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ABSTRACT 

Real-time Operation of Shared-use Autonomous Vehicle Mobility Services: 

Modeling, Optimization, Simulation, and Analysis 

 

Michael Francis Hyland 

 

Two recent developments in the transportation industry – shared-use mobility services and 

fully-autonomous vehicles (AVs) – have the potential to fundamentally transform urban mobility. 

Shared-use mobility services (e.g. Uber, Lyft, Via, Chariot, ZipCar, and Car2go) are already 

beginning to bridge the gap between personal vehicles and fixed-route transit service in terms of 

cost, convenience, comfort, and efficiency for many trip purposes. The integration of AVs within 

shared-use mobility services should accelerate their growth via significantly decreasing their 

operational costs. 

The two major advantages of AVs over human-driven vehicles within mobility service fleets 

are (1) the elimination of driver-related labor costs that currently make up a considerable portion 

of the total operational costs of ridesourcing and taxi services and (2) their ability to improve 

operational efficiency via allowing a central fleet operator to completely control all vehicle plans 

(i.e. routes, schedules, repositioning, and user assignments) in real-time. The first advantage is 

rather evident, and its potential impact on mobility services and future transportation systems is 

quite large. The second advantage (i.e. complete control of all AV plans) allows mobility service 

providers to optimize the operation of the entire mobility fleet with complete information on all 
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vehicles and traveler requests, rather than relying on individual driver decisions with incomplete 

information. 

Given the potential paradigm shift in urban mobility due to shared-use AV mobility services 

(SAMSs), research in this area is particularly important. This thesis focuses on research problems 

associated with operating SAMSs, particularly, modeling, controlling, simulating, and analyzing 

the real-time operation of SAMSs. From a SAMS provider perspective, operating SAMS fleets 

efficiently can improve service quality, reduce operational costs, increase profitability, and 

increase market share. From an individual traveler perspective, assuming reasonable competition 

between mobility service providers, more efficient SAMS operations should lower prices and 

improve service quality for travelers. From a societal perspective, efficiently operating SAMS 

fleets can decrease (unproductive) vehicle miles thereby potentially decreasing congestion, fuel 

consumption, and harmful emissions.  

Motivated by the importance of SAMS operational efficiency in terms of capturing benefits 

for mobility service providers, individual travelers, and society as a whole, as well as the inclusion 

of AVs in shared-use mobility services of the future, the overarching goal of this thesis is to support 

the operation of specific SAMS offerings via defining, modeling, and presenting solution 

approaches for SAMS operational problems. The specific objectives of this thesis include (1) 

identifying relevant SAMS operational problems, (2) analyzing the efficiency of existing taxi 

fleets, (3) modeling and developing solution approaches for several timely SAMS operational 

problems, and (4) analyzing the relative operational efficiency of specific SAMSs using agent-

based stochastic simulation methods.  
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To meet the first objective, the thesis presents a taxonomy of vehicle routing problem variants 

relevant to SAMS operational problems. To address the second objective, this thesis presents two 

metrics to characterize the operational efficiency of a taxi fleet based on taxi trip data. The core of 

the thesis lies in meeting the third objective. One SAMS operational problem deals with 

dynamically assigning AVs to open user requests for an on-demand SAMS without shared rides. 

Another SAMS operational problem deals with simultaneously assigning AVs to open user 

requests and repositioning AVs throughout a service region to serve future demands, for an on-

demand autonomous carsharing service. The last SAMS operational problem deals with assigning 

idle and en-route drop-off AVs to open user requests for an on-demand shared-ride SAMS.  

The SAMS operational problems presented in this thesis represent original instances of 

stochastic dynamic vehicle fleet operational problems. While they share many features with 

problems in the existing dynamic freight routing literature, taxi-dispatching literature, and 

ambulance-dispatching literature, the combination of the SAMS operational problems’ size, 

degree of dynamism, degree of urgency, spatial distribution of user requests, and short user pickup 

and drop-off times make the problem instances unique relative to the existing literature.  

Finally, to meet the fourth objective, this thesis employs agent-based stochastic simulation 

methods to analyze the operational efficiency of specific SAMSs under various conditions. For 

example, the thesis presents a methodological framework to evaluate and quantify the impact of 

spatio-temporal demand forecast aggregation on the performance of an on-demand SAMS without 

shared rides. Additionally, the thesis evaluates the operational efficiency benefits of an on-demand 

shared-ride SAMS compared to an on-demand SAMS without shared rides from the perspective of 

the SAMS fleet operator.  
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The results of the analysis comparing an on-demand shared-ride SAMS to an on-demand 

SAMS without shared rides are particularly valuable from a transportation planning and policy-

making perspective. The analysis indicates significant SAMS fleet operator benefits associated 

with offering a shared-ride SAMS in addition to the individual mobility benefits (significantly 

lower travel costs at the expense of slightly longer in-vehicle travel times) and societal benefits 

(more shared-ride trips implies higher vehicle occupancy which subsequently implies lower 

vehicle miles, traffic congestion, fuel consumption, and vehicle emissions). From a SAMS fleet 

operator perspective, providing a shared-ride service requires a significantly smaller fleet size than 

a service without shared rides, even when the maximum number of traveler groups in an AV is 

two and the maximum user detour distance/time is only allowed to be 5 percent more than the 

user’s shortest route distance/time.  

In meeting the above four research objectives, this thesis makes several valuable scientific 

contributions and provides significant value to several entities in the transportation industry. The 

scientific contributions range from modeling and developing solution strategies for new stochastic 

dynamic vehicle routing problem instances to analyzing the operational efficiency of existing taxi 

fleets and future on-demand SAMSs. The solution approaches can inform existing mobility service 

operators and future SAMS operators. The modeling framework for SAMSs can help 

transportation modelers incorporate SAMSs into transportation network models. Finally, the 

operational efficiency analyses can inform transportation planners and policy makers as they 

consider plans and regulations, respectively, for AVs and SAMSs.   
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 Introduction 

 

1.1 Motivation 

This thesis is motivated by two recent developments in the transportation industry, namely, 

the emergence and growth of shared-use mobility services as well as the advent of fully-

autonomous vehicles (AVs). Together AVs and shared-use mobility services – such as those 

provided by ridesourcing/ride-hailing companies Uber and Lyft, (and to a lesser extent) carsharing 

companies Zipcar and Car2go, and micro-transit companies Chariot and Via – have the potential 

to significantly alter existing passenger transportation systems and improve urban mobility. 

The individually-owned and -operated (i.e. personal) vehicle has been the dominant mode of 

passenger transportation in most U.S. cities for over sixty years, accounting for over 75% of 

commute travel (Mckenzie and Rapino, 2011) and resulting in significant traffic congestion in 

metropolitan areas across the United States. Fixed-route transit also serves a sizeable portion of 

trips in many large metropolitan areas, including New York-Northern New Jersey (30.5% of 

commute travel), San Francisco-Oakland (14.6%), and Washington D.C. (14.1%). However, for 

many travelers and trip purposes in many regions, there is a large gap between these two modes in 

terms of cost (fixed and marginal), convenience, comfort, and efficiency. Personal vehicles are 
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much more expensive to own and operate than using transit, but they usually provide superior 

convenience, comfort, and efficiency for most travelers on most trips 0F

1.  

Shared-use mobility services, which have gained significant market share over the past five-

to-ten years (Clewlow and Mishra, 2017), are beginning to bridge the gap between personal 

vehicles and fixed-route public transit. However, for most trips and trip purposes, the personal 

vehicle or fixed route transit is still cheaper for travelers and/or more convenient and efficient than 

shared-use mobility services. Fortunately, AVs have the potential to change the underlying 

economics and significantly improve the operational efficiency of shared-use mobility services via 

eliminating the costs and performance limitations of human drivers, respectively. These reductions 

in operational costs and improvements in operational efficiency should allow shared-use AV 

mobility services (SAMS 1F

2s) to capture a sizeable portion of trips in many metropolitan regions.  

A shift away from personal vehicle usage towards SAMSs has significant implications on 

transportation systems. If SAMS travelers continue to follow the same travel patterns and do not 

share rides with other travelers, total vehicle miles travelled (VMT) on roadways will likely 

increase due to the increase in empty VMT needed for AVs to travel between the drop-off location 

of one traveler and the pickup location of next traveler. Moreover, if travel becomes cheaper (in 

terms of both productive time lost during travel and monetary cost), some people may decide to 

move farther away from activity (e.g. work, shopping, and entertainment) locations and travel 

longer distances thereby further increasing total VMT. Alternatively, if SAMS users are willing to 

                                                 
1 There are certainly trips that are cheaper, more convenient, and/or more efficient on transit than via a personal 

vehicle; however, in this U.S. these trips are relatively rare because of personal housing and travel preferences as well 

as the land-use and transportation infrastructure investment decisions at all levels of government for decades.  
2 In this dissertation, a SAMS is a general term describing a passenger transportation/mobility service provided 

by a private company using a fleet of privately-owned and -operated fully-autonomous vehicles. 
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share rides, and SAMS providers offer shared-ride services, total VMT may decrease due to higher 

vehicle occupancies. Moreover, without the need to own and store (i.e. park) a personal vehicle at 

home, people may decide to live in denser urban areas where they can more easily access 

employment opportunities, entertainment, shopping, and other activities without needing to use a 

vehicle.  

AVs alone should improve road safety via eliminating human drivers; they should also 

increase the capacity and traffic stability of highways (Talebpour and Mahmassani, 2016), thereby, 

potentially reducing traffic congestion, fuel consumption, and harmful emissions. The inclusion of 

AVs within shared-use mobility service fleets offers additional potential benefits. For example, 

SAMSs can potentially: 

• Reduce overall transportation costs, especially for families who currently own and operate 

multiple personal vehicles. First, SAMSs can nearly eliminate parking costs. Second, initial 

research suggests one shared AV can replace several (up to 10) personal vehicles. This 

means that the high purchasing, maintenance, and insurance costs of a vehicle can be split 

among several SAMS users. Third, if users are willing to share rides, they can split the 

operational costs, mainly fuel, of traveling in a vehicle. 

• Enhance mobility and accessibility, especially for involuntary car-less travelers. SAMS 

can provide affordable and efficient transportation between origin-destination pairs that are 

poorly served via existing transit systems.  

• Decrease overall VMT, traffic congestion, fuel consumption, and vehicle emissions.  This, 

once again, depends on SAMS providers offering shared-ride services and SAMS users 
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willing to share rides. Shared-ride service increases vehicle occupancy thereby requiring 

fewer vehicles to transport the same number of people.  

To help capture the benefits of SAMSs, this thesis addresses research challenges surrounding 

the operation of SAMSs. Operational efficiency is a key component in the success of any 

transportation system including SAMSs. Inefficient SAMS operations can engender poor service 

quality, high operational costs, and/or increase fleet size requirements thereby making SAMSs less 

attractive in terms of affordability and service quality. This thesis addresses on-demand SAMSs 

with and without shared-rides.  

AVs should provide significant operational advantages to SAMSs relative to human-driven 

vehicles. The most relevant operational-level advantage of AVs, over human-operated vehicles, is 

their ability to safely and near-instantaneously receive and execute changes in vehicle plans (e.g. 

routes, schedules, and user assignments) coming from the fleet controller who has near-perfect 

information about all the AVs and traveler requests in the system and can make decisions that 

optimize the entire fleet’s performance. The computational experiments in this thesis illustrate the 

efficiency advantages associated with operational strategies that allow fleet controllers to 

frequently change the plans of individual vehicles in real-time as new user requests are made.  

From a fleet management perspective, the biggest advantage of AVs is their guaranteed 

compliance with these real-time plan changes, and more generally, the fleet manager’s operational 

policies. Although it is possible to force taxi and ridesourcing drivers to follow the fleet manager’s 

operational policies and the fleet controller’s real-time instructions, the fact that taxi and 

ridesourcing services give drivers considerable autonomy suggests that driver compliance may be 

too difficult to mandate and/or ineffective in practice. With complete operational control, the fleet 
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controller can optimize the operations of the entire fleet rather than having individual agents (i.e. 

human drivers) try to optimize their own objectives. In practice, this may require some AVs to 

wait in areas with low demand, while other AVs shuttle users back-and-forth between high-

demand areas. While taxi drivers would almost certainly not accept this operational strategy, robot 

vehicles will not have any qualms with it.  

1.2 Goals and Objectives 

Motivated by the potential societal and individual mobility benefits of SAMSs and the 

importance of operational efficiency in terms of capturing these benefits, the overarching goal of 

this thesis is to enable the efficient operation of SAMSs through developing models and solution 

approaches for SAMS operational problems and analyzing the efficiency of specific SAMSs.  

Specifically, the objectives of this thesis include (1) identifying relevant SAMS operational 

problems, (2) developing methods and an evaluation methodology to analyze  the efficiency of 

existing taxi fleets to subsequently motivate the importance of operational efficiency in SAMSs, 

(3) modeling and developing solution approaches for several timely SAMS operational problems, 

and (4) using agent-based stochastic simulation methods to analyze the relative operational 

efficiency of specific SAMSs.  

To meet the first objective, this thesis presents a taxonomy of vehicle routing problem variants 

relevant to the operation of SAMSs. This thesis also presents a wide-ranging, yet in-depth, review 

of the existing literature that relates to SAMS operational problems. Broadly, the taxonomy aims 

to support research related to the operation and management of SAMS fleets. Specifically, it aims 
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to provide researchers and analysts examining SAMS operational problems a valuable reference 

to identify relevant problem classes and problem variants.  

To meet the second objective, this thesis presents two metrics to characterize the operational 

efficiency of a taxi fleet based on taxi trip data. The two metrics are a spatial efficiency metric and 

a temporal efficiency metric which approximate the percentage of unproductive fleet miles and 

unproductive time, respectively, for the taxi fleet. This thesis quantifies the operational efficiency 

of the Chicago taxi fleet using these two metrics.  

The core of the thesis lies in meeting the third and fourth objectives. The next subsection 

presents three SAMSs, defines three SAMS operational problems, and identifies two important 

research questions relating to the operational efficiency of specific SAMSs.  

1.3 SAMSs and SAMS Operational Problems 

This thesis defines and models operational problems associated with three SAMSs and 

presents operational strategies (i.e. policies) to solve the stochastic dynamic fleet operational 

problems associated with these SAMSs. The three SAMSs are the on-demand SAMS without 

shared rides, the on-demand shared-ride SAMS, and the on-demand autonomous carsharing 

service (ODACS). For all three SAMSs:  

• The AVs are owned and operated by a mobility service provider 

• Users request rides via their smartphone 

• Users want to be picked up immediately and expect to be picked up within a few minutes 

• User requests consist of a pickup location and a drop-off location 
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• The AVs in the fleet are functionally homogenous 

• The AV fleet size is fixed. 

The on-demand SAMS without shared rides is essentially a ridesourcing/ride-hailing (e.g. 

UberX or traditional Lyft) service, except (i) the vehicles are driverless, (ii) fleet size is fixed, and 

(iii) the SAMS provider owns, and has complete control over the AVs. The AV fleet transports 

users directly between their requested origin locations and destination locations; i.e. there are no 

detours to pick up or drop off other users.  

As the name suggests, an on-demand shared-ride SAMS is essentially the same as the on-

demand SAMS without shared rides except shared-rides are allowed. Ceteris paribus, a share-ride 

SAMS provider will offer travelers lower prices at the expense of longer in-vehicle travel times 

and having to share a vehicle with other travelers.  

The on-demand autonomous carsharing service (ODACS) is essentially a carsharing service 

(e.g. ZipCar, Car2go), except (i) the vehicles are driverless, (ii) they can reposition themselves 

throughout the service region, and (iii) they can pick users up at their points of origin. In addition 

to an origin location and destination location, user requests include an estimated usage time, which 

is a conservative estimate of the time the user will need an AV before releasing it to the fleet 

controller at the drop-off location. The fleet controller cedes control of AV plans (i.e. where to go 

next) to users once the AVs arrive at the users’ pickup locations.  

This thesis defines the operational problems for all three SAMS, models their underlying 

stochastic dynamic operational problems, and presents solution approaches. The first SAMS 

operational problem this thesis addresses relates to the on-demand SAMS without shared rides. To 

focus on the assignment of AVs to user requests, this specific problem assumes the SAMS provider 



26 

 

does not have deterministic or stochastic information about future user requests, other than an 

estimate of the demand rate for the whole region. Hence, the fleet controller must find an 

operational strategy/policy to assign AVs to users as they request service dynamically. This is a 

highly-dynamic and stochastic problem as user requests arrive in real-time and users want to be 

picked up immediately. To address this problem, this thesis presents and tests several AV-user 

dynamic assignment strategies.  

The second SAMS operational problem this thesis addresses relates to the on-demand shared-

ride SAMS. Rather than focusing on the underlying operational problem associated with the on-

demand shared-ride SAMS, the thesis aims to illustrate the operational efficiency benefits of 

allowing shared rides via comparing the on-demand shared-ride SAMS with the on-demand SAMS 

without shared rides. Given a fixed fleet size, the computational analysis compares the two SAMSs 

in terms of their ability to serve different levels of traveler demand. This chapter also presents a 

sensitivity analysis illustrating the impact of maximum user in-vehicle detour distance/time on the 

operational efficiency of the AV fleet. 

The third SAMS operational problem this thesis addresses relates to the on-demand 

autonomous carsharing service (ODACS). In this problem, the ODACS fleet controller does have 

stochastic (i.e. historical) information about the spatio-temporal distribution of user requests. 

Typical models and solution approaches to this problem divide the operational problem into an 

AV-user assignment/dispatching subproblem and an empty AV repositioning subproblem and use 

heuristic methods for one or both subproblems. This chapter models and presents a solution 

approach to the problem that simultaneously assigns AVs to open user requests and repositions 

empty AVs to subregions of the service area with an expected imbalance between supply and 
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demand. In addition to stochastic user requests, the specific problem in this thesis includes a second 

element of stochasticity, namely, the actual AV usage time of carshare users. While users request 

access to an AV in increments of fifteen minutes, and they are incentivized to make conservative 

requests, their actual usage and therefore AV drop-off times are uncertain. Given some of the 

operational strategies in this study allow the fleet controller to assign currently in-use AVs to user 

requests, the operator must consider and estimate the remaining user usage time based on the user’s 

requested usage time and the known distribution of the difference between requested and actual 

usage times. For this stochastic dynamic operational problem, the fleet controller's objective is to 

minimize user wait times and minimize empty AV fleet miles. To address this operational problem, 

this thesis presents a joint assignment-repositioning operational strategy. The joint assignment-

repositioning formulation captures the immediate rewards, immediate costs, and costs-to-go given 

the system state at each decision epoch. 

This thesis also addresses an important research problem relating to the operation of an on-

demand SAMS without shared rides, wherein the fleet controller has stochastic information about 

future user requests. The research problem is to quantify the impact of spatio-temporal demand 

forecast aggregation on the performance of an on-demand SAMS without shared rides fleet. In 

general, when short-term forecasts of user requests are intended for a finer space-time 

discretization, they tend to become less reliable due to a smaller average number of requests per 

space-time bin and the law of large numbers. However, holding forecast quality constant, more 

disaggregate forecasts provide more valuable information to fleet controllers. For example, 

knowing three users will request rides in a 100 m2 area between 9:00am and 9:05am is more 

valuable than knowing three users will request rides in a 1000 m2 area between 9:00am and 
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9:30am. To address this tradeoff, this thesis presents a flexible methodological framework that 

includes an agent-based simulation model, a short-term demand forecasting method, and an SAMS 

fleet operational strategy that incorporates short-term demand forecasts. The analysis involves 

simulating dozens of scenarios to evaluate the impact of spatio-temporal demand forecast 

aggregation on SAMS fleet operational performance.  

1.4 Contributions  

This thesis makes several conceptual and methodological contributions to the scientific 

literature, as well as several valuable computational findings. First, this thesis presents a taxonomy 

of vehicle routing and vehicle fleet operational problems from the literature in order to inform 

future research on SAMS operational problems. The existing literature on vehicle routing problems 

is wide-ranging and extensive; hence, a characterization of the important problem elements, 

relevant to SAMS operational problems, should provide researchers a valuable resource when 

tackling new problem classes and problem instances. 

Second, this thesis clearly defines three SAMSs and their operational problems (see Section 

1.3 for a description of the three SAMSs and their operational problems). Given the high likelihood 

of these three SAMS offerings in the future, it is important to identify, define, model, and present 

solution approaches for their operational problems.  

Third, this thesis presents a comprehensive analysis/comparison of operational policies for the 

dynamic assignment of AVs to user requests, in an on-demand SAMS without shared rides, in the 

case where the fleet controller has no spatial information about future user requests. The thesis 

compares six different AV-user assignment strategies including a dynamic AV-user assignment 
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strategy that considers all AVs and all unassigned and assigned (but not yet picked up) user 

requests at each decision point. This approach allows assigned AVs to be diverted (and users to be 

reassigned) to different user requests (to different AVs). Moreover, the dynamic AV-user 

assignment strategy also allows en-route drop-off AVs to be assigned to open user requests. This 

allows current in-use/en-route drop-off AVs to be assigned to open user requests. This approach 

unambiguously outperforms the other operational strategies in terms of empty/unproductive fleet 

miles.  

Fourth, this thesis compares the operational efficiency of an on-demand shared-ride SAMS 

with an on-demand SAMS without shared rides. This comparison is particularly relevant for 

transportation planning and policy purposes. Results illustrate the superiority of a shared-ride 

SAMS in terms of handling high demand levels with a limited vehicle fleet. As demand increases, 

unlike the SAMS without shared rides, the shared-ride SAMS effectively increases it service rate 

(customers served per hour) due to economies of density. Shared-ride fleet users experience 

slightly longer in-vehicle travel times but typically incur shorter wait times and will presumably 

receive lower fares due to a decrease in fleet miles (operational costs) and fleet size (capital costs) 

compared with non-shared-ride fleet users.  

Fifth, this thesis presents a joint assignment-repositioning strategy to address the ODACS 

operational problem. The joint assignment-repositioning formulation allows the fleet controller to 

implicitly make trade-offs between assigning AVs to open requests now, reducing subregion 

imbalances now, and waiting until later (when other AVs become available) to assign AVs to open 

user requests or balance subregions. The results indicate this strategy to be very effective in terms 
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of reducing average user wait times relative to myopic operational strategies that do not incorporate 

repositioning.  

Sixth, this thesis includes a research problem relating to the integration of short-term demand 

forecasts and SAMS operational strategies, as well as a flexible methodological framework to 

address the research problem. This thesis aims to evaluate and quantify the impact of spatio-

temporal demand forecast aggregation on the performance of an on-demand SAMS fleet. The 

flexible methodological framework includes an agent-based simulation model with a short-term 

demand forecast module and an SAMS fleet operational strategy that incorporates short-term 

demand forecasts module. The analysis suggests that more disaggregate forecasts (i.e. smaller 

subregions) produce better results. However, compared to scenarios with perfect spatio-temporal 

demand forecasts, improvements begin to plateau when using an offline historical average model 

to forecast user requests.  

1.5 Organization 

Chapter 1 motivates the thesis topic, presents the overarching goal and specific objectives, 

conceptualizes the key problems, and describes the scientific contributions of the thesis. Chapter 

2 includes a taxonomy of vehicle routing problems relevant to SAMS operational problems. 

Chapter 3 provides a review of the academic literature relevant to on-demand SAMS operational 

problems. Chapter 4 presents spatial and temporal efficiency metrics to evaluate the operational 

efficiency of taxi fleets and mobility services. Using these metrics and taxi trip data, this chapter 

analyzes the operational efficiency of the Chicago taxi fleet. Chapter 5 presents a framework to 

model on-demand SAMS operational problems that can be classified as stochastic dynamic vehicle 
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routing/fleet operational problems. Chapter 6 focuses on the problem of assigning (or matching) 

AVs to open user requests in real-time for an on-demand SAMS without shared rides. Chapter 7 

compares the operational efficiency of an on-demand shared-ride SAMS and an on-demand SAMS 

without shared rides. Chapter 8 focuses on operating an on-demand autonomous carsharing 

services via assigning AVs to user requests and simultaneously repositioning AVs to serve future 

demands. Chapter 9 examines the impact of spatio-temporal demand forecast aggregation on the 

operational efficiency of an on-demand SAMS without shared rides. Chapter 10 concludes the 

thesis and discusses areas of future research. 
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 Taxonomy 2F
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2.1 Overview 

The SAMS operational problems presented in this thesis fall under the umbrella of vehicle 

routing problems (VRPs). The existing literature on VRPs is extensive and diverse; hence, this 

taxonomy chapter aims to assist analysts and researchers in identifying the type of problem they 

are confronting. Once the analyst or researcher is able to identify the characteristics of the problem 

in question, she can either make use of existing problem formulations and solution algorithms from 

the literature, if they exist, or begin to define a new problem class and develop original solution 

algorithms (Bodin and Golden, 1981, p. 98).  

This chapter classifies the general SAMS operational problem using existing taxonomic 

categories in the literature. Then, to classify specific SAMS operational problems, this chapter 

adds additional, or more nuanced, dimensions to existing taxonomic categories. Finally, this 

chapter presents new taxonomic categories to further classify relevant SAMS operational 

problems.  

Table 2-1 displays a classification of VRPs. SAMS operational problems can be broadly 

classified as dynamic, multi-vehicle, pickup and delivery problems with hard (explicit) or soft 

(implicit) time-window constraints. Highly-relevant categories presented include variable/fixed 

                                                 
3 This chapter extends the research published in Hyland and Mahmassani (2017).  
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fleet size, reservation structure, accept/reject decision-maker, reservation timeframe, vehicle 

repositioning, underlying network structure, sharing of rides, and network congestion. The two 

goals of the taxonomy are to provide researchers a valuable reference as they begin to model 

SAMS operational problems and to identify new SAMS operational problem classes and problem 

instances to spur interest from researchers.  
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Table 2-1: Taxonomy of Vehicle Routing Problems 

Existing Taxonomic Categories 
Categories Highly Relevant to 

SAMS Operational Problems 
Classify General SAMS 

Problem 

Classify Specific SAMS 

Problems 

Pickup and/or Drop-off 

• Pickup only 

• Drop-off only 

• Paired pickup and drop-

off 

• Unpaired pickup and/or 

drop-off 

Evolution of Information 

• Static  

• Dynamic 

Availability of Information 

• Global 

• Local 

Time-Window Constraints 

• No time-windows 

• Hard time-windows 

• Soft time-windows 

• Hard and soft 

Size of Vehicle Fleet 

• One vehicle 

• Multiple vehicles 

 

Quality of Information 

• Deterministic 

• Stochastic 

Processing of Information 

• Centralized 

• Decentralized 

Vehicle Homogeneity  

• Homogenous 

• Heterogeneous 

Vehicle Capacity Constraints 

• Imposed all the time 

• Imposed some of the time 

• Not imposed 

Maximum vehicle route times 

(and distances) 

• Imposed – all the same 

• Imposed – not all the same 

• Not imposed 

Costs 

• Variable or routing costs 

• Fixed operating or vehicle 

acquisition costs (capital 

costs) 

Objective 

• Maximize profit 

• Minimize cost 

• Minimize user inconvenience 

• Minimize vehicle miles 

traveled 

• Minimize user wait time 

• Minimize user in-vehicle 

travel time 

• Minimize number of vehicles 

• Mixed (i.e. multi-objective) 

Fleet Size Elasticity 

• Elastic 

• Fixed Fleet Size 

Reservation Structure 

• Short-term rentals 

• Point-to-point service 

• Mixed 

Pricing 

• No pricing 

• Fixed pricing structure 

• Pricing, with no fixed structure 

Accept/Reject Decision 

• No decision 

• Fleet manager decision 

• Customer decision 

Reservation Timeframe 

• Immediate requests 

• Minimum pre-reservation time 

• Mixed 

Shared Rides 

• No shared rides 

• Shared rides 

Repositioning of Vehicles 

• No repositioning 

• Repositioning  

Underlying Network 

• Real road network 

• Test road network 

• Graph/Virtual Network 

Network Congestion/Travel Times 

• Static and Deterministic 

• Time-dependent and Deterministic 

• Time-dependent and Stochastic 

Reassignments/ En-route Diversions 

• Allowed 

• Not allowed 

Decision Epochs 

• One at beginning (deterministic) 

• Exogenous 

• Endogenous 



35 

 

2.2 Classifying SAMS Operational Problems 

Research on the VRP stretches back over six decades (Dantzig and Ramser, 1959). Studies 

range from highly-theoretical to applications of a single problem instance. Hence, it is not 

surprising that other researchers have presented taxonomies of vehicle routing problems for 

various purposes. This section describes some of the taxonomic categories in the existing literature 

that are relevant to SAMS operational problems. It begins with the most important categories that 

draw clear distinctions across problem classes and clearly distinguish SAMS operational problems 

from existing VRPs in the literature.  

Pickup and/or Drop-off 

In their taxonomy of vehicle routing and scheduling problems, Bodin and Golden (1981) 

define an operations category with the following elements:  

• Pickups only 

• Drop-offs only 

• Mixed 

The pickups only and drop-offs only options refer to pure vehicle routing problems (VRPs); 

whereas, the mixed option is better known as the pickup and delivery problem (PDP), which is a 

generalization of the VRP. In the conventional PDP, each customer request has a unique pickup 

and drop-off location pair (i.e. a demand must travel from its given origin to its given destination). 

An alternative ‘mixed’ PDP is the unpaired PDP where a fleet of vehicles must transport goods 

from supply locations to demand locations, but each supply location is not paired with a demand 

location. This problem arises in retail redistribution. 
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The category name, operations, is too broad for classifying vehicle routing/fleet operational 

problems today. Hence, this thesis renames the category Pickup and/or Drop-off.  

SAMS operational problems can definitively be classified as paired pickup and delivery 

problems. In passenger transportation in urban areas, the pickup and drop-off locations of traveler 

requests are unique location pairs spread across the urban area.  

Evolution and Quality of Information 

Pillac et al. (2013) classify VRPs based on two dimensions simultaneously, [1] evolution of 

information, and [2] quality of information. The evolution of information category classifies 

problems as static or dynamic; whereas, the quality of information category classifies problems as 

deterministic or stochastic. The four possible combinations of problems based on this classification 

pair are described below: 

Static and deterministic: All the problem information (i.e. the problem inputs) including 

customer locations, arc travel times, node service times, etc. are known exactly and are available 

far enough in advance such that vehicle routes and schedules can be formed prior to the routing 

process. Once a solution to the problem is found, it is not adjusted during the routing process. In 

their seminal work, Dantzig and Ramser (1959) formulate a static and deterministic VRP. Laporte 

(1992) reviews problem formulations and solution algorithms for the static and deterministic VRP. 

Toth and Vigo (2002) edited a book on the vehicle routing problem that covers exact and heuristic 

solution methods to a variety of static and deterministic VRPs.  

Static and stochastic: In the static and stochastic case, at least one problem input is only partially 

known as a random variable (Pillac et al., 2013). Possible stochastic problem inputs include arc 

travel times, node service times, or location of customers. The static and stochastic inputs are 
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available far enough in advance such that vehicle routes and schedules can be formed prior to the 

routing process. Once the routing process begins only minor changes to the vehicle routes are 

allowed, and these changes do not require communication between individual vehicles/drivers and 

a central operator. Gendreau et al. (1996) present a review of static and stochastic VRPs. Eksioglu 

et al. (2009) present a taxonomy of VRP studies and categorize specific sources of stochasticity 

including customer service demand quantity, request times of new customers, and on-site 

service/waiting times.  

Dynamic and stochastic: In the dynamic and stochastic VRP, necessary problem inputs reveal 

themselves in real-time. However, the stochastic distributions of these problem inputs can be 

exploited by the fleet operators when routing and repositioning vehicles. For example, if the exact 

location and time of future demand requests are unknown, but the spatio-temporal distribution of 

user requests is known, the fleet controller can take advantage of this information in the routing 

process. Real-time location information is necessary to solve the dynamic problem because routes 

and assignment decisions need to be re-calculated in real-time. 

Dynamic and deterministic: There is debate in the literature about the meaning of the term 

dynamic and deterministic VRP. There is agreement that in dynamic and deterministic problems, 

the fleet controller does not have distributional information about inputs to exploit. However,  in 

the definition of Pillac et al. (2013), in dynamic and deterministic problems, exact information 

reveals itself to the fleet controller during the routing process (Bektas et al., 2014). According to 

others, a dynamic and deterministic problem is the same as a sequential deterministic problem 

(Lahyani et al., 2015; Ulmer, 2017). In a sequential deterministic problem, decisions in one period 

impact the decisions in later periods; however, the impact of the earlier decision on the later 
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decision, and the evolution of the system are deterministic. Hence, the problem can be modeled as 

a single decision problem prior to the routing process. Ulmer (2017) and Lahyani et al. (2015) 

view the dynamic and deterministic problems defined by Pillac et al. (2013), as stochastic dynamic 

problems without a distribution for the stochastic element. In fact, they state that only stochastic 

problems can be dynamic, and deterministic problems cannot be dynamic.  

SAMS operational problems are inherently dynamic as most information reveals itself in real-

time, such as, user pickup and delivery times and locations, arc travel times, user service times, 

etc. This thesis refers to all the on-demand SAMS operational problems as stochastic dynamic 

vehicle routing problems (SDVRPs). However, since this section uses the definition in Pillac et al. 

(2013), Table 2-1 says SAMS operational problems are dynamic but either deterministic or 

stochastic.  

In the literature, the dynamic problem is also referred to as the real-time problem (Yang et al., 

2004) and the online problem (Jaillet and Wagner, 2006; Yang et al., 1999). Compared with the 

static problem wherein a decision problem only needs to be solved once, in the dynamic problem 

the fleet controller needs to constantly make decisions as new information enters the system. The 

stochastic dynamic vehicle routing problem is still a very active research area (Marlin Ulmer et 

al., 2017; Ulmer, 2016) 

Savelsbergh & Sol (1995) point out that in the dynamic problem, the notion of vehicle depots 

is not applicable because, as new customer requests arrive in real-time, and a decision problem 

needs to be re-solved, vehicles are located throughout the operational area, not at fixed depots. 
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Availability of Information 

In addition to evolution and quality of information, Eksioglu et al. (2009) include two other 

subcategories under the information characteristics category in their VRP taxonomy including 

availability of information and processing of information. The availability of information 

taxonomic elements are: 

• Global 

• Local 

For SAMS operational problems, wherein a fleet controller operates all the AVs in the fleet and 

receives information about all user requests, it is reasonable to assume the fleet controller has 

global information. Conversely, in existing taxi and ridesourcing services, individual drivers may 

only receive local information about open requests; i.e. they may only see requests within a given 

radius of their current location. 

Processing of Information 

The processing of information taxonomic elements in Eksioglu et al. (2009), are: 

• Centralized 

• Decentralized 

Given the computational complexity of routing and scheduling vehicles dynamically, 

decentralized, as well as centralized computing architectures are both likely to be seen in practice. 

Smaller fleets may be able to employ a single centralized computing system; whereas, larger fleets 

may require a decentralized computing architecture. For example, each of the five boroughs in 
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New York City may have their own fleet controller that controls the vehicles currently in their 

borough. These fleet controllers still need to pass information, but they only control the AVs in 

their borough.  

The SAMS operational problems addressed in later chapters of this thesis assume centralized 

information processing and decision making. 

Time-Window Constraints 

Bodin and Golden (1981) define a vehicle routing ‘time to service a particular node or arc’ 

category with the following elements:  

• Time specified and fixed in advance (pure vehicle scheduling problem) 

• Time windows (combined vehicle routing and scheduling problem) 

• Time unspecified (in this case, it is a vehicle routing problem unless there are precedence 

relationships as well, in which case it is a combined vehicle routing and scheduling problem) 

This thesis repurposes and renames this category and in doing so removes the pure vehicle 

scheduling problem option and reduces the ambiguity of the time unspecified option. The updated 

category, time-window constraints, includes the following elements:  

• No time-windows 

• Hard time-windows 

• Soft time-windows 

• Hard and soft time-windows 



41 

 

In this classification system, the no time-windows problem allows the fleet controller to serve user 

requests at any time, whereas the problems with hard (explicit) and/or soft (implicit) time-windows 

force the fleet operator to serve user requests within specified time-windows. The difference 

between hard and soft time-windows can manifest itself in the mathematical formulation of the 

decision problem. Hard time-window constraints require inequality constraints in the 

mathematical program; whereas, soft time-window constraints typically influence the objective 

function. Lagrangian relaxation can be used to convert hard time-window constraints into soft 

time-window constraints. Soft time-window constraints in the objective function are often referred 

to as the quality of service term. Eksioglu et al. (2009) present a similar classification category 

entitled time window structure with the following elements, soft-time windows, strict time 

windows, mix of both. The pickup and delivery problem with time-windows (PDPTW) is a well-

known problem with passenger and freight transportation applications (Berbeglia et al., 2010; Lu 

and Dessouky, 2006; Ropke and Cordeau, 2009). 

SAMS operational problems are combined vehicle routing and scheduling problems. The 

problem can be formulated with hard and/or soft time-window constraints depending on the 

problem instance. For example, in 2016, ridesourcing companies Uber and Lyft implicitly operated 

with soft time-window constraints (customers are picked up as soon as possible); whereas, other 

mobility service companies may provide their customers with hard time-windows. 

Fleet Size 

Bodin and Golden (1981) define a size of vehicle fleet available category, with the following 

elements: 

• One vehicle 
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• More than one vehicle 

This category may appear superfluous, but in terms of developing a modeling framework, 

formulating the mathematical program, and developing a solution algorithm, the distinction is 

important. SAMS operational problems are inherently multiple vehicle problems.  

2.3 Taxonomic Categories to Classify SAMS Operational Problems 

This section presents taxonomic categories in the literature that are still relevant to classify 

different SAMS operational problems. In some cases, this thesis slightly alters these taxonomic 

categories.  

Vehicle Homogeneity 

Bodin and Golden (1981) list the following taxonomic elements for their type of vehicle fleet 

category: 

• Homogenous  

• Heterogeneous 

There are large differences in terms of formulating and solving homogenous and heterogeneous 

fleet operational problems. As there are likely to be SAMS providers with homogenous and 

heterogenous AV fleets, this category is still useful in terms of categorizing SAMS operational 

problems. This thesis renames the type of vehicle fleet category because it is too broad. 

The AV fleets in the SAMS operational problems addressed in this thesis are homogenous.  
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 Vehicle Capacity Constraints  

Bodin and Golden (1981) list the following taxonomic elements for their vehicle capacity 

constraints category: 

• Imposed all the time 

• Imposed some of the time 

• Not imposed 

Once again this is an important consideration for modeling SAMS operational problems, as all 

three possibilities are still relevant. If the AVs are small vehicles and the mobility service options 

includes shared rides or ride-matching, then capacity constraints should be imposed all the time. 

However, if the AV fleet does not allow shared-rides, then capacity constraints are probably 

unnecessary. If the AVs are like buses or large vans, capacity constraints might be necessary in 

some cases and not others depending on overall demand levels.  

This thesis examines problems with and without shared rides; hence, capacity constraints are 

(implicitly) imposed in the SAMS fleet operational problems with shared rides but are unnecessary 

in the problems without shared rides. 

Maximum Vehicle Route Times and Distances 

Bodin and Golden (1981) list the following taxonomic elements for their maximum vehicle 

route times category: 

• Imposed – all the same 

• Imposed – not all the same 

• Not imposed 
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Maximum vehicle route times might be imposed all the time when the SAMS includes shared 

rides. The maximum vehicle route time parameter would prevent in-vehicle users from 

experiencing too long of a detour as their AV picks up and/or drops off other users. Lyft currently 

imposes such constraints for their Lyft Line service (Brown, 2016). Additionally, for non-AV 

mobility services, the maximum vehicle route time constraint could be used to model the maximum 

hours of service constraint on drivers. Additionally, as each driver has different preferences, the 

route time constraint could be dependent on the driver.  

Regarding maximum vehicle route distances, this constraint is especially relevant when it 

comes to modeling electric AV fleets. Most electric vehicles have limited range compared to 

gasoline-powered vehicles and electric battery charging stations are sparse compared to gasoline 

refueling stations. In terms of modeling maximum vehicle route distances in a dynamic modeling 

framework, it is necessary to keep track of each AV’s fuel level.  

In other SAMS operational problems, modeling maximum vehicle route time and distance 

constraints may not be necessary. Such instances include modeling the morning-peak period with 

a gasoline-powered AV fleet.  

The on-demand SAMS without shared rides and the on-demand autonomous carsharing 

service problems in this study do not include maximum vehicle route time or distance constraints. 

However, the on-demand shared-ride SAMS problem does include a hard constraint on maximum 

route detour distance for individual travelers. In fact, sensitivity analysis results are presented as a 

function of the maximum detour distance for in-vehicle travelers.  

Costs 

Bodin and Golden (1981) list the following taxonomic elements in their costs category: 
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• Variable or routing costs 

• Fixed operating or vehicle acquisition costs (capital costs) 

In typical routing problems, variable operating costs are included in the objective function. These 

variable costs are typically a function of travel costs or travel distances (e.g. fuel costs and 

depreciation). Sometimes the problem formulation includes fixed vehicle acquisition costs in the 

objective function or a constraint on the fleet size. This classification category is still relevant for 

SAMS operational problems because modeling frameworks may incorporate variable costs, fixed 

costs, or both.  

The objective functions for the SAMS operational problems in this thesis only include variable 

fleet costs.  

Objective 

Bodin and Golden (1981) list the following taxonomic elements in their objectives category: 

• Minimize routing costs incurred 

• Minimize sum of fixed and variable costs 

• Minimize number of vehicles required 

Savelsbergh and Sol (1995) also classify potential objective functions for the PDP; the elements 

include: 

• Single vehicle objectives 

o Minimize duration 

o Minimize completion time 
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o Minimize travel time 

o Minimize route length 

o Minimize client inconvenience 

• Multiple vehicle objectives 

o Minimize number of vehicles 

o Maximize profit 

Neither of these lists are exhaustive but Savelsbergh and Sol’s (1995) list includes significantly 

more options. For the problem framework to incorporate profit maximization, the fleet operator 

must be able to reject customer requests or price discriminate. Section 2.4 discusses acceptance 

and rejection of requests as well as pricing options.  

Per Savelsbergh and Sol (1995), objectives such as duration, completion time, and travel time 

have no clear meaning for dynamic problems. Hence, these objectives are not useful for SAMS 

operational problems. However, objectives such as minimizing cumulative travel time and/or wait 

time and minimizing cumulative vehicle miles traveled are appropriate in the dynamic context. 

Table 2-1 lists possible objectives for SAMS operational problems.  

The objective used in the SAMS operational problems in this thesis is to minimize a 

combination of operational costs (i.e. fleet miles) and user inconvenience (i.e. wait times).  

2.4 Taxonomic Categories Highly Relevant to SAMS Operational Problems  

This section presents taxonomic categories that are highly relevant to SAMS operational 

problems. Moreover, they are not explicitly outlined in existing VRP taxonomies in the literature. 
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Fleet Size Elasticity 

• Elastic 

• Fixed fleet size 

The sharing-economy and ridesourcing companies motivated this taxonomic category. 

Ridesourcing companies have highly elastic fleets, despite not owning any vehicles, because they 

can set transportation prices to attract drivers. If user demand exceeds vehicle supply, ridesourcing 

companies can increase prices to both decrease demand and increase supply. Zha et al. (2018) 

model elastic fleet sizes in there model of geometric matching and spatial pricing in ride-sourcing 

markets.  

SAMS fleet managers may be able to increase fleet-size in the short-term by either paying for 

access to privately-owned AVs or allowing drivers with non-AVs to provide transportation service. 

This area is ripe for additional research. 

The SAMS operational problems in this thesis assume a fixed fleet size.  

Reservation Structure 

• Short-term (slot-based) rentals 

• Point-to-point service 

• Mixed 

Short-term AV rentals are similar to existing carsharing services except that instead of a user going 

to a designated carsharing parking spot to access a vehicle, the AVs can travel unoccupied to pick 

up user requests at their desired origin locations as well as reposition themselves throughout the 

service region. With short-term rentals, the user has complete control over the AV for a specified 
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time-slot. Conversely, point-to-point service describes the service currently provided by 

ridesourcing companies, wherein, a user requests pickup and drop-off points and the AV transports 

the user between those two points. With short-term rentals, users can temporarily store items in 

the AV such as during a shopping trip. The mixed reservation option describes an AV fleet wherein 

the vehicles can either provide point-to-point service or be rented to users for time-slots. Pricing 

the mixed fleet option to take into consideration the opportunity costs of not having an AV 

available for the other reservation option is another open research area. 

This thesis addresses operational problems associated with a short-term rental SAMS and a 

point-to-point SAMS. 

Pricing 

• No pricing 

• Fixed pricing structure 

• Pricing, with no fixed structure 

Problems wherein the pricing structure is fixed do not allow the fleet operator to price discriminate 

across customers. Fixed pricing structures include user mileage- and/or travel time- based 

structures. In problems with no fixed pricing structure, the fleet controller can charge higher rates 

based on the time-of-day, the location of the customer’s origin and or destination, or as a function 

of information about competing SAMS providers in the area. In competitive transportation markets 

the rates charged by carriers are usually modeled as a function of the trip’s marginal cost and the 

price elasticity of demand facing the firm. 
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A large portion of freight transportation service is outsourced to commercial carriers and 

pricing structures vary across commercial trucking firms. A significant amount of research exists 

on pricing transportation service; however, a relatively small amount is integrated within a fleet 

management framework. Figliozzi et al. (2007) and Sayarshad and Chow (2015) present modeling 

frameworks that incorporate pricing strategies into fleet operational problems. Figliozzi et al. 

(2007) assume the carrier calculates the marginal cost of accepting an additional customer request 

to determine the price to charge customers.  

When modeling AV fleet operational problems, not including pricing in the problem 

framework can still yield valuable results; however, researchers should consider pricing to increase 

the behavioral realism of the problem.  

The SAMS operational problems addressed in this thesis do not incorporate pricing.  

Accept/Reject Decision 

• Unnecessary 

• Fleet manager decision 

• Customer decision 

The accept or reject decision comes into play when the problem’s objective function includes 

revenue, in addition to costs. In the case where revenue is not considered in the problem framework 

the acceptance/rejection decision is unnecessary. 

If revenue and costs are both considered in the fleet management problem framework, but 

pricing is fixed, then the fleet manager must accept or reject customer requests as they arrive in 

real-time. If the marginal operational cost of serving the customer request exceeds the marginal 
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revenue associated with the request, the fleet manager will likely reject the request. If parameter 

distributions are available, the fleet operator’s decision to accept or reject should incorporate the 

opportunity cost of sending the vehicle to service the customer request. For example, in the 

profitable VRP, the decision problem involves determining the set of demands to serve in addition 

to how to group the demands into vehicles and schedule pickups/deliveries (Archetti et al., 2014).  

In the case where revenue is considered in the objective function and the pricing structure is 

not fixed, the accept/reject decision lies in the hands of the customer. The fleet manager offers the 

user a price that the user can accept or reject. Currently, ridesourcing companies operate under this 

model wherein the SAMS provider offers a price to the customer through a smartphone 

application. 

There is a long history of revenue management (also known as yield management) in 

transportation (McGill and van Ryzin, 1999) with applications in air transportation (Bertsimas and 

de Boer, 2005) and rail transport (Bilegan et al., 2015) that are relevant to pricing SAMSs as well 

as modeling the accept or reject decision. 

The SAMS operational problems addressed in this thesis require the SAMS fleet operator to 

serve all user requests within the pre-defined geographical service region.  

Reservation Timeframe (Degree of Dynamism) 

• Immediate requests 

• Minimum pre-reservation time 

• Mixed 
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Immediate requests represent requests wherein customers want transportation service as soon as 

they request a ride  (Psaraftis, 1980). Minimum pre-reservation time represents cases wherein 

customers must reserve transportation service a pre-defined period prior to the time they want to 

be serviced. In the mixed case, customers can request service immediately or pre-reserve service 

for a future time-period. As of early 2016, Uber and Lyft only allowed immediate requests; 

however, by 2017, both Uber and Lyft allowed users to make advanced requests in several cities. 

From a fleet operations perspective and a firm profit-maximization perspective, allowing 

advanced demand requests can be both beneficial and disadvantageous depending on the 

circumstances. If demand is high relative to fleet size, and the fleet manager can charge high prices 

to customers making immediate requests, it is disadvantageous to have advanced demand requests 

for two reasons. First, presumably the advanced user requests receive ‘locked-in’ rates that are 

lower than the rates currently being charged by the fleet to immediate demand requests; therefore, 

the company loses money by serving the advanced user requests rather than the immediate 

requests. Second, the advanced requests add binding constraints to the fleet management problem 

when demand is high. Without the advanced requests, the vehicles would be free to focus on areas 

of high demand. Conversely, if demand is low relative to fleet size, it is beneficial to have advanced 

information on the location and time of demand requests to efficiently route vehicles and minimize 

empty vehicle miles.  

This thesis exclusively addresses SAMS operational problems with immediate requests only. 

SAMS operational problems with immediate requests are referred to as on-demand SAMS 

operational problems. This has become the convention in the (autonomous) mobility service 

literature (Alonso-Mora et al., 2017; Pavone et al., 2012; Sayarshad and Chow, 2017). 
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Shared Rides 

• No Shared Rides 

• Shared Rides 

Shared rides refer to the case where an AV can transport two or more different demand requests 

at the same time. Given a fixed-fleet size, the inclusion of shared rides typically reduces user wait 

time but increases user in-vehicle travel time. The well-known dynamic DARP includes shared 

rides (Psaraftis, 1980); however, most DARP problems were originally formulated within the 

context of transporting elderly and disabled users who, unfortunately, cannot operate vehicles. In 

contrast, SAMS providers are undoubtedly planning to offer service to all users, not just those 

unable to afford and/or operate a vehicle. To attract users that are wealthy and healthy enough to 

own and operate a vehicle, the service quality and convenience of an AV fleet will need to be 

commensurate with owning one’s own vehicle. Hence, the increased importance of service quality 

and convenience in AV fleet operational problems, relative to the traditional DARP, will need to 

be considered in the modeling framework. Service quality and convenience can be included in the 

modeling framework via including user wait time and user travel time in the objective function. 

Additionally, hard constraints for wait time, travel time, and time-windows can be included in the 

mathematical formulation of the problem.  

This thesis models two on-demand SAMSs without shared rides and an on-demand shared-

ride SAMS. The next section provides a thorough review of stochastic dynamic VRPs (SDVRPs) 

without shared rides. However, given the modeling and algorithmic advances for the shared-ride 

SDVRP, it is important to refer readers to these studies. Most of shared-ride SDVRP research 

comes from freight transportation; however, Alonso-Mora et al. (2017) present a new method to 
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solve on-demand shared-ride SDVRPs for urban passenger transportation. The method involves 

pre-computing person-to-person sharing opportunities and person group-to-vehicle sharing 

opportunities using share-ability networks (Santi et al., 2014), then solving an assignment problem 

between person groups and vehicles.  

In freight transportation, several studies use Markov decision processes (MDPs) to model 

SDVRPs  (Goodson et al., 2013; Thomas, 2007; Marlin Ulmer et al., 2017; Ulmer, 2017) and 

Ulmer et al. (2017) introduce route-based MDPs. Modeling SDVRPs as MDPs has become 

common in freight research, but less common in passenger SDVRPs. A freight SDVRP closely 

related to shared-use mobility service operational problems is the same-day delivery problem for 

online purchases (Voccia et al., 2017). Voccia et al. (2017) show that waiting at the depot for more 

users to request products can produce better solutions under certain circumstances. Other studies 

illustrate the benefits of holding/waiting strategies for SDVRPs (Pureza and Laporte, 2008; 

Thomas, 2007). 

Repositioning of Vehicles 

• No repositioning  

• Repositioning  

Repositioning or rebalancing AVs to subregions of the service region where supply is currently 

lower than expected future demand is a strategy to potentially increase the efficiency of an AV 

fleet. Repositioning strategies require stochastic information in the form of the spatio-temporal 

distribution of future traveler demand. For example, prior to the morning peak, repositioning AVs 

to residential areas is probably an effective strategy as demand is most likely to originate in 
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residential areas. Similarly, before the afternoon peak, repositioning AVs into the CBD is probably 

an effective strategy. Models and algorithms for repositioning SAMSs can benefit from the 

extensive literature addressing ambulance/emergency vehicle repositioning and rebalancing 

problems (Andersson and Värbrand, 2007; Brotcorne et al., 2003; Gendreau et al., 2001; 

Nasrollahzadeh et al., 2018; Schmid, 2012; Schmid and Doerner, 2010). 

This thesis addresses SAMS operational problems where stochastic information is 

unavailable, and repositioning is not considered, as well as problems where stochastic information 

is available and repositioning strategies are considered. 

Underlying Network 

• Real road network 

• Test road network 

• Graph or Virtual Network 

In the classic VRP, the depot and customer origins or destinations comprise the nodes, and 

arcs connect each pair of nodes. This is referred to as a graph or virtual network, as it represents 

an abstraction of a real network. It also possible to incorporate physical road networks in the VRP 

where links represent streets and nodes represent street intersections. This taxonomy also 

distinguishes between real road networks and test road networks. Test networks do not represent 

real-world networks; rather, they are simplistic networks designed by an analyst such as grid 

networks.  

This thesis models the underlying network for the SAMS operational problems as a uniform 

plane with Manhattan distances.  
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Network Congestion/Travel Times 

• Static and Deterministic 

• Time-dependent and Deterministic 

• Time-dependent and Stochastic 

In modeling frameworks with virtual or real networks, the network links may include congestion. 

This taxonomy mentioned previously that the congestion on links can be deterministic or 

stochastic. Additionally, congestion on links can fluctuate based on the time of the day (time-

dependent) or remain constant throughout the analysis period (static). 

In the models of SAMS operational problems, in this thesis, the AVs travel at a constant speed 

throughout the Manhattan Plane.  

Demand Reassignments/Vehicle En-route Diversions 

• Allowed 

• Not Allowed 

In most SDVRP modeling frameworks, after a vehicle is assigned to a demand request, this 

assignment decision is treated as irrevocable. Conversely, it is possible to allow vehicles to later 

be diverted while they are en-route to pick up demand requests. In this case, the demand must also 

be reassigned to another vehicle. Allowing demand reassignment and en-route vehicle diversions 

increases the potential solution space in SDVRPs; however, it often comes at the cost of larger 

computational times. It may also be infeasible (i.e. food delivery) or considered unprofessional 

(i.e. a driver expects driver A, but driver B shows up) to allow reassignments in some 

circumstances.  
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This thesis studies on-demand SAMS operational problems with and without en-route AV 

diversions and traveler reassignments.  

Decision Epochs 

• One at beginning (deterministic) 

• Exogenous 

• Endogenous 

In SDVRPs, decisions need to be made as the system advances in time. The decision epochs 

can be determined endogenously or exogenously. In the exogenous case, the fleet operator decides 

when to re-optimize the system. It can be every 5 seconds, every 30 minutes, or anywhere in 

between. Conversely, the system can be modeled such that events in the system trigger a re-

optimization of the system. In deterministic VRPs, the only decision period is prior to the start of 

vehicle routes.  

The decision epochs in this study are determined exogenously.  

2.5 Conclusion 

This chapter presents a taxonomy of VRPs relevant to potential SAMS operational problems. 

Given the large number of taxonomic categories, there are numerous combinations of potential 

SAMS operational problems to study. This thesis focuses exclusively on on-demand SAMS 

operational problems. The next section reviews the literature most relevant to on-demand SAMS 

operational problems. It focuses mainly on SDVRPs without shared rides.  
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 Literature Review 

 

3.1 Overview 

This chapter reviews literature relevant to the real-time operation of SAMSs. On-demand 

SAMS operational problems are members of the class of stochastic dynamic vehicle routing 

problems (SDVRPs). After seminal work on the dynamic dial-a-ride problem (D-DARP) nearly 

forty years ago (Psaraftis, 1980), researchers have been developing models and solution algorithms 

for various SDVRP applications. SDVRP applications include taxi services, ambulance and other 

emergency services, paratransit services, and freight trucking services. According to a definition 

by Powell (1996), SDVRPs involve a vehicle fleet providing transportation service to demand 

requests that arrive dynamically and randomly, and require a fleet controller to assign vehicles to 

demand requests in real-time. 

According to the classification presented by Berbeglia et al. (2010), there are three types of 

dynamic pickup and delivery problems (D-PDP), including the dynamic truckload pickup and 

deliver problem (D-TLPDP), the D-DARP, and the dynamic vehicle routing problem with pickup 

and delivery (D-VRPPD). Unlike the D-DARP and the D-VRPPD, the D-TLPDP only allows one 

demand request in a vehicle at a time. As this thesis analyzes SAMSs without shared rides, the D-

TLPDP is the most relevant. However, the D-TLPDP typically refers to freight transportation 

applications in which service constraints are either non-existent or significantly less stringent than 
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passenger transportation applications according. This literature review focuses on SDVRP 

applications without shared rides, including taxi dispatching problems, ambulance dispatching 

and/or repositioning problems, and freight D-TLPDPs. For readers interested in an in-depth review 

of SDVRPs, there are several recent reviews in the literature (Pillac et al., 2013; Psaraftis et al., 

2016; Ritzinger et al., 2015). Readers may also be interested in a taxonomy and definition of rich 

VRPs (Lahyani et al., 2015). 

3.2 Degree of Dynamism 

Although all SDVRPs, by definition, are dynamic, the degree of dynamism varies 

considerably across applications. Lund et al. (1996) proposed a degree of dynamism (𝐷𝑜𝐷) metric 

defined as the ratio of the number of dynamic demand requests (𝑛𝑑) to the total number of requests 

(𝑛𝑡𝑜𝑡); (𝐷𝑜𝐷 = 𝑛𝑑/𝑛𝑡𝑜𝑡), wherein a dynamic request occurs while the vehicle fleet is providing 

service rather than before the start of the day. In the SAMS operational problems in this thesis, all 

the requests are dynamic (i.e. no requests are known before the start of the day). Hence, according 

to the 𝐷𝑜𝐷 metric proposed by Lund et al., 𝐷𝑜𝐷 = 1 for all on-demand SAMS operational 

problems.  

The effective-𝐷𝑜𝐷 (𝐸𝐷𝑜𝐷) extends the 𝐷𝑜𝐷 metric via considering the time individual 

demand requests become known to the operator, and the latest possible time the request could be 

received (Larsen et al., 2002). If 𝑡𝑟
𝑖  is the request time of demand 𝑖, and 𝑇 is the length of the finite 

planning horizon, then 𝐸𝐷𝑜𝐷 =  (∑
𝑡𝑟
𝑖  

𝑇

𝑛𝑑
𝑖=1 ) /𝑛𝑡𝑜𝑡. The 𝐸𝐷𝑜𝐷 with time windows (𝐸𝐷𝑜𝐷𝑇𝑊) 
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considers the gap between user 𝑖’s latest allowable departure time (𝑡𝑑𝑙
𝑖 ) and 𝑡𝑟

𝑖   (Larsen et al., 

2002). The 𝐸𝐷𝑜𝐷𝑇𝑊 is defined as follows, 𝐸𝐷𝑜𝐷𝑇𝑊 =
1

𝑛𝑡𝑜𝑡
∑ (1 −

𝑡𝑑𝑙
𝑖 −𝑡𝑟

𝑖

𝑇
)

𝑛𝑑
𝑖=1 .  

The on-demand SAMS operational problems in this thesis include soft, rather than hard, time 

window constraints; hence, 𝑙𝑖 is not explicitly defined. However, 𝑡𝑑𝑙
𝑖 − 𝑡𝑟

𝑖  is implicitly very small 

because the problem definitions assume users want to be picked up shortly after requesting a ride. 

Larsen et al. (2002) classify SDVRPs as weakly dynamic (e.g. distribution of gas and oil to 

households; the DARP for the elderly and physically disabled), moderately dynamic (e.g. 

overnight mail services; appliance repair), or strongly dynamic (e.g. police, fire, and ambulance 

services; taxicab services). The on-demand SAMS operational problems in this thesis can all be 

classified as strongly dynamic because in all the problems the users want to be picked up 

immediately after making a request and expect to be picked up within a few minutes.  

Additionally, van Lon et al. (2016) present metrics that differentiate between dynamism and 

urgency. They define degree of dynamism as ‘the continuity of change”, where, in a very dynamic 

problem, new information (i.e. user request times) arrives continuously throughout the analysis 

period. On the other hand, the degree of urgency is an indicator of “the reaction time available for 

responding to an incoming [request].”  The on-demand SAMS operational problems in this thesis 

have a high degree of dynamism according to the definition of van Lon et al. as user requests enter 

the system continuously throughout the period of analysis. Additionally, the on-demand SAMS 

operational problems (implicitly) have a high degree of urgency, as the fleet controller must assign 

AVs to new user requests very quickly and have AVs pick up user requests on the order of minutes. 

Unlike the 𝐸𝐷𝑜𝐷 and the 𝐸𝐷𝑜𝐷𝑇𝑊, the urgency and dynamism metrics in van Lon et al. (2016) 

apply to the infinite horizon case.  
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van Lon et al. (2016) highlight that measures of dynamism and urgency should be problem 

specific not dependent on algorithmic solution approach; however, measures of dynamism and 

urgency can assist in the choice of algorithmic approaches for specific problems. 

3.3 SDVRPs Applications 

This section reviews SDVRP applications relevant to on-demand SAMS operational problems 

without shared rides. These applications include taxi-dispatching problems, ambulance 

dispatching and fleet management problems, freight dynamic truckload pickup and delivery 

problems, and mobility-on-demand/autonomous mobility-on-demand problems.  

Taxi dispatching 

Before smartphones, users typically hailed taxicabs on the side of the road or called a taxi-

dispatching service with their location. With taxi dispatchers, neither the user, the taxi driver, nor 

the taxi dispatcher had real-time information on the location of both the user and the taxi. Although, 

smartphones and real-time location information have changed the nature of personal transportation 

services (like taxis), research on taxi dispatching problems before smartphones is still relevant to 

the on-demand SAMS operational problems in this thesis.  

Taxi dispatchers typically follow rule-based policies when dispatching taxis to users making 

phone requests. An early policy assigned each new phone request to the taxi that has been waiting 

the longest. Although equitable, the operational inefficiency of this policy is obvious, as taxis may 

have to travel a long way to pick up a request. A slightly less inefficient policy involves assigning 

each new phone request to the nearest idle taxi. However, research clearly shows that this highly-

myopic policy is inefficient (Kiam Tian Seow et al., 2010). Chapter 6 re-illustrates the inefficiency 
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of this strategy. Lee et al. (2004), in a simplified analysis, show that it is beneficial to assign new 

user requests to the taxi with the shortest network travel time, rather than the taxi with the shortest 

direct-line distance to the new user request. Unlike the SAMSs defined in this thesis, some taxi 

services and taxi problems defined in the literature allow taxi dispatchers to reject user requests 

(Kiam Tian Seow et al., 2010). 

Maciejewski and Nagel (2013) present three different policies/strategies for the taxi-

dispatching problem with immediate requests. The first strategy assigns users FCFS to the nearest 

idle taxi; the second and third strategy consider idle and en-route drop-off AVs in the assignment. 

The study explicitly considers the case where the demand rate of taxi requests temporarily outpaces 

the service rate of taxis. As a queue of unserved user requests forms, the fleet operator assigns 

multiple ordered requests to each taxi. In the third strategy, demand requests in each taxi’s queue 

can be re-assigned to other taxis as new information enters the system.  

Like the operational strategies in this thesis, Maciejewski et al. (2016) use the assignment (or 

bipartite matching) problem framework to dispatch taxis to immediate user requests. However, the 

taxi-traveler assignment strategies in Maciejewski et al. (2016) do not allow en-route pickup taxis 

(assigned users) to be diverted (reassigned), nor do they incorporate repositioning strategies.  

Ambulance Dispatching and Fleet Management 

The operational problems associated with ambulance and emergency services, like the on-

demand SAMS operational problems defined in this thesis, have a high degree of urgency (van 

Lon et al., 2016). Given the nature of ambulance services, a few minutes difference in response 

times (i.e. patient waiting times) can have life-altering consequences. Hence, ambulance fleets 

focus heavily on reducing average response times as well as maximizing the percentage of patients 
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with a response time less than a threshold value (e.g. four minutes for the U.S. National Fire 

Protection Association) (Nasrollahzadeh et al., 2018).  

Gendreau et al. (2001) divide the ambulance fleet management problem into the ambulance-

dispatching problem and the ambulance relocation problem. Early research focuses on the 

ambulance relocation problem while using simple heuristics for the ambulance-dispatching 

problem (Andersson and Värbrand, 2007; Gendreau et al., 2001). More-advanced methods use 

mathematical programming formulations that jointly consider the ambulance dispatch and 

relocation problem (Haghani and Yang, 2007). Other researchers employ approximate dynamic 

programming methods to solve the ambulance dispatching and relocation problem (Schmid, 2012). 

Lee (2012) examines the ambulance-dispatching problem in the presence of a disaster wherein the 

demand rate of calls outpaces the ambulance fleet’s service rate.  

Recently, Nasrollahzadeh et al. (2018) present ambulance operational policies that allow more 

flexibility in ambulance relocations. In addition to not automatically assigning the closest 

unoccupied ambulance to service requests (an inefficient policy), the study allows two different 

types of ambulance relocations. The first relocation type is ambulance redeployment in which 

ambulances do not automatically return to a preassigned base after serving a request, rather the 

ambulance can be redeployed to another base. The second relocation type is ambulance 

reallocation wherein ambulances can reactively or proactively relocate to other bases to increase 

coverage. In the proactive case, there may already be an idle ambulance at the base; however, if 

the expected demand is high enough, multiple ambulances at the base may be warranted.  

Despite matching or exceeding the degree of dynamism and urgency associated with the on-

demand SAMS operational problems in this thesis, there are constraints on the ambulance 
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operational problem that on-demand SAMS fleet controllers do not encounter. Most importantly, 

SAMS user pickup and drop-off times are much shorter and more reliably short than ambulance 

on-site pickup or service times, and at-hospital drop-off times. Knowing SAMS user pickup and 

drop-off times are going to be short allows the SAMS controller to easily assign en-route drop-off 

AVs to new user requests; whereas, assigning a currently in-use ambulance to an open patient 

request is more challenging, riskier, and in some cases infeasible.  

Freight Dynamic Truckload Pickup and Delivery 

Although the dynamic freight truckload pickup and delivery problem (D-TLPDP) has a lower 

degree of dynamism and urgency than on-demand SAMS operational problems, much of the 

research on SDVRPs without shared rides comes from the D-TLPDP. Hence, the models and 

solution approaches for the D-TLPDP can inform research on on-demand SAMS operational 

problems without shared rides. 

To solve the D-TLPDP, researchers commonly employ a rolling-horizon solution procedure 

that involves repeatedly re-solving a static mathematical programming problem (Fleischmann et 

al., 2004; Frantzeskakis and Powell, 1990; Yang et al., 2004, 1999). For the D-TLPDP, the two 

most-common mathematical programming problems solved in a rolling-horizon fashion are the 

TLPDP and the assignment (or bipartite matching) problem. The TLPDP model allows the fleet 

operator to sequence (or schedule) the pickup and delivery of multiple open demand requests, for 

each vehicle; whereas, the assignment problem matches each vehicle to at most one open demand 

request.  

There is an important trade-off to consider when choosing between the assignment problem 

formulation and the TLPDP formulation. The first element of the trade-off is the computational 
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efficiency of the problem formulations and the ability to solve the problems exactly or 

heuristically. The linear relaxation of the assignment problem, an integer programming problem, 

always returns integer solutions because the problem’s constraint matrix is totally unimodular, 

thereby exact solutions to large problem instances can be obtained quickly. Conversely, the 

TLPDP formulation is NP-hard and exact solutions to moderate size problems cannot be obtained 

quickly. The second element of the trade-off are the benefits of sequencing multiple pickup and 

drop-offs. The assignment problem does not explicitly allow sequencing; whereas, the TLPDP 

does. In general, sequencing multiple pickups and deliveries is beneficial; however, its value 

depends on the type of problem. In freight transportation, where loads do not need immediate 

service (e.g. within 5-10 minutes of the request time), sequencing pickups and deliveries is highly 

beneficial. Conversely, in the case of an on-demand mobility service, users want to be picked up 

immediately; hence, placing a new user request in a sequence behind two or more other user 

requests means the new user is likely going to receive an unacceptably long wait time. Given the 

computational efficiency benefits of the assignment problem, and the lack of value of sequencing 

user requests for an on-demand mobility service, the SAMS operational strategies in this thesis 

utilize the assignment problem formulation, not the TLPDP formulation, in the rolling-horizon 

solution approaches.  

An important finding in the freight D-TLPDP literature that this thesis replicates in the context 

of on-demand SAMSs is the operational efficiency benefits of allowing vehicle diversions (i.e. 

allowing users to be reassigned from one AV to another and allowing AVs to divert from picking 

up one traveler to go pick up another) in the toolbox of operational strategies (Regan et al., 1996, 

1995). Practically speaking, switching a user between AVs is a lot simpler than switching a freight 
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load between trucks in many cases. Hence, the potential benefits of en-route vehicle 

diversions/traveler reassignment in passenger transportation exceed the potential benefits in freight 

transport.  

Mobility-on-demand (MOD) and autonomous-MOD (AMOD) Services 

Over the past several years, researchers have begun to address mobility-on-demand (MOD) 

and autonomous-MOD (AMOD) operational problems. Additionally, several research groups are 

simulating shared-use autonomous vehicles (SAVs), mainly to understand their transportation 

planning and policy implications. This section provides a review of the relevant MOD, AMOD, 

SAV, and SAMS literature.  

Simulating SAMS Fleets for Planning and Policy Implications 

Existing supply-side research aiming to model SAMSs and understand their transportation 

planning and policy implications, generally involves an agent-based modeling framework with 

three components including a demand (i.e. user request) generator, an SAMS fleet controller, and 

some representation of the transportation network (Levin et al., 2017b; Rigole, 2014).  

The demand generator creates user requests each with an origin location, destination location, 

and request time. Researchers have calibrated their spatio-temporal traveler demand generators 

using synthetic travel demand from regions such as Austin (Chen et al., 2016; Fagnant et al., 2015; 

Fagnant and Kockelman, 2016; Levin et al., 2017b), New Jersey (Zachariah et al., 2014; Zhu and 

Kornhauser, 2017), Lisbon (Martinez and Viegas, 2017; Viegas and Martinez, 2016), Berlin 

(Bischoff and Maciejewski, 2016), Munich (Dandl et al., 2017), and Zurich (Boesch et al., 2016). 

Other researchers use taxi data (Burns et al., 2013) or the National Household Travel Survey 
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information (W. Zhang et al., 2015a) to obtain spatial-temporal demand distributions. This thesis 

generates synthetic demand, and uses taxi trip data from Manhattan, NY and Chicago, IL to 

represent demand. 

In regards to the representation of the road network, seminal SAMS research models taxi 

stands but not the road network connecting the taxi stands (Ford, 2012; Zachariah et al., 2014). 

Other researchers use Manhattan grid networks (Fagnant and Kockelman, 2014) and Euclidean 

planes (Spieser et al., 2014) as abstractions of road networks. More advanced network 

representations include quasi-dynamic grid-based (W. Zhang et al., 2015b, 2015a) and quasi-

dynamic actual road (Fagnant et al., 2015; Fagnant and Kockelman, 2016; International Transport 

Forum, 2015; Martinez and Viegas, 2017) networks with time-dependent, but deterministic link 

travel times. Recent research focusing on network impact assessment employs dynamic traffic 

simulation software such as MATSIM (Bischoff and Maciejewski, 2016) and a cell-transmission 

simulation model (Levin et al., 2017b) to model the AVs in a congestible road network. As this 

thesis focuses on the SAMS fleet dispatching problem, it employs a Manhattan grid network with 

fixed travel times.  

The fleet controllers in this area of research use simplistic rules to assign AVs to users. Burns 

et al. (2013) assign users FCFS to the nearest idle or en-route drop-off AV. Zhang et al. (2015b) 

only consider idle AVs in their FCFS assignment strategy. Several researchers use a rule-based 

strategy that involves segmenting the service region into sub-regions, and assigning unassigned 

users (ordered randomly) to the closest idle AVs within their sub-region (Chen et al., 2016; 

Fagnant and Kockelman, 2014). If no idle AV is available in the user’s sub-region, the user looks 

to the surrounding sub-regions. Boesch et al. (2016) employ a similar rule-based dispatching 



67 

 

strategy. Fagnant et al. (2015) use a similar strategy in a road network setting and employ a 

modified-Dijkstra’s algorithm to determine the shortest network path between idle AVs and 

unassigned users. Bischoff and Maciejewski (2016) model a large-scale SAMS and use a slightly 

more-sophisticated assignment strategy that involves classifying the system state into two mutually 

exclusive categories. If there is an oversupply of AVs relative to unassigned user requests, users 

are assigned FCFS to the nearest idle AV. If there is an undersupply of AVs, when an AV becomes 

idle it is assigned to the nearest unassigned user request. Chapter 6 employs optimization-based 

strategies to dynamically assign AVs to user requests, and additionally allows previously assigned 

users (en-route pickup AVs) to be reassigned (diverted) to other AVs (travelers) after new user 

requests enter the system.  

MOD and AMOD Operational Problems  

The smartphone, other ICT advancements, and real-time vehicle tracking devices motivated 

significant research on SDVRPs. Similarly, the emergence of MOD services and the promise of 

AVs and their inclusion in MOD fleets resulted in a large growth in SDVRP research for passenger 

transportation over the past five years (Alonso-Mora et al., 2017; Zhang and Pavone, 2016). 

Several studies present model predictive control (MPC) approaches to control a fleet of AVs 

in a point-to-point AMOD service (Iglesias et al., 2017; Tsao et al., 2018; R. Zhang et al., 2015). 

A relevant  difference between the problem definition (or model) of on-demand SAMSs in this 

thesis and in the MPC studies (Iglesias et al., 2017; Tsao et al., 2018; R. Zhang et al., 2015) relates 

to the treatment of origin and destination locations. The MPC studies only allow demand to 

originate and terminate at stations (representing regions of the service area); conversely, this thesis 

allows demand to originate and terminate anywhere in a Manhattan plane.  
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Existing point-to-point MOD and AMOD studies in the literature tend to focus on either the 

AV-user assignment decision problem (Alonso-Mora et al., 2017; Hyland and Mahmassani, 2018; 

Maciejewski et al., 2016; Maciejewski and Nagel, 2013) or the empty AV repositioning decision 

problem (Iglesias et al., 2017; Sayarshad and Chow, 2017; Winter et al., 2017; Zhang et al., 2018), 

rather than a detailed treatment of both decision problems. Conversely, Chapter 8 treats these two 

decision problems equally (or rather jointly) as they are interdependent, and both impact fleet 

performance.  

In a comparison of point-to-point AMOD operational strategies, Horl et al. (2017) compare 

assignment-only strategies, such as an AV-user assignment heuristic and a bipartite matching of 

available AVs and open user requests, against strategies that combine bipartite matching for the 

AV-traveler assignment decision problem with the AV repositioning approach in Pavone et al. 

(2011). However, the operational strategies in Horl et al. (2017) solve the two decision problems 

sequentially, rather than jointly.  

Shared Rides 

The operational problem associated with shared-ride service is similar to the D-DARP that 

was first introduced 40 years ago (Psaraftis, 1983, 1980; Wilson and Colvin, 1977). The original 

D-DARP was formulated in the context of paratransit service for individuals with disabilities. The 

shared-ride problem presented in this thesis is significantly more dynamic than the initial D-

DARP; moreover, the level-of-service associated with paratransit and other traditional dial-a-ride 

services are inferior to the level-of-service provided by existing ridesourcing and necessary to 

compete with the personal (autonomous) vehicle in terms of service quality (i.e. wait time).  
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Recently, researchers have formulated and presented solution methods for the shared-ride taxi 

problem (Hosni et al., 2014; Santos and Xavier, 2015). Unlike the current thesis, these papers 

assume explicit time-window constraints on the traveler pickup and drop-off times. In the most-

closely related research, Ma et al. model a taxi fleet that allows shared rides (Ma et al., 2015). They 

claim that taxi-sharing increases the number of travelers served by a factor of three, relative to taxi 

service without shared rides. Additionally, Martinez and Viegas use an agent-based simulation to 

model a shared, self-driving taxi service (Martinez and Viegas, 2017). Alonso-Mora et al. present 

an efficient and scalable algorithm to facilitate shared-ride service for a large fleet of taxis (Alonso-

Mora et al., 2017). 

Two recent survey papers review dynamic ridesharing research (Agatz et al., 2012; Furuhata 

et al., 2013). Ridesharing and dynamic ridesharing historically referred to a carpool-like service 

wherein a driver notifies the system operator of a trip he is planning to take (notification must 

include origin location, destination location, as well as the planned origin departure time and/or 

planned destination arrival time). Similarly, travelers notify the system operator of trips they plan 

to take. The system operator then (attempts to) match driver and traveler requests. This is the 

ridesharing service reviewed in (Agatz et al., 2012; Furuhata et al., 2013). Lee and Savelsburgh 

(2015) examine the case of a conventional ridesharing system complemented by a fleet of 

dedicated drivers.  

Several existing SAMS studies include shared-ride service, which they refer to as dynamic 

ridesharing (Fagnant and Kockelman, 2016; Levin et al., 2017b; Rigole, 2014; W. Zhang et al., 

2015a). This thesis refrains from referring to an (on-demand) shared-ride SAMS as (dynamic) 
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ridesharing to prevent confusion among readers who associate ridesharing with a carpool-like 

service that does not include dedicated drivers or dedicated service vehicles.  

3.4 Conclusion 

This chapter reviews the SDVRP literature that is most related to on-demand SAMSs. The 

relevant SDVRP applications in the literature include taxi-dispatching problems, ambulance 

dispatching and fleet management problems, and freight dynamic pickup and delivery problems. 

The chapter also reviews the existing literature examining on-demand SAMSs. While on-demand 

SAMSs share many attributes with problems in the existing dynamic freight routing literature, 

taxi-dispatching literature, and ambulance-dispatching literature, the combination of the SAMS 

operational problems’ size, degree of dynamism, degree of urgency, spatial distribution of user 

requests, and short user pickup and drop-off times make the problem instances unique relative to 

the existing literature.  
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 Operational Efficiency of Chicago Taxi Fleet 3F

4 

 

4.1 Overview 

This chapter evaluates and quantifies the operational efficiency of the Chicago taxi fleet using 

a spatial efficiency metric and a temporal efficiency metric. The spatial efficiency metric 

determines the percentage of a taxi’s total miles that are productive. Productive miles are defined 

as miles wherein the taxi is transporting users and generating revenue. Unproductive miles include 

miles spent roaming for users and miles spent traveling to pick up users. The temporal efficiency 

metric determines the percentage of in-service time taxis are productive. In-service time includes 

all the time a taxi is looking for users or serving users; i.e. all the time a driver is in the taxi. The 

temporal and spatial efficiency measures allow the analyst, to assess the efficiency of individual 

taxi trips, individual taxis, and the entire taxi fleet. To characterize and quantify the efficiency of 

taxis, this chapter first clusters individual taxis based on their daily usage rates over the entire year.  

This chapter utilizes taxi data from the city of Chicago (Chicago Data Portal, 2017) and serves 

two purposes in the context of this thesis. First, the spatial efficiency of the Chicago taxi fleet 

provides a baseline to analyze the efficiency of the SAMS operational policies presented and tested 

later in this thesis. Second, the results in this chapter show the inefficiencies associated with 

                                                 
4 This chapter parallels the taxi fleet efficiency component of Chen and Hyland et al. (2018) 
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decentralized operation of a vehicle fleet, allowing drivers to completely control their own 

vehicles, and not having full information about open user requests.  

4.2 Chicago Taxi Trip Data 

Chicago followed in the footsteps of New York City who released 2009 through 2015 taxi 

data that covers 1.1 billion taxi trips. The New York dataset has spurred a significant volume of 

research (Haggag et al., 2017; King and Saldarriaga, 2017; Liu et al., 2015; Qian and Ukkusuri, 

2015; Schneider, 2016; Yang and Gonzales, 2017; Zhan et al., 2014). Schneider (2016) presents a 

comprehensive exploratory analysis and visualization of the New York City taxi data. Zhan et al. 

(2016, 2014) extensively study the efficiency of urban taxi fleets and present a graph-based 

approach to evaluate the efficiency of a taxi fleet.  

The taxi trip data used in this analysis is a subset of the taxi dataset available through the 

Chicago Data Portal (Chicago Data Portal, 2017). The dataset includes information on over 105 

million taxi trips made in the city of Chicago between January 2013 and 2017. The full dataset 

includes a total of 23 columns with information about each taxi trip. This study makes use of the 

following columns: 

• Taxi ID 

• Trip Start Timestamp (15-minute interval) 

• Trip End Timestamp (15-minute interval) 

• Trip Duration (seconds) 
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• Trip Distance (miles) 

• Pickup Location (census tract centroid or community area centroid) 

• Drop-off Location (census tract centroid or community area centroid) 

Due to privacy concerns, the dataset does not provide exact geographical coordinates for pickup 

or drop-off locations; rather it provides census tract or community area centroids.  

Table 4-1 displays the number of taxi trips recorded, and the number of unique taxis that made 

at least one trip in each year between 2013 and 2016. Table 4-2 displays the distribution of taxi 

trip distances, durations, and trip counts.  

In this analysis, taxi trips with distances (durations) longer than 40 miles (90 minutes) were 

either removed from each analysis, replaced with the shortest path distance (time) between the 

trip’s pickup and drop-off locations using the Google Maps API, or simply replaced with a distance 

(time) of 40 miles (90 minutes). The 40-mile cut-off was selected because this is approximately 

the longest possible travel distance between any two locations in the Chicago Metropolitan region. 

Similarly, the 90-minute cut-off was selected because it is approximately the travel time from the 

northern-most edge to the southern-most edge of the Chicago metropolitan region, during the off-

peak period.  

Table 4-1: Chicago Taxi Trip Dataset General Statistics 

  2013 2014 2015 2016 

Number of Taxis 5,557 7,582 7,552 7,667 

Number of Trips 26,870,287 31,021,726 27,400744 19,878,249 
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Table 4-2: Individual Taxi Trip Statistics 

 Distance (mile) Duration (minute) Trip Count per Taxi (2013~2016) 

Min. 0.11 1 1 

1st Quartile 0.9 6 429 

Median 1.7 10 14,210 

Mean 3.8 14 13,150 

3rd Quartile 3.9 17 22,160 

Max. 40 90 48,020 

4.3 Taxi Fleet Usage Analysis 

Histogram of Taxi Fleet by Average Daily Trips 

This section presents a histogram of the average number of trips taxis made per in-service day. 

Let 𝐽𝑦 denote the set of all taxis, in year 𝑦, indexed by taxi 𝑗 ∈ 𝐽𝑦. Let 𝑁𝑗,𝑦 denote the set of trips 

completed by taxi 𝑗 ∈ 𝐽𝑦 in year 𝑦, indexed by trip 𝑛 ∈ 𝑁𝑗,𝑦. For notational simplicity, and the fact 

there are separate analysis for each year 𝑦, the subscript 𝑦 is removed from these sets throughout 

the remainder of this chapter. Equation (1) determines the average number of daily trips for taxi 𝑗 

(𝜏𝑗) in year 𝑦, where 𝜎𝑗 is the number of days taxi 𝑗 is in service during year 𝑦. 

𝜏𝑗 =
|𝑁𝑗|

𝜎𝑗
 

(1) 

Figure 4-1 displays a histogram of 𝜏𝑗 for each year 𝑦. In 2015 and 2016, around 1,500 taxis 

only made three trips per in-service day on average. However, most taxis completed between 7 

and 25 trips per in-service day, with a few taxis completing more than 40 trips per in-service day. 
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This histogram clearly does not provide the whole story in terms of usage of taxi vehicles. For 

example, it does not differentiate between vehicles based on work hours (some cabs may only be 

in use a couple hours per day) or work days (some cabs may only work Sundays). However, the 

histogram does suggest that there were many drivers (more so in 2015 and 2016) who only serve 

a couple of travelers per in-service day. This finding informs other results presented later in this 

chapter.  

 
Figure 4-1: Distribution of the average number of daily trips (per in-service day) across taxis 

Clustering Taxis by Daily Trip Count 

This section describes the 𝐾-means clustering algorithm employed to cluster taxis based on 

their daily trip counts. Let 𝐷 be the set of days in a year, indexed by 𝑑 ∈ 𝐷, wherein |𝐷| is typically 
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365 (or 366 in a leap year). Let 𝛾𝑗𝑑 denote the number of trips made by taxi 𝑗 ∈ 𝐽 on day 𝑑 ∈ 𝐷, 

and let Γ𝑗 denote the taxi daily trip count vector of length |𝐷| for taxi 𝑗 (𝛾𝑗𝑑 ∈ Γ𝑗).  

The 𝐾-means clustering problem involves assigning each taxi 𝑗 ∈ 𝐽 into one and only one 

cluster. Let 𝑆 denote the set of clusters, where |𝑆| = 𝐾. The elements of 𝑆 are denoted 𝑆𝑘, 𝑘 =

1,2, … , 𝐾, where 𝑆𝑘 is a set of taxis (𝑆𝑘 ⊂ 𝐽). Let 𝜋𝑆𝑘 ,𝑑 denote the mean number of trips for the 

taxis in cluster 𝑆𝑘 on day 𝑑, and Π𝑆𝑘  denote the mean daily trip count vector for the taxis assigned 

to cluster 𝑆𝑘 (𝜋𝑆𝑘 ,𝑑 ∈ Π𝑆𝑘), where |Π𝑆𝑘| = |Γ𝑗| = |𝐷|. Equation (2) displays the squared error 

between the mean daily trip values for cluster 𝑆𝑘 (𝜋𝑆𝑘 ,𝑑) and the daily trip values for each taxi 𝑗 

assigned to cluster 𝑆𝑘 (𝛾𝑗𝑑| 𝑗 ∈ 𝑆𝑘). 

𝑆𝐸(𝑆𝑘) = ∑‖ Γ𝑗 − Π𝑆𝑘‖
2

𝑗∈𝑆𝑘

= ∑∑( 𝛾𝑗𝑑 − 𝜋𝑆𝑘 ,𝑑)
2

|𝐷|

𝑑=1𝑗∈𝑆𝑘

 (2) 

 

A k-means clustering algorithm identifies the set of clusters (𝑆) that minimize the within-cluster 

sum of squares (WCSS) as defined in Eqn. (3). 

𝑊(𝐾) = min
𝑆
∑𝑆𝐸(𝑆𝑘)

𝐾

𝑘=1

= min
𝑆
∑ ∑‖ Γ𝑗 − Π𝑆𝑘‖

2

𝑗 ∈𝑆𝑘

𝐾

𝑘=1

 (3) 

 

where, 𝐾 is the number of clusters and 𝑊(𝐾) is the minimal WCSS. 𝑊(𝐾) is a monotonically 

decreasing function of 𝐾. Equation (4) displays the metric used in this chapter to help select the 

number of clusters (𝐾), where 𝑅 is the rate of change (decrease) in 𝑊(𝐾)  as K increases. 

𝑅 =
𝑊(𝐾) −𝑊(𝐾 + 1)

𝑊(𝐾)
× 100% (4) 
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For the Chicago taxi data, Eqn. (4) yields five taxi clusters. Table 4-3 shows the percentage 

of taxis in each of the five taxi-clusters by year.  

Table 4-3: Percentage of Taxis in Each Cluster 

Cluster 2013 2014 2015 2016 

Most trips 17.06% 15.18% 8.47% 7.54% 

More trips 11.77% 24.48% 20.19% 17.54% 

Normal 25.52% 7.24% 20.52% 18.49% 

Less trips 22.10% 20.76% 18.78% 17.67% 

Least trips 23.56% 32.34% 32.03% 38.75% 

 

Figure 4-2 presents the daily taxi-cluster centroids for each year, where the x-axis displays 𝑑 

and the y-axis displays 𝜋𝑆𝑘 ,𝑑. In 2013, the range of average daily trip counts for taxis making the 

most trips was between 20 and 35; the range for taxis making more trips was between 15 and 25; 

the range for taxis with normal trips was 1-to-2 for the first 90 days, before increasing steadily 

over the next 150 days, and then plateauing between 15 and 25 for the last part of the year; the 

range for taxis making less trips was between 5 and 10; and the range for taxis making the least 

trips was one or two for the first 250 days, before it increased to between 5 and 10. The least trips 

and less trips clusters likely correspond to the three trips per in-service day peak in Figure 4-1. 

The 2014 daily trips ranges are like the 2013 daily trip ranges for all five clusters. 

In 2015, the daily trip counts in each cluster were stable; i.e. no systematic increases or 

decreases in daily trip counts after a certain day of the year. The same was largely true for 2016, 

except the less trips cluster range decreased from 5-10 daily trips the first 200 days of the year to 

1-3 daily trips during the last 165 days. 
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The results in Figure 4-2 clearly indicate that there are significant differences in taxi trips per 

day in the Chicago taxi fleet. Some taxis consistently made 20-35 trips per day and others only 

made one-two trips per day.  

  



 

 

 

7
9
 

  

  

Figure 4-2: Taxi clusters results

2013 2014 

2015 2016 
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Next, this section analyzes the percentage of in-service days for the taxis in each cluster to 

validate the results in Figure 4-2. Figure 4-3 presents histograms of the percentage of in-service 

days for the taxis in each cluster, independent of the average number of fares/trips per day. 

In Figure 4-3, taxis in the most trips cluster were in-service 70-100% of the days in each year. 

Similarly, as expected, most taxis in the least trips cluster were only in service 0-40% of the days 

each year. The other graphs in Figure 4-3 also largely follow what one would expect based on the 

results in Figure 4-2. One exception is that the many taxis in the less trips cluster were in-service 

a large percentage of the days. Based on Figure 4-2, they must have served only a few trips per 

day.  
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Figure 4-3: Histograms for the percentage of days in service for each taxi cluster 
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4.4 Taxi Efficiency Analysis 

The last section focused on the usage rate of individual taxis, whereas this section focuses on 

the efficiency of individual taxis.  

Efficiency Metrics 

Temporal Efficiency Metric 

Let 𝑝𝑗,𝑛 denote the productive time associated with taxi-trip 𝑗, 𝑛, and let and 𝑢𝑗,𝑛 denote the 

unproductive time between taxi-trip 𝑗, 𝑛 and taxi-trip 𝑗, 𝑛 + 1. Let 𝑑𝑢𝑟𝑎𝑗,𝑛 denote the trip duration 

value in the taxi dataset and let 𝑏𝑗,𝑛 denote a binary variable equal to 1 if a trip duration value exists 

for taxi-trip 𝑗, 𝑛. Let 𝑝𝑜𝑠𝑗,𝑛,𝑝 and 𝑝𝑜𝑠𝑗,𝑛,𝑑 denote the pickup and drop-off locations (longitude and 

latitude) of taxi-trip 𝑗, 𝑛, respectively. Finally, let 𝐴𝑗,𝑛,𝑝 and 𝐴𝑗,𝑛,𝑑 denote binary variables equal to 

1 if the pickup and drop-off locations of taxi-trip 𝑗, 𝑛 exist in the dataset, respectively. Algorithm 

1a assigns values to 𝑝𝑗,𝑛 (the Google API function is described below). 
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Algorithm 1a 

for all 𝒋 ∈ 𝑱:     //All taxis 

for all 𝒏 ∈ 𝑵𝒋:     //All taxi-trips 

if 𝒃𝒋,𝒏 == 𝟏 𝐚𝐧𝐝 𝒅𝒖𝒓𝒂𝒋,𝒏 < 𝟗𝟎𝒎𝒊𝒏:     //If trip duration exists and is less than 90 minutes 

𝒑𝒋,𝒏 = 𝒅𝒖𝒓𝒂𝒋,𝒏                                 // Assign trip duration value from taxi dataset 

else if 𝒃𝒋,𝒏 == 𝟎 𝐚𝐧𝐝 (𝑨𝒋,𝒏,𝒑 == 𝟎 𝒐𝒓 𝑨𝒋,𝒏,𝒅 == 𝟎):    // If trip duration and pickup or drop-off  

                                                                                                    //location do not exist in dataset 

Remove 𝒋, 𝒏 from temporal efficiency analysis   //Necessary data not available 

else: 

if 𝒑𝒐𝒔𝒋,𝒏,𝒑 == 𝒑𝒐𝒔𝒋,𝒏,𝒅:  //If 𝑛’s pickup and drop-off census tract are the same 

Remove 𝒋, 𝒏 from temporal efficiency analysis   //Same census tract, duration equals zero 

else: 

𝒕𝒆𝒎𝒑𝟏 =  𝑮𝒐𝒐𝒈𝒍𝒆𝑨𝑷𝑰𝒅𝒖𝒓𝒂(𝒑𝒐𝒔𝒋,𝒏,𝒑, 𝒑𝒐𝒔𝒋,𝒏,𝒅)   //Call Google API 

𝒑𝒋,𝒏 = 𝐦𝐢𝐧(𝟗𝟎𝒎𝒊𝒏, 𝒕𝒆𝒎𝒑𝟏)                        //Assign minimum of API call or 90 minutes 

Figure 4-4a: Algorithm to obtain the productive time of Taxi-trip 𝒋, 𝒏. 

Similarly, Algorithm 1b assigns values to 𝑢𝑗,𝑛. Let 𝑡𝑗,𝑛,𝑝 and 𝑡𝑗,𝑛,𝑑 denote the trip pickup and 

drop-off time for taxi-trip combination 𝑗, 𝑛, respectively. Moreover, let 𝐵𝑗,𝑛,𝑝 and 𝐵𝑗,𝑛,𝑑 denote 

binary variables equal to 1 if these values exist in the dataset for pickups and drop-offs, 

respectively. 
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Algorithm 1b 

for all 𝒋 ∈ 𝑱:     //All taxis 

for all 𝒏 ∈ 𝑵𝒋:     //All taxi-trips  

if 𝑩𝒋,𝒏,𝒅  == 𝟏 𝒂𝒏𝒅 𝑩𝒋,𝒏+𝟏,𝒑  == 𝟏:  //If drop-off time of trip 𝑛 and pickup time of trip 𝑛 + 1 exist 

∆𝒕 = (𝒕𝒋,𝒏+𝟏,𝒑 − 𝒕𝒋,𝒏,𝒅)   //Time gap between drop-off time of trip 𝑛 and pickup time of trip 𝑛 + 1  

if ∆𝒕 < 𝟗𝟎𝒎𝒊𝒏:        //If time gap less than 90 minutes 

𝒖𝒋,𝒏 = ∆𝒕          //Assign time gap as unproductive+ time 

else if  ∆𝒕 > 𝟏𝟐𝟎𝒎𝒊𝒏:  //If time gap greater than 120 minutes 

Remove 𝒋, 𝒏 from temporal efficiency analysis   //Driver is on a break or went home 

else: 

if 𝒑𝒐𝒔𝒋,𝒏,𝒅 == 𝒑𝒐𝒔𝒋,𝒏+𝟏,𝒑:  //If 𝑛’s drop-off census tract the same as 𝑛 + 1’s pickup tract 

Remove 𝒋, 𝒏 from temporal efficiency analysis   //Same census tract, duration is zero 

else: 

𝒕𝒆𝒎𝒑𝟐 =  𝑮𝒐𝒐𝒈𝒍𝒆𝑨𝑷𝑰𝒅𝒖𝒓𝒂(𝒑𝒐𝒔𝒋,𝒏,𝒅, 𝒑𝒐𝒔𝒋,𝒏+𝟏,𝒑)    //Call Google API 

𝒖𝒋,𝒏 = 𝐦𝐢𝐧(𝟗𝟎𝒎𝒊𝒏, 𝒕𝒆𝒎𝒑𝟐)        //Assign minimum of API call or 90 minutes 

else if 𝑨𝒋,𝒏,𝒅 == 𝟏 𝒂𝒏𝒅 𝑨𝒋,𝒏+𝟏,𝒑 == 𝟏 :   // If drop-off location of 𝑛 and pickup location of 𝑛 + 1 exist 

if 𝒑𝒐𝒔𝒋,𝒏,𝒅 == 𝒑𝒐𝒔𝒋,𝒏+𝟏,𝒑:  //If 𝑛’s drop-off census tract the same as 𝑛 + 1’s pickup census tract 

Remove 𝒋, 𝒏 from temporal efficiency analysis   //Same census tract, duration equals zero 

else: 

𝒕𝒆𝒎𝒑𝟑 =  𝑮𝒐𝒐𝒈𝒍𝒆𝑨𝑷𝑰𝒅𝒖𝒓𝒂(𝒑𝒐𝒔𝒋,𝒏,𝒅, 𝒑𝒐𝒔𝒋,𝒏+𝟏,𝒑) //Call Google API 

𝒖𝒋,𝒏 = 𝐦𝐢𝐧(𝟗𝟎𝒎𝒊𝒏, 𝒕𝒆𝒎𝒑𝟑) //Assign minimum of API call or 90 minutes 

else: 

Remove 𝒋, 𝒏 from temporal efficiency analysis //Necessary data not available 

Figure 4-4b: Algorithm to obtain the unproductive time between taxi-trip 𝒋, 𝒏 and taxi-trip 𝒋, 𝒏 + 𝟏 

Equation (5) displays the temporal efficiency metric for taxi-trip 𝑗, 𝑛 (𝜑𝑗,𝑛) as a function of 

𝑝𝑗,𝑛 and 𝑢𝑗,𝑛 obtained via Algorithm 1a and Algorithm 1b, respectively. Values close to 100% 

represent temporally efficient taxi trips; whereas, values close to 0% represented temporally 

inefficient taxi trips.  

𝜑𝑗,𝑛 = (
𝑝𝑗,𝑛

𝑢𝑗,𝑛 + 𝑝𝑗,𝑛
) × 100% (5) 
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Spatial Efficiency Metric 

Let 𝑙𝑗,𝑛 denote the loaded distance associated with taxi-trip 𝑗, 𝑛. Similarly, let 𝑒𝑗,𝑛 denote the 

empty distance between the drop-off location of taxi-trip 𝑗, 𝑛 and the pickup location of taxi-trip 

𝑗, 𝑛 + 1. Let 𝑑𝑖𝑠𝑡𝑗,𝑛 denote the trip distance value in the taxi dataset and let 𝑎𝑗,𝑛 denote a binary 

variable equal to 1 if a trip distance value exists for taxi-trip 𝑗, 𝑛. Algorithm 2a and Algorithm 2b 

assign values to 𝑙𝑗,𝑛 and 𝑒𝑗,𝑛, respectively. 

Algorithm 2a 

for all 𝒋 ∈ 𝑱:     //All taxis 

for all 𝒏 ∈ 𝑵𝒋:     //All taxi-trips 

if 𝒂𝒋,𝒏 == 𝟏 𝐚𝐧𝐝 𝒅𝒊𝒔𝒕𝒋,𝒏 < 𝟒𝟎 𝒎𝒊𝒍𝒆𝒔 :     //If trip distance exists and is less than 40 miles 

𝒍𝒋,𝒏 = 𝒅𝒊𝒔𝒕𝒋,𝒏     // Assign trip distance value from dataset 

else if 𝒂𝒋,𝒏 == 𝟎 𝐚𝐧𝐝 (𝑨𝒋,𝒏,𝒑 == 𝟎 𝒐𝒓 𝑨𝒋,𝒏,𝒅 == 𝟎) :    // If trip distance and pickup or drop-off  

                                                                                                   //location do not exist in dataset 

Remove 𝒋, 𝒏 from spatial efficiency analysis        //Necessary data not available 

else: 

if 𝒑𝒐𝒔𝒋,𝒏,𝒑 == 𝒑𝒐𝒔𝒋,𝒏,𝒅:  //If 𝑛’s pickup and drop-off census tract are the same 

Remove 𝒋, 𝒏 from spatial efficiency analysis   //Same census tract, distance equals zero 

else: 

𝒕𝒆𝒎𝒑𝟒 =  𝑮𝒐𝒐𝒈𝒍𝒆𝑨𝑷𝑰𝒅𝒊𝒔𝒕(𝒑𝒐𝒔𝒋,𝒏,𝒑, 𝒑𝒐𝒔𝒋,𝒏,𝒅) //Call Google API 

𝒍𝒋,𝒏 = 𝐦𝐢𝐧(𝟒𝟎 𝒎𝒊𝒍𝒆𝒔, 𝒕𝒆𝒎𝒑𝟒)                        //Assign minimum of API call or 40 miles 

Figure 4-5a: Algorithm to obtain the loaded distance of taxi-trip 𝒋, 𝒏 
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Algorithm 2b 

for all 𝒋 ∈ 𝑱:     //All taxis 

for all 𝒏 ∈ 𝑵𝒋:     //All taxi-trips  

∆𝒕 = (𝒕𝒋,𝒏+𝟏,𝒑 − 𝒕𝒋,𝒏,𝒅)       //Time gap between drop-off time of trip 𝑛 and pickup time of trip 𝑛 + 1  

if 𝑨𝒋,𝒏,𝒅  == 𝟎 𝒂𝒏𝒅 𝑨𝒋,𝒏+𝟏,𝒑  == 𝟎 //If 𝑛’s drop-off location and 𝑛 + 1’s pickup location do not exist 

Remove 𝒋, 𝒏 from spatial efficiency analysis        //Necessary data not available 

else if ∆𝒕 > 𝟏𝟐𝟎𝒎𝒊𝒏:  //If time gap greater than 120 minutes 

Remove 𝒋, 𝒏 from spatial efficiency analysis        //Driver is on a break or went home 

else: 

if 𝒑𝒐𝒔𝒋,𝒏,𝒅 == 𝒑𝒐𝒔𝒋,𝒏+𝟏,𝒑:  //If 𝑛’s drop-off census tract the same as 𝑛 + 1’s pickup census tract 

Remove 𝒋, 𝒏 from spatial efficiency analysis   //Same census tract, distance equals zero 

else: 

𝒕𝒆𝒎𝒑𝟓 =  𝑮𝒐𝒐𝒈𝒍𝒆𝑨𝑷𝑰𝒅𝒊𝒔𝒕(𝒑𝒐𝒔𝒋,𝒏,𝒅, 𝒑𝒐𝒔𝒋,𝒏+𝟏,𝒑) //Call Google API 

𝒆𝒋,𝒏 = 𝐦𝐢𝐧(𝟒𝟎 𝒎𝒊𝒍𝒆𝒔, 𝒕𝒆𝒎𝒑𝟓)                        //Assign minimum of API call or 40 miles 

Figure 4-5b: Algorithm to obtain the empty distance between taxi-trip 𝒋, 𝒏 and taxi-trip 𝒋, 𝒏 + 𝟏. 

Equation (6) displays the spatial efficiency metric for taxi-trip 𝑗, 𝑛 (𝜉𝑗,𝑛) as a function of 𝑙𝑗,𝑛 

and 𝑒𝑗,𝑛 obtained via Algorithm 2a and Algorithm 2b, respectively. Values close to 100% represent 

spatially efficient taxi trips; whereas, values close to 0% represented spatially inefficient taxi trips. 

𝜉𝑗,𝑛 = (
𝑙𝑗,𝑛

𝑒𝑗,𝑛 + 𝑙𝑗,𝑛
) × 100% (6) 

Google Maps Distance Matrix API 

The Google Maps Distance Matrix API4 F

5 is a service provided by Google Inc. that estimates 

travel distance and time for a recommend route between origin and destination points (Google, 

2017). API requests must include origin and destination locations, a unique Google API key, and 

a transport mode. Optional parameters include arrival or departure time, and traffic model (best 

                                                 
5 https://developers.google.com/maps/ 
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guess, pessimistic, optimistic). This thesis uses the default driving mode and does not provide 

specific arrival or departure times. The API returns trip distance and duration for any feasible 

origin-destination coordinate pair input.  

The analysis involves calculating the shortest travel time and distance between each unique 

pickup and drop-off location pair. Hence, the algorithms presented in the last two subsections use 

lookup table values for API-generated trip distances and trip durations. 

Efficiency Results 

Temporal Efficiency Results 

This section presents temporal efficiency measures for the Chicago taxi fleet. Figure 4-6 

presents histograms of temporal efficiency for the taxis in the most trips and normal trips clusters. 

The x-axis represents the percentage of loaded time in bin intervals of 10%, and the y-axis is the 

number of taxis in each bin.  

Figure 4-6 shows that around 50% of taxi in-service time is unproductive; i.e. not spent 

transporting users and collecting fares. For the taxis in the most trips cluster, the most productive 

taxis are productive 70-80% of their in-service time. The least productive taxis are productive 20-

40% of their in-service time. However, a large majority of the taxis are productive 40-60% of their 

in-service time.  

Like the taxis in the most trips cluster, only a few of the taxis in the normal trips cluster are 

productive 70-80% of their in-service time. A large majority of the normal trips cluster taxis were 

productive 40-60% of their in-service time. Figure 4-6 also shows that in 2013 and 2015 many 

normal trip taxis were only productive 10-20% of their in-service time.  
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 The results in Figure 4-6 indicate that most taxis in the Chicago fleet are highly inefficient. 

Most drivers spend nearly half of their in-service time not generating revenue. This suggests that 

there is significant room for improvement in terms of operational efficiency.  
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Figure 4-6: Histograms of the average temporal efficiency of taxis in the most (top) and normal 

(bottom) trips clusters by year 
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Spatial Efficiency Results 

As an illustrative example, this section presents spatial efficiency measures for two taxis. 

Figure 4-7 displays a histogram of the spatial efficiency of every trip made by Taxi #44 between 

2013 and 2016. Taxi #44 is a member of the most trips taxi cluster. The figure shows a clear 

gaussian distribution centered around 50% for each year. This indicates that around 50% of Taxi 

#44’s miles are unproductive (i.e. empty).  

Figure 4-7 also displays a histogram of the spatial efficiency of every trip made by Taxi 

#981between 2013 and 2016. Taxi #981, a member of the less trips taxi cluster, had a trip 

distribution slightly more uniform than Taxi #44; nevertheless, Taxi #981, on average, also seems 

to drive as many unproductive miles as productive miles. According to Figure 4-7, many of Taxi 

#981’s trips have a spatial efficiency value between 10-30%; this is quite inefficient.  

Like the temporal efficiency measures for the Chicago taxi fleet, the spatial efficiency 

measures for these two representative taxis indicate that there is significant room for improvement 

in terms of the operational efficiency of individual taxis. It is important to note that the histograms 

in Figure 4-7 exclude trips wherein 𝑝𝑜𝑠𝑗,𝑛,𝑑 == 𝑝𝑜𝑠𝑗,𝑛+1,𝑝. This biases the overall results, because 

these trips would be highly efficient. However, the results are biased in the opposite direction 

because the empty distance (𝑒𝑗,𝑛) for each trip does not factor in any of the miles spent roaming 

for users.  

Despite these issues with the data, Figure 4-7 show that many taxi trips are highly inefficient. 

As mentioned previously, this inefficiency negatively impacts the profit of taxi drivers and fleet 

operators, customer service quality, roadway congestion, and vehicle emissions.  
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Figure 4-7: Histograms of the spatial efficiency of taxi #44 (top) and taxi #981’s (bottom) trips from 

2013 to 2016 
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4.5 Conclusion 

This chapter used taxi data released by the city of Chicago to analyze the operational 

efficiency of taxis in the Chicago taxi fleet. The chapter presents two metrics to characterize and 

quantify the operational efficiency of individual taxis. The temporal efficiency metric determines 

the percentage of in-service time taxis spend transporting users. The spatial efficiency metric 

quantifies the percentage of a taxi’s miles that are loaded. These metrics provide an effective means 

to measure the efficiency of individual taxis and taxi trips. Results indicate that most Chicago taxis 

and taxi-trips generate as many empty miles as productive miles; i.e. only 40-60% of taxi fleet 

miles are productive. Similarly, the temporal efficiency results indicate that taxis are unproductive 

40-60% of their in-service time.  

The efficiency results indicate that there is significant room for improvement in the efficiency 

of the Chicago taxi fleet. If SAMS providers can operate their fleets more efficiently than Chicago 

taxis, they can pass these cost savings onto users and provide lower cost transportation to users. 

From a societal perspective, the spatial inefficiency of taxis is likely increasing traffic congestion 

and generating extra vehicle emissions.  

Future research directions include further development of algorithms to filter taxi trips, 

estimating missing data values, and better handling of the spatial and temporal trip aggregation, to 

better evaluate the spatial and temporal efficiency of taxis.  
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 Modeling Framework 

 

5.1 Overview 

This chapter presents an overview of the framework employed in this thesis to model on-

demand SAMS operational problem. As mentioned previously, on-demand SAMS operational 

problems are stochastic dynamic vehicle routing problems. In fact, the on-demand SAMS 

operational problems in this thesis are highly-dynamic, stochastic, and quite large. The modeling 

framework in this chapter was developed to capture the state of the system, its evolution over time 

(through transition functions), sequential decision-making, and introduction of exogenous 

information. The framework and the mathematical notation are similar to Markov decision process 

(MDP) models (Puterman, 2014); however, the models in this thesis do not have all the properties 

of MDPs.  

5.2 Model Components 

The modeling framework contains six elements, namely, decision epochs, state variables, 

decision variables, exogenous information, transition function, and objective function. This section 

provides a description of these six elements in the broad context of on-demand SAMS operational 

problems. 
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Decision Epochs 

Decision epochs represent the points in time when the SAMS fleet controller makes decisions. 

Decision epochs can be determined exogenously, or they can be a function of the system state. 

This thesis assumes a finite horizon with a pre-defined number of decision epochs. Let Κ be the 

set of decision epochs, |Κ| the number of decision epochs, and 𝑘 the index of the kth decision 

epoch. The time between decision epochs is a fixed value, denoted 𝐼𝑑 and referred to as the inter-

decision time. Hence, decisions are made at regular intervals rather than as requests enter the 

system or AVs complete trips. The regular intervals serve two purposes. First, they allow user 

requests to queue before assigning them to AVs, which is often beneficial. Second, as solving the 

decision problem can take a few seconds, it is necessary to make sure the inter-decision time 

interval is greater than the solution time. The variable 𝑡𝑘 ∈ 𝑇 denotes the time of decision epoch 

𝑘 ∈ 𝐾.  

State Variables 

The state variable 𝑆𝑘 contains all the information necessary to model the system from the 

current epoch 𝑘 ∈ 𝐾, to the end of the modeling period |𝐾| ∈ 𝐾. State variables for SDVRPs are 

often multi-dimensional because it is necessary to keep track of the location and status of AVs and 

users. It is also sometimes necessary to keep track of the state of subregions; e.g. how many empty 

AVs are in each subregion. 

Decision Variables 

At each decision epoch 𝑘, given the state of the system 𝑆𝑘, the SAMS fleet controller can 

control the system via changing the plans of AVs. Let 𝑋𝑘 denote the set of decision variables at 
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decision epoch 𝑘. In on-demand SAMS operational problems, the decision variable 𝑋𝑘 can also be 

multi-dimensional. Typical decisions include the assignment of AVs to open user requests, and 

the assignment of empty AVs to subregions.  

It is also necessary to identify constraints for decision variables. For example, AVs should not 

be assigned to pick up more than one user request at each decision epoch 𝑘 and user requests 

should not be assigned to more than one AV. 

Exogenous Information 

Between each decision epoch 𝑘, the stochastic dynamic system changes, as exogenous 

information enters the system and exogenous events change the state of the system. In the on-

demand SAMS operational problems in this thesis, the main form of exogenous information are 

the user requests. A second form of exogenous information in one of the SAMS operational 

problems in this thesis are the set of times users actually release their carsharing vehicles back to 

the fleet controller. In MDP models, the exogenous information that enters the system between 

decision epochs 𝑘 − 1 and 𝑘 is typically denoted 𝜔𝑘. The models in this thesis will use the same 

notation. 

Transition Function 

The transition function defines how the state of the system 𝑆𝑘 updates from decision epoch 𝑘 

to the next decision epoch 𝑘 + 1. For example, the decision epoch time 𝑡𝑘 updates as follows, 

𝑡𝑘+1 = 𝑡𝑘 + 𝐼
𝑑. The decision variables and exogenous information impact the transition functions. 

For example, if one of the state variables is the status of a user and a decision is made to assign an 

AV to this user requests at epoch 𝑘, then at epoch 𝑘 + 1, the status of the user must be updated to 
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indicate she has been assigned. This process must be captured through a transition function. 

Identifying relevant transition functions is especially helpful for coding discrete-event computer 

simulations of SAMS operational problems.  

Objective Function 

Let 𝐶(𝑆𝑘, 𝑋𝑘) denote the cost of being in state 𝑆𝑘 and making decision 𝑋𝑘. For control 

problems such as SDVRPs, the solution is a policy 𝜋 ∈ Π. Each policy 𝜋 maps states to decisions; 

i.e. given 𝑆𝑘, policy 𝜋 ∈ Π yields decision 𝑋𝑘
𝜋(𝑆𝑘). The objective of a SDVRP is to determine an 

optimal policy 𝜋∗ ∈ Π that minimizes the objective function in Eqn. (7), subject to the constraints 

on the decision variables.  

min
𝜋∈Π

𝐸𝜋 [∑𝐶(𝑆𝑘, 𝑋𝑘
𝜋(𝑆𝑘))

𝑘∈Κ

 ] (7) 

Unfortunately, the very large (i.e. high-dimension) state space for the on-demand SAMS 

operational problems in this thesis make Eqn. (7), analytically intractable due to the curse of 

dimensionality (Powell, 2011). Researchers typically approximate the problem to obtain solutions. 

5.3 Conclusion 

The modeling framework presented in this chapter is employed throughout the thesis to model 

and optimize SAMS operational problems as well as simulate and analyze the efficiency of SAMS 

fleets. The six components of the modeling framework include, decision epochs, state variables, 

decision variables, exogenous information, transition functions, and the objective function. These 

model components effectively capture the dynamic and stochastic nature of the SAMS fleet 

operational problems this thesis addresses.   
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 On-demand SAMS without Shared Rides6 

 

6.1 Overview 

This chapter presents the on-demand SAMS without shared rides and its operational problem. 

The service is defined by a fleet of AVs, controlled by a central operator that provides direct origin-

to-destination service to users who request rides via a mobile application and expect to be picked 

up within a few minutes. This service is similar to existing ridesourcing services offered by Uber 

and Lyft, except (i) the vehicles are driverless, (ii) fleet size is fixed, and (iii) the SAMS provider 

has complete control over the AVs. 

The operational problem associated with the on-demand SAMS without shared rides is a 

stochastic dynamic control problem. This chapter also assumes that the SAMS fleet controller has 

no deterministic or stochastic information about future user requests. The SAMS controller must 

assign AVs to open user requests in real-time as user requests enter the system dynamically and 

randomly (i.e. without the fleet controller’s prior knowledge). As there is likely no optimal policy 

for this sequential stochastic control problem, this chapter presents and compares six AV-user 

assignment strategies (i.e. control policies). The results show that optimization-based AV-user 

assignment strategies, strategies that allow en-route pickup AVs to be diverted to new user 

requests, and strategies that incorporate en-route drop-off AVs in the assignment problem, reduce 

                                                 
6 This chapter parallels (Hyland and Mahmassani, 2018) 
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fleet miles and decrease user wait times. The more-sophisticated AV-user assignment strategies 

significantly improve operational efficiency when fleet utilization is high (e.g. during the morning 

or evening peak); conversely, when fleet utilization is low, simply assigning user requests 

sequentially to the nearest idle AV is comparable to more-advanced strategies. Simulation results 

also indicate that the spatial distribution of user requests significantly impacts the empty fleet miles 

generated by the on-demand SAMS.  

6.2 Motivation and SAMS Definition 

This chapter focuses on the real-time operation of a SAMS fleet.  The most relevant 

operational-level advantage of AVs is their ability to safely and near-instantaneously receive and 

execute changes in vehicle plans (e.g. routes, schedules, and traveler assignments) coming from 

the fleet controller. From a fleet management perspective, the principal advantage of AVs is their 

guaranteed compliance with these real-time plan changes, and more generally the fleet manager’s 

operational policies.  

Motivated by the cost and performance benefits of AVs described in Chapter 1, the ability of 

SAMS fleet operators to completely control individual vehicles, and the importance of operational 

efficiency in terms of the success of on-demand SAMSs, this chapter addresses the underlying 

operational problem associated with an on-demand SAMS without shared rides. The SAMS’s 

characteristics are as follows: 

• Users request a pickup location and a drop-off location via a smartphone application;  

• Users want AVs to come to their pickup location immediately; 
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• Users will always be served, if they are willing to wait, i.e. the fleet controller cannot reject 

user requests; 

• AVs transport users directly from their requested pickup location to their drop-off location, 

i.e. no en-route detours to pick up or drop off other users; 

• AVs in the fleet are functionally homogeneous; 

• The fleet size is fixed in the short term (i.e. one-day); 

• The fleet controller has complete control over each AV. 

The fleet size is assumed to be fixed as ridesourcing companies, technology companies, and car 

manufacturers have stated that they plan to provide mobility services with their own AV fleet, 

rather than sell individual AVs to users (Waymo, 2017; Wingfield, 2017). 

The on-demand SAMS without shared rides operational problem is a stochastic dynamic 

control problem (SDCP). The problem is dynamic because decisions need to be made sequentially 

as new user requests enter the system. The problem is stochastic because future user requests are 

unknown. The goal of the SAMS fleet controller is to serve the user requests as efficiently as 

possible. The specific objectives are to minimize user wait times and SAMS fleet miles. Short user 

wait times are likely to be a key factor in the success of AMOD services (Krueger et al., 2016), 

especially if users are to forego owning their own vehicles and rely on AMOD services for all 

travel. 

This study assumes the fleet controller has no stochastic information about future requests in 

order to focus on the efficiency of dispatching/assignment strategies. When stochastic information 
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is available, the operational problem involves AV-user assignment and AV repositioning. In this 

case, it is difficult to dissociate the AV-user assignment problem from the larger operational 

problem that involves both AV-user assignment and AV repositioning.  

6.3 Problem Statement and Model 

This section presents a formal description of the on-demand SAMS without shared rides 

operational problem and then presents a mathematical model of the stochastic dynamic control 

problem. 

Problem Statement 

The on-demand SAMS without shared rides operational problem is characterized by a fleet of 

AVs 𝒱 = {𝑉1, 𝑉2, … 𝑉𝑗 , 𝑉𝑗+1, … , 𝑉|𝒱|} that aim to serve users 𝒞 = {𝐶1, 𝐶2, … 𝐶𝑖, 𝐶𝑖+1… , 𝐶|𝒞|} who 

request service during the finite time horizon 𝑇 = [0, 𝑡𝑚𝑎𝑥 ], over a rectangular geographic service 

region 𝒢 with side lengths 𝐿1 and 𝐿2. The geographical region 𝒢 is a Manhattan plane 𝒢 =

{(𝑥, 𝑦)| 𝑥 ∈ [0, 𝐿1], 𝑦 ∈ [0, 𝐿2]}. The distance between any two locations 𝑙1 and 𝑙2, where 𝑙1, 𝑙2 ∈

𝒢, is denoted 𝑑(𝑙1, 𝑙2).  

At time 𝑡 = 0, AVs may be located at one or several depots, or they may be dispersed 

throughout the entire region. User requests occur according to an unknown stochastic process ℱ𝐶. 

Each user request 𝐶𝑖 comes with a request time 𝑡𝑟
𝐶𝑖 ∈ 𝑇, pickup location 𝑙𝑝

𝐶𝑖 ∈ 𝒢, and drop-off 

location 𝑙𝑑
𝐶𝑖 ∈ 𝒢. The AV must pick up the user at her requested pickup location. Let 𝑡𝑝

𝐶𝑖 and 

𝑡𝑑
𝐶𝑖denote the time an AV picks up and drops off user 𝐶𝑖, respectively.  
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The goal of the SAMS fleet controller is to efficiently serve the user requests via minimizing 

user wait times and empty fleet distance. Let 𝑑𝑒
𝑉𝑗

 and 𝑑𝑉𝑗  denote the empty distance and total 

distance of AV 𝑉𝑗, respectively. The operational efficiency of the fleet will be determined based 

on the percentage of empty fleet miles, 
∑ 𝑑𝑒

𝑉𝑗
Vj∈𝒱

∑ 𝑑
𝑉𝑗

Vj∈𝒱

, and average user wait 
∑ (𝑡𝑝

𝐶𝑖 −𝑡𝑟
𝐶𝑖 )𝐶𝑖∈𝒞

|𝒞|
. 

Model 

This chapter makes the following modeling assumptions: 

• The fleet size is fixed in the short term (i.e. one-day) 

• Users will wait indefinitely to be served  

Given these assumptions, and the problem statement presented above, this section presents a model 

of the SAMS operational problem. The model includes six elements, namely, decision epochs, 

states, decisions, exogenous information, transition function, and objective function.  

Decision Epochs 

This chapter assumes a finite horizon with a pre-defined number of decision epochs. Let Κ be 

the set of decision epochs, |Κ| the number of decision epochs, and 𝑘 the index of the kth decision 

epoch. The time between decision epochs is a fixed value, denoted 𝐼𝑑 and referred to as the inter-

decision time. The variable 𝑡𝑘 ∈ 𝑇 denotes the time of decision epoch 𝑘 ∈ 𝐾.  



102 

 

State Variables 

For the on-demand SAMS without shared rides operational problem, the system state at epoch 

𝑘 (𝑆𝑘) includes several dimensions. This chapter delineates two sets of entities – users and AVs – 

with states that need to be updated. Let the states of users and AVs at epoch 𝑘 ∈ 𝐾 be denoted 𝑆𝑘
𝐶 , 

and 𝑆𝑘
𝒱 respectively, where 𝑆𝑘 is completely defined by the set (𝑆𝑘

𝐶 , 𝑆𝑘
𝒱, tk).  

User State.  The user state 𝑆𝑘
𝐶 is the tuple (𝜎𝑘

𝒞 , 𝑤𝑘
𝒞 , 𝒞) denoting the status, elapsed wait time, and 

static information of users, respectively. The static user information includes user request times 

𝑡𝑟
𝒞, user pickup locations 𝑙𝑝

𝒞, and user drop-off locations 𝑙𝑑
𝒞. 

For each user 𝐶𝑖, user status 𝜎𝑘
𝐶𝑖 takes on a value in the set {0,1,2,3}: 

𝜎𝑘
𝐶𝑖 = {

0, 𝐶𝑖  has not requested service by time 𝑡𝑘
1, 𝐶𝑖  has requested service but has not been assigned by 𝑡𝑘
2, 𝐶𝑖  has been assigned but not picked up by 𝑡𝑘
3, 𝐶𝑖  has been picked up 

 

If user 𝐶𝑖 has not requested service at 𝑡𝑘 (i.e. 𝜎𝑘
𝐶𝑖 = 0), then the static information associated with 

user 𝐶𝑖 is unknown to the fleet controller. The elapsed wait time of a user 𝑤𝑘
𝐶𝑖 is simply the 

difference between the current time and the user’s request time: 𝑤𝑘
𝐶𝑖 = 𝑡𝑘 − 𝑡𝑟

𝐶𝑖. 

AV State.  The AV state 𝑆𝑘
𝒱 is the tuple (𝜑𝑘

𝒱, 𝑙𝑘
𝒱 , 𝑟𝑘

𝒱) denoting the status, location, and route plan 

of every AV 𝑉𝑗 at decision epoch 𝑘, respectively. For each AV 𝑉𝑗, 𝜑𝑘
𝑉𝑗

 takes on a value in the set 

{0,1,2,3}: 

𝜑𝑘
𝑉𝑗 = {

0, 𝑉𝑗 is idle at time 𝑡𝑘
1, 𝑉𝑗 is enroute to pick up a user at 𝑡𝑘
2, 𝑉𝑗 is enroute to drop off a user at 𝑡𝑘
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The operational strategies presented in this chapter vary the AVs included in the assignment 

problem, at decision epoch 𝑘, based on their statuses 𝜑𝑘
𝑉𝑗

.  

The set of AV routes 𝑟𝑘
𝒱 = (𝑟𝑘

𝑉1 , 𝑟𝑘
𝑉2 , … , 𝑟𝑘

𝑉𝑗 , … , 𝑟𝑘
𝑉|𝒱|) provides the sequenced set of locations 

AVs will visit next, at decision epoch 𝑘. In this chapter, at every epoch 𝑘, an AV route 𝑟𝑘
𝑉𝑗

 can 

only include a maximum of two locations because the model and solution approach only allow for 

an AV to be assigned to serve one unserved user.  

Decisions 

At each decision epoch 𝑘, given the state of the system 𝑆𝑘, the SAMS fleet operator can control 

the system via changing the plans of AVs. Let 𝑋𝑘 denote the set of decision variables at decision 

epoch 𝑘. To model the decision problem, this chapter introduces variables 𝑥𝑘
𝑖𝑗

, defined as follows: 

𝑥𝑘
𝑖𝑗
= {

1, if AV 𝑉𝑗  is assigned to pick up user 𝐶𝑖 at time 𝑡𝑘
0, otherwise

 

There are four constraints on the decision variables, displayed in Eqn. (8)-(11). 

∑𝑥𝑘
𝑖𝑗

𝑖

≤ 1 ∀𝑗, 𝑘 
(8) 

∑𝑥𝑘
𝑖𝑗

𝑗

≤ 1 ∀𝑖, 𝑘 
(9) 

𝑥𝑘
𝑖𝑗
= 0 ∀𝑖 ∉ 𝒞′, ∀𝑗 ∉ 𝒱′  (10) 

𝑥𝑘
𝑖𝑗
∈ {0,1} ∀𝑖, 𝑗, 𝑘 (11) 

The constraint in Eqn. (8) ensures each AV 𝑉𝑗 is assigned to at most one open user request 

𝐶𝑖. The constraint in Eqn. (9) ensures that no more than one AV is assigned to an open user request 

𝐶𝑖. The constraint in Eqn. (10) only allows available users, denoted 𝒞′, and available AVs, denoted 
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𝒱′ to be assigned. The solution approaches presented in the next section vary the users and AVs 

that are considered ‘available’ in the problem based on their statuses. The constraint in Eqn. (11)  

ensures the decision variables take on binary values.  

Exogenous Information 

The problem includes one source of exogenous information, namely, the user requests. Hence, 

let 𝜔𝑘+1 = 𝛾𝑘, where 𝛾𝑘 is the set of previously unrequested user requests (𝜎𝑘
𝐶 = 0) with a request 

time between 𝑡𝑘 and 𝑡𝑘+1; i.e. 𝛾𝑘 ⊆ {𝐶𝑖|𝜎𝑘
𝐶𝑖 = 0, 𝑡𝑘 < 𝑡𝑟

𝐶𝑖 ≤ 𝑡𝑘+1}.  

Transition Function 

The transition function defines how the state of the system 𝑆𝑘 updates from decision epoch 𝑘 

to the next decision epoch 𝑘 + 1. The decision epoch time 𝑡𝑘 updates as follows: 

𝑡𝑘+1 = 𝑡𝑘 + 𝐼
𝑑 

The user state 𝑆𝑘
𝐶 = (𝜎𝑘

𝒞 , 𝑤𝑘
𝒞 , 𝒞)  contains two elements that need to be updated The user 

information (𝒞) stays the same; whereas the users’ statuses (𝜎𝑘
𝒞) and elapsed wait times (𝑤𝑘

𝒞) need 

to be updated. Elapsed wait time updates as follows, 𝑤𝑘+1
𝐶𝑖 = 𝑤𝑘

𝐶𝑖 + 𝐼𝑑. Updating user statuses is 

more complex and depends on the AVs and open user requests considered in the AV-user 

assignment strategy. Let 𝟙𝐶𝑖∈𝛾𝑘  denote an indicator variable equal to 1 if 𝐶𝑖 ∈ 𝛾𝑘 (i.e. user 𝐶𝑖 has 

a request time in the current epoch). Things that need to be considered in the transition function 

are whether the user requests service between decision epochs (𝟙𝐶𝑖∈𝛾𝑘), whether users are assigned 

or reassigned to AVs (𝑥𝑘
𝑖𝑗
), whether an AVs picks up a user (𝟙

𝒕𝒌≤𝑡𝑝
𝐶𝑖<𝑡𝑘+1

), or drops off a user 

(𝟙
𝒕𝒌≤𝑡𝑑

𝐶𝑖<𝑡𝑘+1
) in the current epoch.  
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The AV state 𝑆𝑘
𝒱 = (𝜑𝑘

𝒱, 𝑙𝑘
𝒱, 𝑟𝑘

𝒱) contains three elements that all need to be updated. The 

location of AV 𝑉𝑗 updates as follows, 𝑙𝑘+1
𝑉𝑗 = 𝑙𝑘

𝑉𝑗 + 𝑣𝐼𝑑Λ
𝑙𝑘
𝒱

𝑟
𝑘

𝑉𝑗(1)
, where 𝑣 is the vehicle speed, 𝐼𝑑 is 

the length of the epoch, and Λ
𝑙𝑘
𝑉𝑗

𝑟𝑘
𝑉𝑗(1)

 is the unit direction between AV 𝑉𝑗’s current location (𝑙𝑘
𝑉𝑗

) and 

the next stop on its route, 𝑟𝑘
𝑉𝑗(1). If the vehicle does not have a next stop, the vehicle remains in 

its current location 

In the case where reassignments are not allowed, AV route plans are updated as follows, 

𝑟𝑘+1
𝑉𝑗 = 𝑟𝑘

𝑉𝑗 ∪ {𝑙𝑝
𝐶𝑖 , if 𝑥𝑘

𝑗𝑖
= 1, 𝑙𝑝

𝐶𝑖 ∉ 𝑟𝑘
𝑉𝑗}. In the case where reassignments are allowed, stops may 

need to be removed from 𝑟𝑘
𝑉𝑗

. The route plans are also updated when a vehicle reaches the next 

stop in its route, 𝑟𝑘+1
𝑉𝑗 = 𝑟𝑘

𝑉𝑗\{𝑙𝑝
𝐶𝑖 , if 𝑙𝑘

𝑉𝑗 = 𝑙𝑝
𝐶𝑖}.  

AV status (𝜑𝑘
𝒱) transitions also depend on the AV-user assignment strategy, the decision 

variable (𝑥𝑘
𝑗𝑖

) and location of the AV and the user’s pickup location, 𝟙
(𝑙𝑘
𝑉𝑗
=𝑙𝑝
𝐶𝑖)

, as well as the user’s 

drop-off location 𝟙
(𝑙𝑘
𝑉𝑗
=𝑙𝑑
𝐶𝑖)

.  

Objective Function 

Let 𝐶(𝑆𝑘, 𝑋𝑘) denote the cost of being in state 𝑆𝑘 and making decision 𝑋𝑘. For SDCPs, the is 

a policy 𝜋 ∈ Π. Each policy 𝜋 maps states to decisions; i.e. given 𝑆𝑘, policy 𝜋 ∈ Π yields decision 

𝑋𝑘
𝜋(𝑆𝑘). The objective of an SDCP is to determine an optimal policy 𝜋∗ ∈ Π that minimizes the 

objective function in Eqn. (12), subject to the constraints in Eqn. (8)-(11) on the decision variables.  
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min
𝜋∈Π

𝐸𝜋 [∑𝐶(𝑆𝑘, 𝑋𝑘
𝜋(𝑆𝑘))

𝑘∈Κ

 ] (12) 

Unfortunately, the very large (i.e. highly-dimensioned) state space for the on-demand SAMS 

without shared rides operational problem makes Eqn. (12) analytically intractable due to the curse 

of dimensionality (Powell, 2011). Researchers typically approximate the problem to obtain 

solutions. Moreover, as the fleet controller does not have stochastic information about future 

requests, the impact of decision made at epoch 𝑘 on future epochs is unknown. Hence, to solve the 

on-demand SAMS without shared rides operational problem with no stochastic information, the 

fleet operator solves the local problem  min
𝑥𝑘
{𝐶(𝑆𝑘, xk)} at every epoch. This is typically referred 

to as a myopic policy.  

6.4 Solution Approach 

This section details the solution approach to solve the on-demand SAMS without shared rides 

operational problem where the fleet controller has no stochastic information. The next subsection 

formulates the local cost problem min
𝑥𝑘
{𝐶(𝑆𝑘, xk)} and the following section presents polices for 

the full SDCP min
𝜋∈Π

𝐸𝜋[∑ 𝐶(𝑆𝑘, 𝑋𝑘
𝜋(𝑆𝑘))𝑘∈Κ  ] via changing AVs and users considered in the local 

cost problem.  

AV-User Assignment Problem 

This subsection presents a mathematical formulation of the local cost problem 

min
𝑥𝑘
{𝐶(𝑆𝑘, xk)}, referred to as the AV-user assignment problem. Let 𝑑𝑘

𝑖𝑗
 denote the distance 

between the 𝐶𝑖’s pickup location (𝑙𝑝
𝐶𝑖 ) and 𝑉𝑗’s current location (𝑙𝑘

𝑉𝑗
). From the decision variable 
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section above, 𝒞′ and 𝒱′ denote the sets of users and AVs that are available for assignment, 

respectively. These sets of ‘available’ users and AVs vary as a function of the assignment strategy. 

Since, the problem is AV-user assignment problem is local, the fleet controller only solves for the 

current decision epoch 𝑘; for notational simplicity, the index 𝑘 is removed from the formulation 

of the mathematical program.  

The AV-user assignment formulation depends on whether, in the dynamic system at time 𝑘, 

the number of users included in the assignment (|𝒞′|) is less than or greater than the number of 

AVs in the assignment (|𝒱′|). The mathematical programming formulation for the AV-user 

assignment problem when the number of available users is greater than the number of available 

AVs (|𝒞′| > |𝒱′|) is given in Eqn. (13)-(16). 

min
𝑥𝑖𝑗
∑∑(𝑑𝑖𝑗𝑥𝑖𝑗 − 𝛾𝑤𝑖𝑥𝑖𝑗)

𝑗∈𝒱′ 𝑖∈𝒞′

  (13) 

s.t.   

∑𝑥𝑖𝑗

𝑗∈𝒱′

≤ 1 
∀𝑖 ∈ 𝒞′ (14) 

∑𝑥𝑖𝑗

i∈𝒞′

= 1 ∀𝑗 ∈ 𝒱′ (15) 

𝑥𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝒞′, ∀𝑗 ∈ 𝒱′ (16) 

Equation (14) ensures that each user is assigned to at most one AV. Equation (15) ensures 

each AV is assigned to a user. Equation (16) requires the decision variable, 𝑥𝑖𝑗, to be non-negative. 

However, because the constraint matrix is totally unimodular, 𝑥𝑖𝑗 will only take on integer values. 

The objective function in Eqn. (13) has two terms. The first term represents the total distance 

between users and the AVs that they are assigned to. The second term represents the elapsed wait 
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time of the assigned users. The parameter 𝛾 weights the relative importance of assigning AVs to 

users that have been waiting a long time; 𝛾 also converts the time units associated with 𝑤𝑖 to the 

distance units associated with 𝑑𝑖𝑗 . Given that all users are not assigned to an AV because |𝒞′| >

|𝒱′|, the second term incentivizes the SAMS fleet controller to assign AVs to users with large 

elapsed wait times (𝑤𝑖). Without this second term, the fleet controller will not assign AVs to users 

in the periphery of the service region, if they are all busy serving user requests in the core of the 

service region. The challenge of serving user requests in the periphery is quite common and was 

recognized in one of the seminal DRP studies (Psaraftis, 1980). The objective function in Eqn. 

(13) handles this challenge elegantly and effectively. Although this formulation does not guarantee 

the periphery users will be assigned at the current epoch 𝑘, the longer the users in the periphery 

wait, the higher the incentive to pick up these travelers from the perspective of the fleet operator.  

The mathematical programming formulation for the AV-user assignment problem changes 

slightly when the number of available users is less than the number of available AVs (|𝒞′| ≤ |𝒱′|). 

This problem is formulated in Eqn. (17)-(20).  

min
𝑥𝑖𝑗
∑∑(𝑑𝑖𝑗𝑥𝑖𝑗)

𝑗∈𝒱′ 𝑖∈𝒞′

  (17) 

s.t.   

∑𝑥𝑖𝑗

𝑗∈𝒱′

= 1  
∀𝑖 ∈ 𝒞′ (18) 

∑𝑥𝑖𝑗

𝑖∈𝒞′

≤ 1 ∀𝑗 ∈ 𝒱′ (19) 

𝑥𝑖𝑗 ≥ 0 ∀𝑖 ∈ 𝒞′, ∀𝑗 ∈ 𝒱′ (20) 
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Because the number of users is less than the number of AVs, and the constraint in Eqn. (18) 

requires each user to be assigned to an AV, the second term in the objective function of Eqn. (13) 

is no longer relevant. Every user, including those in the periphery, will be assigned to an AV due 

to the constraint in Eqn. (18). The objective in Eqn. (17) is to minimize the overall distance 

between users and the AVs they are assigned. Equation (19) ensures that each AV is assigned to 

at most one user. Finally, Eqn. (20) requires the decision variable, 𝑥𝑖𝑗, to be non-negative.  

The solution algorithm determines whether to solve the AV-user assignment problem in Eqn. 

(13)-(16) or Eqn. (17)-(20) depending on the number of number of available users (|𝒞′|) and the 

number of available AVs (|𝒱′|). These two math programming formulations provide a baseline 

model for assigning AVs to user requests. The next subsection presents six unique assignment 

strategies to solve the SDCP. Four of the strategies employ the AV-user assignment problem; the 

formulation varies slightly, but significantly across the four strategies. For example, the simpler 

strategies only include unassigned users 𝒞′ = {𝐶𝑖|𝜎𝑘
𝐶𝑖 = 1} and idle AVs 𝒱′ = {𝑉𝑗|𝜑𝑘

𝑉𝑗 =  0}. Let 

𝑉𝑘
𝐼, 𝑉𝑘

𝑃, 𝑉𝑘
𝐷 be the sets of idle AVs (𝜑𝑘

𝑉𝑗 =  0), pickup AVs (𝜑𝑘
𝑉𝑗 =  1), and drop-off AVs (𝜑𝑘

𝑉𝑗 =

 2) at epoch 𝑘, respectively, and 𝑉𝐼 , 𝑉𝑃, 𝑉𝐷 for short. Similarly, let 𝐶𝑈, 𝐶𝐴, 𝐶𝑉 be the sets of 

unassigned users (𝜎𝑘
𝐶𝑖 = 1), assigned users (𝜎𝑘

𝐶𝑖 = 2), and in-vehicle users (𝜎𝑘
𝐶𝑖 = 3) at epoch 𝑘, 

respectively.  

AV-User Assignment Strategies 

This section presents six different AV-user assignment strategies. To solve the on-demand 

SAMS without shared rides operational problem, the SAMS fleet controller repeatedly solves the 
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local optimization problem (i.e. the AV-user assignment problem) based on the state of users and 

AVs at epoch 𝑘.  

The first two strategies are simplistic first-come, first-served (FCFS) strategies, whereas 

strategies three through six employ the AV-user mathematical programming formulation. The 

difference between the four strategies comes down to the AVs (𝒱′) and users (𝒞′) that are treated 

as ‘available’ in the problem formulation.  

Figure 6-1 through Figure 6-6 display a toy example. The left side of each figure displays the 

assignment of AVs to users at time 𝑡𝑘 and the right side displays the updated assignment of AVs 

to users at time 𝑡𝑘 + 𝐼
𝑑. The solid lines indicate assignments made at time 𝑡𝑘, and the dashed lines 

represent assignments or reassignments made at 𝑡𝑘+1 = 𝑡𝑘 + 𝐼
𝑑. The triangles represent user drop-

off locations and the squares represent pickup locations, wherein the dashed-line squares represent 

new user requests that enter the system between time 𝑡𝑘 and time 𝑡𝑘 + 𝐼
𝑑. 

Strategy 1 

The first strategy assigns users FCFS to the longest idle AV (AV 1 was idling the longest 

when user 1 made a request, AV 2 had the second longest idle time, AV 3 the third longest idle 

time, etc.). Figure 6-1 illustrates the inefficiency associated with this heuristic strategy. On the left 

side of Figure 6-1, despite being the farthest AV from user 2, AV 2 was assigned to user 2 only 

because AV 2 was idle longer than the other AVs in the fleet. Between 𝑡𝑘 and 𝑡𝑘 + 𝐼
𝑑, user 3 and 

user 4 enter the system sequentially and they are each assigned sequentially to the longest 

remaining idle AV.  

The resultant assignment in Figure 6-1 confirms the inefficient logic associated with the first 

assignment strategy. In this toy problem, given that the bottom edge of Figure 6-1 through Figure 
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6-6 is 3.5 miles, the total fleet mileage required to drop off user 1 and pick up users 2-4 under 

Strategy 1 is 12.9 miles.  

 
Figure 6-1: AV-user assignment based on Strategy 1 (total fleet miles = 12.9) 

Strategy 2 

The second strategy assigns users FCFS to the nearest idle AV. Assigning users FCFS is still 

an inefficient strategy; however, assigning them to the nearest idle AV should improve the fleet’s 

operational efficiency, relative to Strategy 1. For example, on the left side of Figure 6-2, AV 5 is 

assigned to user 2, rather than the inefficient assignment of AV 2 to user 2 in Strategy 1.  

On the right side of Figure 6-2, user 3 is assigned to AV 3, the nearest idle AV. Then, after 

user 3 is assigned, user 4 is assigned to AV 2, the nearest remaining idle AV. In Strategy 2, the 

users are assigned sequentially, rather than simultaneously between 𝑡𝑘 and 𝑡𝑘 + 𝐼
𝑑. For the toy 

problem, the total fleet mileage associated with Strategy 2 is 9.7 miles, compared with 12.9 miles 

for Strategy 1. This is a significant improvement; however, assigning new sets of users 

simultaneously rather than FCFS or sequentially should further improve the fleet’s efficiency.  
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Figure 6-2: AV-user assignment based on Strategy 2 (total fleet miles = 9.7) 

Strategy 3 

In the third strategy, only unassigned users (𝒞′ = 𝐶𝑈) and idle AVs (𝒱′ = 𝑉𝐼) are considered 

in the AV-user assignment problem. In this strategy, once an AV-user assignment is made, it is 

not altered.  

Figure 6-3 displays the results of the toy problem if Strategy 3 is employed. The assignment 

of AVs to users between 𝑡𝑘 and 𝑡𝑘 + 𝐼
𝑑 is more efficient in Figure 6-3 than Figure 6-2 because 

user 3 and user 4 are assigned simultaneously, rather than sequentially. Simultaneous assignment 

allows the optimization solver to find the best assignment across both user 3 and user 4. The total 

fleet mileage associated with Strategy 3 in this toy problem is 9.0 miles.  

 
Figure 6-3: AV-user assignment based on Strategy 3 (total fleet miles = 9.0) 
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Strategy 4 

In this strategy, unassigned and assigned users (𝒞′ = {𝐶𝑈 ∪ 𝐶𝐴}) as well as idle and en-route 

pickup AVs (𝒱′ = {𝑉𝐼 ∪ 𝑉𝑃}) are considered in the AV-user assignment problem. The inclusion 

of assigned users and en-route pickup AVs allows the reassignment of AVs to previously assigned 

users. In the dynamic fleet management literature, this reassignment of users is also known as 

vehicle diversion (Ichoua et al., 2006; Regan et al., 1995; Sheridan et al., 2013).  

In the example problem in Figure 6-4, AV 5 is diverted from user 2 to user 3 between 𝑡𝑘 and 

𝑡𝑘 + 𝐼
𝑑. Additionally, user 2 is reassigned to AV 4 and AV 3 is assigned to user 4. The total fleet 

mileage associated with Strategy 4 is 6.8 miles. Hence, for this problem instance, allowing user 

reassignment (or vehicle diversion) significantly reduces fleet miles. 

Allowing reassignment is often a very beneficial strategy, as illustrated in Figure 6-4. 

However, without adding constraints to the AV-user math program, the strategy can result in 

unwanted outcomes, such as a previously assigned user no longer being assigned, and a user 

constantly being reassigned to different AVs. 

To prevent previously assigned users from being completely unassigned, a constraint is added 

to the mathematical programming formulation of the AV-user assignment problem. Let 𝑎𝑖 equal 1 

if user 𝑖 ∈ 𝐶𝐴, and zero otherwise. The following constraint prevents a user from going from 

assigned to unassigned: 

∑ 𝑥𝑖𝑗𝑗∈𝑉′ = 1     ∀𝑖 ∈ 𝐶𝐴           or         ∑ 𝑥𝑖𝑗𝑗∈𝑉′ − 𝑎𝑖 ≥ 0     ∀𝑖 ∈ 𝒞 (21) 

To prevent users from constantly being reassigned, a constraint is added that only allows one 

reassignment per user. Let 𝑚𝑖𝑗 equal 1, if pickup AV 𝑗 ∈ 𝑉𝑃 is en-route to pick up assigned 
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user 𝑖 ∈ 𝐶𝐴. Let 𝑏𝑖 equal 1 if assigned user 𝑖 ∈ 𝐶𝐴 has previously been reassigned. The following 

constraint prevents a user from being reassigned more than once: 

𝑏𝑖(𝑚
𝑖𝑗 − 𝑥𝑖𝑗) ≤ 0     ∀ 𝑖 ∈ 𝐶𝐴,   ∀𝑗 ∈ 𝑉𝑃 (22) 

In addition to these constraints, a penalty is added to the objective function for reassigning 

AVs. Let 𝛿 denote the penalty for assigning a user to an en-route pickup AV 𝑗 ∈ 𝑉𝑃. Let 𝑞𝑗 equal 

1, if AV 𝑗 is en-route to pick up a user (𝑗 ∈ 𝑉𝑃). The objective of the AV-user assignment problem 

in Eqn. (13) then becomes: 

𝑚𝑖𝑛
𝑥𝑖𝑗

(∑∑(𝑑𝑖𝑗𝑥𝑖𝑗 − 𝛾𝑤𝑖𝑥𝑖𝑗 + 𝛿(1 −𝑚𝑖𝑗)𝑞
𝑗
𝑥𝑖𝑗)

𝑗∈𝒱′ 𝑖∈𝒞′

) (23) 

 

 
Figure 6-4: AV-user assignment based on Strategy 4 (total fleet miles = 6.8) 

Strategy 5 

In the fifth strategy, unassigned users (𝒞′ = 𝐶𝑈) as well as idle and en-route drop-off AVs 

(𝒱′ = {𝑉𝐼 ∪ 𝑉𝐷}) are considered in the assignment problem; this is similar to the strategy 

employed in Maciejewski et al. (2016) for dispatching taxis. This strategy does not allow en-route 

pickup AVs to be diverted (𝑉𝑃 ∉ 𝒱′), nor does it allow users to be reassigned (𝐶𝐴 ∉ 𝒞′). However, 

this strategy essentially allows two-person schedules for AVs. That is, if a new user request 𝑖′ ∈
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𝐶𝑈 enters the system, and an en-route drop-off AV 𝑗′ ∈ 𝑉𝐷 can pick up user 𝑖′ ∈ 𝐶𝑈  faster than 

all the other AVs, even after considering the remaining time/distance to drop off the user it is 

carrying 𝑖′′ ∈ 𝐶𝑉 , then the en-route drop-off AV 𝑗′ ∈ 𝑉𝐷 is assigned to the new user request 𝑖′ ∈

𝐶𝑈 .  

The right side of Figure 6-5 is unique in that AV 1 is assigned to user 4 even though it was 

en-route to drop off user 1 at the time of assignment. For this problem instance, the total fleet 

mileage associated with Strategy 5 is 7.4 miles, an improvement over Strategy 3 (9.0 miles) but 

not quite as good as Strategy 4 (6.8 miles). It should be clear that combining Strategy 4 and 

Strategy 5, can further improve the fleet efficiency.  

 
Figure 6-5: AV-user assignment based on Strategy 5 (total fleet miles = 7.4) 

Determining 𝑑𝑖𝑗 for en-route drop-off AVs requires calculating two sets of distances. The 

distance between the current position of AV 𝑗′ ∈ 𝑉𝐷 and the drop-off location of user 𝑖′′ ∈ 𝐶𝑉 : 

𝑑𝑖𝑠𝑡 (𝑙𝑘
𝑗′
, 𝑙𝑑
𝑖′′) and the distance between the drop-off location of user 𝑖′′ ∈ 𝐶𝑉 and the pickup 

location of user 𝑖′ ∈ 𝐶𝐴: 𝑑𝑖𝑠𝑡(𝑙𝑑
𝑖′′ , 𝑙𝑝

𝑖′). Therefore, 𝑑𝑖𝑗 = 𝑑𝑖𝑠𝑡 (𝑙𝑘
𝑗′
, 𝑙𝑑
𝑖′′) +  𝑑𝑖𝑠𝑡(𝑙𝑑

𝑖′′ , 𝑙𝑝
𝑖′).  

As it takes time for a user to get out of an en-route drop-off AV, and the fleet controller 

probably only wants to assign a user to an en-route drop-off AV if it is a much better option than 
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an idle AV, a penalty is added in the objective function for assigning an en-route drop-off AV to 

a user. Let 𝑝𝑗 equal 1 if AV 𝑗 is en-route to drop off a user (𝑗 ∈ 𝑉𝐷). Let 𝜑 denote the penalty of 

assigning a user to an en-route drop-off AV. The objective function in Eqn. (13), changes to: 

𝑚𝑖𝑛
𝑥𝑖𝑗

(∑∑(𝑑𝑖𝑗𝑥𝑖𝑗 − 𝛾𝑤𝑖𝑥𝑖𝑗 + 𝜑𝑝
𝑗
𝑥𝑖𝑗)

𝑗∈𝒱′ 𝑖∈𝒞′

) (24) 

Strategy 6 

 In the sixth and final strategy, unassigned and assigned users (𝒞′ = {𝐶𝑈 ∪ 𝐶𝐴}) as well as all 

AVs (idle, en-route pickup, and en-route drop-off, 𝒱′ = {𝑉𝐼 ∪ 𝑉𝑃 ∪ 𝑉𝐷}) are considered in the 

assignment problem. Strategy 6 combines the valuable additions in Strategy 4 (user reassignment 

and AV diversions) and Strategy 5 (inclusion of en-route drop-off AVs in AV-user assignment 

problem) to the base optimization-based assignment strategy, Strategy 3. The AV-user 

mathematical programming formulation associated with Strategy 6 includes the constraints in Eqn. 

(21) and Eqn. (22) as well as the additional terms in Eqn. (23) and Eqn. (24). 

The right side of Figure 6-6 shows the results of allowing AV diversions (AV 5 is diverted 

from user 2 to user 3), user reassignment (user 2 is reassigned from AV 5 to AV 4), and two-person 

schedules (AV 1 is assigned to pick up user 4, as it is en-route to drop off user 1). For this problem 

instance, the total fleet mileage associated with Strategy 6 is 5.4 miles. 
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Figure 6-6: AV-user assignment based on Strategy 6 (total fleet miles = 5.4) 

Table 6-1 distinguishes between the six AV-user assignment strategies. Section 6.5 compares 

these six AV-user assignment strategies on much larger problem instances. As the problem is 

dynamic and stochastic, it is not possible to guarantee any other strategy will perform the best. 

Hence, a variety of scenarios are presented in the computational results section, to empirically 

compare the six strategies. 

Table 6-1: Overview of AV-User Assignment Strategies 

Strategy 
FCFS/ 

Optimization 

Users  

(𝓒′) 

AVs  

(𝓥
′
) 

Sequential/ 

Simultaneous 

User 

Reassignment? 

En-Route 

Drop-off AV 

1 FCFS 𝐶𝑈 𝑉𝐼 Sequential No No 

2 FCFS 𝐶𝑈 𝑉𝐼 Sequential No No 

3 Optimization 𝐶𝑈 𝑉𝐼 Simultaneous No No 

4 Optimization 𝐶𝑈 ∪ 𝐶𝐴 𝑉𝐼 ∪ 𝑉𝑃 Simultaneous Yes No 

5 Optimization 𝐶𝑈 𝑉𝐼 ∪ 𝑉𝐷 Simultaneous No Yes 

6 Optimization 𝐶𝑈 ∪ 𝐶𝐴 𝑉𝐼 ∪ 𝑉𝑃 ∪ 𝑉𝐷 Simultaneous Yes Yes 

6.5 Experiments and Computational Results 

This section presents experiments to compare the efficiency of the AV-user assignment 

strategies across two metrics. The first metric is average user wait time and the second metric is 

the ratio of empty fleet miles to total fleet miles, wherein total fleet miles is the sum of empty and 
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loaded fleet miles. The average user wait time metric aims to represent customer service quality. 

Minimizing wait times should increase the competitiveness of SAMSs with the personal 

(autonomous) vehicle.  

The empty fleet miles metric aims to represent SAMS fleet operational costs. The number of 

loaded fleet miles is fixed given the transportation system is modeled on a Manhattan grid network 

with omnipresent streets, and the SAMS does not allow shared rides. Minimizing empty fleet miles 

should decrease fuel costs, increase the life of the vehicle, and reduce maintenance costs. To 

compete with the personal vehicle, the SAMS provider can pass these cost savings on to users.  

This section presents two sets of computational experiments. In the first set of experiments, 

the AV-user assignment strategies are compared across thousands (252 x 20) of artificial demand 

scenarios. In the second set of experiments, the assignment strategies are tested on Chicago taxi 

data, which represent a realistic spatio-temporal demand pattern.  

The experiments aim to compare the six AV-user assignment strategies (across the two 

metrics) when the fleet size is small relative to the user demand rate. This is likely to happen during 

the morning and evening peak periods. With a fixed fleet size, efficiently assigning AVs to users 

can increase the number of user served, decrease average user wait times, and/or reduce operational 

costs. 
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Artificial Demand 

Experimental Design 

Table 6-2 displays the input parameter values for the simulation experiments with artificial 

demand. The four-hour period represents the morning or evening peak. The fixed fleet size would 

be most stressed during these two periods. 

 User requests are generated based on the area size, user demand rate, and spatial demand 

pattern input parameters. Varying area size and the spatial demand pattern significantly impact trip 

distance, as shown in Table 6-2. The region sizes are varied to examine the impact of region size, 

and trip distance on the performance of the AV-user assignment strategies.  

In addition to varying the area size and spatial demand pattern, this section presents the 

performance of the AV-user assignment strategies as a function of the fleet size. Given that SAMSs 

do not yet exist, and this chapter aims to analyze the case where the fleet size is small relative to 

the demand rate, the analysis refrains from estimating and selecting a fleet size.  
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Table 6-2: Parameter Values for Artificial Demand Scenarios 

Parameter Symbol Value Units 

Simulation Length 𝑡𝑚𝑎𝑥 4 hours 

User Demand Rate  1000 users/hour 

Area Size 

 

(a) 16 

(b) 64 

(c) 256 

 

miles^2 

Spatial Demand Pattern 
 

(1) Uniform 

(2) Clustered 

NA 

Trip Distance (mean) 

 

(a-1) 2.8     (a2) 3.3 

(b-1) 5.4     (b2) 6.7 

(c-1) 10.7   (c2) 13.3 

miles 

Trip Distance (sd.) 

 

(a-1) 1.2     (a-2) 1.1 

(b-1) 2.6     (b-2) 2.1 

(c-1) 5.2     (c-2) 4.3 

miles 

Inter-decision Interval 𝐼𝑑  10 seconds 

Vehicle Speed 𝑣 35 mph 

Drop-off Time 𝑐𝑑 15 seconds 

Pickup Time 𝑐𝑝 45 seconds 

Weight of Elapsed Wait Time 𝛾 50 feet/second 

En-route drop-off Assgn. Penalty 𝜑 750 (15) feet (sec.) 

En-route pickup Assgn. Penalty 𝛿 1500 (30) feet (sec.) 

 

The combination of six AV-user assignment strategies, seven AV fleet sizes, three area sizes, 

and two spatial patterns requires 252 (6x7x3x2) unique simulation experiments. Moreover, to 

produce statistically significant results, each of the 252 simulation experiments were replicated 

twenty times. A random number generator varies user origins, destinations, and request times 

across each set of twenty replications.  

The simulations were run on a standard 64-bit desktop computer with 8GB of RAM, and a 

3.20 GHz processor. A single simulation experiment replication takes anywhere from twenty 
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seconds to ten minutes to complete. Experiments with larger fleet sizes take longer to run, as do 

experiments with Strategy 4 and Strategy 6, and to a lesser extent Strategy 5.  

Uniform Demand Results 

Table 6-3 displays the mean and standard error (across twenty replications) of average user 

wait time for all the uniform synthetic demand scenarios. The standard error is quite low for each 

scenario because the variance is small across replications and the number of replications is 

reasonably high. 

According to Table 6-3, Strategy 1 is always extremely inefficient. Additionally, Strategy 2, 

is significantly less efficient than even Strategy 3 when the fleet size is small relative to the demand 

rate. As fleet size increases, Strategy 2 performs much better than Strategy 1 and similar to the 

optimization-based strategies. When the fleet size is small relative to the demand rate, Strategy 6 

outperforms all the other strategies. However, as the fleet size increases, Strategy 4 outperforms 

Strategy 6 in terms of average user wait time. 
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Table 6-3: Average Travel Time (min) Results for Uniform Demand Scenarios 

Fleet 

Size 

 

Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 

Mean SE Mean SE Mean SE Mean SE Mean SE Mean SE 

Area Size = 16 mi2 

130 52.4 0.34 43.4 0.34 10.4 0.29 8.8 0.29 7.5 0.25 6.1 0.23 

140 45.7 0.34 33.8 0.31 4.4 0.21 3.2 0.16 3.2 0.12 2.4 0.09 

150 37.3 0.30 25.6 0.34 2.5 0.03 1.7 0.04 1.7 0.04 1.5 0.03 

160 30.1 0.33 18.2 0.35 1.9 0.05 1.2 0.02 1.2 0.02 1.2 0.02 

170 23.8 0.28 9.1 1.00 1.2 0.03 1.0 0.01 1.0 0.01 1.0 0.01 

175 20.8 0.27 4.1 0.92 1.1 0.02 0.9 0.01 1.0 0.01 0.9 0.01 

200 9.0 0.29 0.8 0.01 0.8 0.01 0.8 0.01 0.8 0.01 0.8 0.01 

Area Size = 64 mi2 

230 55.7 0.29 47.6 0.33 10.5 0.29 8.7 0.30 8.8 0.31 6.8 0.24 

240 52.3 0.33 43.4 0.34 7.0 0.26 5.4 0.24 5.8 0.19 4.5 0.16 

250 49.0 0.32 38.3 0.38 4.7 0.14 3.7 0.10 4.1 0.14 3.2 0.09 

255 47.3 0.31 36.0 0.34 4.3 0.07 3.3 0.07 3.5 0.12 2.9 0.07 

280 37.6 0.31 25.0 0.33 3.3 0.11 2.0 0.04 2.1 0.04 2.0 0.04 

305 28.7 0.31 12.6 1.27 1.9 0.05 1.5 0.02 1.7 0.03 1.7 0.02 

330 21.2 0.30 2.6 0.59 1.5 0.04 1.3 0.02 1.6 0.02 1.6 0.03 

Area Size = 256 mi2 

390 64.7 0.44 58.6 0.48 22.6 0.46 20.8 0.47 22.0 0.45 18.7 0.43 

400 63.0 0.43 56.6 0.45 20.4 0.46 18.6 0.48 20.0 0.43 16.8 0.43 

410 61.1 0.46 54.5 0.49 18.3 0.46 16.5 0.47 17.9 0.46 14.9 0.44 

415 60.4 0.43 53.5 0.48 17.3 0.45 15.4 0.46 16.9 0.50 14.0 0.44 

440 56.2 0.45 48.8 0.47 12.7 0.44 10.9 0.44 12.1 0.44 10.1 0.34 

465 52.1 0.43 44.0 0.51 9.0 0.37 7.4 0.34 8.9 0.32 7.5 0.25 

490 48.4 0.44 38.9 0.47 7.3 0.18 5.8 0.18 6.7 0.24 6.0 0.15 

 

The finding that Strategy 4 slightly outperforms Strategy 6, in terms of average user wait time, 

when the fleet size is high relative to the demand rate is an important one. The results in Table 6-4 

indicate that Strategy 6 always outperforms Strategy 4 in terms of empty fleet miles, independent 

of fleet size and demand rate. This suggests that there is an important trade-off an AV fleet manager 

may need to consider when choosing between AV-user assignment strategies, during the off-peak 
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period. However, when the fleet size is small relative to the demand rate, the fleet manager should 

always use Strategy 6. 

It is important to highlight the reason why the performance gap in average user wait times 

across assignment strategies is much greater for small fleets than large fleets. Given the demand 

rate of user requests is constant across all scenarios, as the fleet size increases, the number of idle 

vehicles in the service region at any moment in time increases with fleet size. When the fleet size 

is large, and there are many idle AVs in the service region at time 𝑡, less-sophisticated strategies 

that simply assign idle AVs to users work just fine. Conversely, when the fleet size is small, and 

there are very few idle AVs in the service region at time 𝑡, allowing en-route pickup AVs to be re-

assigned, and allowing en-route drop-off AVs to be considered in the assignment problem, in 

addition to idle AVs, is highly beneficial. 

Table 6-4 displays the average (across twenty replications) of the ratio of empty fleet miles to 

total fleet miles for all the uniform synthetic demand scenarios. The standard error is not presented 

because it is very small relative to the average value, similar to Table 6-3. Table 6-4 shows that 

Strategy 1 is terribly inefficient, independent of fleet size. Strategy 2 is also very inefficient when 

fleet size is low relative to the demand rate, but as the fleet size increases, Strategy 2 approaches 

the efficiency of the optimization-based strategies. The presentation of assignment strategies 

suggests why FCFS strategies are inefficient when the fleet size is small relative to the demand 

rate. If the number of idle AVs is small, and a new user request enters the system, one of the idle 

AVs is assigned to the new user request, even if the pickup location is very far away. 

In terms of empty fleet miles, Strategy 6 unambiguously outperforms all the other strategies 

across all area sizes and fleet sizes. The size of the performance gap between Strategy 6 and slightly 
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less efficient strategies 4 and 5 increases when the fleet size is small relative to the demand rate. 

This dominance across experiments suggests that if operational costs are the most important metric 

for SAMSs, then the fleet manager should employ Strategy 6. 

Table 6-4: Ratio of Empty Fleet Miles to Total Fleet Miles Results for Uniform Demand Scenarios 

Fleet Size Strategy 1 Strategy 2 Strategy 3 Strategy 4 Strategy 5 Strategy 6 

Area Size = 16 mi2 

130 49.0% 43.6% 19.8% 18.2% 16.0% 14.5% 

140 49.1% 43.3% 20.1% 19.0% 18.2% 16.7% 

150 49.0% 42.9% 24.3% 21.5% 18.4% 16.8% 

160 49.1% 42.0% 25.4% 19.2% 17.0% 16.0% 

170 49.0% 37.5% 20.1% 17.0% 15.8% 15.2% 

175 48.6% 27.2% 18.5% 16.2% 15.4% 14.8% 

200 48.5% 15.0% 14.8% 14.0% 13.7% 13.4% 

Area Size = 64 mi2 

230 50.2% 45.0% 18.3% 16.7% 16.1% 13.8% 

240 50.2% 44.8% 18.5% 17.1% 16.6% 14.8% 

250 50.3% 44.5% 19.9% 19.2% 17.4% 15.1% 

255 50.2% 44.5% 21.3% 20.2% 17.2% 15.1% 

280 50.2% 44.0% 24.0% 18.0% 15.7% 14.4% 

305 50.2% 37.6% 18.2% 15.7% 14.6% 13.7% 

330 49.6% 20.0% 16.2% 14.6% 13.9% 13.2% 

Area Size = 256 mi2 

390 51.0% 46.6% 17.9% 16.5% 16.1% 13.1% 

400 51.0% 46.5% 17.8% 16.5% 16.3% 13.2% 

410 51.0% 46.4% 17.9% 16.5% 16.4% 13.3% 

415 51.0% 46.3% 17.9% 16.5% 16.4% 13.3% 

440 51.0% 45.9% 18.1% 16.8% 16.2% 13.9% 

465 50.9% 45.8% 18.9% 18.1% 16.9% 14.6% 

490 51.1% 45.5% 22.0% 20.5% 16.8% 14.6% 

Clustered Demand Results 

This section briefly presents the clustered demand results, which largely follow the same 

pattern as the uniform demand results. To generate clustered demand, four cluster centroids were 
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placed in the four quadrants of the square service region. Users origins and destinations were each 

randomly assigned to one of the four quadrants. Their final origin and destination locations are 

determined by drawing from a random normal distribution centered on their quadrant’s cluster 

centroid, with a standard deviation equal to 5% of the length of an edge of the square service 

region. In the generation of trip origins and destinations, if the origins and destinations are less 

than 0.8 miles apart, the user is assigned a new destination.  

Table 6-5 displays both the average user wait time and empty fleet miles results for the 

clustered demand scenarios. The results for Strategy 1 and Strategy 2 are not included because 

Table 6-3 and Table 6-4 show that these two strategies are significantly less efficient than the 

optimization-based strategies. Once again, the results indicate that Strategy 6 unambiguously 

outperforms the other strategies in terms of empty fleet miles across all scenarios. Similarly, when 

fleet size is small relative to the demand rate, Strategy 6 outperforms the other assignment 

strategies in terms of average user wait times. However, with large fleet sizes, Strategy 3 and 

Strategy 4 outperform Strategy 5 and Strategy 6 in terms of average user wait times.  
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Table 6-5: Computational Results for the Clustered Artifical Demand Scenarios 

Fleet Size Strategy 3 Strategy 4 Strategy 5 Strategy 6  Strategy 3 Strategy 4 Strategy 5 Strategy 6 

 Average User Wait Time (min)  Ratio of Empty Miles to Total Miles 

Area Size = 16 mi2 

130 16.3 15.8 13.8 13.4  11.5% 11.0% 8.2% 7.9% 

140 9.4 8.9 7.8 7.4  11.6% 11.1% 8.8% 8.4% 

150 3.9 3.4 3.3 3.0  12.2% 11.7% 10.4% 9.7% 

160 2.1 1.5 1.8 1.7  16.6% 14.0% 10.5% 9.7% 

170 1.5 0.9 1.3 1.3  17.1% 12.7% 10.0% 9.3% 

175 1.1 0.8 1.2 1.2  15.2% 11.9% 9.8% 9.2% 

200 0.6 0.6 1.0 0.9  10.4% 9.7% 9.0% 8.6% 

Area Size = 64 mi2 

230 21.8 21.1 19.6 19.2  11.3% 10.7% 8.3% 8.0% 

240 17.7 17.1 15.9 15.4  11.3% 10.7% 8.6% 8.2% 

250 14.0 13.4 12.6 12.1  11.4% 10.8% 8.8% 8.4% 

255 12.3 11.7 10.9 10.6  11.4% 10.8% 9.0% 8.6% 

280 5.1 4.5 4.8 4.4  12.4% 11.9% 10.4% 9.4% 

305 2.9 2.1 2.8 2.8  16.8% 13.2% 10.4% 9.4% 

330 1.5 1.3 2.4 2.5  12.8% 11.3% 10.1% 9.2% 

 

Comparing the results in Table 6-5 with those in Table 6-4, the ratio of empty fleet miles is 

significantly lower in the clustered demand case compared to the uniform demand case. This is 

unsurprising as AVs are likely to have shorter distances between their drop-off of one user and the 

pickup of the next user if user origins and destinations are clustered. Nevertheless, this is an 

important finding, as it suggests, the percentage of empty fleet miles generated by an on-demand 

SAMS without shared rides is likely to be heavily impacted by the spatial demand distribution.  

Chicago Taxi Demand 

To test the AV-user assignment strategies under a more-realistic spatio-temporal demand 

distribution, the Chicago taxi data was used (Chicago Data Portal, 2017). The Chicago taxi dataset 

includes over 100 million taxi trips taken in the Chicago region between 2013 and 2016. A taxi-
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trip observation includes a user pickup location, drop-off location, and pickup time. In this study, 

the user’s pickup time is treated as the user’s request time. Random days from September 2014 

were selected from the Chicago taxi data.  

Experimental Design 

Most of the input parameters for the taxi demand scenarios were the same as those in Table 

6-2. However, the taxi simulation is an entire day (𝑡𝑚𝑎𝑥 = 24 ℎ𝑜𝑢𝑟𝑠), the user demand rate (𝜆) 

increased to 3000-4000 users per hour on average; however, the user request rate is time-

dependent. On Friday and Saturday night the demand rate approaches 10,000-12,000 users per 

hour. The average trip distance for the taxi trips is surprisingly only around 5 miles; however, the 

standard deviation of trip distance is around 6 miles. The Chicago service region is approximately 

625 mi2. Lastly, the inter-decision interval (𝐼𝑑) was increased to 30 seconds.  

Taxi Demand Results 

Table 6-6 displays the computational results for the taxi demand including the average user 

wait time and the ratio of empty miles to total miles. In one set of experiments, the full taxi data 

was used. In several other sets of experiments, 50% of the taxi data was used. The results in Table 

6-6 provide more-evidence to support the conclusions in the artificial demand section. Strategy 6 

decidedly generates fewer empty miles than the other assignment strategies. Moreover, Strategy 6 

outperforms the other strategies in terms of average user wait time when the fleet size is small 

relative to the demand rate. However, Strategy 4 outperforms Strategy 6 in terms of average user 

wait time when the fleet size is large relative to the demand rate.  
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Table 6-6: Experimental Results for Taxi Demand 

Fleet Size Strategy 3 Strategy 4 Strategy 5 Strategy 6  Strategy 3 Strategy 4 Strategy 5 Strategy 6 

 Average User Wait Time (min)  Percentage of Empty Miles 

Taxi Day 1 (100% Demand) 

700 5.7 4.9 8.9 7.3  22.7% 21.6% 22.3% 20.4% 

750 2.7 2.1 5.6 5.2  23.3% 21.5% 22.6% 19.7% 

800 2.2 1.9 4.6 4.6  23.6% 21.6% 21.7% 19.5% 

Taxi Day 2 (50% Demand) 

275 23.2 21.2 24.5 19.6  25.6% 24.6% 25.6% 23.1% 

300 11.9 10.6 14.2 10.3  27.1% 24.6% 26.4% 23.1% 

325 6.6 5.6 8.1 6.1  26.9% 24.7% 26.0% 22.5% 

350 3.9 3.2 5.8 5.2  26.6% 24.1% 25.3% 22.5% 

375 2.8 2.5 5.1 5.0  26.0% 23.9% 24.7% 22.4% 

400 2.8 2.4 5.0 4.8  26.5% 23.6% 24.8% 22.2% 

Taxi Day 3 (50% Demand) 

275 8.3 7.0 10.6 6.8  24.8% 22.9% 23.7% 19.8% 

300 4.2 3.2 5.5 4.9  26.2% 23.4% 23.2% 19.9% 

325 2.7 2.2 4.5 4.4  26.7% 23.3% 23.8% 19.9% 

Taxi Day 4 (50% Demand) 

275 9.4 8.3 11.8 8.5  25.3% 24.2% 24.5% 21.3% 

300 4.5 3.1 6.3 4.7  27.0% 23.8% 23.7% 20.8% 

325 2.6 2.2 4.1 3.7  25.6% 23.5% 23.2% 19.6% 

6.6 Conclusion 

To reduce operational costs and maximize service quality, it is critical that SAMSs are 

operated efficiently. As such, this chapter examines an on-demand SAMS without shared rides and 

focuses on modeling and comparing solution strategies for the SAMS’s operational problem. 

The operational problem is highly-dynamic and stochastic as user requests arrive randomly, 

users want to be served immediately, and the SAMS fleet controller has no advanced information 

about the user requests. To solve the problem, the SAMS fleet controller re-solves an AV-user 
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assignment problem in real-time as new requests enter the system. The chapter compares six 

different AV-user assignment strategies. 

The first two assignment strategies are simplistic FCFS assignment strategies; the last four 

strategies require a mathematical programming solver. The optimization-based strategies, 

particularly the strategies that involve reassigning (diverting) assigned users (en-route pickup 

AVs) to other AVs (user requests), significantly outperform the simplistic FCFS assignment 

strategies. The more-sophisticated optimization-based assignment strategies significantly reduce 

(empty) SAMS fleet miles and average user wait times when the fleet size is small relative to the 

demand rate. However, as fleet size increases, the simple assignment strategies are comparable to 

the more advanced strategies.  

SAMS fleet controllers should strongly consider employing optimization-based strategies, 

strategies that allow en-route pickup AVs to be reassigned, and strategies that incorporate en-route 

drop-off AVs in the assignment problem. These strategies allow fleet controllers to handle the 

urgency of new user requests and the stochasticity of future user requests in a computationally-

efficient manner.  

Another important finding is that the spatial distribution of user requests significantly impacts 

the percentage of total fleet miles that are empty. Clustered demands result in a lower percentage 

of empty miles than uniformly distributed demands. 
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 Assessing the Operational Benefits of Shared-Ride SAMSs 

 

7.1 Overview 

This chapter presents an assessment of the operational efficiency benefits, from the 

perspective of the fleet operator, associated with providing an on-demand shared-ride mobility 

service compared with the on-demand SAMS without shared rides in Chapter 6. This chapter 

defines the on-demand shared-ride SAMS, provides a description of the underlying problem 

associated with operating this SAMS as well as a brief overview of the modeling framework and 

solution approach for addressing the dynamic stochastic vehicle routing problem.  

This chapter focuses on comparing the operational efficiency of the on-demand shared-ride 

SAMS and the on-demand SAMS without shared rides in terms of user in-vehicle travel time, user 

wait time, fleet miles, and fleet size. The results of the analysis clearly show significant operational 

benefits associated with allowing shared rides. A sensitivity analysis on the maximum detour for 

user requests indicates that even with a maximum in-vehicle detour distance/time of 5%, the 

shared-ride SAMS provides meaningful operational benefits. These findings have important 

implications for SAMS providers, SAMS users, and society as a whole.  
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7.2 Introduction 

Congestion in urban areas is an ongoing and daunting challenge that has many causes (e.g. 

land-use, auto-dependency, tragedy of the commons/cheap roads) and negative effects (economic 

inefficiency, stress, harmful vehicle emissions, etc.). There is a lot of excitement surrounding AVs 

and their potential to address congestion in metropolitan areas. AVs should certainly be able to 

increase the effective capacity of highway segments (Talebpour and Mahmassani, 2016) and 

signalized intersections (Levin et al., 2017a). Moreover, if AVs can reduce traffic accidents and 

incidents that cause lane blockages, this should improve roadway throughput. 

Despite these positive aspects of AVs in terms of their ability to address congestion, there are 

also possible futures wherein AVs make congestion worse. Consider a future where users 

significantly change their travel behavior, activity behavior, as well as the location of their homes 

and workplaces due to AVs. If humans no longer have to drive, they can use their in-vehicle time 

more productively. As such, the disutility associated with sitting in traffic or traveling long 

distances is quite low if travelers can sleep, watch movies, work, talk on the phone etc. instead of 

having to drive the vehicle themselves. If they are doing this alone in an AV, and the AV also has 

to drive empty between dropping of one user and picking up the next, then AVs will significantly 

increase overall vehicle miles traveled (VMT) and likely increase congestion.  

There are many possible paths to avoiding this outcome, and most of these paths involve 

changes in land-use and transportation policy and planning (e.g. congestion pricing). However, a 

necessary outcome of the changes in land-use and transport policy and planning must involve a 

shift away from a transportation system where most travelers travel alone in their own vehicle. 

There is simply not enough space to add the capacity necessary to reduce congestion if all travelers 
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are using single-occupancy vehicles and zero occupancy AVs. High-capacity transit routes are 

ideal in terms of moving large numbers of people between certain high-density, high-demand 

areas. However, there are certain parts of many metropolitan regions that fixed-route transit service 

does not and cannot provide quality service at a reasonable cost to the transit operator. 

In areas where and times-of-day when fixed-route transit service does not provide high-quality 

service, there is a role for shared-ride mobility services, particularly on-demand shared-ride 

SAMSs. From a user’s perspective, using a shared-ride service typically increases in-vehicle travel 

time while decreasing the cost/price of the service. From a fleet operator’s perspective, it is crucial 

that on-demand shared-ride SAMSs are operated efficiently so that users obtain the cost/price 

savings of shared rides while not experience long in-vehicle travel times or long wait times.  

Motivated by the importance of shared-ride mobility services in terms of reducing congestion 

in the future with AVs, this chapter presents the on-demand shared-ride SAMS. The SAMS has 

the following characteristics:  

• Travelers request rides dynamically via a mobile application  

• A request includes a pickup location and a drop-off location, both of which must be within 

a pre-defined geographical service region 

• Travelers want to be served (i.e. picked up) immediately 

• Travelers will be always be served, assuming they are willing to wait, i.e. the AV fleet 

operator cannot reject traveler requests 

• A single AV picks up and drops off a traveler request 𝑖 but the same AV may pick up 

and/or drop off other traveler requests while traveler request 𝑖 is in the AV 

• The AVs in the fleet are functionally homogeneous 
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• The AVs can only have two traveler requests inside at one time (similar to Lyft Line) 

• The AV fleet size is fixed 

• The AV fleet operator has complete control over each AV 

• The AV fleet operator seeks to minimize fleet miles and traveler wait times; constraints are 

placed on maximum traveler detours 

The operational problem statement and a mathematical model of the on-demand shared-ride 

SAMS are presented briefly in the next section. The focus of this chapter is to compare this on-

demand shared-ride SAMS with the on-demand SAMS without shared rides defined in Chapter 

6.2. The comparison is in terms of the operational efficiency of the two on-demand SAMSs. The 

societal and individual mobility benefits associated with shared-ride mobility services are well-

recognized and discussed in the academic and broader literature. However, this section takes the 

perspective of the SAMS fleet operator and assesses the operational efficiency benefits associated 

with shared-ride vs non-shared-ride mobility services. The working hypothesis in this study is that 

the economies of density and scale are much greater in the on-demand shared-ride SAMS than the 

on-demand SAMS without shared rides which will allow the on-demand shared-ride SAMS to 

serve more users with the same number of vehicles than the on-demand SAMS without shared 

rides while only increasing users in-vehicle travel time slightly.  

7.3 Research Methodology 

This section describes the methods employed to compare the on-demand shared-ride SAMS 

and the on-demand SAMS without shared rides in terms of operational efficiency.  
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User Requests 

This study uses the NYC taxi data from the borough of Manhattan to represent traveler 

requests for on-demand SAMSs. Aside from proprietary data owned by mobility service providers, 

taxi data likely provides the most realistic spatio-temporal distribution of traveler requests for a 

future SAMS. The taxi trip data includes trip origin, trip destination, and pickup time as well as 

several other fields not used in this study. The taxi pickup time is treated as the user request time 

in this study for the on-demand SAMSs.  

On-demand SAMS without Shared Rides Fleet Operations 

The underlying operational problem associated with the on-demand SAMS without shared 

rides is defined in Section 6.3 of this thesis. The fleet operator needs to assign AVs to user requests 

as they enter the system dynamically and randomly. In order for a fair comparison between the on-

demand SAMS without shared rides and the on-demand shared-ride SAMS, the solution approach 

in Chapter 6 is slightly modified in this chapter.  

On-demand Shared-ride SAMS Fleet Operations 

The on-demand shared-ride SAMS operational problem is defined similarly to the on-demand 

SAMS without shared rides in Section 6.3. The operational problem is characterized by a fleet of 

AVs 𝒱 = {𝑉1, 𝑉2, … 𝑉𝑗 , 𝑉𝑗+1, … , 𝑉|𝒱|} that aim to serve users 𝒞 = {𝐶1, 𝐶2, … 𝐶𝑖, 𝐶𝑖+1… , 𝐶|𝒞|} who 

request service during the finite time horizon 𝑇 = [0, 𝑡𝑚𝑎𝑥 ], over a rectangular geographic service 

region 𝒢 with side lengths 𝐿1 and 𝐿2. The geographical region 𝒢 is a Manhattan plane 𝒢 =

{(𝑥, 𝑦)| 𝑥 ∈ [0, 𝐿1], 𝑦 ∈ [0, 𝐿2]}. The distance between any two locations 𝑙1 and 𝑙2, where 𝑙1, 𝑙2 ∈

𝒢, is denoted 𝑑(𝑙1, 𝑙2).  
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At time 𝑡 = 0, AVs may be located at one or several depots, or they may be dispersed 

throughout the entire region. User requests occur according to an unknown stochastic process ℱ𝐶. 

Each user request 𝐶𝑖 comes with a request time 𝑡𝑟
𝐶𝑖 ∈ 𝑇, pickup location 𝑙𝑝

𝐶𝑖 ∈ 𝒢, and drop-off 

location 𝑙𝑑
𝐶𝑖 ∈ 𝒢. Let 𝑡𝑝

𝐶𝑖 and 𝑡𝑑
𝐶𝑖denote the time an AV picks up and drops off user 𝐶𝑖, respectively.  

The AV must pick up the user at her requested pickup location and drop her off at her 

requested location. However, the AVs can pick up an additional user request, even if there is a 

traveler request currently inside the AV. The goal of the SAMS fleet controller is to efficiently 

serve the user requests via minimizing user wait times, in-vehicle travel times, and fleet distance.  

This study also makes the following modeling assumptions: 

• The AVs operate on a Manhattan network with no congestion and no travel time 

uncertainty 

• AV fleet operator has no information (deterministic or stochastic information) about 

traveler requests until the moment the traveler makes a request via their mobile phone 

application  

• AVs do not have a maximum distance or time constraints (i.e. there is no need to refuel) 

This chapter does not detail the stochastic dynamic model for the on-demand shared-ride 

SAMS because it is very similar to the models in Chapter 6 and Chapter 8. However, it does detail 

the rolling-horizon solution approach employed to solve the stochastic dynamic on-demand 

shared-ride SAMS operational problem.  

Let 𝐶𝑜 and 𝐶𝐼𝑉 denote the set of open user requests (meaning, they have not been assigned to 

an AV yet) and in-vehicle user requests.  If 𝑡𝑘 is the current time and 𝑡𝑟
𝐶𝑖 is the request time of user 

𝐶𝑖 ∈ 𝐶
𝑜, then user 𝐶𝑖’s elapsed wait time (𝑤𝑖) is 𝑤𝑖 = 𝑡𝑘 − 𝑡𝑟

𝐶𝑖 . Similarly, let 𝑉𝐼, 𝑉𝑃, and 𝑉𝐷 be 
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the set of idle, en-route pickup, and en-route drop-off AVs respectively; 𝒱 = {𝑉𝐼 , 𝑉𝑃, 𝑉𝐷}. 

Moreover, let 𝑉′ denote the subset of AVs that are available to be assigned to user requests. In this 

chapter, 𝑉′ only include idle and en-route drop-off AVs, not en-route pickup AVs; 𝑉′ = {𝑉𝐼 , 𝑉𝐷}. 

All idle AVs 𝑉𝐼can be assigned to all open user requests 𝐶𝑜 ; however, in this modeling 

framework some en-route drop-off AVs 𝑉𝐷 are not eligible to be assigned to any open user 

requests 𝐶𝑜. In other cases, certain en-route drop-off AVs 𝑉𝐷 are not eligible to service specific 

open user requests 𝐶𝑜. Let 𝑑𝑘
𝐶𝑖 and 𝑑𝑚𝑎𝑥

𝐶𝑖  denote the detour distance of user 𝐶𝑖 at epoch 𝑘 and the 

maximum detour distance of user 𝐶𝑖. Then, if 𝑑𝑘
𝐶𝑖 ≥ 𝑑𝑚𝑎𝑥

𝐶𝑖 , the en-route drop-off AV 𝑉𝑗 ∈ 𝑉
𝐷  

carrying user 𝐶𝑖 ∈ 𝐶
𝐼𝑉 is not allowed to be assigned to another user; these AVs are not considered 

in the assignment problem at epoch 𝑘. Similarly, if assigning en-route drop-off AV 𝑉𝑗 ∈ 𝑉
𝐷 to an 

open user request 𝐶𝑖 ∈ 𝐶
𝑜 would increase the detour distance of either the in-vehicle user inside 

the AV 𝑑𝑘
𝐶𝑖∗  or the open user request 𝑑𝑘

𝐶𝑖 above their respective maximum detour distances 𝑑𝑚𝑎𝑥
𝐶𝑖
∗

, 

𝑑𝑚𝑎𝑥
𝐶𝑖 , respectively, then the AV-user assignment is not feasible. Let 𝑓𝑖𝑗 equal one if there is a 

feasible match between en-route drop-off AV 𝑉𝑗 ∈ 𝑉
𝐷 and open user request 𝐶𝑖 ∈ 𝐶

𝑜, and zero 

otherwise.  

At every decision epoch 𝑘 ∈ 𝐾, the SAMS fleet operator solves the mathematical 

programming problem defined below. The time between epochs is the inter-decision time 𝐼𝑑. Like 

Chapter 6 and Chapter 8, the math program utilizes the assignment (bi-partite matching) problem 

structure. The formulation of the myopic AV-user shared-ride assignment problem is given in Eqn. 

(25)-(29). 
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𝑚𝑖𝑛
𝑥𝑖𝑗

∑ ∑ 𝑥𝑖𝑗{𝑐
𝑉𝑂𝑇(𝑡𝑖𝑗

𝑡 + 𝑡𝑖𝑗
𝑑 − 𝑤𝑖) + 𝑐

𝐸𝐷𝐶𝑅(𝑑𝑖𝑗) − 𝑟
𝑎𝑠𝑔𝑛}

𝑗∈𝑉′𝑖∈𝐶𝑜

+ 𝑐𝑠ℎ𝑎𝑟𝑒 ∑ ∑ 𝑥𝑖𝑗
𝑗∈𝑉𝐼𝑉𝑖∈𝐶𝑜

 

(25) 

∑𝑥𝑖𝑗
𝑖

≤ 1 ∀𝑗 
(26) 

∑𝑥𝑖𝑗
𝑗

≤ 1 ∀𝑖 
(27) 

𝑥𝑖𝑗(1 − 𝑓𝑖𝑗) = 0 ∀𝑖, 𝑗 ∈ 𝑉𝐷 (28) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖, 𝑗 (29) 

The objective function includes penalty terms for remaining empty pickup time 𝑡𝑖𝑗
𝑡 , added user 

detour time 𝑡𝑖𝑗
𝑡 , empty distance (𝑑𝑖𝑗) to pick up a user. The parameters 𝑐𝑉𝑂𝑇, 𝑐𝐸𝐷𝐶𝑅 and 𝑐𝑠ℎ𝑎𝑟𝑒 

denote the value of time, empty distance cost rate, and the penalty for assigning an open user 

request to an en-route pickup AV. The objective also includes a reward for assigning an AV to a 

user (𝑟𝑎𝑠𝑔𝑛) and a reward that increases as a function of the elapsed wait time of user 𝑖. 

The constraint in Eqn. (26) ensures that each AV 𝑗 is assigned to at most one open user request. 

The constraint in Eqn. (27) ensures that no more than one AV is assigned to a single open user 

request. The constraint in Eqn. (28) ensures only feasible AV-user assignments are made.  

To model the assignment problem for the on-demand SAMS without shared rides only idle 

AVs are considered in the assignment problem, en-route drop-off AVs are not considered. The 

assignment problem formulation is otherwise the same.  
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7.4 Experimental Design 

This section presents the experiments designed to compare the operational efficiency of the 

on-demand SAMS without shared rides against the on-demand shared-ride SAMS using several 

metrics, including in-vehicle travel time (IVTT), wait time, and vehicle miles travelled (VMT). 

The IVTT associated with an on-demand shared-ride SAMSs is guaranteed to increase relative to 

an on-demand SAMSs without shared rides. However, the experiments aim to determine the 

relative trade-off between increases in IVTT and potential decreases in wait time and VMT 

associated with a shared-ride SAMS.  

To compare the operational efficiency of the on-demand SAMS without shared rides against 

the on-demand shared-ride SAMS, the following parameter values vary across scenarios: 

• Demand level: 15%, 20%, 25%, 30%, 35%, and 40% (of Manhattan, NY taxi demand 

requests) 

• Maximum user detour distance/time: 0%, 5%, 10%, 15%, 30%, 50%, 80% (increase over 

a user’s shortest path distance/time) 

Moreover, 10 different days of Manhattan, NY taxi demand are treated as 10 independent sets of 

input data.  

Table 7-1 displays the input parameters that do not vary across the experiments. Previous 

chapters in this thesis discuss reasons and rationalizations for these parameter values. The only 

new parameter is the ‘shared ride penalty’ parameter. In this set of experiments, the shared-ride 

penalty is set to zero in order to not penalize or reward the assignment of users to en-route drop-

off AVs compared to idle AVs.  
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Table 7-1: Parameter Values for Experiments 

Parameter Value Value Units 

Simulation Length  21.5 hours 

Fleet Size  400 vehicles 

Inter-decision Interval 𝐼𝑑  15 seconds 

Vehicle Speed  5 meters / second 

Drop-off Time  15 seconds 

Pickup Time  45 seconds 

Shared Ride Penalty 𝑐𝑠ℎ𝑎𝑟𝑒  0.0 $ 

Value of Time 𝑐𝑉𝑂𝑇 23 $/hour 

Cost Rate 𝑐𝐸𝐷𝐶𝑅  0.50 $/mile 

Assignment Reward 𝑟𝑎𝑠𝑔𝑛 5.0 $ 

7.5 Results 

This section presents the results of the computational experiments described in the previous 

section. In Figure 7-1 through Figure 7-4 the x-axis is the demand level measured in terms of the 

percentage of total taxi demand in Manhattan, NY on a given day. On average across ten days, 

15% of the taxi demand represents around 14,200 user requests and 40% of the taxi demand 

represents around 37,900 user requests. The different color lines in Figure 7-1 through Figure 7-4 

represent different maximum user in-vehicle detour distance/time constraints. The blue line 

denoted ‘1’ in the legend, represents the on-demand SAMS without shared rides. Conversely, the 

other lines represent different cases of the on-demand shared-ride SAMS. For example, the orange 

line, denoted ‘1.05’ in the legend, is an on-demand shared-ride SAMS where a constraint is added 

such that a user’s maximum in-vehicle detour time/distance is 5%.  

Figure 7-1 displays the average user in-vehicle travel time results. The results show that 

relaxing the constraint on maximum detour time/distance increases average user in-vehicle travel 
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time. Moreover, the impact increases as the demand level increases. However, there are couple 

important things to note. First, even at the highest demand levels and largest user detour 

time/distance constraint (80%), the increase in average in-vehicle travel time between the on-

demand SAMS without shared rides and the on-demand shared-ride SAMS is still just 2 minutes 

or a 20% increase. Second, the results in Figure 7-1 should be considered within the context of the 

results in Figure 7-2 and Figure 7-3.  

 

Figure 7-1: Average user in-vehicle travel time as a function of demand (x-axis) and maximum user 

detour time/distance (line color) 

Figure 7-2 displays the average user wait time results.  These results clearly illustrate the 

significant operational benefits of an on-demand shared-ride SAMS relative to an on-demand 

SAMS without shared rides. The blue line denoting the on-demand SAMS without shared rides 

shows that at demand levels greater than 25%, the average user wait time begins to increase 

exponentially with demand level. The on-demand SAMS without shared rides is effectively unable 

to serve demand levels greater than 25% or 30%. Conversely, the on-demand shared-ride SAMS 

results with different maximum detour distance/time constraints appear to be able to handle 
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demand levels of 35-40% with the same fleet size. Even in the case where the maximum detour 

distance/time is just five percent, the on-demand shared-ride SAMS is able to serve a significantly 

higher volume of demand than the on-demand SAMS without shared rides.  

This finding suggests that if SAMS providers can incentivize users to opt-in to shared-ride 

services, they can serve these users with a minimal increase in in-vehicle travel with a much 

smaller fleet of vehicles than is needed for an SAMS without shared rides.  

 

Figure 7-2: Average user wait time as a function of demand (x-axis) and maximum user detour 

time/distance (line color) 

Figure 7-3 displays the total fleet vehicle miles traveled (VMT) results. Although not as 

dramatic as the average user wait time results in Figure 7-2, the fleet VMT results in Figure 7-3 

do illustrate the operational efficiency benefits of an on-demand shared-ride SAMS relative to an 

on-demand SAMS without shared rides. The blue line for the on-demand SAMS without shared 

rides shows a near-linear relationship between demand level and fleet VMT. There are economies 

of scale and density for the on-demand SAMS without shared rides; however, they are not very 

strong. Conversely, the other lines in Figure 7-3 show that for an on-demand shared-ride SAMS 
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the relationship between demand level and fleet VMT is sublinear. This is due to the noticeable 

economies of scale and density associated with an on-demand shared-ride SAMS. As demand 

levels increase, the number of shared-ride opportunities increases, allowing the fleet operator to 

serve more demand per fleet mile.  

 

Figure 7-3: Total fleet miles as a function of demand (x-axis) and maximum user detour time/distance 

(line color) 

Figure 7-4 displays the relationship between the percentage of users that share rides and the 

demand level. The results clearly indicate that as the demand rate increases, the percentage of 

travelers sharing a ride increases. This makes sense intuitively because as the demand rate 

increases the number shared-ride opportunities increases. However, it is crucial to understand that 

the results in Figure 7-4 illustrate why the on-demand shared-ride SAMS provides significant 

operational benefits relative to the on-demand SAMSs without shared rides. Figure 7-4 essentially 

shows that an on-demand shared-ride SAMS can increase its effective service rate as the demand 

rate increases; whereas, the on-demand SAMSs without shared rides cannot.  
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The operational efficiency implications of the findings in Figure 7-2, Figure 7-3 and Figure 

7-4 are as follows, relative to an on-demand SAMSs without shared rides, the on-demand shared-

ride SAMS can: 

• Serve the same number of travelers with a much smaller fleet size, thereby reducing capital 

costs; 

• Serve the same number of travelers with significantly fewer fleet miles, thereby reducing 

operational costs; 

• Handle surges in demand much more effectively, thereby increasing the resiliency of the 

SAMS. 

 

Figure 7-4: Percentage of users who shared a ride as a function of demand (x-axis) and maximum 

user detour time/distance (line color) 

7.6 Conclusion 

This chapter presents the on-demand shared-ride SAMS and its underlying operational 

problem. Then it compares the on-demand shared-ride SAMS with the on-demand SAMS without 
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shared rides in terms of operational efficiency. The societal benefits of higher occupancy vehicle 

travel include lower overall VMT and potentially a reduction in congestion, fuel consumption, and 

vehicle emissions. The individual mobility benefits of shared rides include a travel option that is 

cheaper than one person per mobility service vehicle. These advantages are relatively well 

documented. However, there do not appear to be in-depth analyses examining the operational 

efficiency advantages of shared-ride mobility service. 

The analysis presented in this chapter fills that gap. The results indicate significant operational 

advantages of an on-demand shared-ride SAMS over an on-demand SAMS without shared rides. 

The advantages appear to stem from the economies of density and scale that come with offering 

shared rides. As demand increases, the number of shared-ride opportunities naturally increases. 

The on-demand shared-ride SAMS can capture these benefits while the on-demand SAMS without 

shared rides cannot. Hence, given the same fleet size the on-demand shared-ride SAMS can serve 

significantly more travelers, using fewer fleet miles, and more effectively handle unexpected 

surges in demand.  

The findings in this chapter suggest that from a purely operational perspective, SAMS 

providers can benefit significantly from offering and incentivizing users to opt-in to shared-ride 

services. Of course, there are practical challenges associated with shared-ride services, including, 

having travelers switch from a personal vehicle to sharing vehicles with strangers. There are also 

issues that occur when vehicles cannot find travelers on the side of the road, or travelers do not 

come right away when the vehicle arrives, that need to be addressed. Nevertheless, the findings in 

this chapter illustrate that if a mobility service provider can address these issues there are 

significant advantages to shared-ride services compared to mobility services without shared rides.  
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 On-demand Autonomous Carsharing Service6F 

 

8.1 Overview 

This chapter presents an on-demand autonomous carsharing service (ODACS) and defines 

the underlying operational problem associated with this autonomous mobility-on-demand 

(AMOD) service where users reserve fully-autonomous vehicles for a user-specified time-slot. An 

ODACS combines the benefits of existing MOD services (i.e. on-demand service and at-origin 

pickups) with the benefits of existing carsharing services (i.e. the ability to make multiple trips and 

temporarily store items).  

The ODACS operational problem is a stochastic dynamic control problem (SDCP) where the 

fleet operator only has probabilistic information about the spatio-temporal distribution of future 

user requests. This chapter presents a framework to model the ODACS operational problem that 

captures the evolution of the stochastic dynamic system and the sequential nature of decisions. At 

each decision epoch, AVs can be assigned to open user requests, repositioned to different 

subregions of the service area, or remain at their current location. The study presents an operational 

policy that involves solving a joint AV-user assignment and empty AV repositioning decision 

problem. The objective function of the joint assignment-repositioning problem captures immediate 

costs (unproductive vehicle kilometers and user wait times) and immediate rewards (serving open 
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user requests) and approximates costs-to-go through an expected subregion supply-demand 

imbalance term. 

Results indicate that the joint assignment-repositioning operational policy significantly 

outperforms optimization-based assignment-only policies and a nearest neighbor assignment 

policy in terms of average user wait times and system cost. The system cost metric is a weighted 

combination of user wait times and unproductive fleet kilometers.  

8.2 Motivation 

Mobility-on-demand (MOD) services provide users door-to-door transportation service on-

demand, without requiring users to purchase, insure, maintain, or park a personal vehicle, and 

without having to walk to or from a transit stop/station or wait outside for a transit vehicle. These 

attractive features suggest why MOD services, like the services offered by ridesourcing companies 

Uber and Lyft, have seen significant growth and obtained a sizable market share over the past five 

years in certain areas (Clewlow and Mishra, 2017).  

Existing carsharing services allow users to reserve a vehicle for a user-specified time slot (e.g. 

30 minutes or three hours). However, unlike MOD services, carsharing services do not offer on-

demand pickup service, and users need to access (typically via walking) a carsharing station or 

carsharing vehicle before starting their carsharing trip. These unattractive features of existing 

carsharing services, along with several others listed below, suggest why, despite being around for 

a longer time, carsharing services have not grown as quickly as ridesourcing services throughout 

the United States. Fortunately, fully-autonomous vehicles (AVs) should allow mobility service 
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providers to offer an on-demand autonomous carsharing service (ODACS) that combines the 

benefits of MOD services and existing carsharing services.  

The main advantage of carsharing services over existing MOD services, for some users and 

trip purposes, is the ability of carsharing users to reserve a vehicle for a user-specified time slot. 

Within the time slot, the carsharing user can make multiple trips, collect other users, and/or store 

items in the vehicle. Examples of this include picking up children from multiple schools, dropping 

children off at multiple after-school activities, shopping at multiple stores, storing items in the 

vehicle between stores, stopping to pick up a few things on the way to/from work, and/or traveling 

to slightly remote regions – such as a park in a rural area – for a few hours. Existing point-to-point 

MOD services either cannot or struggle to serve these users/trip purposes. Given the average 

round-trip commute trip chain 7in the U.S. includes 0.43 non-work stops (Wang, 2015), and non-

commute trip chains include significantly more stops per trip chain, there is likely to be significant 

demand for a MOD service that allows AV reservations for a user-specified period. 

There are several negative aspects of existing carsharing services that AVs can overcome. 

First, as mentioned previously, carsharing users need to walk to a carsharing vehicle (in free-

floating carsharing systems) or carsharing station (in roundtrip or one-way carsharing systems) 

before making a carsharing trip. Second, carsharing service providers either (i) need to hire drivers 

to rebalance (reposition) vehicles between stations (within a service region) in a one-way (free-

floating) carsharing system or (ii) suffer from severe supply-demand imbalances at carsharing 

stations within the service region. Third, given the need to access a carsharing vehicle or station 

                                                 
7 A trip chain is a series of trips that start and end at the same location. For example, a home-to-work trip followed 

by a work-to-home trip is a home-based trip chain. A work-to-lunch, lunch-to-pharmacy, pharmacy-to-work series of 

trips is a work-based trip chain.   
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via walking, users often cannot reserve or access a carsharing vehicle within a reasonable distance 

when they want to travel; hence, individuals cannot rely on carsharing services as a primary mode 

of transportation. Fortunately, AVs overcome each of these negative aspects since AVs can travel 

empty to pick up users and reposition themselves to serve future user requests. 

The carsharing company Car2Go recently put out a white paper identifying five components 

of futuristic autonomous carsharing service: fleet management, demand prediction, real-time 

control of AV fleets (or as they call it ‘fleet intelligence’), intelligent charging, and user experience 

(Car2go, 2017). This study focuses exclusively on the real-time control of AV fleets with the 

assumption that the fleet operator has high-quality short-term demand predictions. 

Motivated by the ability of AVs to combine the benefits of existing MOD services and 

carsharing services, this chapter presents, defines, mathematically models, and introduces an 

operational policy for the ODACS operational problem. This chapter defines the ODACS as 

having the following characteristics: 

• Users request a pickup location, drop-off location, and usage time/reservation length via a 

mobile phone application;  

• Users want AVs to come to their pickup location immediately; 

• Users have complete control over the AV until they release the AVs back to the fleet 

controller; 

• AVs in the fleet are functionally homogenous; 

• The service provider owns and operates its own fleet of AVs; 
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• The fleet controller will not reject user requests within the pre-defined service region. 

The ODACS operational problem is a stochastic dynamic control problem (SDCP). The 

problem is dynamic because decisions need to be made sequentially as new user requests enter the 

system. The model in this chapter includes two forms of stochasticity, namely, future user requests, 

and the actual AV usage times for each user. The ODACS operational problem in this chapter is 

not significantly different from the on-demand SAMS without shared rides operational problem in 

Chapter 6. The main difference is that in the ODACS problem, the SAMS fleet operator cannot 

easily determine when each in-use AV will be done serving its current passenger. In both cases, 

an in-use AV cannot be used to serve new traveler requests. However, in the on-demand SAMS 

without shared rides problem, the fleet operator has complete control over the AVs plans and 

arrival times at each vehicle stop.  

The goal of the ODACS operational problem is to minimize a weighted combination of user 

wait times and empty AV kilometers. Short user wait times are likely to be a key factor in the 

success of AMOD services (Krueger et al., 2016), especially if users are to forego owning their 

own vehicles and rely on AMOD services for all travel. Minimizing empty fleet distances is always 

an important objective as it correlates heavily with operational costs and profitability. 

To solve SDCPs, the goal is to find an optimal policy/strategy. A strategy provides a decision 

function that returns an explicit decision for every possible system state. A simplistic operational 

strategy for the ODACS operational problem involves immediately assigning each new user 

request to the closest empty AV. More effective strategies include optimization-based bipartite 

matching of AVs and users, repositioning AVs proactively, queuing user requests temporarily 

before assigning them to AVs, and combinations of these policy elements. 
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This chapter presents an optimization-based joint AV-user assignment and empty AV 

repositioning operational strategy. The joint assignment-repositioning formulation captures the 

immediate rewards, immediate costs, and costs-to-go given the system state and decision at each 

decision epoch. The chapter compares this operational strategy to myopic optimization-based 

assignment-only strategies, and a strategy that immediately assigns new user requests to the nearest 

empty AV.  

This chapter makes several scientific contributions to the existing literature. First, it formalizes 

the ODACS operational problem using a modeling framework that captures the stochastic and 

dynamic elements of the problem.  Hanna et al. (2016) and Dandl and Bogenberger (2018a) also 

study and conceptually define autonomous carsharing services; however, as far as the author is 

aware, this is the first study to formalize the ODACS operational problem using a modeling 

framework that captures the stochastic and dynamic elements of the problem. Second, the chapter 

presents a flexible optimization-based operational strategy that models the sequential decision 

problem as a joint AV-user assignment and empty AV repositioning problem. Third, both the 

decision problem’s objective function and the analysis’ performance metric combine fleet 

operational costs and user wait time costs into a total system cost metric with monetary units. 

8.3 ODACS Problem 

This section presents a formal description of the ODACS operational problem and then 

presents of model of the stochastic dynamic problem.  
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Problem Statement 

The ODACS operational problem is characterized by a fleet of AVs 𝒱 =

{𝑉1, 𝑉2, …𝑉𝑗 , 𝑉𝑗+1, … , 𝑉|𝒱|} that aim to serve users 𝒞 = {𝐶1, 𝐶2, … 𝐶𝑖, 𝐶𝑖+1… , 𝐶|𝒞|} who request an 

AV rental during the finite time horizon 𝑇 = [0, 𝑡𝑚𝑎𝑥 ], over a rectangular geographic service 

region 𝒢 with side lengths 𝐿1 and 𝐿2. The geographical region 𝒢 is a Manhattan plane 𝒢 =

{(𝑥, 𝑦)| 𝑥 ∈ [0, 𝐿1], 𝑦 ∈ [0, 𝐿2]}. The region 𝒢 can be divided up into a set of |𝒵| equally-sized 

rectangular subregions (i.e. zones) 𝒵 = {𝑍1, 𝑍2, … 𝑍ℎ, 𝑍ℎ+1… , 𝑍|𝒵| } each with a demand-weighted 

centroid location 𝑙𝑍ℎ ∈ 𝒢.  

The distance between any two locations 𝑙1 and 𝑙2, where 𝑙1, 𝑙2 ∈ 𝒢, is denoted 𝑑(𝑙1, 𝑙2). Given 

the AVs travel at fixed vehicle speed 𝑣, the travel time between points 𝑡𝑡(𝑙, 𝑙2) is the ratio of 

𝑑(𝑙1, 𝑙2)/𝑣.  

At time 𝑡 = 0, AVs may be located at one or several depots, or they may be dispersed 

throughout the entire region. User requests occur according to a known stochastic process ℱ𝐶. 

Each realized user request 𝐶𝑖 is associated with a request time 𝑡𝑟
𝐶𝑖 ∈ 𝑇, pickup location 𝑙𝑝

𝐶𝑖 ∈ 𝒢, 

drop-off location 𝑙𝑑
𝐶𝑖 ∈ 𝒢, and requested usage time 𝑡𝑢𝑟

𝐶𝑖 , which differs from the user’s actual usage 

time 𝑡𝑢𝑎
𝐶𝑖 . The AV must pick up the user at her requested pickup location. Let 𝑡𝑝

𝐶𝑖 denote the time 

an AV picks up user 𝐶𝑖. After pickup, the user is free to use the AV as she chooses until returning 

the AV to her drop-off location. User 𝐶𝑖’s actual usage time 𝑡𝑢𝑎
𝐶𝑖  is a random variable defined as 

follows: 

𝑡𝑢𝑎
𝐶𝑖 = 𝑡𝑢𝑟

𝐶𝑖 − 𝑁(𝜇𝑢, 𝜎𝑢) 

Hence, the fleet controller only has probabilistic information on the user’s remaining usage time.  
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The goal of the AV fleet is to efficiently serve the user requests via minimizing user wait times 

and empty fleet kilometers. Letting 𝑑𝑒
𝑉𝑗

 denote the cumulative empty distance of AV 𝑉𝑗, then the 

fleet controller aims to minimize the expected total cost: 

min𝔼 [𝑐𝑉𝑂𝑇 ∑(𝑡𝑝
𝐶𝑖 − 𝑡𝑟

𝐶𝑖 )

𝐶𝑖∈𝒞

+ 𝑐𝐸𝐷𝐶𝑅 ∑ 𝑑𝑒
𝑉𝑗

Vj∈𝒱

] 

where 𝑐𝑉𝑂𝑇 denotes the value of user wait time [$/time] and 𝑐𝐸𝐷𝐶𝑅 denotes the empty distance cost 

rate [$/distance].  

To meet this objective, the fleet controller has several decision levers. As new user requests 

enter the system, the fleet controller needs to assign AVs to the requests. However, the fleet 

controller can position AVs, based on short-term demand forecasts, so that idle AVs are already 

near new user requests as they enter the system. Specifically, at each decision epoch, AVs can (i) 

be assigned to open user requests, (2) be repositioned to other subregions, or (iii) stay in their 

current location. 

Model 

This chapter makes the following modeling assumptions: 

• The carsharing fleet size is fixed in the short term (i.e. one-day) 

• The AVs operate on a Manhattan-plane with a fixed vehicle speed 𝑣 

• Users will wait indefinitely to be served  

• The fleet controller only has a stochastic spatio-temporal distribution of future user 

requests 
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• The fleet controller only has a stochastic distribution on the actual usage time of users 

Given these assumptions, and the problem statement presented above, this section presents a model 

of the ODACS operational problem.  

Decision Epochs 

This chapter assumes a finite horizon with a pre-defined number of decision epochs. Let Κ be the 

set of decision epochs, |Κ| the number of decision epochs, and 𝑘 the index of the kth decision 

epoch. The time between decision epochs is a fixed value, denoted 𝐼𝑑 and referred to as the inter-

decision time. The variable 𝑡𝑘 ∈ 𝑇 denotes the time of decision epoch 𝑘 ∈ 𝐾.  

States 

The state variable 𝑆𝑘 contains all the information necessary to model the problem from the current 

epoch 𝑘 ∈ 𝐾, to the end of the modeling period |𝐾| ∈ 𝐾.  

For the ODACS, the system state at time 𝑘 (𝑆𝑘) includes several dimensions. This chapter 

delineates three sets of entities – users, AVs, and subregions – with states that need to be updated. 

Let the states of users, AVs, and subregions at epoch 𝑘 ∈ 𝐾 be denoted 𝑆𝑘
𝐶 , 𝑆𝑘

𝑉, and 𝑆𝑘
𝑅 respectively, 

where 𝑆𝑘 is completely defined by the set (𝑆𝑘
𝐶 , 𝑆𝑘

𝑉, 𝑆𝑘
𝑍 , tk).  

User State.  The user state 𝑆𝑘
𝐶 is the tuple (𝜎𝑘

𝒞 , 𝑤𝑘
𝒞 , 𝒞) denoting the status, elapsed wait time, and 

static information of users, respectively. The static user information includes user request times 

𝑡𝑟
𝒞, user pickup locations 𝑙𝑝

𝒞, user drop-off locations 𝑙𝑑
𝒞, and requested usage times 𝑡𝑢

𝒞.  
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For each user 𝐶𝑖, user status 𝜎𝑘
𝐶𝑖 takes on a value in the set {0,1,2,3,4}: 

𝜎𝑘
𝐶𝑖 = 

{
 
 

 
 
0, 𝐶𝑖  has not requested service by time 𝑡𝑘
1, 𝐶𝑖  has requested service but has not been assigned by 𝑡𝑘
2, 𝐶𝑖  has been assigned but not picked up by 𝑡𝑘
3, 𝐶𝑖  has been picked up and is using the AV at 𝑡𝑘
4 𝐶𝑖  has been served by 𝑡𝑘

 

If user 𝐶𝑖 has not requested service at 𝑡𝑘 (i.e. 𝜎𝑘
𝐶𝑖 = 0), then the static information associated with 

user 𝐶𝑖 is unknown to the fleet controller. The elapsed wait time of a user 𝑤𝑘
𝐶𝑖 is simply the 

difference between the current time and the user’s request time: 𝑤𝑘
𝐶𝑖 = 𝑡𝑘 − 𝑡𝑟

𝐶𝑖. 

AV State.  The AV state 𝑆𝑘
𝑉 is the tuple (𝜑𝑘

𝒱, 𝑙𝑘
𝒱, 𝑟𝑘

𝒱, 𝑎𝑘
𝒱) denote the status, location, route, and 

planned arrival times of every AV 𝑉𝑗 at decision epoch 𝑘, respectively. For each AV 𝑉𝑗, 𝜑𝑘
𝑉𝑗

 takes 

on a value in the set {0,1,2,3}: 

𝜑𝑘
𝑉𝑗 = 

{
 
 

 
 0, 𝑉𝑗 is idle at time 𝑡𝑘
1, 𝑉𝑗 is en-route to pick up a user at 𝑡𝑘
2, 𝑉𝑗 is in-use at 𝑡𝑘
3, 𝑉𝑗 is repositioning at 𝑡𝑘

 

The operational strategies presented in this chapter vary the AVs included in the assignment-

repositioning decision problem, at decision epoch 𝑘, based on their statuses 𝜑𝑘
𝑉𝑗

.  

The set of AV routes 𝑟𝑘
𝒱 = (𝑟𝑘

𝑉1 , 𝑟𝑘
𝑉2 , … , 𝑟𝑘

𝑉𝑗 , … , 𝑟𝑘
𝑉|𝒱|) provides the sequenced set of locations 

AVs will visit next, at decision epoch 𝑘. In this chapter, an AV route 𝑟𝑘
𝑉𝑗

 can only include a 

maximum of two locations. 

The planned arrival times for all AVs 𝑎𝑘
𝒱 = (𝑎𝑘

𝑉1 , 𝑎𝑘
𝑉2 , … , 𝑎𝑘

𝑉𝑗 , … , 𝑎𝑘
𝑉|𝒱|) at decision epoch 𝑘 

are probabilistic due to the uncertainty in users actual usage times. The decision maker needs a 

method to estimate each in-use user’s remaining usage time. Using known information such as 
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each user’s requested usage time 𝑡𝑢𝑟
𝐶𝑖  and the parameters 𝜇𝑢 and 𝜎𝑢, it is possible to estimate each 

user’s actual usage time as: 𝑡𝑢𝑒
𝐶𝑖 = 𝑡𝑢𝑟

𝐶𝑖 − 𝑏𝑢, where 𝑏𝑢 represents a buffer on user’s actual usage 

time.  

Subregion State.  The subregion state 𝑆𝑘
𝑍 is denoted by (𝐼𝑘

𝒵), the expected imbalance between 

supply and demand in subregion 𝑍ℎ between the time 𝑡𝑘 at decision epoch 𝑘, and the end of the 

prediction horizon 𝑡𝑘 + ℎ
𝑝, where ℎ𝑝 is the length of the prediction horizon.  

The expected imbalance (𝐼𝑘
𝑍ℎ) in subregion 𝑍ℎ is the difference between the expected supply 

and expected demand in subregion 𝑍ℎ over the prediction horizon ℎ𝑝. The expected supply in 𝑍ℎ 

is the summation of: 

• the number of idle and repositioning AVs currently in subregion 𝑍ℎ; and 

• the number of en-route pickup and in-use AVs that are expected to terminate and become 

idle in subregion 𝑍ℎ within the prediction horizon ℎ𝑝. 

Note that the currently repositioning AVs traveling towards subregion 𝑍ℎ are not included in the 

expected supply of 𝑍ℎ. This is because they are counted in the region in which they are currently 

located at epoch 𝑘. The decision problem does not differentiate between currently idle and 

repositioning AVs at each decision epoch. 

The expected demand in 𝑍ℎ is the summation of: 

• the number of open user requests currently in subregion 𝑍ℎ; and 
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• the expected number of future requests in subregion 𝑍ℎ over the prediction horizon ℎ𝑝 (this 

value comes from a demand forecasting model). 

This chapter assumes high-quality spatio-temporal demand forecasts are available at a spatial 

resolution of 0.45 km2 and temporal resolution of 5-min. Using this spatial aggregation, the number 

of subregions |𝒵| in Manhattan is 256. 

Decisions 

At each decision epoch 𝑘, given the state of the system 𝑆𝑘, the AV fleet can control the system 

via changing the plans of AVs. Let 𝑋𝑘 denote the set of decision variables at decision epoch 𝑘. To 

model the decision problem, this chapter introduces two variables, 𝑥𝑘
𝑗𝑖

 and 𝑦𝑘
𝑗ℎ

, defined as follows: 

𝑥𝑘
𝑗𝑖
= {

1, if AV 𝑉𝑗  is assigned to pick up user 𝐶𝑖 at time 𝑡𝑘
0, otherwise

 

𝑦𝑘
𝑗ℎ
=  {

1, if AV 𝑉𝑗 is assigned to reposition to zone 𝑍ℎ at time 𝑡𝑘
0, otherwise

 

There are a couple constraints on the decision variables, displayed in Eqn. (30)-(33) 

∑𝑥𝑘
𝑗𝑖

𝑖

+∑𝑦𝑘
𝑗ℎ

ℎ

≤ 1 ∀𝑗, ℎ, 𝑘 (30) 

∑𝑥𝑘
𝑗𝑖

𝑗

≤ 1 ∀𝑖, 𝑘 (31) 

𝑥𝑘
𝑗𝑖
∈ {0,1} ∀𝑖, 𝑗, 𝑘 (32) 

𝑦𝑘
𝑗ℎ
∈ {0,1} ∀𝑗, ℎ, 𝑘 (33) 

The constraint in Eqn. (30) ensures each AV 𝑉𝑗 is assigned to at most one open user request 

𝐶𝑖 or subregion 𝑍ℎ. The constraint in Eqn. (31) ensures that no more than one AV is assigned to 
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an open user request 𝐶𝑖. The constraints in Eqn. (32) and (33) ensure the two sets of decision 

variables take on binary values. Also, the constraint below ensures that only ‘available’ users, 

denoted 𝒞′, and ‘available’ AVs, denoted 𝒱′ , are assigned. The users and AVs that are considered 

‘available’ change based on the operational strategy 

𝑥𝑘
𝑖𝑗
+ 𝑦𝑘

𝑗ℎ
= 0 ∀𝑖 ∉ 𝒞′, ∀𝑗 ∉ 𝒱′  

Exogenous Information 

The ODACS operational problem includes two sources of stochasticity in which exogenous 

information enters the system, namely, the user requests themselves and the actual usage times. 

The exogenous information that enters the system between decision epochs 𝑘 − 1 and 𝑘 is denoted 

𝜔𝑘. Hence, let 𝜔𝑘+1 = {𝛾𝑘, 𝛿𝑘}, where 𝛾𝑘 is the set of previously unrequested user requests (𝜎𝑘
𝐶 =

0) with a request time between 𝑡𝑘 and 𝑡𝑘+1; i.e. 𝛾𝑘 ⊆ {𝐶𝑖|𝜎𝑘
𝐶𝑖 = 0, 𝑡𝑘 < 𝑡𝑟

𝐶𝑖 ≤ 𝑡𝑘+1}.  

Similarly, 𝛿𝑘 is the set of served user requests that officially release their AVs between 𝑡𝑘 and 

𝑡𝑘+1; i.e. 𝛿𝑘 ⊆ {𝐶𝑖|𝜎𝑘
𝐶𝑖 = 3, 𝑡𝑘 ≤ 𝑡𝑑

𝐶𝑖 ≤ 𝑡𝑘+1}, where user 𝐶𝑖’s drop-off time 𝑡𝑑
𝐶𝑖  is the summation 

of her pickup time and actual usage time 𝑡𝑑
𝐶𝑖 = 𝑡𝑝

𝐶𝑖 + 𝑡𝑢𝑎
𝐶𝑖 . 

Transition Function 

The transition function defines how the state of the system 𝑆𝑘 updates from decision epoch 𝑘 

to the next decision epoch 𝑘 + 1. The decision epoch time 𝑡𝑘 updates as follows: 

𝑡𝑘+1 = 𝑡𝑘 + 𝐼
𝑑 

The user state 𝑆𝑘
𝐶 contains two elements (𝜎𝑘

𝒞 , 𝑤𝑘
𝒞 , 𝒞). The user information (𝒞) stays the same; 

whereas the users’ statuses (𝜎𝑘
𝒞) updates as follows: 
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𝜎𝑘+1
𝐶𝑖 = 𝜎𝑘

𝐶𝑖 + 𝟙𝐶𝑖∈𝛾𝑘 +∑𝑥𝑘
𝑗𝑖

𝒋

+ 𝟙
𝒕𝒌≤𝑡𝑝

𝐶𝑖  < 𝑡𝑘+1
+ 𝟙

𝒕𝒌≤𝑡𝑑
𝐶𝑖  < 𝑡𝑘+1

 

Where 𝟙𝐶𝑖∈𝛾𝑘 equals 1 if user 𝐶𝑖 requests service between 𝑡𝑘 and 𝑡𝑘+1; ∑ 𝑥𝑘
𝑗𝑖

𝒋  denotes if user 

𝐶𝑖 is assigned to an AV; and 𝟙
𝒕𝒌≤𝑡𝑝

𝐶𝑖  < 𝑡𝑘+1
and 𝟙

𝒕𝒌≤𝑡𝑑
𝐶𝑖  < 𝑡𝑘+1

equal 1 if user 𝐶𝑖 is picked up or dropped 

off by an AV, respectively. Updating user elapsed wait times (𝑤𝑘
𝒞) is straightforward, 𝑤𝑘+1

𝐶𝑖 =

𝑤𝑘
𝐶𝑖 + 𝐼𝑑. 

The AV state 𝑆𝑘
𝑉 contains four elements (𝜑𝑘

𝒱, 𝑙𝑘
𝒱, 𝑟𝑘

𝒱, 𝑎𝑘
𝒱). Because the notation is rather 

cumbersome for the transition function, despite the algebraic relationships being quite simple, this 

thesis does not display the full transition functions. Updating each AV’s status, 𝜑𝑘
𝒱, involves 

checking if the AV: 

• reached its pickup location: 𝟙
𝑙𝑘
𝑉𝑗
=𝑙𝑝
𝐶𝑖

 

• was released by the user (𝟙
𝒕𝒌≤𝑡𝑑

𝐶𝑖  < 𝑡𝑘+1
) 

• was assigned to pick up a user: 𝑥𝑘
𝑗𝑖
= 1 

• or was assigned to a new subregion: 𝑦𝑘
𝑗𝑖
= 1 

These events also impact the planned vehicle routes 𝑟𝑘
𝒱, and the planned arrival times at the 

stops along the route, 𝑎𝑘
𝒱. Finally, updating each AV’s location, 𝑙𝑘

𝒱, involves moving en-route 

pickup and repositioning AVs one step towards their pickup and repositioning location, 

respectively. It is also necessary to check if the AV was released by the user. 
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The subregion state 𝑆𝑘
𝑅 = (𝐼𝑘

𝒵) is recomputed at every decision epoch 𝑘 using the method of 

determining the expected supply and expected demand over the prediction horizon ℎ𝑝 as outlined 

in the States subsection above. 

Objective Function 

Let 𝐶(𝑆𝑘, 𝑋𝑘) denote the cost of being in state 𝑆𝑘 and making decision 𝑋𝑘. For SDCPs, the 

solution is a policy 𝜋 ∈ Π. Each policy 𝜋 maps states to decisions; i.e. given 𝑆𝑘, policy 𝜋 ∈ Π 

yields decision 𝑋𝑘
𝜋(𝑆𝑘). The objective of an SDCP is to determine an optimal policy 𝜋∗ ∈ Π that 

minimizes the objective function in Eqn. (34), subject to the constraints in Eqn. (30)-(33) on the 

decision variables.  

min
𝜋∈Π

𝐸𝜋 [∑𝐶(𝑆𝑘, 𝑋𝑘
𝜋(𝑆𝑘))

𝑘∈Κ

 ] (34) 

Unfortunately, the very large (i.e. high dimension) state space for the ODACS operational problem 

makes Eqn. (34) analytically intractable due to the curse of dimensionality (Powell, 2011). 

Researchers typically approximate the problem to obtain solutions. The next section presents an 

approximation of the objective function that coincides with an optimization-based joint AV-user 

assignment and empty AV repositioning operational policy.  

8.4 Joint Assignment-Repositioning Operational Policy 

This section describes the joint AV-user assignment and empty AV repositioning operational 

policy. Let 𝑉𝑘
𝐼, 𝑉𝑘

𝑃, 𝑉𝑘
𝑈, 𝑉𝑘

𝐼 be the set of idle, pickup, in-use, and repositioning AVs at epoch 𝑘, 

respectively; where 𝑉𝑘
𝐼 = {𝑉𝑗|𝜑𝑘

𝑉𝑗 = 0}, 𝑉𝑘
𝑃 = {𝑉𝑗|𝜑𝑘

𝑉𝑗 = 1}, etc. This chapter presents two 
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different joint assignment-repositioning operational policies. The first policy only allows idle AVs 

(𝑉𝑘
𝐼) and repositioning AVs (𝑉𝑘

𝑅) to have their plans adjusted (i.e. assigned to open user requests) 

at epoch 𝑘; whereas, the second policy also allows in-use AVs (𝑉𝑘
𝑈) to have their plans adjusted. 

Hence, let 𝑉𝑘
′ = {𝑉𝑘

𝐼 , 𝑉𝑘
𝑅} and 𝑉𝑘

′ = {𝑉𝑘
𝐼 , 𝑉𝑘

𝑅 , 𝑉𝑘
𝑈} be the controllable AVs in the former and later 

policies, respectively.  

The joint assignment-repositioning operational policies involve solving the decision problem 

in Eqn. (35)-(37) and Eqn. (30)-(33), every decision epoch 𝑘, where 𝑡𝑖𝑗
𝑡  and 𝑑𝑖𝑗 are the current 

travel time and distance between 𝑉𝑗 and 𝐶𝑖, respectively. For notational simplicity, the variables 

do not include the decision epoch index.  

𝑚𝑖𝑛
𝑥𝑖𝑗,𝑦𝑗ℎ

∑∑ 𝑥𝑖𝑗{𝑐
𝑉𝑂𝑇(𝑡𝑖𝑗

𝑡 − 𝑤𝑖) + 𝑐
𝐸𝐷𝐶𝑅(𝑑𝑖𝑗) − 𝑟

𝑎𝑠𝑔𝑛}

𝑗∈𝑉′𝑖∈𝐶

+ 𝑐𝑏𝑢𝑠𝑦∑ ∑ 𝑥𝑖𝑗
𝑗∈𝑉𝑈𝑖∈𝐶

+𝑐𝐼∑𝑧ℎ
ℎ∈𝑍

+ 𝑐𝐸𝐷𝐶𝑅 ∑∑𝑦𝑗ℎ𝑑𝑗ℎ
ℎ∈𝑍𝑗∈𝑉′

 

(35) 

𝐼ℎ −∑𝑦𝑗ℎ
𝑗∈𝑉

− 𝐼𝑚𝑖𝑛 ≤ 𝑧ℎ ∀ℎ ∈ 𝑍 (36) 

𝑧ℎ ≥ 0 ∀ℎ ∈ 𝑍 (37) 

Constraints in Eqn. (30)-(33)   

The objective function contains several terms. The first large term includes the remaining wait 

time penalty associated with assigning 𝑉𝑗 to 𝐶𝑖 as well as the reward for assigning an AV to a user 

𝐶𝑖 with elapsed wait time 𝑤𝑖. It also includes the empty distance cost between 𝑉𝑗 and 𝐶𝑖 as well as 

the reward for any AV-user assignment. The second term penalizes the assignment of an in-use 

AV (𝜑𝑘
𝑉𝑗 = 2) to an open user request. This is done in order to account for the increased uncertainty 

of the in-use AVs availability to pick up the user compared to empty AVs. The third term penalizes 
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the fleet for leaving an imbalance in subregion 𝑍ℎ. Finally, the last term represents the empty 

distance cost between 𝑉𝑗 and 𝑍ℎ. The objective function implicitly makes trade-offs between 

assigning AVs to open requests now, reducing subregion imbalances now, and waiting until later 

(when other AVs become available) to assign AVs to open requests or balance subregions.  

The parameters 𝑐𝑉𝑂𝑇, 𝑐𝐸𝐷𝐶𝑅, 𝑟𝑎𝑠𝑔𝑛, 𝑐𝑏𝑢𝑠𝑦, and 𝑐𝐼 are the value of time, empty distance cost 

rate, reward for any AV-user assignment, penalty for assigning an in-use AV to an open request, 

and penalty for leaving an imbalance in a subregion, respectively. These parameters ensure all the 

terms in the objective function are in monetary units. The minimal imbalance parameter 𝐼𝑚𝑖𝑛 

allows a subregion to have a minimal imbalance before impacting the objective function.  

The constraints in Eqn. (36) and Eqn. (37) ensure that 𝑧𝑘 takes a value greater than or equal 

to the expected supply-demand imbalance, and zero, respectively. Fortunately, the constraint 

matrix (Eqn. (30)-(33) and Eqn. (36)-(37)) is totally unimodular; therefore, the linear relaxation of 

the integer program always produces integer solutions. Hence, even for large instances of this 

problem, solutions can be obtained in a reasonable amount of time. This is quite beneficial as the 

fleet needs to repeatedly resolve the problem every 𝐼𝑑. 

8.5 Experimental Design 

This section presents the experiments designed to compare the joint assignment-repositioning 

operational policy to other operational policies.  

User Request Data 

To obtain a spatio-temporal distribution for user requests, this study treats the taxi trips in the 

NYC taxi data (NYC Taxi & Limousine Commission, 2017) as user requests for an ODACS. 
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Ideally, this study would employ free-floating carshare data, as taxi trips are certainly different 

than carshare trips; however, carshare data was not accessible. The study uses data from the first 

fifteen days of April 2016 and includes a 10% sample of user requests for these days. The NYC 

taxi data includes the longitude and latitude of taxi trip origins and destinations. The taxi-user 

pickup time is treated as the user’s request time in this chapter. The requested usage time for each 

user request is determined as follows. First, users are randomly assigned to a base usage time in 

which users are equally likely to be assigned to any usage time between 15-min and 3.0-hr in 

increments of 15-min. Second to determine a user’s actual usage time, the algorithm draws from a 

normal distribution with mean 𝜇𝑢 and 𝜎𝑢 and subtracts this value from the base usage time.  

Parameter Settings and Scenarios 

Table 8-1 displays the parameter settings in the computational analysis that do not vary across 

scenarios. The AVs travel at speed 𝑣 = 5𝑚/𝑠 since this is the average taxi speed in Manhattan. 

The simulations run from 2:30am to 12:30am (i.e. 𝑡𝑚𝑎𝑥 = 10 ℎ𝑟); whereas user requests only enter 

the system between 3:00am and 10:00am allowing the fleet to serve all users. This time frame 

incorporates the morning peak while allowing the AVs to reposition themselves before the 

morning peak to serve future user requests. The inter-decision time 𝐼𝑑 is 30 seconds, a reasonable 

time for an on-demand service. The prediction horizon ℎ𝑝 is 30 minutes. 

The value of time 𝑐𝑉𝑂𝑇  and the empty distance cost rate 𝑐𝐸𝐷𝐶𝑅 used in the objective function 

and system cost evaluation metrics are $23/hr. and $0.31/km, respectively. These values coincide 

with estimates of value of time in the literature and the U.S. governmental mileage rate. The reward 

for assigning an AV to open user request 𝑟𝑎𝑠𝑔𝑛 is $5.0/user. Given a value of time of $0.31/km, 

AVs will not be assigned to new user requests if the AVs are more than 16.1 km away from the 
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new request. A smaller assignment reward value would increase user wait times but decrease 

empty fleet kilometers.  

The imbalance penalty 𝑐𝐼 is $3.0/user, indicating empty AVs will only be considered for 

repositioning to an imbalanced subregion, if the AVs and subregions are less than 9.7 km away 

from each other. This chapter sets the AV-user assignment reward to a higher value than the 

imbalance penalty to prioritize serving open user requests that are known over probabilistic future 

requests. The minimum imbalance 𝐼𝑚𝑖𝑛 is 1 user per subregion to provide some a buffer before 

repositioning AVs to subregions.  

The model also adds a penalty of $0.15/assignment for assigning in-use AVs to open user 

requests. This parameter incentivizes the assignment of idle and repositioning AVs over in-use 

AVs. The difference between requested usage time and actual usage time is distributed normally 

with mean 𝜇𝑢 10 minutes and standard deviation 𝜎𝑢 3 minutes.  

Table 8-1: Parameter Settings that do not Vary across Scenarios 

Parameter Math Notation Value Units 

Vehicle Speed 𝑣 5 meters/sec 

Simulation Length 𝑡𝑚𝑎𝑥 10 hr. 

Inter-decision Interval 𝐼𝑑  30 sec 

Prediction Horizon ℎ𝑝 30 min 

Value of Time 𝑐𝑉𝑂𝑇   23 $/hr. 

Empty Distance Cost Rate 𝑐𝐸𝐷𝐶𝑅  0.31 $/km 

Assignment Reward 𝑟𝑎𝑠𝑔𝑛 5.0 $/user 

Imbalance Penalty 𝑐𝐼 3.0 $/user 

Minimum Imbalance 𝐼𝑚𝑖𝑛  1 user 

In-use Penalty 𝑐𝑏𝑢𝑠𝑦 0.15 $/assignment 

Mean Usage Time Difference 𝜇𝑢 10 min 

Std. Dev. Usage Time Difference 𝜎𝑢 3 min 
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The values in Table 8-1 are fixed across all scenarios/simulations in the computational 

analysis. However, the experimental design varies fleet size across simulation experiments. The 

three fleet sizes |𝒱| are 1750, 2000, and 2250. Additionally, the experimental design tests all 

operational strategies using fifteen separate days of NYC taxi data.  

Other Operational Strategies 

The analysis in this chapter aims to compare the optimization-based joint assignment-

repositioning operational strategy with other operational strategies. This chapter treats the 

operational strategy of assigning new user requests immediately to the nearest idle AV as the 

baseline strategy. Two other operational strategies involve solving an AV-user assignment 

decision problem. In one case, only idle AVs are considered; in the other strategy, idle and in-use 

AVs are considered. These strategies are similar to the ones in Chapter 6 for the on-demand SAMS 

without shared rides.  

8.6 Computational Results 

This section presents computational results comparing the operational policies for the ODACS 

operation problem in terms of three metrics, namely, average user wait time, total empty fleet 

kilometers, and system cost. The system cost is a weighted combination of the first two metrics. 

The operational strategy ‘Asgn NN’ is a myopic policy that immediately assigns new user requests 

to the nearest idle AV. The strategies ‘Asgn Idle’ and ‘Asgn IdleDrop’ involve solving an AV-

user assignment optimization problem every 𝐼𝑑, where ‘Asgn IdleDrop’ considers in-use AVs in 

the decision problem in addition to idle and repositioning AVs. Finally, the ‘Asgn-Rep Idle’ and 

‘Asgn-Rep IdleDrop’ operational strategies represent the optimization-based joint assignment-
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repositioning operational strategy. The ‘Asgn-Rep IdleDrop’ considers in-use AVs in addition to 

idle and repositioning AVs.  

Figure 8-1 displays the computational results. Each point in each graph represents the average 

over 15 scenarios (i.e. the first fifteen days of April 2016). Given that the standard deviation across 

days is relatively small, fifteen days (i.e. replications) was enough to reduce the standard error 

such that there were statistically significant differences between the strategies.  

The top graph in Figure 8-1 shows that the joint assignment-repositioning operational 

strategies significantly outperform the myopic nearest neighbor strategy and the two optimization-

based assignment-only strategies. Average user wait time is around 7-min, 4-min, and 3-min for 

fleet sizes of 1750, 2000, and 2500, respectively for the joint assignment-repositioning strategies; 

whereas, for the same fleet sizes, average user wait time is around 10-min, 7-min, and 6-min for 

the optimization-based assignment-only strategies.  

 The middle graph in Figure 8-1 shows that the joint assignment-repositioning strategies 

produce slightly more empty kilometers than the two optimization-based assignment-only 

strategies. This is not surprising as repositioning is likely to increase empty fleet kilometers in 

nearly all cases. The assignment-only strategies with idle, repositioning, and in-use AVs produces 

between 8,800 km and 9,300 km; whereas, the joint assignment-repositioning strategies generate 

more than 10,000 km of empty kilometers. This indicates an inherent trade-off in terms of 

operational costs and service quality facing fleet controllers when selecting operational strategies 

for the ODACS operational problem. However, the fleet controller can adjust the parameters in 

the joint assignment-repositioning objection function to reduce empty fleet kilometers.  
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The bottom graph in Figure 8-1 shows the joint assignment-repositioning strategies 

significantly outperform the assignment-only strategies across all fleet sizes in terms of overall 

system costs. In fact, the system costs for assignment-only strategies are 40-60% higher than the 

joint assignment-repositioning system costs. This suggest that the joint assignment-repositioning 

operational strategies provide significant advantages over even the most advanced assignment only 

strategies. The results seem to indicate only marginal differences between the two optimization-

based joint assignment-repositioning strategies, suggesting that either including in-use AVs 

provides minimal benefit or the operational strategy needs to more effectively incorporate in-use 

AVs considering the uncertainty associated with their remaining usage time. 

The objective function for the joint assignment-repositioning operational strategy provides 

significant flexibility in terms of adjusting to the preferences of the fleet controller. If fuel costs 

increase, and it is important to reduce empty kilometers, the fleet controller can adjust the 

parameter values to reflect this change in costs. Similarly, if the ODACS provider wants to focus 

on reducing user wait times, even at the expense of more empty fleet kilometers, the objective 

function can reflect this strategic change.   
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Figure 8-1: Comparison of operational strategies (line color) in terms of average user wait time (top), 

total empty fleet kilometers (middle) and system cost (bottom) across fleet sizes (x-axis) 
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8.7 Conclusion 

This chapter examines the on-demand autonomous carsharing service (ODACS) operational 

problem, which is a stochastic dynamic control problem (SDCP). This chapter presents a modeling 

framework for the ODACS operational problem that captures the evolution of the system state 

through time and sequential nature of decisions. At each decision epoch, the available AVs (i.e. 

idle AVs, repositioning AVs, and in some cases in-use AVs) can either be (i) assigned to open 

user requests, (2) repositioned to a subregion centroid, (3) told to remain in their current location. 

The problem’s objective is to minimize a weighted combination of average user wait times and 

empty fleet kilometers.  

To address this SDCP, this chapter introduces a joint AV-user assignment and empty AV 

repositioning strategy that involves solving a decision problem at each decision epoch. The 

decision problem via a joint assignment-repositioning objective function implicitly trades-off the 

benefits of immediately serving user requests, with the downstream benefits of repositioning 

empty AVs to decrease supply-demand imbalances and subsequently serve future user requests 

efficiently. The chapter compares this operational strategy to optimization-based AV-user 

assignment strategies that do not incorporate repositioning. The computational results show sizable 

performance advantages for the joint assignment-repositioning strategy over the assignment-only 

strategy, in terms of user wait times and systems costs, the latter metric being a weighted 

combination of user wait times and empty fleet kilometers.  

An ODACS combines the benefits of existing MOD services and existing non-autonomous 

services, including on-demand service where AVs pick up users at their origin and drop them off 

at their destinations, while still allowing them to reserve an AV for a user-specified time-slot to 
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make multiple trips and store items between trips. The benefits of this service suggest that it may 

be an attractive SAMS in the future. Hence, from a mobility service provider perspective, and a 

transportation system efficiency perspective, research on ODACSs is critical to their future 

success.  
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 Impact of Spatio-Temporal Demand Forecast Aggregation on the 

Operational Performance of Shared Autonomous Mobility Fleets 7F

8 

 

9.1 Overview 

Fleet operators rely on forecasts of future user requests to reposition empty vehicles and 

efficiently operate their vehicle fleets. In the context of an on-demand shared-use autonomous 

vehicle (AV) mobility service (SAMS), this study analyzes the trade-off that arises when selecting 

a spatio-temporal demand forecast aggregation level to support the operation of a SAMS fleet. In 

general, when short-term forecasts of user requests are intended for a finer space-time 

discretization, they tend to decrease in quality. However, holding forecast quality constant, more 

disaggregate forecasts provide more valuable information to fleet operators. 

To explore this trade-off, this study presents a flexible methodological framework to evaluate 

and quantify the impact of spatio-temporal demand forecast aggregation on the operational 

efficiency of a SAMS fleet. At the core of the methodological framework is an agent-based 

simulation that requires a demand forecasting method and a SAMS fleet operational strategy. This 

study employs an offline demand forecasting method, and an online joint AV-user assignment and 

empty AV repositioning strategy. Using this forecasting method and fleet operational strategy, as 

                                                 
8 An article is under 2nd review by Dandl, Hyland, Bogenberger, and Mahmassani that parallels this chapter. 
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well as Manhattan, NY taxi data, this study simulates the operations of a SAMS fleet across various 

spatio-temporal aggregation levels. 

Results indicate that as demand forecasts (and subregions) become more spatially 

disaggregate, fleet performance improves, in terms of user wait time and empty fleet miles. This 

finding comes despite demand forecast quality decreasing as subregions become more spatially 

disaggregate. Additionally, results indicate the SAMS fleet significantly benefits from higher 

quality demand forecasts, especially at more disaggregate levels. 

9.2 Motivation 

The growth of shared-use mobility services and the availability of large data sources (e.g. taxi 

and carsharing data) has prompted significant research in the transportation literature. The advent 

of AVs and their expected inclusion in mobility service fleets has further motivated research 

relating to the operation and management of SAMSs. This research falls in two main areas: 

forecasting demand/user requests (i.e. modeling arrival processes) and developing operational 

policies/strategies to efficiently operate a SAMS fleet dynamically.  

The existing literature largely treats these two problems independently. To address the 

forecasting problem, researchers are developing and comparing demand forecasting methods 

(Sayarshad and Chow, 2016). To address the problem of operating SAMS fleets efficiently, 

researchers are developing strategies to assign AVs to user requests (Alonso-Mora et al., 2017; 

Hyland and Mahmassani, 2018; Maciejewski et al., 2016) and reposition empty AVs (Dandl and 

Bogenberger, 2018b; Fagnant and Kockelman, 2014; Hörl et al., 2017; Pavone et al., 2012; 

Sayarshad and Chow, 2017; Spieser et al., 2016). The repositioning strategies rely on forecasts of 
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future demand to reposition empty AVs; hence these two SAMS subproblems are inherently 

interconnected.  

Figure 9-1 shows the relationship between demand forecasting (i.e. predictive analytics) and 

SAMS operational decision-making (i.e. prescriptive analytics). Predictive analytics methods 

convert ‘raw’ data into (demand) forecasts; whereas, prescriptive analytics (i.e. optimization) 

methods rely on these demand forecasts to prescribe informed (operational) decisions (IBM, 

2017). Hence, the efficient operation of a SAMS fleet requires reliable demand forecasts. 

Moreover, forecasts only provide real value to a SAMS provider if they improve decision making 

and fleet performance.  

 
Figure 9-1: Schematic of process to convert data into better decisions 

Motivated by the inherent interconnection between demand forecasts and the operational 

performance of SAMS fleets, this chapter aims to connect these two research areas. Mobility 

service providers need to consider both problems (jointly). Specifically, this chapter aims to 

evaluate and quantify the impact of spatio-temporal demand forecast aggregation on the 

operational performance of a SAMS fleet. Given the sizeable market share of existing on-demand 

mobility services that do not allow shared rides (e.g. UberX, traditional Lyft, and taxi services), 

this chapter analyzes an on-demand SAMS without shared rides, defined in Chapter 6. 

9.3 Background 

Research illustrates that the utilization of advanced (deterministic or stochastic) information 

can improve the operation of mobility services. In the context of goods transport, Yang et al. (2004)  
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present the generic real-time truckload pickup and delivery problem and present computational 

results as a function of advanced information about demand requests. Tjokroamidjojo et al. (2006) 

and Jaillet and Wagner (2006) quantify the value of advanced deterministic information (i.e. 

known future requests) in dynamic freight routing problems. The on-demand SAMS modeled in 

this chapter does not allow users to request rides in advance; therefore, the SAMS fleet cannot 

obtain advanced (deterministic) information. However, predictive analytics methods and big data 

can help SAMS operators forecast demand and reposition vehicles based on demand predictions, 

thereby reducing user wait times.  

In the context of carsharing, Weikl and Bogenberger (2015) introduce an algorithm to relocate 

vehicles, based on forecasts of future demand, in order to maximize profit. In goods transport, 

Ichoua et al. (2006) use demand forecasts to decide whether a vehicle should wait in its current 

position for a future demand before continuing its planned tour. Some SAMS studies introduce 

empty vehicle repositioning strategies (Dandl and Bogenberger, 2018b; Fagnant and Kockelman, 

2014; Hörl et al., 2017; Pavone et al., 2012; Sayarshad and Chow, 2017; Spieser et al., 2016); 

however, these studies do not focus on the implications of demand forecast aggregation and/or 

quality on fleet performance.  

The existing literature includes short-term demand forecasting studies related to carsharing 

(Müller and Bogenberger, 2015), taxi (Ihler et al., 2006; Moreira-Matias et al., 2013), and public 

transportation (Zhong et al., 2016). In their survey and comparative analysis of taxi user arrival 

process models, Sayarshad and Chow (2016) categorize forecast methods into offline models and 

online models. Offline models rely entirely on historic data; whereas, online models utilize real-

time data. Sayarshad and Chow (2016) evaluate the prediction quality of two offline and three 



174 

 

online forecast models using New York taxicab data. Recent demand forecasting research 

incorporates new features from other data sources (e.g. social media) to further improve the quality 

of online models (Chaniotakis et al., 2016; Tong et al., 2017). In a more general analysis (i.e. 

broader than transportation), Zotteri et al. (2005) present an in-depth analysis of the impact of 

aggregation level on forecasting performance.  

9.4 Research Problem and Hypothesis 

The purpose of this study is to evaluate and quantify the impact of spatio-temporal demand 

forecast aggregation on the operational performance of SAMS fleets. There is an inherent trade-

off in the selection of a spatio-temporal aggregation level. From an operational standpoint, holding 

forecast reliability constant, more disaggregate spatio-temporal forecasts – for smaller subregions 

– provide the fleet more valuable information. For example, knowing three users will request rides 

in a 100 m2 area between 9:00am and 9:05am is more valuable than knowing three users will 

request rides in a 1000 m2 area between 9:00am and 9:30am. However, it is likely that short-term 

SAMS demand forecast errors will increase as forecasts become very disaggregated in space and 

time due to the law of large numbers (statistical variability increases as the number of items to 

forecast decreases) and the underlying demand generation process (Makridakis, 1988). Given the 

inherent trade-off associated with choosing a spatio-temporal aggregation level, this study’s 

working hypothesis is that: 

• SAMS fleet performance will initially increase as forecasts (and subregions) become more 

disaggregate; however, eventually, SAMS fleet performance will decrease, or at least 

stagnate, as forecasts and subregions become progressively more disaggregate.  
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This chapter also aims to determine the optimal spatio-temporal demand forecast aggregation 

level to most efficiently operate a SAMS fleet. However, the optimal spatio-temporal aggregation 

level depends on a multitude of factors including the demand forecasting method, the SAMS 

operational strategy, and even the characteristics (e.g. density of user requests) of the service area. 

Hence, this chapter introduces a flexible methodological framework that other researchers and 

mobility service providers can employ to determine the optimal spatio-temporal aggregation level 

for their own forecasting method, fleet operational strategy, and service area. 

To obtain a quasi-upper bound on the operational performance of the SAMS fleet, the chapter 

runs experiments wherein the fleet has perfect demand forecasts, across all spatio-temporal 

aggregation levels. To obtain a quasi-lower bound, the chapter runs experiments where the fleet 

has no information about future demand forecasts. 

9.5 Research Methodology 

To perform the computational analysis and test the hypothesis, this study employs an agent-

based simulation tool. The simulation tool models the operations of an AV fleet, employs an 

algorithm to efficiently assign AVs to open user requests, and uses demand forecasts to proactively 

reposition AVs to serve future user requests. After providing an overview of the simulation 

framework, this section details the user requests, the demand forecast model, and the SAMS fleet 

operational strategy employed in this study. The agent-based simulation model in this study 

follows the general three-component framework for modeling SAMSs that includes a demand (i.e. 

traveler request) generator, an SAMS fleet operator/dispatcher, and some representation of the 

transportation network (Levin et al., 2017b; Rigole, 2014). 
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Agent-based Simulation Framework 

Figure 9-2 displays a flowchart of the agent-based simulation tool. The simulation tool is time-

driven and updates the position and status of AVs and users every time step. To initialize the 

simulation, the current time, 𝜏, is set to zero, the AVs are positioned throughout the service region, 

and the statuses of all AVs are set to idle.  

The simulation first updates the current time (𝜏 ←  𝜏 + ∆𝜏) by the simulation time step (∆𝜏) 

and then checks if 𝜏 is less than the length of the simulation period 𝑇. If 𝜏 ≥ 𝑇, the simulation 

ends, otherwise the simulation moves en-route pickup AVs, en-route drop-off AVs, and en-route 

repositioning AVs one step (∆𝜏 × 𝑣, where 𝑣 is vehicle speed) closer to their assigned destination.  

After the simulation moves the vehicles, it checks for new user requests with a request time 

𝑟𝑖 = 𝜏, where 𝑟𝑖 is the request time of user 𝑖. Then the simulation checks to see if it is time to assign 

AVs to open user requests and reposition AVs to different subregions. Every 𝐼𝑑, the inter-decision 

time interval length, the fleet simultaneously assigns and repositions AVs. Figure 9-2 shows that 

the joint assignment-repositioning strategy requires spatio-temporal demand forecasts, which are 

a key input in the operational strategy, as they determine how many, when, and where AVs should 

reposition.  

The fleet only assigns and repositions AVs every 𝐼𝑑 for strategic reasons and computational 

constraints. Strategically, it is often beneficial to allow user requests to queue before assigning 

AVs to them, especially, if AV-user assignments are final (i.e. if AV diversions and user 

reassignments are not allowed). The constraint comes from the fact that it can take more than a 

few seconds to solve a decision problem that involves assigning and repositioning large numbers 

of AVs.  
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After moving the AVs, checking for new user requests, and assigning AVs to user requests 

and subregions, the simulation updates the system state via changing the statuses of AVs, users, 

and subregions, if necessary. For example, if an AV reaches its drop-off point, the simulation 

changes the status of the AV from en-route drop-off to idle.  

 
Figure 9-2: Simulation framework 

The simulation ends when 𝜏 = 𝑇, even if AVs are still active and users are still unserved. The 

simulation can output metrics for individual AVs, users, and subregions, such as wait time and 

(empty) vehicle miles. As this chapter focuses on the performance of the SAMS fleet across 
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different spatio-temporal aggregation levels, the computational analysis section presents 

performance statistics at the system level, such as average user wait time and empty fleet miles. 

User Requests 

The main input to the agent-based simulation model is the set of user requests. Each user 

request 𝑖 includes an origin (𝑜𝑖), destination (𝑑𝑖), and request time (𝑟𝑖). In the simulation, the fleet 

becomes aware of each user and her origin and destination, at her request time (i.e. when the user 

requests a ride on her smartphone). This chapter assumes that the SAMS serves every user request 

within the service region; moreover, it assumes users will wait indefinitely to be served.  

Demand Forecasts 

As described previously, fleet repositioning algorithms require forecasts of future demands. 

This chapter employs two sets of demand forecasts to analyze the impact of spatio-temporal 

aggregation on SAMS fleet performance. The first set of forecasts come from a simple time-

varying Poisson forecast method based on historical demand (Ihler et al., 2006; Moreira-Matias et 

al., 2013; Sayarshad and Chow, 2016; Tong et al., 2017), whereas, the second set of forecasts are 

perfect demand forecasts. 

Demand Forecasting Model 

Like Moreira-Matias et al. (2013), this study uses a simplified version of the time-varying 

Poisson model in Ihler et al. (2006), which exploits weekly periodicity in demand to make forecasts 

for future days. The model in this chapter does not include seasonality terms because it only uses 

three months of data. Historical request data {𝑜𝑖, 𝑑𝑖 , 𝑟𝑖}∀𝑖∈𝐶  are aggregated into spatio-temporal 



179 

 

bins. The underlying assumption is that (for example) the requests on Sunday between 5:00pm and 

5:30pm will be similar to the historic average of requests on previous Sundays between 5:00pm 

and 5:30pm. Hence, the forecasted trip origin count for subregion 𝑘 during period ℎ on day-of-

the-week 𝑑 is based on the historical average of trip counts in subregion 𝑘 during period ℎ on day-

of-the-week 𝑑. Although more advanced methods tailored to specific problem instances can likely 

produce better results, this study employs the ‘historical average’ model or time-varying Poisson 

model because of its wide-use in practice and in the literature due to its ease of implementation. 

The Poisson distribution is defined below, where 𝜆 is the rate of new user requests entering 

the system, 𝑛 is the number of new user requests, and 𝑃(𝑛; 𝜆) is the probability of exactly 𝑛 new 

user requests entering the system over a specified time period, given rate 𝜆.  

𝑃(𝑛; 𝜆) =
𝑒−𝜆𝜆𝑛

𝑛!
  

However, the rate 𝜆 is not time-invariant and space-invariant in real-world shared-use mobility 

services; rather, it varies across space and time. Similar to the model in Moreira-Matias et al. 

(2013), this study assumes the time- and space-variant rate 𝜆𝑘(𝑡) is a function of the day of the 

week 𝑑(𝑡), the period of the day ℎ(𝑡), and the subregion 𝑘. This functional relationship is 

displayed below, where 𝜆𝑘,0 is the average rate over the week in subregion 𝑘, 𝛿𝑘,𝑑(𝑡) is the relative 

change for day-of-the-week 𝑑(𝑡) in subregion 𝑘, and 𝜂𝑘,𝑑(𝑡),ℎ(𝑡) is the relative change for period 

ℎ(𝑡) on day-of-the-week 𝑑(𝑡) in subregion 𝑘.  

𝜆𝑘(𝑡) = 𝜆𝑘,0 × 𝛿𝑘,𝑑(𝑡) × 𝜂𝑘,𝑑(𝑡),ℎ(𝑡)  

This study varies the size of the period ℎ(𝑡) and the size of each subregion 𝑘 in order to 

determine the impact of temporal aggregation and spatial aggregation, respectively, on demand 
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forecast quality and SAMS fleet performance. The parameters in the formula are calibrated using 

historical trip request data for various period ℎ(𝑡) sizes and subregion 𝑘 sizes. Multiplying 𝜆𝑘(𝑡) 

by the size of the period ℎ(𝑡) gives the expected number of new user requests in subregion 𝑘, on 

day 𝑑(𝑡), during period ℎ(𝑡) that is used by the SAMS fleet operator.  

Perfect Demand Forecasts 

Obtaining perfect demand forecasts requires aggregating the actual request data into different 

spatio-temporal bins. If spatial aggregation is set at the census tract level and temporal aggregation 

is set at the one-hour level, then, with perfect forecasts, the SAMS fleet knows the exact number 

of users who will request service originating at each census tract every hour of the day. However, 

the SAMS fleet does not know the exact location within the census tract, nor does it know the 

exact time within the one-hour interval the requests will occur. Hence, more disaggregate 

subregions and time intervals provide the SAMS fleet more valuable information. 

SAMS Fleet Operational Strategy 

This section describes a SAMS fleet operational strategy that jointly assigns AVs to open user 

requests and repositions AVs between subregions.  

Let 𝑉 denote the set AVs in the SAMS fleet and let 𝑗 ∈ 𝑉 denote an AV in the fleet. Moreover, 

let 𝑉𝐼, 𝑉𝑃, 𝑉𝐷, and 𝑉𝑅 be the set of idle, en-route pickup, en-route drop-off, and en-route 

repositioning AVs respectively; 𝑉 = {𝑉𝐼 , 𝑉𝑃, 𝑉𝐷 , 𝑉𝑅}. 

Similarly, let 𝐶 denote the set of open user requests (meaning, they have not been assigned to 

an AV yet) and let 𝑖 ∈ 𝐶 denote an open user request. If 𝜏 is the current time and 𝑟𝑖 is the request 

time of user 𝑖, then user 𝑖’s elapsed wait time (𝑤𝑖) is 𝑤𝑖 = 𝜏 − 𝑟𝑖. 
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Additionally, let 𝑅 denote the set of subregions in the service area, and let 𝑘 ∈ 𝑅 denote a 

subregion. The expected imbalance between AVs and open user requests in subregion 𝑘 ∈ 𝑅 over 

the prediction horizon ℎ𝑝 is denoted 𝐼𝑘. The expected imbalance 𝐼𝑘 is determined by taking the 

difference between expected future demand and planned future supply in subregion 𝑘 between the 

current time 𝜏 and the end of the prediction horizon 𝜏 + ℎ𝑝. The expected future demand is the 

sum of: 

• the number of open user requests currently in subregion 𝑘; and  

• the expected number of future requests in subregion 𝑘 over the prediction horizon ℎ𝑝 (this 

value comes from the demand forecasts). 

The planned future supply is the sum of: 

• the number of repositioning AVs and idle AVs currently in subregion 𝑘;  

• the number of en-route drop-off and en-route pickup AVs assigned to users who have 

destinations in subregion 𝑘 (the AVs must drop off their users in subregion 𝑘 within the 

prediction horizon ℎ𝑝);  

The current distance between AV 𝑗 and open user request 𝑖 is denoted 𝑑𝑖𝑗. The distance 

between AV 𝑗 and the demand-weighted centroid of subregion 𝑘 is denoted 𝑑𝑗𝑘.  

To solve the stochastic dynamic problem of operating a SAMS fleet, this chapter employs a 

rolling-horizon solution approach, wherein every 𝐼𝑑 (the inter-decision time) the fleet solves an 

optimization problem. In this chapter, the fleet can only control the AVs that are currently idle 𝑉𝐼 
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or repositioning 𝑉𝑅. In fact, from the perspective of the fleet, at the decision epoch (every 𝐼𝑑) there 

is no difference between AVs that are currently repositioning and AVs that are currently idle. 

Hence, let 𝑉′ = {𝑉𝐼 , 𝑉𝑅} denote the subset of AVs the algorithm can (i) assign to open user 

requests, (ii) reposition to subregions, or (iii) choose to be idle.  

There are several key differences between the solution approach in this chapter and the 

solution approach for the on-demand SAMS without shared rides in Chapter 6. First, the solution 

approach in this chapter incorporates AV repositioning to subregion centroids throughout the 

service region, whereas, Chapter 6 does note. Second, the solution approach in Chapter 6 requires 

either all AVs to be assigned to a user request (if there are more open user requests than available 

AVs) or all user requests to be assigned to an AV (if there are more available AVs than open user 

requests). The solution approach in this chapter does not include this constraint pair, rather, the 

objective function includes a reward term for assigning AVs to user requests. Third, unlike Chapter 

6, the solution approach in this section does not allow en-route pickup AVs to be diverted to other 

travelers nor does it allow assigned users to be reassigned to a new AV.  

To model the decision problem mathematically, let 𝑥𝑖𝑗 equal one if AV 𝑗 is assigned to pick 

up user 𝑖, and zero otherwise. Moreover, let 𝑟𝑗𝑘 equal one if AV 𝑗 is assigned to reposition to 

subregion 𝑘, and zero otherwise. Equation (38) displays the objective function driving the fleet 

controller’s decisions; whereas, Eqn. (39)-(42) constrain the decision set.  

min
𝑥𝑖𝑗,𝑟𝑗𝑘

𝑐𝐸𝐷∑∑ 𝑥𝑖𝑗𝑑𝑖𝑗
𝑗∈𝑉′𝑖∈𝐶

− 𝑟𝑎𝑠𝑔𝑛∑∑ 𝑥𝑖𝑗
𝑗∈𝑉′𝑖∈𝐶

+ 𝑐𝐼max(0,∑(𝐼𝑘 − ∑ 𝑟𝑗𝑘
𝑗∈𝑉′

)

𝑘∈𝑅

− 𝐼𝑚𝑖𝑛)

+𝑐𝐸𝐷 ∑∑𝑟𝑗𝑘𝑑𝑗𝑘
𝑘∈𝑅𝑗∈𝑉′

− 𝑐𝑉𝑂𝑇∑𝑤𝑖 ∑ 𝑥𝑖𝑗
𝑗∈𝑉′𝑖∈𝐶

 (38) 
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s.t. 

∑𝑥𝑖𝑗
𝑖∈𝐶

+∑𝑟𝑗𝑘
𝑘∈𝑅

≤ 1 ∀𝑗 ∈ 𝑉′ (39) 

∑ 𝑥𝑖𝑗
𝑗∈𝑉′

≤ 1 ∀𝑖 ∈ 𝐶 (40) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝑉′ (41) 

𝑟𝑗𝑘 ∈ {0,1} ∀𝑗 ∈ 𝑉′, 𝑘 ∈ 𝑅 (42) 

The objective function contains five separate terms that are associated with a penalty or a 

reward. The first term is a penalty term that denotes the cumulative distance between each newly 

assigned AV 𝑗 and the user 𝑖 it will pick up. The second term rewards the fleet for assigning an 

AV 𝑗 to an open user request 𝑖. The third term penalizes the fleet for allowing an imbalance, greater 

than the minimum imbalance parameter 𝐼𝑚𝑖𝑛, in subregion 𝑘. The fourth term is a cost term that 

denotes the cumulative distance between each AV 𝑗 and the centroid of subregion 𝑘 it is assigned. 

The fifth term further rewards the fleet for assigning AVs to user requests with a long elapsed wait 

time.  

The parameters set (𝑐𝐸𝐷 , 𝑟𝑎𝑠𝑔𝑛, 𝑐𝐼 , 𝑐𝑉𝑂𝑇) convert units of empty vehicle distance, passengers 

assigned, expected subregion imbalances, and elapsed wait time into monetary units. The objective 

function implicitly makes trade-offs between assigning AVs to open requests now, reducing 

subregion imbalances now, and waiting until later (when other AVs will become available) to 

assign AVs to open requests or balance subregions.  

The constraint in Eqn. (39) ensures that each AV 𝑗 is assigned to at most one open user request 

or subregion 𝑘. The constraint in Eqn. (40) ensures that no more than one AV is assigned to a 
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single open user request. The constraints in Eqn. (41)-(42) ensure the two sets of decision variables 

take on binary values.  

The third term in the objective function with the max() term is nonlinear. Fortunately, it is 

easy to convert this term into a linear integer programming problem. The term 𝑧𝑘 in Eqn. (43) 

replaces the max() term in Eqn. (38). The constraints in Eqn. (44) and Eqn. (45) ensure that 𝑧𝑘 

takes a value greater than or equal to the original value in the max() term of Eqn. (38), and zero, 

respectively. The constraints in Eqn. (39)-(42) remain.  

min
𝑥𝑖𝑗,𝑟𝑗𝑘

𝑐𝐸𝐷∑∑ 𝑥𝑖𝑗𝑑𝑖𝑗
𝑗∈𝑉′𝑖∈𝐶

− 𝑟𝑎𝑠𝑔𝑛∑∑ 𝑥𝑖𝑗
𝑗∈𝑉′𝑖∈𝐶

+ 𝑐𝐼∑𝑧𝑘
𝑘∈𝑅

+ 𝑐𝐸𝐷 ∑∑𝑟𝑗𝑘𝑑𝑗𝑘
𝑘∈𝑅𝑗∈𝑉′

− 𝑐𝑉𝑂𝑇∑𝑤𝑖 ∑ 𝑥𝑖𝑗
𝑗∈𝑉′𝑖∈𝐶

 

s.t. 

(43) 

𝐼𝑘 −∑𝑟𝑗𝑘
𝑗∈𝑉

− 𝐼𝑚𝑖𝑛 ≤ 𝑧𝑘 ∀𝑘 ∈ 𝑅 (44) 

𝑧𝑘 ≥ 0 ∀𝑘 ∈ 𝑅 (45) 

Constraints Eqn. (39)-(42)   

Fortunately, the constraint matrix – Eqn. (39)-(42) and Eqn. (44)-(45) – is totally unimodular; 

therefore, the linear relaxation of the integer program always produces integer solutions. Hence, 

even for large instances of this problem, solutions can be obtained in a reasonable amount of time. 

This is quite beneficial as the fleet needs to repeatedly resolve the problem every 𝐼𝑑. 
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Fleet Strategy without Demand Forecasts 

As mentioned previously, this chapter aims to create a quasi-lower-bound on fleet 

performance via testing scenarios that only allow myopic operational strategies that do not 

consider demand forecasts to replicate the case in which short term demand forecasts are not 

available. Using the variable definitions described above, Eqn. (46)-(49) define the myopic user 

assignment strategy without AV repositioning. This math program parallels the formulation in 

Eqn. (38)-(42), except it does not include the repositioning terms and constraints. 

 

min
𝑥𝑖𝑗

𝑐𝐸𝐷∑∑ 𝑥𝑖𝑗𝑑𝑖𝑗
𝑗∈𝑉𝐼𝑖∈𝐶

− 𝑟𝑎𝑠𝑔𝑛∑∑ 𝑥𝑖𝑗
𝑗∈𝑉𝐼𝑖∈𝐶

− 𝑐𝑉𝑂𝑇∑𝑤𝑖 ∑ 𝑥𝑖𝑗
𝑗∈𝑉𝐼𝑖∈𝐶

 

s.t. 

(46) 

∑𝑥𝑖𝑗
𝑖∈𝐶

≤ 1 ∀𝑗 ∈ 𝑉𝐼 (47) 

∑ 𝑥𝑖𝑗
𝑗∈𝑉𝐼

≤ 1 ∀𝑖 ∈ 𝐶 (48) 

𝑥𝑖𝑗 ∈ {0,1} ∀𝑖 ∈ 𝐶, ∀𝑗 ∈ 𝑉𝐼 (49) 

9.6 Experimental Design 

NYC Taxi Data 

This chapter utilizes taxi data from New York City provided by the NYC Taxi and Limousine 

Commission (2017). The yellow taxi data was filtered for trips starting and ending in Manhattan 

since this simplifies the process of aggregating data into subregions of different sizes. The 

simulation treats the recorded taxi trip start times in the NYC taxi data as the users’ request times. 



186 

 

Averaging over all days in April 2016, the number of trips per hour varies between 2,500 trips 

per hour between 4:00am and 5:00am and more than 21,300 trips per hour between 06:00pm and 

08:00pm. For trips per day, the mean is 314,796 trips and the standard deviation is 69,122 trips. 

The mean taxi trip length is 2.8 km (1.7 mi) with a standard deviation of 2.0 km (1.2 mi).  

The origins and destinations of all taxi records were transformed into a metric system and 

create a minimum bounding rectangle. To create the largest forecast subregions, the short edge of 

the minimum bounding rectangle was cut in two and the long edge in eight pieces to create 

approximately square areas. To generate more disaggregate subregions, the edges of each 

subregion are cut in half. Figure 9-3 displays the resulting forecast subregions for four spatial 

aggregation levels. This method produces large differences in the number of trips per zone (i.e. a 

high coefficient of variation for daily trips per subregion) but provides an efficient means to test 

different spatial aggregation levels. 

Since the simulation framework only allows movements along the x-axis and y-axis, the 

coordinate system for Manhattan, along with user’s origins and destinations, were rotated to align 

with the gridded street network. 

Simulating a full day and using a realistic spatio-temporal demand distribution adds practical 

value to the results presented in the next section. Moreover, given the natural spatio-temporal 

fluctuations in demand throughout a typical day, the SAMS fleet relies on demand forecasts to 

reposition AVs in advance of future demand surges. The demand forecast model was calibrated 

based on three months of historical data. 

A preliminary analysis of the NYC taxi trip request data supports the choice of a historical 

average forecast model that segments the data by day-of-the-week. In the case of hourly demand 
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forecasts for the entire borough of Manhattan, not segmenting by day-of-the-week results in a 

coefficient of variation (CV) for taxi trip count of 20%. The CV is between 3% (Wednesdays) and 

7% (Saturdays) when the data are segmented by day-of-the-week. 

 
Figure 9-3: Subregion layout for different spatial aggregation levels (official NYC taxi subregions for 

Manhattan are drawn in the background) 

Figure 9-4 displays demand density across Manhattan during the morning (8:00am-11:00am) 

and evening (5:00pm-8:00pm) for taxi users. These plots were created using the ArcGIS ‘kernel 

plot’ function. The density plots on the left-side and in the middle display the density of trip 
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origins, and destinations, respectively. The density plots on the right-side display the net difference 

between trip destinations and trip origins. In the density plots on the right-side, areas in red (green) 

denote areas where there are more (fewer) trips terminating than originating. As the fleet serves 

demand throughout the day, without repositioning AVs, red (green) areas are likely to have a 

surplus (deficit) of AVs. Hence, repositioning empty AVs, from surplus areas to deficit areas, 

should improve the operational performance of SAMS fleets. 
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a) Origins 08:00 – 11:00 b) Destinations 08:00 – 

11:00 

c) Net (Destinations – 

Origins) 08:00 – 11:00 

   

d) Origins 17:00 – 20:00 e) Destinations 17:00 – 

20:00 

f) Net (Destinations – 

Origins) 17:00 – 20:00 

Figure 9-4: Taxi trip density during the morning (a-c) and evening (d-f) on Wednesday, 2016-04-06 

for trip origins (a and d), trip destinations (b and e), and net trips (c and f) wherein red (green) areas 

represent more (fewer) trip origins, trip destinations, and net trips, respectively 



190 

 

Parameter Settings 

Table 9-1 displays the parameter settings in the computational analysis that do not vary across 

scenarios. Test simulations with 3,500 to 6,000 AVs indicate fleet size is a crucial parameter for 

this study. On the one hand, very small fleet sizes essentially preclude repositioning trips because 

all vehicles are continuously busy serving a growing queue of open user requests. On the other 

hand, very large fleet sizes allow the fleet to easily serve all user requests without any subregions 

ever experiencing a deficit of AVs. Test simulations indicated that 5,000 AVs was a reasonable 

fleet size to both operate an on-demand SAMS with no shared rides, and to answer the research 

problem in this study. 

The 5,000 AVs travel at a fixed rate of 5 m/s (11 mph) because this is approximately the 

average taxi speed in Manhattan. The simulation assumes AVs take 15 seconds to drop off a user 

and 45 seconds to pick up a user.  

Each simulation runs from 3:00am to 11:59pm (i.e. 𝑇 = 21hours); however, user requests 

only enter the system between 3:00am and 10:30pm. The AVs finish picking up and dropping off 

users between 10:30pm and 11:59pm. This procedure ensures the fleet can serve all requests in all 

scenarios. In all scenarios, all the AVs are initially located (at 3:00am) in one location. This forces 

the AVs to reposition before the morning peak period. 

The simulation time step ∆𝜏 is one second. The inter-decision interval 𝐼𝑑 is 30 seconds, which 

is long enough to solve the optimization problem instances in this study. Allowing user requests 

to queue over 30 seconds also allows the fleet controller to make efficient AV-user assignments.  

The impact of 𝐼𝑑 on the operational performance is another interesting research area; however, it 

is beyond the scope of this thesis. 
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The value of wait time 𝑐𝑉𝑂𝑇 and the empty distance cost rate 𝑐𝐸𝐷 used in the objective function 

are $21.6/hr. and $0.3/km ($0.48/mi), respectively. These values coincide with estimates of value 

of time in the literature and the U.S. governmental mileage rate (Internal Revenue Service, 2018). 

The reward for assigning an AV to open user request 𝑟𝑎𝑠𝑔𝑛 is $2.1/user. Given the empty distance 

cost rate 𝑐𝐸𝐷 of $0.3/km, AVs will not be assigned to new user requests if the AVs are more than 

7.0 km (minus 𝑐𝑉𝑂𝑇 × 𝑤𝑖)  away from the new request. A smaller assignment reward value would 

increase user wait times but decrease empty fleet kilometers. The imbalance penalty 𝑐𝐼 is $1.5/user, 

indicating an empty AV will only be considered for repositioning to an imbalanced subregion, if 

the AV and subregion are less than 5.0 km away from each other. The parameter values chosen by 

an SAMS fleet operator will likely depend on how they want to position themselves in the market. 

If the SAMS fleet is concerned with user wait times they can choose larger values for value of wait 

time 𝑐𝑉𝑂𝑇, and the assignment reward 𝑟𝑎𝑠𝑔𝑛. If they are more concerned with offering low prices 

through keeping their operational costs down, they can decrease the assignment reward 𝑟𝑎𝑠𝑔𝑛 and 

the imbalance penalty 𝑐𝐼 to avoid empty miles. 

In this study, the minimum imbalance parameter 𝐼𝑚𝑖𝑛 is set to 1 vehicle. This parameter allows 

the fleet to control the aggressiveness of empty AV repositioning. Larger values of 𝐼𝑚𝑖𝑛 should 

decrease empty repositioning miles while increasing average user wait times; however, this 

analysis is beyond the scope of this thesis. The prediction horizon ℎ𝑝 is 30 minutes.  
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Table 9-1: Parameter Settings that do not Vary across Scenarios 

Parameter Math Notation Value Units 

Fleet Size  5000 vehicles 

Vehicle Speed 𝑣 5 meters/sec. 

Drop-off Time  15 sec. 

Pickup Time  45 sec. 

Simulation Length 𝑇 21 hours 

Simulation Time Step ∆𝜏 1 sec. 

Inter-decision Interval 𝐼𝐷 30 sec. 

Value of Time 𝑐𝑉𝑂𝑇  21.6 $/hr. 

Empty Distance Cost Rate 𝑐𝐸𝐷𝐶𝑅 0.3 $/km 

Assignment Reward 𝑟𝑎𝑠𝑔𝑛 2.1 $/user 

Imbalance Penalty 𝑐𝐼 1.5 $/user 

Minimum Imbalance 𝐼𝑚𝑖𝑛  1 user 

Prediction Horizon ℎ𝑝 30 minutes 

Scenarios 

Given the parameter values listed in the previous subsection, the computational analysis 

involves simulating the performance of a SAMS fleet under a variety of scenarios. The scenarios 

vary: 

• Forecast type: Perfect and model forecasts  

• Spatial partition for demand forecasts (side 1 length | side 2 length | area):  

o 2.83 km | 2.65 km | 7.49 km2  

o 1.41 km | 1.32 km | 1.87 km2  

o 0.71 km | 0.66 km | 0.47 km2  

o 0.35 km | 0.33 km | 0.12 km2 

• Temporal aggregation for demand forecasts: 5-min, 30-min, and 60-min 

• Request data: 30 days of taxi data from April 2016 
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In combination, this represents 2x4x3x30=720 simulations/scenarios. The analysis also 

includes 30 experiments for the no forecast/no AV repositioning case. In the scenarios without 

repositioning, the fleet solves the math program in Eqn. (46)-(49) every 𝐼𝑑. 

9.7 Results 

Demand Forecasting Results 

This subsection presents statistical error measurements for demand forecasts across different 

spatio-temporal aggregation levels. The following two metrics are used to measure statistical error: 

𝑅𝑀𝑆𝑅𝐸 = 
1
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1
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  , 

where 𝑁𝑇 is the number of time intervals and 𝑍𝑛𝑧 is the set of subregions containing demand 

(𝑁𝑛𝑧 = |𝑍𝑛𝑧|). 𝑋𝑘
ℎ and 𝑍𝑘

ℎ are the forecasted number of requests in subregion 𝑘 during time-

interval ℎ from the demand model and the perfect forecast, respectively.  

Figure 9-5 displays the average statistical error values for all days in April 2016 for different 

aggregation levels. The figure shows that errors increase with both shorter time intervals and 

smaller subregions. This finding is consistent across the two error measures employed in this study 

– root mean squared relative error (RMSRE) and symmetric mean absolute percentage error 

(sMAPE). In general, the RMSE metric penalizes large individual errors between actual and 

observed demand (𝑋𝑘
ℎ − 𝑍𝑘

ℎ) more severely than the sMAPE metric. However, the trends in Figure 

9-5 are similar for both error measures. The relationship between temporal aggregation as well as 
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spatial aggregation and statistical forecast error appears to be non-linear. A rigorous analysis of 

these relationships requires more data points and is beyond the scope of this study.  

 

 
Figure 9-5: Average demand forecast errors for different spatial (x-axis) and temporal (line type) 

aggregation levels according to RSMRE (top) and sMAPE (bottom) error measures 
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SAMS Fleet Performance Results 

This subsection presents the results of the computational analysis that was designed to 

evaluate and quantify the impact of spatio-temporal demand forecast aggregation on SAMS fleet 

performance. It includes two key performance metrics: average user wait time and the share of 

empty fleet miles. 

Figure 9-6 displays average user wait time as a function of spatial aggregation and forecast 

type (the temporal aggregation level is 5 minutes in Figure 9-6). Each point on the model and 

perfect forecast lines represents the mean of thirty separate experiments (i.e. the 30 days of April 

2016) for a single spatial aggregation level. As the scenarios without repositioning do not depend 

on forecast aggregation, the dotted line represents the mean of one set of 30 experiments. 

There are several important findings displayed in Figure 9-6. First, average user wait time 

increases significantly with spatial aggregation; i.e. using more disaggregate demand forecasts and 

smaller subregions significantly improve fleet performance in terms of average user wait time. 

Second, it is not until demand forecasts are spatially highly disaggregate and subregions are small 

that a fleet using perfect demand forecasts begins to significantly outperform a fleet using model 

forecasts.  

These first two findings provide some evidence to reject (and support) the hypothesis 

presented in this chapter. Although Figure 9-6 shows continued improvement at progressively 

more disaggregate levels, a comparison of the SAMS performance under perfect forecasts and 

model forecasts suggests that it becomes progressively more difficult to improve fleet performance 

at highly-disaggregate levels using model forecasts with significant errors. This indicates that 
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SAMS providers can benefit from improving demand forecast methods, especially at more 

spatially disaggregate levels.   

Third, a fleet using no information about advanced requests and no empty AV repositioning 

outperforms a fleet using perfect demand forecasts in terms of average user wait times, when 

subregions are large in this study. This finding suggests that the SAMS operational strategy 

employed in this study is suboptimal in general, but especially when the service region is divided 

into large subregions. One potential method to improve the SAMS operational strategy includes 

making sure the AVs do not cluster in subregion centroids or at the edge of subregions when 

repositioning. The operational strategy could force the available/empty AVs to spread out within 

their current subregions. This would decrease the distance between new user requests and the 

available AVs in their subregion. This improvement would likely have the biggest positive impact 

when subregions are large. Additionally, adjusting the parameters in operational strategies 

objective function to emphasize reducing wait times and de-emphasize reducing empty fleet miles, 

may improve the average user wait times for large subregions. 
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Figure 9-6  Average user wait time as a function of subregion edge length (x-axis) and forecast type 

(line color) 

Figure 9-7 displays the percentage of fleet miles that are empty across different spatial 

aggregation levels. The solid lines at the top of the figure represent total empty miles; whereas, 

the small vertical dash lines in the middle represent empty pickup miles and the horizontal dashed 

lines at the bottom represent empty repositioning miles. Total empty miles are the summation of 

empty pickup miles and empty repositioning miles.  

The results in Figure 9-7 are quite interesting, especially in the context of Figure 9-6. Once 

again, fleet performance (measured in total fleet miles) improves with more disaggregate demand 

forecasts and smaller subregions. This finding suggests that there is not a trade-off in terms of 

operational costs and service quality when choosing a spatial aggregation level; rather, more 

disaggregate forecasts and smaller subregions perform better across both metrics.  
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Additionally, Figure 9-7 indicates why/how more disaggregate forecasts and smaller 

subregions produce the shorter wait times in Figure 9-6. Empty pickup miles significantly decrease 

for smaller subregions, meaning AVs are positioned closer to new user requests when subregions 

are smaller, effectively decreasing user wait times. This significant decrease in empty pickup miles 

more than offsets the increase in empty repositioning miles for smaller subregions.  

 
Figure 9-7  Empty fleet miles as a function of subregion edge length (x-axis), type of empty miles (line 

type), and forecast type (line color) 

Table 9-2 shows the computational results in tabular form for all three temporal aggregation 

levels. The table indicates that for the SAMS operational strategy in this study (i) temporal 

aggregation level had minimal impact on fleet performance, and (ii) the relationship between 

spatial aggregation and fleet performance holds across temporal aggregation levels. This first result 

likely does not hold in general. In fact, it suggests that the SAMS operational strategy employed 

in this study fails to effectively use higher-resolution temporal forecasts to improve operational 
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performance. Additional research is needed improve the SAMS operational strategies in this study 

to properly capture the temporal aspects of demand forecasts 

Table 9-2: Complete SAMS Fleet Performance Results as a Function of Forecast Type, Spatial 

Aggregation, and Temporal Aggregation 

Forecast 

Type 

Edge Length 

(km) 

Avg. User Wait 

Time (min) 

Empty Pickup 

Miles Share 

Empty Reposition 

Miles Share 

Total Empty 

Miles Share 

None NA 1.95 16.7% 0.0% 16.7% 

5-min Temporal Aggregation 

Model 

2.7 2.05 17.0% 3.1% 20.1% 

1.35 1.91 15.4% 3.7% 19.1% 

0.68 1.80 13.8% 4.6% 18.4% 

0.34 1.77 12.2% 5.3% 17.5% 

Perfect 

2.7 2.06 17.0% 3.2% 20.3% 

1.35 1.90 15.5% 3.9% 19.4% 

0.68 1.76 13.9% 4.9% 18.8% 

0.34 1.65 12.1% 6.2% 18.3% 

30-min Temporal Aggregation 

Model 

2.7 2.05 17.0% 3.1% 20.1% 

1.35 1.91 15.4% 3.7% 19.1% 

0.68 1.80 13.8% 4.6% 18.4% 

0.34 1.78 12.2% 5.3% 17.5% 

Perfect 

2.7 2.06 17.0% 3.2% 20.2% 

1.35 1.91 15.5% 3.8% 19.3% 

0.68 1.79 13.9% 4.7% 18.6% 

0.34 1.74 12.2% 5.6% 17.7% 

60-min Temporal Aggregation 

Model 

2.7 2.05 17.0% 3.2% 20.1% 

1.35 1.91 15.4% 3.8% 19.1% 

0.68 1.80 13.8% 4.6% 18.4% 

0.34 1.77 12.2% 5.4% 17.5% 

Perfect 

2.7 2.06 17.0% 3.2% 20.3% 

1.35 1.91 15.5% 3.8% 19.4% 

0.68 1.78 14.0% 4.8% 18.7% 

0.34 1.69 12.2% 5.8% 18.0% 
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9.8 Conclusion 

Summary and Implications 

This study evaluates and quantifies the impact of spatio-temporal demand forecast aggregation on 

the operational performance of an on-demand SAMS without shared rides. This research problem 

combines two timely research areas, namely, forecasting demand for mobility services and 

developing strategies to dynamically operate SAMSs efficiently. The existing literature largely 

treats these problems independently despite their inherent interconnection. Hence, the research 

problem and methodological framework presented in this chapter have significant practical value 

to SAMS providers who need to forecast demand in order to efficiently operate their AV fleets.   

The computational analysis illustrates that more disaggregate forecasts significantly improve 

SAMS fleet performance in terms of empty fleet miles and user wait times. As forecasts become 

more disaggregate, the SAMS fleet more effectively repositions AVs into smaller subregions, 

thereby decreasing average user wait times and empty pickup miles. The decrease in empty pickup 

miles more than offsets the increase in empty repositioning miles. Additionally, the results indicate 

that while demand forecast quality has little impact on fleet performance when spatial aggregation 

is high, as demand forecasts become more disaggregate, forecast quality begins to significantly 

impact operational performance.  

These findings suggest that (i) there are significant benefits associated with dividing service 

areas into smaller subregions to forecast demand and reposition AVs, and (ii) improvements in 

demand forecasting methods, particularly for disaggregate spatial scales, can produce significant 

value to on-demand SAMSs in terms of operational performance.  



201 

 

Limitations and Future Work 

This study presented a variety of challenges in terms of conducting a truly scientific analysis to 

test the study’s hypothesis. The study design clearly defines the demand forecasting model, the 

SAMS operational strategy, the NYC taxi data, and the modeling assumptions. Nevertheless, the 

SAMS operational strategy (i.e. the assignment and repositioning algorithm) is not an optimal 

strategy because it is highly unlikely that an optimal strategy exists for such a highly-dynamic, 

stochastic, and large problem. Hence, there is no way to guarantee results will hold across SAMS 

operational strategies. Moreover, there is no way to guarantee the results will hold across different 

demand forecasting methods, and in different service areas. 

This limitation suggests the research problem presented in this chapter along with the flexible 

methodological framework represent more significant scientific contributions than the results for 

one demand forecasting method, one set of taxi data, and one SAMS operational strategy. Future 

research should employ the methodological framework presented in this study, but use different 

SAMS operational strategies, demand forecasting methods, and different user request data to 

further test this study’s hypothesis.  

The 0.34-km edge length is the smallest spatial scale presented in this study due to 

computational constraints. Smaller edge lengths increase the computational time to solve the joint 

assignment-repositioning problem. Future work should improve computational performance and 

test more disaggregate spatial subregions. There is also room for improvement in terms of the 

SAMS operational strategy and its exploitation of the demand forecast output.  

Another future research area of interest is the impact of demand forecast errors on SAMS 

operational performance. Testing different demand forecast models will result in a variation in 
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demand forecast errors, that can be used to determine the relationship between demand forecast 

errors and SAMS operational performance. It is also possible to employ a single model, or perfect 

forecasts, and systematically create errors in the forecasts to answer this research question. In this 

study, forecast errors are also a function of the different demand data; i.e. the different days in the 

taxi data. A study design, which only varies forecast errors while keeping demand and aggregation 

level constant, could also highlight if any forecast error measure correlates better with fleet 

performance results. 

Finally, future work can more effectively handle temporal components of the short-term 

demand forecasts within the repositioning strategy. 
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 Concluding Remarks 

 

10.1 Summary and Contributions 

This thesis focuses on addressing operational problems associated with on-demand shared-

use AV mobility services (SAMSs), which are inherently dynamic and stochastic problems. The 

motivation for this topic arises from the rapid growth of ridesourcing companies (e.g. Uber and 

Lyft) and their impact on personal mobility and entire metropolitan transportation systems 

(Clewlow and Mishra, 2017; Rayle et al., 2016). Further motivation comes from the expected 

advent of fully-autonomous vehicles (AVs) and their eventual inclusion within shared-use mobility 

services. AVs should only increase the market share of shared-use mobility services via decreasing 

operational costs.  

There are many research challenges surrounding SAMSs; however, the data analysis of taxi 

efficiency in Chapter 4 illustrates that without central operation, mobility services may operate 

inefficiently. Operating SAMS fleets more efficiently can improve service quality, reduce 

operational costs, and increase the competitiveness of mobility service providers. Moreover, 

operational efficiency affects fleet miles thereby impacting congestion, fuel consumption, and 

vehicle emissions. Hence, the operational problems, models, and analyses presented in this thesis 

can inform transportation policy makers who are interested in the impacts of SAMSs on individual 

mobility and metropolitan transportation systems.  
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The core contributions of this thesis include defining several SAMSs, delineating the 

underlying problems associated with operating these SAMSs, and presenting solution approaches 

to address the stochastic dynamic problems associated with operating on-demand SAMSs. The 

SAMSs presented in this thesis include the on-demand SAMS without shared rides (Chapter 6), 

the on-demand shared-ride SAMS (Chapter 7), and the on-demand autonomous carsharing service 

(Chapter 8). These on-demand SAMS operational problems represents new instances of stochastic 

dynamic vehicle routing problems. The combination of the SAMS operational problems’ size, 

degree of dynamism, degree of urgency, spatial distribution of user requests, and short user pickup 

and drop-off times make the problem instances unique relative to the existing literature. Moreover, 

the solution approaches presented in this thesis for these unique stochastic dynamic vehicle routing 

problem instances utilize the mathematical programming formulation of the assignment (i.e. 

bipartite matching) problem formulation. Because the linear relaxation of the assignment problem 

returns integer solutions, the formulation is quite useful in the context of highly-dynamic and 

stochastic problems where large problems need to be solved repeatedly.  

Additional contributions presented in this thesis include the taxonomy of VRPs developed to 

classify SAMS operational problem classes and problem instances (Chapter 2); the operational 

efficiency analysis of the Chicago taxi fleet (Chapter 4); the in-depth sensitivity analysis on the 

impact of the maximum in-vehicle user detour time parameter on customer service quality and 

operational efficiency for the on-demand shared-ride SAMS (Chapter 7); and the methodology 

developed to quantify the impact of spatio-temporal demand forecast aggregation on the 

performance of an on-demand SAMS without shared rides (Chapter 9);  
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10.2 Applications 

The research presented in this thesis has several important application areas. The first, and 

most apparent, application area is the operation of SAMSs in the future. Hopefully, fleet operators 

gain insight from the conceptualization of SAMS operational problem instances in this thesis, as 

well as find the models and solution approaches useful for different applications. The taxonomy 

of VRPs in Chapter 2 provides an overview of important considerations in the design of mobility 

services for service providers. The mathematical models and solution approaches in this thesis are 

also meant to be implementable for service providers. The integration of short-term demand 

forecasting and SAMS operational models in Chapter 9 should be particularly useful for SAMS 

providers. 

The second application is the modeling of urban transportation systems. Transportation 

planners employ transportation system models in order to understand the impacts of different 

planning and policy changes on metropolitan transportation systems. For example: how will 

congestion pricing impact traffic congestion in urban areas? Or, how will AVs and SAMS impact 

travel behavior, demand for transit, demand for roadways, and roadway capacity? However, most 

existing transportation system models do not incorporate mobility services. Hence, the models and 

solution methods presented in this thesis provide a strong basis for modeling SAMS fleets in 

transportation networks.  

10.3 Future Research Areas 

Modeling and optimizing SAMS fleets that serve passengers is a relatively new area of 

research that requires further study. One of the biggest challenges involves incorporating the 
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advanced SAMS fleet operational strategies within a traffic simulation model. In reality, SAMS 

fleets will significantly impact traffic congestion and traffic congestion will significantly impact 

the operation of SAMS fleets. Most of the modeling frameworks in the literature, including the 

one presented in this thesis, ignore the interrelationships between SAMS fleets and traffic 

congestion. Properly capturing this interrelationship is very important for transportation planning 

and policy questions, as well as SAMS operational problems. More broadly, the notion of vehicle 

route choices and user-equilibrium on road networks needs to be reconsidered in era of shared 

mobility.  

The taxonomy in Chapter 2 illustrates that there are numerous SAMS operational problems 

that still need to be addressed. Although Alonso-Mora et al. (2017) present important research on 

the shared-ride problem, there is still room for advancements. Another challenging SAMS 

operational problem of interest involves modeling a SAMS with advanced and immediate traveler 

demand requests. The advanced demand requests will have tight and strict time-windows; whereas, 

the immediate demand requests will still want to be assigned to an AV immediately and picked up 

within a few minutes.  

Other open research areas related to SAMSs include incorporating pricing into the dynamic 

fleet modeling framework (Chen and Kockelman, 2016; Figliozzi et al., 2007; Sayarshad and 

Chow, 2015) and allowing travelers to accept or reject price and wait time offers from SAMS fleet 

operators. Incorporating pricing and allowing users to reject SAMS offers within an SAMS 

modeling framework requires the development and integration of behavioral models. 

Finally, there needs to be a real focus on developing robust solution algorithms for the 

operational problems associated with SAMSs. Although trucking, taxi, and other vehicle fleets 
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currently use real-time control algorithms to provide decision support to vehicle dispatchers and/or 

drivers, with AVs, control algorithms will need to make decisions rather than support decision 

makers. The difference is important and needs to be reflected in the solution algorithms and 

modeling frameworks.   



208 

 

REFERENCES 

Agatz, N., Erera, A., Savelsbergh, M., Wang, X., 2012. Optimization for dynamic ride-sharing: 

A review. European Journal of Operational Research 223, 295–303. 

doi:10.1016/j.ejor.2012.05.028 

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., Rus, D., 2017. On-demand high-

capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National 

Academy of Sciences of the United States of America 114, 462–467. 

doi:10.1073/pnas.1611675114 

Andersson, T., Värbrand, P., 2007. Decision support tools for ambulance dispatch and relocation. 

Journal of the Operational Research Society 58, 195–201. 

doi:10.1057/palgrave.jors.2602174 

Archetti, C., Speranza, M.G., Vigo, D., 2014. Chapter 10: Vehicle Routing Problems with 

Profits, in: Vehicle Routing. Society for Industrial and Applied Mathematics, 

Philadelphia, PA, pp. 273–297. doi:10.1137/1.9781611973594.ch10 

Bektas, T., Repoussis, P.P., Tarantilis, C.D., 2014. Chapter 11: Dynamic Vehicle Routing 

Problems, in: Vehicle Routing. Society for Industrial and Applied Mathematics, 

Philadelphia, PA, pp. 299–347. doi:10.1137/1.9781611973594.ch11 

Berbeglia, G., Cordeau, J.-F., Laporte, G., 2010. Dynamic pickup and delivery problems. 

European Journal of Operational Research 202, 8–15. doi:10.1016/j.ejor.2009.04.024 

Bertsimas, D., de Boer, S., 2005. Simulation-Based Booking Limits for Airline Revenue 

Management. Operations Research 53, 90–106. doi:10.1287/opre.1040.0164 

Bilegan, I.C., Brotcorne, L., Feillet, D., Hayel, Y., 2015. Revenue management for rail container 

transportation. EURO Journal on Transportation and Logistics 4, 261–283. 

doi:10.1007/s13676-014-0051-7 

Bischoff, J., Maciejewski, M., 2016. Simulation of City-wide Replacement of Private Cars with 

Autonomous Taxis in Berlin, in: Procedia Computer Science. 

doi:10.1016/j.procs.2016.04.121 

Bodin, L., Golden, B., 1981. Classification in vehicle routing and scheduling. Networks 11, 97–

108. doi:10.1002/net.3230110204 

Boesch, P.M., Ciari, F., Axhausen, K.W., 2016. Autonomous Vehicle Fleet Sizes Required to 

Serve Different Levels of Demand. Transportation Research Record: Journal of the 

Transportation Research Board 2542, 111–119. doi:10.3141/2542-13 

Brotcorne, L., Laporte, G., Semet, F., 2003. Ambulance location and relocation models. 



209 

 

European Journal of Operational Research 147, 451–463. doi:10.1016/S0377-

2217(02)00364-8 

Brown, T., 2016. Matchmaking in Lyft Line - Part 3 [WWW Document]. Lyft Engineering. 

Burns, L., Jordan, W., Scarborough, B., 2013. Transforming Personal Mobility. New York. 

Chaniotakis, E., Antoniou, C., Pereira, F., 2016. Mapping Social media for transportation 

studies. IEEE Intelligent Systems 31, 64–70. doi:10.1109/MIS.2016.98 

Chen, T.D., Kockelman, K.M., 2016. Management of a Shared Autonomous Electric Vehicle 

Fleet: Implications of Pricing Schemes. Transportation Research Record: Journal of the 

Transportation Research Board 2572, 37–46. doi:10.3141/2572-05 

Chen, T.D., Kockelman, K.M., Hanna, J.P., 2016. Operations of a shared, autonomous, electric 

vehicle fleet: Implications of vehicle & charging infrastructure decisions. Transportation 

Research Part A: Policy and Practice 94, 243–254. doi:10.1016/j.tra.2016.08.020 

Chen, Y., Hyland, M., Wilbur, M.P., Mahmassani, H.S., 2018. Characterization of Taxi Fleet 

Operational Networks and Vehicle Efficiency: A Chicago Case Study. Transportation 

Research Record. 

Chicago Data Portal, 2017. Taxi Trips. Chicago. 

Clewlow, R., Mishra, G.S., 2017. Disruptive Transportation: The Adoption, Utilization, and 

Impacts of Ride-Hailing in the United States. 

Dandl, F., Bogenberger, K., 2018a. Booking Processes in Autonomous Carsharing and Taxi 

Systems, in: Transportation Research Arena. Vienna, Austria. 

Dandl, F., Bogenberger, K., 2018b. Comparing Future Autonomous Electric Taxis with an 

Existing Free-Floating Carsharing System. accepted to IEEE ITS Transactions 1–11. 

Dandl, F., Bracher, B., Bogenberger, K., 2017. Microsimulation of an autonomous taxi-system in 

Munich, in: 2017 5th IEEE International Conference on Models and Technologies for 

Intelligent Transportation Systems (MT-ITS). IEEE, pp. 833–838. 

doi:10.1109/MTITS.2017.8005628 

Dantzig, G.B., Ramser, J.H., 1959. The Truck Dispatching Problem. Management Science 6, 80–

91. doi:10.1287/mnsc.6.1.80 

Downs, A., 2004. Why Traffic Congestion Is Here to Stay. . . and Will Get Worse. ACCESS 19–

25. doi:https://www.accessmagazine.org/wp-content/uploads/sites/7/2016/07/Access-25-

04-Traffic-Congestion-is-Here-to-Stay.pdf 

Eksioglu, B., Vural, A.V., Reisman, A., 2009. The vehicle routing problem: A taxonomic 

review. Computers & Industrial Engineering 57, 1472–1483. 



210 

 

doi:10.1016/j.cie.2009.05.009 

Fagnant, D.J., Kockelman, K.M., 2016. Dynamic ride-sharing and fleet sizing for a system of 

shared autonomous vehicles in Austin, Texas. Transportation 1–16. doi:10.1007/s11116-

016-9729-z 

Fagnant, D.J., Kockelman, K.M., 2014. The travel and environmental implications of shared 

autonomous vehicles, using agent-based model scenarios. Transportation Research Part 

C: Emerging Technologies 40, 1–13. doi:10.1016/j.trc.2013.12.001 

Fagnant, D.J., Kockelman, K.M., Bansal, P., 2015. Operations of Shared Autonomous Vehicle 

Fleet for Austin, Texas, Market. Transportation Research Record: Journal of the 

Transportation Research Board 2536, 98–106. doi:10.3141/2536-12 

Figliozzi, M.A., Mahmassani, H.S., Jaillet, P., 2007. Pricing in Dynamic Vehicle Routing 

Problems. Transportation Science 41, 302–318. 

Fleischmann, B., Gnutzmann, S., Sandvoß, E., 2004. Dynamic Vehicle Routing Based on Online 

Traffic Information. Transportation Science 38, 420–433. 

Ford, H., 2012. Shared Autonomous Taxis: Implementing an Efficient Alternative to Automobile 

Dependency. Princeton University. 

Frantzeskakis, L.F., Powell, W.B., 1990. A Successive Linear Approximation Procedure for 

Stochastic, Dynamic Vehicle Allocation Problems. Transportation Science 24, 40–57. 

doi:10.1287/trsc.24.1.40 

Furuhata, M., Dessouky, M., Ordóñez, F., Brunet, M.-E., Wang, X., Koenig, S., 2013. 

Ridesharing: The state-of-the-art and future directions. Transportation Research Part B: 

Methodological 57, 28–46. doi:10.1016/j.trb.2013.08.012 

Gendreau, M., Laporte, G., Séguin, R., 1996. Stochastic vehicle routing. European Journal of 

Operational Research 88, 3–12. doi:10.1016/0377-2217(95)00050-X 

Gendreau, M., Laporte, G., Semet, F., 2001. A dynamic model and parallel tabu search heuristic 

for real-time ambulance relocation. Parallel Computing 27, 1641–1653. 

doi:10.1016/S0167-8191(01)00103-X 

Goodson, J.C., Ohlmann, J.W., Thomas, B.W., 2013. Rollout Policies for Dynamic Solutions to 

the Multivehicle Routing Problem with Stochastic Demand and Duration Limits. 

Operations Research 61, 138–154. doi:10.1287/opre.1120.1127 

Google, 2017. Google Maps API [WWW Document]. URL 

https://developers.google.com/maps/documentation/distance-matrix/start. 

Haggag, K., McManus, B., Paci, G., 2017. Learning by Driving: Productivity Improvements by 

New York City Taxi Drivers. American Economic Journal: Applied Economics 9, 70–95. 



211 

 

doi:10.1257/app.20150059 

Haghani, A., Yang, S., 2007. Real-Time Emergency Response Fleet Deployment: Concepts, 

Systems, Simulation &amp; Case Studies, in: Dynamic Fleet Management. Springer US, 

Boston, MA, pp. 133–162. doi:10.1007/978-0-387-71722-7_7 

Hanna, J.P., Albert, M., Chen, D., Stone, P., 2016. Minimum Cost Matching for Autonomous 

Carsharing, in: Proceedings of the 9th IFAC Symposium on Intelligent Autonomous 

Vehicles. Leipzig, Germany. 

Hörl, S., Ruch, C., Becker, F., Frazzoli, E., Axhausen, K.W., 2017. Fleet control algorithms for 

automated mobility : A simulation assessment for Zurich, in: TRB 2018 Annual Meeting. 

doi:10.3929/ETHZ-B-000175260 

Hosni, H., Naoum-Sawaya, J., Artail, H., 2014. The shared-taxi problem: Formulation and 

solution methods. Transportation Research Part B: Methodological 70, 303–318. 

doi:10.1016/j.trb.2014.09.011 

Hyland, M., Mahmassani, H.S., 2018. Dynamic autonomous vehicle fleet operations: 

Optimization-based strategies to assign AVs to immediate traveler demand requests. 

Transportation Research Part C: Emerging Technologies 92, 278–297. 

doi:10.1016/j.trc.2018.05.003 

Hyland, M.F., Mahmassani, H.S., 2017. Taxonomy of Shared Autonomous Vehicle Fleet 

Management Problems to Inform Future Transportation Mobility. Transportation 

Research Record: Journal of the Transportation Research Board 2653, 26–34. 

doi:10.3141/2653-04 

IBM, 2017. Descriptive, predictive, prescriptive: Transforming asset and facilities management 

with analytics. Somers. 

Ichoua, S., Gendreau, M., Potvin, J.-Y., 2006. Exploiting Knowledge About Future Demands for 

Real-Time Vehicle Dispatching. Transportation Science 40, 211–225. 

doi:10.1287/trsc.1050.0114 

Iglesias, R., Rossi, F., Wang, K., Hallac, D., Leskovec, J., Pavone, M., 2017. Data-Driven Model 

Predictive Control of Autonomous Mobility-on-Demand Systems. 

Ihler, A., Hutchins, J., Smyth, P., 2006. Adaptive event detection with time-varying poisson 

processes. Proceedings of the 12th ACM SIGKDD international conference on 

Knowledge discovery and data mining  - KDD ’06 207. doi:10.1145/1150402.1150428 

Internal Revenue Service, 2018. Standard Mileage Rates [WWW Document]. URL 

https://www.irs.gov/tax-professionals/standard-mileage-rates (accessed 10.16.18). 

International Transport Forum, 2015. Urban Mobility System Upgrade: How shared self-driving 



212 

 

cars could change city traffic. 

Jaillet, P., Wagner, M.R., 2006. Online Routing Problems: Value of Advanced Information as 

Improved Competitive Ratios. Transportation Science 40, 200–210. 

Kiam Tian Seow, Nam Hai Dang, Der-Horng Lee, 2010. A Collaborative Multiagent Taxi-

Dispatch System. IEEE Transactions on Automation Science and Engineering 7, 607–

616. doi:10.1109/TASE.2009.2028577 

King, D.A., Saldarriaga, J.F., 2017. Spatial Regulation of Taxicab Services: Measuring Excess 

Travel from New York City, in: Transportation Research Board 96th Annual Meeting. 

Transportation Research Board, Washington DC, United States. 

Krueger, R., Rashidi, T.H., Rose, J.M., 2016. Preferences for shared autonomous vehicles. 

Transportation Research Part C: Emerging Technologies 69, 343–355. 

doi:10.1016/j.trc.2016.06.015 

Lahyani, R., Khemakhem, M., Semet, F., 2015. Rich vehicle routing problems: From a 

taxonomy to a definition. European Journal of Operational Research 241, 1–14. 

doi:10.1016/J.EJOR.2014.07.048 

Laporte, G., 1992. The vehicle routing problem: An overview of exact and approximate 

algorithms. European Journal of Operational Research 59, 345–358. doi:10.1016/0377-

2217(92)90192-C 

Larsen, A., Madsen, O.B.G., Solomon, M.M., 2002. Partially Dynamic Vehicle Routing-Models 

and Algorithms. Journal of the Operational Research Society 53, 637–646. 

Lee, A., Savelsbergh, M., 2015. Dynamic ridesharing: Is there a role for dedicated drivers? 

Transportation Research Part B: Methodological 81. doi:10.1016/j.trb.2015.02.013 

Lee, D.-H., Wang, H., Cheu, R., Teo, S., 2004. Taxi Dispatch System Based on Current 

Demands and Real-Time Traffic Conditions. Transportation Research Record 1882, 193–

200. 

Lee, S., 2012. The role of centrality in ambulance dispatching. Decision Support Systems 54, 

282–291. doi:10.1016/j.dss.2012.05.036 

Levin, M.W., Fritz, H., Boyles, S.D., 2017a. On Optimizing Reservation-Based Intersection 

Controls. IEEE Transactions on Intelligent Transportation Systems 18, 505–515. 

doi:10.1109/TITS.2016.2574948 

Levin, M.W., Kockelman, K.M., Boyles, S.D., Li, T., 2017b. A general framework for modeling 

shared autonomous vehicles with dynamic network-loading and dynamic ride-sharing 

application. Computers, Environment and Urban Systems 64, 373–383. 

doi:10.1016/j.compenvurbsys.2017.04.006 



213 

 

Liu, X., Gong, L., Gong, Y., Liu, Y., 2015. Revealing travel patterns and city structure with taxi 

trip data. Journal of Transport Geography 43, 78–90. doi:10.1016/j.jtrangeo.2015.01.016 

Lu, Q., Dessouky, M.M., 2006. A new insertion-based construction heuristic for solving the 

pickup and delivery problem with time windows. European Journal of Operational 

Research 175, 672–687. doi:10.1016/j.ejor.2005.05.012 

Lund, K., Madsen, O.B.G., Rygaard, J.M., 1996. Vehicle routing with varying degree of 

dynamism. 

Ma, S., Zheng, Y., Wolfson, O., 2015. Real-Time City-Scale Taxi Ridesharing. IEEE 

Transactions on Knowledge and Data Engineering 27, 1782–1795. 

doi:10.1109/TKDE.2014.2334313 

Maciejewski, M., Bischoff, J., Nagel, K., 2016. An Assignment-Based Approach to Efficient 

Real-Time City-Scale Taxi Dispatching. IEEE Intelligent Systems 31, 68–77. 

doi:10.1109/MIS.2016.2 

Maciejewski, M., Nagel, K., 2013. Simulation and dynamic optimization of taxi services in 

MATSim. 

Makridakis, S., 1988. Metaforecasting : Ways of improving forecasting accuracy and usefulness. 

International Journal of Forecasting 4, 467–491. 

Martinez, L.M., Viegas, J.M., 2017. Assessing the impacts of deploying a shared self-driving 

urban mobility system: An agent-based model applied to the city of Lisbon, Portugal. 

International Journal of Transportation Science and Technology 6, 13–27. 

doi:10.1016/j.ijtst.2017.05.005 

McGill, J.I., van Ryzin, G.J., 1999. Revenue Management: Research Overview and Prospects. 

Transportation Science 33, 233–256. doi:10.1287/trsc.33.2.233 

Mckenzie, B., Rapino, M., 2011. Commuting in the United States: 2009. 

Moreira-Matias, L., Gama, J., Ferreira, M., Mendes-Moreira, J., Damas, L., 2013. Predicting 

taxi-passenger demand using streaming data. IEEE Transactions on Intelligent 

Transportation Systems 14, 1393–1402. doi:10.1109/TITS.2013.2262376 

Müller, J., Bogenberger, K., 2015. Time series analysis of booking data of a free-floating 

carsharing system in Berlin. Transportation Research Procedia 10, 345–354. 

doi:10.1016/j.trpro.2015.09.084 

Nasrollahzadeh, A.A., Khademi, A., Mayorga, M.E., 2018. Real-Time Ambulance Dispatching 

and Relocation. Manufacturing & Service Operations Management 20, 467–480. 

doi:10.1287/msom.2017.0649 

NYC Taxi & Limousine Commission, 2017. TLC Trip Record Data [WWW Document]. URL 



214 

 

http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml (accessed 7.24.18). 

Pavone, M., Smith, S.L., Frazzoli, E., Rus, D., 2012. Robotic load balancing for mobility-on-

demand systems. International Journal of Robotics Research 31, 839–854. 

doi:10.1177/0278364912444766 

Pavone, M., Smith, S.L., Frazzoli, E., Rus, D., 2011. Load Balancing for Mobility-on-Demand 

Systems, in: Robotics: Science and Systems 2011. Los Angeles. 

Pillac, V., Gendreau, M., Guéret, C., Medaglia, A.L., 2013. A review of dynamic vehicle routing 

problems. European Journal of Operational Research 225, 1–11. 

doi:10.1016/j.ejor.2012.08.015 

Powell, W.B., 2011. Approximate Dynamic Programming, Second. ed. Hoboken. 

Powell, W.B., 1996. A Stochastic Formulation of the Dynamic Assignment Problem, with an 

Application to Truckload Motor Carriers. Transportation Science 30, 195–219. 

doi:10.1287/trsc.30.3.195 

Psaraftis, H.N., 1983. An Exact Algorithm for the Single Vehicle Many-to-Many Dial-A-Ride 

Problem with Time Windows. http://dx.doi.org/10.1287/trsc.17.3.351 17, 351–357. 

Psaraftis, H.N., 1980. A Dynamic Programming Solution to the Single Vehicle Many-to-Many 

Immediate Request Dial-a-Ride Problem. Transportation Science 14, 130–154. 

doi:10.1287/trsc.14.2.130 

Psaraftis, H.N., Wen, M., Kontovas, C.A., 2016. Dynamic vehicle routing problems: Three 

decades and counting. Networks 67, 3–31. doi:10.1002/net.21628 

Pureza, V., Laporte, G., 2008. Waiting and Buffering Strategies for the Dynamic Pickup and 

Delivery Problem with Time Windows. INFOR: Information Systems and Operational 

Research 46, 165–176. doi:10.3138/infor.46.3.165 

Puterman, M.L., 2014. Markov decision processes : discrete stochastic dynamic programming. 

Wiley-Interscience. 

Qian, X., Ukkusuri, S. V., 2015. Spatial variation of the urban taxi ridership using GPS data. 

Applied Geography 59, 31–42. doi:10.1016/j.apgeog.2015.02.011 

Rayle, L., Dai, D., Chan, N., Cervero, R., Shaheen, S., 2016. Just a better taxi? A survey-based 

comparison of taxis, transit, and ridesourcing services in San Francisco. Transport Policy 

45, 168–178. doi:10.1016/j.tranpol.2015.10.004 

Regan, A., Mahmassani, H., Jaillet, P., 1996. Dynamic Decision Making for Commercial Fleet 

Operations Using Real-Time Information. Transportation Research Record: Journal of 

the Transportation Research Board 1537, 91–97. doi:10.3141/1537-13 



215 

 

Regan, A.C., Mahmassani, H.S., Jaillet, P., 1995. Improving Efficiency of Commercial Vehicle 

Operations Using Real-time Information; Potential Uses and Assignment Strategies. 

Transportation Research Record 188–198. 

Rigole, P.-J., 2014. Study of a Shared Autonomous Vehicles Based Mobility Solution in 

Stockholm. 

Ritzinger, U., Puchinger, J., Hartl, R.F., 2015. A survey on dynamic and stochastic vehicle 

routing problems. International Journal of Production Research 54, 215–231. 

doi:10.1080/00207543.2015.1043403 

Ropke, S., Cordeau, J.-F., 2009. Branch and Cut and Price for the Pickup and Delivery Problem 

with Time Windows. Transportation Science 43, 267–286. doi:10.1287/trsc.1090.0272 

Santi, P., Resta, G., Szell, M., Sobolevsky, S., Strogatz, S.H., Ratti, C., 2014. Quantifying the 

benefits of vehicle pooling with shareability networks. Proceedings of the National 

Academy of Sciences of the United States of America 111, 13290–4. 

doi:10.1073/pnas.1403657111 

Santos, D.O., Xavier, E.C., 2015. Taxi and Ride Sharing: A Dynamic Dial-a-Ride Problem with 

Money as an Incentive. Expert Systems with Applications 42, 6728–6737. 

doi:10.1016/j.eswa.2015.04.060 

Savelsbergh, M.W.P., Sol, M., 1995. The General Pickup and Delivery Problem. Transportation 

Science 29, 17–29. doi:10.1287/trsc.29.1.17 

Sayarshad, H.R., Chow, J.Y.J., 2017. Non-myopic relocation of idle mobility-on-demand 

vehicles as a dynamic location-allocation-queueing problem. Transportation Research 

Part E: Logistics and Transportation Review 106, 60–77. doi:10.1016/j.tre.2017.08.003 

Sayarshad, H.R., Chow, J.Y.J., 2016. Survey and empirical evaluation of nonhomogeneous 

arrival process models with taxi data. Journal of Advanced Transportation 50, 1275–

1294. doi:10.1002/atr.1401 

Sayarshad, H.R., Chow, J.Y.J., 2015. A scalable non-myopic dynamic dial-a-ride and pricing 

problem. Transportation Research Part B: Methodological 81, 539–554. 

doi:10.1016/j.trb.2015.06.008 

Schmid, V., 2012. Solving the dynamic ambulance relocation and dispatching problem using 

approximate dynamic programming. European Journal of Operational Research 219, 

611–621. doi:10.1016/j.ejor.2011.10.043 

Schmid, V., Doerner, K.F., 2010. Ambulance location and relocation problems with time-

dependent travel times. European Journal of Operational Research 207, 1293–1303. 

doi:10.1016/j.ejor.2010.06.033 



216 

 

Schneider, T.W., 2016. Analyzing 1.1 Billion NYC Taxi and Uber Trips, with a Vengeance 

[WWW Document]. URL http://toddwschneider.com/posts/analyzing-1-1-billion-nyc-

taxi-and-uber-trips-with-a-vengeance/ (accessed 7.27.17). 

Sheridan, P.K., Gluck, E., Guan, Q., Pickles, T., Balcıog˜lu, B., Benhabib, B., 2013. The 

dynamic nearest neighbor policy for the multi-vehicle pick-up and delivery problem. 

Transportation Research Part A: Policy and Practice 49, 178–194. 

doi:10.1016/j.tra.2013.01.032 

Spieser, K., Samaranayake, S., Gruel, W., Frazzoli, E., 2016. Shared-vehicle Mobility-on-

Demand Systems: A Fleet Operator’s Guide to Rebalancing Empty Vehicles, in: 95th 

Annual Meeting of the Transportation Research Board. Washington D.C. 

Spieser, K., Treleaven, K., Zhang, R., Frazzoli, E., Pavone, M., 2014. Toward a Systematic 

Approach to the Design and Evaluation of Automated Mobility-on-Demand Systems: A 

Case Study in Singapore, in: Meyer, G., Beiker, S. (Eds.), Road Vehicle Automation, 

Lecture Notes in Mobility. Springer International Publishing, pp. 229–245. 

doi:10.1007/978-3-319-05990-7 

Talebpour, A., Mahmassani, H.S., 2016. Influence of connected and autonomous vehicles on 

traffic flow stability and throughput. Transportation Research Part C: Emerging 

Technologies 71, 143–163. doi:10.1016/J.TRC.2016.07.007 

Thomas, B.W., 2007. Waiting Strategies for Anticipating Service Requests from Known 

Customer Locations. Transportation Science 41, 319–331. doi:10.1287/trsc.1060.0183 

Tjokroamidjojo, D., Kutanoglu, E., Taylor, G.D., 2006. Quantifying the value of advance load 

information in truckload trucking. Transportation Research Part E: Logistics and 

Transportation Review 42, 340–357. doi:10.1016/j.tre.2005.01.001 

Tong, Y., Chen, Y., Zhou, Z., Chen, L., Wang, J., Yang, Q., Ye, J., Lv, W., 2017. The Simpler 

The Better. Proceedings of the 23rd ACM SIGKDD International Conference on 

Knowledge Discovery and Data Mining  - KDD ’17 1653–1662. 

doi:10.1145/3097983.3098018 

Toth, P., Vigo, D. (Eds.), 2002. The Vehicle Routing Problem. Society for Industrial and 

Applied Mathematics. doi:10.1137/1.9780898718515 

Tsao, M., Iglesias, R., Pavone, M., 2018. Stochastic Model Predictive Control for Autonomous 

Mobility on Demand. 

Ulmer, M., Goodson, J., Mattfeld, D., Thomas, B., 2017. Route-based Markov decision 

processes for dynamic vehicle routing problems. 

Ulmer, M., Thomas, B.W., Campbell, A.M., Ulmer, M.W., Woyak, N., 2017. The Restaurant 

Meal Delivery Problem: Dynamic Pick-Up and Delivery with Deadlines and Random 



217 

 

Ready Times. 

Ulmer, M.W., 2017. Approximate Dynamic Programming for Dynamic Vehicle Routing, 61st 

ed, Operations Research/Computer Science Interfaces Series. Springer. 

Ulmer, M.W., 2016. Anticipation vs. Reoptimization for Dynamic Vehicle Routing with 

Stochastic Requests. 

van Lon, R.R.S., Ferrante, E., Turgut, A.E., Wenseleers, T., Berghe, G. Vanden, Holvoet, T., 

2016. Measures of dynamism and urgency in logistics. European Journal of Operational 

Research 253, 614–624. doi:10.1016/J.EJOR.2016.03.021 

Viegas, J., Martinez, L., 2016. Shared Mobility: Innovation for Liveable Cities. 

Voccia, S.A., Melissa Campbell, A., Thomas, B.W., 2017. The Same-Day Delivery Problem for 

Online Purchases. Transportation Science trsc.2016.0732. doi:10.1287/trsc.2016.0732 

Wang, R., 2015. The stops made by commuters: evidence from the 2009 US National Household 

Travel Survey. Journal of Transport Geography 47, 109–118. 

doi:10.1016/J.JTRANGEO.2014.11.005 

Waymo, 2017. Waymo’s fully self-driving vehicles are here [WWW Document]. Medium. URL 

https://medium.com/waymo/with-waymo-in-the-drivers-seat-fully-self-driving-vehicles-

can-transform-the-way-we-get-around-75e9622e829a (accessed 11.7.17). 

Weikl, S., Bogenberger, K., 2015. A practice-ready relocation model for free-floating carsharing 

systems with electric vehicles - Mesoscopic approach and field trial results. 

Transportation Research Part C: Emerging Technologies 57, 206–223. 

doi:10.1016/j.trc.2015.06.024 

Wilson, N.H.M., Colvin, N.J., 1977. Computer control of the Rochester dial-a-ride system, 

Technical Report R77-31. Cambridge, Massachusetts. 

Wingfield, N., 2017. Automakers Race to Get Ahead of Silicon Valley on Car-Sharing. New 

York Times. 

Winter, K., Cats, O., van Arem, B., Martens, K., 2017. Impact of relocation strategies for a fleet 

of shared automated vehicles on service efficiency, effectiveness and externalities. IEEE, 

pp. 844–849. doi:10.1109/MTITS.2017.8005630 

Yang, C., Gonzales, E.J., 2017. Modeling Taxi Demand and Supply in New York City Using 

Large-Scale Taxi GPS Data, in: Thakuriah, P., Tilahun, N., Zellner, M. (Eds.), Seeing 

Cities Through Big Data: Research, Methods and Applications in Urban Informatics. 

Springer, pp. 405–425. doi:10.1007/978-3-319-40902-3_22 

Yang, J., Jaillet, P., Mahmassani, H., 2004. Real-Time Multivehicle Truckload Pickup and 

Delivery Problems. Transportation Science 38, 135–148. 



218 

 

Yang, J., Jaillet, P., Mahmassani, H., 1999. On-Line Algorithms for Truck Fleet Assignment and 

Scheduling Under Real-Time Information. Transportation Research Record: Journal of 

the Transportation Research Board 1667, 107–113. doi:10.3141/1667-13 

Zachariah, J., Gao, J., Kornhauser, A., Mufti, T., 2014. Uncongested Mobility for All: A 

Proposal for an Area Wide Autonomous Taxi System in New Jersey, in: Transportation 

Research Board 93rd Annual Meeting. 

Zha, L., Yin, Y., Xu, Z., 2018. Geometric matching and spatial pricing in ride-sourcing markets. 

Transportation Research Part C: Emerging Technologies 92, 58–75. 

doi:10.1016/J.TRC.2018.04.015 

Zhan, X., Qian, X., Ukkusuri, S. V., 2016. A Graph-Based Approach to Measuring the 

Efficiency of an Urban Taxi Service System. IEEE Transactions on Intelligent 

Transportation Systems 17, 2479–2489. doi:10.1109/TITS.2016.2521862 

Zhan, X., Qian, X., Ukkusuri, S. V, 2014. Measuring the Efficiency of Urban Taxi Service 

System, in: Proc. The 3rd International Workshop on Urban Computing. New York, NY, 

USA. 

Zhang, R., Pavone, M., 2016. Control of robotic mobility-on-demand systems: A queueing-

theoretical perspective. International Journal of Robotics Research 35, 186–203. 

doi:10.1177/0278364915581863 

Zhang, R., Rossi, F., Pavone, M., 2018. Analysis, Control, and Evaluation of Mobility-on-

Demand Systems: a Queueing Theoretical Approach. IEEE Transactions on Control of 

Network Systems 1–1. doi:10.1109/TCNS.2018.2800403 

Zhang, R., Rossi, F., Pavone, M., 2015. Model Predictive Control of Autonomous Mobility-on-

Demand Systems. doi:10.1109/ICRA.2016.7487272 

Zhang, W., Guhathakurta, S., Fang, J., Zhang, G., 2015a. The Performance and Benefits of a 

Shared Autonomous Vehicles Based Dynamic Ridesharing System: An Agent-Based 

Simulation Approach, in: Transportation Research Board 94th Annual Meeting. 

Zhang, W., Guhathakurta, S., Fang, J., Zhang, G., 2015b. Exploring the Impact of Shared 

Autonomous Vehicles on Urban Parking Demand: An Agent-based Simulation 

Approach. Sustainable Cities and Society 19, 34–45. doi:10.1016/j.scs.2015.07.006 

Zhong, C., Batty, M., Manley, E., Wang, J., Wang, Z., Chen, F., Schmitt, G., 2016. Variability in 

regularity: Mining temporal mobility patterns in London, Singapore and Beijing using 

smart-card data. PLoS ONE 11. doi:10.1371/journal.pone.0149222 

Zhu, S., Kornhauser, A., 2017. The Interplay Between Fleet Size, Level-of-Service and Empty 

Vehicle Repositioning Strategies in Large-Scale, Shared-Ride Autonomous Taxi 

Mobility-on-Demand Scenarios, in: Transportation Research Board 96th Annual 



219 

 

Meeting. Transportation Research Board, Washington DC. 

Zotteri, G., Kalchschmidt, M., Caniato, F., 2005. The impact of aggregation level on forecasting 

performance. International Journal of Production Economics 93–94, 479–491. 

doi:10.1016/J.IJPE.2004.06.044 

 


