with superconducting qubits: (a)

Understanding how defects interact with the qubit modes from a more microscopic perspective,

and how to adjust circuit designs, materials, and control protocols accordingly. (b) Exploring

circuit architectures that can reduce the energy participation in the substrate and uncontrolled

surfaces, such that dielectric loss can be mitigated. (c) Exploring junction types other than

S-I-S junctions or, more broadly, seeking alternative high-coherence circuit elements that could

provide the necessary nonlinearity.

Apart from quantum computation, quantum technologies may eventually help us solve other

long-standing problems (such as the detection of dark matter, potentially). It will be exciting

to witness the revolution that quantum machines will enable, both in our everyday life and in

science. We hope that the work discussed in this thesis contributes to the development of future

quantum technologies. We will conclude by one quote from John Heywood to encourage future

exploration: “Nothing is impossible to a willing heart.”
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APPENDIX A

Rotating-Wave Approximation

The rotating-wave approximation (RWA) is an important tool for simplifying equations

governing the evolution of closed or open quantum systems. We can find its applications

in many places in quantum physics. In Chapter 2, we see that this approximation plays an

essential role in deriving the Lindblad master equation. In this appendix, we will justify this

approximation by deriving the error bound. We will start from the discussion of probably the

simplest example, the Rabi oscillation, to give a concrete example where RWA is applied. Then,

we will move to a more abstract level to justify it in a general first-order ordinary differential

equation (ODE).

A.1. RWA and Rabi oscillations

The driven two-level system is a precious analytically-solvable model in quantummechanics.

When a two-level system is weakly driven by a single-tone drive, the population in both eigen-

states goes through periodic oscillations. This phenomenon is described as the Rabi oscillation.

RWA is essential for explaining such behaviors analytically, which allows us to neglect certain

terms in the Schrödinger equation that are regarded as “fast-rotating”. We use this as an example

to demonstrate how RWA is applied.
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The weakly driven two-level system is governed by the Hamiltonian �̂ (C) = �̂0 + �̂d(C),

where

�̂0 =
l@

2
f̂I,

�̂d(C) = 3' f̂G cosl3C, (A.1)

wherel@ is the bare qubit transition frequency, 3' andl3 denote the drive strength and frequency

respectively. We set the drive frequency on resonance with the qubit transition frequency, i.e.,

l3 = l@. We choose to solve the state-evolution of this quantum system in the interaction

picture, using the von Neumann equation. The density operator in the interaction picture is

defined as d̃(C) ≡ *̂†0 (C)d(C)*̂0(C), where d(C) is the density operator in the Schrödinger picture,

and *̂0(C) is the propagator defined by *̂0(C) = exp(−8�̂0C). Then d̃(C) satisfies the equation

3d̃(C)
3C

= 8[�̃d(C), d̃(C)], (A.2)

where,

�̃d(C) =*†0 (C)�̂d(C)*̂0(C)

=
3'

2
(f+ + f−) + 3'

2
(f+428l@C + f−4−28l@C). (A.3)

Therefore,

3d̃(C)
3C

= 8

[
3'

2
(f+ + f−), d̃(C)

]
+ 8

[
3'

2
(f+428l@C + f−4−28l@C), d̃(C)

]
. (A.4)
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The terms in the second square bracket on the right-hand side are regarded as fast-rotating terms,

usually under the condition 3' � 2l@. We will provide a rigorous justification on why this

works in the next section. Here we provide an intuitive explanation of such a treatment: if

the characteristic timescale of the variation of d̃(C) is much longer than the period 2c/(2l@),

the time-integration of the second term will be “averaged out” by the oscillatory coefficients

exp(±28l@C), which should only slightly contribute to the solution of d̃(C). Based on Eq. (A.4),

that timescale should be at the order of 3−1
'
, hence the condition mentioned above. The

justification of RWA discussed in the next section closely follows this line of thought.

After we neglect the second term in Eq. (A.4), the problem reduces to a constant-coefficient

first-order ODE. It is straightforward to derive the equation for d00 − d11 using the simplified

von Neumann equation, which is given by

32 [ d̃00(C) − d̃11(C)]
3 C2

= −32
' [ d̃00(C) − d̃11(C)] . (A.5)

Solving this equation yields the sinusoidal population oscillation of the qubit. The period of

the Rabi cycle is thus given by 2c/3'. Numerical simulations have found excellent agreement

between the solution obtained by the full model and that using Eq. (A.5).

A.2. RWA in first-order ODEs

The problem of Rabi oscillations is not the only example where RWA is applied. Other

examples include the derivation and simplification of Lindblad master equation [86]. In all

these examples, we actually deal with first-order linear ODEs, where oscillatory terms that are

regarded as fast-rotating are neglected to simplify the equation. For example, the von Neumann

andLindbladmaster equations can be converted to this form through a “vectorization” procedure.
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For example, the density operator d(C) is converted to ®5 = [d00, d01, d10, d11]) for a two-level

system.

In general, we can formulate the full equations that describe these problems as

3 ®5 (C)
3C

=
∑
l

4−8lC+l ®5 (C), (A.6)

where ®5 is a =-dimensional vector, and +l denotes a time-independent = × = matrix. Each +l

is associated with an oscillatory coefficient 4−8lC . We impose another condition for Eq. (A.6)

that is essential for the following derivation: for all relevant time C, the norm of Eq. (A.6) vector

®5 (C) is bounded, namely, there exists a positive value � that bounds vector ®5 (C) by the relation

� > | | ®5 (C) | | for any relevant C. In general, it is not straightforward to derive what requirement+l

should satisfy to ensure this condition. However, if the equation is used to describe the evolution

of a density matrix under the equation which has the Lindblad form, we know that the norm of

the vectorized density matrix is guaranteed to be bounded by 1. (Note that the von Neumann

equation is a special case of the Lindblad master equation – the latter reduces to the former if

we set the dissipation rates to zero.)

It is important to note that, if ®5 is bounded, then +l ®5 is also bounded according to the

relation | |+l ®5 | | ≤ | |+l | | | | ®5 | |. Here, the matrix norm is chosen to be the vector-induced norm

with ? = 2. In fact, this norm is identical to the largest singular value of+l, which we denote by

(l. Based on this fact, we can further prove that: If+l ®5 is bounded, then | | ®5 (C2)− ®5 (C1) | |/|C2−C1 |

is bounded. As hinted in the last section, it is essential to find the characteristic timescale of

the variation of the quantity ®5 (C). For this goal, we evaluate | | ®5 (C2) − ®5 (C1) | |, which we find is
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bounded by the relation

| | ®5 (C2) − ®5 (C1) | | =
�����
�����∫ C2

C1

3C′
∑
l

4−8lC
′
+l ®5 (C′)

�����
����� ≤∑

l

(l�(C2 − C1) = ��(C2 − C1). (A.7)

Here we define � ≡ ∑
l (l, which can be understood as the effective drive strength on the

quantum or classical system. The variation timescale of ®5 (C) is lower-bounded by �−1, since at

ΔC = C2 − C1 = �−1, the variation of ®5 (C) is at most �.

Finally, using these two facts, we evaluate the error caused by RWA.Aswe havementioned in

the last section, if the oscillatory period of one term is much shorter than the variation timescale,

the contribution of this term to ®5 (C) − ®5 (0) will be small. For example, we assume that there is

one term on the right-hand side of Eq. (A.6) that is associated with a frequency |l' | � �. We

are temped to throw that term away, but how different will ®5 (C) be if this term is neglected? We

denote the solution of ®5 without that term as ®5RWA(C). For convenience, we estimate the quantity

| | ®5 (C) − ®5RWA(C) | | at C = #) with # � 1 () ≡ 2c/l'). The bound of this error is estimated by

| | ®5 (C) − ®5RWA(C) | | =
��������∫ C

0
3C′4−8l

'C ′+l'
®5 (C′)

��������
≤

#−1∑
9=0

�����
�����∫ ( 9+1))

9)

3C′4−8l
'C ′+l'

®5 (C′)
�����
�����

=

#−1∑
9=0

�����
�����∫ ( 9+1))

9)

3C′4−8l
'C ′+l'

[
®5 ( 9)) + ®5 (C′) − ®5 ( 9))

] �����
����� . (A.8)

Using the relation ∫ ( 9+1))

9)

3C′4−8l
'C ′+l'

®5 ( 9)) = 0, (A.9)
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we further show

| | ®5 (C) − ®5RWA(C) | | =
#−1∑
9=0

�����
�����∫ ( 9+1))

9)

3C′4−8l
'C ′+l'

[
®5 (C′) − ®5 ( 9))

] �����
�����

≤
#−1∑
9=0

∫ ( 9+1))

9)

3C′
������+l' [ ®5 (C′) − ®5 ( 9))] ������

≤
#−1∑
9=0

∫ ( 9+1))

9)

3C′(l'
������ [ ®5 (C′) − ®5 ( 9))] ������

≤
#−1∑
9=0

∫ ( 9+1))

9)

3C′(l'��(C′ − 9))

≤ 1
2
#(l'��)

2 ≤ 1
2
#�(�))2 = 1

2
C��2) =

cC��2

l'
. (A.10)

Note that there may be smarter strategies to further decrease this bound. For example, we can

use integration by parts to further reduce the error bound. But these methods will still yield a

linear behavior of the bound.

How significant is this error? To answer this question, we estimate how much error is

introduced at the characteristic timescale, which we assume is �−1. Setting C = �−1 in

Eq. (A.10) yields the error bound c�(�/l'). If we normalize ®5 so that � = 1, we prove that

the error introduced by RWA is at most �/l' at the characteristic timescale �−1. Back to the

example of a driven two-level system, the error from neglecting fast-rotating terms is at the order

of 3/l3 at a full Rabi period.

Above, the fast-rotating term we omit contains a constant +l' . In practice, we sometimes

also drop fast-rotating drive terms whose envelope is slowly varying, i.e., +l' could be weakly

time-dependent. In this situation, the relation in Eq. (A.9) does not hold. However, if the
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variation of +l' (C) is sufficiently slow, the omission can still be justified, although we need to

slightly increase the error bound.

To estimate the error bound in this case quantitatively, we first find the maximal norm of

+l' (C), which is defined by (l ≡ maxC | |+l' (C) | |. The slow variation of +l' (C) implies that we

can find X � 1 such that

1
)

��������∫ C+)

C

3C′4−8l
'C ′+l' (C)

�������� ≤ X(l, (A.11)

for all relevant time C. If so, we find

| | ®5 (C) − ®5RWA(C) | | ≤
#−1∑
9=0

�����
�����∫ ( 9+1))

9)

3C′4−8l
'C ′+l' (C)

[
®5 (C′) − ®5 ( 9))

] �����
�����

+
#−1∑
9=0

��������∫ C+)

C

3C′4−8l
'C ′+l' (C) ®5 ( 9))

��������
≤ cC��

2

l'
+ C��X. (A.12)

The additional error also linearly grows with C, with a rate proportional to X.

A.3. Numerical simulation

In this section, we evaluate the RWA-induced error numerically using a driven two-level

system, to check how far the real error is from the bound derived above. If we calculate

| | ®5 (C) − ®5RWA(C) | |, we will need to specify an initial state. To avoid the dependence of the

calculated error on the initial state, here we instead evaluate the error caused to the propagator

by RWA.
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(a)

(b)

Figure A.1. Numerically calculated error introduced by RWA. (a) shows the
evolution of the ground-state population of an off-resonantly driven two-level
system, obtained with and without RWA. The difference is plotted in blue at the
bottom of this figure. (b) shows the comparison between the estimated error
bound derived in Eq. (A.12) and the calculated error, | |! (C) − !RWA(C) | |. The
simulation is based on the following choices of parameters: l@ = 1, 3' = 1/200,
|l@ − l3 | = 1/200.
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The operator ! (C) is one of fundamental matrices for the ODE (A.6), which specifically

satisfies ! (0) = 1 and det[! (C)] ≠ 0. This implies that ! (C) satisfies ®5 (C) = ! (C) ®5 (0) for

an arbitrary initial state ®5 (0). Estimating how much !RWA(C) deviates from ! (C) avoids the

dependence of the choice of the initial state. We still assume that | |! (C) | | is bounded at all times.

For a Lindblad master equation, ! (C) is certainly bounded by 1. Note that this norm is still a

vector induced one, which ensures the relation | |�� | | ≤ | |�| | | |� | |. This is important for the

following result. By a similar procedure, we show that | |! (C) − !RWA(C) | | ≤ C�′�2)/2, where

�′ stands for the bound of operator ! (C).

The example we use is a simple two-level system that is driven off-resonantly. The Hamil-

tonian describing this system is the same as Eq. (A.1). Different from the discussion in Section

A.1, here we add detuning to the drive frequency1. As we see in Fig. A.1, the error indeed grows

roughly linearly with time, although the real error is far less than the estimated value given in

Eq. (A.12).

We have arrived at a useful result about the error of RWA. However, we need to notice

that all we have derived assumes sufficiently small coefficients of the terms on the right-hand

side of Eq. (A.6). Sometimes we need to perform certain transformations on the given ODE

to ensure this condition and perform RWA. Of course, there might be multiple choices of the

transformations that can one can use to carry out RWA. Among them, some can give us simpler

solutions after RWA, others may give more accurate results after the approximation.

1We point out that the RWA-induced error in the case where an on-resonance drive is applied appears to be much
smaller compared with that with an off-resonant drive, probably due to certain symmetry in the former case. Here
we will not further dig into this observation. We direct interested readers to Ref. [173].
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APPENDIX B

Unifying Other 1/ 5 -noise Protection Schemes Under the Floquet

Framework

The discussion in the main text focuses on the connection between dynamical sweet spots

and extrema of quasi-energy differences for the example of a driven fluxonium qubit. In this

appendix, we first extend this connection to a general periodically driven qubit system, using

a procedure similar to the one discussed in Section 5.3. Subsequently, we employ the Floquet

framework to rephrase several previously developed protection schemes [13, 43, 52–55, 130,

131, 152, 153] as special limits of our theory.

B.1. General discussion

We consider a periodically driven qubit described by an abstract Hamiltonian �̂ (_, C).

Here, _ is a control parameter, and the Hamiltonian is time-periodic with period ) = 2c/l3 ,

i.e., �̂ (_, C + )) = �̂ (_, C). (As in the main text, l3 denotes the drive frequency.) Due to

environmental noise, _ is subjected to low-frequency fluctuations, _(C) = _0 + X_(C). Here,

X_(C) captures the random fluctuations in _. (Note that in this simple model, there is only a

single noise channel.)

If the amplitude of the classical noise is sufficiently weak, then the original Hamiltonian

may be expanded up to leading order in X_(C) which yields the unperturbed qubit Hamiltonian
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and the time-dependent perturbation

�̂q(C) = �̂ (_0, C), �̂� (C) =
m�̂ (_, C)
m_

���
_=_0

X_(C), (B.1)

respectively. For convenience, we define f̂(C) ≡ [m�̂ (_, C)/m_] |_=_0 . The time-periodicity of

the Hamiltonian renders f̂(C) time-periodic as well. While the example discussed in the main

text leads to a constant f̂(C), time dependence is present in other cases such as discussed in Refs.

[53, 55]. With �̂q and �̂� specified, we are ready to employ the Floquet framework developed

in Section 5.3, and calculate the pure-dephasing rate. The result is given by

Wq =
∑
:∈Z

2|6_:q |
2(_ (:l3), (B.2)

where

6_:q =
1

2)

∫ )

0
3C 48l3 C Trq

[
f̂(C)2̂q (C)

]
, (B.3)

and (_ (l) =
∫ ∞
−∞ 3C 4

8lC 〈X_(C)X_(0)〉 is the noise spectrum. As a regularized variant of the 1/ 5

noise, it is appropriate to consider a (_ (l) that is strongly peaked at l = 0. For such a spectrum

the pure-dephasing rate (B.2) of the qubit is generically dominated by the term 2|6_0,q |
2(_ (0).

However, the pure dephasing rate can be decreased significantly by choosing a working point

where 6_0,q = 0, thus eliminating the dominant contribution. In this case, weaker contributions of

terms sampling the noise spectral density at non-zero frequencies will become relevant. These

6_0,q = 0 working points are the dynamical sweet spots.
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Based on a similar argument as in Section 5.5, we can prove that the condition 6_0,q = 0 is

closely related to the extrema of the quasi-energy difference, according to the relation

6_0q =
1
2
mn01
m_

. (B.4)

Setting both sides of Eq. (B.4) to zero establishes the connection between the dynamical sweet

spots and the quasi-energy extrema.

In the following, we show how the theoretical framework outlined above can be used to

understand noise protection schemes based on qubit frequency modulation and Rabi drives, as

presented in Refs. [13, 43, 52–55, 130, 131, 152, 153].

B.2. Dynamical sweet spots realized through qubit-frequency modulation

In Refs. [53–55, 130, 131], it is pointed out that qubit-frequencymodulation can be harnessed

for protecting a qubit from low-frequency noise. Such protection can be established by choosing

modulation parameters for which the averaged, instantaneous transition frequency exhibits an

extremum with respect to the noise parameter. Here, we confirm that the Floquet framework

presented above indeed reproduces this condition in a certain limit.

We specifically consider the case of a frequency-modulated qubit using a purely longi-

tudinal drive as discussed in Ref. [55]. The model Hamiltonian in this case is given by

�̂ (_, C) = Ω64 (_, C)f̂I/2, where Ω64 (_, C) is the time-dependent instantaneous eigenenergy

splitting, and _ is an external control parameter that determines the splitting. The unper-

turbed Hamiltonian and perturbation operator from Eq. (B.1) now take on the concrete form

�̂q = Ω64 (_0, C)f̂I/2 and �̂� = [mΩ64 (_, C)/m_] |_=_0X_(C)f̂I/2. (We assume that �̂� is

nonzero.) To phrase the calculation of decoherence rates in our previous Floquet language,
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we obtain the unperturbed Floquet states and corresponding quasi-energies of the frequency-

modulated qubit (in the absence of fluctuations X_(C)). The Floquet states read

|F0(1) (C)〉 = |6(4)〉 exp
[
−(+)
8

2

∫ C

0
3C′(Ω64 (C′) − Ω̄64)

]
, (B.5)

and the corresponding quasi-energies are given by n0(1) = −(+)Ω̄64/2. Different from notation

in the main text, |6(4)〉 here denote the eigenstates of fI, and we have defined the averaged

transition frequency Ω̄64 =
∫ )

0 3C Ω64 (_, C)/) . Within this model, the quasi-energy difference

is evidently given by the averaged qubit transition frequency, i.e., n01 = Ω̄64. According to

Eq. (B.4), dynamical sweet spots nowmanifest whenever the time-averaged transition frequency

vanishes, mΩ̄64/m_ = 0. This is in full agreement with the sweet-spot condition as formulated

in Refs. [53–55, 130, 131].

The full expression of the pure-dephasing rate is calculated using Eq. (B.2), where the

coefficients are given by

6_:q =
1

2)

∫ )

0
3C 48:l3 C

mΩ64 (_, C)
m_

���
_=_0

=
1
2
mΩ64,:

m_

���
_=_0

. (B.6)

Here, Ω64,: denotes the :th Fourier coefficient of the time-periodic transition frequency. We

find that this result reproduces the one reported in Ref. [55].

B.3. Dynamical sweet spots induced by on-resonance Rabi driving

It has been demonstrated that an on-resonance Rabi drive can dynamically decouple a

qubit from low-frequency noise affecting its transition frequency [13, 43, 52, 152, 153]. Such

decoupling is sometimes also referred to as spin-locking [13, 52]. In the following, we confirm
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that this protection scheme can also be understood as an instance of the dynamical sweet-spot

operation discussed in this paper.

Consider the Hamiltonian of a transversely driven qubit within RWA,

�̂ (_, C) =
Ω64 (_)

2
f̂I + 3' (f̂+4−8l3 C + h.c.), (B.7)

where 3' denotes the drive strength. As before, _ = _0 + X_(C) is an external control parameter

subjected to random fluctuations X_. Note that, in contrast to the previous case, there is

no separate modulation (AC component) of Ω64 here. Employing series expansion in X_, the

perturbation describing the effect of noise to leading order is �̂� = X_(C) [mΩ64 (_)/m_]_=_0f̂I/2.

(We again assume operation away from static sweet spots, so that �̂� ≠ 0.) To evaluate the

decoherence rates, we need to invoke the Floquet states of the noise-free qubit, which are given

by

|F0(C)〉 = cos
\

2
|6〉 − exp (−8l3C) sin

\

2
|4〉,

|F1(C)〉 = sin
\

2
|6〉 + exp (−8l3C) cos

\

2
|4〉, (B.8)

where \ = tan−1(3'/XΩ64) and XΩ64 = Ω64 (_) − l3 . The corresponding quasi-energies are

given by n0(1) = −(+)ΩR/2, where ΩR =

√
XΩ2

64 + 32
'
is the Rabi frequency. As a result, the

quasi-energy difference for this model is given by the Rabi frequency, i.e., n01 = ΩR. The

dynamical sweet spots therefore obey the condition mn01/m_ = mΩR/m_ = 0, which is implies

XΩ64 = 0.

We further compare the explicit expressions of the depolarization and pure-dephasing rates

derived within our framework with the results previously reported in the literature. We find for
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these rates

Wq =
1
2

[
mΩ64 (_)
m_

���
_=_0

cos \
]2
(_ (0),

W∓ =
1
4

[
mΩ64 (_)
m_

���
_=_0

sin \
]2
(_ (±ΩR), (B.9)

which reproduce the results presented in Ref. [13].

B.4. Dynamical sweet spots realized by dynamical decoupling pulse sequences

We finally show that we can also interpret the dynamical decoupling (DD) scheme [145, 146,

149–151] as a special dynamical-sweet-spot operation. For simplicity, we consider a two-level

system driven by an ideal DD pulse sequence. After moving to a rotating frame and apply the

rotating-wave approximation, we find the Hamiltonian describing the driven two-level system

�̂0 =
1
2
5DD(C)f̂G +

1
2
XlI f̂I . (B.10)

Above, 5DD(C) =
∑
9∈Z cX(C − 9)), and ) is the interval between two DD pulses. To solve for the

Floquet states and quasi-energies, we derive the propagator of the driven qubit in this rotating

frame as

*̂0(C) = exp
[
−81

2
XlI (C%))f̂I

] [
(−8f̂G) · exp

(
−81

2
XlI)f̂I

)] [ C
)
]
. (B.11)

Since the quasi-energies are closely related to the phases of the eigenvalues of the unitary at

the end of one period, we first solve for its eigenvalues. Inserting C = ) in the equation above,
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we find

*̂ ()) = − 8 cos
(
1
2
XlI)

)
f̂G + 8 sin

(
1
2
XlI)

)
f̂H

= − 8
[
cos

(
1
2
XlI)

)
f̂G − sin

(
1
2
XlI)

)
f̂H

]
. (B.12)

The eigenvalues of this matrix are ±8. Using the method presented in Ref. [174], we derive

the quasi-energies of the two Floquet states as n0(1) = −(+)l3/4. Surprisingly, the quasi-energy

difference n01 = l3/2 is not XlI-dependent. This implies that the qubit under an ideal DD pulse

sequence has a extremely resilient sweet spot against the fluctuation of XlI.

However, this conclusion has several caveats. Most obviously, it is not practical to engineer

a sequence of delta pulses in reality. Any non-zero XlI will lower the fidelity of a flip operation

realized by a c pulse with finite width, which makes the unitary derived in Eq. (B.12) inaccurate.

The rotating-wave approximation we have made will also break down for high driving power,

and therefore counter-rotating terms must be included in Eq. (B.10).
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APPENDIX C

Adiabatic Floquet Theory

In this appendix, we discuss the adiabatic Floquet theory [163, 175], which is useful for the

adiabatic mapping used in Refs. [46, 155].

For simplicity, we focus on a #-level system driven by a chirped single-tone pulse. Assume

that this periodically driven system is controlled by a parameter set ®_. The time-dependent

Hamiltonian corresponding to each _ is given by �̂� ( ®_, g). For the system we are interested in

here, ®_ = [l3 , �], namely, the control parameters are the drive amplitude and frequency. For

each ®_, the Hamiltonian �̂� ( ®_, g) satisfies

�̂�

(
®_, g + 2c/_1

)
= �̂�

(
®_, g

)
.

It has # independent Floquet states |F 9 ( ®_, g)〉 with their quasi-energy n 9 ( ®_). They satisfy[
�̂� ( ®_, g) − 8

m

mg

] ���F 9 ( ®_, g)
〉
= n 9 ( ®_)

���F 9 ( ®_, g)
〉
. (C.1)

We note that, the period of the Hamiltonian as well as the Floquet states depends on the first

entry of ®_, namely, _1.

To ensure adiabaticity by slowly tuning ®_, we should require that the Hamiltonian family

�̂� ( ®_, g) and its quasi-energy spectrum n 9 ( ®_) vary continuously with ®_. However, it is not

straightforward to define the continuity of �̂� ( ®_, g), because the period of �̂� ( ®_, g) changes for

different _1. To rigorously define continuity, we introduce another ®_-dependent Hamiltonian,
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which is a function of \ instead of g: �̂′
�
( ®_, \) ≡ �̂� ( ®_, g = \/_1). Now, all �̂′� ( ®_, \) have a fixed

period 2c in \. The proper definition of continuity is given by �̂′
�
( ®_ + X ®_, \ + X\) |

X ®_→0,X\→0 →

�̂′
�
( ®_, \). In the following, we will mainly use �̂′

�
( ®_, \) for clarity.

Using these preparations, we next study how the system evolves with slowly varying ®_.

Assume that the parameter vector ®_ varies slowly with time as a function ®_(C). The system

Hamiltonian at time C is

�̂ (C) = �̂′�
(
®_(C), \ =

∫ C

0
_1(C′)3C′

)
, (C.2)

where the form of the second entry mimics the phase accumulation according to the time-

dependent frequency. The system state |k(C)〉 evolves according to

3

3C
|k(C)〉 = −8�̂ (C) |k(C)〉. (C.3)

Note that the Hamiltonian �̂ (C) is in general not time periodic, therefore the standard Floquet

analysis is not applicable.

In the following, we will prove that, if ®_ varies sufficiently slow, the system still follows

instantaneous Floquet states. Specifically, if adiabaticity holds, we will find our system in state���F 9

(
®_(C), g =

∫ C

0 3C
′_(C′)/_1(C)

)〉
if it is initiated in

���F 9

(
®_(0), g = 0

)〉
. To verify this, we need

an extra dimension to make the Floquet formalism, where the periodic boundary condition is

crucial, and a non-periodic Hamiltonian compatible with each other.

We first extend our previous Hilbert space by a tensor product of the previous one with

another function space, which contains all square-integrable functions 5 : (1 → C. Rigorously,

the new Hilbert space is defined byK = H ⊗ !2((1, \), whereH is the previous #-dimensional
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Hilbert space and !2((1, \) stands for the function space containing square-integrable functions

whose domain is a circle (1 with length 2c, and codomain is C. A state in K can be generally

represented by |ΦK〉〉 =
∫ 2c

0 3\
∑
9 Φ 9 (\) | 9〉 ⊗ |\〉, where 〈\′|\〉 = X(\ − \′), or in \’s conjugate

basis, |ΦK〉〉 = ∑
9 ,=Φ 9 ,= | 9〉 ⊗ |=〉, where |=〉 =

∫ 2c
0 exp(8=\) |\〉/

√
2c. The delta function used

above is defined on domain (1 which satisfies the relation
∫ 2c

0 3\ X(\ − \′) 5 (\) = 5 (\′). It can

also be written as an infinite sum as

X(\ − \′) = 1
2c

∑
=∈Z

48=(\−\
′) . (C.4)

Our next goal is to find a “Hamiltonian”  ̂ (C) that is defined in this enlarged Hilbert space,

which governs the state evolution by

m

mC
|ΦK (C)〉〉 = −8 ̂ (C) |ΦK (C)〉〉. (C.5)

We want to find a proper definition of  ̂ (C), such that Eq. (C.5) can somehow reduce to

Eq. (C.3). Then, we can use the adiabatic evolution of |ΦK (C)〉〉 to justify the adiabaticity of

|k(C)〉’s evolution. Note that now the vector |ΦK (C)〉〉 is by construction periodic in \, which

mimics the periodicity of the Floquet states. Meanwhile, |ΦK (C)〉〉 is able to evolve by a non-

time-periodic  ̂ (C). In this way, the incompatibility between the periodicity of the Floquet states

and non-periodic Hamiltonian can be resolved.

One choice of  ̂ (C) is

 ̂ (C) =
∫ 2c

0
3\′�̂′� ( ®_(C), \′) ⊗ |\′〉〈\′| + _11̂H ⊗ =̂\ , (C.6)
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where �̂ (C) is the time-dependent Hamiltonian defined in Eq. (C.2), and we define =̂\ ≡∑
=∈Z =|=〉〈=|. Now let us check how one vector defined in Hilbert spaceH , namely,

|q(C)〉 =
〈
\ =

∫ C

0
_1(C′)3C′

����ΦK (C)〉〉, (C.7)

evolves over time. Below, we maintain the definition \ =
∫ C

0 _1(C′)3C′. We first find

m

mC
|q(C)〉 = _1(C)

m

m\

〈
\

���ΦK (C)〉〉 − 8〈\��� ̂ (C)���ΦK (C)〉〉. (C.8)

Above, we have made use of the Schrödinger equation defined in Eq. (C.5). We next evaluate

the second term on the right-hand side. It is given by

〈
\

��� ̂ (C)���ΦK (C)〉〉 = �̂ (C)〈\���ΦK (C)〉〉 + _1

〈
\

���=̂\ ���ΦK (C)〉〉
= �̂ (C) |q(C)〉 + _1

∫ 2c

0
3\′

〈
\

���=̂\ ���\′〉〈\′���ΦK (C)〉〉. (C.9)

Using the relation

〈\ |=̂\ |\′〉 = 8
m

m\′

∑
=∈Z

48=(\−\
′) , (C.10)

and Eq. (C.4), we find

〈
\

��� ̂ (C)���ΦK (C)〉〉 = �̂ (C) |q(C)〉 − 8 m
m\
|q(C)〉. (C.11)
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Inserting Eq. (C.11) into Eq. (C.8), we find that the first term on the right-hand side is

cancelled, which leads to the following result

m

mC
|q(C)〉 = −8�̂ (C) |q(C)〉. (C.12)

Amazingly, |q(C)〉 satisfies the Schrödinger equation governed by �̂ (C). Therefore, we indeed

find a way to reduce of evolution in Eq. (C.5) to that in Eq. (C.3). But we need to point out that,

in general, |q(C)〉 is not necessarily normalized if we only require |ΦK (C)〉〉 to be normalized.

In other words, 〈〈ΦK (C) |ΦK (C)〉〉 = 1 does not guarantee 〈q(C) |q(C)〉 = 1. We need to properly

set the initial condition for 〈〈ΦK (C) |ΦK (C)〉〉 for C = 0, such that for any \, theH -Hilbert space

vector 〈\ |ΦK (0)〉〉 is normalized. We can check that, the proper normalization condition will

hold once the initial condition is properly set. [We can prove this by using Eq. (C.7), with an

arbitrary offset added to \ (C).]

The operator  ̂ (C) is called the quasi-energy operator [163], because the eigenvalues of the

operator  ̂ (C) are identical to the quasi-energy spectrum of the Hamiltonian �̂� ( ®_(C), g). In

fact, the eigenenergies and eigenstates of  ̂ (C) are

n 9 ,= = n 9 + =_1,
���ΦK9 ,= ( ®_(C))〉〉 = ∫ 2c

0
3\′ 4−8=\

′

�����F 9 ( ®_(C), g = \′/_1(C))
〉
⊗ |\′〉〈\′|. (C.13)

Finally, we apply the adiabatic theorem to the evolution of a vector |ΦK (C)〉〉, and arrive

at the central result of the adiabatic Floquet theory. If we consider a truncated #-level system

(for example, we have # = 2 in Chapter 5), we can work out an adiabatic limit for adiabatic

evolution, by setting the timescale that parameter set ®_ varies sufficiently slow compared with

relevant quasi-energy spacings, all the way along the parameter path ®_(C). In this limit, if we
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initialize the state in one of the eigenstate of  ̂ (0), i.e.,

���ΦK (C = 0)
〉〉
=

���ΦK9 ,0( ®_(0))〉〉, (C.14)

the vector |ΦK (C)〉〉 will adiabatically follow |ΦK
9 ,0( ®_(C))〉〉, namely,

���ΦK (C)〉〉 ≈ 48 j̃ 9 (C) ���ΦK9 ,0( ®_(C))〉〉. (C.15)

The phase is evaluated as

j̃ 9 (C) = −
∫ C

0
n 9 (C′)3C′ + 8

∫ C

0
3C′

〈〈
ΦK
9 ,0( ®_(C

′))
���� mmC′ ����ΦK9 ,0( ®_(C′))〉〉 . (C.16)

Now we relate the evolution of |ΦK (C)〉〉 back to the state evolution of the real physical

system, using the relation Eq. (C.7). The initial condition implies that the qubit initial state is

|k(0)〉 = |F 9 ( ®_(0), g = 0)〉〉, i.e., the system is initiated in the 9 th Floquet state of �̂� ( ®_(0), g).

Using Eq. (C.15) and Eq. (C.7), we find the system state

|k(C)〉 ≈ 48 j̃ 9 (C)
����F 9

(
®_(C), g =

∫ C

0
3C′_1(C′)/_1(C)

)〉
. (C.17)

However, whenH has infinite dimensions, we usually do not have a rigorous adiabatic limit

since the quasi-energy spectrum become “dense” [176], but in practical cases [46, 155], the

experimental results agree well with the theory prediction using a truncated system.
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APPENDIX D

Born-Oppenheimer Approximation

In this appendix, we study the application of Born-Oppenheimer approximation in analyzing

superconducting qubits [39, 49, 96]. In the context of atomic physics, the condition for applying

such approximation is that the nuclei have exceedingly large masses compared with those of

the electrons (<#/<4 ∼ 103). This condition is usually hard to be satisfied by superconducting

circuits. In the following, we will present a detailed discussion of the procedures of this

approximation and the condition under which the approximation can be applied.

D.1. General discussion

We consider a composite system where two quantum objects are weakly coupled to each

other. The full system is described by the Hamiltonian 1

�̂full = �̂� + �̂� + �̂� , (D.1)

where �̂�(�) stands for the Hamiltonian for object �(�). The interaction is denoted by �̂� =

[ $̂�$̂�, where $̂�(�) is the quantum operator belonging to the object �(�), and [ denotes

the coupling strength. We assume that the energy scales of excitation in these two objects are

considerably different – the � mode has a much higher excitation energy than that of �. Our

intuition is that, since the state of object � changes much slower than that of �, the � mode

1To avoid introducing another notation, we use the same symbol for �̂� and �̂� ⊗ 1̂� (similar for �̂�). The readers
should be able to understand their exact meaning based on the context.



172

should evolve adiabatically according to the slow variation of 〈$̂�〉. We assume that the spectral

decomposition of $̂� is given by

$̂� =
∑
0

Ω0 |0〉〈0 | ⊗ 1�. (D.2)

It is reasonable to believe that, if we measure the � object with $̂� as the observable and obtain

Ω0 as the result, after the measurement we will find the � object in state |0〉 and the � object in

state |0�; 0〉. The latter is the ground state of

�̂BO,� (0) = �̂� + [Ω0$̂�. (D.3)

Motivated by such intuition, we try choosing a different basis other than the eigenstate

of �̂� (�) to express �̂full, and investigate methods of approximating the Hamiltonian ex-

pressed in this basis to simplify the eigenvalue problem. The set of basis states we choose is

{|0〉 ⊗ | 9�; 0〉}, where | 9�; 0〉 is the 9�th eigenstate of �̂BO,� (0) defined in Eq. (D.3), satisfying

�̂BO,� (0) | 9�; 0〉 = � 9� (0) | 9�; 0〉. In the following, we will use the abbreviation |0, 9�; 0〉 ≡

|0〉 ⊗ | 9�; 0〉 for convenience. These basis states are normalized as 〈0, 9�; 0 |0′, 9 ′
�

; 0′〉 =

X0,0′X 9� , 9 ′� , although we should note that 〈 9�; 0 | 9 ′
�

; 0′〉 in general does not equal to X0,0′X 9� , 9 ′� .

Since we only focus on the low-energy excitations in this system, we are especially interested

in the subspace with 9� = 0. To divide the Hilbert space into subspaces with different 9�, it is

useful to define the projection operator in terms of the new basis states

% 9� =
∑
0

|0, 9�; 0〉〈0, 9�; 0 |, (D.4)
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which satisfies

% 9�% 9 ′� = X 9� , 9
′
�
% 9� ,∑

9�

% 9� =
∑
0

∑
9�

|0, 9�; 0〉〈0, 9�; 0 | = 1. (D.5)

The full Hamiltonian is then expanded by

�̂full =
∑
9�

∑
9 ′
�

% 9� �̂full% 9 ′
�
=

∑
9�

∑
9 ′
�

�̂ 9� , 9
′
�
, (D.6)

where we define �̂ 9� , 9
′
�
≡ %̂ 9� �̂full%̂ 9 ′

�
. Using $̂� |0〉 = Ω0 |0〉, we find

%̂ 9� (�̂� + �̂�)%̂ 9 ′� = %̂ 9�
∑
0

(�̂� + [Ω0$̂�) |0, 9 ′�; 0〉〈0, 9 ′�; 0 |

= %̂ 9�

∑
0

� 9 ′
�
(0) |0, 9 ′�; 0〉〈0, 9 ′�; 0 |

= X 9� , 9 ′�

∑
0

� 9� (0) |0, 9�; 0〉〈0, 9�; 0 |. (D.7)

This means that part of the Hamiltonian �̂full is already subspace diagonal – both �̂� and �̂�

are contained in
∑
9�
�̂ 9� , 9

′
�
.

The term that is left over is �̂�. We expand �̂� as �̂� =
∑
9� , 9

′
�
�̂�, 9� , 9

′
�
, where we define

�̂�, 9� , 9
′
�
≡ %̂ 9� �̂�%̂ 9 ′

�
=

∑
0,0′

ℎ�,00′� 9� ,0, 9 ′� ,0
′ |0, 9�; 0〉〈0′, 9 ′�; 0′|. (D.8)
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Above, we define ℎ�,00′ ≡ 〈0 |�̂� |0′〉, and � 9� ,0, 9 ′� ,0′ ≡ 〈 9�; 0 | 9 ′
�

; 0′〉. We separate �̂� into

subspace diagonal and off-diagonal parts, i.e.,

�̂� =
∑
9�

�̂�, 9� , 9� +
∑
9�≠ 9

′
�

�̂�, 9� , 9
′
�
= �̂�,d + �̂od. (D.9)

For convenience, we further define

�̂d ≡ �̂� + �̂� + �̂�,d, (D.10)

which collects all the subspace diagonal terms in �̂full.

Up to this step, we have not made any approximation. The first approximation we will

make is to omit �̂od. Obviously, such a treatment requires that the coefficients ℎ�00′� 9� ,0, 9 ′� ,0′

are sufficiently small compared with the relevant detuning in the unperturbed spectrum, such

that the coupling terms in �̂od are only dispersive. To be clear, we assume that we have

derived the unperturbed eigenstates | 9�, 9�〉 by diagonalizing the unperturbed Hamiltonian �̂d.

We are allowed to use two separate indices 9� and 9� to label these states because �d is

subspace diagonal, i.e., [%̂ 9� , �̂d] = 0 for any 9�, therefore the unperturbed eigenstates should

each live in one of the subspaces %̂ 9� . These states satisfy �̂d | 9�, 9�〉 = � 9�, 9� | 9�, 9�〉 and

%̂ 9� | 9�, 9 ′�〉 = X 9� , 9 ′� | 9�, 9
′
�
〉. Since the � mode has a much higher energy, it is reasonable to

assume |� 9�, 9� − � 9 ′�, 9 ′� | � ℎ�00′� 9� ,0, 9 ′� ,0
′ whenever 9� ≠ 9 ′

�
. 2

One would of course ask, why don’t we neglect �̂� in the first place rather than going a

long way and still drop some terms? We point out that the terms we omit here can have a

much smaller magnitude than those in �̂� . To show this, we need to estimate the magnitude

2In fact, this condition cannot be satisfied when the � mode has an infinite number of levels whose energies are not
bounded. However, since we usually only care about the low-energy excitation, we can perform a proper truncation
on the � mode’s energy levels to avoid such complication.
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of coefficients ℎ�,00′� 9� ,0, 9 ′� ,0′. The magnitude of coefficient ℎ�,00′ largely depends on the

commutation of operators $̂� and �̂�. A simple but boring scenario is that, if the two operators

satisfy [$̂�, �̂�] = 0, we have ℎ�,00′ = 0 for 0 ≠ 0′. And for 0 = 0′, the coefficient � 9� ,0, 9 ′� ,0′

vanishes if 9� ≠ 9 ′
�
. This means that �̂od vanishes if $̂� and �̂� commute. Otherwise, we will

need to study the specific choice of $̂� and �̂� to find ℎ�,00′.

The coefficient � 9� ,0, 9 ′� ,0′ depends on [. Making use of the perturbation theory, we find that

to the first order,

|� 9� ,0, 9 ′� ,0′ | ∼
|[ΔΩ0〈 9 ′�; 0 |$̂� | 9�; 0〉|
|� 9� (0) − � 9 ′� (0) |

,

for 9� ≠ 9 ′
�
. Since we have not specified the Hamiltonian and operators, it is difficult to discuss

the magnitudes of 〈 9 ′
�

; 0 |$̂� | 9�; 0〉. However, we can tell that from the expression above that

the magnitude of the terms we neglect here decrease inversely with the excitation energy in �.

This implies that such an approximation will induce less error if the � mode’s excitation energy

is higher.

To complete the Born-Oppenheimer approximation, we have another step to take. We first

express �̂d in the {|0, 9�; 0〉} basis

�̂d =
∑
9�

[∑
0

� 9� (0) |0, 9�; 0〉〈0, 9�; 0 |

+
∑
0,0′

ℎ�,00′� 9� ,0, 9� ,0′ |0, 9�; 0〉〈0′, 9�; 0′|
]
. (D.11)

To this step, we have almost removed the role of the � mode, except for the energy � 9� (0) and

� 9� ,0, 9� ,0′. The former in most relevant cases is not difficult to calculate, while the estimation

of the latter is more involved. Furthermore, we hope that �̂� is almost unaffected after the

approximation, while in Eq. (D.11), all matrix elements of �̂� are multiplied by the coefficients
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� 9� ,0, 9� ,0′. Further approximation on � 9� ,0, 9� ,0′ can help us solve these issues. Using the

perturbation theory, this coefficient is estimated as

|1 − � 9� ,0, 9� ,0′ | ∼
∑
9 ′
�
≠ 9�

|[ΔΩ0〈 9 ′�; 0 |$̂� | 9�; 0〉|2

|� 9� (0) − � 9 ′� (0) |
2 , (D.12)

which scales with ([/|� 9� (0) − � 9 ′� (0) |)
2. Above, we have defined ΔΩ0 = |Ω0′ − Ω0 |. The

difference of � 9� ,0, 9� ,0′ with 1 is small if ([/|� 9� (0) − � 9 ′� (0) |)
2 is sufficiently small and ΔΩ0

is bounded. In this case, we are allowed to approximate � 9� ,0, 9� ,0′ by 1. We are also allowed

to make this approximation, if |1 − � 9� ,0, 9� ,0′ | is not sufficiently close to zero for all 0 and 0′,

but ℎ�,00′ already approaches zero before � 9� ,0, 9� ,0′ significantly differ from 1. In this case,

replacing � 9� ,0, 9� ,0′ by 1 will not cause significant error either.

After this replacement, we arrive at the desired Hamiltonian,

�̂BO =
∑
9�

[∑
0

� 9� (0) |0, 9�; 0〉〈0, 9�; 0 |

+
∑
0,0′

ℎ�,00′ |0, 9�; 0〉〈0′, 9�; 0′|
]
. (D.13)

Why is this Hamiltonian good for us? Because if we only focus on the subspace %̂ 9� , the

eigenenergies solved for of Hamiltonian %̂ 9� �̂BO%̂ 9� are identical to those of

�̂eff, 9� = �̂� + � 9� (0̂), (D.14)

where we define 0̂ ≡ ∑
0 0 |0〉〈0 |, and 5 (0̂) ≡ ∑

0 5 (0) |0〉〈0 | for any function 5 (0). The

eigenstates of %̂ 9� �̂BO%̂ 9� can also be easily obtained by the eigenstates of �̂eff, 9� – if its
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9�th eigenstate is |k 9�〉 =
∑
0 k 9� (0) |0〉, then the corresponding eigenstate of %̂ 9� �̂BO%̂ 9� is

| 9�, 9�〉 =
∑
0 k 9� (0) |0, 9�; 0〉.

Above, we have focused on the case where the coupling between the two objects is assumed

to be the simplest dipole-dipole interaction [$̂�$̂�. We can slightly generalize the model a

little beyond the simplest linear coupling, by assuming that the interaction takes the form

�̂� = 6($̂�, $̂�), (D.15)

where 6($̂�, $̂�) is a function of operators $̂� and $̂� defined by

6($̂�, $̂�) =
∑
0,1

6(Ω0,Ω1) |0, 1〉〈0, 1 |. (D.16)

Above, 6(G1, G2) is a real function of variables G1 and G2. Also,Ω1 and |1〉 denote the eigenvalue

and corresponding eigenstate of $̂�, which satisfies $̂� |1〉 = Ω1 |1〉. The most important change

to the derivation above is probably that we will replace Eq. (D.3) by

�̂BO,� (0) = �̂� + 6(Ω0, $̂�). (D.17)

The exact definition of 6(Ω0, $̂�) is

6(Ω0, $̂�) =
∑
1

6(Ω0,Ω1) |1〉〈1 |. (D.18)

Nowwe have described at an abstract level howBorn-Oppenheimer approximation is applied

and the appropriate condition for making it. In the next section, we will use a concrete example

to help the readers understand this method more intuitively.
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D.2. Toy model

In this section, we focus on a concrete example. We assume that the two objects are two

harmonic oscillators. Note that such a model can be analytically exactly solved by a Bogoliubov

transformation [118]. Our goal is to check how the magnitude of the terms that we neglect scales

with the system parameters.

We specify that, in Eq. (D.1)

�̂�(�) = 4���(�) =̂
2
�(�) +

1
2
�!�(�) î

2
�(�) ,

�̂� = [î�î�. (D.19)

We assume that the � mode has a much higher excitation energy, and set l� � l�, where

l�(�) ≡
√

8���(�)�!�(�) . The spectral composition of î� is given by

î� =

∫ ∞

−∞
i� |i�〉〈i� |3i�. (D.20)

Using this concrete model, we first find the specific expressions of ℎ�,00′ and � 9� ,0, 9 ′� ,0′, to

derive the terms we drop in the last section. They are given by

ℎ�,i�i′� = 〈i� |�̂� |i′�〉

= − 4���
m

mi2
�

X(i� − i′�) +
1
2
�!�i

2
�X(i� − i

′
�), (D.21)

and

� 9� ,i�, 9 ′� ,i
′
�
= 〈 9� |4

8
[

�!�
(i�−i′�)=̂� | 9 ′�〉, (D.22)
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where | 9�〉 is the 9�th Fock state of �̂�. It is not straightforward to express� 9� ,i�, 9 ′� ,i′� explicitly.

Interested readers can refer to Ref. [177] for an explicit expression. One exception is that, it is

easy to find that, for 9� = 9 ′� = 0,

�0,i�,0,i′� = exp

[
− ([=

ZPF)2

2�2
!�

(i� − i′�)
2

]
. (D.23)

With these results, we can evaluate

�̂�, 9� , 9
′
�
=

∫ ∞

−∞
3i�

∫ ∞

−∞
3i′�

[
−4���

m

mi2
�

X(i� − i′�) +
1
2
�!�i

2
�X(i� − i

′
�)

]
× � 9� ,i�, 9 ′� ,i′� |i�, 9�; i�〉〈i′�, 9

′
�; i′� |

= − 4���
∫ ∞

−∞
3i�

∫ ∞

−∞
3i′�X(i� − i

′
�)

m2

mi2
�

[
� 9� ,i�, 9 ′� ,i

′
�
|i�, 9�; i�〉〈i′�, 9

′
�; i′� |

]
+ 1

2

∫ ∞

−∞
3i��!�i

2
� |i�, 9�; i�〉〈i′�, 9

′
�; i′� |

= − 4���
∫ ∞

−∞
3i�

[
m2

mi2
�

� 9� ,i�, 9 ′� ,i
′
�

]
|i�, 9�; i�〉〈i�, 9�; i� |

− 8���
∫ ∞

−∞
3i�

[
m

mi�
� 9� ,i�, 9 ′� ,i

′
�

] [
m

mi�
|i�, 9�; i�〉

]
〈i�, 9�; i� |

− 4���
∫ ∞

−∞
3i�� 9� ,i�, 9 ′� ,i

′
�

[
m2

mi2
�

|i�, 9�; i�〉
]
〈i�, 9�; i� |

+ 1
2

∫ ∞

−∞
3i��!�i

2
�X 9� , 9 ′� |i�, 9�; i�〉〈i�, 9 ′�; i� |. (D.24)
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In the expression above, we see the relevance of the derivatives of� 9� ,i�, 9 ′� ,i′�. Using Eq. (D.22),

we can estimate these derivatives as,���� m

mi�
� 9� ,i�, 9 ′� ,i

′
�

���� ∼ �����[=ZPF
�

�!�

����� ( 9� ≠ 9 ′�),����� m2

mi2
�

� 9� ,i�, 9 ′� ,i
′
�

����� ∼
�����[=ZPF

�

�!�

�����2 ( 9� ≠ 9 ′�),���� m

mi�
� 9� ,i�, 9� ,i′�

���� = 0, ( 9� = 9 ′�),����� m2

mi2
�

� 9� ,i�, 9� ,i′�

����� ∼
�����[=ZPF

�

�!�

�����2 , ( 9� = 9 ′�). (D.25)

Here, we define the zero-point fluctuation by =ZPF
�

= (�!�/32��� )1/4. Therefore, the small

parameter in this case scales with |[�−1/4
��

�
−3/4
!�
|, while the energy scale of the terms we neglect

is |[����
−1/4
��

�
−3/4
!�
|.

After neglecting all undesired terms, we finally show the effective Hamiltonian defined in

Eq. (D.14) 3

�̂eff, 9� = �̂� +
(
9� +

1
2

)
l� −

1
2
[2

�!�
î2
�

= 4���=̂
2
� +

1
2

(
�!� −

[2

�!�

)
î2
� +

(
9� +

1
2

)
l�. (D.26)

3Note that we must have [2/�!� < �!� in the first place. If not, the full potential energy is not positive definite.
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