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Abstract

Analysis of ride-hail with pooling: Matching, equilibrium and management

Kenan Zhang

In the past decade, the e-hail service provided by transportation network companies (TNCs)

gained popularity in major cities around the world. By allowing passengers to virtually “hail”

vehicles on mobile phones, e-hail has revolutionized the matching process in ride-hail, drastically

reducing the existing search friction. However, previous studies found the e-hail service may not only

suffer from unexpected efficiency losses under certain market conditions, but also bring considerable

pressure on already-congested streets in big cities. Partly motivated by these concerns, TNCs

introduced pooling services to complement the regular e-hail service. Passengers who opt for pooling

are paired in real-time and share a portion of their trips with others. Despite its great potential in

theory, only a fraction of TNC passengers choose to pool. The objective of this dissertation is thus

to understand (i) whether pooling could address the efficiency and sustainability concerns about

e-hail service in current practice, (ii) under which conditions it could thrive in competition against

other transportation modes, and (iii) how it should be better designed, operated and regulated in

different market scenarios. To this end, this dissertation develops both analytical and numerical

tools to investigate pooling in an urban transportation system with both ride-hail and other travel

modes.

This dissertation is divided into four parts. Part 1 proposes a physical model that describes

the interaction between passengers and vehicles in the matching process of a pooling ride. The
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model supports the analysis of the main trade-off of pooling with respect to matching and serves

as a building block of the following studies. Part 2 studies pooling in an aggregate ride-hail mar-

ket, where passengers make mode choice between pooling and other travel modes, drivers make

decisions on whether to join the market, and the service platforms determine the optimal pricing

strategy. The analysis is first conducted for a market with a single platform and then extended to

tackle the inter-platform competition. Part 3 is devoted to modeling a spatial ride-hail market with

pooling. A stylized two-node model is first developed to investigate the congestion effect of ride-hail

operations and evaluate different congestion mitigation schemes targeted at them. Then, a game-

theoretic approach is proposed for modeling the dynamic routing of ride-hail vehicles in a spatial

market. The model is first formulated as a non-cooperative game and then extended to accommo-

date cooperative routing. Finally, an agent-based ride-hail simulation is developed to support the

analysis with more operational details. With the simulator, we demonstrate a metamodel-based

simulation optimization approach that embeds an analytical model into the simulation and has it

provides updating directions of design variables (e.g., the pricing scheme and matching interval)

throughout the simulation. Empirical TNC and traffic data are utilized to construct numerical

experiments throughout this dissertation in an attempt to demonstrate the theoretical findings and

test the sensitivity of system performance under various market conditions.
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CHAPTER 1

Introduction

1.1. Background and motivation

Pooling is the action of grouping together resources to maximize benefits or minimize risk. In

personal mobility, the idea of pooling creates transport modes like carpooling, carsharing and

ridesharing [Chan and Shaheen, 2012, Furuhata et al., 2013]. The past decade has witnessed the

rapid rise of ridesharing services provided by transportation network companies (TNCs) such as

Uber, Lyft, Didi Chuxing and Grab. Growing with these TNCs is the debate about the nature and

social impacts of their services. Since TNC drivers operate for profit rather than share their own

trips with riders, such service is better described as ridesourcing or e-hail instead of ridesharing

[Rayle et al., 2014, Nie, 2017] (for this reason, “e-hail” is used hereafter).

TNCs do provide certain kinds of ridesharing services (e.g., UberPool and LyftShared) that

match, in real-time, passengers who can share a portion of their trips. As an incentive, pooling

passengers pay a discounted fare while drivers receive a pickup fee for each additional pickup.

Typically, pooling tends to increase trip distance and duration due to detours. Hence, the primary

trade-off for passengers is between a lower trip fare and a longer travel time. As for TNC platforms,

pooling helps increase the service capacity without expanding their vehicle fleets. Serving pooling

trips could also generate profit for the platforms because drivers are paid primarily according to

their occupied time and distance, independent of the number of passengers in-vehicle.1 The cost for

the platform, however, is the extra pickup fee and the vehicle time consumed in detours.

Prior to the emergence of TNCs, the ride-hail market has long been dominated by taxis. Hence,

early studies mostly focus on taxis [e.g., Douglas, 1972, Beesley and Glaister, 1983, Arnott, 1996,

1See e.g., policies of Uber (https://www.uber.com/us/en/drive/services/shared-rides/) and Lyft (https:
//help.lyft.com/hc/en-us/articles/115012926987-Shared-ride-driver-pay).

https://www.uber.com/us/en/drive/services/shared-rides/
https://help.lyft.com/hc/en-us/articles/115012926987-Shared-ride-driver-pay
https://help.lyft.com/hc/en-us/articles/115012926987-Shared-ride-driver-pay


19

Yang and Wong, 1998, Lagos, 2000]. They uncovered two salient features of ride-hail service:

matching friction and economies of scale. Matching friction arises from the spatial distribution

of demand and supply. It refers to the fact that the passengers cannot meet a vacant vehicle

immediately after they enter the market. The friction also gives rise to a lion shared of the wait

time, which is the primary measure of ride-hail’s level of service (LOS). To achieve a desired LOS,

a fraction of supply has to be “wasted” in the form of vacant taxis cruising on street in search for

passengers. The economies of scale are related to the matching efficiency. In a taxi market, when

waiting passengers and vacant vehicles both double in their numbers, the pickup number is likely

to more than double. In other words, the trip production of taxis enjoys increasing returns to scale

[e.g., Arnott, 1996, Yang et al., 2010].

Although e-hail has dramatically reduced the matching friction thanks to its advanced matching

technologies [Azevedo and Weyl, 2016, Cramer and Krueger, 2016], there is growing evidence that

it might hurt economies of scale [Nie, 2017, Castillo et al., 2018, Zhang et al., 2019a]. For instance,

Nie [2017] and Shapiro [2018] both find e-hail loses competitive advantage over taxis in high-density

areas (where the densities of passengers and vehicles are both high). Castillo et al. [2018] identify

a catastrophic state named Wild Goose Chase (WGC), where the passenger wait time increases

while the trip production decreases. The culprit for causing WGC is the pickup process, which

could be exceedingly long during a demand surge. Since taxis do not have such a pickup phase,

they are free of WGC. These issues have pushed TNCs to develop various incentive mechanisms to

balance the demand and supply during peak hours and in high-density areas, such as surge pricing

[e.g., Castillo et al., 2018, Guda and Subramanian, 2019, Besbes et al., 2021, Garg and Nazerzadeh,

2021]. Yet, the potential of pooling in mitigating the demand-supply imbalance—the fact that the

demand for vehicles would simply be reduced to half if all trips are shared by two passengers—has

not been fully exploited.

On the other side, empirical evidence of the negative impact of TNC operations on traffic

congestion, particularly that in city centers, has been accumulating in recent years [e.g., Schaller,
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2017a, Erhardt et al., 2019, Diao et al., 2021]. This has prompted city managers to aggressively

pursue regulations on TNC operations. For instance, a popular policy is to charge a congestion

fee on each TNC ride entering a dedicated region, while the charge for pooling trips is usually

discounted.2 However, it remains unclear how these policies would affect TNC operations and

traffic conditions.

Several studies have demonstrated the great potential of pooling [e.g., Cici et al., 2014, Alonso-

Mora et al., 2017, Tachet et al., 2017]. For instance, it is estimated more than 90% of taxi trips

in New York City could be shared with a reasonable detour time [Santi et al., 2014]. However, we

found most regions in Chicago have a pooling ratio well below 20% (see Figure 4.3 in Section 4.6).

One naturally wonders what has contributed to the large gap between theory and reality, and

what we could do to close it. Answering these questions is no easy task due to the complicated

interactions among stakeholders (passengers, drivers and platforms) and their trade-offs. Although

a great amount of research effort has been devoted to modeling and analyzing taxi and/or e-hail

markets lately [e.g., Buchholz, 2019, Frechette et al., 2019, Castillo et al., 2018, Yan et al., 2019, Zha

et al., 2016, 2018b, Xu et al., 2020], few have centered their investigations on pooling, as attempted

in this dissertation.

On a grander scale, pooling is worth special attention because it aligns with the goal of building

a sustainable transport system. A properly operated and regulated pooling service could improve

the utility of both passengers and drivers, as well as reduce total vehicle miles traveled and carbon

footprint of travel. Moreover, pooling is instrumental to the conception of mobility-as-a-service

(MaaS), which strives to integrate multiple transport modes to provide users with a seamless travel

experience. Even if two passengers have different origins and destinations, they might be able to

share a portion of their trips before switching to another mode. Hence, pooling is likely to be

implemented by MaaS operators in various forms to make the best use of their service capacities.

2See New York State’s Congestion Surcharge (https://www1.nyc.gov/site/tlc/about/congestion-surcharge
.page) and Chicago TNC congestion pricing (https://www.chicago.gov/city/en/depts/bacp/supp info/city o

f chicago congestion pricing.html)

https://www1.nyc.gov/site/tlc/about/congestion-surcharge.page
https://www1.nyc.gov/site/tlc/about/congestion-surcharge.page
https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.html
https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.html
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A better understanding of pooling in the context of a ride-hail market thus provides the foundation

for analyzing other shared mobility service in the era of MaaS.

In summary, we aim to address three research questions in this dissertation:

• Whether and how does pooling address the efficiency issue of regular e-hail service?

• Why is the pooling ratio observed in practice far below the theoretical limit?

• How should policies be designed to encourage pooling and to mitigate the congestion effect

of ride-hail services?

The answer for the first question is rooted in the matching process that is unique for pooling,

while a prerequisite for the latter two is explicitly modeling the decision making process of all

stakeholders in the market, including passengers, drivers and service operators. In addressing

these questions, this dissertation provides a general framework for the analysis of ride-hail services,

particularly pooling, in an urban transportation system.

1.2. Research framework

This dissertation studies pooling in a ride-hail market with other transport modes. This research

problem is tackled from three aspects, namely, matching, equilibrium and management. The frame-

work is outlined in Figure 1.1.

To differentiate pooling from other ride-hail modes, we first develop a physical model that de-

scribes the matching process of a pooling trip. Here, the main focus is not to develop a particular

matching algorithm but to generalize the interaction between matching inputs (i.e., the number of

waiting passengers and vacant vehicles) and outputs (e.g., expected passenger wait time). To this

end, we extend the general matching model developed in Chen et al. [2018] and consider a ride-hail

market with both regular e-hail trips (with single passenger and named solo trips hereafter) and

pooling trips. The main research question here is how to characterize the impact of pooling on the

matching process. On the one hand, pooling helps lessens passenger competition for vacant vehicles
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Matching general matching model

street-hail

e-hail

pooling

aggregate

single-platform

multi-platform

two-node network

Equilibrium

Management

Operator

pricing

relocation

Regulator

min wage

congestion
management

Figure 1.1. Research framework.

and thus the passenger wait time would reduce with the pooling demand. Further, pooling pas-

sengers enjoy higher competing power in the passenger-vehicle matching as their peers (who share

trips with them) simultaneous search vehicles at a different location. On the other hand, pooling

leads to additional detours in the pickup process, which extends the total passenger wait time.

With the proposed matching model, we explicitly characterize the underlying physical mechanism

of such a trade-off.

As discussed above, one main objective of this dissertation is to understand passengers’ mode

choice when pooling is introduced. Specifically, passengers choose between a full-priced solo ride

and a discounted pooling ride with likely longer travel time, as well as alternative travel modes.

We examine this trade-off using a market equilibrium model, where the matching model developed

in the first step is integrated to express the interaction between passenger demand and vehicle

supply. The equilibrium model is first established for an aggregate market with a single TNC

platform, then extended to study the inter-platform competition and the congestion effect of ride-

hail vehicles. As the analysis moves from an aggregate market to a spatial market, a new challenge
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emerges, that is, modeling the movements of ride-hail vehicles across local markets. Assume idle

drivers freely choose search locations to maximize their own payoff. Their collective behaviors, in

turn, affect drivers’ payoff through the likelihood of picking up passengers in each region (referred

to as meeting probability hereafter). In other words, each driver needs to make search decisions

based on all others’ decisions. Accordingly, we formulate behaviors of ride-hail drivers as a dynamic

routing game and derive the vehicle distribution at the equilibrium state. The matching model,

again, plays an important role in this model as it differentiates the meeting probability function

between particular ride-hail modes.

Using the market equilibrium models, we study a number of management problems. For the

service operator, i.e., the TNC platform, the main question is whether or not to serve pooling and,

if so, how to jointly price solo and pooling trips. To tackle this, we formulate the optimal pricing

problem with different market structures and conditions, in which the equilibrium model serves as

the constraints. Besides, the vehicle relocation is also briefly discussed in the spatial models. As

for the regulator, it is still unclear how the regulations on TNCs would affect their operational

strategies about the pooling service. In this dissertation, we examine the impact of minimum wage

and various congestion mitigation schemes. This is done by integrating additional constraints into

the platform’s optimal pricing problem. Specifically, when the congestion effect of ride-hail vehicles

is included, the analysis covers not only the stakeholders in the ride-hail market both also other

travelers in the transportation system.

1.3. Contribution

From the modeling perspective, this dissertation is one of the few studies that explicitly model the

matching process of pooling. The model developed in this work characterizes the matching process

that is unique for a pooling ride. Assume each pooling ride is shared by two passengers. Then, the

passenger wait time for a pooling ride could be divided into two parts, as illustrated in Figure 1.2.

The first one is determined by the distance between the vehicle to the closer passenger (w̃p1), while
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the other depends on the distance between the passengers (w̃p2). Accordingly, the wait time is a

function of both the vehicle density and the pooling demand density. Besides, pooling enhances

passengers’ competing power for vacant vehicles. As shown in the second panel of Figure 1.2,

the passenger on the left is not able to reach the vehicle given the search distance (equivalent

to certain wait time). However, they are matched in a pooling ride because the vehicle falls in

the peer passenger’s search area. Such an advantage increases with the distance between pooling

passengers. Yet, a larger distance also means a longer pickup detour (w̃p2). Such a trade-off is

thoroughly analyzed in this dissertation.

𝑤"#$
𝑤"#%

Vacant vehicle Waiting passenger Search area

Figure 1.2. Matching in a pooling ride.

The market equilibrium models established based on the matching model also provide useful

tools to study a wide array of problems regarding service operations and regulations. Several

variants of equilibrium models are developed to support the analysis of platform competition and

congestion externality. In all cases, we show the equilibrium can be reduced to a fixed point system

and it always exists under mild conditions.

This dissertation also proposes a novel approach to modeling the search behaviors of ride-hail

vehicles in a dynamic spatial ride-hail market. As introduced above, we formulate drivers’ move-

ments as a routing game, establish the equilibrium and propose iterative algorithm to approximate

the equilibrium solution. We further extend the model to consider the cooperative routing, where

drivers share the objective to maximize total reward of the system. In a nutshell, the modeling
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framework is flexible to account for different ride-hail services, while, as a key component, the meet-

ing probability needs to be specified for a given ride-hail mode. Therefore, the proposed model is

capable of comparing different ride-hail services under the same market conditions.

Besides its contribution to the modeling, this dissertation also develops several numerical tools

to facilitate the analysis of ride-hail services. One is a general solution algorithm for optimization

problems with nonlinear and nonconvex equilibrium constraints. In this dissertation, it is used to

solve the optimal pricing problem with the market equilibrium constraints, as well as regulatory

constraints when applicable. The key idea is to differentiate the equilibrium constraints at the

current solution using automatic differentiation [Baydin et al., 2017] and then use the equilibrium

partials to construct gradient of the objective function.

Another numerical tool is an agent-based simulation of ride-hail service. Different from existing

simulation frameworks, it is compatible with different ride-hail modes and passenger-vehicle match-

ing algorithms. Besides, it supports mode choice of passengers as well as market entry decisions

and strategic searching of drivers. It further provides an interface that allows some of the control

variables (e.g., pricing) to be adjusted throughout the simulation. The simulator has been used to

calibrate the analytical models proposed in this dissertation. With the control interface, we test

a metamodel-based approach for simulation-based optimization [Barton and Meckesheimer, 2006],

which embeds an analytical model into the simulation and asks it to guide the updating directions

of control variables.

To reflect the issues in real practice, we construct all numerical experiments based on empirical

TNC and traffic data. We also conduct extensive sensitivity analyses to test how the results vary

against input variables and parameters. The findings derived from this dissertation offer a number

of managerial insights for the operations and regulations of ride-hail service with pooling. Some of

them have never been presented in the literature, such as the short-term and long-term impacts of

minimum wage in a single-platform market, the market failure in the inter-platform competition due
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to multi-homing drivers (drivers who join multiple platforms at the same time), and the efficiency

loss of selfish routing of ride-hail drivers.

Besides the knowledge gained about pooling in a ride-hail market, this dissertation also sheds

lights on the MaaS enterprise. The main problem tackled in this dissertation is how a mobility

service provider makes the best use of its capacity. This is also the key question to be addressed in

the era of MaaS, where passengers are not offered a single ride, but rather a mobility plan consisting

of multiple transport modes. Hence, the MaaS operators need to better understand the underlying

mechanisms of supply-demand interactions in order to optimize pricing, trip planning and capacity

management. Models proposed in this work thus serve as an essential building block for these new

problems.

1.4. Dissertation outline

The remainder of this dissertation is organized as follows. Chapter 2 gives a review of related

studies on ride-hail service and pooling. The main focus there is matching, pricing, vehicle routing,

platform competition and regulation in the context of market equilibrium as most of the analyses

in this dissertation are based on a stationary state of the market.

Chapter 3 presents the matching model of pooling, which is extended from the physical model

developed in Chen et al. [2018] and Zhang et al. [2019a]. The model characterizes the matching

process in a market with both regular e-hail and pooling services, from which we derive the expected

passenger wait time of both solo and pooling trips. A set of numerical experiments is then conducted

to investigate of the sensitivity of passenger wait times towards the density of waiting passengers

and vacant vehicles, as well as the pooling ratio.

Chapters 4 through 6 are dedicated to the analysis of an aggregate ride-hail market with pooling.

Specifically, the market equilibrium is established in Chapter 4. We show that, regardless of the

number of platforms in the market, the equilibrium is formulated as a system of equations and

can be reduced to a fixed point system. Accordingly, the existence of equilibrium is proved by
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evoking the fixed point theorem. We then construct a set of numerical experiments to investigate

the system performance under various market conditions in both monopoly and duopoly scenarios.

Chapter 5 formulates the optimal pricing problem with the objective to maximize either the

platform profit or social welfare. We discuss the optimal pricing strategies of a profit-maximizing

platform and demonstrate the analytical results through numerical examples. Two regulations,

namely, minimum wage and congestion tax, are also thoroughly studied in the numerical experi-

ments. Chapter 6 continues to investigate the inter-platform competition. We define the equilibrium

of the resulting pricing game, with and without regulatory constraints, and discuss its existence.

Specifically, two supply modes are introduced and discussed both analytically and numerically.

The first one is single-homing, which assumes each driver only joins one platform, and the other

one is multi-homing, which assumes drivers join all platforms if they decide to enter the market.

We further investigate the case of asymmetric platforms under the two supply modes in numerical

experiments.

Starting from Chapter 7, our discussion moves to a spatial ride-hail market. A stylized two-node

model is first developed to investigate the congestion effect of ride-hail vehicles. To characterize

the congestion effect, we propose a simple traffic model where the traffic speed is endogenously

determined the operation of ride-hail service. Similar to the aggregate mode, we first establish the

market equilibrium and then formulate the optimal pricing problem with and without regulatory

constraints. A case study is then constructed on the City of Chicago to test three congestion

mitigate policies: (i) a trip-based fee charged on each solo trip starting or ending in CBD, (ii)

a cordon-based fee charged on each vehicle entering CBD with one or no passenger, and (iii) a

cruising cap that requires a minimum occupancy rate for all ride-hail vehicles in CBD.

Chapter 8 tackles the problem of ride-hail vehicle routing in a dynamic spatial market. The

behavior of each driver is characterized by a Markov decision process (MDP), and, together, the

collective routing is formulated as an MDP congestion game. We define the equilibrium state, show

its equivalence to a fixed point and prove the existence via the fixed point theorem. The model
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is further extended to consider cooperative routing, where drivers collaborate with each other to

maximize a system objective. At the core of is the proposed model is the meeting probability, which

gives the likelihood of picking up a passenger after searching in a zone for a time period. We derive

its functional form for two ride-hail modes and calibrate them using simulation data. The model is

then tested on both hypothetical and real networks to demonstrate the solution algorithm, compare

the system outputs of different modes and evaluate the efficiency loss due to selfish routing.

Chapter 9 introduces an agent-based ride-hail simulation framework. The simulator is devel-

oped based on MATSim (Multi-Agent Transport Simulation) [Horni et al., 2016] while supporting

multiple features that are not available in existing open-sourced simulation tools. Specifically, we

develop an interface to adjust control variables throughout the simulation process. This feature is

motivated by the idea to embed a design problem into a simulation framework. As the first step,

we develop a pricing module that updates the pricing strategy according to the aggregate model

developed in Chapter 5.

All numerical experiments conducted in this dissertation are based on the City of Chicago.

Chapter 10 provides the description of data used in these experiments and outlines the estimation

procedure of key parameters.

Finally, Chapter 11 summarizes this dissertation and provides some directions for future re-

search.
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CHAPTER 2

Literature Review

2.1. Market equilibrium

The ride-hail market has long been dominated by taxis. Hence, early research efforts have been

devoted to modeling the taxi market. Two seminal works are accomplished by Douglas [1972] and

Arnott [1996], which, respectively, characterize the interactions between passenger demand and

vehicle supply in street-hail and radio-dispatch taxi market. Both studies, as well as many following

works [e.g., De Vany, 1975, Beesley and Glaister, 1983, Cairns and Liston-Heyes, 1996], explicitly

capture matching friction, the first salient feature of ride-hail service, in the relationship between

passenger wait time and the vacant vehicle density. Since drivers are distributed over the space,

the passenger cannot meet a vacant vehicle immediately after she enters the market. Therefore,

to achieve a desired level of service (LOS), a portion of the vehicle supply must be “wasted” and

transforms into the vacant vehicle density. Compared to street-hail, the radio-dispatch service also

consumes its supply in the pickup process because a “matched” vehicle is no longer available for

other passengers, even though it is still vacant [Zhang et al., 2019a]. This seemly minor difference

becomes surprisingly consequential in the case of e-hail, a more advanced radio-dispatch system

and the main focus of this thesis. Under certain market conditions, it results in an inefficient

state called Wild Goose Chase, where a large portion of vehicles are stuck on the way to picking up

passengers [Castillo et al., 2018]. Xu et al. [2020] further show that this inefficient state always exists

in an e-hail market with finite match radius. Besides the discussion on matching, the aggregate

equilibrium model of e-hail market has also been used to examine the pricing strategies on both

sides of the market [e.g., Zha et al., 2016, Wang et al., 2016, Yang et al., 2020b, Dong et al., 2021].
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As e-hail platforms, such as Uber and Lyft, launch their own on-demand pooling services, a few

studies have been devoted to model the aggregate market equilibrium of this new type of service

and compare it with regular e-hail mode. Ke et al. [2020a] models an aggregate e-hail market

with a single platform serving either solo trips (with one passenger) or pooling trips (shared by

two passengers). They formulate the optimal pricing problem under monopoly, social optimum

and second-best (i.e., maximizing social welfare while maintaining a nonnegative platform profit)

in both cases. With a simplified matching model and presumed detour function, they show a unit

decrease in trip fare in a poling market attracts more passengers than that in a solo market and,

under certain conditions, the optimal trip fare of pooling trips under monopoly, social optimum

and second-bast are always lower than that of solo trips, respectively. In a subsequent study, Ke

et al. [2020b] include a linear traffic model to investigate the congestion effect in pooling and solo

market. It is found pooling could benefit both ride-hail passengers and background travelers and

such a win-win situation depends on the design of matching window in pooling. While a longer

matching time extends passengers’ wait time, it also leads to pooling pairs with shorter detours and

thus help mitigate the congestion externality. Similarly, Vignon et al. [2021] analyze the congestion

effect of e-hail service through an aggregate market equilibrium model, though they consider the

platform serves both solo and pooling trips and passengers make mode choice according to the total

travel cost, including the trip fare and wait time. To simplify the modeling pooling service, they

assume passengers in each pooling ride are picked up (dropped off) at the same location, thus there

is no pickup (en-route) detour involved. Jacob and Roet-Green [2021] derive the extra travel of

pooling trips using a queueing model and consider the optimal pricing problem in three scenarios:

the platform offers only solo rides, only pooling rides, and both. In the last scenario, it is assume a

group of high-type passengers only choose solo rides while the remaining low-type passengers only

choose pooling rides. However, there is no modeling on the supply side and thus the passenger wait

time determine by the vehicle supply is fixed regardless of the demand.
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While the aggregate models aim to uncover the underlying rules of ride-hail services, the network

models are developed to describe the spatiotemporal movements of vehicles and resulting network

equilibrium. Research on this topic can be classified in two different ways. The first one is to divide

them into centralized models [e.g., Pavone et al., 2012, Braverman et al., 2019] and decentralized

models [e.g., Yang and Wong, 1998, Lagos, 2000], according to whether or not drivers behave at

their own discretion. This will be further discussed in Section 2.4. Here, I will follow the second

rule that splits the network models into static and dynamic. Yang and Wong [1998] develops the

first static network model to analyze the spatial taxi market. The vehicle movements are described

by vehicular flow across local markets and, at the equilibrium, the total vehicle time conserves and

the inflow equals the outflow for each zone. In a subsequent study, an aggregate matching function,

which takes the form of Cobb-Douglas production function [Cobb and Douglas, 1928], is introduced

to determined the driver search time, along with the passenger wait time [Yang et al., 2010]. The

same modeling framework has been applied to investigate a number of research problems of ride-

hail service with a focus on both taxis and the e-hail service offered by TNCs [e.g., Yang and Yang,

2011, He and Shen, 2015, He et al., 2018]. In Xu et al. [2019], the assumption that passengers

can only be matched with vehicles in the same zone is relaxed. Hence, in addition to occupied

and vacant vehicle flows, there also exists pickup vehicle flow across zones. Another line of studies

represents the ride-hail market as a network of stations. Hence, at a stationary state, the inflow of

vehicles at each station must equal the outflow of occupied and relocating vehicles. This modeling

framework is commonly used in the context of autonomous mobility-on-demand (AMoD) system,

where vehicles are fully controlled by the platform [e.g., Pavone et al., 2012, Zhang and Pavone,

2016, Braverman et al., 2019].

In both directions of static models, the equilibrium constraint is based on vehicle flow con-

servation. In contrast, the dynamic models describe the market equilibrium in a different way.

Lagos [2000] models the taxi movements in a spatial market and assume, at the equilibrium state,

the return obtained by drivers in each zone must be equal thus the drivers’ choice of next search
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location is indifferent. In particular, the return includes the expected revenue in the current time

period as well as in the future. The resulting dynamic equilibrium model is applied to analyze the

taxi market in New York City [Lagos, 2003]. The similar framework has been used to investigate

the spatial pricing problem of e-hail service [Bimpikis et al., 2019]. Buchholz [2019] also builds a

dynamic spatial equilibrium model of taxi market and calibrates it with empirical taxi data of New

York City. Instead of assuming all local market features equal return, the equilibrium is defined

on a set of state variables. Specifically, at equilibrium, the passenger arrivals in each zone, vehicle

flows across zones, as well as the drivers’ search policy should be stationary. With a similar model,

Shapiro [2018] compare the service efficiency of Uber and taxis in New York City. It is found Uber

does not show great advantage in matching over taxis in dense markets, and thus its appeal in

these areas are likely due to lower regulatory burden.

Besides the two major groups of network equilibrium models discussed above, a few recent

studies extend the classic traffic assignment model Sheffi [1985] to evaluate the service operations

and congestion effect of ride-hail services. Di and Ban [2019] consider three travel modes in a

congested traffic network, namely, driving solo, ridesharing and e-hail. Accordingly, four types of

traffic flows are characterized: personal vehicles flow, e-hail vehicle flow, ridesharing passenger flow

and e-hail passenger flow. Each of them corresponds to a copy of the traffic network, which is then

integrated into a super network. Ni et al. [2021] also distribute the passenger and vehicle flows

on the network links, while the focus is the game among passengers, drivers and TNCs. At the

equilibrium state, no player would change their decision and travel flows of both passengers and

vehicles coincide on each link.

2.2. Matching

Centered at the equilibrium of a ride-hail market is the matching between waiting passengers and

vacant vehicles. Result of this process determines the expected passenger wait time, a primary mea-

sure of level-of-service (LOS). Early studies introduce simple models to elaborate the relationship
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between passenger wait time and vehicle supply. For instance, Douglas [1972] assumes the expected

wait time for street-hail taxis is inversely proportional to the line density of vacant vehicles. While

Arnott [1996] derives that the expected wait time for radio-dispatch taxis is inversely proportional

to the spatial density of vacant vehicles. Results derived from this thesis align with these general

rules, yet provide more detail physics in the matching process and further consider the influence

from the demand side.

Due to the difficulty of modeling and calibrating the physical matching process, some studies

simply assume it is frictionless, that is, the number of pickups equals the minimum between waiting

passengers and vacant vehicles [e.g., Lagos, 2000, Bimpikis et al., 2019]. Although the frictionless

matching assumption greatly simplifies the modeling, it sadly does not hold in practice. A tradi-

tional street-cruising taxi may not successfully meet a passenger on street even though they are in

the same local market. Although in e-hail passengers can be matched with vehicles almost immedi-

ately, they still need to endure a pickup time, which could be extensively long during the demand

peak [Castillo et al., 2018]. Using a large-scale TNC data, Xu et al. [2021] show the frictionless

assumption may hold in the virtual matching in e-hail, but cannot generalize the entire matching

process that also includes the pickup phase.

A common way to address the matching in ride-hail research is to introduce an aggregate

matching function where the numbers of waiting passengers and vacant vehicles are the inputs

while the pickup rate is the output. The most commonly used matching function is the Cobb-

Douglas function, which draws analogy between matching process and production [e.g., Yang et al.,

2010, Yang and Yang, 2011, He and Shen, 2015, Wang et al., 2016, Zha et al., 2016]. The urn-

ball matching function is also used to model the matching as Bernoulli trials [e.g., Shapiro, 2018,

Buchholz, 2019]. Relaxing the assumption that passengers can only be matched with vehicles in

the same zone, Xu et al. [2019] develop a multi-output matching function by analogize the inter-

zonal matching to electrical circuits. Additionally, some studies directly approximate the matching

function through simulations [e.g., Frechette et al., 2019]. Another popular approach is to model



34

the matching process as a queueing system [e.g., Banerjee et al., 2015, Afeche et al., 2018, Zhang

and Pavone, 2016, Banerjee et al., 2017, Braverman et al., 2019, Xu et al., 2020]. However, these

models all assume passengers are picked up immediately after being matched with a vacant vehicle.

The two exceptions are Besbes et al. [2018] and Feng et al. [2020], both of which extend M/M/n

queueing model by incorporating the pickup time that depends on the supply-demand relationship.

Instead of characterizing the matching process, some studies consider matching as an operational

strategy [e.g., Özkan and Ward, 2020, Hu and Zhou, 2021, Wang et al., 2019]. Most of these studies

are also based on the queue model thus implicitly assume passengers are first-come-first-serve.

As detailed taxi operation data become wildly available, researcher start to calibrate the market

equilibrium model with empirical data in order to conduct hypothetical analysis on taxi market.

Frechette et al. [2019] and Buchholz [2019] both examine the impact of matching friction in the

taxi market of New York City, envisioning the entry of TNCs. Frechette et al. [2019] finds the

market segmentation between taxis and e-hail services could reduce the market thickness, in turn

worsen matching frictions in the market. With a spatial equilibrium model, Buchholz [2019] fur-

ther evaluates different dynamic pricing schemes and finds the location-based pricing achieves the

most improvement of total surplus and matching efficiency. Following their works, Shapiro [2018]

investigates the competition between taxi and e-hail using both taxi data and scraped Uber data

in New York City, concluding that the advantage of e-hail in high-density areas mostly attributes

to its lower price and less regulatory burden, rather the matching technology.

A few recent studies restart to consider the matching process in a physical space. Zha et al.

[2018b] propose a geometric matching model to estimate the average matching and pickup time,

though it still relies on the equilibrium conditions and a presumed matching function. Yang et al.

[2020a] investigate the trade-off of matching interval in e-hail. To this end, they define the dominant-

zone whose area depends on the length of matching interval and the demand level. By definition,

there is only one passenger in each dominant-zone thus she will always be matched to the closest

vacant vehicle. The matching model developed in this thesis is also rooted in the distance between
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the waiting passenger and the closest vacant vehicle that is available for her. Differently, we consider

the matchable vehicles for each passenger and derive their density in various ride-hail services and

market conditions. Hence, our model is more general and can be used for comparison across different

service modes.

To the best of our knowledge, on a few studies have been devoted to modeling the matching

process of on-demand pooling. Yan et al. [2019] derive the matching time for a pooling ride using

a queueing-based model. It assumes arriving pooling passengers wait in a matching queue for a

certain time window. If a pooling passenger successes to find a peer, a vacant vehicle is dispatched

to pick up both of them at a meeting point in middle of their trip origins. If not, the passenger

would ride alone. The same setting is assumed in Jacob and Roet-Green [2021] and Ke et al.

[2020a]. Instead of calibrated from empirical data as in Yan et al. [2019], Jacob and Roet-Green

[2021] explicitly derive the probability of finding a match within a time window, while Jacob and

Roet-Green [2021] assume it exponentially decreases with the number of passengers accumulated

within a matching window. Since all three studies assume passengers are picked up at the same

location, the pickup detour is simply ignored. However, in real practice, the matching time is

usually at least an order of magnitude smaller than the pickup time. Meanwhile, most pooling

services do pick up passengers in sequence. Therefore, it is important to characterize the pickup

detour of pooling trips, which is the main focus of matching model proposed in this thesis.

2.3. Pricing

The pricing of e-hail platform has attracted a great amount of research interest in recent years.

This problem is often tackled from two directions. One is to develop real-time pricing and/or

price-aware dispatching algorithms [e.g., Asghari and Shahabi, 2018, Tong et al., 2018, Xu et al.,

2018, Nourinejad and Ramezani, 2019, Chen et al., 2020, 2021]. The other, which is also the main

focus of this thesis, is to evaluate the system performances under optimal pricing in the context

of equilibrium analysis. One of the most heated research topics in this stream of research is surge
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pricing, i.e., dynamically adjusting price in response to the demand surge [e.g., Cachon et al.,

2017, Hu et al., 2018, Garg and Nazerzadeh, 2021]. Various benefits of surge pricing have been

proposed in the literature. Castillo et al. [2018] show that surge pricing could effectively prevent

the system from WGC. Banerjee et al. [2015] demonstrate dynamic pricing (a more general form

of surge pricing) is more robust than static pricing. Besides, it is found surge pricing could be

even useful in less profitable areas or regions with excessive supply because it incentivizes drivers

to relocate [Besbes et al., 2021, Guda and Subramanian, 2019]. While the platform and drivers

in general benefit from surge pricing, passengers have to bear the cost. Hence, regulations might

be necessary to guide such practice, especially when a platform has de facto monopoly [Zha et al.,

2018a]. Garg and Nazerzadeh [2021] further look into the structure of surge pricing and show that

an additive surge induces more incentive compatible behaviors of drivers compared to multiplicative

surge.

In the context of network equilibrium, pricing strategies are also designed to obtain a spatial

balance between demand and supply. This is often known as spatial pricing [e.g., Zha et al.,

2018b, Banerjee et al., 2017, Besbes et al., 2021]. Bimpikis et al. [2019] show that the platform

profit and consumer surplus under the profit-maximizing pricing scheme are both maximized if

the demand pattern satisfies certain “balance” condition, while the origin-based pricing scheme

is more profitable when the demand pattern is unbalanced. Afifah and Guo [2020] model the

spatial pricing problem as a Stakelberg game in a congested traffic network. The platform plays

as the leader and sets the price to minimize the total supply-demand imbalance in the market,

while passengers and drivers are the followers and respond to the pricing scheme with their travel

and relocation decisions. Another commonly studied strategy to address the spatial demand-supply

balance is vacant vehicle rebalancing [e.g., Pavone et al., 2012, Zhang and Pavone, 2016, Braverman

et al., 2019], which will be discussed in more detail in Section 2.4. While pricing encourage drivers

to relocate on their own initiative, rebalancing directly controls the vehicle flows. Visioning the
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equivalence of spatial pricing and rebalancing, a few studies propose to jointly optimize the pricing

and rebalancing strategies [e.g., Banerjee et al., 2017, Wollenstein-Betech et al., 2020]

The pricing of pooling service, however, still lacks in the literature. The studies on the market

equilibrium of pooling service reviewed in Section 2.1 all formulate the platform’s pricing problem

and analyze the properties of optimal pricing strategies [Ke et al., 2020a,b, Vignon et al., 2021,

Jacob and Roet-Green, 2021]. A common finding from these studies is the optimal trip fare of

pooling rides is often lower than that of solo rides and it could be largely affected by the traffic

condition. Besides, Lei et al. [2019] propose path-based dynamic pricing strategy that aims to

promote pooling.

2.4. Vehicle routing and rebalancing

The literature on the routing problems of ride-hail vehicles may be broadly classified into indi-

vidual and collective routing problems. In the first category, the main focus is either to learn a

representative driver’s routing strategy or to generate the optimal routing policy given a driver’s

current state. As taxi GPS trajectory data become widely available, a great amount of research

effort has been dedicated to examine the search behavior of taxi drivers and to enhance their search

efficiency [e.g., Liu et al., 2010, Li et al., 2011, Zhang et al., 2014]. Instead of manually defining

search strategies, Zhang et al. [2019b] propose an image representation of taxi search behaviors and

applied an unsupervised clustering algorithm to identify unique search strategies. Recognizing the

nature of sequential decision making, Urata et al. [2021] model the search behaviors as a Markov

decision process (MDP) with a nested discrete choice model and calibrate it with large-scale e-hail

data. Similar to taxi drivers, e-hail drivers show a clear preference of relocating to high-demand

areas, especially during the off-peak period. The MDP framework is also commonly used in the

recommendation of optimal search path for ride-hail drivers [e.g., Hwang et al., 2015, Ge et al.,

2010, Yuan et al., 2011, Qu et al., 2014, Shou et al., 2020, Yu et al., 2019b]. One notable benefit

of this approach is the ability to anticipate and account for payoffs that may realize later due to
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current decisions. However, a key assumption of these studies is that the environment would be

invariant in application, that is, all other drivers would not change their search strategies. This

assumption clearly no longer holds if a large group of drivers use follow the recommended paths.

The models of collective routing, on the other hand, typically simplify the movement of vehicles

as continuous vehicular flow in a network, which ensures them to scale properly with the fleet size.

These models could be further classified as centralized and decentralized. The centralized models

assume vehicles are fully controlled by the operator and thus are often discussed in the context of the

futuristic autonomous on-demand mobility (AMoD) systems. Pavone et al. [2012] first consider the

fluids of passengers and vehicles across a network of stations and model the rebalancing as serving

a group of “virtual” passengers. Accordingly, the centralized routing problem becomes finding an

optimal rebalancing vehicular flow pattern. This model is then cast into a closed queuing network,

where each station is modeled as a single-server node and the link between any two stations is

modeled as an infinite-server node [Zhang and Pavone, 2016]. It turns out the optimal rebalancing

problem formulated on the two models reduces to the same linear program. Braverman et al. [2019]

prove the queuing network converges to a fluid limit as the numbers of passengers and vehicles both

approach infinity, which approximately holds in large markets. In this case, the rebalancing problem

can be reduced to a linear program, similar to those in the previous studies, and its optimal solution

is shown to bound the performance of any state-dependent routing policy from above. Besides fleet

management, the same modeling framework has been applied to examine the integration of AMoD

system with public transit [Salazar et al., 2018, Wollenstein-Betech et al., 2021], the interaction

between rebalancing and charging [Iglesias et al., 2019], and the joint decision of fleet management

and charging stations [Estandia et al., 2021]. It is also used to design spatial pricing policies with

the objective to address the demand-supply imbalance in ride-hail service [Waserhole and Jost,

2012, Banerjee et al., 2017]. All these models are built on the assumption that there is a single

queue of passengers at each station and the passenger at the head would be picked up immediately

upon the arrival of a vehicle. In practice, however, matching in ride-hail takes place at a much
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larger geographical scale such that waiting is inevitable for passengers even if vacant vehicles are

present in the same area. Few centralized models have considered such search friction in the spatial

matching between passengers and vehicles. One of the exceptions is Ramezani and Nourinejad

[2018], who propose a network-scale taxi dispatch model and utilize the Cobb-Douglas matching

function [Cobb and Douglas, 1928, Yang et al., 2010] to predict the passenger pickup rate in each

zone.

Different from the centralized model, decentralized vehicle routing models treat each driver as

a strategic agent whose objective is to maximize their own utility. Hence, they often serve as the

supply-side modeling in the equilibrium analysis of the spatial ride-hail market. These models can

be further divided into static and dynamic models. Yang and Wong [1998] first develop a static

network model for the spatial taxi market. The city is represented by a network of zones and the

taxi movements are described as vehicular flows between them. The search behaviors of taxi drivers

are characterized by a multinomial logit (MNL) model that takes the relocation time and expected

search time into consideration. At equilibrium, not only does the vehicle inflow equal the outflow for

each zone, but also the total vehicle time conserves. In a subsequent study [Yang et al., 2010], the

Cobb-Douglas matching function is introduced to determine the passenger wait time and the driver

search time in each zone, as in Ramezani and Nourinejad [2018]. The same modeling framework

has been applied in a wide range of inquiries concerning both taxis and e-hail services [e.g., Yang

and Yang, 2011, He and Shen, 2015, Wang et al., 2016]. Xu et al. [2019] adopt a similar framework

but relax the assumption that passengers can only be matched with vacant vehicles in the same

zone. Accordingly, a multi-output matching function is proposed to approximate the pickup rate

in the inter-zonal matching.

The above static models assume drivers would stay in their selected search zone until picking

up a passenger. Another line of research relaxes this assumption by incorporating the meeting

probability, i.e., the probability that a driver successfully picks up a passenger after searching for

a certain time period. The meeting probability dictates the expected reward of a search and,
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accordingly, the value of each zone is computed as the expected reward plus the maximum future

value from there. In Lagos [2000], it is further assumed all zones have the same value, which also

equals the maximum future value, at the steady-state. This condition is weakened in Bimpikis et al.

[2019], where the maximum value is only achieved in zones with positive vacant vehicle inflows. In

both studies, the meeting probability is simply set to be the minimum between 1 and the ratio of

supply to demand. In other words, they assume matching is frictionless, which again does not hold

in practice [Castillo et al., 2018, Xu et al., 2021].

Dynamic decentralized routing models discretize the analysis time horizon into multiple periods

and consider drivers making search decisions at the beginning/end of each time period. Buchholz

[2019] proposes a dynamic spatial equilibrium model to study the taxi market in New York City.

Drivers’ search behavior is characterized by MNL model like Yang and Wong [1998] while the

main factor comes to be the value of searching in each zone. The equilibrium is then defined by a

fixed-point system of a set of variables, including the number of vacant vehicles and the meeting

probability in each zone, the number of occupied vehicles between each origin-destination (OD)

pair and search policies. With a similar model, Shapiro [2018] compare the service efficiency of

Uber and taxi in New York City. In both studies, the meeting probability is approximated by a

nonlinear function of passenger arrival rate and vacant vehicle number.

All decentralized models discussed above, either static or dynamic, explicitly capture the impact

of collective vehicle routing on individual drivers’ search decisions through the search time or the

meeting probability. Yet, they do not recognize that drivers are playing a routing game against

each other. In particular, each driver needs to optimize their search strategies in anticipation of

all other drivers’ strategies. Salhab et al. [2017] formulate the dynamic decentralized as a Mean

Field Game [Lasry and Lions, 2007] and cast the equilibrium state as a fixed point of vacant vehicle

distribution over the spatial market. Motivated by the vehicle routing in a spatial ride-hail market,

Calderone and Sastry [2017] define the MDP routing game that extends classic routing game in

that each agent’s routing decision is characterized by an MDP rather than a deterministic path.
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The resulting equilibrium is defined on the relocation vehicular flows between zones. The game

is then extended to infinite horizon [Calderone and Shankar, 2017] and applied to study related

problems [e.g., Li et al., 2019b,a].

To end this section, we note another approach for dynamic decentralized routing is to formulate

it as a multi-agent reinforcement learning (MARL) problem and directly learn optimal search

policies from simulations. The MARL framework has been applied to tackle the large-scale vehicle

rebalancing problem [Lin et al., 2018, Yang et al., 2020c] and solve the lower-level problem in a

bi-level optimization structure to design vehicle relocation incentives Shou and Di [2020]. However,

as a model-free approach, MARL requires a large number of simulations to achieve the system

equilibrium and obtain the corresponding search policy for a single set of market inputs. It is

thus not an ideal tool to evaluate the system performance. Besides, as argued in [Xu et al., 2021],

the search policies derived from these “black box” models could hardly be generalized to provide

managerial insights.

2.5. Platform competition

The e-hail market is an instance of two-sided market in the transportation industry, where one or

several platforms match service providers with service consumers meanwhile charge both sides [Ro-

chet and Tirole, 2006]. Two-sided market is often praised for its cross-side network effect, that is, a

larger number of user on one side of the market will attract users on the other side [Rysman, 2009,

Tucker and Zhang, 2010]. However, a number of studies have identified the existence of same-side

congestion effect that compromises the system efficiency [e.g., Belleflamme and Toulemonde, 2009,

Aloui and Jebsi, 2011, Bernstein et al., 2019]. As will be shown in this thesis, such congestion effect

is more substantial in e-hail because (i) passengers and vehicles are matched in real-time, and (ii)

matched vehicles are no longer available for other passengers, even if they are close to each other.

Although previous studies have integrated the congestion effect into the analysis of platform

competition, it is often modeled as a simple function of the user number on the same side (e.g., linear
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in Aloui and Jebsi [2011]). One exception is Bai and Tang [2018], who model a duopoly market with

symmetric platforms and single-homing drivers and represent the passenger wait time as a general

function of demand and supply. They show that when the so-called pooling effect is present—i.e.,

wait time decreases when supply and demand both increases by one unit—both platforms break

even at equilibrium. Only in the absence of the pooling effect would the platforms be profitable.

In a sequel to Bai and Tang [2018], Wu et al. [2020] explore a sequential driver-passenger game, in

which drivers and passengers make decisions sequentially. Unlike the standard simultaneous game,

they show no sequential equilibrium exist such that the competing platforms would both possess a

positive market share. Bernstein et al. [2019] compares the duopoly equilibria under single-homing

and multi-homing in a general two-sided market, where the same-side network effect is described

as a function of utilization rate. It is found that, even though individual drivers may prefer multi-

homing, all players are worse off when all drivers are multi-homing. The aforementioned study by

Zha et al. [2016] also analyzes a duopoly with single-homing drivers. Their main finding is that

inter-platform competition does not necessarily lower the trip fare or improve social welfare. This

finding is confirmed by Nikzad [2017], who adopts a different matching model and a general supply

mode (i.e., drivers could be either single- or multi-homing). Nikzad [2017] further shows that the

duopoly price would be higher than the monopoly price when the size of potential supply is small.

Yet, the driver wage is always higher in the duopoly equilibrium.

Besides the network effects, the underlying supply mode also affects how platforms compete for

users and service providers in a two-sided market. A central issue has to do with how “tightly”

drivers are affiliated with a platform. When the affiliation is exclusive, it leads to the so-called

single-homing supply mode; otherwise, drivers are allowed to be affiliated with multiple platforms,

resulting in the multi-homing mode. This seemingly minor difference could result in distinctive

pricing strategies [e.g., Rochet and Tirole, 2003, Armstrong, 2006, Böhme et al., 2010]. However,

multi-homing drivers in the ride-hail service are slightly different from those considered in the

existing literature. Once a driver accepts a ride request from one platform, they are no longer
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available for all other platforms. Therefore, passengers from different platforms need to compete

for the same pool of drivers. Based on my reading of the literature, there is still a lack of analysis

on the consequence of mutli-homing in ride-hail market.

2.6. Regulation

Before the launch of Uber in 2009, the ride-hail industry in most cities around the world had been

tightly regulated, in terms of both price and entry. The rationale of taxi regulations is largely

based on the argument that taxi industry is a decreasing-average-cost industry [Douglas, 1972,

Beesley and Glaister, 1983] and full competition is unlikely to maximize social welfare [Douglas,

1972, De Vany, 1975, Cairns and Liston-Heyes, 1996]. Besides controlling price and entry, it is

also argued the taxi industry should be subsidized to achieve social optimum [e.g., Arnott, 1996].

While e-hail appears to share a similar cost structure with taxi [Zha et al., 2016], it has a radically

different supply model. In particular, e-hail drivers are considered “independent contractors” who

neither earn a fixed wage nor commit to a fixed work schedule. Therefore, the platform does not

have a full control over its service capacity. Nor could the regulator easily manage the market entry

through simple policy (e.g., issue of medallion).

The regulations currently under consideration focus on capping the number of operating drivers

and setting a minimum “wage” to protect drivers [Joshi et al., 2019]. Gurvich et al. [2019] analyze

the service capacity management problem for a service provider relying on a flexible supply model

similar to that of e-hail. The authors argue that imposing a minimum wage will force the provider

to restrict the number of agents on the platform during certain time periods. This implies that, in

response to a minimum wage regulation, e-hail platforms may cap the number of drivers online when

the supply is sufficient, effectively limiting their scheduling flexibility. A similar argument is given

by Asadpour et al. [2019]. The authors show that, under certain market conditions, the platform

cannot satisfy the required wage floor while maintaining a non-negative profit. As a result, it would

respond to the regulation by either exiting the market, or reducing drivers’ flexibility. However,
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Parrott and Reich [2018] conclude that TNCs “could easily absorb an increase in driver pay with

a minimal fare adjustment and little inconvenience to passengers”. Specifically, their simulation

results indicate the minimum wage policy proposed by the New York City will only lead to a

relatively minor increase in passenger wait time. A recent study by Li et al. [2019c] shows that a

cap on the number of vehicles benefits the platform but hurts drivers. On the other hand, imposing

a minimum wage benefit both drivers and passengers because it pushes the platform to hire more

drivers. Parrott and Reich [2018] conclude that TNCs “could easily absorb an increase in driver pay

with a minimal fare adjustment and little inconvenience to passengers”. Commission cap is another

policy that has been discussed in literature. It is closely related minimum wage as it bounds the

revenue taken by the platform from the drivers. Zha et al. [2016] show that commission cap is

sufficient to guarantee a second-best outcome. This finding is further confirmed in Vignon et al.

[2021], which incorporates both pooling and congestion externality. Yu et al. [2019a] analyze the

welfare effects of the entry control policy in a market where e-hail and traditional taxi services

compete for passengers. They conclude that there exists an optimal capacity cap that can best

balance competing objectives of various stake holders. Our reading of literature above suggests

no study has examined what partially motivates our study: the impact of regulations on an e-hail

platform serving both solo and pooling rides.

Another set of regulations also under heated debates is congestion pricing. Although TNC

claim e-hail service could help reduce car ownership, the evidence of its adverse traffic impact

in already-congested city centers piles up [e.g., Schaller, 2017b, Erhardt et al., 2019, Diao et al.,

2021]. As a result, several cities started to regulate TNC operations. For instance, New York City

now charges $2.75 on each TNC trip that passes through a designated congestion zone (south of

96th Street in Manhattan) with only one passenger.1 The charge is reduced to $0.75 if the trip is

pooled (i.e., shared by at least two passengers). Similarly, Chicago charges $3.00 for each solo trip

($1.25 for each pooling trip) that starts or ends inside its downtown area2. In 2019, San Francisco

1See https://www.tax.ny.gov/bus/cs/csidx.htm
2See https://www.chicago.gov/city/en/depts/bacp/supp info/city of chicago congestion pricing.html

https://www.tax.ny.gov/bus/cs/csidx.htm
https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.html
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enacted a TNC tax, which imposed a 3.25% surcharge on all solo trips and a 1.5% surcharge on

all pooling trips3. Beside the trip-based fee, the conventional congestion pricing scheme, such as

cordon-based pricing [see e.g. de Palma and Lindsey, 2011], is also under consideration. Using a

spatial market equilibrium model, Li et al. [2020] compare three congestion pricing policies: (i)

uni-directional cordon fee, (ii) bi-directional cordon fee, and (iii) trip-based fee. They find all three

policies can reduce vacant vehicle density in the congested area and increase vehicle occupancy

across the entire market. However, uni-directional cordon pricing also improves service quality

outside the congested area and is more effective in reducing congestion. Recognizing the congestion

impact of TNC vehicles is most severe in the city centers during peak hours, Schaller [2018] suggests

a surcharge of $50/hour in Midtown and $20/hour in the other congested areas of Manhattan on

ride-hail vehicles, which is expected to result in an 8% drop in the demand for ride-hail and an

30% decrease in VMT. Other than congestion pricing, it has been proposed to directly regulating

the occupancy rate of TNC vehicles [see e.g., Schaller, 2017a]. Here, the target is the cruising time

that is often seen as a counterproductive dead-weight loss from the vintage point of a city manager.

Finally, recent research further discusses the potential of joint policy. For instance, Li et al. [2021]

suggest imposing a congestion fee, either by trip or based on operation time, and combining it with

a minimum wage policy. Their numerical experiments show that, although both pricing schemes

reduce ride-hail demand, the time-based pricing can more effectively improve vehicle occupancy.

Among the few studies discussing a mixed e-hail service with both pooling and solo rides, only

Vignon et al. [2021] investigate the impact of regulations. Specifically, it is the commission cap

can only be imposed on solo rides to achieve the second-best, with however small congestion toll

charged on drivers. Moreover, the toll can be replaced by congestion fees charged on solo and

pooling rides at different rate.

3See https://www.governing.com/news/headlines/San-Francisco-Will-Increase-Taxes-for-Ride-Hailin

g-Trips.html

https://www.governing.com/news/headlines/San-Francisco-Will-Increase-Taxes-for-Ride-Hailing-Trips.html
https://www.governing.com/news/headlines/San-Francisco-Will-Increase-Taxes-for-Ride-Hailing-Trips.html
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2.7. Simulation-based model for mobility service design

Compared to the analytical models reviewed above, the simulation-based models began to gain

traction in ride-hail research more recently. [Nourinejad and Roorda, 2016] develop an agent-

based simulation model to compare centralized and decentralized matching in dynamic ridesharing.

[Djavadian and Chow, 2017] simulate the day-to-day adjustment process for both the demand

side and the supply side of a mobility-as-a-service market. The results suggest the process is

able to converge to a stochastic user equilibrium (SUE) Smith [1984], Horowitz [1984]. [Ruch

et al., 2018] propose AMoDeus, a simulation model of autonomous mobility-on-demand (AMoD)

systems that provides a wide range of computational tools. [Hyland and Mahmassani, 2018] propose

several matching/dispatching algorithms for AMoD systems and evaluate them using agent-based

simulation. Built on SimMobility Adnan et al. [2016], [Nahmias-Biran et al., 2019] attempt to

integrate different types of on-demand mobility services within a single simulation framework. [Shen

et al., 2018] develop an agent-based simulation model of a hybrid system that integrates shared

fist/last-mile AMoD service with traditional transit. [Beojone and Geroliminis, 2021] analyze the

impact of cruising TNC vehicles on traffic congestion through agent-based simulation, in which the

travel time of a trip is rendered from a macroscopic fundamental diagram (MFD) Geroliminis and

Daganzo [2008].

Simulation-based models are able to represent the behaviors of passengers, drivers and the

operator, as well as their interactions in detail. However, they are not well equipped to solve service

design problems such as pricing and fleet size. The main reason is the gradient, i.e., response of

the simulated system towards a variation in the design variable, is often too complex to compute.

A commonly adopted remedy to this difficulty is to introduce a bi-level structure: the upper level

deals with the design question and the lower level simulates the system. One example is Pinto et al.

[2020], who tackle the design of an integrated transit–AMoD system. However, this framework often

limits the interaction between the design model and the simulator—only the design variables and
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selected system performance metrics are exchanged. As a result, the design model still could not

get full information about the gradient.

A related but more general research topic is simulation-based optimization (SBO), which in-

tegrates microscopic simulations into a stochastic optimization problem. The solution approaches

for SBO can be broadly classified into two groups. When the feasible set of decision variables is a

finite set, the problem could be solved through random search and metaheuristics, while if it is con-

tinuous, then gradient-based and metamodel-based methods are used [Barton and Meckesheimer,

2006]. Specifically, the metamodel approach can be further classified into physical and functional

ones. While the former requests a physical representation of the underlying problem, the latter is

generic and does not require any information about the objective function or the underlying prob-

lem. Therefore, the functional metamodels are more often selected for SBO problems. So as those

in transportation research [e.g., Chen et al., 2016, He et al., 2017, Cheng et al., 2019]. Nevertheless,

due to the lack of information about the specific problem, this approach often fail to provide . To

deal with this issue, a number of studies propose to include an auxiliary physical component into

the metamodel, which provides a global approximation of the objective function [e.g., Osorio and

Bierlaire, 2013, Chong and Osorio, 2018].

Another group of studies tackles the service design problem through reinforcement learning,

where the optimal policies are directly learned from simulation without solving any optimization

problem or explicitly modeling the system dynamics Holler et al. [2019], Shou and Di [2020], Chen

et al. [2021]. While this approach could obtain a desirable performance in practice, it fails to

generate insights into the ride-hail operation due to a lack of understanding of the market. Thus,

it is not suitable for the strategic planning of ride-hail service.
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Part 1

Matching with pooling
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CHAPTER 3

Matching model of pooling

Throughout this thesis, we define a pooling ride as a trip shared by two passengers. It starts at

the moment an idle driver is dispatched to pick up the passengers, one at a time, and ends when

both passengers arrive at their destinations. As its counterpart, a solo ride refers to a regular e-hail

trip with only one passenger. For both solo and pooling rides, the driver cannot be assigned to

another ride unless he finishes the current one.

To simplify notations, we name the passengers who choose solo rides as solo passengers, and

those choosing pooling as pooling passengers. If the platform does not offer pooling rides, all passen-

gers must choose solo rides. We name passengers in such a case as e-hail passengers to distinguish

them from solo passengers who have the option of pooling. Accordingly, we use subscripts s, p and

e to denote variables associated with solo, pooling and e-hail rides, respectively.

𝑤"#$
𝑤"#%

Pooling ridesSolo rides

𝑤"&

Dispatched vehicle Solo/pooling passenger

Figure 3.1. Pickup process of solo and pooling rides.

As shown in Figure 3.1, the wait time for a solo ride, denoted as w̃s, depends on the distance

between the passenger and the vehicle assigned to her. For a pooling ride, the wait time consists of

two parts. The first part, denoted as w̃p1, is the pickup time for the passenger closer to the matched

vehicle. The second part, denoted as w̃p2, is the detour time consumed in picking up the other



50

passenger, determined by the distance between the two passengers sharing the trip, as illustrated

in Figure 3.1. Notations used in this chapter are listed in Table 3.2.

Before presenting the matching model, we wish to emphasize that the objective here is to

represent the relationship between macroscopic variables that can be meaningfully measured and

predicted in a highly idealized macroscopic market, such as average wait time, and the density

of passengers/vacant vehicles. As a compromise, most details of the matching process, including

matching time (i.e., the duration from the moment when the platform receives a request to the

moment when it assigns a vehicle to serve the ride), matching criteria (e.g., distance, shareability),

and dynamic pooling strategies, are left out. Because these details vary strongly across time,

space and platform, it is difficult to represent them explicitly and satisfactorily by the equilibrium

state of our model. In addition, their effects on wait time and detour time, which are the most

important attributes of the ride-hail service, appear to be of secondary importance. For example,

the matching time is usually at least an order of magnitude smaller than the pickup time [Zha

et al., 2018b], whether vehicles are assigned to requests immediately [Castillo et al., 2018] or in a

batching process [Yang et al., 2020a]. The only exception is when there is a severe supply-demand

imbalance and passengers must wait to be matched in a virtual queue. However, such an extreme

case need not concern us because (i) the focus here is on a relatively long-term market equilibrium;

and (ii) transit would serve as a fallback option. Although we do not model the detailed matching

process, we shall implicitly capture its aggregate effect on wait time and detour time by introducing

exogenous parameters that can be calibrated from empirical data.

3.1. A general matching model

In this thesis, we adopt the matching model developed in Chen et al. [2018] and extend it to

accommodate the matching process in pooling. Consider a passenger entering the ride-hail market.

Their wait time depends on the number of vacant vehicles as well as the number of other waiting

passengers nearby. Here, a vehicle is considered vacant if there is no passenger in it. Therefore, a
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fraction of vacant vehicles may have been dispatched and are en-route to pick up their passengers.

We name vehicles in this stage as matched vehicles. Accordingly, the idle vehicles are referred to

unmatched vehicles. It is expected there are very few matched vehicles in a street-hail taxi market,

whereas a substantial portion of vehicles could be matched in an e-hail market. Similarly, we split

waiting passengers into two groups: (i) the matched, who are waiting to be picked up, and (ii) the

unmatched, who are waiting to be matched. Since the matching time is in general much shorter

than the pickup time, the majority of the waiting passengers should be matched. To simplify the

analysis, the following assumptions are introduced [Chen et al., 2018].

Assumption 1. Vacant vehicles and waiting passengers, both matched and unmatched, are

uniformly distributed. In addition,

(1) all vehicles are cruising at the same speed v, and

(2) passengers keep waiting at the same location before pickup.

With Assumption 1, the spatial distribution of vacant vehicles and waiting passenger are rep-

resented by their respective densities Λ and Π. Accordingly, the densities of unmatched vehicles

(passengers) is given by Λ0 = bΛΛ (Π0 = bΠΠ). Chen et al. [2018] prove that the number of

unmatched vehicles, denoted by Ñv(d), within a distance d from the passenger forms an Inhomoge-

neous Poisson Process with intensity ξv(d) = 2πdΛ0. The proof is provided in Section 3.6.2. The key

insight of the model is that not all unmatched vehicles are available for the passenger. Instead, the

fraction of matchable vehicles, denoted by γ(d), is determine by matching mechanism. Assume the

matchable vehicles are randomly distributed among the unmatched vehicles, then the subprocess,

denoted by Ñmv(d), is also an Inhomogeneous Poisson Process with intensity ξmv(d) = 2πdγ(d)Λ0.

Suppose the passenger is picked up by the closest matchable vehicle at distance D̃, the proba-

bility that at least one matchable vehicle is within d from the passenger is given by

FD̃(d) = Pr(D̃ ≤ d) (3.1)
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= 1− Pr
(
Ñmv(d) = 0

)
= 1− exp

(
−
∫ d

0
2πuγ(u)Λ0du

)
.

3.1.1. Street-hail taxi

For street-hail taxis, the equality Λ0,tx = Λtx generally holds, where the subscript “tx” denotes

variables associated with taxi service. Chen et al. [2018] further derive the fraction of matchable

vehicles as γtx(d) = (σd0)/(2πd), where σ evaluate the attractiveness of the passenger’s waiting

location towards nearby taxis and d0 is the hail radius, that is, the maximum distance from which

the passenger could see and hail the taxi. As a result, Nmv,tx reduces to a Poisson Process and the

cumulative distribution function (CDF) of D̃tx becomes

FD̃tx
(d) = 1− exp

(
−
∫ d

0
σd0Λtxdu

)
= 1− exp (−σd0Λtxd) , (3.2)

which yields the expected wait time

wtx =
δ

v
Dtx =

δ

vσd0Λtx
, (3.3)

where δ is the detour ratio of road network [e.g., Fairthorne, 1964, Boscoe et al., 2012, Yang et al.,

2018].

3.1.2. Regular e-hail service

E-hail enables the real-time matching between passengers and drivers far from each other. Con-

ceptually, it is equivalent to push d0 in Eq. (3.2) to infinity. However, the ability of reaching every

unmatched vehicle also creates the competition among unmatched waiting passengers. As a result,

the fraction of matchable vehicles in the context of e-hail is no longer restricted by the hail distance,

but the competition from fellow passengers.

If the unmatched vehicles are evenly distributed among unmatched passengers, the fraction of

matchable vehicles is approximated by γe(d) = 1/Π0. Accordingly, the intensity of Nmv,tx becomes

ξmv,e(d) = 2πdΛ0/Π0, where ratio between unmatched vehicle and passenger densities can be
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further simplified by

Λ0

Π0
=
bΛΛ

bΠΠ
. (3.4)

Since bΛ and bΠ reflect on the supply and demand at different stages of the matching process. To

simplify the analysis, the following assumption is also introduced [Zhang et al., 2019a],

Assumption 2. Through its matching algorithm, the platform can achieve a stable ratio be-

tween bΛ and bΠ, defined as k := bΛ/bΠ. k is a parameter that measures the matching efficiency.

A larger k indicates a higher efficiency.

Accordingly, CDF of D̃e is derived as

FD̃e
(d) = 1− exp

(
−
∫ d

0

2πukΛ

Π
du

)
= 1− exp

(
−πkΛ

Π
d2

)
, (3.5)

and the expected wait time for e-hail is

we =
δ

2v

√
Π

kΛ
. (3.6)

The difference in matching mechanism between taxi and e-hail is easily understood when com-

paring the intensities of their matchable vehicle processes. While ξmv,tx(d) = σdΛtx is independent

of d, ξmv,e(d) = 2πdkΛe/Πe grows with d. In other words, the matching rate with respect to the

wait time is constant for taxi passengers while it increase linearly for e-hail passenger. The benefit

from this increasing matching rate, however, is checked by the competition from other waiting

passengers. Factor Πe in ξmv,e(d) indicates that the unlimited matching radius essentially induces

a congestion on the demand side. As demonstrated in Zhang et al. [2019a], this congestion effect is

surprisingly consequential such that it even alters the overall economic property of e-hail service.

In real practice, however, the fraction of matchable vehicles depend on specific matching strategy

employed by the platform. Sometimes, it is even beneficial to hold certain number of unmatched

passenger to improve the overall matching efficiency [e.g., Özkan and Ward, 2020, Hu and Zhou,
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2021]. Hence, we let γe = 1/Πε
0 to capture such effect. Accordingly, the matching efficiency and the

intensity become k = bΛ/(bΠ)ε and 2πdkΛ/(Π)ε, respectively. For simplicity, we do not consider

this adjustment in the equilibrium analysis.

It is worth noting that Eqs. (3.3) and (3.6) align with the wait time function derived in Douglas

[1972] and Arnott [1996], yet they capture more characteristics in the matching process (e.g., hail

distance, local hotspot effect and passenger competition). Hence, the model can be calibrated using

empirical data to evaluate and compare the matching efficiencies across local markets.

3.2. Matching in e-hail service with pooling

To accommodate the pooling service with the model presented above, we first add more assumptions

about the distribution of passenger densities.

Assumption 3. Passengers waiting for solo rides and pooling rides are uniformly distributed

with densities Πs and Πp. Among those waiting for pooling rides, the unmatched passengers are

uniformly distributed with a density Π0,p = bΠpΠp. Besides, the origin and destination of passengers

are uniformly distributed in the market.

Similar to bΛ and bΠ, bΠp is related to the efficiency of pairing pooling passengers. To simplify

the notation, we use b instead hereafter.

Recall the wait time of solo passengers is w̃s and that of the pooling passengers consists of two

parts, i.e., w̃p1 and w̃p2. We first discuss the detour time w̃p2 and solo wait time ws, as they are

easily derived by drawing an analogy from the matching in regular e-hail service. Then, we proceed

to discuss w̃p1, which has a more complicated analytical form.

3.2.1. Expected pickup detour in pooling

The matching between pooling passengers is analogous to that between the passenger and vehicles.

Define matchable passengers as other unmatched pooling passengers. Then, follow the exactly

the same reasoning of Proposition 1, it is shown that the number of matchable passengers within
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distance l from the passenger, denoted by Ñmp(l), forms an Inhomogeneous Poisson Process with

intensity 2πlΠ0,p. Again, assume the passenger be matched with the

Denote Ñmp(l) as the number of matchable passengers, that is, other unmatched pooling pas-

sengers, within a distance l from a passenger. With Assumptions 1 and 3, and following exactly the

same reasoning used in proving Proposition 1, we can show Ñmp(l) is an Inhomogeneous Poisson

process with intensity function 2πlΠ0,p = 2πlbΠp. Again, assume the passenger be matched with

the closest matchable passenger at distance L̃. Then, the expected values of L̃ and w̃p2 are derived

by, respectively,

L =
1

2
√
bΠp

; wp2 =
δL

v
=

δ

2v
√
bΠp

. (3.7)

3.2.2. Expected wait time for solo rides

Similar to the case of regular e-hail service, the solo wait time is determined by the distance to

the closest matchable vehicle. However, the fraction of matchable vehicles has changed due to

the existence of pooling rides. It is expected that the competition among passengers is less severe

because pooling passengers requires fewer vehicles. In the extreme case, when everyone is pooling,

the total number of vehicles required will be cut in half. Therefore, we define effective density of

waiting passenger as

Πeff ≈ Πs + Πp/2. (3.8)

Substituting the waiting passenger density in Eq. (3.6) with above definition gives the expected

value of solo wait time

ws =
δ

2v

√
Πeff

kΛ
=

δ

2v

√
Πs + Πp/2

kΛ
. (3.9)
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3.2.3. Expected pickup time in pooling

Different from solo passengers, a pair of pooling passengers compete for unmatched vehicles as a

team. To better illustrate the discrepancy, we define search area as the area enclosed by a circle of

radius d and centered at the passenger’s location. As shown in Figure 3.2, the pooling passengers

have a greater access to unmatched vehicles given the same search area as the solo passenger. As

a result, the solo passenger in the left panel fails to find a match, whereas she would succeed if

choosing to pool as there is a vehicle falls in their peer’s search area. In other words, pooling

passengers enjoy collective competing power in the market, which implies wp1 ≤ ws in general.

Nevertheless, this advantage diminishes when the pooling passengers get closer to each other and

their search areas begin to overlap. Evidently, if the two passengers happen to wait at the same

location, their competing advantage will be wiped out.

Matched vehicle Waiting passenger

Solo rides Pooling rides

Search area

Figure 3.2. Access to unmatched vehicles through search area for solo passengers
(Left) vs. pooling passengers (Right).

Taking the above observation into consideration, we derive the following closed-form formula

for wp1, which includes some mile approximation and will be explained in detail in Section 3.6.3.

wp1 '
δ

2v

√
Πs + Πp/2

kΛ

κ+ 4bΠp

2κ+ 4bΠp
, (3.10)
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where κ is a parameter introduced to approximate the overlapping portions of the pooling passen-

gers’ search areas.

3.3. Discussions

3.3.1. En-route pooling

A key assumption about pooling is that passengers are always pooled together before their trips

start. In reality, e-hail platforms often allow more flexibility. For example, they may let a pooling

passenger leave for her destination without a partner, and attempt to find one en-route. In what

follows, we consider the case when each pooling passenger is matched to the closest matchable

vehicle, which may be fully or partially vacant. If the passenger rides alone, she could be detoured

to pick up another pooling passenger en-route.

Let D̃0 and D̃h be the distance between the passenger and the closest matchable vehicles that

are, respectively, fully and partially vacant. Then, the expected pickup time and detour to pick up

a second passenger may be specified as

wp1 =
δ

v

(
E[D̃0]Pr(D̃0 < D̃h) + E[D̃h]Pr(D̃0 ≥ D̃h)

)
; (3.11)

wp2 =
δ

v
E[D̃h]

(
1− Prβ(D̃0 < D̃h)

)
, (3.12)

where β is the average number of potential pooling passengers along the route.

To interpret Eq. (3.11), note that the passenger may be picked up by either a fully or partially

vacant vehicle, and thus her expected pickup time is the average weighted by the probability of each

scenario. As for Eq. (3.12), the detour trip occurs only if at least one potential pooling passenger

cannot find a closer and fully vacant vehicle. Since D̃0, D̃h and β above depend on the density of

partially and fully vacant vehicles and the density of pooling passengers, it seems rather difficult to

specify the probabilities in Eqs. (3.11) and (3.12) in a way that can be empirically calibrated and

validated.
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Additionally, it is unclear whether explicitly modeling en-route pooling would make a meaning-

ful difference in an idealized macroscopic market. The proposed pooling model centers on two basic

trade-offs: pooling helps increase the competing power of pooling passengers, and it becomes more

attractive when its market share increases (because higher demand reduces the detour distance).

In en-route pooling, these basic trade-offs not only exist, but also are expected to play the same

dominating role. Because the origin and destination of all trips are uniformly distributed, fully and

partially vacant vehicles would also be evenly distributed relative to passengers waiting for pooling

rides. Accordingly, pooling passengers still enjoy a greater access to supply because they can hail

both fully and partially vacant vehicles. Also, a higher density of pooling passenger still leads to a

shorter detour, even if it occurs en-route. Therefore, the total trip time of a pooling ride (inclusive

of detour and wait time) should not vary much in en-route pooling. The main difference is where

detours occur, which need not concern us.

For the above reasons, en-route pooling is not explicitly modeled in this thesis.

3.3.2. Assumptions on k and b

Assumptions 2 and 3 imply that the platform can and will dynamically adjust the matching and

dispatching algorithms to achieve a desired efficiency. We make these assumptions for two reasons.

First, the e-hail matching is such a complex process that itself is being actively researched. Previous

studies have shown that decision variables like matching interval, matching radius and maximum

allowed detour in pooling are all critical to matching performance [e.g., Yang et al., 2020a, Xu et al.,

2020, Ke et al., 2020a]. In this study, we choose not to explicitly model these details. Instead, we

use k and b to represent the overall efficiency obtained by the platform’s matching policy, and

calibrate them from empirical observations. This enables us to focus on the main effect of the

demand-supply relationship on the matching process. Secondly, by setting k and b as exogenous,

the platform’s pricing strategies—the focus of this study—are isolated from its matching strategies.
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This simplification allows the former to drive the passenger demand and vehicle supply, while the

latter’s effect is incorporated through the parameters k and b.

We note that Assumptions 2 and 3 may be violated in some cases. If the platform employs

a fixed matching strategy (e.g., a constant matching interval), it may not be able to maintain k

and b at a stable level when the market conditions vary. While an increasing number of studies

consider dynamic matching policies [e.g., Özkan and Ward, 2020, Qin et al., 2021], using a constant

matching interval/radius is common in practice [e.g., Yan et al., 2019]. Such a potential violation

of the assumptions may introduce estimation errors in passenger wait time and market equilibrium.

Assumptions 2 and 3 may also be violated when the market enters a hyper-congested state known

as Wild Goose Chase (WGC) [Castillo et al., 2018], which is often accompanied by exceedingly

long matching time. WGC is a state when the system throughput Q decreases with passenger wait

time w. From Eq. (3.6), we have

we =
δ

2v

√
Π

kΛ
⇒ w2

e =
δ

4v2

Qwe
kV

⇒ V =
δ

4v2

Q

kwe
.

Plugging into the flow conservation N = V +Qτ yields

N =
δ

4v2

Q

kwe
+Qτ ⇒ Q =

N

τ + δ
4v2kwe

.

When N and other parameters, including k, are fixed, Q is monotonically increasing with we

and thus WGC would never emerge. This violation is due to the assumption that k remains constant

over time. In reality, it is expected that the matching process becomes inefficient under extreme

demand-supply imbalance. In other words, k is more likely to be a piece-wise function of we. That

is, when we is below certain threshold, k is a constant; and as we exceeds the threshold, k would

decrease with we, i.e., k′(we) < 0. Accordingly,

∂Q

∂we
=

N(
τ + δ

4v2k(we)we

)2

δ

(4v2k(we)we)2

(
k(we) + k′(we)we

)
,
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and the system enters WGC when we > −k(we)/k
′(we)→ ∂Q

∂we
< 0.

Nevertheless, as mentioned before, WGC is unlikely to arise in our setting because the demand

for e-hail services is elastic, in the sense that transit is always a feasible fallback option. Hence,

passengers would begin to leave the e-hail market long before WGC materializes. In summary,

Assumptions 2 and 3 not only simplify the matching model significantly but also separate the

optimization of pricing from matching. However, as these assumptions sometimes deviate from the

practice in the industry, they may also become a source of estimation errors. We leave it to a future

study to relax these assumptions and to refine the matching model for equilibrium analysis.

3.4. Numerical experiment

Eqs. (3.6) and (3.9) suggest that offering pooling always lowers the wait time of solo passengers.

However, the benefit is less clear for pooling passengers. Therefore, in this section, we conduct a

sensitivity analysis on the wait time of e-hail, solo and pooling rides.

Figure 3.3 examines how waiting passenger density Π, vacant vehicle density Λ and fraction of

waiting passenger for pooling rΠ = Πp/Π affect the passenger wait time and the fraction of pickup

detour. When not varying, the parameters set as the default values reported in Table 3.1. Note

that the wait time for both passengers in a pooling ride is wp1 + wp2, because the first passenger

to be picked up also endure the pickup detour on the way to pick up the other passenger.

3.4.1. Parameter setting

As shown in Figure 3.3(a), while the wait times of solo and e-hail passengers increase with the

waiting passenger density, that of pooling passengers decreases, thanks to shorter pickup detours.

In other words, pooling becomes more desirable when the demand level is high. Although a larger

waiting passenger density intensifies the competition and increases the total wait time, its impact

on pooling passengers is better mitigated by the collective competing power and the reduction of

the detours. Nevertheless, when the system becomes overly congested (larger than 30 passengers
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Table 3.1. Default valuesof parameters.

Parameter Unit Value
Detour ratio of road network δ 1.3
Cruising speed v mph 13.6
Matching efficiency k /sqmi 0.16
Pooling efficiency b 0.05
Approximation parameter κ 4
Vacant vehicle density Λ /mi2 70
Waiting passenger density Π /mi2 24
Fraction of waiting passenger for pooling rΠ 0.4

(a) (b) (c)

Figure 3.3. Sensitivity of wait time and fraction of pickup detour to (a) waiting
passenger density, (b) vacant vehicle density and (c) fraction of waiting passenger
for pooling.

per square mile in this example), the benefit of pooling diminishes, slightly pushing up wait time.

On the other hand, when the vacant vehicle density increases, all passenger wait times drop, as

shown in Figure 3.3(b). Yet, pooling benefits less than the other two due to the existence of pickup

detour. According to Figure 3.3(c), while both solo and pooling passengers benefit substantially

from the increase in the fraction of waiting passenger for pooling, pooling passengers’ gain is greater

thanks to the collective competing power of the pair. Figure 3.3 also reveals that the fraction of

detour time in the pooling passengers’ wait time drops quickly as the waiting passenger density

and fraction of pooling passenger among them increase.

To summarize, pooling becomes more appealing as the demand level grows, and the rise of

fraction of waiting passenger for pooling further reduces the wait time and thereby attracts more
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demand. However, this seemingly positive feedback leaves out an important caveat—pooling tends

to prolong a trip due to the pair’s different destinations, on top of the detour time incurred in

the pickup phase. This en-route detour time squeezes the supply because a vehicle serving pooling

rides will be occupied longer on average. We will show how this effect is captured in an equilibrium

model in Chapters 5 and 6.

3.5. Summary

In this chapter, we present the matching model developed in Chen et al. [2018] and Zhang et al.

[2019a], then extend it to accommodate the pooling service. In brief, the existence of pooling

benefits both solo and pooling passengers by reducing the competition among passengers. Pooling

passengers also enjoy a collective competing power over solo passengers, leading to a shorter pickup

time, i.e., the time consumed to pick up the closer passenger. However, pooling passengers endure

additional pickup detour that sacrifices the LOS. Both the pickup time and pickup detour depend

on the pooling waiting passenger density Πp, Given other parameters unchanged, the pickup detour

decreases with Πp as it becomes easier to pair pooling passengers. In contrast, the pickup time

increases with Πp because the collective competing power diminishes as the distance between peer

passengers decreases. The sensitivity analysis reveals two opposite effects of waiting passenger

density on pooling wait time. On the one hand, it helps reduce the pickup detour as passengers

could more easily find a peer in close proximity. On the other hand, it intensifies the competition

among passengers, which extends the matching and pickup time. Solo and e-hail trips, however,

are only subject to the latter effect.
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3.6. Appendix

3.6.1. Notations

Table 3.2. List of notations

Variable Description Unit

we (ws) e-hail (solo) passenger wait time hr

wp1 first part of pooling passenger wait time (matching time plus

pickup time of the first passenger)

hr

wp2 second part of pooling passenger wait time (pickup time of the

second passenger)

hr

Λ (Λ0) vacant (unmatched) vehicle density /sqmi

Π (Π0) waiting (unmatched) passenger density /sqmi

Πs (Πp) solo (pooling) waiting passenger density /sqmi

Ñv(d) (Ñmv(d)) number of unmatched (matchable) vehicle within a distance d

from a passenger

Ñp(l) (Ñmp(l)) number of pooling (matchable) passenger within a distance l from

a passenger

v cruising speed of vacant vehicles mph

k coefficient of matching efficiency /sqmi

b coefficient of pooling efficiency

κ approximation parameter /sqmi

δ detour ratio of road network

D̃e (D̃p) the distance between the e-hail (pooling) passenger and the clos-

est matchable vehicle (passenger)

mi

3.6.2. Number of vacant vehicles as Poisson Process

Proposition 1. (Chen et al. [2018] Proposition 1) Under Assumption 1, the counting process

Ñv(d) is an Inhomogeneous Poisson processes with intensity 2πdΛ0.

Proof. Due to Assumption 1.1, Ñv(d) = 0 and the increments of Ñv(d) are independent.

Consider a ring area defined by d and d+ ∆d, and equally cut it into n small pieces with area ∆s.

Then, the number of vacant vehicle in the ring area follows binomial distribution where each piece

contains one vacant vehicle with probability Λ0∆s. As n approaches to infinity, such a binomial
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distribution can be approximated by a Poisson distribution with rate

np =
π(d+ ∆d)2 − πd2

∆s
Λ0∆s = πΛ0(2d+ ∆d)∆d. (3.13)

Hence,

Pr(Ñv(d+ ∆d)− Ñv(d) = 1) = πΛ0(2d+ ∆d)∆d exp[−πΛ0(2d+ ∆d)∆d]

⇒ lim
∆d→0

Pr(Ñv(d+ ∆d)− Ñv(d) = 1)

∆d
= 2πdΛ0, (3.14)

Pr(Ñv(d+ ∆d)− Ñv(d) > 1) = 1− exp[−πΛ0(2d+ ∆d)∆d]− 2πdΛ0

⇒ lim
∆d→0

Pr(Ñv(d+ ∆d)− Ñv(d) > 1)

∆d
≈ lim

∆d→0

1− [1− πΛ0(2d+ ∆d)∆d]

∆d
− 2πdΛ0 = 0. (3.15)

Therefore, Ñv(d) is an Inhomogeneous Poisson Process with intensity 2πdΛ0. �

3.6.3. Derivation of pickup time in pooling

Define D̃p as the minimum distance from either passenger to the closest matchable vehicle. To

derive the distribution of D̃p, we introduce effective search area as the union of the two search

areas. Accordingly, Pr(D̃p ≤ d|l) gives the probability that at least one matchable vehicle appears

inside the effective search area with parameter d conditional on the distance between the pooling

pair l.

Let A(d, l) denote the area of the effective search area. As illustrated in Figure 3.4, when

d ≤ l/2, the two passengers’ search areas do not overlap. Hence, A(d, l) simply equals 2πd2.

Otherwise, A(d, l) is the total search area less the intersection if d > l/2. To summarize,

A(d, l) =

 2πd2 , d ≤ l/2

2πd2 − 2 cos−1
(
l

2d

)
d2 + dl

√
1−

(
l

2d

)2
, d > l/2

. (3.16)
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Pooling passenger

d < L/2 d > L/2

𝑙
𝑑 𝑑

𝑙

Search area Effective search
area

Figure 3.4. Illustration of search area and effective search area.

Pr(D̃p ≤ d|l) is thus given by

Pr(D̃p ≤ d|l) = 1− exp

(
− kΛ

Πeff
A(d, l)

)
. (3.17)

As per Eq. (3.17), given d, the collective competing power is controlled by l. It doubles when

l ≥ 2d, though reduces as l, leading to the same wait time as solo passengers when l = 0. The non-

smoothness of A(d, l), however, bring difficulty to further evaluate the expectation of D̃p. Therefore,

we propose to approximate it with a smooth function as follows:

Â(d, l) =

(
2− 1

1 + κl2

)
πd2. (3.18)

It is easy to verify that Â(d, l) → πd2 as l = 0 and Â(d, l) → 2πd2 as l → ∞. Thus, Â(d, l) well

captures the lower and upper bounds of A(d, l) and the parameter κ may be adjusted to achieve

good approximation.

Using Â(d, l), the conditional expectation E[D̃p|l] is derived as

E[D̃p|l] =
1

2

√
Πeff

kΛ

(
2− 1

1 + κl2

)−1/2

. (3.19)
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Recall that l is a realization of random variable L̃. Thus, the expectation of D̃p is given by

Dp = E[E[D̃p|L̃]] =

∫ ∞
0

E[D̃p|l]dFL̃(l), (3.20)

where FL̃(l) is CDF of L̃.

The above integral cannot be derived analytically due to the functional form of Eq. (3.19).

Instead, we introduce the following approximation:

Dp = E[E[D̃p|L̃] ≈ E[D̃p|E[L̃]] =
1

2

√
Πeff

kΛ

(
2− 1

1 + κL2

)−1/2

. (3.21)

Plugging Eq. (3.7) into Eq. (3.21) thus yields

wp1 =
δ

v
Dp =

δ

2v

√
Πeff

kΛ

κ+ 4bΠp

2κ+ 4bΠp
. (3.22)

The approximation made in Eq. (3.21) warrants some discussions. Introduce a new function

g(l) =

(
2− 1

1 + κl2

)−1/2

. (3.23)

Then, the approximation made in Eq. (3.21) is equivalent to E[g(l)] ≈ g(E[l]) = g(L). The

approximation quality depends on the functional form of g(l). As per Jensen’s inequality, if g(l) is

a linear function, the approximation is subject to no error. Otherwise, E[g(l)] ≥ g(L) holds when

g(l) is convex, and E[g(l)] ≥ g(L) if g(l) is concave.

Figure 3.5(a) plots the function value, first and second derivatives of g(l) with κ = 4. It can be

seen that g(l) is convex when l > 0.25 and quickly converges to 1/
√

2. Hence, Eq. (3.21) is likely

to underestimate Dp (hence wp1). This finding is confirmed in Figure 3.5(b), which compares the

approximated value and the analytical result given by Eq. (3.20) (the analytical result is computed

by numerical integration). Specifically, we fix the total waiting passenger density and vacant vehicle

density, and vary the waiting passengers density for pooling Πp. All the parameters are set according

to Table 3.1. As shown in Figure 3.5(b), the approximated value slightly underestimates Dp except
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when Πp is close to 0. For most values of Πp, the error is within 5% and it decreases as Πp increases.

Therefore, Eq. (3.21) does offer a reasonable approximation for Dp.
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Part 2

Aggregate market with pooling
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CHAPTER 4

Aggregate market equilibrium

The main stakeholders in an e-hail market are passengers, drivers and the platform. After the

platform sets the trip fare and the compensation rate, passengers and drivers respond with their own

decision on mode choice and market entry. In essence, the resulting problem can be described as a

Stackelberg game [Von Stackelberg, 2010], in which the platform is the leader while passengers and

drivers are followers. The same framework has been widely applied in transportation research [e.g.,

Zhou et al., 2005, Yang et al., 2007, Zhang and Nie, 2018]. The regulations, however, perform as

constraints in the platform’s pricing problem and thus influence the market equilibrium indirectly.

In this chapter, we will first establish the market equilibrium given the platform’s pricing strategy,

i.e., the follower’s game. Based on the equilibrium, the following two chapters will discuss the

platform’s pricing problem in both monopoly and duopoly scenarios, i.e., the leader’s game, with

and without regulatory constraints.

4.1. Main assumptions

The market equilibrium is dictated by the interaction between demand and supply. On the demand

side, passengers choose among solo, pooling and transit based on their generalized cost. On the

supply side, drivers decide whether or not to enter the market according to the average earning rate.

The matching model presented in Chapter 3 connects the demand and the supply, by characterizing

the passenger wait time and vehicle occupancy that directly affect passengers’ mode choice and

drivers’ entry choice.

Before we present the equilibrium model, let us first state the main assumptions as follows
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Assumption 4. Transit is a viable mode to all passengers, and is supplied at a constant

generalized cost. Also, the transit operator always breaks even, i.e., the fare equals the marginal

cost.

Assumption 5. Registered e-hail drivers enjoy flexible working schedules. Their decision to

enter the service solely depends on the average earning rate offered by the platform relative to that

provided by other job opportunities that they can freely pursue.

Assumption 6. The amount of vehicular traffic contributed by e-hail services is small, and

hence the extra congestion effect is not explicitly considered in the utility of all three modes.

We note that Assumption 6 is introduced to focus our analysis on the trade-off in pricing

between solo and pooling. In Chapter7, it will be relaxed to investigate the congestion impact of

e-hail vehicles due to the platform’s operational strategies and regulations.

4.2. Passenger demand

We characterize passengers’ choice from a discrete set of modes M = {s, p, t}, where s, p, and t

refers to solo, pooling and transit, respectively. Let ν be the value of time, and fi and τi, i ∈M be,

respectively, the trip fare and the average duration of mode i. Typically, τp > τs because pooling

tends to prolong a trip due to the pair’s different destinations. We define the generalized cost for

passengers choosing one of the three modes as follows.

Solo ride: us = fs + ν(ws + τs), (4.1a)

Pooling ride: up = fp + ν(wp1 + wp2 + τp), (4.1b)

Transit: ut = ft + (ν + ζ)τt. (4.1c)

According to Assumptions 4 and 6, ft, τs and τt are all treated as constants. Notations used in

this chapter are summarized in Table 4.1.
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In theory, τp should be endogenous, as a decreasing function of the pooling passenger density.

Two recent studies investigate this issue for pooling rides shared by two passengers. By simulating

the matching process of on-demand pooling using empirical demand data collected in three large

cities, Ke et al. [2021] found that the ratio between the detour distance and the average trip distance

is inversely proportional to a function of the batch demand (i.e., the number of requests accumulated

in a matching interval). Lobel and Martin [2020] analyze the detour and the value associated with

pooling. The latter is measured by the reduced total travel distance. The authors define the detour

(value) ratio as the total detour (value) normalized by the total travel distance when both passengers

take solo rides. They show that the sum of the two ratios is bound by 0.5, which also implies the

detour ratio cannot exceed 0.5. Although these results bring valuable insights, implementing them

in our framework is impractical. On the one hand, the model proposed in Ke et al. [2021] cannot

be properly calibrated with the data we have. On the other hand, Lobel and Martin [2020] only set

an upper bound on the detour ratio. Hence, in this study, we simply assume τp to be a constant,

which is calibrated from the empirical data (see Section 10.2). In Section 4.6, we test our model’s

sensitivity to τp. For the reader who wonders how much a difference an endogenized detour time

could make, in Section 4.8.3, we implement a version of our equilibrium model using the detour

model of Ke et al. [2021], and perform a sensitivity analysis against key coefficients.

Note that ζ in Eq. (4.1c) represents additional disutility of transit relative to ride-hail services

(associated with privacy, comfort, crowdedness, etc.). Following Schwieterman [2019], we set ζ =

0.25ν in this study.

Suppose the total demand is D0 and the share of each mode is a continuous and differentiable

function q : R3
+ → (0, 1) of the general costs of all three modes, i.e.,

Qi = D0q(ui,u−i), i ∈M,−i :=M\ {i}, (4.2)

where u−i refers to modes except for i. Without loss of generality, we assume ∂Qi/∂ui < 0 and

∂Qi/∂u−i > 0. Accordingly, the pooling ratio is given as rQ = Qp/(Qs +Qp).
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4.3. Vehicle supply

Let S0 be the potential supply, which may be viewed as the total number of drivers registered on

the platform. As per Assumption 5, we define ẽ0 as the earning rate of the alternative employment

opportunity available to the drivers. Often known as the reservation rate, ẽ0 is modeled as a random

variable with a cumulative distribution function (CDF) g(·). Drivers enter the e-hail market only if

doing so yields an earning rate e ≥ ẽ0. This assumption aligns with several studies that empirically

observe a positive wage elasticity of supply among ride-hail drivers [e.g., Angrist et al., 2017, Chen

and Sheldon, 2017, Sun et al., 2019] Accordingly, the fleet size is derived as

N = S0Pr(ẽ0 ≤ e) = S0g(e). (4.3)

The earning of an e-hail driver is determined by the compensation rate per unit occupied time,

denoted as η. In addition, a driver serving pooling rides may also be paid a fixed fee cp for each

additional pickup. Thus, the average earning rate of a driver is computed as

e =
1

N

[
η

(
Qsτs +

1

2
Qpτp

)
+

1

2
cpQp

]
, (4.4)

where Qsτs + 1
2Qpτp is the total occupied time and 1

2Qp denotes the number of additional pickups.

4.3.1. Equilibrium with single platform

With the demand and supply specified in previous two subsections and the wait times derived in

Chapter 3, the aggregate equilibrium in a unit time period is characterized by the following system

of equations:

mode choice: Qi = D0q(ui,u−i), i ∈ {s, p}, (4.5a)

Fleet size: N = S0g

(
1

N

[
η

(
Qsτs +

1

2
Qpτp

)
+

1

2
cpQp

])
, (4.5b)

Flow conservation: N = V +Qsτs +
1

2
Qpτp, (4.5c)
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Solo wait time: ws =
δ

2v

√
Qsws +Qp(wp1 + wp2)/2

kV
, (4.5d)

Pooling wait time: wp1 = ws

√
κ+ 4bQp(wp1 + wp2)

2κ+ 4bQp(wp1 + wp2)
, (4.5e)

wp2 =
δ

2v

1√
bQp(wp1 + wp2)

. (4.5f)

Eq. (4.5c) states that the total vehicle operation time (represented by the fleet size N) consists

of three parts: (i) the vacant vehicle time (V ) that includes both idle and pickup time; (ii) the

time spent on delivering solo passengers; and (iii) the time spent on delivering pooling passengers.

Since the market equilibrium is established over unit time period, V substitutes Λ in Eqs. (3.9)

and (3.10). Eqs. (4.5d)–(4.5f) are obtained from substituting Πs and Πp in Eq. (3.7)–(3.10) by

Πs = Qsws and Πp = Qp(wp1 + wp2) as per Little’s formula [Little, 1961].

4.4. Equilibrium with multiple competing platforms

Consider an aggregate ride-hail market where a set of platforms, denoted as P = {A,B, . . . },

competing with each other and against transit, by offering solo and/or pooling rides. The demand

model is the same as that defined in Section 4.2, except that the set of modes expands. The supply

model, however, depends on the particular supply mode of drivers. Here, we consider two scenarios:

single-homing, where each driver only joins one platform, and multi-homing, where each driver joins

all platforms.

4.4.1. Single-homing

In the case of single-homing, a driver working for platform j is paid at a compensation rate ηj per

unit occupied time. Then, the average wage rate is given by

ej =
ηj

N j

(
Qjsτ

j
s +

1

2
Qjpτ

j
p

)
, (4.6)
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the flow conservation condition Eq. (4.5c) becomes

V j = N j −Qjsτ js −
1

2
Qjpτ

j
p , (4.7)

and the effective waiting passenger density is

Πj
eff = Qjsw

j
s +

1

2
Qjp(w

j
p1 + wjp2). (4.8)

Recall that the effective waiting passenger density Πeff measures the passenger competition for

vacant vehicles. In the case of single-homing, solo and pooling passengers from the same platform

compete for the vacant vehicles of that platform.

Similar to the case of single platform, the market equilibrium with multiple platforms can

be recast as a fixed point system x = F (x), where x = [ws,wp1,wp2,N]T , and ws := {wjs, j ∈

P},wp1 := {wjp1, j ∈ P} and wp2 := {wjp2, j ∈ P}. In other words, the market equilibrium can be

fully characterized by the vectors of passenger wait time (solo and pooling) and the fleet size.

4.4.2. Multi-homing

In practice, the flexibility promised by TNCs allows drivers to register and work on multiple plat-

forms. The obvious rationale for a driver is to follow jobs wherever they arise, rather than putting

all eggs (in this case his time) in one basket. In Chicago, for example, about 25% drivers are af-

filiated with more than one platform in September 2019, and a preliminary analysis suggests these

drivers do serve more trips on average than others1. The situation considered here is an extreme

version of multi-homing, though it should provide insights on the real practice. Accordingly, we

have N = N j , j ∈ P and the average wage rate is given by

ē = ej =
1

N

∑
j

ηj
(
Qjsτ

j
s +

1

2
Qjpτ

j
p

)
. (4.9)

1Computed from the Chicago TNC data in September 2019 (see Section 10.1)
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Besides, there is only one flow conservation equation Eq. (4.5c), i.e.,

V = V j = N −
∑
j

(
Qjsτ

j
s +

1

2
Qjpτ

j
p

)
. (4.10)

Furthermore, as the waiting passengers compete for the same pool of vacant vehicles, the effective

waiting passenger density is the sum of all platforms, i.e.,

Πeff = Πj
eff =

∑
j

[
Qjsw

j
s +

1

2
Qjp(w

j
p1 + wjp2)

]
. (4.11)

Here, solo and paired pooling passengers from each platform join the competition for the same pool

of vacant vehicles. It is worth emphasizing that, although multi-homing intensifies competition for

vacant vehicles, it has nothing to do with the process of pairing passengers. Pooling passengers

from the same platform are always paired among themselves and together they compete for vacant

vehicles. This is reflected in the fact that the detour wjp2 depends on Πj
p, which is different among

platforms. In other words, our model does not allow passengers on different platforms to be matched

in the same pooling ride.

Therefore, multi-homing intensifies the inter-passenger competition even though it expands the

pool of vacant vehicles. With single-homing, a passenger on one platform only competes with those

who use the same platform. Yet, she would have to compete with every other waiting passenger

in the aggregate market under multi-homing mode. Consider a system with two symmetric single-

homing platforms. At a stationary state, the passenger wait time of each platform is dictated by the

ratio Πeff/Λ, where Πeff and Λ are respectively the effective waiting passenger density and vacant

vehicle density on each platform. If the system switches from single-homing to multi-homing, the

ratio remains the same, because both Πeff and Λ double. As a result, the passenger wait time would

not be affected at all. In other words, the benefit of having a greater supply pool is offset by the

more intense competition on the demand side.

Eq. (4.11) also implies that the solo wait times of all platforms are linearly correlated, i.e.,

wj1s /w
j2
s =

√
kj2/kj1 , ∀j1, j2 ∈ P. Therefore, it suffices to represent the solo wait time vector
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ws using the solo wait time on any reference platform. If we choose j = A as the reference

platform, then the solution to the multi-homing equilibrium problem can be represented using a

vector x = [wAs ,wp1,wp2, N ]T .

4.5. Existence and stability

In what follows, we present the analysis of existence and stability of the market equilibrium with

single platform, while that for the case of two platforms follows the same rationale. Define x =

(ws, wp1, wp2). Then, Qs, Qp, N and V can be viewed as functions of x according to Eqs. (4.5a)–

(4.5c). Plugging them into Eqs. (4.5d)–(4.5f) thus reduces the equilibrium to a fixed-point system

x = F (x). With mild assumptions, we prove the solution existence of such a fixed-point system by

invoking Brouwer’s theorem [Brouwer, 1911], as summarized in the following proposition.

Proposition 2. Suppose x is bounded from above by x̄ = (ws, wp1, wp2)T . Then, there exists

an x∗ = (w∗s , w
∗
p1, w

∗
p2)T that satisfies Eq. (4.5).

Proof. Brouwer’s fixed-point theorem [Brouwer, 1911] states that: if a continuous function

f : Ω ⊂ Rn → Ω maps a compact and convex set Ω to itself, then there exists x∗ ∈ Ω such that

x∗ = F (x∗).

We first prove Ω is compact and convex. By definition, x = (ws, wp1, wp2)T ∈ Ω ⊂ R3
+. From

the assumption made in the proposition, ws, wp1 and wp2 must all be bounded from the above,

otherwise the demand for solo and/or pooling rides will disappear all together. We now show that

these three variables must also have lower bounds. First, passenger wait times reach lower bounds

ws = δ
2v
√
S0

and wp = δ
2v
√

2S0
, when the fleet size approaches its upper bound S0 and the demand

D0 approaches zero. Second, as Πp is bounded from above by D0(wp1 + wp2), the lower bound of

wp2 is given by wp2 = δ
2v [bD0(wp + wp2)]−1/2. Consequently, Ω can be defined as the cubic space

[ws, ws]× [wp1, wp1]× [wp2, wp2], which is compact and convex.

We proceed to show the self-map F (·), i.e., Eqs. (4.5d)–(4.5f), is continuous. Recall that

Eqs. (4.5d)–(4.5f) are continuous functions of Qs, Qp and V , along with ws, wp1 and wp2. From
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(4.5c), we know V is a continuous function of Qs, Qp and N . Therefore, to show F is continuous,

we only need to prove Qs, Qp and N are continuous functions of ws, wp1 and wp2. The continuity

of previous two are directly shown from Eqs. (4.5a) and (4.1). The last one is more complicated as

it involves the implicit function Eq. (4.5b). This result is formally stated Lemma 1 and its proof is

provided in Section 4.8.4.

Lemma 1. The fleet size N defined in Eq. (4.5b) can be represented as a continuous function

of x = (ws, wp1, wp2)T .

Therefore, both conditions stated in Brouwer’s fixed-point theorem are satisfied. We hence

conclude that the existence of a solution to Eq. (4.5) is guaranteed. �

The assumption made in Proposition 2 effectively sets upper bounds on passenger wait times

for both solo and pooling rides. At first glance, this seems at odds with Eqs. (4.5d)–(4.5f), which

allow these wait times to grow infinitely. Nevertheless, if passengers have to wait exceedingly long,

the demand would be suppressed below a level of practical interest. In other words, Proposition 2

ensures a solution always exists provided that the demand for solo and pooling rides has a lower

bound that can, in theory, be arbitrarily close to zero.

An equilibrium solution to Eq. (4.5) can be obtained through an iterative fixed-point algorithm.

While implementing such an algorithm is straightforward, we note that, as a highly nonlinear

system, Eq. (4.5) may not have a unique equilibrium. In addition, an equilibrium solution may or

may not be stable. The stability theory [e.g., Strogatz, 2018] states that a solution x∗ is stable

if and only if all eigenvalues of the Jacobian matrix of F (·) at x∗, denoted by Jx∗ , have absolute

values less than 1. Using this result, we screen each equilibrium solution obtained from fixed-point

iterations and only keep those that pass the stability test. Since F (·) is explicitly expressed, i.e.,

Eq. (4.5), we could evaluate Jx∗ using automatic differentiation [Baydin et al., 2017].

Figure 4.1 reports the convergence performance of the iterative fixed-point algorithm in two

examples, both using the default parameters given in Table 4.2 except for the pricing strategies



78

0 20 40 60
Iteration

0.45

0.46

0.47

0.48

0.49

0.50
Po

ol
in

g 
ra

tio

(a) fs = 17, fp = 12, η = 20

5 10 15 20
Iteration

0.00

0.05

0.10

0.15

0.20

Po
ol

in
g 

ra
tio

(b) fs = 19, fp = 17, η = 21

Figure 4.1. Convergence performance of the iterative fixed-point algorithms. (a) All
initial solutions lead to the same stable equilibrium; (b) All initial solutions lead to
the same unstable equilibrium.

(fs, fp and η). The algorithm is terminated when the gap drops below a predefined threshold, set

at 10−8 in this study. Each convergence curve (gap vs. number of iteration) in the plots represents

a different initial solution. These results are representative of our overall experience with the fixed-

point algorithm, which is that it generally converges quite fast and the choice of the initial solutions

tends to have a negligible impact on convergence. In this particular experiment, the pricing strategy

on the left leads to a stable equilibrium and the algorithm is able to locate it regardless of where

it starts. However, an unstable equilibrium emerges when the pricing strategy on the right is

employed. This happens because the general cost of a pooling ride is close to that of a solo ride

when there is no demand for pooling. As a result, a small perturbation in the inputs could make

pooling more attractive, forcing the solution to significantly deviate from the pre-perturbation one.

Still, the algorithm converges faithfully to this unstable equilibrium, starting from all tested initial

points.

In light of the above observations, whenever the market equilibrium is sought, we run the fixed-

point algorithm multiple times with randomly generated initial solutions. If all runs converge to

the neighborhood of the same fixed point, we take their average as the final equilibrium solution.

If there is more than one equilibrium solution, we test their stability and only keep the stable ones.



79

Curiously, in all numerical experiments conducted in this study, we did not come across a single

case where multi equilibrium were found.

4.6. Numerical experiments

In this section, we examine the variations of market equilibrium towards key input parameters under

fixed pricing scheme. We first investigate the main equilibrium variables in a monopoly market,

then move to analyze the duopoly equilibrium and compare the two supply modes discussed in

Section 4.4. The ranges of market inputs, along with other parameters, are set according to the

Chicago TNC data (see Chapter 10) and reported in Table 4.2.

4.6.1. Single platform

We characterize passengers’ choice based on the random utility theory [Ben-Akiva and Lerman,

1985] and adopt the Multinomial Logit (MNL) model. Therefore, the share of each mode q(·) is

estimated as

Qi = D0
exp(−θcui)∑

j∈M exp(−θcuj)
, i ∈M, (4.12)

where θc is a non-negative parameter that reflects the degree of uncertainty in mode choice.

Accordingly, the upper bounds in Proposition 2 can be set based on the minimum demand level

considered as meaningful by the modeler. More details are provided in Section 4.8.5.

For simplicity, we assume the drivers’ reservation rate ẽ0 follows a uniform distribution on

[0, 2e0], where e0 is the average reservation rate. Therefore, Eq. (4.3) is simplified as

N = S0
e

2e0
=

S0

2e0N

[
η

(
Qsτs +

1

2
Qpτp

)
+

1

2
cpQp

]
, (4.13)

which yields

N =

√
S0

2e0

[
η

(
Qsτs +

1

2
Qpτp

)
+

1

2
cpQp

]
. (4.14)
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Figure 4.2. Sensitivity of mode share, vehicle supply and passenger wait time to
(a) total demand D0, (b) potential supply S0, (c) additional pickup fee cp and (d)
en-route detour τp − τs.

Figure 4.2 illustrates how mode shares, wait time and vehicle supply vary with the total de-

mand D0, potential supply S0, additional pickup fee cp and en-route detour τp − τs. As shown in

Figure 4.2(a), the share of pooling rides first increases and then decreases with the total demand.
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The share of solo rides drops faster yet remains higher than pooling for most parts. This shift is

related to the different impacts of the rising demand on the wait time for the two modes. The

rising demand intensifies the competition among waiting passengers, thus steadily increasing the

solo wait time. On the other hand, higher demand helps reduce the pickup detour for pooling

rides, leading to its initial growth of market share. On the supply side, the growth of total demand

induces more drivers to enter the market (top plot). However, it only leads to a mild increase of

vacant vehicle density at the very beginning (bottom plot). As the total demand further increases,

the level of service for both solo and pooling modes deteriorates.

The growth of S0 reveals a different pattern; see Figure 4.2(b). The total share of ride-hail

increases with the potential supply, while solo rides gain more popularity (top plot). Although

the vacant vehicle density increases linearly with the potential supply, passengers enjoy a milder

(sub-linear) improvement, owing to competitions on the demand side.

Figure 4.2(c) reveals that the effect of the additional pickup fee for pooling rides (cp) is almost

negligible. When cp increases from $0 to $2, the share of both pooling and solo modes rises less

than 0.5% (top plot). Thus, it cannot serve as an effective incentive to encourage drivers to take

more pooling rides. Nor could it bring a meaningful improvement to the level of service (the wait

time barely changes, see the bottom plot). Given these observations, the additional pickup fee will

not be discussed in following analysis, and will be simply set to zero hereafter.

Figure 4.2(d) highlights the importance of the en-route detour time. Specifically, the share of

pooling drops sharply as the detour rises from 0. As per Eq. (3.7), the loss of pooling demand

results in a longer pickup detour (hence a longer wait time) for pooling passengers, which further

discourages pooling. On the other hand, the loss of pooling demand reduces the overall demand

level, and as a result, the solo wait time drops despite a shrinking fleet size (top plot). Overall,

these findings suggest that promoting pooling may not be a good strategy for the platform if trip

destinations are too scattered to keep the average en-route detour time under control.
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Figure 4.3. Histogram of pooling ratio in the study area and period (based on
Chicago TNC data; see Chapter 10.

It is worth noting that results in Figure 4.2 may overestimate the market share of pooling in real

practice. In Chicago, from which many of our model’s inputs are drawn, the average pooling ratio is

less than 15%; see Figure 4.3. A few factors might contribute to this discrepancy. First, our model

assumes the trip origins and destinations are uniformly distributed in an aggregate market. The

heterogeneous distribution of the real demand is likely to produce strong spatiotemporal imbalance

that could undermine the matching efficiency for pooling. The high en-route detour time in Chicago

(around 7 min, close to the upper bound in Figure 4.2(d)) may reflect such inefficiency. Second, our

model excludes some negative features of pooling (e.g., the loss of privacy and comfort) in favor of

simplicity and tractability. Ignoring these factors might underestimate the general cost of pooling.

4.6.2. Two platforms

Different from the single-platform scenario, we estimate a passenger’s mode choice using a nested

Logit (NL) model [e.g., Williams, 1977], where the generalized cost defined in Eq. (4.1) is used as the

observed disutility. Since ride-hail services of different platforms and modes have many features
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in common, we introduce a simple nested structure that encompasses them all: the upper level

consists of transit and ride-hail while the lower level has four ride-hail modes of both platforms2.

Accordingly, the mode share of i ∈ {s, p} for platform j is given by

Qji = D0
exp(−θcIrc )

exp(−θcut) + exp(−θcIrc )

exp(−θrcu
j
i )

exp(−θrcIrc )
, (4.15)

Here, θc is the uncertainty parameter of choice between transit and ride-hail services. The composite

cost of ride-hail services Ic is specified as

Irc = − 1

θrc
ln

∑
j∈P

∑
m∈{s,p}

exp(−θrcujm)

 , (4.16)

where θrc is the uncertainty parameter of choice among different modes and platforms (a larger

value corresponds to larger uncertainty).

Based on the assumption of NL, we have θrc ≥ θc, and the ratio θc/θ
r
c measures the magnitude of

correlations among the ride-hail modes. θc/θ
r
c = 1 implies that all ride-hail modes are independent

alternatives, i.e., the independence of irrelevant alternatives (IIA) assumption holds. On the other

hand, if θc/θ
r
c → 0, all ride-hail alternatives will be viewed together as a single ride-hail mode

(with a utility equal to the average of the individual alternatives), and the share of this “composite

mode” will be evenly split among the original alternatives.

Since the data available is insufficient to calibrate the dispersion parameters, in most exper-

iments, we simply set θrc = θc and θrd = θd. Because this setting effectively upholds the IIA

assumption, it tends to overestimate the total rid-hail market share in the duopoly case. To gauge

this impact, a sensitivity analysis is performed against θrd and θrc in Section 4.8.6.

Similarly, we characterize drivers’ decision using an NL model. For single-homing, drivers first

decide whether to enter the ride-hail market and then choose which platform to join. Let e0 be

the wage rate of the best alternative opportunity outside the ride-hail market, then the fleet size

2Although more sophisticated nested structures could be accommodated within our framework, we note that
testing the suitability of these structures is a task beyond the scope of the present study.



84

of platform j (Eq. (4.5b)) is specified as

N j = S0
exp(θdI

r
d)

exp(θde0) + exp(θdI
r
d)

exp(θrde
j)

exp(θrdI
r
d)
, (4.17)

where the composite utility of ride-hail is

Ird =
1

θrd
ln

∑
j∈P

exp(θrde
j)

 . (4.18)

Again, θd and θrd are the uncertainty parameters with respect to each level of the NL model.

For multi-homing, since each driver joins all platforms, the choice model reduces to an MNL

model with two alternatives and the fleet size of all platforms is given by

N = N j = S0
exp(θdē)

exp(θde0) + exp(θdē)
. (4.19)

Along with the analysis in previous section, we examine how passenger wait times, market share

and vacant vehicle density at the market equilibrium vary with there key inputs: the total demand

D0, the potential supply S0 and the en-route detour τp − τs. Each market equilibrium, as well as

the duopoly equilibrium D1 or D2, is solved multiple times with randomly selected initial solutions.

We include a brief discussion of the existence of multiple equilibria in Section 4.8.7.

Figure 4.4 presents the main results of the sensitivity analysis. Here, we only plot the market

share of one platform because the other one is the same due to symmetry. The vacant vehicle

density under multi-homing is the total vacant vehicle divided by two, i.e., the expected vehicle

supply available for one platform.

As the total demand increases (Figure 4.4(a)), the passenger wait time tends to increase and

the e-hail’s market share tends to shrink, primarily due to greater competition. The vacant vehicle

density first rises with the demand, reaches a long stretch of plateau and then begins a slow decline.

These general trends hold for all supply modes: monopoly, single-homing and multi-homing. A

noticeable deviation is the wait times for pooling rides: they first decrease mildly as the demand
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increases, thanks to the reduced pickup detour wp2. However, when the demand continues to rise,

the stronger inter-passenger competition pushes up the pickup time wp1 that eventually more than

offsets the savings in wp2. This pattern explains why market share of the pooling rides (the middle

plot in Figure 4.4) first increases and then decreases as the demand goes up.

single-solo
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multi-pool

MO-solo

MO-pool
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Figure 4.4. Sensitivity of passenger wait time, market share and vacant vehicle den-
sity to (a) total demand D0, (b) potential supply S0, and (c) en-route detour τp−τs.

Figure 4.4(b) shows that, as expected, when the potential supply increases, the wait time

decreases, and both the market share of e-hail and the vacant vehicle density increases. The

impact of en-route detour is more nuanced, as shown in Figure 4.4(c). This detour, which measures

how much additional time pooling would add to the trip duration, has a dramatic effect on the

market share of pooling rides, regardless of the supply mode. For every two minutes of additional

detour, the market share roughly drops by 5%. Solo rides gain market share, but not enough to

make up for the loss suffered by pooling rides. Interestingly, neither the wait time nor the vacant
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vehicle density is much affected by the detour. For solo rides, the wait time slightly decreases, likely

because the declining market share eases up competition. Yet, the wait time for the pooling rides

eventually turns back up, thanks to the increase in wp2 caused by the loss in the market share.

We now examine the differences associated with the supply mode. In all cases, the monopoly

has the highest share for both solo and pooling rides, followed by the single-homing and multi-

homing duopoly. This is expected because a monopoly platform enjoys a higher market power.

However, the total market shares in a duopoly market is higher than those in a monopoly. We

caution that this result likely overestimates the appeal of the duopoly (for both single- and multi-

homing modes) due to the IIA assumption. For the same reason, the fleet size under single-homing

could be overestimated, leading to a shorter wait time compared to that under multi-homing.

The bottom row of Figure 4.4 shows the monopoly enjoys a much higher vacant vehicle density

than the other two markets. However, its level of service (LOS) is only marginally better as

measured by passenger wait time (the saving is less than 1 minute). This is primarily due to the

higher demand rate, which intensifies the competition among waiting passengers and thus drags

down the LOS. On the other hand, the wait time under multi-homing is consistently higher than

that under single-homing, both for solo and pooling rides. This result could be explained by the

much lower vacant vehicle density.

Although the change in market shares against the total demand and supply follows the same

pattern under the two duopoly modes, multi-homing shows a higher sensitivity. Specifically, under

multi-homing the market share of ride-hail decreases faster as total demand increases, and increases

faster as potential supply increases, as shown in the middle subplots of Figures 4.4(a) and (b).

4.7. Summary

In this chapter, we established the market equilibrium of an aggregate ride-hail market with pooling

service. The interactions between passengers and drivers are characterized based on the matching

model presented in Chapter 3. We showed that, regardless of the number platforms in the market,
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this system always has an equilibrium under mile conditions. Besides, the equilibrium state can

be solved through fixed point iterations. For the case that multiple platforms competiting in the

market, two supply modes are explicitly analyzed. One is single-homing, where each driver joins

only one platform, and the other is multi-homing, where drivers join all platforms if they choose to

enter the market. It is found this single difference leads to distinct matching mechanisms. Coun-

terintuitively, multi-homing does not improve LOS. Although the passengers get access to a greater

pool of vehicles, they also face a more intense competition against passengers from other platforms.

This result is also demonstrated through numerical examples. Besides, numerical experiments are

conducted to examine the sensitivity of market equilibrium under fixed pricing scheme. The main

findings are summarized as follows:

• As expected, pooling is desirable when demand is high but supply is scarce. However, its

benefit diminishes quickly as the average en-route detour time (i.e., the difference between

the average duration of solo and pooling trips) increases. This also explains the low pooling

ratio observed in practice. Therefore, keeping this value under control is the key to the

success of pooling.

• The competition reduced the market share of each platform though increases the total

demand for ride-hail. Similarly, the fleet size shrinks under platform competition. The

declines in demand and supply are comparable in the case of single-homing thus the LOS

is hardly affected. In contrast, platforms under multi-homing suffer from a greater loss of

vehicle supply and thus observe a more considerable drop in LOS.

The equilibrium model built in this chapter serves an important foundation for the following analysis

on the platform pricing and regulations in the context of aggregate ride-hail market, which will be

studied in following two chapters.
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4.8. Appendix

4.8.1. Notations

Table 4.1. List of notations

Variable Description Unit

we (ws) e-hail (solo) passenger wait time hr

wp1 first part of pooling passenger wait time (matching time plus

pickup time of the first passenger)

hr

wp2 second part of pooling passenger wait time (pickup time of the

second passenger)

hr

Λ vacant vehicle density /sqmi

Πs (Πp) solo (pooling) waiting passenger density /sqmi

v cruising speed of vacant vehicles mph

k coefficient of matching efficiency /sqmi

b coefficient of pooling efficiency

κ approximation parameter /sqmi

δ detour ratio of road network

Qs (Qp) solo (pooling) demand rate /hr/sqmi

fs (fp, ft) trip fare of solo rides (pooling rides, transit) $
τs (τp, τt) travel time of solo rides (pooling rides, transit) hr

us (up, ut) generalized cost of solo rides (pooling rides, transit) $
ν value of time $/hr

θc(θ
r
c) Mode choice uncertainty (among ride-hail options) /$

θd(θ
r
d) Market entry uncertainty (among ride-hail platforms) /$

ζ disutility factor of transit trips $/hr

S0 potential supply /sqmi

N fleet size (number of drivers in operation) /sqmi

V vacant vehicle time hr/sqmi

ẽ0 (e0) random (average) reservation rate $/hr

e driver’s earning rate $/hr

η compensation rate (payment per unit occupied time) $/hr
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4.8.2. Parameter setting

Table 4.2. Default values and ranges of parameters.

Parameter Unit Default

value

Variation

Detour ratio of road network δ 1.3

Cruising speed v mph 13.6

Matching efficiency k /sqmi 0.16

Pooling efficiency b 0.05

Approximation parameter κ 4

Average solo trip duration τs hr 0.28

Average pooling trip duration τp hr 0.40

Average transit trip duration τt hr 0.53

Passengers’ value of time ν $/hr 27.69

Relative disutility rate of transit ζ $/hr 6.92

Mode choice uncertainty in monopoly θc 1

Mode choice uncertainty in duopoly θc (θrc) 0.5

Market entry uncertainty in duopoly θd (θrd) 0.25

Average reservation rate in monopoly e0 $/hr 19.31

Average reservation rate in duopoly e0 $/hr 15

Total demand D0 /sqmi/hr 1200 500–2000

Potential supply S0 /sqmi/hr 550 200–800

Solo trip fare fs $/ride 14

Pooling trip fare fp $/ride 10

Transit trip fare ft $/ride 2.69

Compensation rate η $/hr 20

Additional pickup fare cp $/ride 0 0–2

4.8.3. Sensitivity of market equilibrium to en-route detour

As discussed in Section 4.2, the en-route detour τp−τs is expected to decrease with pooling demand.

Yet, in all numerical experiments presented in the main text, we have assumed the detour to be

constant for simplicity. In this appendix, we adopt the results of Ke et al. [2021] and Lobel and

Martin [2020] to test the sensitivity of our findings to the endogeneous en-route detour.

Ke et al. [2021] empirically observe the passenger detour distance ∆l follows

∆l

l̄
=

1

αN + β
, (4.20)



90

where l̄ is the average trip distance, N is the number of requests accumulated in a matching interval,

and α, β are coefficients3.

Since vehicles travel at a constant speed v, ∆l/l = (τp− τs)/τs. In addition, the batch demand

N in Eq. (4.20) can be replaced with bΠp, which is the unmatched pooling passenger density.

Accordingly, we adjust the average trip duration of pooling rides as follows:

τp = τs

(
1 + min

(
0.5,

1

αbΠp + β

))
. (4.21)

Note that the upper bound 0.5 on 1/(αbΠp+β) follows from the result proved in Lobel and Martin

[2020].

Ke et al. [2021] calibrated the coefficients α, β for New York City and two other cities in China

with various matching radius. We take the range of coefficient values associated with New York

City and calculate the market equilibrium with default total demand (D0 = 1200/hr/sqmi) and

potential supply (S0 = 550/sqmi).

Figure 4.5 shows how the key outputs of the equilibrium model vary with α and β. First, the

market equilibrium is clearly insensitive to α, mainly because the first term αbΠp is much smaller

compared to β. In other words, the pooling demand has a minor impact on the en-route detour, as

long as the pooling demand is not too large. The differences in passenger wait times and average

trip duration of pooling rides are small (less 10%), and those in fleet size and vacant vehicle density

are almost negligible (less than 1%). The mode split of pooling rides is the most sensitive to β.

As shown in Figure 4.5(b), the share of pooling increases in the adjusted model by more than 8%,

when β increases from 2.25 to 3.5. As a larger β corresponds to a smaller detour ratio, this result

is expected.

We continue to examine the sensitivity of market equilibrium to different supply-demand levels

using the adjusted model. Since the results are demonstrated insensitive to α, we fix it as 0.05 and

consider two extreme cases of β, i.e., β = 2.25 and β = 3.5. The results, along with the market

3Here, we follow the same notations in Ke et al. [2021], hence there are a few conflicts with the notations in our
main text
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Figure 4.5. Differences in equilibrium outputs between the original model (with
constant τp) and the adjusted model (with τp being specified by Eq.(4.21)).

equilibria with constant en-route detour, are illustrated in Figures 4.6 and 4.7. As expected, when

β = 2.25, the adjusted model barely causes any meaningful changes in the equilibrium solution.

The most prominent sensitivity is again shown in the mode split when β is large. Specifically, the

difference in pooling share reaches about 10% when the total demand is low or the potential supply

is high. The difference in solo share, on the other hand, is quite stable across different supply and

demand levels, at around 3-5%. The differences in passenger wait time is even smaller, less than

half of an minute in most scenarios.
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Figure 4.6. Sensitivity of market equilibrium to (a) total demand D0 and (b) po-
tential supply S0 with α = 0.05, β = 2.25.
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Figure 4.7. Sensitivity of market equilibrium to (a) total demand D0 and (b) po-
tential supply S0 with α = 0.05, β = 3.5.
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4.8.4. Proof of Lemma 1

We apply the implicit function theorem [Krantz and Parks, 2012] to prove the result.

Consider a continuously differentiable function L : Rn+m → Rm and a point (x0,y0),x0 ∈

Rn,y0 ∈ Rm such that L(x0,y0) = 0. The theorem states that, if the Jacobian matrix

JL,y(x0,y0) =

[
∂Li
∂yj

(x0,y0)

]
, i = 1, . . . ,m, j = 1, . . . ,m (4.22)

is invertible, then there is a neighborhood of x0, denoted as U ⊂ Rn, and a unique continuously

differentiable function g : U → Rm such that y = g(x),∀x ∈ U .

To apply the above result, let us rewrite Eq. (4.5b) as

L(x, N) = S0G

(
1

N

[
η

(
Qs(x)τs +

1

2
Qp(x)τp

)
+
cp
2
Qp(x)

])
−N = 0. (4.23)

Therefore, for any point that satisfies Eq. (4.23), N is a continuous function of x in a neighborhood

of that point provided ∂L
∂N is invertible, or equivalently,

∂L

∂N
= −S0G

′ 1

N2

[
η

(
Qs(x)τs +

1

2
Qp(x)τp

)
+
cp
2
Qp(x)

]
− 1 6= 0. (4.24)

To see why (4.24) must hold, note that G′ is the probability density function of the drivers’ reserva-

tion rate. Thus, G′, as well as all other variables, must be nonnegative. Accordingly, ∂L/∂N ≤ −1

and hence it cannot be zero. This completes the proof.

4.8.5. Determination of upper bounds forws, wp1 and wp2,

The MNL model implies that the mode share decreases exponentially with its general cost but never

reaches zero. However, in reality no one would choose solo or pooling if the corresponding wait

time (ws and wp1 +wp2) are too long. Let ε be the minimum demand considered to be meaningful

for analysis. We next show the upper bound for wp2, denoted as wp2, can be derived as a function
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of ε. Note that

Qp = D0
e−θup∑
i e
−θui

≤ D0
e−θup

2e−θu + e−θup
, (4.25)

where u = min{us, ut} = min{fs + ν(ws + τs), ft + ντt} (recall ws = δ
2v
√
S0

; see the proof of

Proposition 2). Setting

D0
e−θup

2e−θu + e−θup
≤ ε

yields

(
D0

ε
− 1

)
e−θup ≤ 2e−θu ⇒ up ≥ u+

1

θ
log

D0/ε− 1

2

⇒ wp2 ≥
1

ν
(u− fp) +

1

θν
log

D0/ε− 1

2
− wp1. (4.26a)

In other words, whenever Eq. (4.26a) is satisfied, the demand for pooling would reduce to no more

than ε. Since wp1 ≥ 0, we may set

wp2 ≡
1

ν
(u− fp) +

1

θν
log

D0/ε− 1

2
. (4.27)

It is clear that the upper bound established this way is likely to be loose. However, it suffices

for our purpose to show a finite upper bound does exist. ws and wp can be obtained in a similar

fashion, and the details are omitted for brevity.

4.8.6. Impact of IIA assumption

To relax the IIA assumption, we simply allow in our model the ratio of θrc/θc to increase from

1 to 2. In the single-homing duopoly, we also similarly vary the ratio θrd/θd. For simplicity, we

assume the two ratios in this case are the same, referred to as the “ratio of dispersion parameter”

in Figure 4.8.

As expected, when θrc/θc increases—meaning the four options are increasingly viewed as good

substitutes for each other—the total market share of ride-hail dips. In the case of single-homing,
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the total share (including both solo and pooling) decreases from about 50% to a little more than

30% as θrc/θc doubles. It is the pooling rides, however, that is mostly affected. Indeed, the vast

majority of the losses is inflicted on pooling rides, while the market share of solo rides is largely

intact. The drop in the market share slightly improves the wait time for solo rides, thanks to less

inter-passenger competition. However, LOS degrades for pooling rides, likely because the collapsing

market share significantly prolongs the detour time wp2.

Overall, the above finding seems to indicate that the IIA assumption could result in overly

optimistic estimation about the potential of pooling rides. However, it is worth noting that the

simple setup of our NL model may treat pooling rides unfairly. Intuitively, pooling and solo rides

provided by the same platform should be viewed as much more distinctive than pooling rides

provided by two different platforms. Yet, they are all lumped into the same nest in the current

setting, without recognizing this distinction. Addressing this issue requires a nested structure with

two layers, allowing passengers to first choose a mode before choosing a platform (or vice versa).

However, without data needed to calibrate such an NL model, we would be guessing the actual

specification of the NL model (hence the results) one way or the other. Thus, it seems appropriate

to leave a more sophisticated choice modeling to a future study.

The reader should be aware that the findings made with the IIA assumption in the following

sections are subject to the biases that comes with it, especially those related to the comparison of

the total market share between the monopoly and the duopoly. Most sensitivity results, however,

may not be affected by this bias. In particular, Figure 4.8 suggests the impact of IIA is insensitive

to the supply mode (note that the patterns of single- and multi-homing results are very similar). In

other words, most findings about the relative performance between the two supply modes should

stand free of the assumption.
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Figure 4.8. Sensitivity of passenger wait time and market share to the ratio of
dispersion parameter (θrc/θc = θrd/θd). Market shares for single- and multi-homing
cases are the sum of the two platforms’ market shares. Other parameters are set as
the default values in Table 4.2.

4.8.7. Existence of multiple equilibria

In all numerical experiments, we solve the duopoly equilibrium D1 or D2 multiple times with

randomly selected initial solutions. Yet, in our experiments, we do find multiple equilibria for

different initial solutions. To illustrate these equilibria, we solve the unregulated duopoly game with

symmetric platforms using default parameter values reported in Table 4.2 and various combination

of initial prices. Specifically, we fix the initial values of fs and η, while varying the values of fp for

the two platforms.

Figure 4.9 plots the region of attraction (ROA) under the single-homing supply mode4. In each

plot, ROA is colored according to the type of solutions. It is worth emphasizing that, for each type,

there is always a unique equilibrium. Thus, once the initial solution falls into an ROA, the outcome

of the game will be “attracted” to that equilibrium associated with that ROA. In all cases, only

four ROAs are identified and they can be characterized based on the market share of the pooling

4The results for multi-homing supply are very similar and thus are omitted here for brevity.
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Figure 4.9. Equilibrium solutions of unregulated duopoly game under single-homing
supply mode. Each grid represents an initial solution defined by fAp and fBp , rounded
to full dollar.

rides at the corresponding equilibrium: (i) QAp = QBp = 0; (ii) QAp > 0 and QBp = 0; (iii) QAp = 0

and QBp > 0 and (iv) QAp > 0 and QBp > 0.

As expected, if a platform initially prices the pooling rides too high (roughly $13 in the base

case; see Figure 4.9(a)), it risks losing all pooling market share as the game evolves. This threshold

varies with the solo fare fs and the compensation rate η. When fs is lower than the default value

(Figure 4.9(b)), the threshold drops to $12; and when fs increases to $19 (Figure 4.9(b)), it rises to

$14. In addition, a high initial compensation rate η attracts a large fleet size and thus the platforms

prefer serving more solo rides. Accordingly, in this case (Figure 4.9(e)), it is much more likely for

the game to reach an equilibrium where at least one platform completely eliminates pooling rides.

Because pooling is one of our primary interests, we will only focus on the equilibrium pattern (iv)
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above, i.e. QAp > 0 and QBp > 0. It is worth emphasizing again that, in all experiments conducted,

such a solution is always unique.
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CHAPTER 5

Monopoly pricing in aggregate market

Given the equilibrium established in Chapter 4, we consider the market is dominated by a single

platform. For the platform, pooling helps increase the service capacity without hiring more drivers.

Also, as drivers are paid by their occupied time, the platform could generate a greater profit by

serving more pooling rides. However, the detour in pooling trips compromises the level-of-service

(LOS) and makes pooling less attractive. Meanwhile, it also consumes extra vehicle time. Therefore,

the platform needs to strategically design the pricing scheme to achieve the desired pooling ratio.

The regulations imposed on the ride-hail operations also affect the platform’s operational strategies,

as well as the behaviors of passengers and drivers in the market. This chapter is thus dedicated

to investigating the trade-off of platforms in serving pooling trips, with and without regulatory

constraints.

5.1. Optimal pricing of a monopolized platform

5.1.1. Profit-maximization pricing without regulation

By choosing a combination of fs, fp and η, the platform could control the demand split between

solo and pooling rides, thereby the pooling ratio, to maximize its profit. If pooling is not profitable,

the platform can simply set its price equal to or higher than solo rides (i.e., fs ≤ fp) to eliminate

pooling. On the other hand, the platform may increase the gap between fs and fp to encourage

pooling.

Without loss of generality, we assume the transit fare ft is fixed, and the platform aims to

maximize its gross profit by choosing a price vector y = (fs, fp, η)T . The pricing problem is then
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formulated as

(M1) max
y

R = fsQs + fpQp − η
(
Qsτs +

1

2
Qpτp

)
. (5.1)

Here, the platform’s gross profit R equals the total revenue less the expense directly related to the

production of trips. Specifically, the first two terms (i.e., fsQs and fpQp) are revenues generated

from solo and pooling rides, respectively, while η
(
Qsτs + 1

2Qpτp
)

is the payment to drivers based

on their occupied time. In particular, Qs and Qp are derived from the market equilibrium induced

by certain pricing strategy y.

To simplify the notation, let Q
(1)
s , Q

(2)
s and Q

(3)
s denote the partial derivative of Qs with respect

to fs, fp, η, respectively. Q
(1)
p , Q

(2)
p and Q

(3)
p are defined similarly. Accordingly, the first-order

conditions of M1 are reduced to

fs = ητs −
QsQ

(2)
p −QpQ(1)

p

Q
(1)
s Q

(2)
p −Q(2)

s Q
(1)
p

; (5.2a)

fp =
1

2
ητp −

QpQ
(1)
s −QsQ(2)

s

Q
(1)
s Q

(2)
p −Q(2)

s Q
(1)
p

; (5.2b)

Qs

[
1 +

(
τs +

1

2

Qp
Qs

τp

)
Q

(1)
s

Q
(3)
s

]
= 0; (5.2c)

Qp

[
1 +

(
Qs
Qp

τs +
1

2
τp

)
Q

(2)
p

Q
(3)
p

]
= 0. (5.2d)

Eqs. (5.2a) and (5.2b) bear similarity with the Lerner formula [Lerner, 1934], where the first term

represents the marginal cost of each solo (pooling) ride (i.e., compensation paid to the driver) and

the second term is a mark-up that measures the market power of the platform. It also aligns with

the optimal trip fare derived in Zha et al. [2016] and Ke et al. [2020a]. Eqs. (5.2c) and (5.2d) imply

that, at the optimal solution, either solo (pooling) demand equals 0 or Q
(1)
s /Q

(3)
s (Q

(2)
p /Q

(3)
p ) is

dictated by the market shares and average journey times of the two modes.

For comparison, we derive the first-order conditions under single-mode operation, i.e., when

only solo or pooling rides are served. In the case of pure solo rides, the single-mode operation
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yields

fs = ητs −
Qs

Q
(1)
s

; (5.3a)

Qs

(
1 + τs

Q
(1)
s

Q
(3)
s

)
= 0, (5.3b)

and for pure pooling rides,

fp =
1

2
ητp −

Qp

Q
(2)
p

; (5.4a)

Qp

(
1 +

1

2
τp
Q

(2)
p

Q
(3)
p

)
= 0. (5.4b)

Eqs. (5.3) and (5.4) share the same structures as Eq. (5.2)—the optimal trip fare is the marginal

cost plus the platform’s mark-up, and the marginal changes of demand with respect to trip fare

and compensation rate should be a constant when demand is positive.

Eqs. (5.3b) and (5.4b) further imply that, at the optimal solution with positive demand, the

marginal change of demand due to an increase in trip fare should be proportional to that due to

an increase in compensation rate. Specifically, the rate is −1/τs for solo and −2/τp for pool. In

other words, in response to an increased trip fare, the platform must raise the compensation rate

to improve LOS so that the service remains attractive to passengers. In the mix-mode scenario,

however, the pressure to raise LOS is relieved, i.e., the absolute value of the rate is smaller in

Eqs. (5.2c) and (5.2d). Because increasing the trip fare of one mode would make the other more

attractive, the platform need not increase the compensation rate as much as in the single mode

operation in order to hold on to the market share.

We proceed to compare the platform’s market power under single and mixed operation modes.

Dividing both the numerator and the denominator of the second term in Eq. (5.2a) by Q
(2)
p yields

Qs−QpQ
(1)
p /Q

(2)
p

Q
(1)
s −Q

(2)
s Q

(1)
p /Q

(2)
p

. Here, Q
(1)
p /Q

(2)
p < 0 as fs and fp have opposite influences on Qp, and Q

(2)
s > 0

because increasing fp makes solo rides more appealing. Also, |Q(1)
s | > |Q(2)

s | and |Q(2)
p | > |Q(1)

p |
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because a change in the trip fare of one mode has larger impact on that mode than the other mode.

These observations lead to ∣∣∣∣∣ Qs −QpQ(1)
p /Q

(2)
p

Q
(1)
s −Q(2)

s Q
(1)
p /Q

(2)
p

∣∣∣∣∣ >
∣∣∣∣∣ QsQ

(1)
s

∣∣∣∣∣ ,
indicating that serving both pooling and solo rides has the potential to boost the platform’s market

power (hence profit) compared to the case when only solo rides are served. However, the change of

total trips served by the platform is unclear, because the impact on pooling rides is unclear.

5.1.2. Profit-maximization pricing under regulations

Mathematically, if the regulation is imposed on certain equilibrium variables (e.g., drivers’ average

earning rate), the effect can be captured by adding an inequality constraint to the original problem,

leading to

(M2) max
y

R = fsQs + fpQp − η
(
Qsτs +

1

2
Qpτp

)
, (5.5)

s.t. h(y) ≤ 0, .

Here, we consider the minimum wage policy (with a wage floor e), the constraint h(y) is given

by

e− η

N

(
Qsτs +

1

2
Qpτp

)
≤ 0 . (5.6)

Accordingly, the Lagrangian of M2 is equivalent to

L = fsQs + fpQp −
(

1− λ

N

)[
η

(
Qsτs +

1

2
Qpτp

)]
, (5.7)

and the first-order conditions are reduced to

fs =

(
1− λ

N

)
ητs −

QsQ
(2)
p −QpQ(1)

p

Q
(1)
s Q

(2)
p −Q(2)

s Q
(1)
p

(5.8a)
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+
λ

N2

[
η

(
Qsτs +

1

2
Qpτp

)]
N (1)Q

(2)
p −N (2)Q

(1)
p

Q
(1)
s Q

(2)
p −Q(2)

s Q
(1)
p

;

fp =

(
1− λ

N

)(
1

2
ητp +

1

2
cp

)
− QpQ

(1)
s −QsQ(2)

s

Q
(1)
s Q

(2)
p −Q(2)

s Q
(1)
p

(5.8b)

+
λ

N2

[
η

(
Qsτs +

1

2
Qpτp

)]
N (2)Q

(1)
s −N (1)Q
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Qp

[
1 +

(
Qs
Qp

τs +
1

2
τp

)
Q

(2)
p

Q
(3)
p

]
= 0, (5.8d)

where N (1) and N (2) denote the partial derivatives of the total vehicle supply to fs and fp, respec-

tively.

On the one hand, Eqs. (5.8c) and (5.8d) suggest that the regulation does not affect the opti-

mal conditions regarding the compensation rate. On the other hand, comparing Eq. (5.8a) with

Eq. (5.2a) reveals how minimum wage affects the optimal ride price: the first term is discounted

by a factor 1−λ/N , and the newly added third term tends to reduce the platform’s market power,

as N (1) and N (2) are positive in general. Hence, the platform’s profit is likely to suffer under the

minimum wage policy. However, the actual change in the ride price is not clear, because it also

depends on η.

Another type of regulation directly change the market input and thus is easier to integrate

into the model. For instance, a few U.S. cities have issued a congestion tax on TNC trips starting

and/or ending in designated areas during peak times1. In order to encourage ride-sharing, the

proposed tax is lower for a pooling ride than a solo one. Since such a tax is likely to be fully passed

to passengers, we assume a constant extra tax cs is charged on each solo ride while pooling rides

1See an example of the City of Chicagohttps://www.chicago.gov/city/en/depts/bacp/supp info/city of c

hicago congestion pricing.html

https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.html
https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.html
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are free of extra charge. Accordingly, the generalized cost of solo trips Eq. (4.1a) becomes

us = fs + ν(ws + τs) + cs. (5.9)

Since the congestion tax does not introduce a new constraint, it should have less impact on the

platform’s pricing strategies than minimum wage discussed above. However, a larger shift toward

pooling is expected, because the congestion tax is precisely levied against solo rides.

5.1.3. Social optimal pricing

We finally consider a second-best social optimal pricing problem that seeks to maximize social

welfare. The policy is “second-best” because, while the goal is to maximize social welfare, the

platform is not allowed to run a deficit. The corresponding optimization problem is formulated as

follows:

(M3) max
y

W = D0ū+ fsQs + fpQp (5.10)

−
∫ N

0
g−1(n/S0)dn− c0N + csQs

s.t. R ≥ 0.

The social welfare W consists of five parts: (i) the surplus of passengers, measured by the total

expected general cost saving because of switching from transit to ride-hail services, where ū denotes

the average saving of each passenger and will be specified in Section 5.3; (ii) the total platform

revenue fsQs + fpQp; (iii) the opportunity cost of drivers
∫ N

0 g−1(n/S0)dn, where g−1(·) is the

inverse function of the CDF of the reservation rate; (iv) the approximate congestion cost caused by

the ride-hail fleet, where c0 is a constant cost caused by the entry of each driver (see Section 10.2

for the estimation of c0); and (v) the tax revenue due to the congestion tax csQs, if implemented.

It is worthwhile to clarify several issues before we continue the analysis:
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(1) Ideally, capturing congestion externality of ride-hail requires an explicit traffic flow model.

However, since the main focus of the current analysis is the trade-off of pricing between solo

and pooling trips, we simply assume each additional vehicle’s contribution to congestion

(i.e., the marginal cost) is a constant. In Chapter 7, we will deliver a more thorough

analysis of the congestion impact of ride-hail service.

(2) The congestion tax is a transfer payment within the system and hence should neither

increase nor decrease the social welfare. Accordingly, the tax revenue (i.e., item (v)) is

included in the social welfare to offset the reduction in the passenger surplus of solo rides.

(3) According to Assumption 4, the decisions related to ride-hail (pricing and regulations) do

not affect transit operations and the transit system always breaks even. Therefore, neither

the supply cost nor the revenue of the transit service is included in the social welfare.

5.2. Solution existence and algorithm

The existence of solution to the program M1 is easily proved by evoking Theorem 1 in Harker and

Pang [1988]. Consider the problem

min
x

f(x, y), (5.11)

s.t. x ∈ X, y ∈ Y (x),

where f is a continuous function.

The theorem states that there exists an optimal solution to the problem if the following two

assumptions are satisfied:

(1) The feasible set is nonempty and closed.

(2) There exists a scalar α > 0 and feasible solution (u, v) with ||(u, v)|| ≤ α such that

f(x, y) ≥ f(y, v) for all feasible solution (x, y) with ||(x, y)|| ≥ α.
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The existence of market equilibrium established by Proposition 2 ensures the first assumption.

Conceptually, the second assumption requires the candidate solutions to be contained in a compact

set. This is naturally satisfied in the optimal pricing problem because a substantially large trip fare

will push the demand to zero. Hence, M1 must have an optimal solution. As for the constrained

programs M2 and M3, the solution exists whenever the feasible set is not empty.

Although M1 is in general non-convex, the objective function is continuously differentiable.

Hence, we implement the gradient ascent algorithm to search local optimal solutions. Given the

current solution and corresponding market equilibrium in each iteration, we compute the gradient

and update the solution with the following iteration rule:

y(i+1) = y(i) + α∇R(y(i)), (5.12)

where ∇R =
[
∂R
∂fs
, ∂R∂fp ,

∂R
∂η

]T
is the gradient of the revenue function with respect to y and α is a

predefined step size.

Evaluating ∇R, however, is challenging as it requires to differentiate the current market equilib-

rium. A detailed derivation is provided in Section 5.5.3. It is worth noting that the method bears

some similarities with the sensitivity-analysis-based algorithm for network design problems [e.g.

Tobin and Friesz, 1988, Yang, 1995, Patriksson, 2004], that is, the movement towards the next

solution is guided by the sensitivity of the equilibrium solution with the current solution.

To solve the constrained program M2 and M3, we implement the dual gradient ascent algorithm.

Take M2 as an example. The dual problem is written as

(M2’) min
λ

max
y

R(y)− λh(y) (5.13)

s.t. λ ≥ 0,

where λ is the Lagrangian multiplier.
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The problem is then solved by the following iterative rule:

y(i+1) = arg max R(y)− λ(i)h(y), (5.14a)

λ(i+1) = max
(

0, λ(i) + ρh(y(i))
)
, (5.14b)

where ρ is a constant penalty parameter. In each iteration, the maximization problem (5.14a) is

first solved in the same way as M1, with the current estimate of the multiplier λ. Then (5.14b) is

invoked to update λ.

5.3. Numerical experiments

In this section, we report the findings of numerical experiments on a monopoly e-hail market with

pooling service. The demand and supply modes, as well as other parameters, are set in the same

way as Section 4.6. Specifically, the passengers’ mode choice is characterized by the Multinomial

Logit (MNL) model and the driver’s reservation rate is assumed to follows a uniform distribution in

the range [0, 2e0], where e0 is the average reservation rate. It is well known that in the MNL model

the logsum term measures the expected utility of all alternatives [Small and Rosen, 1981, De Jong

et al., 2007]. Since we treat transit as a benchmark mode, the expected general cost saving ∆u in

Eq. (5.10) is given as

∆u =
1

θc
log

∑
i∈M

exp[θc(ut − ui)], i ∈M. (5.15)

Besides, the drivers’ opportunity cost is reduced to

∫ N

0
g−1(n/S0)dn =

η

2

(
Qsτs +

1

2
Qpτp

)
=
e0N

2

S0
. (5.16)

The default values and ranges of input parameters used in the following experiment are the

same as those in Section 4.6, which are summarized in Table 4.2. The values of parameters newly

defined in this chapter are reported in Table 5.2.



108

5.3.1. Performance of optimal pricing

We first examine the performance of the profit-maximization pricing problem M1 under various

operational strategies and market conditions (i.e., combinations of total demand D0 and potential

supply S0). The platform may use one of the following three operational strategies: (i) offering

both solo and pooling rides, (ii) only offering solo rides, and (iii) only offering pooling rides. These

strategies are referred to as “mix-mode”, “pure-solo” and “pure-pool”, respectively.

Figures 5.1 presents contours of the platform’s profit and total trip output (i.e., Qs+Qp) gained

by M1 under the three operational strategies. It can be read from Figures 5.1(a) that mix-mode

always achieves the highest profit, followed by pure-solo strategy. This finding is predicted by the

analytical solutions, as a platform serving both solo and pooling rides enjoys a higher market power

(see Eqs. (5.2a) and (5.2b)). As expected, pure-pool is the least profitable because the platform

has to keep the price sufficiently low to sustain a reasonable level of service for pooling (otherwise

it would lose much of the market share to transit). On the other hand, mix-mode and pure-pool

produce much more trips than pure-solo, and the difference increases as the market expands; see

Figures 5.1(b). When the potential supply becomes scarce, pure-pool gradually achieves a leading

position in terms of trip production. Overall, mix-mode achieves a more favorable balance between

trip production and profitability than the other two strategies.

We further pick four corner cases (labeled in Figure 5.1(a)), namely, low-demand-and-low-

supply (A: “low-low”), low-demand-and-high-supply, (B: “low-high”), high-demand-and-low-supply

(C: “high-low”), and high-demand-and-high-supply (D: “high-high”), and examine more details of

the system performance. Besides the three operational strategies, we also solve the second-best

pricing problem (P3) under mix-mode, denoted as “SO”, for comparison.

Figure 5.2(a) compares the social welfare obtained by the three operational strategies with the

social optimal (SO) state. The different patterns indicate the passenger surplus (logsum term in

Eq. (5.10)), the platform profit and the driver surplus (income less opportunity and congestion

cost). We plot the ratio of these three components in each market scenario with respect to the
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(a) Platform’s profit

mix-mode
pure-solo
pure-pool

(b) Trip production

Figure 5.1. System performance under different operational strategies and market
conditions.

Passenger surplus Platform pro!t Driver surplus

(a) (b)

(c) (d)

Figure 5.2. System performance under different operational strategies and represen-
tative market conditions.
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total welfare at SO (normalized as one). We first note that mix-mode consistently yields the highest

social welfare, around 80% of the SO level. Pure-pool is the worst in three out of the four corner

cases. It slightly outperforms pure-solo only when demand is high but supply is low (Case C:

high-low), which is expected because pooling is most helpful in such a case. Combined with the

results from Figure 5.1, we conclude that serving a mixture of solo and pooling rides benefit both

the platform and the society. On the other hand, only serving pooling rides does not necessarily

yield a higher social welfare than the regular ride-hail service, because the passengers suffer from a

degraded level of service and the drivers earn a lower wage.

Under profit-maximizing pricing, the platform’s profit dominates the total social welfare; see

Figure 5.2(a). In contrast, the SO pricing clearly prioritizes the surplus of passengers and drivers.

Interestingly, SO did not wipe out the platform’s profit completely (even it is allowed to do so).

This suggests that the only constraint in M3 (that the profit should not be negative) is inactive

at the optimum. In other words, the solution obtained here is indeed a true SO, rather than a

second-best optimum. Incidentally, this finding also implies that no subsidy is needed to sustain an

SO solution, which seems at odds with previous findings about taxi markets [Douglas, 1972, Arnott,

1996, e.g.,]. Upon further inspection, we note that the discrepancy arises from the externality term

(congestion cost c0N) included in the objective function. When that term is removed, a negative

profit would indeed show up and the profitability constraint would be activated. Effectively, the

congestion externality discourages over-supply in the ride-hail market.

Figure 5.2(b) examines the service rate, defined as the ratio between trip production and fleet

size, i.e., (Qs+Qp)/N . As expected, pure-pool achieves the highest service rate while pure-solo has

the lowest. The service rate under mix-mode is almost the same as that at SO, which suggests a

profit-maximizing platform serving both solo and pooling rides could operate at a socially optimal

service rate.

Figures 5.2(c) and (d) present, respectively, the average passenger wait time for ride-hail services

(weighted by solo and pooling demand) and the average driver wage. In all cases, pure-solo offers
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the shortest wait time because it serves fewer passengers with a relatively large fleet of drivers.

Also, the wait time is the highest in the case of high-demand-and-low-supply (high-low) and the

lowest in the case of low-demand-and-high-supply (low-high). Except for the low-high case, mix-

mode always leads to the longest average passenger wait time but the highest driver wage. Yet, the

difference from the second place is minor (less than half minus in wait time and $1/hr in earning

rate). Pure-pool is the worst strategy for driver income in all cases. At SO, however, the drivers are

treated much better than all operational strategies under profit-maximizing pricing. Their hourly

income more than doubled in some case (e.g., high-low). This is clearly linked to higher driver

surplus of SO solution shown in Figure 5.2(a).

In summary, the mix-mode strategy seems the ideal choice for a profit-maximizing platform.

Compared to the other two strategies, it maximizes both profit and social welfare, and brings

greater benefits to passengers and drivers. Interestingly, although a profit-maximizing platform

would not operate at the socially optimal scale, it tends to achieves a service rate (the number of

trips served per vehicle) close to the SO level.

5.3.2. Impact of regulations

5.3.2.1. Minimum wage. To assess the impact of the minimum wage policy, we first solve M3

to obtain the “socially optimal” earning rates. These rates are then imported in M2 to derive a

profit-maximizing platform’s pricing strategy with an SO minimum wage constraint. A moment of

reflection suggests that the policy would encourage more drivers to enter the service, which, in turn,

attracts more passengers and boosts trip production. Indeed the entire system could move closer

to SO. However, such a policy could be potentially detrimental to profitability, as the platform

is now obligated to guarantee a minimum earning rate to anyone entering the market. Note that

the price is the only “legal” tool available to the platform to manage the fleet size in the short

term, and consequently, it has little recourse to reduce the fleet size below the lower bound now

dictated by the government-mandated minimum wage. In the long run, however, the platform can
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reduce its driver pool S0 to manage this downward pressure on profits. In fact, after New York

City enacted the minimum wage policy, both Uber and Lyft have stopped hiring drivers [Edelstein,

2019b]. Over the time, such a hiring freeze, along with other tactics, could reduce S0. To examine

this effect, we assume that the platform seeks to achieve a profit-maximizing S0 for the minimum

wage imposed by the regulator. More specifically, by solving M2 over a range of possible values for

S0, we identify the S0 that yields the highest profit and the scenario is then used to represent the

long-term impact of the minimum wage policy.

Below, we compare the system performance under the four representative market conditions.

For each condition, four scenarios are examined: profit maximization without minimum wage

(“MO”), profit maximization with minimum wage and a fixed potential supply (“short”), profit

maximization with minimum wage and an “optimized” potential supply (“long”), and SO (“SO”).

Note that in Scenario “long”, the value of S0 differs from those used the other three scenarios due to

the platform’s presumed reaction. In all scenarios, the platform is assumed to adopt the mix-mode

strategy.

Figure 5.3(a) plots the normalized welfare under each market condition. As expected, the

minimum wage policy significantly improves social welfare in the short term, especially when the

potential supply is relatively small. This improvement can be attributed to prioritizing driver and

passenger surplus at the expense of the platform’s profit, which is related to the reduced market

power predicted in Eqs. (5.8a) and (5.8b). Interestingly, the welfare distribution among the three

stakeholders in Scenario “short” closely resembles that at SO. However, the result looks rather

different in Scenario “long”, where the platform is allowed to manipulate S0 to its own advantage.

By doing so, it manages to take back some of the lost profits, but unfortunately inflicts greater

damages on driver and passenger surplus. Under all conditions, the minimum wage policy ends up

lowering the welfare in the long term, and the effect is more damaging when the supply pool is small

to begin with.
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Occupied time Vacant time
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Figure 5.3. System performance under the minimum wage policy.

Figure 5.3(b) visualizes the platform’s optimal pricing strategies. The bar chart in the plot

represents the difference in trip fare between pooling and transit (solid filled) and between solo

and pooling (pattern filled). In the short run, the platform tends to lower the trip fare of solo

rides to attract passengers from transit. In this way, the platform could exhaust the additional

service capacity induced by the minimum wage. An exception is the case of “high-high”, where the

platform raises both solo and pooling fares, but more for pooling than solo rides. As a result, no

passenger would choose pooling at all; see Figure 5.3(c). Here, the rationale is to shift all pooling

demand to solo rides, which not only keeps every driver busy but also generates higher revenue.

These findings imply that in a dense market, pooling may be completely eliminated by the minimum

wage policy. In the long-term, as the platform takes back more control on the supply side, it is able

to keep the price close to the pre-regulation level for both pooling and solo rides.



114

Figures 5.3(c) and (d) show SO induces the highest demand and supply, followed by Scenario

“short”. This result again confirms, in the short run, imposing a socially optimal minimum wage

will force the platform to scale up and discourage pooling by adjusting its pricing strategy. In

addition, Scenario “short” significantly increases both occupied and vacant vehicle time. In fact,

under all market conditions tested, the vacant vehicle time induced by the minimum wage policy

in the short run is even higher than that at SO. In the long run, the ride-hail market is scaled back

to the unregulated level. However, the pooling ratio does not fully recover. Instead, it remains

modestly lower than what is achieved in both unregulated scenario and SO. Although the long-term

adjustment made by the platform will largely eliminate the supply surge achieved by the minimum

wage policy, the supply in Scenario “long” remains above the unregulated level.

To summarize, although regulating the minimum wage does protect drivers from being unfairly

exploited, it could create a host of problems. For one thing, the policy will surely draw opposition

from the platform [e.g., Edelstein, 2019a]. More importantly, by maintaining the supply and de-

mand of ride-hail at an artificially high level, it could depress the use of collective modes (transit

and pooling), thus exacerbating traffic congestion. In the long run, the platform might limit the

potential supply in order to recover the lost profits. As a result, the regulation in the name of social

justice might even hurt the social welfare.

5.3.2.2. Congestion tax. We set the congestion tax cs = $1, which is in par with the actual

policy implemented in Chicago2. Figure 5.4 compares the social welfare and pooling ratio in four

scenarios: profit maximization without regulation (“MO”); profit maximization with minimum

wage (“min-wage”)3; profit maximization with congestion tax (“cong-tax”); and SO. The results

show the congestion tax actually hurts the social welfare, though it slightly improves the passenger

surplus; see Figure 5.4(a). Interestingly, the seemingly small congestion tax diverts a large number

of passengers from solo to pooling rides. As shown in Figure 5.4(b), with the congestion tax, the

2The current policy charges congestion tax on all TNC trips, yet differently, based on the trip origin and desti-
nation as well as the time period. The price difference between solo and pooling rides is $1.75 with downtown zone
and $0.6 otherwise. More details see https://www.chicago.gov/city/en/depts/bacp/supp info/city of chicago

congestion pricing.html
3This is equivalent to Scenario “short” in the previous section.

https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.html
https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.html
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pooling ratio rises by more than 20% under all market conditions. In fact, a close look reveals

that this effect is so dramatic that it significantly reduces the wait time for pooling rides, which is

eventually translated to a greater passenger surplus.

Passenger surplus Platform pro!t Driver surplus Tax revenue

(a)

cong-tax

(b)

Figure 5.4. System performance under congestion tax.

Therefore, while the minimum wage policy improves the social welfare (at least in the short

run) but undermines ride-sharing, the congestion tax has exactly the opposite effect. One wonders,

naturally, whether or not jointly implementing these two policies would lead to a win-win solution.

The results reported in Figure 5.5 offers a preliminary but promising answer to the question. The

joint policy achieves a higher social welfare than each individual policy in all but one case. The

exception is the case of “high-low”, where the minimum wage policy delivers a slightly higher

social welfare. Several factors contribute to the rise of social welfare. First, the higher earning

rate attracts more drivers to enter the market. The improvement in LOS of ride-hail services thus

retains the demand for solo rides, which translates into a significantly higher tax revenue compared

to the congestion tax itself. Second, the increase in vehicle supply, along with the higher solo trip

fare due to the congestion tax, makes pooling rides more appealing to passengers. Although the

pooling ratio under the joint policy falls behind that only with the congestion tax policy, it is

consistently higher than the pooling ratio at SO. It is reasonable to expect that the joint policies

considered here is not “optimal” for a combined objective of minimizing social welfare, maximizing
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toll revenue and promoting ride-sharing. We leave the problem of finding such an optimal policy

to a future study.

Passenger surplus Platform pro!t Driver surplus Tax revenue

(a)

cong-tax

(b)

Figure 5.5. System performance under joint regulation of minimum wage and con-
gestion tax.

5.4. Summary

In this chapter, we study the optimal pricing problem of monopoly platform serving both solo and

pooling trips. The platform jointly determine the trip fares and the compensation rate paid to

the drivers to maximize different objectives with and without regulatory constraints. We show the

existence of optimal solution of the pricing problem and propose algorithms to solve for local optimal

solutions. Numerical experiments are then conducted to compare different operational strategies

and to examine the system perforamnces under various market conditions and regulations. Main

findings are summarized as below:

• Without regulations, a mixed strategy, i.e., providing both solo and pooling rides, is the

best choice for a profit-maximizing platform. Besides profit, it also achieves the highest

social welfare compared to alternative strategies. Importantly, maintaining the system

optimal output does not require subsidies if traffic congestion externality is considered in

social welfare.

• The minimum wage policy can improve social welfare in the short term. However, in the

long run, the platform might limit supply in an effort to recover the lost profits. As a



117

result, the policy could end up sacrificing social welfare, and the damage is greater when

the potential supply is small. Moreover, by maintaining the supply and demand of ride-

hail at an artificially high level, it could depress the use of collective modes (transit and

pooling), and thus exacerbate traffic congestion.

• The congestion tax policy encourages pooling but undermines social welfare. Combining

it with the minimum wage policy, however, achieves a desired balance between the two

seemingly conflicting objectives in the short term.

In this chapter, we assume a single platform monopolizes the entire market, although it does

not have full control on either side of the market. In reality, however, it is common to have multiple

platforms competing with each other. In the next chapter, we will extend the current analysis to

accommodate such platform competition. Another extension of the current model is establishing

studying the pricing problem in a spatial ride-hail market, which will be main focus of Chapter 7.

A future study can also relax the assumptions made to simplify the matching process. Such an

extension may endogenize the “matching parameters” (k and b) by linking them to such variables

as matching interval/radius and maximum allowed detour. Accordingly, the platform may consider

jointly optimizing the matching and the pricing decisions. As argued in Castillo et al. [2018], surge

pricing can protect the system from the “catastrophic consequence” of WGC. The underlying logic

is that certain amount of demand must be “priced out” so that the system can return to an efficient

state of operation. Could pooling solve WGC without leaving a portion of demand unserved? This

is also an intriguing question worthy of consideration in future studies.
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5.5. Appendix

5.5.1. Notations

Table 5.1. List of notations

Variable Description Unit

Qs (Qp) solo (pooling) demand rate /hr/sqmi

rQ pooling ratio

fs (fp) trip fare of solo (pooling) rides $
η compensation rate (payment per unit occupied time) $/hr

τs (τp) travel time of solo (pooling) rides hr

us generalized cost of solo rides $
ws solo passenger wait time hr

cs congestion tax on each solo ride $
ν value of time $/hr

ū average saving of each passenger due to switching from transit to

ride-hail service

$

θc Mode choice uncertainty /$
S0 potential supply /sqmi

N fleet size (number of drivers in operation) /sqmi

e0 average reservation rate $/hr

e minimum wage $/hr

c0 congestion cost of each ride-hail vehicle $

5.5.2. Parameter setting

Table 5.2. Default values of additional parameters.

Parameter Unit Default

value

Average reservation rate e0 $/hr 19.84

Congestion cost per vehicle c0 $/hr 2.9

5.5.3. Derivation of ∇R

Gradient ∇R is evaluated as

∂R

∂fs
= Qs + (fs − ητs)

∂Qs
∂fs

+

(
fp −

1

2
ητp −

1

2
cp

)
∂Qp
∂fs

; (5.17a)

∂R

∂fp
= Qp + (fs − ητs)

∂Qs
∂fp

+

(
fp −

1

2
ητp −

1

2
cp

)
∂Qp
∂fp

; (5.17b)
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∂R

∂η
= (fs − ητs)

∂Qs
∂η

+

(
fp −

1

2
ητp −

1

2
cp

)
∂Qp
∂η
−Qsτs −

1

2
Qpτp = 0. (5.17c)

In what follows, we explain how to compute ∂R/∂fs in each iteration. ∂R/∂fp and ∂R/∂η

can be computed similarly. The two components to be evaluated in Eq. (5.17a) are ∂Qs/∂fs and

∂Qp/∂fs. Take ∂Qs/∂fs as an example. We expand it as

∂Qs
∂fs

= D0

[
∂q

∂fs
+

∂q

∂ws

∂ws
∂fs

+
∂q

∂wp1

∂wp1
∂fs

+
∂q

∂wp2

∂wp2
∂fs

]
. (5.18)

Here, the partial derivatives of the function q with respect to fs, ws, wp1 and wp2 can be evaluated

numerically using automatic differentiation [Baydin et al., 2017].

To obtain the implicit partial derivatives ∂ws/∂fs, ∂wp1/∂fs and ∂wp2/∂fs, we first rewrite

Eq. (4.5) as follows:

ws =
δ

2v
√
k

√
Πeff

V
, (5.19a)

wp1 =
δ

2v
√
k

√
Πeff

V

κ+ 4bΠp

2κ+ 4bΠp
, (5.19b)

wp2 =
δ

2v
√
b

1√
Πp

, (5.19c)

where Πeff is defined in Eq. (3.8). Also, Πeff, V and Πp can be viewed as functions of fs, ws, wp1, wp2

as per Eqs. (4.5a)-(4.5c).

Taking logarithm and then differentiating with respect of fs on both sides of Eq. (5.19) yields

1

ws

∂ws
∂fs

=
1

2Πeff

∂Πeff

∂fs
− 1

2V

∂V

∂fs
, (5.20a)

1

wp1

∂wp1
∂fs

=
1

2Πeff

∂Πeff

∂fs
− 1

2V

∂V

∂fs
+

1

2

(
4b

κ+ 4bΠp
− 4b

2κ+ 4bΠp

)
∂Πp

∂fs
, (5.20b)

1

wp2

∂wp2
∂fs

= − 1

2Πp

∂Πp

∂fs
. (5.20c)
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∂Πeff/∂fs can be evaluated similarly as ∂Qs/∂fs. Recall that Πeff = wsQs+ (wp1 +wp2)Qp. We

may represent Πeff as a function Πeff = π(ws, wp1, wp2, Qs, Qp). Accordingly,

∂Π′

∂fs
=

∂π

∂ws

∂ws
∂fs

+
∂π

∂wp1

∂wp1
∂fs

+
∂π

∂wp2

∂wp2
∂fs

+
∂π

∂Qs

∂Qs
∂fs

+
∂π

∂Qp

∂Qp
∂fs

. (5.21)

Again, the partial derivatives of π can be computed by automatic differentiation.

In other words, ∂Πeff/∂fs can be expressed as a linear function of ∂ws/∂fs, ∂wp1/∂fs and

∂wp2/∂fs. ∂V/∂fs and ∂Πp/∂fs in Eq. (5.20) can be derived in the same way. Consequently,

Eq. (5.20) turns into a linear equation system with respect to ∂ws/∂fs, ∂wp1/∂fs and ∂wp2/∂fs.

Plugging the solution of Eq. (5.20) into Eq. (5.18), we can obtain ∂Qs/∂fs. The computation

of ∂Qp/∂fs is similar and omitted here for brevity.
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CHAPTER 6

Duopoly pricing in aggregate market

One of the most restrictive assumptions in Chapter 5 is that the market is dominated by a

single platform. In reality, inter-platform competition is commonplace, with the duopoly of Uber

and Lyft being a well-known example. Hence, in this chapter, we consider two platforms competing

for both passengers and drivers in an aggregate ride-hail market. The competition is formulated as a

simultaneous pricing game. That is, the platforms set the price for passengers and the compensation

rate for drivers in order to maximize their own profits. The interactions between passengers, drivers

and the platforms are characterized by the equilibrium model developed in Chapter 4 for the multi-

platform market under either single-homing or multi-homing. Similar to Chapter 5, the platform’s

strategies, as well as the system performance, are investigated in both unregulated and regulated

scenarios. All notations used in this chapter follow those in Chapter 4, which are also reported in

Table 6.1.

6.1. Duopoly pricing game

6.1.1. Unregulated duopoly equilibrium

Consider an aggregate market with two platforms P = {A,B}. Let yj =
[
f js , f

j
p , ηj

]T
∈ R3

+ denote

the pricing strategy of platform j ∈ P. Without regulations, the feasible set of yj is not affected

by the other platform’s strategy. In this case, the equilibrium state can be characterized as a Nash

Equilibrium (NE), i.e., no platform can increase its profit by unilaterally changing its own pricing

strategy.

Same as the monopoly scenario, we define each platform’s profit as its total revenue less the

direct expense of trip production. Hence, the profit of platform j, denoted by Rj(yj ,y−j), is
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evaluated as

Rj(yj ,y−j) = f jsQ
j
s + f jpQ

j
p − ηj

(
Qjsτ

j
s +

1

2
Qjpτ

j
p

)
. (6.1)

Mathematically, the duopoly equilibrium strategy y∗ satisfies the following conditions:

Rj(yj∗,y−j∗) ≥ Rj(yj ,y−j∗), ∀yj ∈ R3
+, j ∈ {A,B}. (6.2)

It is well known that the Nash equilibrium condition can be transformed into a variational inequality

problem (VIP) [e.g., Harker, 1991]. Consider the optimal pricing problem of platform j

max
yj

Rj(yj ,y−j). (6.3)

The first-order necessary condition is given by

−∇yjRj(yj∗,y−j)T (yj − yj∗) ≥ 0, ∀yj ∈ R3
+, (6.4)

where ∇yjRj(yj∗,y−j) is the gradient of Rj with respect to platform j’s pricing vector and yj∗ is

the solution to (6.3) given the other platform’s pricing strategy y−j . Note that Eq. (6.4) is sufficient

only if Rj(·,y−j) is concave. Otherwise, the solution to Eq. (6.4) is either a stationary point (i.e.,

∇yjRj(yj∗,y−j) = 0) or a local maximum (i.e., Rj(yj
∗
,y−j) ≥ Rj(yj ,y−j), ∀yj in a neighborhood

of yj
∗
).

Since there is no binding constraints across players (i.e., the feasible set of the game is the full

Cartesian product of individual player’s strategy set), we can construct the VIP by summing up

the above first-order condition of all players. Let y = [fAs , f
A
p , η

A, fBs , f
B
p , η

B]T be the joint pricing

strategy of the game. The VIP is stated as

(D1) Find y∗ ∈ R6
+ such that −∇R(y∗)T (y − y∗) ≥ 0, ∀y ∈ R6

+, (6.5)

where ∇R(y) = [∇yARA(y)T ,∇yBRB(y)T ]T and ∇yjRj(y) = ∇yjRj(yj ,y−j).
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6.1.2. Regulated duopoly equilibrium

In the unregulated game, the platforms only interact through their profit function, and the feasible

sets of their pricing strategies are independent. This property implies that the feasible set of the

pricing game is the full Cartesian product of each individual player’s feasible set (i.e., R3
+ × R3

+ =

R6
+). However, with regulatory constraints, the feasible set of one platform is affected by the other.

In this case, the feasible set of the regulated pricing game can be viewed as a point-to-set mapping

Ω(y) =
∏
j∈P Ωj(y−j), where Ωj(y−j) = {yj |hj(yj ,y−j) ≤ 0,yj ∈ R3

+}. For a minimum wage

policy, the constraint hj(yj ,y−j) ≤ 0 can be further specified as

ej =
ηj

N j

(
Qjsτ

j
s +

1

2
Qjpτ

j
p

)
≥ e (6.6)

for single-homing supply mode and

e = ej =
1

N

∑
j

ηj
(
Qjsτ

j
s +

1

2
Qjpτ

j
p

)
≥ e (6.7)

for multi-homing, where e is the minimum wage rate imposed by the regulator. Note that, in

addition to yj , y−j is also involved in Eqs. (6.6) and (6.7) through passenger demands Qjs, Q
j
p and

fleet size N j .

This interaction through interdependent feasible sets gives rise to the concept of generalized

Nash equilibrium (GNE) [Arrow and Debreu, 1954, Ichiishi, 1983]. In the context of regulated

duopoly pricing game, it is characterized as

Rj(yj∗,y−j∗) ≥ Rj(yj ,y−j∗), ∀yj ∈ Ω(y∗), j ∈ {A,B}. (6.8)

Similar to the case of NE, GNE corresponds to a quasi-variational inequality problem (QVIP) [see

e.g., Harker, 1991, Facchinei and Kanzow, 2010], which reads

(D2) Find y∗ ∈ Ω(y∗) such that −∇R(y∗)T (y − y∗) ≥ 0, ∀y ∈ Ω(y∗). (6.9)
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Again, because we cannot ensure that R is concave, a solution to the QVIP is not necessarily a

GNE. However, the reverse statement must be true.

6.1.3. Single-homing vs multi-homing

As discussed in Section 4.4, switching from single-homing to multi-homing does not affect the

passenger wait time if the platforms are symmetric and the inputs fed to the matching process (i.e.,

densities of vacant vehicles and waiting passengers) remain the same. However, the marginal effect

of a platform’s pricing strategy on these equilibrium variables does vary between the two supply

modes. To elaborate the difference, consider two symmetric platforms P = {A,B} that only serve

solo rides. The gradient ∇yARA can be derived as

∂RA

∂fAs
= QAs + (fAs − ηAτAs )

∂QAs
∂fAs

; (6.10a)

∂RA

∂ηA
= −QAs τAs + (fAs − ηAτAs )

∂QAs
∂ηA

. (6.10b)

The terms ∂QAs /∂f
A
s and ∂QAs /∂η

A can be evaluated by

∂QAs
∂fAs

= ∇uAs q + ν

(
∇uAs q

∂wAs
∂fAs

+∇uBs q
∂wBs
∂fAs

)
, (6.11)

∂QAs
∂ηA

= ν

(
∇uAs q

∂wAs
∂ηA

+∇uBs q
∂wBs
∂ηA

)
, (6.12)

where ∇uAs q and ∇uBs q are the partial derivatives of the demand function q(·) with respect to

uAs , u
B
s , respectively.

Without loss of generality, we may assume ∇uAs q < 0, ∇uBs q > 0 and |∇uAs q| > |∇uBs q| (i.e., the

general cost associated with one platform has a larger impact on itself than the other platform).

Hence, the sign of ∂QAs /∂f
A
s , which indicates whether an increase in trip fare would increase or

decrease the platform’s market share, depends on ∂wAs /f
A
s and ∂wBs /f

A
s . The same is true for the

compensation rate ηA. As per Eq. (3.9), the solo wait time increases with passenger demand but
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decreases with vehicle supply. Since a higher trip fare usually drags down the demand while a higher

compensation rate always attracts more drivers to enter the system, we may assume ∂wAs /∂f
A
s < 0

and ∂wAs /∂η
A < 0, regardless of the supply mode.

Under single-homing, an increase in fAs would raise the wait time on platformB, i.e., ∂wBs /∂f
A
s >

0, because it would increase the demand on platform B, thus intensifying competition there. Simi-

larly, we expect ∂wBs /∂η
A > 0 because an increase in ηA attracts more drivers to platform A, at the

expense of platform B. On the other hand, as shown in Section 4.4.2, wAs ∝ wBs under multi-homing

and the constant ratio is positive. Therefore, we have ∂wBs /∂f
A
s ∝ ∂wAs /∂f

A
s → ∂wBs /∂f

A
s < 0.

Since the passenger wait time depends on both platforms under multi-homing, the influence of each

platform is expected to be less compared to single-homing. Hence,

(
∂wBs
∂fAs

)
SH

> 0 >

(
∂wBs
∂fAs

)
MH

∝
(
∂wAs
∂fAs

)
MH

>

(
∂wAs
∂fAs

)
SH

,

where subscripts “SH” and “MH” denote single-homing and multi-homing, respectively.

Accordingly, it yields

(∂QAs /∂f
A
s )MH = ∇uAs q + ν

[
∇uAs q

(
∂wAs /∂f

A
s

)
MH

+∇uBs q
(
∂wBs /∂f

A
s

)
MH

]
(6.13)

< ∇uAs q + ν
[
∇uAs q

(
∂wAs /∂f

A
s

)
SH

+∇uBs q
(
∂wBs /∂f

A
s

)
SH

]
= (∂QAs /∂f

A
s )SH .

The inequality holds because ∇uAs q < 0,∇uBs q > 0, as discussed above. The same reasoning can be

used to derive (∂QAs /∂η
A)MH < (∂QAs /∂η

A)SH . Bringing this result to Eq. (6.10), we can conclude

that, under multi-homing, the platforms are less inclined to raise trip fare and compensation rate

because their profit tends to rise less when they do so than under single-homing.

To further explore the impact of a shift in compensation rate on the vehicle supply, we derive

∂N/∂η under single-homing and multi-homing modes. First, for platform A, it reads

∂NA

∂ηA
= S0∇eAg

∂eA

∂ηA
, (6.14)
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where g is the supply function and ∇Ae g is the derivative of g with respect to eA. It is reasonable to

assume ∇eAg > 0, since the fleet size tends to increase with average wage rate. Hence, in general

∂N j/∂ηj is positively proportional to ∂ej/∂ηj , for j = A,B.

For single-homing, first taking logarithm on both sides of Eq. (4.6) and then getting derivative

with respect to η yield

1

eA
∂eA

∂ηA
=
QAs τ

A
s + ηAτAs

∂QA
s

∂ηA

ηAQAs τ
A
s

− 1

NA

∂NA

∂ηA
. (6.15)

Plugging Eq.(6.14) into Eq. (6.15) gives

(
∂eA

∂ηA

)
SH

=

(
1

eA
+
SA0
NA
∇eAg

) QAs τ
A
s + ηAτAs

∂QA
s

∂ηA

ηAQAs τ
A
s

. (6.16)

Following a similar derivation, ∂eA/∂ηA under multi-homing can be derived form Eq. (4.9) as

(
∂eA

∂ηA

)
MH

=

(
1

eA
+
SA0
NA
∇eAg

) QAs τ
A
s + ηAτAs

∂QA
s

∂ηA
+ ηBτBs

∂QB
s

∂ηA

ηAQAs τ
A
s + ηBQBs τ

B
s

. (6.17)

When platforms are symmetric, we have ηA = ηB, QAs = QBs , τ
A
s = τBs . In addition, it can be

derived from Eq. (6.12) that ∂QAs /∂η
A = ∂QBs /∂η

A > 01. Hence, we have

(
∂eA

∂ηA

)
MH

=

(
1

eA
+
SA0
NA
∇eAg

) 1
2Q

A
s τ

A
s + ηAτAs

∂QA
s

∂ηA

ηAQAs τ
A
s

<

(
∂eA

∂ηA

)
SH

. (6.18)

Thus, an increase in compensation rate would induce less supply under multi-homing than under

simple-homing. In other words, when a platform attempts to squeeze profit by reducing the com-

pensation to drivers, it only bears part of the cost caused by supply depression. In economics,

such a phenomenon is widely known as the tragedy of the commons [Ostrom et al., 1994]. Here,

it is the drivers that are the “commons” shared (and abused) by profit-driven platforms under the

multi-homing mode.

1This is only true under symmetric multi-homing where wA
s = wB

s
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6.2. Solution existence and algorithm

Due to the complex structure of the market equilibrium constraint, we cannot obtain a closed-

form expression of Rj(·,y−j) or establish its concavity. Hence, in theory a solution to D1 does

not necessarily satisfy the equilibrium condition Eq. (6.2), though the reverse is evidently true. In

what follows, we first establish the solution existence for D1, and then propose to solve it using a

gradient ascent algorithm. Because a solution to D1 found by such an algorithm must be a local

maximum, it must satisfy Eq. (6.2).

The existence of the unregulated duopoly equilibrium is hard to prove due to the nonconvexity

of R(y). Instead, we prove the solution existence of D1, as summarized in the following proposition.

Accordingly, we may first solve D1 and check whether the solution satisfy the condition Eq.(6.2).

In the experiments, we solve the problem with different initial solutions in case there are multiple

duopoly equilibria.

Proposition 3. The VI problem D1 has a solution.

Proof. The proposition is proved by evoking Corollary 3.1 of Harker and Pang [1990].

Lemma 2. (Harker and Pang [1990] Corollary 3.1) Let X be a nonempty, closed and convex

subset of Rn and F be a continuous mapping Rn to itself. Then, the VI problem

F (x∗)T (x− x∗) ≥ 0, ∀x ∈ X

has a solution if there exists a nonempty bounded set D ⊂ X such that for every x ∈ X \D there

is a x0 ∈ D with F (x)T (x0 − x) ≤ 0, that is, no point outside D is a solution candidate for the VI

problem.

Rewrite the objective function of each player:

Rj = (f js − ηjτ js )Qjs + (f jp −
1

2
ητ jp )Qjp. (6.19)
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Hence, the optimal price vector must satisfy ηj∗ ≤ max{f j∗s /τ js , 2f j∗p /τ jp}. Under this condition,

it is easy to show that Rj is bounded from below and has limit 0 one both sides (i.e., limyj→0R
j = 0

and limyj→∞R
j = 0). Since R is continuously differentiable, there must exist a point y0 =[

yA0 ,y
B
0

]
such that ∇yA

0
Rj(y0) ≤ 0 and ∇yB

0
Rj(y0) ≤ 0. Therefore, for all y ≥ y0, it yields

−∇Rj(y)T (y0 − y) ≤ 0. As per Lemma 2, there exists a solution to D1. �

Since the platforms always yield zero profit at the boundaries, the equilibrium price must lie

inside of the feasible set (i.e., y∗ > 0). Hence, it is sufficient to solve ∇R(y) = 0 for D1. The

solution procedure follows a similar iterative rule as the optimal pricing problem under monopoly:

y(i+1) = y(i) + α∇R(y(i)). (6.20)

To solve the regulated duopoly equilibrium Eq. (6.8), we implement the exact penalty method

proposed by Facchinei and Kanzow [2010], summarized in Algorithm 6.1. The existence of the

equilibrium is due to Theorem 2.5 in Facchinei and Kanzow [2010] associated with its solution

algorithm. In brief, the theorem states that if the algorithm terminates in a finite number of

iterations, then the limit point is a solution of the GNE.

In Algorithm 6.1, h+(·) = max{0, h(·)} and the parameter ε is introduced to smooth the

objective function of penalized problem. The algorithm terminates when the constraint is satisfied

and ε is smaller than a predefined threshold ε.

6.3. Numerical experiments

Same as Section 5.3, the numerical experiments in this section are constructed based on the TNC

data collected in the City of Chicago (see Chapter 10). Specifically, we focus on four representa-

tive demand-supply conditions, dubbed as “low-low” (low-demand-low-supply), “low-high” (low-

demand-high-supply), “high-low” (high-demand-low supply) and “high-high” (high-demand-high-

supply). The corresponding total demand and potential supply are reported in Table 6.2. The
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Algorithm 6.1 Solution algorithm for regulated duopoly equilibrium

Inputs: QVI problem Eq. (6.9), y(0), c ∈ (0, 1), ρ > 1, ε ∈ (0, 1], ε ∈ [0, 1).
Set i = 0, λ = 0.
while y(i) /∈ Ω(y(i)) or ε ≥ ε do

Let I = {j|hj(y(i)) ≥ 0}, For each j ∈ I, if

||∇yjRj(y(i))|| > cλj ||∇yj ||hj+(y(i))||2||, (6.21)

then set λj = λj + ρhj(y(i)).
If ||h(y(i))|| ≤ ε, set ε = ε/2
Solve penalized VI problem

F (y∗)T (y − y∗) ≥ 0, ∀y ≥ 0, (6.22)

where F (y∗) =

[
FA(y∗)T

FB(y∗)T

]
and

F j(y) = −∇yjRj(y) + λj∇yj

[(
hj+(y(i))

)2

+ ε

]1/2

. (6.23)

Set i = i+ 1.
end while
if y(l) satisfies Eq. (6.8) then

Set y∗ = y(l) as a GNE.
else

Report no GNE solution is found.
end if

default values of input parameters are the same as those used in Section 4.6, which are reported in

Table 4.1.

For comparison, we also solve the monopoly pricing problem using the same inputs. The model

and solution method has been thoroughly discussed in Chapter 5. Additionally, we define the social

welfare of the aggregate market in the three scenarios as follows:

(1) Monopoly

WMO =
D0

θc
ln

1 +

{ ∑
m∈M

exp[θrc(ut − um)]

}θc/θrc (6.24)

+
S0

θd
ln {1 + exp[θd(e− e0)]}

+
∑
j∈P

[
f jsQ

j
s + f jpQ

j
p − ηj

(
Qjsτ

j
s +

1

2
Qjpτ

j
p

)]
− c0N ;
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(2) Duopoly under single-homing

Wsingle =
D0

θc
ln

1 +

∑
m∈M

∑
j∈P

exp[θrc(ut − ujm)]


θc/θrc

 (6.25)

+
S0

θd
ln

1 +

∑
j∈P

exp[θd(e
j − e0)]


θd/θ

r
d


+
∑
j∈P

[
f jsQ

j
s + f jpQ

j
p − ηj

(
Qjsτ

j
s +

1

2
Qjpτ

j
p

)]
− c0N ;

(3) Duopoly under multi-homing

Wmulti =
D0

θc
ln

1 +

∑
m∈M

∑
j∈P

exp[θrc(ut − ujm)]


θc/θrc

 (6.26)

+
S0

θd
ln {1 + exp[θd(e− e0)]}

+
∑
j∈P

[
f jsQ

j
s + f jpQ

j
p − ηj

(
Qjsτ

j
s +

1

2
Qjpτ

j
p

)]
− c0N.

In all three welfare functions, the first term represents passenger surplus based on the logsum

term derived from the NL or MNL model [see e.g., Kohli and Daly, 2006, De Jong et al., 2007].

Here, the utility of the transit trip is used as a benchmark to measure the extra utility contributed

by the e-hail services. The second term similarly measures driver surplus, using the fallback option

as a benchmark. The third term quantifies the total profits of all platforms and the last term

approximates the congestion cost contributed by all vehicles employed by the e-hail market (c0 is

the marginal congestion cost per vehicle per unit operating time and set to be $2.9 per vehicle in

align with previous analysis).

6.3.1. Performance of unregulated duopoly game

Figure 6.1 compares the results of the duopoly pricing game under the two supply modes with

those in monopoly. For clarity, the social welfare is normalized against the highest value under
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each market condition. The normalized total welfare is compared in Figure 6.1(a), along with

its three main components: consumer surplus, driver surplus and platform profit2. In all cases,

the platform(s) is the winner, taking the lion share of the gains in the social welfare. The single-

and multi-homing duopoly respectively achieve the highest and lowest social welfare under all

conditions, with the monopoly lies right in the middle. The system performance under multi-

homing is surprisingly bad, consistently lagging behind single-homing in all three components of

the social welfare.

Passenger surplus Platform pro!t Driver surplus

(a) Normalized welfare

fp - ft fs - fp

(b) Equilibrium price

single

multi

MO

(c) Passenger wait time

Occupied time Vacant time

(d) Vehicle time normalized by S0

Figure 6.1. System performance without regulatory constraints: duopoly vs. mo-
nopoly. “MO” stands for monopoly; “single” stands for single-homing duopoly
game; “multi” stands for multi-homing duopoly game.

Figure 6.1(c) indicates that the lower passenger surplus in the multi-homing duopoly is likely

due to the much longer wait time (which triples that in either the monopoly or the single-homing

duopoly). It is further confirmed in Figure 6.1(d), which plots the ratio of vehicle time dedicated to

2The congestion externality cost is deducted from driver surplus.
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ride-hail services. Even under the most favorable condition (high demand low supply), barely 40%

of all potential workforce are working as ride-hail drivers in the multi-homing duopoly, compared to

over 90% in the single-homing duopoly and about 70% in the monopoly. The vacant vehicle time is

even lower, directly leading to the excessively long wait time in multi-homing, which in turn would

depress the demand. Figure 6.1(b) shows why the platforms also suffer in the multi-homing duopoly:

they have to charge a lower price to make up for their overall poorer LOS. Another noteworthy

observation is the multi-homing duopoly tends to maintain a greater price spread between solo and

pooling rides than the spread between pooling and transit, a choice that tends to favor pooling

rides. For the monopoly, this difference between two spreads is mostly negligible.

Zha et al. [2016] and Nikzad [2017] pointed out that, despite the competition it introduces, a

duopoly could set a higher price than a monopoly under certain demand-supply scenarios. This

observation is confirmed in our results. As shown in Figure 6.1(b), when demand is high and

supply is low (high-low), both solo and pooling trip prices are slightly higher in the single-homing

duopoly than in the monopoly. This aligns with the finding of Nikzad [2017] especially well, who

concludes that the duopoly price could be higher than the monopoly price if the market is not

“sufficiently thick” (i.e., when the potential supply is low). Importantly, in most cases, the single-

homing duopoly lowers the price for pooling, suggesting the pressure of competition encourage the

platforms to promote pooling.

Why does the multi-homing duopoly perform so poorly? The discussion in Section 6.1.3 suggests

that the culprit is the tragedy of the commons. To further examine the underlying mechanisms,

we solve the duopoly game under the two supply modes with the same initial solution and plot

the results over iterations in Figure 6.2. Specifically, the total demand, potential supply and initial

price are set to be the default values in Table 4.2. The evolution can be seen as a repeated game

where the two platforms slightly adjust their strategies along the best direction at each stage. Due

to symmetry, the two platforms in each game follow exactly the same evolution path.
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(a) Single-homing (b) Multi-homing

Figure 6.2. Solving unregulated duopoly equilibrium.

Comparing the bottom panels of Figure 6.2(a) and (b), one can find the platforms in the

multi-homing duopoly tend to attract passengers with lower trip fares, rather than a higher LOS

(i.e., shorter wait times). Since a multi-homing driver’s decision to enter service hinges on the

“market wage rate”, it is more difficult for a platform to attract drivers by unilaterally raising

the compensation rate η. Instead, the platform is better off by lowering η to reduce its operating

cost, in exchange for a supply loss that is shared by its rival. This behavior is consistent with the

prediction in Section 6.1.3. Consequently, the pricing game in the multi-homing duopoly is stuck

in a trap with lower fare, lower compensation and lower LOS.

Interestingly, in reality, TNC platforms clearly dislike multi-homing—–many actively discourage

such behavior by implementing loyalty programs3 or openly imposing penalty. Such a strong

preference for an exclusive rather than shared workforce may be explained by the fact that multi-

homing is as detrimental to the fundamentals of the platforms as to the efficiency and productivity

of the entire system.

3https://www.uber.com/newsroom/uberpro/https://www.uber.com/newsroom/uberpro/,https://www.lyft.c
om/rider/rewards

https://www.uber.com/newsroom/uberpro/https://www.uber.com/newsroom/uberpro/
https://www.lyft.com/rider/rewards
https://www.lyft.com/rider/rewards
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6.3.2. Impact of regulations

In this section we repeat the experiments in the previous section but add a minimum wage con-

straint. The wage floor e in Eqs. (6.6) and (6.7) is selected as follows. We first solve a monopoly

optimal pricing problem to maximize the social welfare Eq. (6.24). The “system optimal” wage

rate obtained in this manner is then rounded to the whole dollar to get e, as reported in Table 6.2.

The main results are presented in Figure 6.3.

Passenger surplus Platform pro!t Driver surplus

(a) Normalized welfare

Solo rides Pooling rides

(b) Market share

single-minwage
single

multi
multi-minwage

(c) Passenger wait time

Occupied time Vacant time

(d) Vehicle time

Figure 6.3. System performance under the minimum wage policy: single-homing vs.
multi-homing duopoly games.

As shown in Figure 6.3(a), the minimum wage policy does increase the social welfare under

single-homing, but the net gain is rather modest. Although both passenger and driver surplus are

improved substantially, these are largely gained at the expense of the platforms, and as a result, are

likely to be wiped out over time. One option available to the platforms, as discussed in Section 5.3.2,
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is to boost its profits by reducing the supply pool S0. Such a response, however, would significantly

undermine social welfare.

In the multi-homing duopoly, however, the minimum wage policy more than doubles the social

welfare in most cases. Particularly, this improvement is achieved without sacrificing the platforms’

profits. On the contrary, the platforms actually benefit from the policy, even though their gains are

not as large as those of the passengers and drivers. The significant increase in the passenger surplus

achieved by the minimum wage policy can be attributed to the dramatic improvement in passenger

wait time; see Figure 6.3(c). Importantly, the wage floor effectively prevents the market from the

self-destructive price competition found in Figure 6.2(b). As a result, more drivers are attracted

to the ride-hail market by a higher average wage rate. In turn, the improved supply condition

increases vacant vehicle time, lowers wait time, and finally grows the market share (Figure 6.3(b)).

In a nutshell, the minimum wage policy seems much more useful in a multi-homing duopoly than

in a single-homing duopoly.

As indicated in Figure 6.3(b), the effect of the minimum wage policy on pooling is detectable

but not significant. For single-homing, the market share for pooling rides has a slight but clear dip

in all but the case of high-demand-low-supply. This occurs despite the solo rides gain market share.

In the multi-homing duopoly, both solo and pooling rides gain market share after the minimum

wage policy is imposed, though most growth goes to solo rides. In a word, the minimum wage

policy seems to favor solo over pooling rides, which echos the finding in Chapter 5.

We end this section by noting that the above analysis is limited to the short-term effect, when

the platforms must cope with the extra supply induced by a minimum wage higher than the

unregulated state. In the long term, the platforms could respond to this policy by reducing their

driver pools (i.e., the potential supply S0), as discussed in Section 5.3.2.
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6.3.3. Asymmetric platforms

We now introduce asymmetric players into the duopoly game. First, we allow the two platforms in

the unregulated pricing game to differ from each other on their competitive features: the matching

efficiency k and the pooling efficiency b. For simplicity, we fix the parameter values of platform

A while varying kB and bB, respectively. Figures 6.4 and 6.5 illustrate, respectively, the variation

of the duopoly equilibrium as kB/kA and bB/bA increases from 1 (symmetric game) to 2 (highly

asymmetric game).

A-solo
A-pool

B-solo
B-pool

A B 

(a) Single-homing

A-solo
A-pool

B-solo
B-pool

A B 

(b) Multi-homing

Figure 6.4. Sensitivity of the duopoly game to asymmetric matching efficiency. The
ratio of k denotes kB/kA.

As expected, improving the matching efficiency substantially increases the platform’s LOS and

profit. However, its impact on the competing platforms varies with the supply mode. In the single-

homing duopoly, both passenger wait time and driver wage rate on platform A are rather stable

as platform B becomes increasingly more efficient. Platform A does gradually loses profits, but its

loss amounts to merely 10% even when its rival becomes twice as efficient. On the contrary, a more
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efficient competitor does far more harm to platform A in the multi-homing duopoly. As shown

in Figure 6.4(b), the passenger wait time increases about 20% while the profit drops more than

20% on platform A when kB/kA doubles from 1 to 2. Because of the competitive edge it enjoys,

platform B has less incentive to maintain sufficient vacant vehicle time or control inter-passenger

congestion. Consequently, platform A, at a competitive disadvantage, suffers much more from the

resulting supply-demand imbalance. Although it is similarly impeded by its relative inefficiency,

platform A in the single-homing duopoly manages to mitigate its losses because it has better control

on the supply-demand relationship through pricing.

A-solo
A-pool

B-solo
B-pool

A B 

(a) Single-homing

A-solo
A-pool

B-solo
B-pool

A B 

(b) Multi-homing

Figure 6.5. Sensitivity of the duopoly game to asymmetric pooling efficiency b. The
ratio of b is bB/bA.

Unlike k, the impact of the pooling efficiency b on the outcome of the duopoly game is rather

small, as illustrated in Figure 6.5. For single-homing, when the pooling efficiency increases, the

wait time on platform B decreases mildly for both pooling and solo rides, though the pooling rides

enjoy a greater improvement. The higher pooling efficiency also slightly drives up profitability and

wage rate for platform B. The effect of b in the multi-homing duopoly is almost negligible, likely
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pool-B

mix-A

symm

(a) Single-homing: Platform profit

Solo rides Pooling rides

(b) Single-homing: Market share

pool-B

mix-A

symm

(c) Multi-homing: Platform profit

Solo rides Pooling rides

(d) Multi-homing: Market share

Figure 6.6. Duopoly equilibrium with asymmetric operational strategies.

because the first pickup time wp1 is much larger than the pickup detour wp2 (which decreases as b

increases) due to the lower vacant vehicle density.

We finally consider asymmetry in terms of operational strategies. Specifically, we assume plat-

form A offers both solo and pooling rides (i.e., a mixed-mode strategy) while platform B only

serves pooling rides (a pure-pooling strategy). As some TNCs focus on providing pooling services

(e.g., Via in the United States), it is interesting to examine how such a strategy fares against a

competitor with a mixed service strategy. Figure 6.6 shows the performance of the two platforms

(Mix-A vs. Pool-B) in an asymmetric duopoly game, and compares it with that of a platform in a

symmetric game (with both platforms adopting a mixed strategy) .

In the single-homing duopoly, platform A always achieves a higher profit and market share,

compared to platform B. The performance of the platform in a symmetric game lies right in
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between the two. This finding is largely expected, as in Section 5.3 we have found the mixed

strategy outperforms either the pooling or the solo strategy.

The results in the multi-homing duopoly, however, are far more intriguing. In the case of

low-demand-low-supply, platform B achieves almost the same profit as platform A, while in the

case of high-demand-low-supply, its profit is even higher than platform A. Moreover, platform B

consistently earns a higher profit than the symmetric platform, except for the case of low-demand-

high-supply. Interestingly, while platform B has a much lower market share than both platform A

and the symmetric platform, the total market share of the asymmetric game is consistently higher

than that of the symmetric game.

Because multi-homing effectively means the two platforms share the supply, platform B can

afford a compensation rate much lower than that offered by platform A (remember drivers are

assumed to focus on the average wage rate, rather than the wage rate of any individual platform).

In this way, it can offer a reasonable pooling service at a rather low operating cost. On the other

hand, since platform A essentially monopolizes the solo rides, it has a greater incentive to grow the

market share, and attract more drivers to improve the LOS.

Therefore, multi-homing forges specialization in this game: platform B specializes in low-cost

pooling service whereas platform A draws most revenues from high quality solo riders. This spe-

cialization helps explain why the asymmetric game tends to outperform its symmetric counterpart

in terms of both market share and profits. It also suggests multi-homing likely encourages spe-

cialization in pooling under asymmetric conditions. We note that such specialized platforms do

exist. For example, Via—an exclusive pooling service provider in the US—maintains a small but

stable market share in big US cities (e.g., New York City4), where multi-homing is a prevalent

phenomenon.

4See the market share of TNCs in New York City https://toddwschneider.com/dashboards/nyc-taxi-rideh

ailing-uber-lyft-data/

https://toddwschneider.com/dashboards/nyc-taxi-ridehailing-uber-lyft-data/
https://toddwschneider.com/dashboards/nyc-taxi-ridehailing-uber-lyft-data/
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6.4. Summary

This chapter studies the inter-platform competition in an aggregate ride-hail market. The duopoly

is built on the market equilibrium model developed in Chapter 4 with two supply modes, namely,

single-homing and multi-homing, depending on whether or not each driver exclusively join one

platform. The outcome of the duopoly pricing game is described as a Nash Equilibrium (NE) and

solved by transforming it into a variational inequality problem (VIP). When a regulatory constraint

is imposed, the duopoly equilibrium becomes a generalized NE, which corresponds to a quasi VIP.

The main findings from the numerical experiments are summarized below:

• Without regulations, multi-homing may lead to a disastrous end. Specifically, passenger

and driver surplus, as well as the platform profits, are all significantly lower in the multi-

homing duopoly. This disaster arises because the platforms are locked in a self-destructive

pricing war. Since drivers make decision to enter the market based on the average market

(rather than platform) wage rate, the platforms soon discover lowering the payment to

drivers to cut spending is better than raising it to attract more drivers. While the strat-

egy makes senses individually, collectively it causes the collapse of the total supply and

eventually the ruin of the business for all. This phenomenon may be interpreted as the

tragedy of the commons, in which drivers are the ”commons” shared and over-exploited

by the platforms.

• While the minimum wage policy has a rather minor impact on the single-homing duopoly,

it significantly improves the surplus for both passengers and drivers in the multi-homing

duopoly, and does so without compromising platform profits. In essence, a suitable wage

floor could resolve the pricing dilemma in the unregulated market, and thereby both

platforms are able to attract a sufficient number of drivers to maintain a reasonable LOS.

The minimum wage policy also tends to discourage pooling rides regardless of the supply

mode, albeit the impact observed in our experiments is small.
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• The matching efficiency seems a much more important asset in the competition compared

to the pooling efficiency. In general, the platform with a higher matching efficiency ends

up making more money and providing better LOS. Yet, the performance of the platform

with a lower matching efficiency suffers much more in the multi-homing duopoly than in

the single-homing duopoly.

• Offering both solo and pooling rides is a winning strategy in the monopoly and the single-

homing duopoly. In the multi-homing duopoly, however, this winning strategy no longer

holds a clear advantage. More surprisingly, having a platform only offer pooling rides

in the multi-homing duopoly may improve the collective market share and profit. This

counter-intuitive phenomenon can be attributed to the de-escalation of the pricing war

achieved by service specialization.

In this chapter, we only consider two extreme supply modes: either all drivers are multi-homing,

or none is. In reality, it is more likely that only a fraction of drivers are multi-homing. In Chicago,

for instance, this fraction is about one quarter. Relaxing the definition multi-homing to allow drivers

to join either one or both platforms hence constitutes an interesting direction for future research.

Such a model not only moves one step closer to reality, but could also reveal a range of phenomena

that have not arisen in the extreme cases studied herein. Another limitation of the present analysis

has to do with the Nested Logit models used to represent passenger and driver choices. Despite

their critical roles, these choice models have not been properly calibrated to match empirical data.

Finally, the present study has left out other policies that have been discussed frequently in the

literature and by policy makers, such as fleet cap and congestion tax. An interesting direction for

future research is to design an “optimal” policy portfolio, similar to the joint implementation of

minimum wage and congestion tax proposed in Chapter 5.
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6.5. Appendix

6.5.1. Notations

Table 6.1. List of notations

Variable Description Unit

f js (f jp ) trip fare of solo (pooling) rides of platform j $
ws (wp) solo (pooling) passenger wait time of platform j hr

τs (τp) travel time of solo (pooling) rides hr

ηj compensation rate of platform j $/hr

ej driver’s earning rate of platform j $/hr

e minimum wage $/hr

Qjs (Qjp) solo (pooling) demand rate of platform j /hr/sqmi

N j fleet size (number of drivers in operation) of platform j /sqmi

D0 total demand rate /hr/sqmi

S0 potential supply /sqmi

θc(θ
r
c) Mode choice uncertainty (among ride-hail options) /$

θd(θ
r
d) Market entry uncertainty (among ride-hail platforms) /$

c0 congestion cost of each ride-hail vehicle $
ujs (ujp) generalized cost of solo (pooling) rides of platform j $
ut generalized cost of transit $
kj coefficient of matching efficiency of platform j /sqmi

bj coefficient of pooling efficiency of platform j

6.5.2. Parameter setting

Table 6.2. Representative market conditions.

Name Total demand D0 Potential supply S0 Wage floor e

(/hr/sqmi) (/sqmi) ($/hr)

Low-low 500 200 18

Low-high 500 800 9

High-low 2000 200 26

High-high 2000 800 18
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Part 3

Spatial market with pooling
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CHAPTER 7

A two-node model

In this chapter, we set out to consider a spatial ride-hail market. We start from a simple case:

a city consists of two zones, namely, a central business district (CBD) and a peripheral area (PA),

as shown in Figure 7.1(a). This simplification allows us to examine the spatial distribution of ride-

hail vehicles and their congestion impact without modeling the sophisticated routing behaviors of

drivers, which will be the main focus of the next chapter. For easy reference, we shall index PA and

CBD as 0 and 1, and denote the set of zone indices as I := {0, 1}. We abstract the city as a network

of two zones connected by arterial roads, as illustrated Figure 7.1(b). Accordingly, four types of

trips could take place in such a city: central trips that start and end within CBD, peripheral trips

that start and end within PA, inbound trips that start in PA and end in CBD, and outbound trips

that start in CBD and end in PA.

Assume that, for each market segment, the origins and destinations of all trips are uniformly

distributed in the respective zone. Also, we assume a fixed portion of travelers drive alone, and

the rest choose between transit and ride-hail service provided by a single TNC platform (platform

hereafter) that monopolizes the market. Same as the analysis in previous chapters, we consider the

platform offers both solo and pooling rides at different prices and each pooling ride is shared by

two passengers.

In what follows, we first proposes a congestion model that links the trip duration and vehicle

relocation time to ride-hail vehicle flows, and then adjust the spatial matching model developed in

Chapter 3 to adapt to the spatial setting. After that, we will establish the market equilibrium and

investigate the platform’s pricing strategy in response to different congestion mitigation schemes.

All notations used in this chapter are summarized in Table 7.1.
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Figure 7.1. Illustration of the spatial ride-hail market.

7.1. Congestion model

Let dlij , l ∈ {s, p} denote the average trip distance for mode m from zone i to zone j. Similarly, we

define the average relocation distance as drij . The travel times are then given as

τ sij = dsij/vij + εs, i, j ∈ I, (7.1a)

τpij = dpij/vij + εp, i, j ∈ I, (7.1b)

τ rij = drij/vij , i, j ∈ I; i 6= j, (7.1c)

where εs and εp are additional travel time independent of trip distance and the matching process

(e.g., the time spent in finding the TNC vehicle at the pickup location and the drop-off time). We

assume dpij > dsij because of the detour required to visit two destinations in pooling rides. While the

en-route detour dpij − dsij is expected to vary with pooling demand [Ke et al., 2021], we have shown

the market equilibrium is generally insensitive to the impact of such dependency (see Section 4.8.3).
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Hence, we shall treat dmij as exogenous and calibrate them from empirical data. Similarly, εp and

εs (with εp > εs) are also estimated from data.

We use Greenshields’ fundamental diagram [Greenshields et al., 1935] and BPR function [US

Bureau of Public Roads, 1964] to represent the dependence of speed on traffic within and between

zones, respectively. Let vf be the free-flow speed, ρjam
i be the jam density in zone i, and Cp be an

aggregate road capacity between the two zones. The intra- and inter-zonal speeds are given by

Intra-zone: vii = vf

(
1− ρi + ρ̄i

ρjam
i

)
, i ∈ I, (7.2a)

Inter-zone: vij = vf

[
1 + 0.15

(
zij + z̄ij
Cp

)4
]−1

, i, j ∈ I; i 6= j, (7.2b)

where ρi (ρ̄i) is the ride-hail vehicle (background) density in zone i and zij (z̄ij) the ride-hail

(background) vehicle flow from zone i to zone j. Note that all background traffic is produced by

private motorists (i.e., those who do not choose of the three public modes). Using historical traffic

and TNC data, we may calibrate the parameters used in Eq. (7.2) and estimate the magnitude of

background traffic (i.e., ρ̄i and z̄ij). More details are included in Chapter 10.

7.2. Adjusted matching model

Since each zone in the two-node model typically covers a large area, we assume waiting passengers

are only matched vehicles in the same zone and passengers who shared one pooling trip must have

the same origin and destination zone. Accordingly, the wait times of a passenger traveling from

zone i to zone j are estimated as follows:

wsij =
δ

2vii

√
Πeff
i

kΛi
, i, j ∈ I, (7.3a)

wpij ' w
s
ij

√
κ+ 4bΠp

ij

2κ+ 4bΠp
ij

+
δ

2vii

1√
bΠp

ij

. i, j ∈ I, (7.3b)
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Here, we use wpij to represent the sum of first pickup time and pick detour defined in Chapter 3

for the simplicity of notations. Also, since no variable is subscripted with j in Eq. (7.3a), we have

wsii = wsij for i, j ∈ I; i 6= j. Note that the effective waiting passenger density Πeff
i and vacant

vehicle density Λi are indexed by origin zone i whereas the pooling waiting passenger density Πp
ij

is indexed by the origin-destination (OD) pair. This is due to the assumption that the pooling

trips are only assigned to passengers with same OD pair. In contrast, the competition for vacant

vehicles is among all passengers in the same zone.

7.3. Market equilibrium

Same with the aggregate model (see Chapter 4), we assume the passenger mode choice depends on

the generalized cost of solo and pooling trips, as well as transit. The costs are defined in the same

way as Eq. (4.1) except that now the travel times are no longer exogenous but given by Eq. (7.1).

Yet, the transit travel time is still set to be fixed and thus the generalized cost of transit is a

constant.

The key difference of a spatial model from an aggregate model is the inter-zonal movement of

vehicles. At equilibrium, drivers associated with each zone should operate at the same earning rate,

meanwhile the vehicle inflow must equal the vehicle outflow for each zone. These two conditions

dictate the vehicle flows between the two zones. At a stationary state, the net loss of occupied

vehicle flow of zone i is given by

Xi =

(
Qsij +

1

2
Qpij

)
−
(
Qsji +

1

2
Qpji

)
, i, j ∈ I; i 6= j, (7.4)

where Qlij denotes the demand for mode l ∈ {s, p} from zone i to zone j. Hence, a relocation

vehicle flow X+
i = max(0, Xi) is needed to make up the loss such loss if necessary and is considered

as part of vehicle supply of zone i.



148

With the same definition of demand and supply models in Chapter 4, the equilibrium of two-

node model is characterized by the following system of equations:

Mode choice: Qmij = D0
ijq(u

m
ij ;u

−m
ij ), i, j ∈ I, (7.5a)

Fleet size: N = S0g(e), (7.5b)

Flow conservation: Ni = Vi +
∑
j′∈I

Qsij′τ
s
ij′ +

1

2

∑
j′∈I

Qpij′τ
p
ij′ +X+

i τ
r
ji, i, j ∈ I; i 6= j, (7.5c)

Xi =

(
Qsij +

1

2
Qpij

)
−
(
Qsji +

1

2
Qpji

)
, i, j ∈ I; i 6= j, (7.5d)

Passenger density: Πeff
i =

1

Ai

∑
j∈I

(
Qsijw

s
ij +

1

2
Qpijw

p
ij

)
, i ∈ I, (7.5e)

Πp
ij =

1

Ai
Qpijw

p
ij , i, j ∈ I, (7.5f)

Vehicle density: Λi =
1

Ai
Vi, i ∈ I, (7.5g)

Wait time: wsij =
δ

2vii

√
Πeff
i

kΛi
, i, j ∈ I, (7.5h)

wpij = wsij

√
κ+ 4bΠp

ij

2κ+ 4bΠp
ij

+
δ

2vii

1√
bΠp

ij

, i, j ∈ I, (7.5i)

Traffic speed: vii = vf

[
1− 1

ρjam
i Ai

(
Qsiiτ

s
ii +

1

2
Qpiiτ

p
ii + Vi + Q̄iiτ

s
ii

)]
, i ∈ I, (7.5j)

vij = vf

1 + 0.15

(
Qsij + 1

2Q
p
ij +X+

j + Q̄ij

Cp

)4
−1

, i, j ∈ I; i 6= j, (7.5k)

where Ai denotes the area of zone i and Q̄ij denote the background travel demand.

Eq.(7.5) shares the same structure as Eq.(4.5) for the aggregate market equilibrium, except

for the additional flow conservation for each zone (Eq. (7.5d)) and the equations of traffic speed

(Eqs. (7.5j) and (7.5k)). Specifically, Eqs. (7.5j) and (7.5k) rewrite Eqs. (7.2a) and (7.2b) by

specifying vehicle density and flow. For the intra-zonal speed of zone i, the vehicle time consists

of four parts: Qsiiτ
s
ii (contributed by solo rides in zone i), 0.5Qpiiτ

p
ii (contributed by pooling rides in

zone i), Vi (contributed by vacant ride-hail vehicles), and Q̄iiτ
s
ii (contributed by background trips).

Here, we assume the average travel time of background traffic is identical to that of solo rides.
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Also, since the analysis period is normalized to a unit time, the total vehicle time divided by zone

area Ai yields the vehicle density in the zone. Likewise, the cross-zone vehicle flow from i to j

consists of the following: Qsij (solo trip flows from i to j), 0.5Qpij (pooling trip flows from i to j),

X+
j (relocation trip flow from i to j), and Q̄ij (background trip flow).

Due to the similar structure, it is easy to show Eq. (7.5) can be reduced to a fixed-point system

x = F (x), where x = (ws,wp,v) ∈ R12. The proof of existence also follows Proposition 2 since the

newly added variable v naturally satisfies the boundedness condition (vij ∈ [0, vf ]).

7.4. Platform pricing without regulations

Compared to the pricing problem in an aggregate market, the decision variables expand to be the

trip fares between each OD pair for each mode f lij , l ∈ {s, p}, along with the compensation rate η.

For a profit-maximizing platform, the optimal pricing problem can be formulated as

max
fs,fp,η

R =
1∑
iAi

[
fTs Qs + fTp Qp − η

(
τTs Qs +

1

2
τTp Qp

)]
. (7.6a)

If the platform aims to maximize social welfare, the objective function turns to be

W =
1∑
iAi

(
DT

0 ū + fTs Qs + fTp Qp −
∫ N

0
g−1(n/S0)dn− νQ̄T (τs − τ0) + T

)
. (7.7)

Recall that, in Chapters 5 and 5, we use a constant c0 to represent the congestion externality

of each ride-hail vehicle. Here, we explicitly model the congestion effect by the term νQ̄T (τs− τ0),

which computes the total loss of background travelers due to the operation of ride-hail service.

Specifically, ν denotes the value of time and τ0 is the travel time experienced by private motorists

if the ride-hail service is not operated in the city.

The last term T in Eq. (7.7) refers to the tax revenue from the congestion policies, when

applicable.

Above two unconstrained optimization problem can be solved in the same way as that proposed

in Chapter 5, i.e., differentiate the equilibrium at the current solution, use the partials to construct
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the gradient, then update the solution via gradient ascent. However, there are issues the original

solution method. First, the equation of relocation flow Eq. (7.5d) is not smooth, thus the gradient

tends to have a considerable jump when Xi approaches to zero. Second, as the number of decision

variables increases, a uniform moving step may not be appropriate given that the gradient with

respect to each variable could vary a lot.

To deal with the first problem, we introduce a SoftPlus function to approximate X+
i , i.e.,

X+
i ' X̂

+
i = ln

(
1 + eXi

)
. (7.8)

It is easy to see that X̂+
i → 0 as Xi → −∞ while X̂+

i → Xi as Xi → +∞. The evaluation of

X̂+
i may become numerically unstable when the magnitude of X+

i is too large. This problem is

resolved by introducing an adjustable scalar γ to scale down X+
i whenever necessary, i.e.,

X̂+
i = γ ln(1 + eXi/γ). (7.9)

In the solution procedure, γ is adjusted according to Xi such that Xi/γ ≤ 10.

To stabilize and fasten the solution procedure, we implement Adam [Kingma and Ba, 2014],

an adaptive optimization algorithm that makes use of moment information to adaptively scale the

“learning rate” for each decision variable. With ∇R(n) obtained in the nth iteration, the Adam

algorithm updates the current solution as follows:

m
(n+1)
1 = β1m

(n)
1 + (1− β1)∇R(n), (7.10a)

m
(n+1)
2 = β2m

(n)
2 + (1− β2)

(
∇R(n)

)2
, (7.10b)

m̂1 =
m

(n+1)
1

1− βn1
, (7.10c)

m̂2 =
m

(n+1)
2

1− βn2
, (7.10d)

y(n+1) = y(n) + α
m̂1√
m̂2 + ε

, (7.10e)
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where ∇R(n) is the gradient with respect to the solution in nth iteration, β1 and β2 are exponential

decay rates for the moment estimates m1 and m2, (·)2 is an element-wise square operator, α is

the step size, and ε is a scalar to avoid zero denominator. In words, Adam maintains m1 and m2

as exponential moving averages of ∇R and (∇R)2, respectively (Eqs. (7.10a) and (7.10b)). The

two moment estimates are then rescaled (Eqs. (7.10c) and (7.10d)) to obtain the next solution

(Eq. (7.10e)). In this study, we set β1 and β2 as 0.9 and 0.999, respectively, and ε = 10−8,

following the common practice. The step size α, however, is problem specific and has to be set in

a trial-and-error fashion to optimize performance.

Finally, to avoid being trapped at a “bad” solution, the solution procedure is usually repeated

with multiple initial points, as we did in the previous analysis.

7.5. Platform pricing under regulations

In this section, we discuss three congestion mitigation policies and explain how to model their

interactions with the platform’s operation. The first two policies impose trip-based or cordon-

based congestion fees, whereas the third implements a cruising cap [Schaller, 2017a, NYC Taxi and

Limousine Commission, 2019].

7.5.1. Trip-based congestion fee

In order to encourage pooling and transit, major U.S. cities like New York City and Chicago have

started to charge a congestion fee on TNC trips starting and/or ending in a designated zone during

peak hours. The charge is set higher for solo rides than pooling rides. To simplify the analysis, we

assume a congestion fee c is charged on solo rides only and is internalized into the trip fare of each

solo ride1. Hence, the generalized cost for a solo ride becomes

usij = f sij + ν(wsi + τ sij) + csij , i, j ∈ I, (7.11)

1Passing such fees to customers is a common practice among TNC platforms, see e.g., https://www.uber.com/b
log/new-york-city/congestion-surcharge/ (Accessed: 2020-09-28).

https://www.uber.com/blog/new-york-city/congestion-surcharge/
https://www.uber.com/blog/new-york-city/congestion-surcharge/
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where csij = 0 if i = 0, j = 0 (i.e., when the trip both starts and ends in the PA zone), otherwise it

equals c.

Since the congestion pricing has no impact on drivers’ revenue, the supply model does not

change. Besides, the tax revenue is T =
∑

ij∈I cijQ
s
ij .

7.5.2. Cordon-based congestion fee

A commonly used congestion pricing strategy, though rarely implemented in ride-hail, is the cordon-

based congestion fee. Under this policy, each vehicle must pay a toll equal to c if (i) it relocates

from PA to CBD without carrying any passengers, or (ii) it delivers a solo trip from PA to CBD.

For Case (ii), c is passed on to the trip fare. Hence, csij in Eq. (7.11) becomes c when i = 0, j = 1

and 0 otherwise. For Case (i), the congestion fee becomes part of drivers’ operation cost. Therefore,

the expected earning of a driver becomes

e =
1

Ni

η∑
j∈I

(
Qsijτ

s
ij +

1

2
Qpijτ

p
ij

)
− cdiX+

i

 , i ∈ I, (7.12)

where cdi = c if i = 1, and 0 otherwise. Accordingly, the tax revenue becomes T =
∑

ij∈I c
s
ijQ

s
ij +∑

i∈I c
d
iX

+
i .

7.5.3. Cruising cap

Vacant vehicle cruising is considered an important contributor to the worsening traffic congestion

in city centers [e.g., Erhardt et al., 2019, Beojone and Geroliminis, 2021]. In New York City, the

total vacant vehicle hours had grown by 81% from 2013 to 2017, the majority of which is attributed

to the operation of TNC vehicles [Schaller, 2017a]. In an attempt to curtail further growth, the

city proposed a regulation in 2019 that requires any TNC platform to ensure its fleet spend no

more than 31% of total operating time without passenger. However, the policy was challenged in

the court and later revoked by the state judge [Guse, 2019].
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For the purpose of comparison, we implement a version of the cruising cap policy as follows.

We first calculate the vehicle utilization rate in CBD as

µ1 = 1− V1

V1 +Qs11τ
p
11 + 1

2Q
p
11τ

p
11

. (7.13)

Let µ be the lower bound on the utilization rate. Thus, the cruising cap is given by 1− µ.

Since the cruising cap imposes a constraint on the equilibrium variables, the platform’s pricing

problem becomes a constrained optimization problem. The regulatory constraint can be written as

h(y) = µ− µ1(y) ≤ 0 and the resulting problem can be solved by a dual gradient ascent algorithm

as follows:

y(j+1) = arg max
y
L(λ(j),y) = arg max

y
R(y)− λh(y), (7.14)

λ(j+1) = max
(

0, λ(j) + ρh(y(j+1))
)
, (7.15)

where λ represents the Lagrangian multipliers and ρ is a constant penalty parameter. In each

iteration, the subproblem Eq. (7.14) is first solved using the method discussed above. Then, λ is

updated using Eq. (7.15).

7.6. Numerical experiments

We continue to use the empirical data collected in the City of Chicago for the numerical experi-

ments. In Figure 7.2, the orange area shows the identified CBD zone, which covers 29 census tracts

and aligns with the congestion zone defined by the city’s recent congestion pricing policy 2. The

remaining area is then classified as the PA zone. Based on this construction, the CBD zone has

an area of 6.4 square mile (sqmi) and the PA zone’s area is about 22.3 sqmi. The default values of

parameters are reported in Table 7.2, while details about the parameter estimation are included in

Section 10.2.

2See https://www.chicago.gov/city/en/depts/bacp/supp info/city of chicago congestion pricing.html.

https://www.chicago.gov/city/en/depts/bacp/supp_info/city_of_chicago_congestion_pricing.html
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Figure 7.2. Study area.

Similar to the analysis of aggregate market, we characterize passenger’s mode choice with a

Multinomial Logit (MNL) model and assume driver’s reservation rate follows a uniform distribution.

Differently, in the current experiment, we have the reservation rate varies over a range [e0, e0].

Accordingly, Eq. (7.5b) can be rewritten as

(e0 − e0)N2 + e0S0N − eS0 = 0, (7.16)

from which N =
∑

i∈I Ni can be easily solved as the positive root. Finally, the driver’s opportunity

cost defined in Eq. (5.10) is reduced to

∫ N

0
G−1(n/S0)dn =

ē0 − e0

2S0
N2 + e0N. (7.17)

7.6.1. Unregulated market

We first compare the system performance under profit- and welfare-maximization pricing in an

unregulated market. For simplicity, they are referred to as monopoly (MO) and social optimum

(SO) pricing, respectively. For MO pricing, we consider another case where the platform fails to



155

anticipate the impact of its operation on traffic congestion. That is, it optimizes the pricing policy

based on a default, flow-independent speed. However, the actual effect of this “sub-optimal” pricing

policy will be evaluated according to a market equilibrium that does characterize traffic congestion.

We are particularly interested in the following question: should the platform “care” about traffic

congestion even if it is completely motivated by self-interest (i.e., profit)?

Figure 7.3 illustrates the overall ride-hail market share and supply level in the three studied

scenarios: “w/ traffic” as MO pricing considering traffic congestion, “w/o traffic” as MO pricing

without considering traffic congestion, and “SO” as SO pricing considering traffic congestion. The

market share is defined as the percentage of the potential passengers (
∑

i,j∈I D
0
ij) who opt for

ride-hail service, whereas the supply level is the percentage of potential drivers (S0) who join the

workforce of the platform. As expected, when traffic congestion is ignored, the platform tends to

hire more drivers and serves more trips. In contrast, at system optimum, the ride-hail market is

much smaller in both demand and supply. The drop in vehicle supply is especially steep: almost

half of the drivers would leave the market under an SO pricing regime.

Figure 7.4 plots the ride-hail market share by OD pair and mode. First, under no circumstance

is pooling observed in the peripheral trips. Pooling within the PA zone is unattractive because the

demand is low and scattered. The former leads to long wait time, while the latter results in long en-

route detour. Second, the share is the lowest for central trips, thanks to a much more competitive

transit service in this area. This is especially true under SO pricing. In this case, almost no central

trips are served by ride-hail vehicles. Evidently, given the quality of transit services available in

Chicago downtown, the net utility generated by switching from transit to ride-hail is barely enough

to offset the negative traffic impact. Third, for inter-zonal markets, ride-hail performs much better,

in some case capturing well over 50% of the market share (e.g., for outbound trips). Moreover,

the majority of these inter-zonal trips are pooled. On the other hand, the pooling ratio is lower

under MO pricing without traffic, especially for trips originated in CBD. Since solo rides require

more vehicle time, failing to anticipate the traffic impact is likely to inadvertently worsen traffic
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congestion in CBD. Finally, the SO pricing strongly encourages pooling. In fact, in both inter-zonal

market segments, nearly all trips are pooled.

Figure 7.5 reports the four components of social welfare under the three pricing policies. As

expected, MO pricing with traffic delivers the highest profit to the platform, while the profit

generated by SO pricing is the lowest. Passengers and drivers both benefit the most from MO

pricing without traffic, because the platform tends to hire more drivers in this case, which in turn

improves the ride-hail LOS. SO pricing, on the other hand, minimizes the traffic impact of ride-hail

at the expense of other stakeholders. The biggest losers are the drivers, whose surplus is reduced

to but a fraction of what they would receive under MO pricing.

As illustrated in Figure 7.5, in all scenarios, traffic congestion plays the major role in the

social welfare: its value is comparable to that of the other three combined in all three cases. In
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particular, for MO pricing without traffic, the sum of net benefits gained by the platform, passengers

and drivers is not nearly enough to make up for the loss due to worsened congestion.

Figure 7.6 compares travel speed in the three scenarios. It shows the operation of ride-hail

service lowers the travel speed by up to 5 mph. Although the overall speed reduction seems

modest, the cumulative effect is nonetheless considerable because of the large background traffic

(Q̄ in Eq. (7.7)). Figure 7.6 also indicates that the largest reduction occurs inside CBD, which

agrees with recent empirical findings [Erhardt et al., 2019, Diao et al., 2021]. Compared to MO

pricing, SO pricing has the most modest impact on traffic speed. It thus causes a significantly

smaller congestion effect in social welfare (see Figure 7.5).

Figure 7.7 plots both occupied and vacant VMT inside each zone and between zones. It suggests

that a significant amount of vacant VMT in both CBD and PA. This is expected, as a certain amount

of vacant vehicles is needed in each zone to maintain a reasonable LOS. On the other hand, the

vacant VMT between zones is due to vehicle relocation. It is interesting to see that relocation trips

are only observed in the case of MO pricing without traffic. This phenomenon indicates that the

pricing policy fails to balance the demand and supply across zones. Specifically, by overlooking

congestion, the platform attracts more drivers into CBD than what the demand in the zone could

adequately consume. Consequently, at equilibrium, some drivers would relocate to PA, suffering a

dead-weight loss in the process. This problem is rooted in the sub-optimal nature of MO pricing

without traffic.
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Note that, in Figure 7.7, the occupied VMT inside CBD and PA only accounts for the intra-

zonal trips. Hence, when computing the vehicle occupancy rate associated with each zone market,

one need to include the occupied VMT of inter-zonal trips as well. Consequently, the occupancy

rate in the CBD zone is greater than the PA zone, though this is not clearly illustrated in the

figure. Overall, SO pricing produces the lowest total vacant VMT whereas MO pricing without

traffic leads to the highest. The difference is more significant in CBD. As shown in Figure 7.4, a

profit-maximization platform (i.e., MO pricing) tends to serve more trips originated from CBD. It

thus requires more vacant vehicle time inside CBD to support a desired LOS.

7.6.2. Regulated market

We proceed to investigate the impact of the three congestion mitigation policies discussed in Sec-

tion 7.5. For both trip-based and cordon-based policies, the congestion fee varies from $0.2 to $2.

The cruising cap ranges between 0.3 and 0.6, which is equivalent to a minimum occupancy between

0.4 and 0.7. The results without regulations are also included to benchmark the performance of

tested policies. Specifically, the result of MO pricing with traffic represents the status quo, while

that of SO pricing represents the “desirable outcome”.

7.6.2.1. Market share. Figure 7.8 shows the total market share of ride-hail service rises under

the two congestion pricing policies, though the growth is rather mild (less than 2%). With the

cruising cap, the market share first increases in parallel with the congestion pricing policies, but
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begins to drop precipitately when the minimum occupancy exceeds 0.55. However, it remains well

above the level achieved by SO pricing, even when a minimum occupancy of 0.7 is imposed.

cruise-cap

MO

SO

Figure 7.8. Ride-hail market share

While the total market share is relatively stable, the shares between different OD pairs vary

a lot with service mode and congestion mitigation policies, as reported in Figure 7.9. The share

of the peripheral trips hardly changes because these trips are not hit by any of the policies. For

all other three O-D pairs, a large portion of solo rides are replaced by pooling rides under the

trip-based policy. The cordon-based policy, however, only produces a similar effect on inbound

trips as its trip-based counterpart. It does cause a small number of trips to switch from solo to

pooling for outbound trips, but has almost no impact at all on central trips. These findings are

expected, because the trip-based congestion fee targets solo passengers who travel to, from and in

CBD whereas the cordon-based fee only affects inbound travelers. The performance of the cruising

cap is peculiar. The regulation forces the platform to sacrifice its market share in the inter-zonal

trips in exchange for an uptick in both solo and pooling rides in CBD. This is not a desired outcome

because the extra trips it attracts could have used a descent transit service.

7.6.2.2. Level of service and congestion relief. Figures 7.10 and 7.11 plot passenger wait time

and vacant vehicle density in PA and CBD, respectively. The wait time is an average weighted

by demand for each mode and OD pair. The most intriguing finding here is that passengers have

to endure a much longer wait time when a cruising cap is imposed. Those traveling from CBD

see their wait times jump from around six minutes to well above 10 minutes as the minimum
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Figure 7.9. Market share by service mode and OD pair.

occupancy grows from 0.4 to 0.7. The increase in wait time is accompanied by a decline in vacant

vehicle density, which is steeper as the cap becomes more restrictive (see Figure 7.11).

cruise-cap
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SO

Figure 7.10. Passenger wait time
by zone.
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Figure 7.11. Vacant vehicle den-
sity by zone.

Interestingly, the average wait time remains almost intact under both congestion pricing policies.

The vacant vehicle density, however, had a more noticeable dip, especially in CBD. At first glance,

this result is somewhat puzzling, because one would expect a lower vacant vehicle density to prolong

waiting. It also appears to contradict with Li et al. [2020], who find trip-based fee hurts the LOS

in the peripheral area. We believe the discrepancy can be explained by the availability of pooling
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in our model. As revealed in Figure 7.9, more inbound passengers end up choosing to pool, which

helps maintain a sufficient vehicle supply in PA. The lower vacant vehicle density in CBD under

the two congestion pricing policies are also attributed to a greater share of pooling rides.

cruise-cap

MO

SO

Figure 7.12. Travel speed by OD pair.

Another observation from Figure 7.11 is how little the two congestion pricing policies had

done to move vacant vehicle density towards the SO level. This is true in both PA and CBD,

although the gap is much larger in the latter. Thus, these policies may not be effective instruments

to reduce vacant vehicle cruising. As suggested in Figures 7.12 and 7.13, their contribution to

traffic relief is also minor. Under both trip- and cordon-based pricing policies, the improvement

in travel speed across all market segments is barely visible. Similarly, vacant VMT were little

affected, though occupied VMT were reduced much more thanks to the greater reliance on pooling.

As for the cruising cap, it achieves vacant VMT at the SO level when the minimum occupancy

requirement reaches 0.7. Yet, the occupied VMT is still far away from that at SO. Furthermore,

the reduced vacant VMT only helps improve the inter-zonal travel speed. As shown in Figures 7.12,

the congestion in CBD becomes even worse.

7.6.2.3. Fare and compensation. Figure 7.14 reveals how the platform’s pricing strategy varies

with the congestion mitigation policies3. We can see that the fares under the two congestion

pricing policies are quite similar to those under MO pricing. Hence, the shift in demand is largely

caused by the congestion fee directly charged on passengers. In contrast, to meet the cruising

cap requirement, the platform has to more actively manipulate the price. Notably, it aggressively

3The pooling trip fare for peripheral trips is not plot because no trip is pooled.
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lowers the price for both solo and pooling trips in CBD to make them more attractive such that

the occupancy rate could be sustained at the required level. Meanwhile, it increases the fare for

inbound trips—especially the solo ones—and reduces that for outbound trips. This maneuver is

meant to discourage inbound travel and encourage outbound travel. Intuitively, moving vehicles

out of CBD on occupied trips could help reduce vehicle cruising in CBD and thus release the

pressure of cruising cap. However, this strategy does not attract more demand (see Figure 7.9),

due primarily to the deteriorating LOS (see Figure 7.10).

Figures 7.15 and 7.16 plot the compensation rate paid to drivers and the vehicle supply as-

sociated with each zone, respectively. It is clear that drivers are paid much less at SO, which is

the direct cause of a smaller vehicle supply in the market. While the driver’s earning is reduced

slightly by the two congestion pricing policies, it is still much higher than the SO level. Under

the cruising cap, however, the earning plunges. Despite this suffering, the cruising cap does not

effectively control vehicle supply in CBD except when the cap is highly restrictive. A mild cap

actually induces more vehicles to enter CBD because the platform seeks to serve more trips there

under the circumstance (see Figure 7.9). In contrast, under SO pricing, almost all trips inside CBD

are served by transit. As indicated in Figure 7.14, such an outcome requires the platform to raise

price on both solo and pooling rides, while cutting the compensation to drivers. However, none of

the three mitigation policies could achieve such an outcome, not even close.
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Figure 7.16. Vehicle supply by zone.

7.6.2.4. Discussions. In this section, we further discuss the performance of the three tested

policies by comparing their welfare effects. As seen in Figure 7.17(a), both trip- and cordon-based

pricing policies yield a net gain in social welfare, whereas the cruising cap leads to a net loss.

Although the trip-based fee stands out as a clear winner, its overall welfare outcome still falls far

behind that under SO pricing.
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Figure 7.17. Social welfare by part.

A closer look at different welfare components reveals that the two congestion pricing policies

give ride-hail passengers a modest benefit at the expense of drivers and the platform (see Figures

7.17(b)-(d)). The cruising cap, however, hurts all three stakeholders. With the most restrictive

cap, the driver surplus decreases almost 40% and the platform loses over 20% of its profit. Indeed,

in this case the platform earns even less than under SO pricing.

At 2$/ride, the trip-based fee realizes about a quarter of the reduction in the congestion cost

achieved by SO pricing, more than doubling the improvement obtained by the cordon-based fee

(see Figure 7.17(e)). This finding seems surprising at first glance given the small improvement in

travel speed (see Figure 7.12). Yet, it is important to note that the traffic generated by TNC rides

is a rather small fraction of the total vehicular traffic (around 5%). Hence, whatever gains in travel

speed would be magnified by a large number of background trips. Indeed, even the SO pricing can

only increase the average speed by 2 mph. Despite its seemingly more dramatic impact on vacant

VMT and travel speed, the cruising cap policy did not bring about an overwhelming congestion

relief. Even at the extreme (minimum occupancy = 0.7), its congestion savings is still well below
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50% of what is obtained by SO pricing. With milder restrictions on vehicle occupancy rate (below

0.65), the cruising cap actually trails behind the trip-based policy. This seemingly counter-intuitive

result is likely due to the negative impact of cruising cap on travel speed in CBD (see Figure 7.12).

Since most trips are concentrated in the city center, each unit of decrease in average speed in CBD

inflicts a large external cost. Accordingly, the extra cost induced by the more intense congestion

in CBD offsets the savings from PA and inter-zonal trips.

Finally, the trip-based policy is good at generating tax revenues. At every congestion fee tested,

it collects more than twice as much revenue as the cordon-based policy does (see Figure 7.17(f)).

This finding is also expected as trips between more OD pairs are charged under trip-based pricing

compared to cordon-based policy. Interestingly, for both policies, the tax revenue is maximized

when the congestion fee is around $1.25.

To summarize, trip-based pricing seems to be the best of the three regulations considered herein.

It improves social welfare, benefits passengers, reduces the congestion cost and generates a substan-

tial amount of tax revenues. Curiously, drivers and the platform are always losers, regardless of

which congestion mitigation policies is adopted. Their losses are the smallest under cordon-based

pricing. On the other hand, the cruising cap policy delivers the worst outcomes. Even though it

improves traffic speed outside CBD, the policy does not benefit anybody or generate any tax revenue.

Furthermore, the cruising cap hits drivers and the platform much harder than the other two, espe-

cially when a highly restrictive cap is implemented. As a result, the system is worse off in terms of

social welfare, compared to the unregulated benchmark.

7.7. Summary

In this chapter, we analyzed the impact of three congestion mitigation policies on an idealized

two-node model. Similar to the analysis of the aggregate ride-hail market, we assume a single

platform serving both solo and pooling trips and passengers choose among the two ride-hail services

and transit. The market equilibrium is build upon two sub-models. One is the matching model
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extended from what is presented in Chapter 3 to account for the spatial heterogeneity in demand

pattern and restriction in matching. The other is an aggregate traffic model, which describe the

congestion impact of ride-hail vehicles on all travelers in the urban transport system. Based on

the equilibrium model, we formulate the platform’s optimal pricing problem and propose a solution

algorithm to address the additional complexity due to the spatial equilibrium model. Main findings

from the numerical experiments are summarized as follows:

• TNC operations have a considerable impact on traffic congestion, even though they con-

tribute a rather small fraction (below 5%) to the the total traffic. As a result, failing to

anticipate congestion in its pricing decisions leads to sub-optimal decisions that not only

worsen traffic congestion by inducing extra supply, but also hurt the platform’s profitabil-

ity.

• Welfare-maximization pricing strongly encourages pooling in all but peripheral trips. In

the city center, it raises the price on both solo and pooling rides in favor of transit. This

is because the net utility generated by switching from transit to TNC in the city center,

where the transit service has a high LOS, is hardly enough to offset the negative traffic

impact. In contrast, profit-maximization pricing tends to serve more central trips that

pool less. To do so, more vehicles must be induced to the city center, which exacerbates

overall traffic conditions.

• The trip- and cordon-based congestion mitigation policies substantially reduce the extra

congestion cost caused by unregulated TNC operations, even though the positive impact

on average travel speeds is barely discernible. They also promote pooling, which helps

cut the occupied vehicle miles traveled. While the cruising cap imposed in the city center

effectively brings down the total vacant vehicle miles traveled, it does not offer an over-

whelming congestion relief. Paradoxically, the policy could worsen traffic conditions in the

city center, where most trips originate, as it pushes the platform to serve more trips there.
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• Of the three policies considered herein, the trip-based policy delivers the best overall

performance. It lifts the system’s social welfare while keeping the LOS of ride-hail almost

intact. Although it slightly disadvantage the platform and drivers, the benefits it creates

for all travelers, in the form of congestion relief, consumer surplus and tax revenue, more

than make up for this loss. The cordon-based policy demonstrates similar behaviors as

the trip-based policy, but trails behind in nearly all metrics. The cruising cap policy is a

surprising disappointment. While the private motorists benefit from the extra congestion

relief the policy promises to deliver, the other stakeholders together suffer a much greater

loss.

In this study, we simplify the city as a two-node model since most congestion mitigation policies

in practice classify the congestion region in the same way. To better analyze the spatial variations of

demand and supply, our next step is to construct a more general network model. Such an extension

would complicate the modeling of vehicle relocation behaviors, whether it is driven by drivers’

self-interest or coordinated by the platform. The following chapter aims to tackle precisely this

problem. Once a network equilibrium model is established, we could set out to design congestion

mitigation policies with a more flexible structure (e.g., allow the congestion fee to vary spatially

and/or temporally).
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7.8. Appendix

7.8.1. Notations

Table 7.1. List of notations

Variable Description Unit

τsij (τpij) average trip duration of solo (pooling) rides hr

τ rij (τ0
ij) vehicle relocation time (baseline vehicle travel time) hr

vij traffic speed of trips mph

dsij (dpij) average trip distance of solo rides (pooling rides) hr

vf free-flow traffic speed mph

Cp capacity of arterial roads between zones /hr

εsij (εpij) distance-independent trip duration of solo (pooling) rides hr

ρi (ρ̄i, ρ
jam
i ) ride-hail (background, jam) vehicle density /sqmi

zij (z̄ij) ride-hail (background) vehicle flow /hr

wsij (wpij) wait time of solo (pooling) passengers hr

Λi vacant vehicle density /sqmi

Πs
i (Πp

ij , Πeff
i ) solo (pooling, effective) waiting passenger density /sqmi

k coefficient of matching efficiency /sqmi

b coefficient of pooling efficiency

κ approximation parameter in function of wpij /sqmi

δ detour ratio of road network

Qsij (Qpij) solo (pooling) demand rate /hr

Q̄ij background traffic flow /hr

Xi difference between outbound and inbound occupied vehicle flow of zone i /hr

X+
i (X̂+

i ) (approximated) vehicle relocation flow to zone i /hr

Ni fleet size (number of drivers in operation)

Vi vacant vehicle time hr

D0
ij total demand rate /hr

S0 potential supply

Ai area of zone i sqmi

fsij (fpij) trip fare of solo (pooling) rides $
η compensation rate (payment per unit occupied time) $/hr

usij generalized cost of solo rides $
ν value of time $/hr

csij congestion fee on solo ride $
cdi congestion fee on relocation vehicles to zone i $
ūij average saving of a trip due to switching from transit to ride-hail service $
e driver’s earning rate $/hr

ē0 (e0) upper (lower) bound of reservation rate $/hr

µi vehicle occupancy rate
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a Subscription ij means “from zone i to zone j” when not specified
b Subscription i means “in zone i” when not specified
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7.8.2. Parameter setting

Table 7.2. Default values of parameters.

Parameter Unit Default value

Total demand D0 pax/hr 34440×

[
0.18 0.23

0.21 0.38

]∗
Average solo trip distance ds mi

[
2.6746 3.6353

3.7550 1.5392

]

Average pooling trip distance dp mi

[
3.8519 4.1357

4.2476 2.0211

]

Average transit trip duration τt hr

[
0.34 0.48

0.47 0.31

]
Transit trip fare ft $/ride 2.69

Passengers’ value of time ν $/hr 27.69

Relative disutility rate of transit ζ $/hr 6.92

Mode choice uncertainty θ 1

Minimum reservation rate e0 $/hr 7.25

Maximum reservation rate ē0 $/hr 31.37

Potential supply S0 veh 15785

Free-flow speed vf mph 40

Jam density ρjam veh/sqmi

[
2000 3000

3000 4000

]
Aggregate road capacity Cp veh/hr 30000.

Background traffic Q̄ veh/hr

[
81219 44034

43055 73690

]

Traffic speed without ride-hail vehicles v̄0 mph

[
25.4330 23.5815

24.4450 20.4262

]

Default traffic speed in MO pricing with-

out congestion model

v̄ mph

[
25 22

23 19

]
Detour ratio of road network δ 1.3

Matching efficiency k /sqmi 0.16

Pooling efficiency b 0.05

Approximation parameter κ 4

Zone area A sqmi [22.3, 6.4]

∗ All parameters in vector form follow index {0: PA; 1: CBD} and those in matrix form follow index

{(0,0): peripheral; (0,1): inbound; (1,0): outbound; (1,1): central}.
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CHAPTER 8

Routing game of strategic drivers

In the two-node model presented in Chapter 7, drivers are assumed to relocate between the two

local markets such that their expected earnings are equal. At equilibrium, the relocation flow is

uni-directional and can be easily solved from flow conservation. However, it becomes a challenge to

model the strategic relocation behaviors of drivers in a general spatial market, particularly when

the time dynamics are also introduced.

In this chapter, we study the RIde-hail VEhicle Routing (RIVER) problem in a dynamic spatial

ride-hail market. We consider a group of homogeneous drivers traveling across a network of local

markets to search and deliver passengers. The routing decision is characterized by a search strategy

that gives the search destination of each idle driver in each time period, and the return of a certain

strategy is computed as the expected reward earned over time. Specifically, the expected reward in

each time period is dictated by two factors. The first is the trip fare from the search destination,

which is set by the ride-hail operator and considered exogenous in the current analysis. The second

is the probability of successfully picking up a passenger by the end of the time period, referred to as

meeting probability, which depends on both the passenger demand and vehicle supply in the same

local market. In other words, each driver’s reward is affected by the behaviors of other drivers.

This fact builds up the nature of a game, where, as players, drivers select the optimal strategy in

consideration of others’ strategies to maximize their own utilities.

In what follows, we first present the RIVER model and discuss its connection to cooperative

routing, where drivers make routing decisions to maximize total return. Using the physical matching

model discussed in Chapter 3, we then derive the meeting probability for two common ride-hail

modes and calibrate them through simulations. In this way, we are able to compare the service
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performance of different service modes and analyze the loss of efficiency due to selfish routing. All

notations used in this chapter are summarized in Table 8.5.

8.1. System dynamics

We represent a ride-hail market as a set N of zones and discretize the analysis horizon into T

time periods with an identical length ∆. We further assume the travel time from zone i to zone j,

denoted as τij , is a multiple of ∆. Let qti be the demand rate (i.e., the number of passenger arrivals

per unit area per unit time) originated from zone i during time period t = 1, . . . , T , and αij be the

fraction of the demand from i destined for j. Thus,
∑

j αij = 1, ∀i.

The market is served by a set of drivers, denoted as M (with M = |M|), who travel across

zones to search and deliver passengers. We assume a driver always drop off passengers at the end of

a period and thus they become idle when the next period starts. At the beginning of each period,

idle drivers choose their next search zone. They could either stay in the current zone or relocate to

a neighboring zone. To simplify the analysis, we assume the time spent to move from one zone to

an adjacent zone is much less than ∆ and hence can be rounded to zero. In other words, relocation

can be completed instantaneously1. Let xtij be the vacant vehicular flow from zone i to zone j, and

ytj be the number of vacant vehicles in zone j at the beginning of time period t. Thus, the first flow

conservation condition dictates

ytj =
∑
i

xtij , t = 1, · · · , T. (8.1)

We model matching as a process that assigns idle drivers in each zone to passengers originating

from the same zone. It starts at the beginning of each period, taking the numbers of arriving

passengers and vacant vehicles as inputs, and yields the matched and idle drivers at the end of the

period according to a matching mechanism. The meeting probability during period t in zone j,

1Relocation differs from delivering a passenger between adjacent zones in that it is completed once the vehicle
crosses the zonal boundary. In contrast, a passenger trip ends when the vehicle finally reaches the passenger’s
destination.
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denoted as mt
j , is thus a function of qtj , y

t
j and ∆, whose form depends on the characteristics of

specific ride-hail matching technology. While the mathematical form of mt
j could vary, it is safe to

assume, everything else equal, a larger number of vacant vehicles always leads to a lower meeting

probability and a higher demand rate always yields a higher meeting probability. Besides, it is

reasonable to assume the vacant vehicle time in a zone has a diminishing marginal effect on the

pickup number my in that zone. These properties are formally stated in the following assumption,

while the functional form of m will be specified in Section 8.4 for different ride-hail modes.

Assumption 7. The meeting probability function m(q, y) satisfies ∂m/∂y ≤ 0, ∂m/∂q ≥ 0,

and ∂2(my)/∂y2 ≤ 0.

At the end of period t, mt
jy
t
j drivers in zone j are successfully matched and ready to deliver

passengers to their destinations. The others will make a new search decision at the beginning of

time t + 1, along with the drivers dropping off passengers in the zone at the end of t. Hence, the

second flow conservation condition requires

∑
k

xtjk = xtj =

 d0
j , t = 1

dt−1
j + (1−mt−1

j )yt−1
j , t = 2, · · · , T

, (8.2)

where xtj denotes the total vacant vehicular flow departing from zone j at the beginning of time t,

dtj denotes the flow of vehicles completing trips in zone j by the end of t. Specifically, d0
j denotes

the number of vacant vehicles in zone i at the beginning of the analysis horizon.

Since the trip duration depends on the origin-destination (OD) pair, dtj equals the sum of

occupied vehicular flows departing from each zone i ∈ N at the beginning of period t− τij , i.e.,

dtj =

t∑
t′=0

∑
i∈I(j,t,t′)

mt′
i y

t′
i αij , t = 1, · · · , T − 1, (8.3)

where the set of trip origin zones is defined as I(j, t, t′) := {i : τij/∆ = t− t′}.

For convenience, we assume OD travel pattern αij , travel time τij and trip fare pij are time-

independent. However, it is straightforward to allow temporal variations in travel demand, traffic
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conditions and pricing policies in our framework. This assumption is also relaxed in the numerical

experiments presented in Section 8.5.

8.2. Individual routing

8.2.1. MDP formulation

We model each vehicle’s movements across zones as a Markov decision process (MDP). The MDP

framework is commonly used in the recommendation of optimal search path for ride-hail dri-

vers [e.g., Shou et al., 2020, Yu et al., 2019b] as it accounts for the payoff that may realize later

due to current decisions. An MDP is defined by a tuple (S,A, P,R, γ) as follows:

• S is a set of states in which the vehicle may settle in a given period. S can be divided into

vacant states and occupied states. When the vehicle is vacant, the state is determined by

its current zone i, i.e., s = (vac, i). When the vehicle is occupied, the state is determined

by the OD pair of its passenger, and the time elapsed (measured in ∆) since it starts the

trip, i.e., s = (occ, i, j, δ), where i (j) is the origin (destination) zone and δ = 0, . . . τij − 1.

• A is a set of actions. For vacant vehicles, each action a is defined as the next zone to visit.

Hence, a vehicle at state s = (occ, i) has an action set consisting of zone i and its neighbor

zones, denoted as Ai. For an occupied vehicle, the only action available is to continue the

current trip, denoted as a = 0.

• P denotes the state transition probability distribution. Based on the state types, there

are four groups of transition probabilities, including

vacant → vacant:

P (st+1 = (vac, j)|st = (vac, i), at = j) =

 1−mt
j , j ∈ Ai

0, otherwise
, (8.4a)

vacant → occupied:
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P (st+1 = (occ, j, k, 0)|st = (vac, i), at = j) =

 mt
jαjk, j ∈ Ai

0, otherwise
, (8.4b)

occupied → occupied:

P (st+1 = (occ, i, j, δ + 1)|st = (occ, i, j, δ), at = 0) = 1, δ < τij − 1, (8.4c)

occupied → vacant:

P (st+1 = (vac, j)|st = (occ, i, j, τij − 1), at = 0) = 1. (8.4d)

Note any transition starting at an occupied state is deterministic as a vehicle must complete

its current trip once started.

• R defines the reward for the current state st, an action at, and a next state st+1. Here, the

trip fare pij is set as the reward for a transition from vacant to occupied states, formally

defined as

R(st, at, st+1) =

 pjk , st = (vac, i), at = j, st+1 = (occ, j, k, 0)

0 , otherwise
. (8.5)

• γ ∈ (0, 1] is a discount factor that accounts for the preference for a present gain over a

future one.

Let π be a search strategy that maps the current state s to a vector of choice probabilities, each

corresponding to a feasible action at. For occupied states, π is a singleton as there is only one feasible

action, i.e., continue the current trip (at = 0). For vacant states, π can be seen as a probability

distribution over the feasible actions. Accordingly, we have πtij = Pr(at = j|st = (vac, i)) ≥ 0 and∑
j π

t
ij = 1.
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We use V π(st) to denote the expected return of a driver from state st following a strategy π.

The Bellman equation is then written as

V π(st) = Eat∼π

∑
st+1

P (st+1|st, at) [R(st, at, st+1) + γV π(st+1)]

 , t = 1, . . . , T, (8.6)

where Eat∼π[·] denotes the expectation over the outcomes corresponding to all possible actions

prescribed by π. Without loss of generality, we set the final value V π(sT+1) = 0, ∀sT+1 under any

strategy π.

Another important variable is Q-value Qπ(st, at), which is defined as the expected return

achieved by a driver who starts at state st, takes action at, and then follows strategy π there-

after. The corresponding Bellman equation is written as

Qπ(st, at) =


∑

st+1
P (st+1|st, at) [R(st, at, st+1) + γV π(st+1)] , t = 1, . . . , T

0, t = T + 1
. (8.7)

The objective of a driver is thus to determine the optimal search strategy that maximizes the

value function from its initial state s0. Given the probability distribution of initial state ζ0, the

optimal strategy is solved as

π∗ = arg max
π

Es0∼ζ0 [V π(s0)]. (8.8)

It is worth emphasizing that Eq. (8.8) assumes the vacant vehicle distribution y is given by other

drivers’ search strategies.

8.2.1.1. Solution algorithm. Recall that the transitions from occupied states are deterministic.

Hence, the Q-value for any state, either occupied or vacant, can be represented by the Q-values of

all vacant states. For notation simplicity, we denote the Q-values of vacant state st = (vac, i) and
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action at = j as Q(t, i, j). Accordingly, the Q-value function is simplified as

Q(t, i, j) =

 mt
j

∑
k(pjk + γτjk+1V (t+ τjk + 1, i)) + γ(1−mt

j)V (t+ 1, j), t = 1, . . . , T

0, t = T + 1
.

(8.9)

In Eq. 8.9, V (t, i) is the value function of vacant state st = (vac, i) and it is computed as

V (t, i) =
∑
j∈Ai

πtijQ(t, i, j). (8.10)

Given the vacant vehicle distribution y, the optimal routing strategy π∗ is solved through

backward induction, as summarized in Algorithm 8.1.

Algorithm 8.1 Backward induction

1: Inputs: Demand rate q = {qti ,∀t, i}; trip fare p = {pij ,∀i, j}; vacant vehicle distribution y; time
horizon T ; discount factor γ.

2: Outputs: Q-values of vacant states Q(t, i, j) and the optimal routing strategy π̃.
3: Initialize Q(t, i, j) = 0, ∀i, j.
4: for t = T, . . . , 1 do
5: Compute meeting probability mj

t , ∀j ∈ N according to the ride-hail mode and market condition
(i.e., passenger demand q and vehicle supply y).

6: Compute state transition probabilities P (s′t+1|st, at), ∀s′t+1, st, at by Eq. (8.4).
7: Compute reward R(st, at, s

′
t+1), ∀s′t+1, st, at by Eq. (8.5).

8: Update Q-values Q(t, i, j), ∀i, j by Eq. (8.9).
9: For each zone i, determine Zi such that ∀j ∈ Zi, j = arg maxj′ Q(t, i, j′).

10: Set the optimal search strategy for zone i as π̃tij = 1/|Zi| if j ∈ Zi, otherwise 0.
11: end for

8.3. RIVER

8.3.1. Collective routing

Individually, each driver routes through the spatial ride-hail market to maximize their own ex-

pected return. Collectively, their routing decisions produce the relocation flow x = {xtij ,∀t, i, j}

and idle drivers distribution y = {ytj ,∀t, j}. In turn, the spatiotemporal distribution of idle drivers

affects state transition probabilities and reward through the meeting probability m = {mt
j ,∀t, j}

(see Eqs. (8.4a), (8.4b) and (8.5)). As each driver’s expected return depends on not only their own
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decision, but also those of others, the evolution of the system may be described as an MDP con-

gestion game [Calderone and Sastry, 2017, Calderone and Shankar, 2017]. Formally, the collective

routing problem concerned in this study may be defined as follows.

Definition 1 (RIVER). The RIde-hail VEhicle Routing (RIVER) problem seeks to determine

the spatiotemporal distribution of vacant vehicles and vacant vehicular flow between any pair of

zones in the ride-hail market, assuming each driver l ∈M aims to maximize their expected return

following an MDP defined by (S,A, P,R, γ).

Since drivers are homogeneous per assumption, they must follow the same strategy when the

system arrives at a steady state, or equilibrium. Also, since the number of drivers in a ride-

hail market is typically very large, it is safe to assume the impact of a single driver’s decision

on the overall vehicle distribution is negligible. Thus, RIVER essentially describes a mean field

game [Lasry and Lions, 2007]. To characterize its equilibrium, let us first define Q(st, at, π) as the

expected return achieved by a driver who starts at state st, takes action at, and then follows strategy

π thereafter, when all other drivers also follow π. Note that Q(st, at, π) differs from Qπ(st, at) in

Eq. (8.7) in that the former is defined on a strategy shared by everyone, whereas the latter concerns

the strategy of an individual driver given other drivers’ strategies.

We now formally define the stable state of the RIVER problem as a Wardrop equilibrium

[Wardrop, 1952, Beckmann et al., 1956].

Definition 2 (Wardrop equilibrium for RIVER). An aggregate strategy π∗ corresponds to be

a Wardrop equilibrium of the RIVER problem if for any state st = (vac, i) and action at = j such

that πt∗ij > 0,

Q(st, at, π
∗) ≥ Q(st, a

′
t, π
∗), ∀a′t ∈ A. (8.11)
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At an equilibrium, if any driver chooses action at = j at st, no other feasible actions at that

state would yield a higher expected return. In other words, no driver could improve their expected

return by unilaterally switching to a different strategy.

In RIVER, each driver solves the MDP problem given a vacant vehicle distribution y, which is,

in turn, determined by the aggregate strategy of all vehicles. We can express these dependencies

as follows:  π = F1(y)

y = F2(π)
, (8.12)

where the first equation restates the MDP problem (Eq. (8.8)) given y and the second describes

the system dynamics given π. Note that the vacant vehicle distribution y is aggregated from the

relocation vacant vehicular flows x (see Eq. (8.1)), each relocation flow xtij is dictated by the search

strategy (i.e., πtijx
t
i), and the total relocation flow xti is determined by vacant vehicle distribution

at an earlier time (see Eqs. (8.2) and (8.3)). Thus, by induction, we can represent y as a function

of π given the fleet size M and initial vehicle distribution ζ0. This enables us to reduce Eq. (8.12)

to a fixed point system π∗ = F (π∗) with F (·) = F1(F2(·)). The following proposition connects such

a fixed point to the Wardrop equilibrium defined above.

Proposition 4. Each solution to the fixed point system π∗ = F (π∗) is a Wardrop equilibrium,

and vice versa.

Proof. “⇒”: Let (π∗,y∗) be a solution to Eq. (8.12). The Bellman optimality equation reads

V π∗(st) = max
at

Qπ
∗
(st, at). (8.13)

By definition, V π∗(st) = Eat∼π∗Q
π∗(st, at). Hence, it must hold that πt∗ij > 0 if and only if

Qπ
∗
(st, at) = maxat Q

π∗(st, at). In other words, for any state st = (vac, i) and action at = j

such that πt∗ij > 0, Qπ
∗
(st, at) ≥ Qπ

∗
(st, a

′
t), ∀a′t ∈ A. Up to this point, we assume the vehicle

distribution y∗ is given at the fixed point. According to Eq. (8.12), y∗ corresponds to π∗, i.e., the
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same strategy adopted by all drivers. Therefore, a driver’s Q-value can be rewritten as Q(st, at, π
∗),

leading to the Wardrop equilibrium as stated in Definition 2.

“⇐”: Since all drivers adopt strategy π∗, the equilibrium property also holds for any individual

driver. That is, π∗ = arg maxπ Eat∼πQ
π(st, at) = arg maxπ V

π(st) for any state st = (vac, i). This

leads to π∗ = arg maxπ Es0∼ζ0 [V π(s0)]. Recall from Eq. (8.8) that each driver optimizes their

strategy based on the vacant vehicle distribution. In this case, the distribution y∗ is determined

by the shared strategy π∗ at the equilibrium. Thus, π∗ is a solution of a fixed point problem. �

Next, we prove the existence of the Wardrop equilibrium by invoking the fixed point theorem.

Proposition 5. There exists at least one Wardrop equilibrium for the RIVER problem.

Proof. Given Proposition 4, it suffices to prove the existence of solution to the fixed point

system. Let Ω denote the feasible region of π. Given a strategy π, a vehicle distribution is uniquely

determined. Although the MDP problem may not have unique solution, all solutions must fall in

Ω. Hence, F is a set-valued function that maps from Ω to 2Ω.2

As per the Kakutani’s fixed point theorem, a set-valued function φ : Z → 2Z has a fixed

point if the following conditions are satisfied: (i) Z is non-empty, compact and convex, (ii) φ(z) is

non-empty and convex for all z ∈ Z, and (iii) φ has a closed graph.

The first condition holds as per the definition of π, i.e., πtij ≥ 0, ∀i, j, t and
∑

j π
t
ij = 1, ∀i, t.

Recall that F maps from one strategy π to a set of optimal strategies, denoted by S(π), based on

the induced vehicle distribution F2(π). Since the set of feasible strategies (i.e., Ω) is closed, S(π) is

non-empty. Consider two strategies π1, π2 ∈ S(π). Then, we have V π1(st) = V π2(st) = V ∗(st), ∀st,

where V ∗ refers to the optimal value for state st. Let π3 = λπ1 + (1− λ)π2 for any α ∈ (0, 1). For

any sT−1 = (vac, i), it yields

V π3(sT ) = EaT∼π3

∑
sT+1

P (sT+1|sT , aT ) [R(sT , aT , sT+1) + γV π(sT+1)]

 (8.14)

22Ω denotes the set of all subsets of Ω.
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=
∑
j

(π3)Tij
∑
sT+1

P (sT+1|sT , j)R(sT , j, sT+1)


=
∑
j

[λ(π1)Tij + (1− λ)(π2)Tij
] ∑
sT+1

P (sT+1|sT , j)R(sT , j, sT+1)


= λV π1(sT ) + (1− λ)V π2(sT ) = V ∗(sT ).

The second equality above holds because V π(sT ) = 0. By induction, we can show V π3(s0) =

V ∗(s0), ∀s0. Therefore, π3 is also an optimal strategy. In other words, S(π) contains any convex

combinations of its elements and thus it is convex. Accordingly, the second condition is satisfied.

Since Ω is a compact set in a Hausdorff space, the third condition holds if F is upper hemicon-

tinuous and F (π) is a closed subset of Ω for any π [Theorem 17.11 in Aliprantis and Border, 2006].

The latter condition is easily satisfied by the definition of F . Since F (·) = F1(F2(·)) and F2 is

single-valued and continuous with π (see Eqs. (8.1)–(8.3)), we only need to prove F1 is upper hemi-

continuous. To this end, we first state the Berge’s maximum theorem [Theorem 17.31 in Aliprantis

and Border, 2006] as follows. Let Z and Θ be metric spaces, C : Θ ⇒ Z be a compact-valued and

non-empty correspondence, and f : Z×Θ→ R be a continuous function. The theorem states that,

if C is continuous, then f∗(θ) = maxz∈C(θ) f(z, θ) is continuous and z∗(θ) = arg maxz∈C(θ) f(z, θ)

is upper hemicontinuous, compact-valued and non-empty.

To apply the Berge’s maximum theorem in our setting, we note that Z and Θ correspond to the

feasible sets of strategy π (i.e., Ω) and vacant vehicle distribution y, respectively, and C maps y to a

set of feasible strategies. Since the feasible strategies do not depend on y3, C(y) = Ω for all feasible

y. It is easy to verify C defined in this way is continuous, compact and non-empty, as required by

theorem. The function f is the objective function of the MDP problem (i.e., Es0∼ζ0 [V π(s0)]), which

takes y as inputs. Let f be the objective function of the MDP problem (i.e., Es0∼ζ0 [V π(s0)]), which

takes y and C(y) as inputs. Then, F1(·) corresponds to z∗(·) above, i.e., the optimal solution to

3This implicitly requires one can always relocate to a neighbor zone regardless how many vacant vehicles are
there, which is not a restrictive assumption.
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the MDP problem given y. Therefore, F1 is upper hemicontinuous, compact-valued and non-empty

as per the Berge’s maximum theorem. It thus concludes that F is also upper hemicontinuous,

compact-valued and non-empty.

Having confirmed all three conditions required by the Kakutani’s fixed point theorem are sat-

isfied, the proof is completed. �

8.3.2. Extension to cooperative routing

So far, we have assumed drivers compete with each other to maximize their own revenue. However,

a ride-hail operator may be interested in the total revenue of the entire fleet, which may not be

maximized by the selfish routing decisions of individual drivers. This gap between the best possible

collective outcome and the outcome of an equilibrium achieved by selfish agents is well known,

and often referred to as the price of anarchy (PoA) [Roughgarden and Tardos, 2002]. A common

remedy to this conflict is to amend the personal reward such that self-interest individuals are

incentivized to reach collective good, or system optimum (SO). This approach is often referred to

as decentralization, in that it achieves the system-level objectives without directly controlling all

agents. Agents who adopt these amended rewards are called cooperative agents, because they are

no longer driven by self-interest.

Let the total system return be defined as Φc(π) =
∑

t γ
t
(∑

j y
t
jm

t
j p̄j

)
, where p̄j =

∑
k αjkpjk is

the expected fare of a trip originated in zone j. The following result asserts that finding an aggregate

strategy that maximizes Φc(π) is equivalent to solving the RIVER problem with a cooperative

reward function.

Proposition 6. Under Assumption 7, a cooperative routing strategy that maximizes the total

system return Φc(π) corresponds to a Wardrop equilibrium for the RIVER problem when each driver
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maximizes the following cooperative reward function

Rc(st, at, st+1) =


pjk

(
1 +

ytj
mt

j
∇ymt

j

∣∣∣
y=ytj

)
, st = (vac, i), at = j, st+1 = (occ, j, k, 0)

0 , otherwise

. (8.15)

Proof. The cooperative routing strategy is obtained by solving the following problem:

max
π

Φc(π) (8.16a)

s.t. π ∈ Ω. (8.16b)

Problem (8.16) can be reformulated as

max
π,y

Φc(y) (8.17a)

s.t. y = F2(π), (8.17b)

π ∈ Ω. (8.17c)

The dual of (8.17) reads

min
λ

L(λ) = max
π∈Ω,y

Φc(y)− λT (y − F2(π)), (8.18a)

where λ is the multiplier associated with Constraint (8.17b).

For a given λ, Problem (8.18) can be decomposed into the following two subproblems

π = arg max
π′∈Ω

λTF2(π′), (8.19)

y = arg max
y′

Φc(y
′)− λTy′. (8.20)

Proposition 5 proves a Wardrop equilibrium of the RIVER problem exists with the original

reward function Eq. (8.5). Following the same reasoning, we can show the existence also holds with

the cooperative reward function Eq. (8.15). Let (π̌, y̌) be such a Wardrop equilibrium. In what
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follows, we will show a solution to the dual problem (8.18) can be constructed such that (π̌, y̌)

satisfy the conditions (8.19) and (8.20).

Under Assumption 7, Φc is a concave function of y, because

∂2Φc(y)

∂(ytj)
2

= γt
∂2(mt

jy
t
j)

∂(ytj)
2
p̄j ≤ 0. (8.21)

Therefore, the optimality condition of Subproblem (8.19) dictates that

∂Φc(y)

∂y
= λ. (8.22)

Let

λ̌tj =
∂

∂ytj
Φc(y̌) = γtm̌t

j

(
1 +

y̌tj
m̌t
j

∇ymt
j

∣∣
y=y̌tj

)
p̄j , (8.23)

where m̌t
j denotes the meeting probability associated with a vehicle distribution y̌tj . Then, y̌ satisfies

Eq. (8.20).

To show Eq. (8.19) also holds for π̌ given λ̌, we define ut as the location of a vacant vehicle

after its relocation in time period t. Clearly, ut is a random variable and depends on the driver’s

strategy. With all drivers taking strategy π, we have Pr(ut = j|π) = ytj/M (recall M is the fleet

size).

Let rπ(st) be the stage-reward at state st under strategy π (i.e., the expected reward obtained

in time period t by following π). Since the reward is always zero except for transitions from vacant

to occupied states, it follows that

Est [r
π(st)] = Est

Eat∼π
∑
st+1

P (st+1|st, at)Rc(st, at, st+1)

 (8.24)

=
∑
i

Pr(st = (vac, i))
∑
j

πtij
∑
k

mt
jαjkRc(st = (vac, i), at = j, st+1 = (occ, j, k, 0))

=
∑
j

Pr(ut = j|π)mt
j

∑
k

αjkpjk

(
1 +

ytj
mt
j

∇ymt
j

∣∣
y=ytj

)
,
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=
∑
j

Pr(ut = j|π)mt
j

(
1 +

ytj
mt
j

∇ymt
j

∣∣
y=ytj

)
p̄j .

Here, it is safe to remove the index i because the reward function is the same regardless the

relocation starting zone.

Given λ̌ set in Eq. (8.23), the equivalence between the solution to Subproblem (8.19) and π̌ is

established as follows:

π = arg max
π′

λ̌TF2(π) (8.25)

= arg max
π′

∑
t

∑
j

λ̌j
ytj
M

= arg max
π′

∑
t

∑
j

γtPr(ut = j|π′)m̌t
j

(
1 +

y̌tj
m̌t
j

∇ymt
j

∣∣
y=y̌tj

)
p̄j

= arg max
π′

∑
t

γtEst [r
π′(st)] = π̌.

The last equality states that the equilibrium strategy π̌ maximizes the sum of discounted expected

stage-reward, which can be established by expanding Eq. (8.8) at each stage.

Therefore, we established that (π̌, y̌, λ̌) is a solution to the dual problem (8.18). As per weak

duality, we have L(λ̌) ≥ Φc(π) for all feasible strategy π. Because the equilibrium condition

dictates y̌ = F2(π̌), we have L(λ̌) = Φc(y̌) ≥ maxπ∈Ω Φc(π). Because by definition Φc(y̌) cannot

be larger than maxπ∈Ω Φc(π), π̌ must be the cooperative routing strategy that maximizes Φc(y̌).

This completes the proof. �

8.3.3. Solution algorithm

Since the RIVER problem is highly nonlinear and nonconvex, devising an exact convergent algo-

rithm is difficult. In this study, we propose to solve it using a heuristic inspired by Proposition 4,

i.e., creating a fixed-point iteration of the search strategy π. To stabilize the process, π is updated

using the method of successive average (MSA). The origin of MSA can be tracked back to the work
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of Robbins and Monro [1951] and Blum [1954], and it has been widely used to solve congestion

games in general Miller et al. [2020] and various traffic assignment problems Sheffi and Powell

[1982], Powell et al. [1995] in particular.

Algorithm 8.2 MSA for the RIVER problem

1: Inputs: Demand profile q = {qti ,∀t, i} and α = {αij ,∀i, j}; travel time τ = {τij ,∀i, j} and trip fare
p = {pij ,∀i, j}; fleet size M ; initial vehicle distribution ζ0; number of time periods T ; discount factor γ;
maximum iteration I; gap tolerance ε.

2: Outputs: Equilibrium relocation flow pattern x∗.
3: Initialization: Randomly generate an initial routing strategy π(0); set g =∞ and n = 0.
4: while g > ε and n < I do
5: Update x and y via Forward Induction .
6: Update Q-values and compute the optimal strategy π̃ via Backward Induction .
7: Update gap g =

∑
(t,i,j)∈X |Q(t, i, j) −maxj Q(t, i, j)|/

∑
t,i,j |Q(t, i, j)|, where X = {(t, i, j) : xti,j >

0}.
8: Update the search strategy π(n+1) = (1− η)π(n) + ηπ̃ with step size η = 1/(n+ 1).
9: Set n = n+ 1.

10: end while
11: Set x∗ = x.

Algorithm 8.2 describes the main steps of the solution procedure. Starting with an initial routing

strategy π(0), we first load vehicular flows through forward induction (see Algorithm 8.3). Then,

we find the optimal strategy based on the loading result by solving the MDP through backward

induction (see Algorithm 8.1). Finally, we compute the gap and update the search strategy in

an MSA manner. The iterations terminate when the gap is below a predefined threshold or a

maximum iteration number is reached. Here, the gap is defined as the relative deviation from

the equilibrium, that is, the total difference between the Q-value of any vacant state-action tuple

with positive relocation flow and the maximum Q-value at the same state over the total absolute

Q-values (see line 7 in Algorithm 8.2).

8.4. Meeting probability

In this section, we specify the meeting probability mt
i for two ride-hail modes: street-hail and e-

hail. Commonly used by conventional taxis in densely populated urban areas, street-hail allows

passengers to hail vacant vehicles off street as they cruise by. In contrast, passengers and drivers
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Algorithm 8.3 Forward induction

1: Inputs: Demand profile q = {qti ,∀t, i} and α = {αij ,∀i, j}; travel time τ = {τij ,∀i, j}; search strategy
π; fleet size M; initial vehicle distribution ζ0; number of time periods T .

2: Outputs: Vacant vehicular flows x and vacant vehicle distribution y.
3: Initialization: Set d0

i = MPr(s0 = (vac, i)), ∀i, where Pr(s0 = (vac, i)) is dictated by ζ0.
4: for t = 1, . . . , T do
5: Set the total vacant vehicular flow originated from zone i, xti, using Eq. (8.2).
6: Set the idle flow from zone i to zone j xtij = πtijx

t
i.

7: Update vacant vehicle distribution yti in each zone i by Eq. (8.1).

8: Update future vehicle arrivals in each zone i by adding new arriving vehicles mt
iy
t
iαij to d

t+τij+1
j .

9: end for

in e-hail mode always interact on-line through an intermediate (e.g., TNC) before they meet. To

simplify notation, we remove the subscription i and superscription t from the symbols in this

section.

8.4.1. Spatial matching model

Consider a vacant vehicle searching for passengers. Assume waiting passengers are uniformly dis-

tributed in space with density Π and the vehicle can search an area a in ∆. The number of

passengers encircled by the vehicle’s search area, denoted by Na, may be described using a spa-

tial Poisson process with parameter Π Larson and Odoni [1981]. The meeting probability is thus

equivalent to the probability that Na > 0, which is given by

m = 1− P (Na = 0) = 1− exp(−Πa). (8.26)

Let us first derive the passenger density for the two ride-hail modes. Note that we may estimate

the number of waiting passengers per unit area as qw per the Little’s formula Little [1961], where w

is the average passenger wait time. The physical matching model presented in Section 3.1 implies

that w ∝ 1/Λ for street-hail and w ∝
√

Π/Λ for e-hail, where Λ is the vacant vehicle density.

Following the above analysis, we replace Π with qw and rewrite Λ as y/A, where A denotes the

zone area. With some algebra, we can derive Π in Eq. (8.26) as

Street-hail: Π = k′s
qA

y
, (8.27)
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E-hail: Π = k′e
q2A

y
, (8.28)

where k′s and k′e are parameters associated with zone properties and matching mechanism. They

may be calibrated from empirical or simulated data, as illustrated later in this section.

In street-hail, the search area a equals the cruising area, which may be estimated as v∆/ρ,

where ρ is the road density. For e-hail, the search area can be approximated by A/y, assuming

vacant vehicles are uniformly distributed in space and passengers are assigned to the closest vehicle.

Accordingly, the meeting probabilities for street-hail and e-hail are given by

Street-hail: ms = 1− exp

[
−
(
k′s
qA

y

)(
v∆

ρ

)]
= 1− exp

(
−ks

q∆A

y

)
(8.29)

= 1− exp (−ksϕ) ,

E-hail: me = 1− exp

[
−
(
k′e
q2A

y

)(
A

y

)]
= 1− exp

[
−ke

(
q∆A

y

)2
]

(8.30)

= 1− exp(−keϕ2),

where ϕ = q∆A/y is the demand-supply ratio, ks = k′sv/ρ and ke = k′e/∆
2.

The above derivation of the meeting probability function for e-hail implicitly assumes the pas-

senger demand and the vehicle supply are comparable in the market so that the passenger wait

time depends on Π. However, we note the result no longer holds when the market is severely

oversupplied. In such a case, there is most one passenger waiting in the market at any moment

and me needs to be derived from a different physical matching process.

Suppose Np passengers arrive in a market with Nv vacant vehicles in sequence and Np � Nv.

Then, the probability of each driver picking up any of the Np passengers is given by

Pr(pickup a passenger) =
1

Nv
+
Nv − 1

Nv

1

Nv − 1
+ · · ·+

(
Π
Np

n=1

Nv − n
Nv − n+ 1

)
1

Nv −Np
(8.31)

=
Np

Nv
.
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The nth term in Eq. (8.31) is the probability that the vehicle picks up the nth arriving passenger

giving that they fails to pick up the previous n−1 passengers. For example, if the vehicle successfully

picks up the second arriving passenger, then the probability is computed as Nv−1
Nv

(the probability

that they did not pick up the first passenger) times 1
Nv−1 (the probability that the second passenger

is matched to them, assuming the vehicle matched to the first passenger is no longer available and

all remaining vehicles have the equal opportunity to be matched with the new arriving passenger).

There are Np terms in Eq. (8.31) and each of them can be reduced to 1/Nv. Thus, we specify the

e-hail meeting probability in the oversupply case as

me = kẽ
q∆A

y
, (8.32)

where kẽ is the parameter associated with this case and may be calibrated from data as well.

A remaining question is when Eq. (8.32), instead of Eq. (8.30), should be used to estimate the

meeting probability. We hypothesize that there should exist a critical demand-supply ratio ϕ∗,

below which the market enters the oversupply regime. As shown later, the value of ϕ∗ may be

estimated from data. Thus, me may be written as the following piece-wise function

me =

 1− exp(−keϕ2) ϕ ≥ ϕ∗

kẽϕ ϕ < ϕ∗
. (8.33)

8.4.2. Model calibration

To validate and calibrate the spatial matching model, we simulate street-hail and e-hail services

on grid networks with various zone sizes, road densities, travel speeds and a wide range of supply-

demand profiles. Two sets of simulations are conducted to calibrate the meeting probability function

in both normal and oversupply regimes. The control parameters and the range of their values are

reported in Table 8.1.

The simulation is developed in MATSim, an agent-based transportation simulation frame-

work Horni et al. [2016], and will be introduced in more detail in Section 9. At the beginning
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of each simulation, a fleet of empty vehicles are randomly placed in the network all at once, while

passengers arrive following a Poisson process. In all runs, the simulation horizon is set to 0.25 hr,

which is considered to be a reasonable length for ∆ in the RIVER problem.

Table 8.1. Range of values for control parameters.

control parameter regular oversupply

number of block [4, 40] [4, 40]

block length (m) [100, 500] [100, 500]

speed factor [0.5, 1.5] 1.0

vehicle supply (veh) [50, 250] [100, 300]

passenger demand (pax/hr) [250, 500] [50, 150]

The matching process presented in the previous sections suggests that the parameters ks and

ke, as well as kẽ, mainly depend on traffic speed v and road density ρ in the zone. Thus, we propose

to model these parameters as a function of the two variables, i.e.,

kl = eβl0ρβl1vβl2 , l = {s, e, ẽ}. (8.34)

Replacing kl in Eqs. (8.29) and (8.30) with the right-hand-side of Eq. (8.34) leads to the

following linear regression model that can be fitted with data generated from simulations.

log(− log(1−ml)) = βl0 + βl1 log ρ+ βl2 log v + βl3 logϕ, (8.35)

where βl3 is the exponent on the term q∆A/y in Eqs. (8.29) and (8.30). Here, we turn the exponent

into a parameter to test if this prediction of the matching theory matches simulation results.

For e-hail under oversupply, we instead fit the following linear model:

log(me) = βẽ0 + βẽ1 log ρ+ βẽ2 log v + βẽ3 logϕ. (8.36)
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Table 8.2. Main regression results.

model
street-hail e-hail normal e-hail oversupply
(l = s) (l = e)) (l = ẽ)

βl0 0.1959∗∗ -0.0751∗∗∗ -0.1148∗∗

(0.028) (0.026) (0.050)
βl1 -0.3732∗∗∗ 0.0767∗∗∗ 0.0284∗∗∗

(0.004) (0.004) (0.007)
βl2 0.2949∗∗∗ 0.2789∗∗∗ 0.0043

(0.008) (0.008) (0.014)
βl3 0.9919∗∗∗ 1.8977∗∗∗ 1.0538∗∗∗

(0.005) (0.005) (0.008)
# obs. 24750 24750 4121
df. model 3 3 3
R2 0.761 0.919 0.841
adj. R2 0.761 0.919 0.841
Standard errors in parentheses.

Significance levels: ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.1.

The regression results are reported in Table 8.2. First and foremost, the estimated βl3, 0.99

for s-hail, 1.90 for e-hail in normal regime and 1.05 for e-hail in oversupply regime, agree well

with the model’s prediction, that is, 1 for street-hail and e-hail with oversupply, and 2 for e-hail

in normal regime. The results also indicate traffic speed has a similar impact on the meeting

probability in both modes (as measured by βl2), while it hardly affects the meeting probability for

e-hail with oversupply. As expected, road density ρ negatively affects the meeting probability in

street-hail because a more dense road network would reduce the search area within a given time

(see Eq. (8.29)). In contrast, ρ is positively correlated with the e-hail meeting probability, though

the effect seems rather minor (βe2 = 0.08 and βẽ2 = 0.03). This is also expected because a larger ρ

usually leads to a more “direct” pickup route, which improves the matching probability. Overall,

the fitness of three models with the simulated data is considered satisfactory, though the e-hail

model fits better with a R2 greater than 0.9 for the normal regime.

Figure 8.1 plots the meeting probabilities of street-hail and e-hail against demand-supply ratio.

In particular, Figure 8.1(a) covers a larger range of demand-supply ratio while (b) zooms into a

window between 0 to 0.4. We can see the basic models fit well with the data for both modes.

Clearly, the meeting probability in e-hail increases much faster with the demand-supply ratio than
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Figure 8.1. Meeting probability vs. demand-supply ratio. Each data point repre-
sents the median of meeting probabilities obtained from multiple simulation runs at
a given demand-supply ratio, while the solid curves represent model predictions at
each demand-supply ratio with all other variables set to be the median values.
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Figure 8.2. Histogram of intersection points of demand-supply ratio between two
e-hail models.

in street-hail. It rises over 90% when the ratio approaches 1.0, and quickly converge to 100%

after the threshold is crossed. In contrast, the meeting probability in street-hail barely reaches

90% when the demand-supply ratio is as high as 2.5. With an oversupply of vehicles, the street-

hail model still produce reasonable predictions on the meeting probability whereas the basic e-hail

model does cause a significant error and tend to underestimate the meeting probability. In this

case, the adjusted model provides shows a much better performance.
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To estimate ϕ∗ in Eq. (8.33), we discretize the values of ρ and v into grids. Then, for each

combination of ρ and v, we may construct two curves of me with respect to ϕ, one in normal regime

and the other in oversupply regime. The intersection is thus one realization of ϕ∗. Figure 8.2 plots

the histogram of ϕ∗. It can be seen that its value mostly falls between 0.3 and 0.4. Hence, in the

following section, we set ϕ∗ = 0.37, the median value of all realizations.

8.5. Numerical experiments

In this section, we test the RIVER problem under both street-hail and e-hail modes and for two

behavioral assumptions: non-cooperative (NC) routing and cooperative (CO) routing. Two sets of

experiments are conducted: the first one is based on a hypothetical network that consists of four

zones (Section 8.5.1), and the second is a nine-zone model of Chicago constructed using real data

(Section 8.5.2). In all experiments, we set the time interval ∆ = 0.25 hr, the discount rate γ = 1, and

the meeting probability functions as those calibrated from the simulation results (the exponents

on the demand-supply ratio are set according to the theoretical analysis, i.e., βs3 = 1, βe3 = 2,

βẽ3 = 1). Additionally, we assume all vehicles are vacant and evenly distributed across zones at

the beginning of the analysis horizon.

8.5.1. Simple network

Figure 8.3 shows the four-zone network used in this experiment, along with the travel time τij

between each pair of zones (τij = τji, ∀i, j). Zone i and zone j are considered neighbors to each

other if τij = 1. Hence, except for the pair of zone 2 and zone 4, all other five pairs are neighbors.

The network is served by a fleet of 200 vehicles (i.e., M = 200). The analysis horizon consists

of 4 time periods (i.e., T = 4). In each zone and time period, 100 passengers arrive in each zone

uniformly in time (i.e., qtiAi = 100, ∀t, i), and their destinations are uniformly distributed in all

but the origin zones (i.e., αij = 1/3 if i 6= j, otherwise 0). Finally, the trip fare is set to be $1 for

a trip between neighboring zones and $2 otherwise. Other parameters used in this experiment are
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set as follows: road density ρ = 20 mile per square mile (mi/sqmi), zone area Ai = 1 sqmi ∀i, and

cruising speed v = 20 mile per hour (mph).
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Figure 8.3. Topology of the four-zone network and inter-zonal travel times.
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Figure 8.4. Potential and equilibrium gap over iterations.
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Figure 8.4 plots the gap values obtained in each iteration when solving the four instances of

the RIVER problem, each corresponding to a combination of routing behavioral assumption (i.e.,

NO/CO routing) and ride-hail model (i.e., street-hail/e-hail). For CO routing, we also plot the

objective value. As per Algorithm 8.2, the gap is computed as the total difference between the

Q-values associated with positive idle flows and the maximum Q-value at the same state divided by

the sum of all absolute Q-values. In other words, it measures how much the system deviates from a

Wardrop equilibrium relative to the equilibrium solution. As shown in Figure 8.4, the MSA-based

algorithm converges slowly but is capable of producing an approximate equilibrium solution (a gap

below 0.001) within a few hundreds of iterations. The only exception is the case of e-hail under

CO routing, where the gap only reduces to 0.003 after 1000 iterations. As expected, the objective

values for CO routing increase monotonically and quickly stabilize within a few iterations.

Figure 8.5 illustrates vacant vehicular flows x and vacant vehicle distribution y at the beginning

of each time period at the equilibria of the four RIVER problems. We first note that zones 2 and 4

are evidently more popular destinations for vacant vehicles than the other zones. This preference

is developed mainly because trips originated in these two zones yield a higher expected revenue, as

the trip fare between zones 2 and 4 is higher than the other trips.

The results suggest CO routing contributes to a more even distribution of vacant vehicles in

the network. In particular, it helps mitigate the strong preference for zones 2 and 4. With the

exception of the first time interval under e-hail, the maximum inter-zonal difference in the number

of vehicles is smaller in CO than NO routing. This result is expected because, in CO routing, drivers

anticipate the impact of their relocation decisions on other drivers’ expected returns, which tend to

discourage excessive congregation of idle drivers in one zone. Another important observation from

Figure 8.5 is street-hail has more vehicles in the idle state than e-hail regardless of the assumption

about the routing behavior. Take NC routing as an example. Excluding the first period (when the

total numbers of vacant vehicles are equal in all scenarios), the average number of vacant vehicles

per zone per period is 31 for street-hail and 27 for e-hail. It is reasonable to attribute this 13%
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(b) street-hail CO routing
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(c) e-hail NC routing
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(d) e-hail CO routing

Figure 8.5. Vacant vehicular flow (link labels) and vacant vehicle distribution (node
labels) at equilibrium.

drop in the number of vacant vehicles to the advanced matching technology of e-hail. Interestingly,

cooperation among drivers appears to magnify this advantage of e-hail. Under CO routing, the

average number of vacant vehicles remains the same for street-hail, but drops another 11% to 24

for e-hail.
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While e-hail utilizes the fleet more efficiently on average than street-hail, it does not always

distribute the vacant vehicle more evenly in the network, especially in the case of NC routing.

The worst case is t = 3, when all vacant vehicles gather in zones 2 and 4, leaving the other two

completely unattended. The reason why e-hail seems more prone to such extreme episodes is

not entirely clear, though it is definitely rooted in the different matching mechanisms. Another

interesting observation is a major fraction of vehicles are guided to zone 3 at time 0. It seems to

help vehicles distribute more evenly in the following time periods, though more investigation into

the underlying mechanism is needed.

8.5.2. Chicago network

We next conduct a case study constructed using empirical data collected in the City of Chicago. The

same nine communities analyzed in Section 7.6 are selected as the study are; see Figure 8.6. Each

community is treated as a zone and communities adjacent to each other are considered neighbors

(e.g., Loop has three neighbors, i.e., Near North Side, Near West Side and Near South Side). The

analysis horizon is taken as an average weekday from 6:00 to 22:00, divided into 64 quarter-hour

periods. All input variables are estimated from the publicly available data collected in the city; see

Chapter 10 for more details.

We test two fleet sizes, 3300 and 9000, which are the numbers of e-hail drivers in the city who

averaged ten and five rides a day (see details about the data in Section 10.1). Figure 8.7 plots the

temporal demand rate qt =
∑

i q
t
i in an average day, which shows two distinctive peaks around the

regular rush hours at 9000 pax/hr. Hence, a fleet of 3300 is relatively small compared to this peak

demand level and is used to represent a market with a relatively tight supply.4 The 9000-vehicle

fleet, on the other hand, should be more than adequate even for the peak period.

To better analyze the results, we first define a few aggregate measures of the system performance

as follows:

4The average trip duration is 0.3 hr and thus the occupied vehicle is around 3000.
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Figure 8.6. Nine communities selected for the Chicago case study.
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Figure 8.7. Demand rate over time steps.

• Total return:

TR = Φc(π) =
∑
t

γt

[∑
i

ytir(y
t
i , q

t
i)

]
. (8.37)

• Average return:

AR =
1

M
Φc(π). (8.38)
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• Price of anarchy (PoA):

PoA =
Φc(π) under CO routing

Φc(π). at NC routing
(8.39)

• Vehicle utilization rate:

µt = 1− 1

M

∑
i

yti . (8.40)

• Fraction of served demand 5:

rt =

∑
im

t
iy
t
i∑

i q
t
i

. (8.41)

As mentioned earlier, PoA measures the loss of efficiency due to selfish routing behavior of ride-

hail drivers. The concept has been extensively studied in the context of routing game Roughgarden

and Tardos [2002], and is closely related to Braess Paradox Braess et al. [2005].

8.5.2.1. System performance on a normal day. Table 8.3 reports the total return, average

return and PoA for the eight combinations of routing behavior, mode and fleet size. With the

smaller vehicle fleet, e-hail generates about 35% more reward than street-hail thanks to its more

advanced matching technology. In this case, cooperative routing makes little difference, with PoA

hovering slightly above 1 for both street-hail and e-hail. Yet, e-hail in general induces a larger

PoA, meaning there is more potential in optimizing their operations. Increasing the fleet size does

improve the total return in both service modes, though individual drivers suffer a more than 50%

loss in their average return. However, so far, we have fixed the demand in the model. In practice,

it is expected the improved level-of-service thanks to a larger vehicle supply would attract more

passengers choosing ride-hail, which, in turn, enhance the reward of each driver.

5Passengers who fail to find a match in a time interval are assumed to leave the ride-hail market.
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Table 8.3. Reward and price of anarchy on a normal day.

Mode Type
M = 3300 M = 9000

TR ($K) AR ($) PoA TR ($K) AR ($) PoA

street-hail
NC 644.79 195.39

1.0027
827.92 91.99

1.0003
CO 646.50 195.91 828.81 92.02

e-hail
NC 880.08 266.69

1.0281
1053.26 117.03

1.0800
CO 904.85 274.20 1137.48 126.39

Figures 8.8 and 8.9 present the vehicle utilization rate and the fraction of served demand overt

time. For reference, the temporal demand pattern is plot as a gray dash line. As shown in Figure

8.8, the vehicle occupancy closely follows the demand pattern. Comparing the two service modes,

we find e-hail achieves a much higher utilization rate than street-hail, especially during the off-peak

period. This is, again, expected and largely due to the more advanced matching technology of

e-hail. As the fleet size increases, the utilization rate for both modes drops and the advantage of

e-hail diminishes. Like street-hail, the utilization rate of e-hail vehicles drops in the middle of the

day.

As illustrated in Figure 8.9, under the smaller vehicle fleet, the fraction of served demand shows

an opposite pattern of demand, i.e., the peaks on one curve often meet with the valleys on the other.

This finding is expected because, during the peak periods, the supply is insufficient to served the

increasing demand and thus the portion of served demand drops. In contrast, during the off-peak

periods, almost all passengers are served in e-hail. Due to a larger matching friction, street-hail

tends to serve a smaller portion of the demand, but that portion also appears to be less sensitive

to the temporal variations than e-hail. The loss of demand during peak periods can be largely

lessened by increasing the fleet size. Nevertheless, the NC routing still leaves a small fraction of

demand unserved, while this is no longer an issue in cooperative routing (see Figure 8.9(d)).
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(a) street-hail, M=3300
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(b) e-hail, M=3300
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(c) street-hail, M=9000

0 10 20 30 40 50 60
Time step

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ve
hi

cle
 u

til
iza

tio
n 

ra
te

NC
CO

(d) e-hail, M=9000

Figure 8.8. Vehicle utilization rate over time steps.5

In each subplot of Figures 8.8 and 8.9, the curves corresponding to NC and CO routing are

very close to each other, although the gap for e-hail is slightly larger than that for street-hail. This

finding agrees with Table 8.3, indicating again CO routing does not make much of a difference

in this case. The largest gap between NC and CO is observed in e-hail during the peak period,

when vehicle cooperation improves both utilization rate and serves more passenger demand (see

Figures 8.8(d) and 8.9(d)).

8.5.2.2. Impact of events. The last set of experiments aim to investigate the impact of temporal

demand peaks and the lack of demand information on the system performance. To this end, we

create two hypothetical baseball games in Lake View, where the Chicago baseball stadium is located

(see Figure 8.6). Following the regular game schedule, one event is set in the evening (from 18:40

5 The temporal demand rate is plot as gray dash line to show the demand pattern over time.
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(c) street-hail, M=9000
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Figure 8.9. Fraction of served demand over time steps.5

to 21:40) and the other is in the afternoon (from 13:20 to 16:20). We assume the two events both

draw 10,000 attendance uniformly distributed among all zones. These people travel to Lake View

before the game starts and go back to their home zones right after the event ends. Accordingly,

each event generates two considerable demand peaks in addition to regular rush hours, as shown

in Figure 8.10. Note that the demand rate in the figure is higher than 10,000 passengers per hour

because it is computed based on the 15-minute interval.

With these new defined demand profiles, we study four routing scenarios in e-hail with a large

fleet size (M = 9000): (i) non-cooperative drivers following their strategies on normal day (“myopic

NC”), (ii) cooperative drivers following their strategies on normal day (“myopic CO”), (iii) non-

cooperative drivers updating their strategies in response to the updated demand (“NC”), and (iv)

cooperative drivers updating their strategies in response to the updated demand (“CO”). In other
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(a) aggregated by origin (b) aggregated by destination

Figure 8.10. Demand rate in downtown zones and Lake View.

words, the two myopic driver groups do not have the demand information about the events thus

simply follow their original strategies. Table 8.4 reports the total return and PoA under the four

routing types, where the PoA is all computed based on the total return under CO. As expected, for

both events, the two myopic cases fall behind the other two due to the lack of demand information.

The higher total returns observed in the afternoon game imply that the extra demand is better

served in this cases compared to the evening game. A possible reason is that the evening game

overlaps with the rush hours on a normal day thus fewer vehicles are available to serve the extra

demand. For the same reason, the total return of CO routing in the afternoon game is higher than

that in the afternoon game as more vehicles are available for relocation in response to the additional

demand peaks.

Table 8.4. Reward and price of anarchy on an event day.

Type
evening game afternoon game
TR ($K) PoA TR ($K) PoA

myopic NC 1122.77 1.1268 1182.68 1.1443
myopic CO 1163.29 1.0876 1189.85 1.1374
NC 1181.73 1.0706 1255.24 1.0782
CO 1265.19 1353.38

The PoA values show a similar pattern as the total returns, Specifically, the largest PoA is

observed in the afternoon game under myopic NC routing, which leads to an efficiency loss more

than 14%. Interestingly, the results indicate the two events do not cause additional loss of efficiency,
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as their corresponding PoA values remain similar to that on a normal day (1.08 as in Table 8.3).

In contrast, the lack of demand information does induce large efficiency loss. The result thus

emphasizes the importance of demand information in the operations of ride-hail services. Table 8.4

also implies the impact is more severe when the extra demand peaks happen during an off-peak

period (the afternoon game in this experiments).

Another intriguing finding from Table 8.3 is about the difference in PoA between NC routing

and myopic routing. In the evening game scenario, the PoA scores of NC and myopic CO are

very close to each other, while the gap between myopic NC and myopic CO is much larger. On

the contrary, in the afternoon game scenario, the two myopic routing types lead to a similar PoA

that is significantly below that obtained by NC routing. This is again likely due to the different

demand patterns generated by the two events. Specifically, the afternoon game induces a demand

pattern that is very different from the normal day. Thus, with such demand information, the NC

drivers are able to operate more efficiently than the myopic drivers. In this case, the advantage of

cooperation among myopic drivers also diminishes given the incorrect perception of the demand.

8.6. Summary

In this chapter, we model the routing behaviors of idle vehicles in a spatiotemporal ride-hail market,

which we refer to as the RIVER problem. At the beginning of each time interval, idle drivers

select the next zone for passenger search to maximize their expected return. Such a decision

making process is modeled as a Markov decision process (MDP). Collectively, drivers can be seen

as playing an MDP congestion game, with congestion being induced by passenger-driver matching

in each zone. This matching process is specified for street-hail and e-hail as meeting probability

(i.e., the probability of meeting a passenger after searching for one period) functions that are

calibrated with simulation data. We define the Wardrop equilibrium for the MDP congestion game

and propose to find it by solving a fixed-point problem. The framework is further extended to the

case of cooperative routing, in which drivers route cooperatively to maximize the total return. We
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show that the according optimization problem can be solved as a Wardrop equilibrium of RIVER

problem with an adjusted reward function.

The RIVER problems, both the original and the cooperative versions, are tested in two sets of

experiments. One is a based on a hypothetical network and the other is constructed based on a real

market. The results show the service mode plays a critical role in shaping the spatial distribution

of vacant vehicles and the system performance. Thanks to its more advanced matching technology,

e-hail improves the fleet utilization ratio and delivers a higher average return than street-hail.

However, it also appears to be more vulnerable to the price of anarchy than street-hail. This

disadvantage, however, is insignificant in the case study on real market, with either small or large

vehicle fleets. The loss of efficiency for e-hail is well below 5% while that for street-hail is close to

zero.

Besides regular demand patterns, we test two counterfactual scenarios. Specifically, we consider

a game event, either in the afternoon or evening, happens far from the city and induces demand

peaks right before and after it. It is found the system could suffer from a substantial loss of

efficiency (up to 9%) if the selfish drivers fail to adjust their search strategies in accordance to

the demand pattern. Without demand information, the routing of cooperative drivers is also sub-

optimal. However, the loss could be reduced by one-third with myopic cooperative drivers. Even

with full information, the non-cooperative drivers still perform worse than normal days.

There are many directions along which the present study can be extended. First, the current

model only considers the supply side of the market. Hence, a logical next step is to integrate

demand modeling into the market equilibrium. Second, we have revealed in Chapter 7 that the TNC

operations have great impact on urban congestion. A future study may formulate the cooperative

RIVER problem with the objective to maximize social welfare that accounts for the congestion

externality of the ride-hail vehicles. Thirdly, the modeling framework presented in this paper may

be extended to support ride-hail service operations, such as designing relocation incentives for

drivers.
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8.7. Appendix

8.7.1. Notations

Table 8.5. List of notations

Variable Description Unit

N set of zone

Ai set of zone i’s neighbor zones

M (M) set (number) of drivers

T number of time periods

∆ length of each time period hr

qti demand rate from zone i at time t /hr/sqmi

αij trip fraction from zone i to zone j

pij (p̄i) trip fare (average trip fare from zone i) $
τij travel time from zone i to zone j $
xtij number of relocation vehicles from zone i to zone j at the beginning

of time t

yti number of vacant vehicle in zone i at the beginning of time i

mt
i meeting probability in zone i at time i

dti number of vehicles arriving in zone i by the end of time i

ρ road density mi/sqmi

v cruising speed mph

ϕ (ϕ?) demand-supply ratio (that separates normal and oversupply regimes

in e-hail)
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Part 4

Data and numerical tool
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CHAPTER 9

Agent-based simulation of ride-hail service

The models developed in previous chapters are all purely theoretical. A number of strong as-

sumptions have been imposed to ensure analytical tractability. To validate these theoretical models

and also to support our future research on ride-hail service, we develop an agent-based simulation

framework based on MATSim (Multi-Agent Transport Simulation). The simulator allows travel-

ers in an urban transportation system to choose among ride-hail services and other modes (e.g.,

driving and transit). On the other side of the market, each ride-hail driver can freely enter or

exit the market according to the earning potential. Additionally, the matching between passengers

and vehicles is conducted by specific matching algorithms (e.g., bipartite matching) based on the

service mode, instead of dictated by the matching function as per the theoretical models. Further,

an interface is developed that allows key control variables (e.g., pricing and matching interval) to be

adjusted throughout the simulation. Therefore, the simulator also supports service design through

simulation-based optimization (SBO).

In what follows, we first introduce MATSim, the baseline simulation framework, and then out-

line the ride-hail module. After that, we present a pricing module based on the idea of metamodel-

based SBO [Barton and Meckesheimer, 2006] that adaptively changes the pricing scheme to optimize

the platform’s objective. A series of cases studies are reported that validate the performance of

both the simulator and the pricing module.

9.1. Introduction of MATSim

MATSim (Multi-Agent Transport Simulation) was initially designed for activity-based travel de-

mand modeling, but has found a wider range of applications in transportation research Horni
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et al. [2009], Bassolas et al. [2019], Hörl et al. [2019]. It has an efficient built-in mesoscopic traffic

simulator that moves individual vehicles according to macroscopic traffic flow theory Horni et al.

[2016]. We choose to develop the proposed ride-hail simulator as an independent MATSim module

for several reasons. First, MATSim is open-sourced and modularized. Hence, we can easily link

the ride-hail module to MATSim’s core simulator and other add-on modules. Second, MATSim

provides “template” passenger and vehicle agents, along with a sophisticated travel demand model.

These elements dramatically simplify the efforts needed to represent the demand and supply sides

of the ride-hail market. Last but not least, MATSim has a built-in vehicle dispatching and routing

mechanism, from which most TNC operations can be derived.

A complete MATSim run consists of five steps shown in Figure 9.1. It starts with loading the

plans of each person. Each plan consists of a series of activities and travel legs between them.

In every iteration, each person selects and executes a single plan. The aggregate travel demands

are then loaded onto the transport network in the mobsim step (i.e., mobility simulation). The

scoring step recomputes the score associated with each plan. Based on the scores, a fraction of

the population is allowed to change their plans in the replanning step. The simulation is based

on a co-evolutionary principle: each person repeatedly optimizes their plan while competing with

others for the service capacity of different transport systems (e.g., roads, transit). This process

continues until no one has incentive to further change their plan, which implies the average plan

scores stabilize. Finally, statistics summarizing system performance are computed and written into

the output files in the analyses step.

Figure 9.1. The MATSim loop (source: [Horni et al., 2016])
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The proposed ride-hail module is integrated into the mobsim step. As a new alternative mode,

ride-hail offers an additional plan to each person. Thus, it also interacts with the core simulator

in the scoring and replanning steps. Additionally, relevant aggregate measures of ride-hail services

(e.g., average passenger waiting time, vehicle utilization rate) need to be computed and stored.

Hence, the module also functions in the analyses step.

9.2. Ride-hail module

Figure 9.2 illustrates the structure of the ride-hail module. The module consists of three building

blocks of a typical ride-hail market: supply, demand, and operation. On the supply side, we define

vehicle agents with market entry decisions and cruising behaviors. On the demand side, passengers

are defined by their mode choices, which are influenced by, among other things, ride-hail price and

level-of-service (LOS). The operation contains trip dispatching and pricing modules. The former

collects trip requests from the passengers and matches them with available drivers, while the latter

determines trip fare paid by passengers and the compensation rate received by drivers. Each of the

components will be discussed in more details in following subsections.

It is worth noting that a module for demand responsive transit (DRT) has developed in MATSim

Cich et al. [2017], which shares a number of similarities with ride-hail module proposed here.

However, to the best of our knowledge, the current DRT module does not support flexible supply

and vehicle cruising. Nor does it embed price optimization.

9.2.1. Passenger demand

Passengers in MATSim adaptively change their daily plan over iterations according to the score of

each feasible plan. When the daily plan is set to be two dummy activities connected by a single

travel leg, the plan score uplan is equivalent to trip utility utrav, i.e.,

uplan = utrav = αmode + βwaitw + βtravτ − f, (9.1)
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Figure 9.2. Framework of ride-hail module

where αmode is a mode-specific constant, βwait and βtrav are the marginal utilities of waiting and

travel time, respectively. The waiting time w, travel time τ and the monetary cost f (e.g., trip fare)

are updated in the replannning step so that passengers are able to reevaluate the plan scores. The

default demand model implemented in MATSim is based on multinomial Logit (MNL), which aligns

with the setting in most of the numerical experiments in this dissertation (see e.g., Section 4.6).

9.2.2. Vehicle supply

A key difference between TNCs and conventional taxis is the flexibility in the labor supply Hall

and Krueger [2018]. Specifically, a taxi driver usually cannot freely decide whether to enter the

market whereas a registered TNC driver can. To account for the fact that the operator does not

have direct control over its fleet, we implement a flexible supply model in the ride-hail module.

Following the analytical models developed in previous chapters, we assume each driver has a

fallback job option and its earning rate, referred to as the reservation rate, follows a given probability

distribution. Accordingly, a driver would choose to join the market if the average earning rate of
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ride-hail service, denoted by e, is higher than their reservation rate. The current version computes

the earning rate using Eq. (4.4) defined in Section 4.1 and, following Section 4.6, we assume the

reservation rate follows a uniform distribution.

The earning rate is computed after each simulation run (i.e., mobsim step). However, to prevent

large jump in vehicle supply between consecutive simulation runs, we do not use the earning rate

in the current run e to determine the supply in the next run. Instead, we import the exponential

moving average ē into the supply model, which is computed as

ē = (1− αs)ē+ αse, (9.2)

where αs denotes the decay rate and has default value αs = 0.1. In other words, drivers choose

whether to join market based on a long-term average of historical earning rates.

9.3. Vehicle cruising

The cruising model is another important feature newly developed in the ride-hail module. In

practice, vacant ride-hail vehicles usually cruise around to search for passengers or relocate to areas

with higher demand. To capture such behaviors, we implement a cruising model in which each

vacant vehicle is directed to a cruising destination based on a given cruising strategy. Once the

vehicle receives a ride request, it immediately terminates its current cruising trip and sets out to

pick up the passenger. If the vehicle reaches the cruising destination without meeting a passenger,

a new cruising destination will be generated. In the current version, we only implement a simple

random-cruising strategy to all vehicles (i.e., randomly assign cruising destination and if the cruising

destination coincides with the vehicle’s current location, the vehicle would wait there for a certain

time interval). However, the framework has been developed to support various cruising strategies,

including the one proposed in Chapter 8.
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9.4. Trip dispatching

The trip dispatching module is designed to accommodate different ride-hail modes and dispatching

algorithms. The current version supports the following three service modes:

• Street-hail (e.g., street-cruising taxis): Passengers wait on street and hail vacant vehicles

when they cruise by.

• E-hail (e.g., UberX): Vehicles are dispatched on demand to serve one passenger at a time.

• Pooling (e.g., UberPool): Vehicles are dispatched on demand to serve multiple passengers

with overlapping routes. Pooling passengers are picked up and dropped off in sequence.

The trip dispatching process has three important parameters:

• Matching interval decides how often the trip dispatcher is called to process trip requests

in batch.

• Maximum pickup distance sets a limit on how far away a driver can be summoned to serve

a passenger.

• Maximum matching time limits how long a passenger is willing to wait for a match before

switching to an alternative mode.

We next discuss in detail how the trip dispatcher works in each service mode.

9.4.1. Street-hail

Since passengers and vehicles in street-hail are physically matched on street, the maximum pickup

distance, also called hail distance in [Chen et al., 2018], is rather limited (15-50 meters). In

addition, as cruising vehicles and waiting passengers keep searching for each other, the matching

interval is simply the minimum simulation interval (1 second in MATSim). Thus, the trip dispatcher

continuously tracks the location of each idle vehicle and waiting passenger, and creates a match

whenever the distance between an idle vehicle and a waiting passenger is smaller than the maximum

pickup distance.
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9.4.2. E-hail

Although many dispatching strategies may be implemented for e-hail, the current version only

implements a basic, perhaps the most commonly used, matching algorithm. Yet, the framework is

flexible to integrate more advanced matching algorithms. At the end of each matching interval, the

trip dispatcher solves the following bipartite matching problem:

min
∑
ij

cijxij (9.3a)

s.t.
∑
j

xij = 1, (9.3b)

∑
i

xij ≤ 1, (9.3c)

xij ∈ {0, 1}. (9.3d)

In Problem (9.3), the binary decision variables xij indicates whether passenger i is assigned to

driver j, and cij represents the pickup cost (e.g., pickup time). Constraint Eq. (9.3b) states every

passenger is matched with a vehicle while Eq. (9.3c) indicates each vehicle is at most assigned to one

passenger. Thus, the problem seeks to minimize total pickup cost while matching all passengers.

Here, it is assumed the number of vehicles is larger than that of passengers. If the opposite applies,

Eq. (9.3c) turns to be an equality constraint while Eq. (9.3b) becomes an inequality constraint.

9.4.3. Pooling

In the pooling mode, the trip dispatcher attempts to bundle together multiple passengers whose

trips have as much overlap as possible. The current ride-hail module implements a simple pooling

strategy that following the matching process described in Chapter 3. At the end of each matching

interval, the trip dispatcher will first match passengers in pairs of two and then assign these pooling

pairs to vacant vehicles. The procedure is summarized in Algorithms 9.1. To prevent unreasonably

long detours in pooling trips, we introduce another parameter named maximum detour time ∆̄. If
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the en-detour of any passenger in a feasible pooling pair is larger than ∆̄, we assign an arbitrary

large value M to this pair, which prevents it from being selected in the first matching problem.

Finally, the passengers who do not find a pooling pair will be matched with remaining vacant

vehicles in the same way as e-hail trip dispatching.

Algorithm 9.1 Two-step bipartite matching

1: Inputs: Set of unmatched trip requestsR; set of available vehicles V; maximum detour time ∆̄; arbitrary
large value M .

2: Outputs: Assignments for pooling trips Apool = {(i, j, v) : i, j ∈ R, v ∈ V} and solo trips Asolo =
{(i, v) : i ∈ R, v ∈ V}.

3: Initialize Apool = ∅ and Asolo = ∅.
4: if |R| > 0 and |V| > 0 then
5: for each pair of requests i, j ∈ R do
6: Compute the minimum total trip distance starting with picking up i, τ i, and detours for i and j,

∆i
i and ∆i

j .

7: if ∆i
i > ∆̄ or ∆i

j > ∆̄ then

8: Set τ i = M .
9: end if

10: Compute the minimum total trip distance starting with picking up j, τ j , and detours for i and j,
∆j
i and ∆j

j .

11: if ∆j
i > ∆̄ or ∆j

j > ∆̄ then

12: Set τ j = M .
13: end if

14: Compute the average minimum total trip distance τ ij =

{
(τ i + τ j)/2, τ i < M and τ j < M
M, otherwise

15: end for
16: Match pooling passengers into pairs by solving Problem (9.3) where the cost is given by τ ij .
17: Break loops in assignments and keep pairs with the smaller total trip distance.
18: Add pooling pairs into set Rpool = {(i, j) : i, j ∈ R} and other requests into set Rsolo = {i : i ∈ R}
19: for each pooling request k = (i, j) ∈ Rpool and each vehicle v ∈ V do
20: Compute pickup cost ckv = arg minc∈{civ,cjv}

{
civ + τ i, cjv + τ j

}
, where civ (cjv) are the cost to

pick up i.
21: end for
22: Match pooling requests with vehicles by solving Problem (9.3) where the cost is given by ckv.
23: Add assignments results to Apool and removed matched vehicles from V.
24: Break remaining pooling trips into single requests and add them into Rsolo.
25: for each solo request i ∈ Rsolo and each vehicle v ∈ V do
26: Compute pickup cost civ.
27: end for
28: Match solo requests with vehicles by solving Problem (9.3) where the cost is given by civ.
29: Add assignments results to Asolo.
30: end if

Again, the developed framework is compatible with other matching algorithms for pooling trips.
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9.5. Pricing module

The pricing module controls and optimizes the pricing strategy of the service. The simulation can

be executed with or without the price module. In the absence of pricing, a preset pricing strategy is

used. When the pricing module is activated, an iterative process is introduced to adjust the pricing

strategy according to the “current” market equilibrium reached in simulation (see Figure 9.3). After

a complete simulation run, the module checks whether an equilibrium is reached by computing the

market share as the fraction of passengers choosing ride-hail service and the market entry as the

fraction of drivers entering the market. Both values should stabilize at equilibrium. Once an

equilibrium is reached, the optimizer is called to update the pricing strategy according to the

gradient computed by the surrogate model. The key advantage of this method is its ability to

anticipate the effect of any small price change on the market equilibrium. Specifically, the gradient

gives the direction along which the objective (e.g., the platform profit) could be improved in the

fastest way. After each update, it returns back to simulation to equilibriate the market again under

the new pricing strategy. If the gradient is below certain threshold, the current pricing strategy is

considered close enough to the optimum and thus the entire simulation terminates. This threshold

is also a predefined parameter.

In the current version, the monopoly pricing model developed in Chapter 5 is implemented as

the surrogate model and the pricing objective is set to be maximizing the platform profit. However,

it is easy to switch to other objective (e.g., social welfare) or pricing models (e.g., duopoly pricing

discussed in Chapter 6). It is compatible with other demand and supply models, so long as they

are continuously differentiable. Moreover, the optimal pricing problem can be replaced by other

service design problems (e.g., optimizing the matching interval and driver incentives for relocation),

while additional modeling efforts are needed to carefully account for the response of demand and

supply.
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Figure 9.3. Flow chart of pricing module

9.6. Case studies

We conduct a series of case studies to test the functionalities of the ride-hail module and to validate

the pricing module. Through these experiments, we aims to answer the following questions:

(1) How does the service quality vary among different service modes under the same demand

and supply? Whether the surrogate model could correctly recognize these variations?

(2) How effective is the pricing module to improve the operator’s profitability?

(3) Whether the pricing module could be embedded with other mobility services?

In this section, we first introduce the study area and then move to the experiment results.

9.6.1. Study area and baseline model

The Wayne County in Michigan, U.S. (see Figure 9.4) is selected for the case studies since a well-

defined road network and calibrated travel demand model are readily available. As the primary

objective here is to demonstrate the capability of the ride-hail module, we only consider a one-hour
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time window in the peak period (see Figure 9.5) and sample only 1% of the population. The

population sample is further filtered by income level and availability of automobiles to obtain a

group of homogeneous travelers. This leads to a sample of about 3,000 travelers.

Figure 9.4. Wayne County (Source: Wikipedia).

Figure 9.5. Hourly travel demand and selected operation time (pointed by the or-
ange arrow).
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We first run a baseline model without ride-hail service. The default travel modes are car, public

transit (PT), bike and walk. As shown in Figure 9.6, a majority of the population choose driving

while the share of PT is the lowest (below 1%).

car PT bike walk
0

20

40

60

80

100
M

od
e 

sh
ar

e 
(%

)
88.42

0.72 1.46
9.4

Figure 9.6. Mode share of baseline model.

9.6.2. Service mode design

The first set of experiments are conducted to compare the service quality of the three implemented

service modes (i.e., street-hail, e-hail and pooling). As discussed above, we adopt the pricing model

developed in Chapter 5, which is based on the matching model presented in Chapter 3. Specifically,

a simplified version of the cumulative distribution function (CDF) of street-hail wait time ws and

e-hail wait time we is given as follows:

street-hail: Fs(t) = 1− exp(−kst), (9.4)

e-hail: Fs(t) = 1− exp(−ket2), (9.5)

where ks and ke are parameters that are related to the supply-demand relationship, network topol-

ogy and matching efficiency.

As per Eqs. (9.4) and (9.5), the street-hail wait time follows an exponential distribution with

a constant failure rate, whereas that for e-hail follows a Weibull distribution with an increasing
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failure rate. This implies, without everything else equal, e-hail passengers are more likely to find

a vehicle as wait time increase. In contrast, for street-hail passengers, the likelihood of finding a

vehicle at each moment does not change over time. As a result, the distribution of street-hail wait

time has a much longer tail than that of e-hail. This difference well explains why e-hail greatly

outperforms street-hail in low-density areas. As derived in Chapter 3, the two parts of pooling wait

time share the similar physics in matching with e-hail. Hence, they have the same functional form

of CDF but with different parameters kp1 and kp2, respectively. However, due to the existence of

pickup detour, the total wait time for pooling should be more dispersed.

To ensure the pricing module work correctly, we need to first validate the above matching

models. We are also interested in comparing the LOS of different modes. To these ends, we fix

both demand and supply and use a sufficiently large vehicle fleet (i.e., 1000 vehicles) to ensure

most passengers can be served. Following Chapter 3, we assume each pooling trip is shared by two

passengers and adopt Algorithm 9.1 for trip dispatching.

The properties of wait time distributions discussed above are validated by the histograms of

simulated passenger waiting times shown in Figure 9.7. While very few e-hail passengers experience

a waiting time longer than 10 minutes, a large fraction of street-hail passengers do so. Besides, a

few pooling passengers suffer from long waits (more than 15 minute), whereas the other enjoy a

quite similar LOS as e-hail.

We proceed to calibrate the waiting time distribution using maximum likelihood estimation

(MLE) and plot the cumulative distribution function (CDF) of both simulated and calibrated

passenger waiting time in Figure 9.8. The result indicates the model well predicts the waiting time

distribution by correctly capturing the matching mechanism in different ride-hail services.
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Figure 9.7. Histograms of passenger waiting times in different service modes.

Table 9.1. Main calibration results of waiting time distribution.

street-hail e-hail
pooling

first pickup time pickup detour

MLE k 2.24 e-03 3.07 e-05 3.11 e-05 4.03 e-06

Mean (min) 7.44 (+0) 3.01 (+0.33) 2.99 (+0.35) 8.29 (+0.51)

90th percentile (min) 17.13 (+1.10) 4.56 (-0.02) 4.53 (-0.09) 12.58 (-2.72)

- Values in the parentheses are differences between model and data. A positive value means it is

overestimated by the model.
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Figure 9.8. Simulated and calibrated CDF of passenger waiting time in different
service modes.

Table 9.1 reports the main calibration results along with the differences from the simulation

data. We find the model well fits the simulation data with the gap of mean estimates less than

one minute in all cases. The calibration results also confirm e-hail is more reliable than street-hail

with a shorter average waiting time and much fewer long waits. Moreover, the first pickup time

of pooling follows a distribution close to e-hail waiting time, while the long waits are largely due

to the pickup detour. The average pickup detour is around 8 minutes and around 10% passengers

have a pickup detour longer than 12.5 minutes.



223

9.6.3. Price optimization

We proceed to test to what extent the pricing module could improve the operator’s profit. We run

simulations for e-hail and pooling modes separately, with and without price optimization. Here, the

fixed pricing strategy is set to be $1/km for the trip fare rate and $20/hr for the compensation rate.

Since the decision variable of the optimal pricing problem is the trip fare per ride (see Eq. (5.1)), we

divide the gradient ∂R/∂f by the average trip distance based on the simulation results to obtain

the moving direction of the trip fare rate. For both e-hail and pooling trips, passengers are rejected

if they cannot be matched with vehicles after 5 min. The maximum detour for pooling trips is set

to be 15 min.

We consider flexible demand and supply in this case study. Specifically, travelers could choose

from ride-hail (e-hail/pooling), driving, PT, walking and biking. Given the small market share

of modes other than driving in the baseline model, we assume the potential vehicle supply is 100

vehicles and their reservation rate follows a uniform distribution with an average of $10/hr. We

run ten simulations for each scenario with different random seeds. The maximum number of runs

per simulation is set to be 500. The threshold for equilibrium is 1% for both market share and

market entry. The threshold for price optimization is 0.05 for the sum of absolute gradients of trip

fare and compensation rate. Finally, the moving step size α = 0.01.

Figure 9.9 illustrates the mode share in four tested scenarios (e-hail/pool without/with price

optimization), along with the baseline model. The bars show mean values across the ten simulation

runs while the standard deviations are plotted as the error bars. The very small standard deviations

indicate the market evolves to roughly the same equilibrium in each scenario. The results show

ride-hail services mainly substitute driving, but the overall mode share is quite low (below 4%).

The share of pooling is about half the share of e-hail, only slightly higher than biking. Besides, the

price optimization shows little impact on the mode share.

Table 9.2 reports and compares main statistics in the four scenarios. The values superscripted

with * means they are with 5% significant level in the two-sample t-test. First, these results confirm
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(a) E-hail (b) Pooling

Figure 9.9. Mode share with ride-hail service.*

* The average values are plotted as bars and the standard deviations are plotted as error bars (i.e., the
black tick on top of each bar).

the finding that the price optimization makes little differences in mode share, as the change is

significant for neither e-hail (see Column (2)-(1)) nor pooling (see Column (4)-(3)). However, e-

hail is indeed more attractive to passengers compared to pooling (with a 49% increase in mode

share with price optimization).

Price optimization also has a negligible effect on market entry, as the shifts are all within 5%

and not statistically significant. Yet, e-hail attracts 22% more drivers than pooling thanks to the

higher demand for the service. According to supply model, the market entry is determined by the

earning rate (see Eq. (4.3)), which is, in turn, a function of the compensation rate and vehicle

utilization rate (see Eq. (4.4)). As shown in Table 9.2, neither of these two variables is affected

much by price optimization. Hence, it is hardly surprising that vehicle supply does not change

much under price optimization.
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Table 9.2. Main statistics of ride-hail services.

(1) (2)
(2) - (1)

(3) (4)
(4) - (3) (4) - (2)

e-hail

fixed

e-hail

opt.

pooling

fixed

pooling

opt.

Mode share (%) 3.66 3.46 (-6%) 1.66 1.75 (+5%) (-49%)*

Market entry (%) 31.08 30.79 (-1%) 22.7 23.95 (+4%) (-22%)*

Trip fare rate

($/km)

1 1.89 (+89%)* 1 1.48 (+48%)* (-22%)*

Comp. rate ($/hr) 20 20.35 (+2%) 20 20.04 (+0%) (-2%)

Trip distance (km) 7.27 7.75 (+7)* 7.2 7.4 (+2%) (-5%)

Waiting time (min) 9.58 9.79 (+2%) 8.47 8.1 (-2%) (-17%)*

Veh. occupancy (%) 30.97 31.64 (+4%)* 22.89 23.85 (+4%) (-25%)*

Profit ($/hr) 269.48 721.34 (+168%)* 159.82 291.44 (+82%)* (-60%)*

- * means the value is with 5% significant level in the two-sample t-test.

- “opt.” stands for “optimized”, “comp.” stands for “compensation” and “veh.” stands for “vehicle”

The demand side, however, is more intriguing. On the one hand, the trip fare does increase

considerably after optimization: 89% for e-hail and 48% for pooling. On the other hand, the LOS

measured by the average passenger waiting time does not improve for either e-hail or pooling. In

fact, it even drops a little for e-hail, though the change is not statistically significant. How could

the operator get away with such a dramatic price hike without matching it with a better service? A

closer look into the demand model calibrated for Wayne County reveals that travelers are shown to

be insensitive to the monetary cost and have a strong propensity for driving (a large constant in the

utility function αmode). Evidently, the price optimizer discovers it can raise trip fare substantially

at the expense of a rather modest loss of ridership. Moreover, it does not have to attract more

drivers with a better compensation, because the pressure to raise the LOS is low. The result is a
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significant gain in profit for the operator, though it is not necessarily a desirable outcome for the

society.

We note that findings from this case study should not be seen as managerial insights to the

real practice for several reasons. First, and most importantly, we are using only 1% sample of

the population. As the LOS of ride-hail largely depends on the market scale (i.e., the density of

waiting passengers and vacant vehicles Zhang et al. [2019a]), we should not use the LOS under

1% demand and supply to estimate that under a full sample of demand and supply. Second, we

have implemented the basic trip dispatching algorithm and adopted simple behavioral models for

drivers. To better replicate the real practice, more sophisticated modeling is definitely in need.

Last but not least, parameters use in the model (e.g., value of time, reservation rate) need to be

recalibrated when implementing the simulation in another area of interest. As discussed above, the

price optimizer tends to increase trip fare because travelers in the Wayne County are insensitive

to monetary cost. This may not be the case in other places and thus a different pricing strategy

may apply. Nevertheless, results reported here demonstrate our model is capable of recognizing

the main trade-off in the pricing problem in given scenarios and producing a pricing policy that

greatly raises the profit compared to the baseline policy.

9.6.4. Extension to DRT pricing

The door-to-door demand responsive transit (DRT) service shares a similar service form and cost

structure with ride-hail, though it typically uses larger vehicles (e.g., minivans) owned by the

operator. In this section, we extend the pricing module through the same metamodel framework

and integrate it with a MATSim DRT model designed for Wayne County Kagho and Hensle [2021].

As in the previous experiments, we simulate the DRT service with and without price opti-

mization. The default fixed trip fare for DRT is set to be $2.5 per ride. The setting of passenger

demand is also the same as before, while the fleet size is fixed at 100 since drivers no longer make

the market entry choice. The waiting time function for pooling is adopted here to approximate that



227

in a DRT service, given their similarity in the passenger-vehicle matching. Since the DRT operator

own its fleet, the objective of the optimal pricing problem becomes maximizing R = fQ − cN ,

where the cost per vehicle is set to be a constant $10/hr, and the only decision variable is the trip

fare. Finally, the vehicle capacity is set at 4, which is common in practice.

Figure 9.10. Mode share with DRT service. (The error bars are plotted in the same
way as Figure 9.9)

As shown in Figure 9.10, DRT has a similarly low mode share as e-hail (around 4%) and mainly

substitutes driving. Unlike e-hail, price optimization does compromise DRT’s mode share. A better

view of the difference is provided by Table 9.3. We find the mode share drops 30% as the price

increases almost fourfold. Despite the loss in ridership, the operator’s profit grows by 21%. It

is interesting to note that the optimized price for DRT is quite close to the that in pooling (see

Table 9.2), which indicates the pricing module perceives similar characteristics in the two services.

One possible reason is we use the same waiting time function in the surrogate pricing model in

both scenarios.

The service quality improves modestly with a slightly lower rejection rate. We note that the

rejection rate is quite high because a different rejection mechanism is adopted in the DRT model.

Since vehicles cannot freely exit, the market is severely oversupplied with an occupancy rate around

5% (meaning vehicles spend the rest 95% time in the idle state). With such a low utilization rate,

the operator is doomed to lose money, and profit-maximization is not nearly enough to eliminate
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the very large deficit. The redundant vehicle supply, however, leads to a much shorter passenger

waiting time compared to those provided by the ride-hail services.

Table 9.3. Main statistics of DRT services.

(1) (2)
(2) - (1)

Fixed Optimized

Mode share (%) 4.61 3.23 (-30%)*

Trip fare rate ($/km) 0.35 1.48 (+326%)*

Rejection rate (%) 77.19 74.19 (-4%)*

Waiting time (min) 4.14 3.97 (-4%)

Vehicle occupancy (%) 5.51 3.45 (-37%)*

Profit ($/hr) -923.7 -733.58 (+21%)*

- * means the value is with 5% significant level in the two-sample t-test.

- The trip fare rate under fixed trip fare is an approximate because all trips in this scenario are

charged for $2.5.

- The computation of mode share includes passengers who choose DRT but get rejected.

9.7. Summary

In this chapter, we develop a ride-hail module in MATSim and embed an optimal pricing model into

the simulator. The ride-hail module explicitly characterizes the market entry decision and cruising

behaviors of drivers and the trip dispatching and pricing of the service operator, on top of the

mode choice of passengers readily available in MATSim. The module is is also flexible enough to

accommodate a variety of service modes, trip dispatching algorithms and vehicle cruising strategies.

The embedded price optimizer, developed based on a theoretical surrogate of the ride-hail market,

aims to maximize profit while anticipating the change in market equilibrium achieved through the

simulation. A set of case studies are constructed based on a travel demand model of Wayne County,

MI. Results from these studies are summarized as follows:
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(1) The surrogate model correctly predicts the distribution of passenger waiting time obtained

by the ride-hail simulator for different ride-hail service modes, including street-hail, e-hail

and pooling.

(2) The pricing optimizer can recognize the price elasticity of market equilibrium through the

surrogate model embedded in the simulator, following the idea of metamodel-based SBO.

As a result, it is effective in discovering pricing strategies that help boost the operator’s

profitability in all test cases.

(3) The pricing optimizer can also be implemented into DRT, an independent module in

MATSim, and show satisfactory performance in enhancing the service profitability. The

exercise suggests the surrogate pricing model may be generalized to other mobility service

and design contexts.

The simulation can be further improved in a number of directions. First, the current optimal

pricing model only produces a uniform and static pricing strategy. The next step is to consider

dynamic and spatial pricing, which requires modeling more realistic behaviors of passengers and

drivers. Secondly, the ride-hail module is capable of accommodating other design problems, such

as vacant vehicle rebalancing and trip dispatching. Thus, developing compatible surrogate model

for these problems and integrating them into a simulation framework will be another focus of the

future work. A future study could also consider a mixed-mode service, in which the operator uses

the same fleet to serve different type of trips (e.g., UberX and UberPool). Finally, the methodology

developed herein can also be used to analyze the broader impact of emerging ride-hail services on

urban transport systems. Such applications are readily available since MATSim is equipped with

a full-blown activity-based model and traffic simulation.
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CHAPTER 10

Data and parameter estimation

10.1. Data description

Most numerical experiments in this disseration are constructed based on a hisotrical TNC dataset

collected in the City of Chicago.1 The driver data are provided in a separate table.2 We select

the trip records in September 2019 with both pickup and dropoff locations inside the city, which

amounts 7.66 milion rows. Further, we select nine of 77 communities in Chicago as the sutdy area,

which cover over 70% of total trips. In addition, we only consider trips starting between 6 AM–9

PM from Monday to Thursday, during which the demand patterns are relatively stable.

To estimate total travel demand, we also download the ridership data from Chicago Transit

Authority.3 Additionally, we query traffic speed data4 during the same time period to support the

analysis in Section 7.6.

10.2. Parameter estimation

A number of parameters are estimated using the data described in the previous section. On the

demand side, the total passenger demand D0 is estimated as the sum of ride-hail and transit

ridership. The OD demand pattern is set according to the pattern revealed from the ride-hail trips.

For the analysis of the aggregate model (i.e., Chapters 4, 5 and 6), the ride-hail trip durations

τs and τp are directly estimated from the TNC data. Since the traffic speeds are endogenously

1Available at https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips

/m6dm-c72p.
2Availabel at https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Drive

rs/j6wf-834c.
3Available at https://www.transitchicago.com/ridership/
4Available at https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Congestion-E

stimates-by-Se/n4j6-wkkf

https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p
https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Trips/m6dm-c72p
https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Drivers/j6wf-834c
https://data.cityofchicago.org/Transportation/Transportation-Network-Providers-Drivers/j6wf-834c
https://www.transitchicago.com/ridership/
https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Congestion-Estimates-by-Se/n4j6-wkkf
https://data.cityofchicago.org/Transportation/Chicago-Traffic-Tracker-Congestion-Estimates-by-Se/n4j6-wkkf
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determined in the two-node model (Chapter 7), we instead estimate the trip distance dsij and dpij

between the identified CBD and peripheral area, as well as the additional travel time εs and εp. As

for the network model (Chapter 8), the trip duration between each pair of zones is first estimated

from the TNC data and then rounded to be multiples of ∆ (the length of each time interval). To

estimate the transit trip duration, we query the travel time estimate through Google MAP API

between each pair of cencus zone and then computed the average weighted by the travel demand.

On the supply side, the potential supply S0 is estimated using the TNC driver data. Finally, the

trip fare used in the numerical experiments are also estimated from the TNC data, weighted by

the travel demand in the case of aggregate and two-node models.

The other key parameters used in the numerical experiments are estimated as follows:

• The transit fare ft and relative disutility of transit ζ are set accordingly to Schwieterman

[2019].

• The vale of time ν is estimated based on the value of business trips reported in US Bureau

of Labor Statistics5, adjusted to 2019 US dollar value.

• The matching efficiency k is taken from Zhang et al. [2019a], who calibrate the e-hail

matching model using TNC data collected in Shenzhen, China.

• The pooling efficiency b is is set to be the ratio between the average matching time (taken

as 15 s) and the average total wait time (take as 5 min).

• The congestion cost per vehicle c0 is approximated based on Erhardt et al. [2019], which

estimate the launch of TNC services in San Francisco has caused about 26,000 extra vehicle

delayed hours (VDH) per day in 2016 compared to 2010. Castiglione et al. [2016] report

that over 6500 TNC vehicles operate in San Francisco during peak hour on a typical

weekday in 2016. If we assume the average number of TNC vehicles in operation is 5000

over the day, then roughly about 0.22 hr of VDH per hour can be attributed to each

vehicle. According to Cookson and Pishue [2017], an average American driver lost 99

5Available at https://www.transportation.gov/office-policy/transportation-policy/guidance-value-

time

https://www.transportation.gov/office-policy/transportation-policy/guidance-value-time
https://www.transportation.gov/office-policy/transportation-policy/guidance-value-time
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hours to traffic congestion, translated to a monetary value of $1377. Thus, we estimate

the congestion cost per TNC vehicle is $2.9/hr.

• The average reservation rate e0 used in the analysis of monopoly market is set based on the

mean hourly wage of for the occupational group “Transportation and material moving”

in the Chicago area6. That of duopoly market is set to be slightly lower to adjust for the

different supply models. In the two-node model, the minimum reservation rate is set to

be the minimum wage rate in the U.S., while the maximum is set to have the mean value

coincide with e0 discussed above under uniform distribution.

• The free-flow speed vf and jam density ρjam are taken from Mahmassani et al. [2013], who

conduct dynamic traffic simulations on a Chicago downtown road network. Specifically,

the latter is transformed from lane density to space density according to the road density

estimated in Mohareb et al. [2016].

• The aggregate road capacity Cp is estimated according to Greenshield’s model, i.e., Cp =

vfρjam/4.

• The background traffic is back-calculated from the traffic model (Eqs. (7.2a) and (7.2b))

using the observed TNC demand flow and traffic speeds. Accordingly, the traffic speed

without TNC vehicles τ0 are derived from the calibrated traffic model by setting ride-hail

vehicle flows as zero.

Finally, to determine the parameter κ in Eq. (3.18), we tested a range of values between 1

and 6. We found Â(d, l) tends to overestimate (underestimate) A(d, l) when κ = 6 (1). Also, a

value between 2 and 4 delivers similar approximation quality. Importantly, within this range, the

performance of the equilibrium model seems insensitive to the choice of κ. Based on the above

tests, κ = 4 is finally selected in numerical experiments.

6Available at https://www.bls.gov/regions/midwest/news-release/occupationalemploymentandwages chi

cago.htm.

https://www.bls.gov/regions/midwest/news-release/occupationalemploymentandwages_chicago.htm
https://www.bls.gov/regions/midwest/news-release/occupationalemploymentandwages_chicago.htm
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CHAPTER 11

Conclusions

11.1. Research summary

This dissertation studies the pooling service in the context of a ride-hail market following a bottom-

up approach. A physical matching model is first proposed to describe the interaction between

passengers and vehicles in the matching process of a pooling trip (Chapter 3). This enables us

to identify the main factors that affect the expected passenger wait time for pooling and the key

differences from other ride-hail modes. The base model is further extended to account for the

matching in a market with multiple platforms (Chapter 4) and multiple zones (Chapter 7). It is

also used to derive the likelihood that an idle driver successfully pick up a passenger after searching

in a zone for a certain time period, which plays a critical role in drivers’ search decision (Chapter 8).

The main insights drawn from the matching model are summarized as follows. Different from

traditional street-hail taxis, the passenger wait time for regular e-hail trips is subject to passenger

competition. Since passengers could be virtually matched with any vehicle at a distance, they

are competing for the same pool of vacant vehicles. Then, pooling essentially mitigates such a

competition because these passengers now require fewer vehicles. This phenomenon is captured by

the effective waiting passenger density defined in the matching. In an extreme case, if all passengers

are will to share their trips with another passenger, the passenger competition would be cut by

half. Accordingly, passengers choosing to ride alone (i.e., solo passengers) also benefit from the

reduced passenger competition.

In this dissertation, we assume each pooling trip is shared by two passengers. Then, the pooling

wait time can be divided into two parts. The first is the pickup time for the passenger closer to

the matched vehicle and the second is the detour to pick up the other passenger. It is shown that
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the pooling passengers’ competing power for vehicles is expanded. Suppose the vehicle is matched

to the closest waiting passenger. Then, a pooling passenger could be matched with a vehicle very

far away as long as their pooling peer is close enough to the vehicle. Such an advantage reflects

in the first part of the pooling wait time and increases with the distance between the two pooling

passengers. However, a larger distance between the two passengers also results in a longer pickup

detour. This leads to a unique trade-off in pooling service and makes the pooling wait time not

monotonically increase with the waiting passenger density, which is observed in regular e-hail and

solo trips.

Another interesting finding from the matching model regards the different supply modes in a

multi-platform market. In this dissertation, we study two supply modes, i.e., single-homing and

multi-homing. Under single-homing, each driver only joins one platform, whereas, under multi-

homing, drivers join all platforms if they choose to enter the market. Intuitively, multi-homing

should help improve the level-of-service (LOS) because it expands the vehicle supply. However, the

matching model tells a different story. Although passengers get access to a large pool of vehicles,

they are also facing more intense competition against passengers from other platforms. As a result,

multi-homing does not benefit the LOS at all.

The matching model serves as an important building block of the analysis of market equilibrium.

In particular, it dictates the passenger wait time that links the vehicle supply (in terms of vacant

vehicle time) to the passenger demand. Chapter 4 establishes the equilibrium model for an aggregate

ride-hail market with either single or multiple platforms. The model assumes passengers choose

among different ride-hail services and transit based on their generalized cost, which includes trip

fare, wait time and in-vehicle travel time. On the supply side, drivers decide whether to joint

market and which platform to join in the case of single-homing based on the average earning rate.

Collectively, the equilibrium is formulated as a system of equations and shown to be equivalent to a

fixed point. Accordingly, the equilibrium is proved to always exist under mild conditions and can be

easily solved through fixed point iterations. In Chapter 7, the equilibrium model is further extended
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to study a stylized two-node market. To characterize the congestion effect, a simple traffic model

is proposed so that the traffic speed is endogenously determined by the ride-hail service operations.

Again, the equilibrium can be reduced to a fixed point system and easily satisfies the conditions

for existence.

The equilibrium models developed for both aggregate market (Chapter 4) and spatial market

(Chapter 7) build a foundation for the upper-level research on the operations management of

ride-hail service. This dissertation has been focused on the platform’s optimal pricing strategies

and the impact of regulations. Chapter 5 initiates the discussion by assuming a single ride-hail

platform monopolizes the market. In particular, a gradient-based algorithm is developed to solve

the optimal pricing problem with complex and nonconvex equilibrium constraints. Our analysis of

the optimum conditions of the pricing problem reveals that serving a mixture of solo and pooling

trips could enhance the platform’s market power and thus boost its profit. This finding is confirmed

by the numerical results. Besides, a few interesting findings are also derived from the numerical

experiments. Although the minimum wage has been advocated in both academia and industry, we

found it only improves social welfare in the short-term by largely sacrificing the platform profit. In

a long run, the platform would tend to limit its driver pool. Consequently, the policy may reduce

social welfare to even below the unregulated state. Furthermore, the policy pushes the platform

to serve more solo trips and discourage pooling because solo trips more effectively consume the

extra vehicle capacity induced by the higher wage rate. Another policy tested in this chapter is a

congestion tax on each solo trip. It is found the policy considerably encourages pooling but fails to

improve social welfare. However, a joint policy of minimum wage and congestion tax could improve

both the pooling ratio and social welfare.

Chapter 6 continues to investigate the inter-platform competition. We consider two platforms

competing for both passengers and vehicles by setting their trip fare and compensation rate. The

pricing game ends up with a duopoly equilibrium characterized by a Nash equilibrium (NE) in the

unregulated case and a generalized Nash equilibrium (GNE) in the regulated one. We show the
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existence of these duopoly equilibrium states and propose algorithms to solve them. The difference

between single-homing and multi-homing is then discussed in the context of a pricing game. It

is found multi-homing is detrimental to the market because platforms would be less incentive to

increase trip fare or compensation rate to improve LOS. This phenomenon is first shown analytically

and then demonstrated in numerical experiments. Consequently, multi-homing leads to a market

failure, where passengers, drivers and platforms are all worse off. In this case, the minimum wage

policy becomes a remedy. By maintaining a sufficient vehicle supply, the policy prevents the LOS

from being deteriorated by the pricing game. In the numerical experiments, we also discuss the case

of asymmetric platforms. Interestingly, we found a platform dedicated to pooling service is more

likely to survive in a multi-homing market. Since multi-homing drivers make market entry decisions

based on the average earning rate of the entire market rather than that of a single platform, the

platform only serving pooling trips can operate at a fairly low cost. Particularly, the numerical

results show such a platform could achieve a comparable profit as that of a platform serving both

solo and pooling trips, even though its market share is much lower than the other.

Chapter 7 is devoted to examining the congestion effect of ride-hail vehicles and evaluating

different congestion mitigation policies targeted at ride-hail service operations. Specifically, three

policies are considered: (i) a trip-based fee charged on each solo trip starting or ending in CBD,

(ii) a cordon-based fee charged on each vehicle entering CBD with one or no passenger, and (iii)

a cruising cap that requires a minimum occupancy rate for all ride-hail vehicles in CBD. The

numerical results show the trip-based fee delivers the best performance. By effectively promoting

pooling, it manages to reduce traffic congestion without affecting the LOS. The cordon-based fee

demonstrates similar behaviors but trails behind in nearly all metrics. In contrast, the cruising cap

achieves the largest congestion relief at a great cost to passengers, drivers and the platform. To

maintain a high vehicle occupancy in CBD, it even pushes the platform to serve more solo trips in

CBD, which substantially worsens the traffic there.
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As the analysis of ride-hail service moves from a static aggregate market to a dynamic spatial

market, one key challenge is to model the vehicle movements driven by their own interest. Chap-

ter 8 tackles this vehicle routing problem from a game-theoretic perspective. In brief, the routing

decisions of individual drivers lead to vehicle supply in each zone, and, in turn, the demand-supply

relationship affects the expected payoff of each driver. Therefore, each driver has to choose strate-

gies based on the behaviors of all other drivers. We model individual driver’s routing behavior as

a Markov decision process (MDP). Accordingly, the collective routing behaviors are formulated as

an MDP congestion game and Wardrop equilibrium is introduced to describe the routing strategy

at equilibrium. We show that the equilibrium is equivalent to a fixed point and prove its existence

via the fixed point theorem. The model is further extended to account for the cooperative routing,

where drivers collaborate with each other to maximize the total reward. It is proved that the

optimal routing strategy can be derived by solving the Wardrop equilibrium of a non-cooperative

game with an adjusted reward function. It thus implies that vehicle coordination can be done in a

distributed manner, which is expected to save a lot of communication and computation costs. To

solve the equilibrium, an iterative algorithm is developed where the routing strategy is updated in

each iteration according to the successive average manner.

A key component of the routing model is the meeting probability, which dictates the likelihood

of picking up a passenger after search in a zone for a time period. We specify its functional forms

for street-hail and e-hail and then fit them with simulation data. The regression results indicate

that the analytical model correctly captures the main factors of the meeting probability. Two sets

of numerical experiments are then constructed using the calibrated meeting probability functions.

One is conducted on a hypothetical network to demonstrate the solution algorithm and to compare

the routing strategy in different service modes. The other is based on a real market to evaluate

the system performance and the loss of efficiency due to selfish routing in real practice. It is found

the cooperative routing does not deliver a significant improvement in system efficiency. However,

it does outperform non-cooperative routing when real demand information is not available to the
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drivers. This finding is implied from a counterfactual study of special events that induce short-term

demand peaks outside the high-demand area and during an off-peak period.

Although most findings presented in this dissertation are derived from analytical models that

rely on strong assumptions. Chapter 9 provides an option to validate these models and further

embed them into a simulation-based service design tool. Specifically, an agent-based simulation of

ride-hail service is developed based on MATSim, a widely used transportation simulation frame-

work. The simulation supports a number of features that are not available in currently open-sourced

simulation tools. Importantly, the simulation provides an interface to have some control variables

adjusted over the simulation process. A pricing module is then developed using this interface to

update the pricing strategy based on the pricing model developed in Chapter 5. The performance

of this pricing module is demonstrated through numerical experiments.

11.2. Future directions

This dissertation gives one of the first attempts to explicitly model the matching process of pooling

and integrate it into the economic analysis of ride-hail market. Hence, this work could be extended

in a number of directions.

First and foremost, the matching model is definitely not perfect yet. It is worthwhile to examine

the physical meaning of parameters defined in the model (e.g., the matching efficiency k and b) and

connect them to the detailed matching process in real practice. Besides, it is also interesting to

adjust the model to accommodate special market conditions, such as WGC. Given the difference

in the matching mechanism, it is also worth examining the economies of scale in the matching of

pooling.

Another important direction is to complete the network equilibrium model. The vehicle routing

model presented in this dissertation only considers the supply side. To study the operational

problems in a spatial market (e.g., spatial pricing), we need to complement the current model with

a demand model. Accordingly, the definition of equilibrium as well as the solution algorithm needs
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to be updated. Besides, the current model is only specified for street-hail and e-hail. An immediate

next step is thus to the meeting probability in a market serving both solo and pooling trips.

In this dissertation, ride-hail and transit are considered as alternatives of each other. However,

a number of studies have proposed an integrated mobility system, where the fixed-route transit

system takes in charge of the consolidated travel demand and the ride-hail platforms provide first-

/last-mile trips. Despite its prominent capability of reducing VMT and increasing transit ridership,

a number of questions arise from the different stakeholders’ perspectives. For instance, why would

the ride-hail platforms collaborate with the transit agency? Why would passengers choose multi-

modal trips? Would there still be sufficient vehicle supply given that a large fraction of demand

is directed to transit? These are all interesting research problems. After all, pooling is expected

to have greater potential in such a multi-modal mobility system because it becomes easier to find

someone to share part of your trip.

Last but not least, this dissertation provides a comprehensive framework to study an array

of service operation and regulation problems. On the demand side, we could study spatial and

temporal surge pricing. On the supply, one interesting research topic is the relocation incentives.

From the perspective of a regulator, a number of policies could be explored, including, but not

limited to, trip-based versus time-based congestion fee, commission cap versus minimum wage,

displaying trip destination to drivers prior to they accepting the order. It is also interesting to

develop practical tools based on the analytical models proposed in this work to support the decision-

making process in real practice.
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