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ABSTRACT

Dissertation on Economic Theory

Matthew W. Thomas

In this thesis, I study the effects of spillovers in all-pay auctions and the effects of

regulating wages and hours on the labor market. In the first chapter, I study a model of

asymmetric all-pay auctions with spillovers. In this model, players compete for a prize, and

the sunk effort players exert during the conflict can affect the value of the winner’s reward.

The link between participants’ efforts and rewards yields novel effects – in particular,

players with higher costs and lower values than their opponent sometimes extract larger

payoffs. In the second chapter, I study the problem of a labor market regulator who

knows that workers prefer to work fewer hours at their current wage, but lacks specific

knowledge of production and labor disutility. We show that moderate regulation (such as

a small minimum wage) is counterproductive in that it results in hours that exceed the

efficient quantity. We find that a combination of the minimum wage, overtime pay, and

a cap on hours is optimal in a novel robust regulatory setting where the regulator has

neither a prior nor exogenous bounds on model parameters.
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CHAPTER 1

Asymmetric All-Pay Auctions with Spillovers (with Maria

Betto)

1.1. Introduction

All-pay auctions, or contests, model strategic interactions among players who must

expend some non-refundable effort in order to win a prize. They have been applied in

diverse settings such as labor (Rosen, 1986), R&D races (Che and Gale, 1998; Dasgupta,

1986), and litigation (Baye et al., 2005). For tractability, the recent literature mostly

assumes that players’ actions affect their opponent’s probability of winning, but not the

value of the prize. Yet, in many settings, such spillover effects on the prizes themselves

arise naturally.

For example, consider the setting in Che and Gale (1998), where two lobbyists compete

in an all-pay auction to win an incumbent politician’s favor through campaign contribu-

tions. If the politician were instead a candidate running for office, then she would only be

able to provide the reward if successfully elected. In this case, it is natural to assume that

total campaign contributions increase the candidate’s chances of prevailing. Therefore,

each lobbyist’s contributions increase her opponent’s value for winning the politician’s

political favor. This raises new questions: is it better to curb one’s own contributions to

make their opponent lose interest? Or is it preferable to ramp up the competition? These

questions have been largely left unanswered.
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In other settings, spillovers may be designed. Consider an all-pay version of a stan-

dard labor tournament, in which division managers apply effort towards some production

technology in order to win a promotion awarded to the most productive division. To

maximize aggregate effort, a principal might choose to make the value of this promotion

depend on everyone’s performance in the contest. For example, if the promotion is for

a partnership or involves stock options, the prize will be increasing in the efforts of all

players. The effect that such compensation schemes have on the equilibrium has not yet

been studied.

This paper fully identifies the equilibrium strategies and payoffs in general two-player

auctions with spillovers and establishes their uniqueness.1 We consider games with (i)

complete information, (ii) deterministic prizes, (iii) at least partially sunk investment

costs, and (iv) a general dependence of each participant’s value for the prize on both

players’ actions. The key contribution of this paper lies in incorporating (iv). Indeed,

all-pay contests without spillovers were extensively studied by Siegel (2009, 2010). These

papers fully characterize equilibrium strategies and payoffs in games where contestants

incur some (partially) unrecoverable cost, such as effort, in order to compete for prizes. We

generalize the two-player, single-prize version of their model to allow for general spillovers

to affect the winner’s payoff. Our paper also has some overlap with the symmetric linear

contests with spillovers studied in Baye et al. (2012). Unlike their work, however, we

restrict attention to the all-pay case, but allow for asymmetric equilibria and nonlinear

1This paper also establishes the existence of equilibrium, though this result has already been proven;
see Olszewski and Siegel (2022), for example. Our method, however, differs substantially from the previous
literature.
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payoffs. Even in the symmetric, linear all-pay auction with spillovers, we note that no

previous paper that we are aware of has established equilibrium uniqueness.

The addition of spillovers can have a significant impact on equilibrium behavior. First,

players with strictly higher costs can have higher payoffs than those with lower costs, even

if their value functions for the prize are identical. In fact, in some settings, players could

increase their payoffs if they were allowed to commit to a schedule of costly handicaps

(See Section 1.4). Thus, trying to favor an “underdog” participant in a contest by means

of reducing their costs may very well have the opposite effect, and in fact decrease their

welfare in equilibrium. This is also important in settings in which players can commit to

increasing their costs (e.g. by selecting an inefficient technology), as they may choose to

do so.

Another contribution of this paper is the procedure to construct equilibrium strategy

profiles. The equilibrium strategy distributions of asymmetric all-pay contests have two

distinct parts: the densities and a mass point at zero. In the literature on all-pay con-

tests without spillovers, starting with Baye et al. (1996), expected payoffs are obtained

independently of the equilibrium distribution. This independence is exploited to derive

the probability mass at zero for the weaker player from the payoffs, which is then used

to compute the densities. In the presence of spillovers, however, a player’s payoffs cannot

be derived without the equilibrium strategy of their opponent. Because of this, the same

process cannot be followed. To overcome this difficulty, we introduce an algorithm that

works in exactly the opposite order: first, it solves for the density independently of the

mass point, and then uses this density to find the probability mass at zero.
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Our method capitalizes on the theory of Volterra Integral Equations (VIEs), which are

integral equations with a unique fixed-point that can be obtained via iteration. To the best

of our knowledge, these techniques have not previously been applied to the determination

of equilibrium mixed-strategy profiles.2

The game we study is general enough to encompass many different applications in

which spillovers matter. In particular, investment wars, contests with winner’s regret,

and military conflicts all fit our framework, since spillovers are key in each of these set-

tings. Our model also subsumes a natural extension to the war of attrition which, unlike

the classical model, yields a unique equilibrium on a bounded support. We are also able

to use the same framework to describe wars of attrition where rational agents face uncom-

promising (never-yielding) types with positive probability, as in Abreu and Gul (2000)

and Kambe (2019). Our approach identifies why these games admit unique equilibria

when the regular war of attrition does not: the addition of an uncompromising type in-

troduces an unavoidable cost that depends on a player’s own score, and we show this

single characteristic is sufficient in ensuring a unique equilibrium.

Finally, we extend the analysis to more than two players. The uniqueness result does

not hold when the number of bidders exceeds two. We are nonetheless able to characterize

a class of asymmetric equilibria when (appropriately normalized) costs are ranked. In this

case, we show only two players participate in equilibrium. In addition, we are able to fully

characterize the unique symmetric equilibrium for all-pay auctions with (i) more than two

identical players, (ii) multiple homogeneous prizes, and (iii) spillovers generated by the

2Few other works in Economics use VIE methods in general. We note McAfee, McMillan, et al.
(1989) and McAfee and Reny (1992) as some early examples. More recently, Gomes and Sweeney (2014)
also used VIEs, to compute the unique efficient equilibrium bidding functions in generalized second-price
auctions.
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first runner-up. This setting accommodates a broad class of games including wars of

attrition and auctions with winner’s regret with any number of players and prizes. This

extends the usefulness of our novel methodology.

The paper is organized as follows. We introduce the model, the equilibrium concept

and the assumptions in Section 1.2. We construct the equilibrium and prove its uniqueness

in Section 1.3. Section 1.4 presents sufficient conditions under which a player has a positive

expected payoff. This includes an example where a player with higher costs and lower

values receives a positive expected payoff, while her opponent receives zero. Section 1.5

contains useful results on closed forms that allows for simplified equilibrium computations

in certain special cases. We illustrate their usage in the following Section 1.6, which is

dedicated to applications. Sections 1.6.2, 1.6.4 and 1.6.3 in particular showcase closed-

form solutions. Section 1.6.1 introduces a general perturbation of the classic war of

attrition that ensures the equilibrium is unique. This perturbation admits the war of

attrition with the possibility of an uncompromising type as a special case. In Section 1.7,

we extend the analysis to contests with more than two players. Uniqueness no longer

holds generally, though we are still able to find the unique symmetric equilibrium of a

n-player, m-prize all-pay auction with spillovers. Finally, in Section 1.8, we review the

related literature and discuss the results.

1.2. Model

We focus, for now, on auctions with two participants. Extensions with more players

are considered in Section 1.7, where we show that the symmetric equilibrium of an auction
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with any number of identical players and prizes is just a transformation of the equilibrium

of the two-player case.

An asymmetric auction with spillovers is a family {I, {S̃i}i∈I , {ui}i∈I}, where

(1) I := {1, 2} is the index set of players.

(2) For each i ∈ I, S̃i := [0,∞) is Player i’s action space, i.e. her set of available

scores (or bids). We use a tilde because a later assumption will allow us to

replace the action set with a bounded interval. We let s−i,S̃−i denote the action

and action space, respectively, of Player j ̸= i.

(3) For each i ∈ I, ui : S̃ → R is Player i’s payoff, where S̃ :=
∏

i∈I S̃i.

Let s := (si; s−i) denote an arbitrary element of S̃. Then, for each (si; s−i),

we further define

ui(si; s−i) := pi(si; s−i)vi(si; s−i)− ci(si)

where (i) pi(si; s−i) denotes the probability that i wins the prize given the score

profile (si; s−i), with pi(si; s−i) = 1− p−i(s−i; si) and

pi(si; s−i) =


1 if si > s−i,

αi ∈ [0, 1] if si = s−i,

0 if si < s−i;

(ii) vi : S̃ → R+ maps each score profile (si; s−i) to Player i’s value vi(si; s−i)

from winning the prize, and (iii) ci : S̃i → R+ outputs Player i’s private cost

ci(si) given her submitted score si.
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Definition 1.1 (Two-player all-pay auction with spillovers). A two-player all-pay

auction is said to have spillovers if, for some i ∈ I and si ∈ S̃i, there exists s−i, ŝ−i ∈ S̃−i

such that

vi(si, s−i) ̸= vi(si, ŝ−i)

i.e., the prize’s value for at least one player and an action of that player is not constant

in their opponent’s action.

Accommodating spillovers is the distinguishing feature of our analysis. As is standard,

we are interested in characterizing the Nash equilibrium of these general contests.

Definition 1.2 (Best-responses). Consider a two-player all-pay auction {I, {S̃i}i∈I , {ui}i∈I}.

For each i ∈ I, let ∆S̃i denote the set of probability distributions on S̃i and let ∆S̃ :=∏
i∈I ∆S̃i. Player i’s best response set bi(G−i) to G−i ∈ ∆S̃−i is given by

bi(G−i) := argmax
s∈S̃i

∫
S̃−i

ui(s; s−i)dG−i(s−i)

Definition 1.3 (Nash equilibrium). Consider the two-player all-pay auction {I, {S̃i}i∈I , {ui}i∈I}.

A Nash equilibrium of this game is a profile G⋆ := (G⋆
i )i∈I ∈ Πi∈I(∆S̃i) where, for each

i ∈ I, G⋆
i ’s induced probability measure assigns measure one to bi(G

⋆
−i).

1.2.1. Assumptions

The following assumptions are imposed throughout whenever a two-player all-pay auction

is invoked. A.3 shows that none of these assumptions are superfluous to our results.
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Assumption 1.1 (A1.1, Smoothness). The function vi(si; y) is continuously differ-

entiable in si and continuous in y for all i ∈ I, si ∈ S̃i, and y ∈ S̃−i with si ≥ y. The

function ci(si) is continuously differentiable in si for all i ∈ I, si ∈ S̃i.

Assumption 1.2 (A1.2, Monotonicity). For all i ∈ I and si > 0, c′i(si) > 0 and

v′i(si; y) < c′i(si)

for almost all y, where v′i(s; y) := ∂vi(si; y)/∂si.

Assumption 1.3 (A1.3, Interiority). For all i ∈ I,

vi(0, 0) > ci(0) = 0 and lim
si→∞

sup
y∈S̃−i

vi(si; y) < lim
si→∞

ci(si).

Versions of assumptions A1.1, A1.2, and A1.3 are adopted by most papers in the all-

pay auction literature. A1.2 formalizes the sense in which these contests are all-pay, since

bids are costly for both the winner and the loser.3 A1.3 ensures that bids are positive and

bounded.

Note that, for each i ∈ I, there exist Ti ∈ S̃i such that Player i will never choose a

score s ≥ Ti. Thus, we can restrict the action space to Si := [0, Ti].

Assumption 1.4 (A1.4, Discontinuity at ties). For all i ∈ I and s ∈ Si ∩ S−i,

vi(s; s) > 0.

3We note that A1.2 does exclude situations where a higher score is not necessarily more costly. Siegel
(2014) discusses contests with nonmonotonic costs, allowing for competitors with head starts and the
provision performance-based subsidies. These contingencies are excluded from our analysis.
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Assumption A1.4 is a novel, yet natural assumption. It states that agents would prefer

to win a tie than lose one. It is satisfied if the prize is always valuable (i.e. winning is better

than losing), or if there are no spillovers. To see that it is never violated in the absence of

spillovers, note that Ti is less than or equal to any x satisfying vi(x; y) ≤ ci(x) for all y ≤ x.

If there are no spillovers and vi(s) ≤ 0 for some s ≤ Ti, then ci(s) ≤ 0. Therefore s = 0,

which violates Assumption A1.3. Note that this assumption is equivalent to assuming a

discontinuity in payoffs at ties because A1.1 and A1.3 guarantee that vi(s; s) ̸= 0 implies

A1.4.

1.3. Characterization of equilibrium

By standard arguments contained in the Appendix, any pair of equilibrium strategies

will be mixed with support on some interval [0, s̄], and at most one player will have a mass

point at zero. Players must therefore be indifferent between all points of their interval

support:

(1.1) ūi(G−i) :=

∫ s

0

vi(s; y) dG−i(y)− ci(s) for all s ∈ [0, s̄].

Any pair of distributions (G1, G2) that satisfy (1.1) is an equilibrium. This paper’s

main contribution to the literature is in characterizing the solution to this system of

equations, and in showing that it is unique.

Theorem 1.1. Every two-player all-pay auction has a unique Nash equilibrium

(G⋆
i )i∈I ∈

∏
i∈I(∆Si) in mixed strategies. Furthermore,

(1.2) G⋆
i (s) =

∫ s

0

g̃i(y) dy +

∫ s̄i

s̄

g̃i(y) dy,
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where g̃i(s) solves

(1.3) g̃i(s) =
c′−i(s)

v−i(s; s)
−
∫ s

0

v′−i(s; y)

v−i(s; s)
g̃i(y) dy,

s̄i solves
∫ s̄i
0
g̃i(y)dy = 1 and s̄ = mini∈I s̄i. The solution admits the following representa-

tion

g̃i(s) =
c′−i(s)

v−i(s; s)
+

∫ s

0

r−i(s; y)
c′−i(y)

v−i(y; y)
dy,

where

r−i(s; y) := −k0−i(s; y) + k1−i(s, y)− k2−i(s; y) + . . .

for k0−i(s; y) :=
v′−i(s;y)

v−i(s;s)
and kn−i(s; y), n = 1, 2, . . . , defined recursively by

kn−i(s; y) :=

∫ s

y

v′−i(s; z)

v−i(s; s)
kn−1
−i (z; y) dz.

We outline the proof here with an emphasis on the general methodology. We show in

the appendix that in any equilibrium, players choose strictly increasing, continuous mixed

strategies with common support on some interval [0, s̄], as in (1.1), and that at most one

participant can have a mass point at zero. Moreover, differentiating (1.1) yields (1.3),

which must be satisfied on [0, s̄] in equilibrium for some s̄ (Lemma A.1 in the Appendix).

The key step is recognizing that we can apply results about Volterra Integral Equations

(VIE) to show that (1.3) has a unique solution. The relevant result is summarized in the

following Lemma. For a proof, see e.g. Brunner (2017).
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Lemma 1.1. Let K(s; y) and f(s) be continuous functions. Then, the following inte-

gral equation

(1.4) g(s) = f(s) +

∫ s

0

K(s; y)g(y)dy for all s ∈ [0, s̄]

has a solution, g, unique almost everywhere. Moreover, (1.4) defines a contraction map-

ping, implying the solution can be found by iteration. This iteration reduces to:

g(s) = f(s) +

∫ s

0

R(s; y)f(y)dy,

where R(s; y) is the unique resolvent kernel defined by

R(s; y) =
∞∑

m=0

Km(s; y)

where K0 ≡ K and Km is defined recursively for m = 1, 2, . . . as

Km(s; y) =

∫ s

y

Km−1(s; z)K(z; y) dz.

Note that (1.4) is the same as (1.3) for f(s) := c′−i(s)/v−i(s; s) and K(s; y) :=

−v′−i(s; y)/v−i(s; s). So, Lemma 1.1 implies that only one pair of functions (g̃1, g̃2) solves

(1.3). Next we show that the unique solutions are densities, i.e. for each i there is an

interval [0, s̄i] where g̃i is non-negative and integrates to one.

Lemma 1.2. Assume a two-player all-pay auction where (g̃i)i∈I satisfies the indiffer-

ence condition in (1.3). Then, for each i ∈ I, there exists s̄i ∈ Si such that

(1.5)

∫ s̄i

0

g̃i(y)dy = G̃i(s̄i) = 1,
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and g̃i(s) is positive for s ≤ s̄i.

Lemma 1.2 is proven in the Appendix. We must now ensure the two densities have

the same support. The next key insight is that there is exactly one way to do this. Recall

that at most one player can have an mass point and that this mass point must be at zero

(Lemma A.1). If s̄1 = s̄2, then there is a unique equilibrium without any mass point.

Otherwise, order the players such that s̄1 < s̄2. Then, give Player 2 a mass point of

size 1− G̃2(s̄1). By construction, both players’ densities integrate to one on the common

support [0, s̄1].

The above can be performed via the following steps:

(1) Find each g̃i(s).
4

(2) Integrate each g̃i(s) to find s̄i given by equation 1.5.

(3) Take s̄ = mini s̄i and give each player an mass point at zero of size

1− G̃i(s̄),

which is positive for at most one player.

The three steps are illustrated by Figure 1.1.

Since the cumulative distribution functions are useful, we sometimes use the alternate

expression presented in Corollary 1.1.1.

Corollary 1.1.1. Consider a two-player all-pay auction where vi(s; y) is continuously

differentiable in both arguments for all i ∈ I (A1.1 guarantees differentiability in the first

4Analytically, it can be expressed as a series or in closed form when possible – see Section 1.5 – or
numerically – see Appendix A.4.
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argument). Then, we can alternatively express the unique equilibrium as

Gi(s) =
[
G̃i(si)− G̃i(s)

]
+ G̃i(s),

where

(1.6) G̃i(s) =
c−i(s)

v−i(s; s)
+

∫ s

0

∂v−i(s; y)

∂y

G̃i(y)

v−i(s; s)
dy.

The solution admits the following series representation

G̃i(s) =
c−i(s)

v−i(s; s)
+

∫ s

0

c−i(y)

v−i(y; y)

R−i(s; y)

v−i(s; s)
dy

where

R−i(s; y) := K0
−i(s; y) +K1

−i(s, y) +K2
−i(s; y) + . . .

for K0
−i(s; y) := ∂v−i(s; y)/∂y and Kn

−i(s; y), n = 1, 2, . . . , defined recursively by

Kn
−i(s; y) :=

∫ s

y

∂v′−i(s; z)

∂z

Kn−1
−i (z; y)

v−i(z; z)
dz.

We end this section with a note on parallels between our methodology and the one

used in the incomplete information, all-pay auction literature. The similarities are formal

in nature, and arise because both problems involve solving a pair of differential (in the

incomplete information case) or integral (in our case) equations.

In the incomplete information setting of e.g. Amann and Leininger (1996), the unique

equilibrium – in pure strategies – is obtained as the solution to a pair of differential

equations, which arise from taking first-order conditions of each players’ expected payoffs.

To back out the mass of players types’ that bid zero, the authors then make use of the
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Score

g̃1(s)

Score

g̃2(s)

(a) Step 1: begin with g̃1 and g̃2

Score

g̃1(s)

Score

g̃2(s)

(b) Step 2: find the cutoffs where each g̃i integrates to 1

Score

g̃1(s)

Score

g̃2(s)

mass point

(c) Step 3: enforce identical supports by transferring any excess density to zero

Figure 1.1. Steps to find equilibrium strategies for a contest with
v1(s1; s2) = 2 + s1 + 2s2, v2(s2; s1) = 1 + s2 + 2s1, c1(si) = 3s1, and
c2(s2) = 4s2.
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boundary condition where each players’ top type must, in equilibrium, choose identical

top bids.

In our setting with complete information, the unique equilibrium is instead in mixed

strategies. It is obtained as the solution to a pair of integral equations, which arise from

indifference, rather than first-order conditions: players’ payoffs must be invariant to any

choice of bids within their mixed-strategy supports (Equation 1.1). We are then able to

pin down the probability mass with which one of the two players bids zero through a

different sort of “boundary condition”– specifically, the fact that both players’ bidding

distributions’ supports must be identical, and integrate to 1 in that support.

1.4. Payoffs

Since payoffs are constant on the interval [0, s̄], each player i receives an expected payoff

of vi(0; 0)G−i(0) ≥ 0. Only one player can have a mass point (at zero), so there can be at

most one player – their opponent – with a positive payoff. In a symmetric contest, both

players receive an expected payoff of zero. Theorem 1.1 immediately implies a necessary

and sufficient condition for a player to have a positive payoff.

Corollary 1.1.2. Consider a two-player all-pay auction. Player i has a positive payoff

if, and only if, there exists an s̄i such that

∫ s̄i

0

(
c′i(x)

vi(x;x)
+

∫ x

0

c′i(y)
ri(x; y)

vi(y; y)
dy

)
dx

<

∫ s̄i

0

(
c′−i(x)

v−i(x;x)
+

∫ x

0

c′−i(y)
r−i(x; y)

v−i(y; y)
dy

)
dx = 1,

where ri(x; y), r−i(x; y) are defined as in Theorem 1.1.
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Moreover, Player i’s positive expected payoffs are given by:

[
1−

∫ s̄i

0

(
c′i(x)

vi(x;x)
+

∫ x

0

c′i(y)
ri(x; y)

vi(y; y)
dy

)
dx

]
vi(0; 0).

Corollary 1.1.2 fully characterizes the payoffs of any two-payer all-pay auction with

spillovers in terms of the model’s primitives. While it is very general, it is not easily

verifiable, justifying the use of simpler sufficient conditions.

In contests without spillovers, as pointed out in Siegel (2009, 2010), it is easy to

identify the player with a positive payoff when normalized costs (i.e. the cost-value ratio)

are ranked. That is, if, for all s > 0,

(1.7)
ci(s)

vi(s)
<
c−i(s)

v−i(s)

holds in an auction with no spillovers, then player i has a positive payoff.

This is consistent with Corollary 1.1.2. We can combine Corollaries 1.1.2 and 1.1.1 to

obtain the equivalent condition:

ci(s̄)

vi(s̄; s̄)
+

∫ s̄

0

∂vi(s̄; y)

∂y

G̃−i(y)

vi(s̄; s̄)
dy <

c−i(s̄)

v−i(s̄; s̄)
+

∫ s̄

0

∂v−i(s̄; y)

∂y

G̃i(y)

v−i(s̄; s̄)
dy

In the absence of spillovers, the integral terms are equal to zero and the condition

is implied by (1.7). In the presence of spillovers, one must impose a condition on the

integrals.
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Theorem 1.2. Consider a two-player all-pay auction where vi(s; y) is continuously

differentiable in s and y for all i ∈ I. Suppose that the following two conditions hold:

ci(s)

vi(s; s)
<

c−i(s)

v−i(s; s)
(1.8)

1

vi(s; s)

∣∣∣∣∂vi(s; y)∂y

∣∣∣∣ ≤ 1

v−i(s; s)

∂v−i(s; y)

∂y
(1.9)

for all s ∈ (0, s̄] and y ∈ [0, s]. Then, Player i has a positive payoff.

Theorem 1.2 gives an analogue of (1.7) for some contests with spillovers. The proof is

in the Appendix. Condition (1.8) is the same as (1.7), while Condition (1.9) additionally

imposes two extra requirements: (1) spillovers increase the value of the prize for Player

−i and (2) player i is less dependant on these spillovers than her opponent.

Unlike contests without spillovers, condition 1.7 is not sufficient for the conclusion

of Theorem 1.2 to hold. Example 1.1, for instance, contains a situation where a player

with strictly higher costs receives positive expected payoffs even when both players have

exactly the same value function v for the prize.

Corollary 1.2.1 shows that the negative effect of spillovers is indeed a necessary con-

dition for a reversal in contests with symmetric prize values.

Corollary 1.2.1. Consider a two-player all-pay auction with spillovers. Suppose the

players have the same value v(s; y) ≡ v1(s; y) = v2(s; y), which is continuously differen-

tiable in both arguments and c2(s) > c1(s) for all s. Then Player 2 has a positive payoff

only if

∂v(s; y)

∂y
< 0
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0 1 λ⋆ 2 3 4

Size of spillovers (λ)

P
ay
off

Player 1
Player 2

Figure 1.2. Player 2 has strictly higher costs. However Player 2 receives a
positive payoff when spillovers are sufficiently large (λ > λ⋆ ≈ 1.489).

for some s, y.

Intuitively, in these cases, a marginal increase in effort reduces the prize’s attractive-

ness to the opponent by eroding its value. Thus, a player with higher absolute costs may

nevertheless have lower marginal costs at value ranges where the value erosion inflicted

on the opponent is substantial enough to suppress her incentives to win.

Example 1.1 (Higher cost player has positive payoffs). Consider a two-player contest

with spillovers. Let c1(s) = s2, c2(s) = s, and v(s; y) := v1(s; y) = v2(s; y) be given by:

v(s; y) =
2

5
+

1

1 + eλ(2y−1)
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where λ ≥ 0 is an exogenous parameter that determines the size of the spillovers. The

support of the players strategies is contained in [0, 0.9]. On this interval, Player 1 has a

strict cost advantage.

When λ = 0, the prize is constant such that v(s; y) = 0.9. In this case, Player 1

receives a positive payoff. When we increase λ, this payoff decreases until we reach some

λ⋆ ≈ 1.489 such that both players receive a payoff of zero. For all λ > λ⋆, Player 2

receives a positive payoff despite having strictly higher costs. The payoffs of both players

are plotted in Figure 1.2.

△

The reversal in Example 1.1 occurs because marginal costs are not ranked. While

Player 1 has lower costs in absolute terms, Player 2 has a lower marginal cost for all

scores above 1/2. This causes Player 2 to place comparatively more density on these bids.

As can be seen in Figure 1.3, spillovers make the prize sharply less valuable when the

opponent bids above 1/2. So, these higher bids from player 2 damage player 1’s valuation

enough to reduce her participation.5

Example 1.1 highlights a potential problem when giving one side an advantage in a

contest. In the presence of spillovers, decreasing a player’s costs can reduce their welfare

5The idea that underdogs may be harmed by policies that handicap stronger players appear in other
settings in the literature. Kirkegaard (2013), for example, shows that in contests with three players
and incomplete information, handicapping the strongest contestant may indeed harm the weakest one.
Interestingly, the fact that marginal costs are not ranked is also key in their construction: if the weakest
player has a marginal cost advantage over low, but not high, scores, she might find it worthwhile to
participate with low bids in the absence of handicaps.
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0 0.5 s̄
s−i

v i
(s

−
i)

0 0.5 s̄
si

c i
(s

i)

c1
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si

g i
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g2
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G
i(
s i
)
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Figure 1.3. Value (upper left), costs (upper right), strategy densities (lower
left), and distributions (lower right) for Example 1.1 with λ = 4. Note that
Player 2 has a lower marginal cost for scores above 1/2 and, because of
spillovers, these scores devalue the prize for Player 1.

in equilibrium. The example also implies that it’s possible to have a contest where one

or more players would prefer to ex-ante increase their own costs.6

Whenever marginal costs are ranked, the following proposition highlights necessary

conditions for the high-marginal cost player to achieve a positive payoff. That is, the fol-

lowing conditions are necessary for a “reversal”, where the higher cost player nonetheless

obtains a positive payoff.

6Suppose both players are as in Example 1.1 except c1(s) = c2(s) = s2. Then, the game is symmetric.
So, both players have a payoff of zero. If player i increased her cost to ci(s) = s, then she would receive
a positive expected payoff, as in the example.
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Proposition 1.1. Consider a two-player all-pay auction. Suppose the players value

for the prize is given by the function v(s; y) := v1(s; y) = v2(s; y), and that c′2(s) > c′1(s)

for all s ∈ Si ∩ S−i. Then Player 2 has a positive payoff only if all of the following apply

(i) Costs are not scaled: there does not exist a 0 < λ < 1 such that c1(s) = λc2(s)

for all s.

(ii) There exist some t, z ∈ Si ∩ S−i such that

∂v(t; z)

∂z
< 0.

(iii) There exist some t, z ∈ Si ∩ S−i such that v′(t; z) > c′2(t)− c′1(t) > 0.

(iv) There exists some s ∈ Si ∩ S−i such that

max
y≤s

v′(s; y)−min
y≤s

v′(s; y) > c′2(s)− c′1(s) > 0.

(v) There exist t, z ∈ Si ∩ S−i such that

∂v(t; z)

∂t∂z
< 0,

i.e. the common value function is not weakly supermodular.

Proposition 1.1, which is proven in the Appendix, is useful for contests where the op-

ponent’s actions are detrimental to the prize’s value. It also pins down the circumstances

under which the higher cost players can win: either the marginal costs are not ranked (as

in Example 1.1) or all of the conditions 1-5 of Proposition 1.1 hold.
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1.5. Closed forms

In some cases, it is possible to express the equilibrium strategies in closed form instead

of as a series. We consider classes of prize value functions where this is possible. Section

1.6 contains applications of each of the propositions below.

Proposition 1.2. Consider a two-player contest where v′−i(s−i; y) does not depend on

y. That is, for each i ∈ I, v−i(s−i; y) = v−i
−i(s−i) + vi−i(y). Then,

(1.10) G̃i(s) =
1

f(s)

∫ s

0

c′−i(y)

v−i(y; y)
f(y)dy,

where

f(y) := exp

(
−
∫ y

0

(v−i
−i)

′(u)

v−i(u;u)
du

)
.

When spillovers are not linear, we might still be able to find closed form solutions to

equilibrium strategies. We highlight two particular cases where the VIEs in Equations

(1.3) and (1.6) can be solved using Laplace transforms.

Definition 1.4 (Laplace Transform). 7 A function f defined on R+ admits a Laplace

transform F : C → C given by

F (x) := L{f(s)} =

∫ ∞

0

f(s)e−sxds

if and only if the above integral conditionally converges. That is, it does not need to

converge absolutely.

7See Churchill (1972) for an exposition on Laplace transforms.
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We require an extra technical assumption to ensure that the integral above converges.

For simplicity, we will assume the relevant functions are of exponential order.

Definition 1.5 (Exponential order). A function f is of exponential order if and only

if there exist s′, q,M ∈ [0,∞) such that, for all s ≥ s′,

|f(s)| ≤Meqs.

Proposition 1.3. Assume a two-player contest such that (i) for some i, v′i(s; y)/vi(s; s) =: νi(s−y)

depends only on the score differential s−y, and (ii) νi and c
′
−i(s)/v−i(s; s) are of exponen-

tial order. Though, it is sufficient to assume that it admits a Laplace transform. Then,

for all s ∈ (0, s],

g̃−i(s) = L−1

 L
{

c′i(s)

vi(s;s)

}
1 + L{νi(s)}


and

G̃−i(s) = L−1

 L
{

c′i(s)

vi(s;s)

}
x+ xL{νi(s)}

 ,

where L and L−1 denote the Laplace and inverse Laplace transforms, respectively.

Proposition 1.3 can be used whenever the prize’s value depends on the margin of

victory, i.e. on the difference (s− y) between the winning bid s and the losing bid y. We

use Proposition 1.3 to solve the war of investment in Section 1.6.3.

Proposition 1.4. Assume a two-player contest such (i) for some i, (vi(s; s))
−1(∂vi(s; y)/∂y) =: ψi(s−y)

depends only on the score differential s− y, and (ii) ∂vi(s; y)/∂y and ψi and ci(s)/vi(s; s)
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are of exponential order. Then, for all s ∈ (0, s],

g̃−i(s) = L−1

 xL
{

ci(s)
vi(s;s)

}
1− L{ψi(s)}


and

G̃−i(s) = L−1

 L
{

ci(s)
vi(s;s)

}
1− L{ψi(s)}


where L and L−1 denote the Laplace and inverse Laplace transforms, respectively.

Proposition 1.4 can be used whenever the prize value is of the form vi(s; y) = v1i (s)v
2
i (s−

y). For an application where we solve an all-pay auction with winner’s regret, see Section

1.6.4.

1.6. Applications

1.6.1. War of attrition with costly preparation

The canonical war of attrition is a game between two players i = 1, 2. Each picks a score,

which represents an exit time, in [0,∞) and the player i to select the largest score si wins

an amount that is decreasing in the loser’s choice s−i and constant in her own. A player’s

payoff function is thus given by:

ui(si; s−i) =



fi(s−i) if si > s−i

ℓi(si) if si < s−i

αifi(s−i) + (1− αi)ℓi(si) if si = s−i
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where fi, ℓi are strictly decreasing, continuously differentiable functions such that fi(s) >

ℓi(s), lims→∞ ℓi(s) = −∞, ℓi(0) = 0, and αi = 1− α−i ∈ (0, 1).

The typical WoA admits multiple equilibria and therefore does not satisfy the assump-

tions in Section 1.2.1. In particular, it violates monotonicity (A1.2) and interiority (A1.3)

because the payoff of the winner is constant (and therefore non-decreasing) in the Player’s

own score.

We propose a general perturbation that selects a unique equilibrium of the WoA, and

show that such a perturbation is solvable under our framework.8

Suppose, the winner’s outcome is decreasing in her own score – even if this dependence

is minimal:

ui(si; s−i) =



fi(s−i)− εi(si) if si > s−i

ℓi(si)− εi(si) if si < s−i

αifi(s−i) + (1− αi)ℓi(si)− εi(si) if si = s−i

for any strictly increasing continuously differentiable function εi with εi(0) = 0 and

lims→∞ εi(s) > fi(0) for all i.

We denominate this variant a WoA with costly preparation, as there is some small

preparation cost ε(s) incurred to set score s – i.e. the maximum amount of time s one

wishes to participate for. For example, a company engaged in a price war might have to

build up inventory in advance or secure a costly line of credit.

8The problem of equilibrium selection in WoAs has been widely studied in the literature (Georgiadis
et al., 2022; Myatt, 2005). One way to select a unique equilibrium is to truncate the game, as in Ghemawat
and Nalebuff (1985), so that at some point in finite time both players prefer to exit. A different way
to select for an equilibrium, which we discuss in more detail, is to introduce a small probability that a
player that never exits. See, for example, Abreu and Gul (2000), Kambe (2019), and Kornhauser et al.
(1989).
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AWoA with costly preparation fits the two-player all-pay auction with spillovers where

vi(si; s−i) := fi(s−i)− ℓi(si) and

ci(si) := εi(si)− ℓi(si),

which satisfy assumptions A1.1-1.4. Therefore, this game has a unique equilibrium, and

there exists some s̄ such that no player bids above s̄. Theorem 1.1 further allows us to

characterize the equilibrium and Proposition 1.2 gives a closed form expression for the

equilibrium strategies.

As the preparation costs become small (with ε′i(s) → 0 uniformly for all s), the unique

equilibrium of a WoA with costly preparation approaches the mixed-strategy equilibrium

of the classic WoA. This is proven in the Appendix.

The WoA with costly preparation generalizes other perturbations that have a unique

equilibrium. For example, Abreu and Gul (2000) and Kambe (2019) extend the WoA to

let a rational player’s opponent be of an uncompromising type with positive probability,

where “uncompromising” describes someone who bids (or exits at) infinity. Let zi denote

the (known) probability that player i is of an uncompromising type. Against such an

opponent, a rational or compromising player loses with certainty. This is a special case

of the WoA with costly preparation where εi(s) := −(z−i/(1− z−i))ℓi(s).

This relationship sheds light on the uniqueness of equilibrium found in the WoA with

an uncompromising type. Indeed, by adding the possibility of a never-yielding opponent,

we effectively introduce an unavoidable cost that depends on the player’s own score. As
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was shown in the WoA with costly preparation, this characteristic is actually sufficient

for a unique equilibrium.

1.6.2. Offensive/defensive balance

Military strategists generally agree that warfare is naturally asymmetric: the defending

party can usually prevail with less expenditure of resources than the attacker (Clausewitz,

1982). More generally, scholars have tried to identify which factors influence the so-

called offensive/defensive balance – that is, the many elements of military technology

that generate either offensive or defensive advantages, and thus affect the probability of

war (Levy, 1984). Our model is able to capture both the defensive advantage and the

role of the prize-depleting nature of war in the offensive/defensive balance debate.

An attacker (a) invades a defender’s (d) territory, which is worth V . Both combatants

purchase costly scores in [0,∞), and the combatant with the higher score wins. A score of

si costs cisi, where ci > 0 is a positive constant, for player i ∈ I := {a, d}. Furthermore,

a’s score inflicts δasa damage to the territory. Assuming the defender also inflicts a cost of

δdsd onto the attacker does not change the analysis. If the attacker wins, it internalizes all

costs faced by the defender, as these costs effectively depleted the resources available from

the territory. Consider the following payoff functions ua : [0,∞) → R for the attacker:

ua(sa, sd) = pa(sa, sd)(V − δasa)−casa,

and the following payoff function ud : [0,∞) → R for the defender:

ud(sa, sd) = (1− pa(sa, sd))(V − δasa)−cdsd,
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where pa(·) : [0,∞)2 → [0, 1] denotes the probability that the attacker is victorious.

Accordingly, we let pa(sa, sd) = 1 whenever sa > sd, pa(sa, sd) = 0 when sa < sd, and

pa(sa, sd) = λ ∈ [0, 1] whenever sa = sd.

When we transform this model into our framework, we get ci(si) := cisi and

va(sa; sd) = vd(sd; sa) := V − δasa.

Assume it costs weakly more to attack than to defend (i.e., ca ≥ cd). The attacker

does not have any spillovers while the defender is harmed by her opponent.

We are able to leverage the linearity of payoffs in this case to obtain a closed-form

solution to the problem using Proposition 1.2. The defender receives positive payoffs if,

and only if,

s̄d =
V

ca + δa
<
V

δa

[
1− exp

(
−δa
cd

)]
= s̄a,

which holds whenever δa > 0 and ca ≥ cd. In this case,

Ga(s) = 1 +
cd
δa

log

[
caV

(ca + δa)(V − δas)

]
and Gd(s) =

cas

V − δas
.

The probability P (sa > sd|δa, ca, cd) that the attacker succeeds, in equilibrium, is given

by

P (sa > sd|δa, ca, cd) =
cd
δ2a

(
δa + ca log

[
ca

ca + δa

])
<

cd
2ca

≤ 1

2
,

where the supremum is reached as δa → 0. If the war damages the territory at least as

much as it costs the attacker to inflict such damage, (δa ≥ ca), a tighter bound is obtained:

P (sa > sd|δa, ca, cd) < 1− log (2) <
1

3
.
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Even if ca = cd, the defender is more than twice as likely to win than the attacker is.

In our model, the stronger position of the defensive party comes as a byproduct of the

inverse relationship between the attacker’s strength and the erosion of the prize’s value.

This provides an alternate explanation on why it is typically easier to defend than to

attack, something usually attributed to the high costs of maintaining long supply lines

and of keeping seized territories (Glaser and Kaufmann, 1998). The defender’s stronger

position also suggests that any positive participation cost in a war contest imposed on

the aggressor would be effective in discouraging aggression. 9

1.6.3. War of investment

Investment has long been considered as a method of committing to entry deterrence

(Dixit, 1980), while the war of attrition is a popular model of exit (Fudenberg and Tirole,

1986). Our model can combine the two attributes into a single model of competition in

continuous time, where players invest to stay in the game, but are able to recoup part

of that investment if their opponent invests less. Wars of investment can also be used to

model Cold-War style defense spending and competition between technology companies

and R&D races.

Assume two competitors, 1 and 2, invest in capital si at cost ci(si). The capital is

necessary to engage in competition and depreciates at a constant rate. Competition results

in zero profits. However, the winner is able to extract monopoly profits and benefits from

9In the more general nonlinear model, where the value of the territory after invasion is given by
vδ(sa) and the cost of choosing score si to player i is given by a continuously differentiable function
ci : [0,∞) → R+ satisfying the required assumptions A1.1 to A1.4, cd(s) ≤ ca(s) is sufficient to ensure

that G̃a(s) < G̃d(s) for all s > 0. This guarantees the defender’s payoff remains positive, with Gd(s) =
ca(s)/vδ(s).
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the remaining capital according to an increasing function vi(si − s−i). More concretely,

assume payoffs are

u(si; s−i) =



vi(si − s−i)− ci(si) if si > s−i

−ci(si) if si < s−i

αivi(0)− ci(si) if si = s−i

for any αi ∈ [0, 1).

If assumptions A1-4 are met, there is a unique equilibrium of capital investments

in mixed strategies on finite support. Moreover, the equilibrium admits a closed-form

solution by Proposition 1.3.

Example 1.2. Let vi(s; y) := eρi(s−y)ωi and ci(s) = eρis − 1, where ωi, ρi ∈ (0, 1) for

each i ∈ I := {1, 2}. Then,

g̃i(s) =
ρ−i

ω−i

so the equilibrium strategies, excluding the possible mass point at zero, will be uniform

with G̃i(s) = (ρ−i/ω−i) s.

The pair of ratios ωi/ρi is therefore a sufficient statistic for the equilibrium of this

game. Assume, without loss of generality that this ratio is weakly larger for Player 1.

Then, the maximum duration of the game is Player 2’s ratio s̄ = ω2/ρ2.

The equilibrium is fully characterized by the overall strength of the players s̄ and the

competitive balance δ := (ω2/ρ2)/(ω1/ρ1) ∈ (0, 1].
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Because the strategies are uniform, Player 1’s average commitment duration is half of

the strength. Player 2 on the other hand has a mass point of size

G2(0) = 1− δ

which decreases as the competition becomes more balanced.

Overall, the conflict is expected to last for

E[min(s1, s2)] =

∫ s̄

0

(1−G1(y))(1−G2(y))dy =
δs̄

3

total periods. The relationship between overall power and war duration is one to one. The

duration is also increasing in the competitive balance. So, a large strength differential

implies the conflict will typically be short-lived, whereas close contests can have delayed

resolutions.

△

1.6.4. All-pay auction with winner’s regret

Winner’s regret is the remorse that the winner has from spending more than is necessary

to win a contest or auction. This phenomenon has mostly been studied in the context

of winner-pay first-price, auctions (Engelbrecht-Wiggans, 1989; Filiz-Ozbay and Ozbay,

2007). We instead apply our framework to model winner’s regret in an all-pay auction.

Let each Player i ∈ I := {1, 2} choose a score in [0,∞). Suppose i values the prize

at µi(si)[1 − hi(si − s−i)], where µi(si) is the player’s objective value of the prize and

hi(si − s−i) is the share of the winnings that is unappreciated due to regret. Each player
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pays the cost ci(si) whether they win or lose. So payoffs are

u(si; s−i) =



µi(si)[1− hi(si − s−i)]− ci(si) if si > s−i

−ci(si) if si < s−i,

αiµi(si)− ci(si) if si = s−i,

for any αi ∈ [0, 1). We assume all functions are continuously differentiable with c′(s) > 0

and h′i(s) ≥ 0. Moreover, µ(0) > h(0) = c(0) = 0 and c′(s) > µ′(s) for each s, so

that lower bids are preferable even with no regret. Intuitively, the regret function, h,

should not exceed one. Though, this is not a technical requirement. We can solve for the

equilibrium with two Players using Proposition 1.4 and we can extend this equilibrium

the game with any number of identical players or prizes using Theorem 1.4.

Example 1.3. Let µi(s) := ωi ∈
(
0, 1

2

)
, hi(s) = s2/2 and ci(s) := s − s2/2 for

s ∈ [0, 1]. Then,

g̃i(s) =
e−s

ω−i

.

Without loss of generality, let ω1 ≥ ω2, implying Player 1 receives a non-negative

payoff. Player 1 will thus play a truncated exponential distribution with parameter 1 and

support [0,− log(1− ω2)]. Her expected score will be:

E[s1|ω1, ω2] = 1 +

(
1− ω2

ω2

)
log(1− ω2).

which depends negatively on her opponent’s payoff scaling factor ω2. This is lower than

in the same game without regret.
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The player with zero expected payoffs will place a mass point at zero of size:

G2(0) = 1− ω2

ω1

which is exactly the same size as if there were no regret. Player 2 will have expected score

E[s2|ω1, ω2] =
ω2

ω1

[
1 +

(
1− ω2

ω2

)
log(1− ω2)

]

which is also less than in the same game without regret. The expected sum of the two

scores score is:

E[s1 + s2|ω1, ω2] =

(
1 +

ω2

ω1

)[
1 +

(
1− ω2

ω2

)
log(1− ω2)

]

which is decreasing in ω1 and increasing in ω2. In contests such as a labor tournaments,

a large productivity differential between participants in the form of a high ω1 and low

ω2 depresses aggregate effort. This is true in a contest with no spillovers, but the partial

derivative of ω1 is larger in absolute value when there is regret. That is, the effect

is exacerbated by the fact that the stronger player is penalized for winning by a large

margin. △

1.7. More players

In contests with spillovers and more than two players, many of the results considered

here are violated. Existence still holds (see Olszewski and Siegel, 2022), but uniqueness

does not. Moreover, expected payoffs will now depend on which equilibrium is played.10

10This is also true of contests with no spillovers if monotonicity does not hold (Siegel, 2009, Example
2).
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When the normalized costs are ranked, Theorem 2 in Siegel (2010) and Theorem 2 in

Siegel (2009) show that only two players ever participate in the equilibrium of a contest

for a single prize. This effectively collapses the problem into a two-player contest.

A version of this condition holds in our setting. We still require normalized costs to

be ranked in some sense, but in a way that takes the spillovers into account.

Theorem 1.3. Assume i, j, i ̸= j, are two of the n > 2 players in a contest satisfying

assumptions A1.1 to A1.4 Assume i, j, i ̸= j, are two of the n > 2 players in a contest

satisfying assumptions A1.1 to A1.4. Suppose that Player i has a positive payoff in the

two-player contest where i and j are the participants, and that the following “ranked costs”

condition holds for all k ̸∈ {i, j}, s ∈ S̃k ,si ∈ S̃i and sj ∈ S̃j

(1.11)
ck(s)

vk
(
s; s{i,j}

) ≥ cj(s)

vj
(
s; s{i}

) ,
where sH is a vector of opponent scores that is zero for all players not in set H. Then,

there exists an equilibrium where only Players i and j participate.

To understand condition (1.11), consider the candidate equilibrium where Players i

and j compete using their two-player strategies and Player k does not participate. By

not participating, Player k earns a payoff of zero – the same payoff as Player j. Condition

(1.11) says that if she enters, Player k’s normalized cost will be higher at every point than

Player j’s already is. Therefore, her payoff from participating is at most zero (Player j’s

payoff). So, there is no profitable deviation for any player.
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Note that it is possible for k ≻ j and j ≻ k in the sense of (1.11) when spillovers

decrease the value of the prize. In this case, there are multiple equilibria where different

pairs of players participate.

In the absence of spillovers, multiple equilibria also arise with three or more players.

However, if payoffs are asymmetric, there can be at most one equilibrium where the

support of each player’s strategy is a union of intervals. Additionally, the payoffs of each

player are consistent across all equilibria. Neither of these properties hold in contests with

spillovers. Payoffs generally vary across equilibria in which different Players participate.

1.7.1. Symmetric equilibria

The same method used to find the equilibrium of two-player auctions with spillovers can

be applied more generally to find symmetric equilibria of all-pay auctions with n > 2

identical players and m < n prizes, where the value of the prize for any given participant

depends on their own score and on the score of the first runner-up (the player with the

m + 1-th highest bid). More specifically, each prize has value v(s; y) where s is the

player’s own score and y is the score of the first runner-up. When there is only one prize,

this amounts to saying that its value depends only on the two highest bids. Spillovers

depend only on the score of the runner up in many games such as the all-pay auction

with winner’s regret and any game with a structure that resembles a war of attrition. For

example, bargaining games and free riding games frequently have this structure where the

last holdout to comply delays the prize for the winners. In the case where there is one

prize, spillovers that depend on the first runner up capture the margin of victory which

is relevant in many applications including elections and R&D races.
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Formally, we define a symmetric auction with runner-up spillovers as a family {I, P, {S̃i}i∈I , {ui}i∈I}

where

(1) I := {1, 2, . . . , n} is the index set of players, with n ≥ 2.

(2) P := {1, 2, . . . ,m} is the index set of prizes, with m < n.

(3) For each i ∈ I, S̃i := [0,∞) is Player i’s action space. We let s−i denote an

arbitrary element of S̃−i :=
∏

j ̸=i S̃j. We further let s(j) denote the j-th highest

score.

(4) For each i ∈ I, ui : S̃ → R, where S̃ =
∏

i∈I S̃i.

For each s := (si; s−i) ∈ S̃, we further define:

ui(s) := pi(s)v(si, s(m+1))− c(si)

where (i) pi(s) denotes the probability that i wins a prize given the score profile

s, with
∑

i∈I pi(s) = m and

pi(s) =


1 if si ≥ s(m) > s(m+1),

1
|{k∈I:sk=s(m)}|

if si = s(m) = s(m+1),

0 if si ≤ s(m+1) < s(m);

(ii) v : [0,∞)2 → R+ maps each pair of scores (si, s(m+1)) to Player i’s value

v(si; s(m+1)) from winning the prize, and (iii) c : [0,∞) → R+ outputs Player i’s

private cost c(si) given her submitted score si.

In contrast with the two-player case introduced in Section 1.2, here we assume all

players are symmetric in the sense that they have identical value (v) and cost (c) functions.

Moreover, all prizes are equally valuable to each player i conditional on (si, s(m+1)).
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In this context, we are able to use the two-player, one prize equilibrium characterized

in Theorem 1.1 to construct the symmetric equilibria of a symmetric n-player, m-prize

all-pay auction with spillovers

Theorem 1.4. Consider a symmetric n-player, m-prize all-pay auction with runner-

up spillovers. Assume v, c satisfy assumptions A1.1 to A1.4. Let Ĝ be defined as in

Corollary 1.1.1. That is, let Ĝ be the equilibrium cumulative distribution function of a

two-player all-pay auction with spillovers:

Ĝ(s) =
c(s)

v(s, s)
+

∫ s

0

c(y)

v(y, y)

R(s, y)

v(s, s)
dy,

with

R(s, y) = K0(s, y) +K1(s, y) +K2(s, y) + . . .

for K0(s, y) = ∂v(s, y)/∂y and Kt(s, y), t = 1, 2, . . . , defined recursively by Kt(s, y) :=∫ s

y
(∂v(s, z)/∂z)(Kt(z, y)/v(z, z)) dz.

Then, the symmetric equilibrium of the n-player, m-prize all-pay auction with runner-

up spillovers is given by the unique G that solves:

(1.12) Ĝ(s) =
n−1∑

j=n−m

(
n− 1

j

)
[G(s)]j[1−G(s)]n−j−1.

To see why Theorem 1.4 holds, consider the expected payoff of a Player i who bids s:

∫ s

0

v(s; y) dĜ(y)− c(s),

where Ĝ is the probability measure of the m-th largest score out of the n − 1 players in

I \ {i}. In a symmetric equilibrium, Ĝ is the n−m-th order statistic of a sample of n− 1
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draws from the equilibrium distribution G, giving us (1.12). The right-hand side of (1.12)

is increasing in G(s), and thus may be inverted to obtain G given Ĝ.

At the same time, Ĝ is the equilibrium of a symmetric two-player auction, since each

Player’s indifference condition is identical to (1.3). This allows us to use Theorem 1.1 to

find Ĝ.

Theorem 1.4 shows that the equilibrium in the two-player case is also the symmetric

equilibrium of the game with any number of players and prizes, subject to a particular

monotone transformation. Intuitively, increasing the number of players (or decreasing the

number of prizes) reduces the scores of each player.

Asymmetric equilibria are more difficult to characterize when either spillovers or in-

complete information are present. In a world without spillovers but complete informa-

tion, the equilibrium of an n-player, m-prize contest is unique under mild conditions, and

Siegel (2010) was able to provide an algorithm for its construction. Under incomplete-

information, asymmetric equilibria with more than two players are notoriously difficult

to analyze. A general characterization is still an open question, as far as we are aware.11

1.8. Related literature and conclusions

Throughout this paper, we characterized and established uniqueness for the equilib-

rium of two-player contests using techniques from the theory of integral equations. We

then extended these results to symmetric contests with more players and prizes to char-

acterize the symmetric equilibrium. This allowed us to derive insights on equilibrium

payoffs, winners and losers, and on the importance of spillovers for applications. This

11See Kirkegaard (2013), Parreiras and Rubinchik (2010) for analyses on particular equilibria of N ≥ 3-
players all-pay, incomplete-information auctions.
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model does not require or imply that the results of a contest are known in advance. In

fact, players are always uncertain of their own victory. However, this uncertainty stems

from not knowing the resources that your opponent dedicated to the contest. The fact

that ranked normalized costs are not enough to establish dominance demonstrates how

spillovers can favor high-cost, low-value players that nevertheless have a marginal cost

advantage over their opponent when bids are high. In particular, the results in this paper

suggest several potential consequences of legal structures, conflicts and competition.

This paper is most closely related to two others. Baye et al. (2012), also considers

spillovers in two-player contests, but focuses on symmetric equilibria and linear symmetric

costs and valuations. We show that there are no asymmetric equilibria in this two player

case and extend the analysis to include asymmetric players and general functional forms

for the prize values. This allows us to establish equilibrium uniqueness, express novel

results about payoffs, and characterize the equilibrium in different applications (Sections

1.6.1 and 1.6).

The second paper that approaches a similar question to our own is Xiao (2018). The

author, however, focuses on constant prize values and separable spillovers in the cost

functions, which are independent of winning or losing. This independence significantly

restricts the equilibrium effects of the spillovers. Linearly separable spillovers on the cost

have no effect on the equilibrium, while multiplicatively separable spillovers scale the cost

of bids by an endogenous constant. This is not true when spillovers are in the prize value.

Fu and Lu (2013) also analyze two-player all-pay auctions with linear spillovers in

the costs. They assume that each contestant is a firm with a minority stake in their

opponent’s profits. As such, even when a firm loses the auction, they still get to keep a
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share of the prize. On the other hand, regardless of winning or losing, they must also

share in on the cost of effort incurred by their opponent – hence, the existence of cost

spillovers. Because these spillovers are linear and do not affect the prize of the winner,

they have no effect on the equilibrium distributions – as was also noted in Xiao (2018).

Our paper is also connected more broadly to the literature of spillovers in other auction

and auction-like frameworks. Hodler and Yektaş (2012), for example, use a linear first-

price auction with spillovers to model war. The authors refer to this as an all-pay contest,

but only the winner actually pays because of the way funds are handled.

Notably, spillovers have been given comparatively more attention in the Tullock con-

test framework. In these contests, each participants’ probability of winning is given by

pi(si; s−i) = sri/(s
r
i +s

r
−i), if (s1, s2) ̸= (0, 0), and pi(si; s−i) = 1/2 if (s1, s2) = (0, 0). Here,

r ∈ (0,∞) is a parameter that controls how much one’s probability of winning responds

to an increase in scores. The all-pay auction is a Tullock contest where r = ∞; when

r = 1 we have a Tullock lottery instead.

Chowdhury and Sheremeta (2011a) study a generalized Tullock lottery in which pay-

offs linearly incorporate one’s own effort and the effort of the rival. The paper studies

symmetric payoff and cost structures and, as is usual in Tullock-type contests, both play-

ers are able to extract positive payoffs. The authors obtain asymmetric, pure-strategy

equilibria – even when players are identical (Chowdhury and Sheremeta, 2011b). In con-

trast, our all-pay framework yields a unique symmetric mixed-strategy equilibrium when

players are identical, and expected payoffs are zero.

Damianov et al. (2018) allows for players’ efforts to produce either positive (produc-

tive) or negative (destructive) externalities in a two-player Tullock lottery. The author
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finds that spillovers can either accentuate or reduce the competitive balance between

participants, when contrasted to a comparable fixed-prize contest. However, unlike our

results, no reversal can ever occur: the “favored” player is always more likely to win and

has a higher expected payoff.12

We identify several avenues for future work. The class of contests that include

spillovers is very large and fits many applications. The fact that we are able to construct

very different contests with the same equilibrium strategies (e.g. the all-pay auction with

winner’s regret in Section 1.6.4 has the same equilibrium as a war of attrition with costly

preparation of Section 1.6.1) suggest that it might be possible for a contest designer to

induce behavior more cheaply through spillovers.

Other contest design problems where spillovers are available are also of interest. A.2

contains a brief exposition that shows that when a constrained designer that cares about

aggregate effort can reward contestants with prizes that may include spillovers, no contes-

tant will be allowed positive rents. This in particular would make computing equilibrium

strategies straightforward. Under what circumstances introducing spillovers is desirable

to a contest designer is however still an open question.

12There are many other examples of spillovers in Tullock-type contests, see e.g. Chung (1996), Hirai
and Szidarovszky (2013).
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CHAPTER 2

Regulation of Wages and Hours

2.1. Introduction

Most workers cannot freely set their hours.1 This restriction is not studied in the

theoretical literature on labor regulation, where hours are assumed to be either fixed or

chosen by workers.2

However the practice of regulation recognizes this issue. Many policies are designed

to reduce the hours of individual workers. For example, the European Union imposes a

sharp cap of 48 hours per week. In the United States, overtime pay requires companies

to pay “time and a half” (1.5 times the wage) for each hour worked above 40 hours per

week. Japan uses a lesser amount of overtime, “time and a quarter”, combined with a

sharp cap of 55 hours per week. These policies are depicted in Figure 2.1.

This paper addresses this gap in the theoretical literature by analyzing the effects of

regulation in a model in which workers and firms bargain over both wages and hours of

work.

Consider a fully-informed monopsonist firm that submits a “take it or leave it” offer

of compensation and hours to a single risk-neutral worker with convex disutility from

labor. We refer to this as the “ultimatum model” of monopsony to distinguish it from

1For example, less than 5% of hourly paid respondents to the 2016 United States General Social
Survey said that they had full control of their hours compared to 47% who responded that their employer
decides unilaterally.

2It is, however, considered outside the context of regulation. For example Manning (2005) shows
differences between the canonical model of monopsony and one where the employer chooses hours.
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the traditional model.3 In the absence of regulation, the proposed contract will maximize

total surplus, which will be entirely appropriated by the firm, and the worker’s hours will

be longer than she would like to work at the implied wage (i.e., total compensation divided

by hours of work). Suppose that a regulator maximizes a weighted sum of worker utility

and firm profits with more than half of the weight placed on the utility of the worker.

The regulator would thus implement a regulation that (1) benefits the worker and (2) is

not Pareto dominated.

We show that, when the regulator has complete information, minimum wage policies

dominate overtime pay and caps on hours. This is because workers only want to reduce

3Ultimatum bargaining is just a special case of the bargaining studied in this paper.
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Figure 2.1. Regulations for minimum total compensation for each number
of hours in the United States, Japan, and the European Union with a
normalized minimum wage. Contracts with hours and compensation above
the line are allowed. Contracts below the line are not.
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their labor if their implied wage is too low; if the wage is increased sufficiently, the problem

vanishes. Moreover, an efficient minimum wage exists where both the firm and worker

receive their preferred hours.

If the regulator has limited information about the market, he may be unable to im-

plement the efficient minimum wage. In the standard model of monopsony, which we will

refer to as the “flexible-hours” model, the worker and firm agree to each hour worked at

a wage set by the firm. This flexible-hours model yields a strictly increasing relationship

between agreed-upon hours and total surplus. As a result, any minimum wage below the

efficient minimum wage is “better than nothing” in the sense that it benefits workers and

increases total surplus above the market level. Thus, even if the regulator is unable to

implement the first-best regulation, he still prefers any reasonable lower bound on the

minimum wage to the free-market outcome.

This is not the case in the ultimatum model. If the minimum wage is binding but below

the efficient minimum wage, the firm will select more hours than is efficient in an attempt

to “claw back” the additional surplus the worker derives from higher wages. Consequently,

the minimum wage that maximizes hours actually minimizes total surplus locally.4 This

implies a suboptimal minimum wage is not necessarily “better than nothing”: total surplus

is lower, worker surplus may be lower, and the overall allocation may be strictly Pareto

dominated by that of the unregulated market.

This fragility of the minimum wage as a welfare improving policy motivates our interest

in robust regulation that always increases the worker’s utility even when the regulator’s

information is quite limited.

4It is not the global minimum. Total surplus is positive at this point, yet a sufficiently large minimum
wage will result in zero labor (and therefore zero surplus).
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We consider a framework where the regulator has no prior knowledge of production

and costs, but: (1) observes the contract that prevails in the market before regulating, and

(2) knows a specific reduction in hours at the implied wage which benefits the worker.

Given this information, it is clear that reducing hours to this specific quantity at the

current wage would make the worker better off, regardless of the true production and

disutility from labor.

However, this reduction in hours is actually weakly dominated: that is, alternative

policies exist which provide weakly greater payoffs for both the worker and firm for every

possible combination of production and cost functions and strictly larger payoffs for some

case. Two insights demonstrate this observation. First, observing the market contract

enables the regulator to bound the worker’s disutility from labor. Second, an inflexible

reduction in hours is weakly dominated by any policy that guarantees the worker enough

additional pay to compensate for the additional hours. Intuitively, if the firm is willing to

pay the worker sufficiently in exchange for an additional hour, blocking the transaction is

Pareto dominated.

The regulator is then able to use this bound on the worker’s disutility in order to

ensure that the worker is compensated enough to weakly benefit from increased hours.

The optimal policy is to combine a minimum wage, overtime pay, and hours cap calibrated

such that worker surplus will not be harmed. The minimum wage is set at the current

implied wage, overtime pay begins at a preferred reduced number of hours, and the hours

cap is set at the hours that prevailed in the market before regulation. We show that this

policy uniquely maximizes total surplus for any combination of production and worker
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Figure 2.2. The never Pareto dominated satisficing policy combines a min-
imum wage, overtime pay, and a cap on hours. This policy guarantees the
worker at least as much utility as the contract at the “kink”.

disutility functions within the class of regulations that dominate the inflexible reduction

in hours.

Policies with this described shape are common. For example, Japan and France both

combine overtime pay with a cap on hours. Overtime pay in countries with no caps on

hours, such as the United States are also fundamentally similar because there is a natural

cap on the number of hours that one can work in a week. Some real-world regulations are

plotted in Figure 2.1 and can be compared to our optimal regulation in Figure 2.2.

This paper is the first to theoretically study the effects of regulation in a setting

where hours and compensation are jointly contracted. Our analysis contributes to a large

theoretical and empirical literature on labor regulation. We additionally build on a small
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literature on the joint determination of hours and compensation. In particular, Manning

(2005) analyzes the ultimatum model of monopsony without regulation.

This study also joins a growing literature on robust contracting. Our informational

setting shares key elements with Carroll (2015), which considers a robust moral hazard

problem where the principal: (1) knows at least one of the agent’s available actions and

(2) obtains an optimal contract which exploits the alignment of incentives between the

principal and agent. In our setting, the regulator instead: (1) knows one regulation which

benefits the worker, instead of an action, and (2) obtains an optimal regulation which

exploits efficiency,5 which is analogous to aligned incentives in Carroll’s context.6

The paper is organized as follows. In Section 2.2 we restate some standard results

about monopsony to frame our results. We present the formal model in Section 2.3. In

Section 2.4, we study the problem of regulation with complete information. The case

where the regulator lacks information about production and disutility is presented in

Section 2.5. We explore extensions in Sections 2.6 (more general bargaining), 2.7 (more

workers), and 2.8 (information manipulation). In Section 2.9, we review the related

literature and discuss the results.

2.2. The standard, “flexible-hours” model of monopsony

To illustrate our approach and the significance of our results for regulation, we present

the model of monopsony that is common in the literature. We then show how our model

differs from this standard model and how this difference affects the optimal regulation.

5That is, bargaining between the worker and firm is Pareto optimal under the constraints of the
regulation.

6Our framework can be applied to any robust delegation context. See Chapter 3.
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The canonical Stigler (1946), henceforth flexible-hours, model of monopsony under a

minimum wage is the standard model used in the literature. A monopsonist firm (it)

contracts with a worker (she) to obtain hours of labor, ℓ, in exchange for a transfer, τ .

From any given contract (ℓ, τ), the firm receives profits, f(ℓ) − τ , where f is a strictly

concave, differentiable production function. The worker receives payoff τ − c(ℓ), where

c is a strictly convex, differentiable, and increasing labor cost function. Without loss,

f(0) = c(0) = 0. We additionally make the standard assumption that c′(x)x is convex

(i.e., marginal expenditure is increasing).7 The firm makes some quota of employment

hours, ℓ̄, available to the worker at an hourly wage, w ≡ τ/ℓ, and the worker then chooses

to provide ℓ ≤ ℓ̄ hours of labor.

In the absence of a minimum wage, the firm equates marginal productivity and mar-

ginal expenditure, yielding ℓm work hours – a quantity notably below the efficient, surplus

maximizing, amount (see Figure 2.3). The introduction of a minimum wage w̄ then im-

proves total welfare by helping increase labor, as the higher compensation incentivizes

workers to supply longer hours. This movement happens up until the worker is paid her

marginal productivity, or w̄∗ ≡ c′(ℓ∗) = f ′(ℓ∗). Only beyond this level do we have that

further increases in w̄ become counterproductive. This relationship between the minimum

wage and labor (i.e., the labor response curve, L) is plotted in Figure 2.4.

Note that, in this model, the minimum wage that maximizes labor among any set

of minimum wages also maximizes total surplus in that set. This suggests that, if the

introduction of a minimum wage has increased the number of hours worked, then the total

7This assumption is important for the standard model of monopsony. Without this assumption,
Loertscher and Muir (2021) show that a menu of stochastic wages may be optimal for the firm. The
assumption is not relevant to the ultimatum model presented in Section 2.3 or the more general model
in Section 2.6.1.
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Figure 2.3. Labor supply, demand, and equilibrium under flexible-hours
monopsony. The equilibrium labor hours occur at the intersection between
marginal expenditure and labor demand.

surplus has inevitably improved – even if no other information about costs and production

processes is available. This is a powerful relationship in terms of policy evaluation, and

offers a clear guide to regulators considering introducing or altering the minimum wage.

However, as we will show next, this intuition depends crucially on accepting that the

worker has total flexibility in reducing her own hours. Without this supposition, the

conclusions may be reversed.

2.3. Model

We adapt the model in Section 2.2 to the setting where the firm chooses hours. The

players, payoffs, and definitions remain the same.

Contracts take the form (ℓ, τ) ∈ R2
+ where ℓ is hours of labor and τ is a gross payment

to the worker. The worker’s wage is defined as the average payment per hour: w ≡ τ/ℓ.
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Figure 2.4. Plot of labor response curve, L for the flexible-hours model.
For any minimum wage w̄ ∈ (c′(ℓm), c′(ℓ∗b)), the worker is employed for a
quantity of hours between the market employment and the efficient level
of employment (the inverse of the marginal cost). The minimum wage
w̄∗

b = c′(ℓ∗b) = f ′(ℓ∗b) implements efficient employment. Labor is decreasing
in the minimum wage for wages above w̄∗

b because the firm’s limit on work
hours is binding.

Players. The firm’s payoff from a contract (ℓ, τ) is

π(ℓ, τ) ≡ f(ℓ)− τ.

Failing to hire the worker results in no labor or payment.

The worker’s utility function is u(ℓ, τ) ≡ τ − c(ℓ) where τ is the gross payment from

the firm for the worker’s labor and c is the worker’s disutility from labor. The worker’s

outside option is no labor or payment.
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Figure 2.5. An example of a minimum wage policy. Only contracts above
the lines are allowed.

Without loss of generality, f(0) = c(0) = 0. As in Section 2.2, we assume f, c are

differentiable, c is weakly increasing and strictly convex, f is strictly concave, and there

exists a t > 0 such that f ′(t) < c′(t).

Regulation. A regulator imposes a regulation to constrain the contracting space. A

regulation a function, ϕ : R+ → [0,∞], such that the worker and firm are restricted to

contracts with τ ≥ ϕ(ℓ). We require that ϕ is weakly convex and ϕ(0) = 0. In other

words, the contracting space is a convex set which contains the disagreement point. This

allows for policies such as overtime pay and caps on hours. However, it does meaningfully

constrain the regulator and prevents full surplus extraction. Convexity of the bargain-

ing space is a standard assumption in the bargaining literature. If the bargaining set

were not convex, then there would exist two permitted contracts such that some convex

combination of them is not allowed. In this case, a real-world firm might find it optimal
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to switch between the two permitted contracts in alternating weeks to approximate the

disallowed contract. That is, the firm may rest workers in alternating weeks. We prevent

this perverse behavior by requiring convexity.

If ϕ(ℓ) ≡ 0 for all ℓ, there is no regulation. A linear regulation, ϕ(ℓ) ≡ w̄ℓ, is a

minimum wage regulation with minimum wage, w̄.

Bargaining. The firm makes an ultimatum offer to the worker in order to maximize

profits. The worker can accept or reject the offer. Rejecting the offer yields disagreement

point (0, 0).

Timing. The game has three stages.

(1) The regulator announces regulation ϕ.

(2) The firm offers a contract, (ℓ, τ).

(3) The worker can accept or reject the contract to obtain (0, 0).

2.4. Results with complete information

In this section, we find the equilibrium, identify the optimal regulation, and show how

it differs from the flexible-hours model.

This ultimatum employment game has a unique subgame perfect Nash equilibrium.

The equilibrium contract solves the firm’s profit maximization problem:

(2.1) max
ℓ,τ

f(ℓ)− τ s.t. τ ≥ c(ℓ) and τ ≥ ϕ(ℓ).

If ϕ is identically zero (i.e., there is no regulation) the firm extracts all surplus from the

worker and labor hours are efficient. The wage is equal to the worker’s average cost,
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wm = c(ℓ∗)/ℓ∗, implying the worker would prefer fewer hours (since c is convex, average

costs are lower than marginal costs). In this case, we say that the worker is overworked.8

We say a regulation is redistributive if it is better for the worker than no regulation.

The following proposition demonstrates that for every redistributive regulation, there is a

minimum wage that gives the worker at least as much utility while maintaining the same

total surplus.

Proposition 2.1. Let ϕ be a redistributive regulation that implements ℓ. There exists

a minimum wage, w̄, that implements ℓ such that w̄ℓ ≥ ϕ(ℓ).

Because of this, minimum wages are without loss of optimality for any fully informed

regulator with an objective that is increasing in τ . As a result, we can restrict attention

to minimum wage regulations and compare the effects of the minimum wage in this model

to those in the flexible-hours model in Section 2.2.

The labor response curve, L, for the ultimatum model is shown in Figure 2.6. The

curve for the flexible-hours model (plotted in Figure 2.4) has the same shape. In fact, the

two curves are indistinguishable, as the following proposition demonstrates.

Proposition 2.2. A flexible-hours model with cost, cb, generates the same labor re-

sponse curve as an ultimatum model with the same production function and cost, cu,

where

cu(x) ≡ c′b(x)x.

8In the more general model presented in Section 2.6, overwork in the absence of regulation is a
necessary and sufficient condition for the market to behave similarly to the ultimatum model in response
to regulation.
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Figure 2.6. Plot of labor response curve, L for the ultimatum model. It has
the same shape as the flexible-hours model in Figure 2.4. However, for any
minimum wage w̄ ∈ (c(ℓ∗u)/ℓ

∗
u, c

′(ℓ∗u)), the worker is employed for a number
of hours that exceeds the efficient quantity. Therefore, the minimum wage
that maximizes hours does not implement an efficient allocation.

This is significant because empirical studies on labor regulation generally focus on

measuring some part of the labor response curve – often the change in labor after an

increase in the minimum wage. Suppose that the regulator has access to the entire labor

response curve but not f , c, or even whether this labor response comes from the flexible-

hours or ultimatum model. Due to Proposition 2.2, the regulator cannot identify the true

model without knowledge of the worker’s disutility from labor, c. For any labor response

curve, L, and production function, f , there is one disutility, cb, that is consistent with

the flexible-hours model and another disutility, cu, that is consistent with the ultimatum

model.
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Of course, the two models are not equivalent for the worker, and the efficient mini-

mum wage is markedly not the same. The unregulated market is already efficient in the

ultimatum model: thus, a minimum wage that increases hours increases them above the

efficient level. This is undesirable, an assertion we emphasize in the below claim.

Proposition 2.3. The efficient minimum wage for the flexible-hours model with cost

cb (i.e., w̄
∗
b) locally minimizes welfare in the ultimatum model with cost cu.

Proposition 2.3 implies that a regulator who assumes the flexible-hours model and has

sufficient knowledge of L to implement the efficient minimum wage under this model will

locally minimize welfare in the case that the ultimatum model holds.

The next claim further demonstrates why knowledge of the labor response curve is

not sufficient for optimal regulation.

Proposition 2.4. For any labor response curve, L:

• cb(x) < cu(x) ∀x > 0;

• w̄∗
b < w̄∗

u;

• ℓ∗b > ℓ∗u; and

• for i ∈ {b, u} and all w̄ ≥ 0,

d [f(L(w))− ci(L(w))]

dw

∣∣∣∣
w=w̄

> 0 =⇒ d [f(L(w))− c−i(L(w))]

dw

∣∣∣∣
w=w̄

< 0.

The last point of Proposition 2.4 implies that total surplus is always weakly decreasing

in the minimum wage in at least one of the two models. This poses an impossibility for

robust regulation using L. However, there is information other than L that can be used
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to regulate. For example, if the regulator knew that the worker was overworked, he could

reject the flexible-hours model.

Overwork information is not only useful for determining the true model, but also for

finding whether the current minimum wage is above or below the efficient one.

Proposition 2.5. For i ∈ {b, u}, w̄∗
i is the largest minimum wage such that the worker

is not underworked in model i.

Proposition 2.5 demonstrates the importance of worker preferences in regulating labor.

Knowing the actual level of labor that is achieved at each minimum wage is neither

necessary nor sufficient for determining the efficient minimum wage. However, knowing

whether the worker wants to work more or fewer hours at each minimum wage is sufficient.

2.5. Robust regulation

Suppose the regulator does not observe production or costs. Moreover, he has no prior

over these objects. Instead, the regulator observes: (1) the equilibrium contract, (ℓ0, τ0),

that prevails in ultimatum bargaining prior to the regulation and (2) reduced hours ℓ̂ < ℓ0

that the worker would prefer at the average wage, w0 ≡ τ0/ℓ0.

Therefore, the regulator is aware of a contract, (ℓ̂, w0ℓ̂), which the worker prefers to

the status quo. Because the contacting space is convex, the regulator knows that both

parties prefer this contract to the disagreement point (i.e., the point is feasible). We are

interested in regulations that are satisficing in that they guarantee at least as much utility

for the worker as this contract.
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Definition 2.1 (Satisficing). A regulation is satisficing if

inf
(f,c)∈I(ℓ0,τ0,ℓ̂)

(τ − c(ℓ))− (w0ℓ̂− c(ℓ̂)) ≥ 0

s.t. (ℓ, τ) = argmax
l,t≥max{ϕ(l),c(l)}

f(l)− t

where I(ℓ0, τ0, ℓ̂) is the set of possible M, f, c that are consistent with ℓ0, τ0, ℓ̂.

The satisficing property ensures that the worker weakly benefits from the market over

the outcome where (ℓ̂, w0ℓ̂) is the only contract allowed. A cap of ℓ̂ hours combined with

a minimum wage of w0 is clearly satisficing, but it is not the only such policy. There is

an opportunity for improvement through refinement.

Intuitively, because the worker wants to work fewer hours at her current wage, our

regulation will reduce the hours that the worker works. However, because ultimatum

bargaining is efficient in the absence of regulation, this reduction in hours is inefficient.

Therefore, we want to minimize the reduction in hours while still satisfying the worker.

This is formalized in the following definition.

Definition 2.2 (TS maximizing). Policy ϕ is TS maximizing if for all f, c such that

f ′(ℓ0) = c′(ℓ0) and c(ℓ0) = τ0 and all satisficing ψ,

f(L[ϕ])− c(L[ϕ]) ≥ f(L[ψ])− c(L[ψ])

We are interested in finding an element within the class of satisficing policies which

has the greatest total surplus in every state. It is not obvious that such a policy exists.
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Indeed, in many settings, such a regulation would not exist. The following theorem shows

that this policy does exist in our setting and guarantees that it is unique.

Theorem 2.1. There is a unique TS-maximizing satisficing policy. It is

ϕ∗(x) ≡



w0x if x ≤ ℓ̂

w0ℓ̂+
w0ℓ0
ℓ0−ℓ̂

(x− ℓ̂) if ℓ̂ < x ≤ ℓ0

∞ if x > ℓ0.

Theorem 2.1 establishes that the unique TS maximizing, satisficing regulation, ϕ∗,

is a combination of a minimum wage, overtime-pay, and a cap on hours. This regula-

tion is plotted in Figure 2.2. Each of the three policies are very common and a similar

combination of the three exists in Japan and France.

2.6. More general bargaining

2.6.1. Model

We now assume that the contract (ℓ, τ) solves the following optimization problem:

max
ℓ,τ

M(f(ℓ)− τ, τ − c(ℓ)) s.t. τ ≥ ϕ(ℓ)

where M : R+ × R+ → R is the bargaining objective. The ultimatum bargaining model

studied in 2.4 is the special case where M(x, y) ≡ x. We make the following assumptions

about M .
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Assumption 2.1 (Weak monotonicity). For all x, y, x′, y′ ∈ R+ such that x′ > x and

y′ > y,

M(x′, y′) > M(x, y).

Assumption 2.2 (Strict quasiconcavity). For all x, y, x′, y′ ∈ R+ such that x′ ̸= x

and y′ ̸= y and for all λ ∈ (0, 1),

M(λx′ + (1− λ)x, λy′ + (1− λ)y) > min{M(x, y),M(x′, y′)}.

Assumption 2.3 (Continuity). The function, M , is continuous in both arguments.

These assumptions admit the most popular bargaining models including ultimatum

bargaining, asymmetric Nash bargaining, egalitarian bargaining, and the more general

proportional bargaining of Kalai (1977).9

2.6.2. Comparative statics results

In this section, we show that ultimatum bargaining typifies the properties of other bar-

gaining protocols. Because of this, the claims established in Section 2.4 for minimum

wage regulation in the ultimatum framework extend to this more general setting.

Proposition 2.1 extends to this setting without modification. So, minimum wage

regulations are still without loss of optimality for a regulator with complete information

and an objective function that is strictly increasing in τ .

9Our results also extend to the choice theoretic bargaining of Peters and Wakker (1991).
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In the analysis of ultimatum bargaining in Section 2.4, a minimum wage of zero and

the minimum wage w̄∗ ≡ f ′(ℓ∗) are both efficient regulations in that they both implement

the efficient quantity of hours, ℓ∗. This remains true in the general case.

However, in the ultimatum model: (1) the worker is overworked without regulation

and (2) the efficient minimum wage, w̄∗, is always redistributive. For a general bargaining

protocol, it may be that neither holds. The following proposition demonstrates that one

cannot hold without the other.

Theorem 2.2. Let ϕ be an efficient regulation that implements τ . The worker is

overworked under ϕ if and only if there exists another efficient regulation ψ such that

ψ(ℓ∗) > τ .

In other words, the worker is overworked under an efficient regulation if and only if

there is another efficient regulation which redistributes more to the worker. Overwork,

which is the setting under which a regulation such as overtime pay is appealing, is also a

necessary and sufficient condition for there to exist some “costless” redistribution in the

sense that we can redistribute to the worker without sacrificing any total surplus.

For the forward direction, if the worker is overworked, her wage is less than her mar-

ginal cost of labor, which is precisely the efficient minimum wage, w̄∗ ≡ f ′(ℓ∗) = c′(ℓ∗).

Intuitively, the proof of the converse uses the fact that any bargaining protocol re-

sponds to regulation in a manner similar to the ultimatum model when labor hours are

efficient. Because marginal productivity and marginal disutility are equal at the efficient

labor, hours are an almost perfect substitute for the constrained transfers. Because of

this, if a regulation ψ is redistributive and ψ′(ℓ∗) ̸= f ′(ℓ∗), some total surplus will always
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be traded off to increase firm profits. By convexity, a regulation with ψ′(ℓ∗) = f ′(ℓ∗)

cannot result in a wage that exceeds the workers marginal productivity, f ′(ℓ∗).

Two convenient choices of ϕ in Theorem 2.2 allow us to obtain new results and provide

intuition for the theorem. First, if we set ϕ to zero, we obtain the following corollary.

Corollary 2.2.1. There exists an efficient, redistributive regulation if and only if the

worker is overworked under the free-market contract.

Corollary 2.2.1 is a special case of Theorem 2.2 which uses the fact that the free-market

is efficient. Using the efficient minimum wage w̄∗ as ϕ yields a second corollary.

Corollary 2.2.2. If ψ is an efficient, redistributive regulation, then ψ(ℓ∗) ≤ f ′(ℓ∗)ℓ∗.

Corollary 2.2.2 implies that w̄∗ maximizes worker utility in the class of efficient policies.

Corollary 2.2.2 follows from the fact that f ′(ℓ∗) is equal to (and thus not less than) c′(ℓ∗).

This characterizes the maximal efficient, redistributive minimum wage. However, we have

yet to describe the effects of any other minimum wages.

In Section 2.4, any minimum wage between the free-market wage and f ′(ℓ∗) implement

labor that exceeds the efficient quantity, ℓ∗. This holds true in the general model when

the worker is overworked in the absence of regulation. Otherwise, these minimum wages

are below the free-market wage and thus do not bind.

In the case of overwork, the shape of the labor response curve is similar to that of the

ultimatum model. That is, overwork is necessary and sufficient for the market to behave

“like ultimatum bargaining” in response to regulation.
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Corollary 2.2.3. Let L : R+ → R+ define the level of labor at each minimum wage

and w0 ∈ [c(ℓ∗)/ℓ∗, c′(ℓ∗)) be the wage in the absence of regulation. Then, the labor

response function, L, is continuous and

L(x)



= ℓ∗ if x ∈ [0, w0]

> ℓ∗ if x ∈ (w0, f
′(ℓ∗))

= ℓ∗ if x = f ′(ℓ∗)

< ℓ∗ if x ∈ (f ′(ℓ∗), f ′(0))

= 0 if x ≥ f ′(0).

First, labor is constant when the minimum wage is too low to bind. Second, hours

exceed the efficient quantity when the minimum wage is between the market wage and

w̄∗. Therefore, the minimum wage that maximizes labor is inefficient. Finally, w̄∗ is the

unique efficient, redistributive minimum wage. So, any larger minimum wage implements

fewer hours than is efficient. Therefore, the analysis in Section 2.4 is relevant for any

bargaining protocol that results in overwork.

The general setting allows for new effects on the surplus of workers and firms. For

example, it is possible for a minimum wage below w̄∗ to strictly decrease the surplus of

both the worker and the firm.

Example 2.1 (Egalitarian bargaining). The worker and firm split the market surplus

evenly. So, the market is described by

max
ℓ,τ

min{f(ℓ)− τ, τ − c(ℓ)} s.t. τ ≥ ϕ(ℓ).



71

Let −c be “more concave” than f on [0, ℓ∗] in the sense that f(ℓ∗)− f ′(ℓ∗)ℓ∗ < c′(ℓ∗)ℓ∗ −

c(ℓ∗). This condition is necessary and sufficient for overwork.

In the absence of regulation, τ0 = f(ℓ∗)+c(ℓ∗)
2

and profits and worker utility are both

equal to half the maximum total surplus, f(ℓ∗)−c(ℓ∗)
2

.

By assumption, the worker is overworked in equilibrium. As the minimum wage

increases above the free-market wage, w0 = f(ℓ∗)+c(ℓ∗)
2ℓ∗

, labor will increase to keep profits

and worker utility equal. This will occur until the minimum wage reaches f ′(z) where z

is the smallest solution to f(z)+c(z)
2z

= f ′(z). For all minimum wages between w0 and f
′(z),

the worker’s welfare and the profits of the firm are lower than in the unregulated state.

This is because each is taking the same share of a smaller pie.

For any minimum wage above f ′(z), the worker obtains more than half of the total

surplus. So, labor is set to maximize profits. As a result, the equilibrium contract at each

minimum wage is the same as in the ultimatum model. △

Example 2.1 shows the effect that minimum wages below the efficient minimum wage

can have on the market. If a binding minimum wage benefits the worker, it is because it

increases the worker’s share of total surplus enough to compensate for the weak reduction

in total surplus imposed by the policy.10 In Example 2.1, any minimum wage in (w0, f
′(z)]

reduces total surplus without affecting the worker’s share. As a result, both the worker

and firm are strictly worse off under these regulations.

10It is a strict reduction for any minimum wage other than f ′(ℓ∗).



72

2.6.3. Optimal regulation

We now apply the results of Section 2.6.2 to the problem of a regulator. We restrict

attention to settings where the worker is overworked in the absence of regulation. By

Theorem 2.2, this is the same as restricting attention to the setting where the worker’s

wage is below her marginal cost.

2.6.3.1. Regulation with complete information. Suppose that the regulator knows

f , c, and M and maximizes a weighted sum of worker utility and firm profits with more

weight on workers. That is, the regulator’s objective is to choose the ϕ that maximizes

αu(ℓ, τ) + (1− α)π(ℓ, τ) = α(τ − c(ℓ)) + (1− α)(f(ℓ)− τ)

for α ∈ (0.5, 1]. The case where α → 0.5 is of special interest. In this case, the regulator

is not willing to sacrifice any total surplus to improve the welfare of the worker.

In this setting, Proposition 2.1 guarantees that any regulation can be weakly improved

upon with a minimum wage. With this, it is straightforward to find an optimal policy.

Theorem 2.3. Any minimum wage in w∗(α) where

w∗(α) ≡ argmax
w≥f ′(ℓ∗)

α(wℓ− c(ℓ)) + (1− α)(f(ℓ)− wℓ)

s.t. ℓ = argmax
l

M(f(l)− wl, wl − c(l))

is a redistributive optimal regulation for α ∈ (0.5, 1].
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The assumption that the worker is overworked ensures that the optimal minimum

wage is redistributive. If the worker is not overworked, minimum wage regulation is still

without loss of optimality. However, it may be optimal not to regulate.11

Note that Theorem 2.3 does not imply that the optimal minimum wage is unique.

This is further explored in Example 2.2.12

Example 2.2. Suppose that bargaining is proportional as in Kalai (1977) with pro-

portion β ∈ [0, 1] of total surplus going to the worker. The equilibrium contract solves:

max
ℓ,τ

min{(1− β)(f(ℓ)− τ), β(τ − c(ℓ))} s.t. τ ≥ ϕ(ℓ).

Note that this admits ultimatum bargaining (β = 0) and egalitarian bargaining (β = 0.5)

as special cases.

Let −c be sufficiently “more concave” than f on [0, ℓ∗] in the sense that (1−β)(f(ℓ∗)−

f ′(ℓ∗)ℓ∗) < β(c′(ℓ∗)ℓ∗ − c(ℓ∗)). This condition is necessary and sufficient for overwork.

Because the free-market is efficient, regulation cannot increase total surplus. So, any

redistributive regulation must give the worker more than β of the total surplus. Therefore,

as in Example 2.1, labor is chosen to maximize profits in any redistributive regulation.

Because the worker is overworked in the absence of regulation, the minimum wage

f ′(ℓ∗) is redistributive. Therefore, labor is chosen to maximize profits for all minimum

wages greater than or equal to f ′(ℓ∗).

11For example, if the worker chooses both hours and pay, the worker will extract all of the surplus in
the market. The free-market outcome is clearly optimal in this case.

12Example B.1 (in the Appendix) demonstrates another sort of multiplicity where there are multiple
workers and different wages benefit different workers.
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Therefore, the equation in Theorem 2.3 is

argmax
w≥f ′(ℓ∗)

α(wℓ− c(ℓ)) + (1− α)(f(ℓ)− wℓ)

s.t. ℓ = argmax
l

f(l)− wl.

The constraint simplifies to w = f ′(ℓ). So, any optimal minimum wage satisfies w∗(α) =

f ′(ℓα) where

(2.2) ℓα ∈ argmax
l<ℓ∗

(2α− 1)f ′(l)l + (1− α)f(l)− αc(l).

△

There may be multiple maxima that satisfy (2.2). Consequently, more assumptions

are required to ensure that the optimal minimum wage for a given α is unique. In the

case of Example 2.2, it is sufficient to assume that f ′(x)x is concave.

2.6.3.2. Robust regulation. The TS-maximizing, satisficing policy introduced in Sec-

tion 2.5 does not necessarily exist in a general bargaining environment. However, it is

possible to find a policy that is both satisficing and never Pareto dominated by any other

satisficing policy. That is, we replace TS-maximizing with the weaker notion of never

Pareto dominated. We show in Chapter 3 that this rule works in a general delegation

environment. In this section, we show that it works in the specific environment of this

paper.
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Definition 2.3 (Satisficing). A regulation is satisficing if

inf
(M,f,c)∈I(ℓ0,τ0,ℓ̂)

(τ − c(ℓ))− (w0ℓ̂− c(ℓ̂)) ≥ 0

s.t. (ℓ, τ) = argmax
l,t≥ϕ(l)

M(f(l)− t, t− c(l))

where I(ℓ0, τ0, ℓ̂) is the set of possible M, f, c that are consistent with ℓ0, τ0.

Definition 2.4 (Never Pareto Dominated). A regulation, ϕ, is Never Pareto Domi-

nated (NPD) by ψ if there does not exist an (M, f, c) ∈ I(ℓ0, τ0, ℓ̂) such that the outcome

of ϕ Pareto dominates the outcome of ψ.

Because bargaining satisfies weak Pareto, a more flexible regulation allowing more

hours in exchange for compensation is NPD by the sharp cap on hours in any state of the

world. However, there are many states of the world under which the more flexible policy

Pareto dominates the cap.

We are interested in finding a policy that is both satisficing and NPD by any other

satisficing policy. The following theorem identifies such a policy and guarantees that it is

unique.

Theorem 2.4. There is a unique policy which is satisficing and NPD by any satisficing

regulation. It is

ϕ∗(x) ≡



w0x if x ≤ ℓ̂

w0ℓ̂+
w0ℓ0
ℓ0−ℓ̂

(x− ℓ̂) if ℓ̂ < x ≤ ℓ0

∞ if x > ℓ0.
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Theorem 2.4 establishes that the unique NPD satisficing regulation, ϕ∗, is a combina-

tion of a minimum wage, overtime-pay, and a cap on hours. The regulation is identical to

that of Theorem 2.1. This regulation is plotted in Figure 2.2. Each of the three policies

are very common and a similar combination of the three exists in Japan and France.

The NPD satisficing regulation is the most flexible satisficing policy as it is the point-

wise minimum of all satisficing policies.13 Intuitively, the NPD satisficing regulation allows

(ℓ̂, w0ℓ̂) as well as all contracts which the regulator knows that the worker prefers. This

knowledge comes from the fact that the regulator can bound the worker’s disutility from

labor. The bound is obtained from the worker’s individual rationality constraint at the

initial contract, (ℓ0, τ0). That is, the regulator can bound the amount of additional income

that the worker needs to work additional hours because he saw the worker work these

hours in exchange for pay.

We now give a sketch of the main technique used in the proof to construct the upper

bound on the worker’s disutility from labor. Any violation of satisficing would come from

contracts with labor in (ℓ̂, ℓ0] that the worker likes less than (ℓ̂, w0ℓ̂). We will show that

any such contract is forbidden.

The worker weakly prefers a contract (x, y) to (ℓ̂, w0ℓ̂) where x ∈ (ℓ̂, ℓ0] if and only if

the additional payment she receives offsets the increase in work hours,

(2.3) y − w0ℓ̂ ≥ c(x)− c(ℓ̂).

13Put another way, the bargaining set is the union of all satisficing bargaining sets. For a general
delegation setting, we demonstrate that the union of satisficing sets is satisficing in Chapter 3.
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We are able to bound the right hand side (the increase in labor costs) using convexity

and individual rationality of (ℓ0, τ0).

c(x)− c(ℓ̂) <
x− ℓ̂

ℓ0 − ℓ̂

[
c(ℓ0)− c(ℓ̂)

]
<

w0ℓ0

ℓ0 − ℓ̂
(x− ℓ̂)

Where the last step uses c(ℓ̂) > 0, and the fact that individual rationality implies c(ℓ0) ≤

τ0 = w0ℓ0. Combining the above with (2.3) yields that the worker prefers (x, y) to (ℓ̂, w0ℓ̂)

if

y ≥ w0ℓ̂+
w0ℓ0

ℓ0 − ℓ̂
(x− ℓ̂) = ϕ∗(x).

The fact that this regulation is never Pareto dominated comes from the fact that it

is the minimal satisficing regulation. Because bargaining satisfies weak Pareto, the least

restrictive regulation is never Pareto dominated by more restrictive policies. We show in

Chapter 3 that the set of satisficing delegation sets in general delegation problems forms

an upper semi-lattice. As a result, the least restrictive regulation exists and is unique.

Note that in our complete information setting in Section 2.6.3.1, we found NPD sat-

isficing regulations. Under complete information, maximizing a weighted sum of payoffs

yields all of the policies that are NPD by any policy. Moreover, any policy that maximizes

the objective for α > 0.5 is satisficing. To see this, note that the efficient minimum wage,

w̄∗ is necessarily larger than w0 because the worker is overworked. Recall that the worker

obtains her preferred hours at w̄∗. Therefore, w̄∗ is satisficing because the utility that

the worker obtains at this higher wage with her most preferred hours exceeds that of any

hours, ℓ̂, at the lower wage. Recall that w̄∗ is optimal for α → 0.5. Clearly, if α > 0.5,
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more weight is placed on the worker. So, the minimum wages associated with these larger

weights are also satisficing.14

2.7. Heterogeneous workers

Thus far, we have assumed that a firm acquires the services of a single worker. This

makes sense if: (1) regulation can be customized to each worker or (2) workers have similar

labor preferences. The first is unusual. While the second is not necessarily true, it is

nevertheless common to use a representative agent to represent players with heterogeneous

preferences.

2.7.1. Complete information regulation under heterogeneity

Suppose that there are N ≥ 2 types of workers employed by a firm. Let ci denote the

cost of the i-th worker type. The individual costs and the production functions, f , satisfy

A1-3. For convenience, order the types in terms of efficient labor hours. That is, for j > k,

ℓ∗j ≥ ℓ∗k where ℓ∗i ≡ argmaxz {f(z)− ci(z)}. The workers negotiate individual contracts

in accordance with the ultimatum model. However, regulations cannot be customized to

each worker. Instead, the regulator chooses a single regulation that applies to all workers.

Absent this restriction, all of the results from the single worker case immediately apply

to the general case.

14The only other never Pareto dominated, satisficing regulations are some that maximize the objective
for α = 0.5. These are efficient regulations that redistribute less than w̄∗.
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Assume that the regulator treats all workers equally. That is, the objective of the

regulator is

α

(
N∑
i=1

τi − ci(ℓi)

)
+ (1− α)

(
N∑
i=1

f(ℓi)− τi

)
=

N∑
i=1

(2α− 1)τi + (1− α)f(ℓi)− αci(ℓi)

where α ∈ (0.5, 1].

We analyze this case of heterogeneous workers under complete information in depth

in Appendix B.3. Here we highlight and discuss two significant results.

The first result is that if only the utility of the worker matters to the regulator,

heterogeneity essentially has no effect on the problem.

Proposition 2.6. For α = 1, there is at least one optimal regulation that is a mini-

mum wage. Any optimal minimum wage is the same as the optimal minimum wage in a

single worker problem. This single worker has the average cost of all workers with positive

utility under the regulation.

Proposition 2.6 means that the optimal minimum wage in the heterogeneous case is

the optimal minimum wage for a worker with costs that are averaged across some subset of

the workers. We can interpret this virtual worker with averaged costs as a representative

agent.

The proof contains an algorithm to find all optimum minimum wages by checking all

possible subsets of workers. Example B.1 in the Appendix shows how to use the algorithm

in practice. In the example, there are two optimal minimum wages which benefit different

subsets of workers.
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Intuitively, Proposition 2.6 holds because a redistributive regulation implements a

contract that does not depend on workers’ costs. As a result, all workers who benefit

from a regulation receive the same contract.

Of course, there may be some workers who receive a different contract because the

regulation is not redistributive for them. However, because of the ultimatum bargaining,

these workers are not negatively impacted by the policy.

The firm, on the other hand, may be negatively impacted. Because of this, if the

regulator cares about firms or efficiency, the optimal policy may not be a minimum wage.

Proposition 2.7. Let α → 0.5. Suppose ℓ∗N ̸= ℓ∗N−1. If minN−1
i=1 {ci(ℓ∗i )/ℓ∗i } > f ′(ℓ∗N),

the optimal regulation is a minimum wage of f ′(ℓ∗N). Otherwise, consider

ϕ(x) ≡


Conv (x) if x ≤ ℓ∗N−1

Conv (ℓ∗N−1) + f ′(ℓ∗N)(x− ℓ∗N−1) if x > ℓ∗N−1,

and Conv is the largest convex function to fit under {(ℓ∗i , ci(ℓ∗i ))}N−1
i=1 with the restriction

that the slope is capped at f ′(ℓ∗N). If ϕ(ℓ
∗
N) > cN(ℓ

∗
N), then ϕ is an optimal regulation.

Proposition 2.7 demonstrates two important properties of these problems. First, the

optimal regulation may not be a minimum wage. The reason that a piecewise linear

regulation may be optimal in the heterogeneous worker setting is that it reduces the effects

of regulation the contracts of workers with zero payoff. Such regulation only affects firms.

So, the issue becomes less relevant as α increases. The second property is that minimum

wage regulation is also optimal in settings where heterogeneity is sufficiently large. In

this case, the problem is separable and the lowest cost worker can be regulated alone.



81

In Appendix B.3, Proposition B.2 shows that a minimum wage is also optimal for all

α ∈ (0.5, 1] (but not for α → 0.5) when heterogeneity is sufficiently small.

2.7.2. Robust regulation under heterogeneity

The previous analysis uses the market state from just one worker to regulate. As a result,

the regulation is only necessarily satisficing for this one worker. Extending the analysis

to multiple workers is simple. One can construct the never Pareto dominated satisficing

regulation for each and take the maximum pointwise.

Proposition 2.8. Let ϕ∗
i be the never Pareto dominated satisficing regulation for

worker i. Suppose that the request, ℓ̂, is below the labor of each worker and that all workers

are overworked. The unique never Pareto dominated regulation which is satisficing for all

workers is

ϕ∗(x) = max
i
ϕ∗
i (x).

The proof is in Appendix B.1.12. For ℓ > ℓ̂, each regulation only allows contracts

which the worker prefers to the request. If we take the maximum, all of the points which

are allowed are preferred to the request. The only trick is to ensure that ℓ < ℓ̂ is satisficing.

This comes from weak Pareto and overwork combined with Theorem 2.2.

The same proof also demonstrates that an hours cap at τ which uses the maximum

of all workers wages is also satisficing. The assumption that all workers are overworked

is important to establish that ϕ∗ is satisficing. If some workers are not overworked, then

ϕ∗ may not be satisficing. However, for the same reason, an hours cap would also not

be satisficing. The argument that ϕ∗ is a Pareto improvement over an hours cap remains

true.
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2.8. Manipulation

In Section 2.6.3.2, we assumed that the firm and worker do not foresee the regulation

that will be imposed. Moreover, we assume that the regulator knows some lower level

of labor, ℓ̂, which the worker prefers to the current level of labor. This level could be

arbitrary or be an internal belief of the regulator. However, it may be appealing to elicit

this value.

In practice, manipulation of regulation is typically prevented through grandfathering,

the use of information which predates the discussion of regulation. For example, in most

cap-and-trade systems, permits are allocated based on historical energy usage that pre-

dates the discussion of these environmental policies.15 This section considers what can

happen when this practice is infeasible.

2.8.1. Manipulation by workers

Suppose that workers have complete information and interact with firms according to the

ultimatum model. If the regulator asks the worker how many hours she wants to work,

the worker wants to solve

max
ℓ̂≤ℓ0

w0ℓ̂+
w0ℓ0

ℓ0 − ℓ̂
(ℓ− ℓ̂)− c(ℓ)

s.t. ℓ = argmax
l∈[0,ℓ̂]

f(l)− w0ℓ0

ℓ0 − ℓ̂
(l − ℓ̂).

15This also applies to regulations considered for individuals. For example, the 2022 student loan
forgiveness policy in the U.S. does not apply to any loans taken out less than two months before its
announcement.
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The solution is interior because setting the request, ℓ̂ = 0 or ℓ̂ = ℓ0 results in no binding

regulation being implemented. This can be solved using standard envelope theorem ar-

guments. We instead consider two extreme cases for intuition: (1) when total surplus is

small and (2) when total surplus is large.

If total surplus is small, both marginal cost and marginal productivity are low. The

firm will not pay overtime unless the overtime pay multiplier is sufficiently small. Because

the worker prefers all of the overtime points to the preferred point by construction, the

worker wants to make a report such that she can earn overtime. To make the overtime

pay multiplier sufficiently small, the worker will request a low ℓ̂. As a result, the regulator

imposes little regulation when there is not much surplus to redistribute.

If total surplus is sufficiently large, both marginal cost and marginal productivity are

high. The firm will pay overtime even when the overtime pay multiplier is large. To

extract a larger payment, the worker will request a large ℓ̂. As a result, the regulator

imposes a large overtime payment multiplier when there is a lot of surplus to redistribute,

but most hours are worked without overtime.

The regulation does not require the worker to be strategic or have information about

production. However, if the worker does have access to these inputs, they can be used to

make the regulation better. In both cases, the worker makes a strategic decision which

makes the regulator’s bound on the disutility of labor more accurately reflect the worker’s

marginal costs.
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2.8.2. Manipulation by firms

2.8.2.1. Manipulation before regulation. Suppose that the firm predicts the regula-

tion and adjusts the contract in the preexisting regulation to interfere with the mechanism.

For simplicity, suppose that ℓ̂ is fixed.

The firm cannot benefit from paying the worker more than her costs. This makes the

regulation more restrictive. As a result, the firm can only manipulate by adjusting labor.

The firm solves

max
z≥ℓ̂,ℓ≤z

f(ℓ)− c(z)

z
ℓ̂− c(z)

z − ℓ̂
(ℓ− ℓ̂).

We consider the same two extreme cases. If total surplus is small, both marginal

productivity and marginal cost are low. The firm cannot make the overtime payment

multiplier arbitrarily small without making the wage arbitrarily large. Therefore, the

firm will not pay overtime. This implies ℓ = ℓ̂. In this case, the firm wants to set z as

small as possible to reduce the hourly wage that must be paid. In equilibrium, z = ℓ = ℓ̂.

If total surplus is large, both marginal productivity and marginal cost are large. In

this case, a large choice of labor in the preexisting market is costly. The firm will end up

paying overtime for all available hours.16 In this case, the firm will set ℓ = z. The firm’s

problem can then be rewritten as

max
z

f(z)− c(z)

z
ℓ̂− c(z).

16Note that this case also applies when ℓ̂ is sufficiently small relative to ℓ∗. This is because the firm’s

objective is decreasing in z for ℓ̂ sufficiently small.
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Therefore, the firm hires the worker for fewer hours than is optimal in advance of the

regulation. Intuitively, the firm takes into account the effect that an increase in labor will

have on the overtime multiplier.

2.8.2.2. Manipulation after regulation. Suppose that the firm is regulated but wants

to prevent future regulation. When it chooses the contract, it takes into account that the

regulator will obtain information from the prevailing contract.

In the ultimatum model, paying overtime to a worker reveals that the marginal pro-

ductivity of the worker is w0
ℓ0

ℓ0−ℓ̂
. As a result, the regulator knows that a minimum wage

of w0
ℓ0

ℓ0−ℓ̂
will not affect total surplus, but will increase the surplus of the worker.

As a concrete example, suppose a firm in the U.S. hires a worker for ten dollars per

hour for more than sixty hours per week. As a result, the firm must pay the worker time

and a half for the last twenty hours that she works. If the regulator sees this, he knows

that the firm would be willing to pay time and a half for the first forty hours as well. The

regulator can use this information to impose a minimum wage of fifteen dollars per hour.

This regulation costs the firm the equivalent of twenty hours of work each week.

This suggests that the regulator has a limited ability to improve on a labor cap if he

cannot commit to the mechanism. The firm may be unwilling to offer any overtime to

workers if doing so invites regulation.

2.9. Conclusion

We have explored regulation under very general assumptions in a setting where workers

are overworked. We show that a minimum wage is the best tool that a fully informed

regulator can use to alleviate this issue. Through a comparative statics exercise, we
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demonstrate that the minimum wage can hurt both workers and firms when it is set

either too low or too high. We show that this is particularly important if regulators

assume the flexible-hours model and try to interpret the effects of regulation on hours.

This issue of interpretation relates to the empirical literature on measuring the effects

of minimum wage policies on hours (e.g., Jardim et al., 2022) and the effects of other

policies such as overtime (Hamermesh and Trejo, 2000; Quach, 2020; Trejo, 1991). This

paper proposes a framework which can be tested by and used in a welfare analysis of these

policies using these empirical estimates.

Our study also cautions that the intensive margin (i.e., hours) and extensive margin

must be treated differently with regards to regulation. For example, Jardim et al. (2022)

shows that the 2014 increase of the minimum wage in Seattle did not significantly reduce

employment, but did significantly reduce hours. Most would say that this is a bad sign.

However, a reduction in hours may be good if these workers wanted their hours to be

reduced. The objective of minimum wage regulation is not to maximize hours (or even

take-home pay). The goal, broadly, is to improve the lives of workers. We demonstrate

that this is at odds with hours maximization.

We find the overall optimal minimum wages when the regulator has complete infor-

mation. Even if the regulator is not willing to sacrifice any total surplus to increase

the worker’s welfare, there exists a minimum wage that achieves this goal. This pol-

icy ensures an efficient market equilibrium where both the firm and worker receive their

preferred number of hours.

This analysis joins two theoretical strands in labor economics. First, this paper is

connected to the large literature on optimal regulation under imperfect competition with
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hours set by workers (e.g., Berger et al., 2022) or with fixed hours (e.g., Flinn, 2006;

Loertscher and Muir, 2021). Secondly, our work is also related to the smaller literature

on labor hours and overwork outside of a regulatory context (Feather and Shaw, 2000;

Manning, 2005). The most novel innovation of our approach lies in combining these two

strains by studying regulation in a setting with labor hours and overwork.

In addition to the complete information setting, we consider a regulator who has

no prior over production and disutility from labor. This regulator instead observes the

current market state and knows that a specific reduction in labor hours at the existing

wage will benefit the worker.

This analysis contributes to the literature on robust implementation. Following Carroll

(2015), this literature focuses on finding policies that can be implemented without any

prior on the space of parameters. Guo and Shmaya (2019) study the problem of regulating

an inefficient monopolist seller without any prior over supply and demand. Unlike our

study, Guo and Shmaya (2019) consider a regulator who knows bounds on supply and

demand.

In any robust analysis, the regulator must be able to somehow bound the unknown

objects. In Carroll (2015), the principal is able to create an endogenous lower bound

on the agent’s technology from partial knowledge of the agent’s set of available actions.

Typically, these bounds are exogenous. This is troubling because the objects may be

difficult for the regulator to bound in a reasonable way, and extremely permissive bounds

generally produce unreasonable outcomes (e.g., arbitrarily large or small minimum wages).

We demonstrate a method for creating endogenous bounds on supply and demand

when the regulator is able to observe the price and quantity that prevail in the market.
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To use this bound, we develop a new robust objective, the never Pareto dominated sat-

isficing criterion. This objective is natural in any delegation problem. In general, the

principal chooses the largest delegation set for which the principal does not regret the de-

cision to delegate (i.e., the payoff is at least as high as the principal’s preferred singleton

delegation set). It is common for the principal and agent to have some inherent alignment

of incentives such that this is beneficial. In our case, this alignment stems from the fact

that our contract bargaining is Pareto efficient.
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CHAPTER 3

Robust Delegation

3.1. Introduction

The idea for this chapter comes from the theory of robust regulation in Chapter 2. We

demonstrate that the never Pareto dominated satisficing regulation developed in Section

2.6.3.2 is an objective that can be applied to any delegation problem.

We develop a general theory of never Pareto dominated satisficing delegation sets.

We show that such a delegation set always exists and that a refinement can be used to

obtain uniqueness. In particular, the least restrictive never Pareto dominated satisficing

delegation set is unique.

This is particularly useful for a delegation problem where bounds on the preferences

of the agent are not known. Intuitively, the condition yields a rule with guaranteed

gains from delegation. A satisficing rule ensures that the principal will not be worse off by

delegating to the agent than if he chose the alternative himself. This is a desirable property

when the principal is uncertain about the agent’s preferences, but still wants to benefit

from the agent’s information and some presumed alignment of incentives. By offering the

agent a choice from the largest possible satisficing delegation set, the principal maximizes

the agent’s freedom subject to the satisficing condition. It is common in delegation

problems for the principal and agent to have some inherent alignment of incentives such

that this is beneficial.
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In Section 2.6.3.2, the regulator delegates a bargaining space to two bargaining par-

ties. The regulator is uncertain about the preferences of the parties, but knows that the

bargaining is efficient. This efficiency takes the place of alignment of incentives in this

chapter. The regulator wants to maximize the gain from the efficient bargaining, but

does not want to risk a loss over a command and control economy. The least restrictive

satisficing delegation set is thus a natural choice for the regulator.

3.2. Model

Let A be a set of alternatives that a principal (e.g., regulator) and agent (e.g., ag-

gregated labor market) may choose from. There is some state, θ ∈ Θ, that is known to

the agent but unknown to the principal. This state may affect the payoff of both the

principal and agent. The principal has some choice x̂ which he would choose from the set

of alternatives if he were not able to delegate. We call this his outside option.

In order to elicit this information, the principal may choose a subset, D ∈ D ⊂ 2A, to

provide to the agent such that the agent makes a choice from D. This choice is defined

by choice function, Cθ : D → 2A. This choice function is nonempty and satisfies the weak

axiom of revealed preference, which we report in the form of Sen’s α and β conditions,

for each θ ∈ Θ.

Assumption 3.1 (Sen’s α, IIA). If x ∈ A ⊆ B and x ∈ Cθ(B), then x ∈ Cθ(A).

Assumption 3.2 (Sen’s β). If x, y ∈ Cθ(A), x ∈ Cθ(B), and A ⊆ B, then y ∈ Cθ(B).
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These assumptions are typically used to obtain a revealed preference binary relation.

In this case, we only impose the conditions on D ⊂ 2A. In Chapter 2, Sen’s β is vacuously

true because all allowed delegation sets yield a unique choice.

The principal has a complete, but not necessarily transitive, weak relation: ⪰θ. He

wants to choose a delegation set with two properties.

Definition 3.1 (Satisficing). A delegation set, D ∈ D is satisficing with respect to

x̂ ∈ A if for each θ ∈ Θ, there exists a z ∈ Cθ(D) such that z ⪰θ x̂.

Definition 3.2 (Never dominated). A satisficing delegation set, D ∈ D is never Pareto

dominated if for all satisficing delegation sets, S ∈ D, and all θ ∈ Θ, x ∈ Cθ(D) =⇒ x ∈

Cθ(D ∪ S).

The satisficing criterion ensures that the outcome is at least as good for the principal

and the never dominated condition imposes a refinement that we give the agent as much

surplus as possible. In the setting of Chapter 2, weak Pareto of the bargaining protocol

implies that any never dominated delegation set is never Pareto dominated.

3.3. Results

We want to show that there exists a delegation set that satisfies Definitions 3.1 and 3.2.

We will do this by showing that there is a least restrictive satisficing set which contains

all other satisficing delegation sets. This set is never dominated because the agent prefers

larger delegation sets to smaller ones.

Lemma 3.1. If the set of available delegation rules, D, is closed under unions, then

the set of satisficing delegation sets, S ⊆ D, is an upper semi-lattice under unions.



92

Proof. We need to show that if S1 and S2 are satisficing, then S1 ∪ S2 is satisficing.

For each θ, consider each x ∈ Cθ(S1 ∪ S2). Because x ∈ S1 ∪ S2, it is either in S1, S2,

or both. Without loss, say it is contained in S1. By Sen’s α, x ∈ Cθ(S1). By Sen’s β,

Cθ(S1) ⪰ Cθ(S1 ∪ S2).

Because S1 is satisficing, there exists z ∈ Cθ(S1) such that z ⪰ x̂. Because z ∈

Cθ(S1 ∪ S2), S1 ∪ S2 is also satisficing. □

Intuitively, Lemma 3.1 says that if we have two satisficing delegation sets, we can take

the union of the two and still have a satisficing delegation set. This is because every

alternative the agent chooses from the larger delegation set chosen in at least one of the

smaller delegation sets. Because these two sets are satisficing, these choices must be at

least as good as the principal’s outside option.

Because of this, we know that the union of all satisficing delegation sets is a satisficing

delegation set. Clearly, this union is the least restrictive satisficing delegation set.

Proposition 3.1. Suppose the set of available delegation rules, D, is closed under

unions and set of satisficing delegation sets, S ⊆ D is nonempty. There exists a never

dominated satisficing delegation set. Moreover, there exists a unique least restrictive never

dominated satisficing delegation set.

Proof. If there is only one satisficing delegation set, then we are done. It is never

dominated.

If there is more than one, by Lemma 3.1, there exists an S∗ ∈ S such that for all

S ∈ S, S ⊆ S∗. This delegation set is uniquely least restrictive and is never dominated

because S∗ ∪ S = S∗. So, x ∈ C(S∗) =⇒ x ∈ C(S∗ ∪ S). □
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We assume in Proposition 3.1 that there is at least one satisficing delegation set. In

many delegation settings, this will be {x̂}. In the setting of Chapter 2, it was the hours

cap.
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APPENDIX A

Chapter 1 Appendix

A.1. Proofs

A.1.1. Proof of Lemma A.1

Lemma A.1. In any Nash equilibrium, players choose strictly increasing, continuous

mixed strategies Gi with common support on some interval [0, s̄]. At most one participant

can have a mass point and it must be at zero.

Moreover, the equilibrium is defined by the following indifference condition:

(1.3) g̃i(s) =
c′−i(s)

v−i(s; s)
−
∫ s

0

v′−i(s; y)

v−i(s; s)
g̃i(y)dy.

Proof. The argument is standard in the all-pay auction literature, and is presented

here for completeness. Our proof is in several steps.

(1) By A1.3, each player i ∈ I would select scores in Si = [0, Ti], for Ti finite.

(2) By A1.1 and A1.4, both players prefer to win than lose in a neighborhood of the

opponent’s score. This is used in points 3, 5, and 7.

(3) The minimum score in the support of both players’ strategies is zero.

Let s1, s2 denote the lower bounds of player 1 and player 2’s strategies’ sup-

ports, respectively. Suppose si ≥ sj. Then, if i places no atom in sj, sj = 0 and

j will never want to play anything in (0, si) by A1.2. If i has no atom at si, then

j won’t want to play anything on the (0, si].
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Now suppose si > sj = 0 – we will show that one of the two players at least

has a profitable deviation. If i has an atom at si, she could bring the bottom of

her support closer to zero, increase her payoffs, and not change her probability of

winning. If i does place an atom at si and j does not, then she could move that

point-mass at si closer to zero, spend less on bids and not change her probability

of winning. Finally, if both i and j place an atom at xi, then (by A1.1) either

i could do better by spreading that atom to a ε-neighborhood just above it (if

si < 1), or j would prefer to place that mass at 0 instead of si < 1 (if si = 1).

Thus, it must be that si = sj = 0.

(4) Both players will have the same maximum score in their strategies’ support (s̄).

Otherwise, the player with the highest upper bound to her support could reduce

it and increase her payoff (by A1.2) without impacting her probability of winning.

(5) There are no mass points on the half open interval (0, s̄]. If i places a mass

point at si ∈ (0, s̄), then j would find it worthwhile to transfer mass from a

neighborhood below si to one just above si. If i places a mass point at s̄, then

j would find it worthwhile to transfer mass from a neighborhood below si to 0.

Either way, there would be an ε-neighborhood below si in which j would put no

mass. But then it can’t be an equilibrium strategy for i to place an atom at si

in the first place.

(6) There are no gaps in the density. Suppose that there is an interval (s′, s′′) ⊂ [0, s]

where player i places no probability mass. Pick this interval such that s′′ is the
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“largest” point without density 1 This is just to make sure there’s some probability

mass in the interval just above s′′.

We have that j can’t have any density on (s′, s′′) either, or she would rather

transfer it all to x′. But then, for i, anything too close to s′′ from above is worse

than picking s′.

(7) At most one player will place a mass point at zero. The two players can’t both

have a mass point at s = 0: either player would rather move that mass infinites-

imally above it.

Therefore, there are mixed strategies on some interval [0, s̄] where the following indif-

ference condition must hold for every point in the support of Player i:

(1.1) ūi(G−i) :=

∫ s

0

vi(s; y) dG−i(y)− ci(s) for s ∈ [0, s̄].

We can uniquely decompose G−i into a continuous measure G̃−i and a mass-point measure

using the Lebesgue decomposition. Because there can be only one mass point at zero, we

decompose to

ūi(G−i) =

∫ s

0

vi(s; y) dG̃−i(y) + vi(0, 0)G−i(0)− ci(s).

Plugging in s = 0 reveals ūi = vi(0, 0)G−i(0). So, the condition simplifies to

ci(s) =

∫ s

0

vi(s; y) dG̃−i(y).

1Such a s′′ exists since there are no mass-points in i’s distribution, implying it is continuous.
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Therefore, the right hand side is differentiable on the support of Player i. This implies

that

c′i(s) = lim
ε→0

ε−1

[∫ s+ε

0

vi(s+ ε; y) dG̃−i(y)−
∫ s

0

vi(s; y) dG̃−i(y)

]
=

∫ s

0

v′i(s; y) dG̃−i(y) + vi(s; s) lim
ε→0

ε−1

[∫ s+ε

s

dG̃−i(y)

]

holds. Then, vi(s; s) ̸= 0 implies that the limit exists and is equal to

lim
ε→0

ε−1
[
G̃−i(s+ ε)− G̃−i(s)

]
= lim

ε→0
ε−1

[∫ s+ε

s

dG̃−i(y)

]
=

c′i(s)

vi(s; s)
−
∫ s

0

v′i(s; y)

vi(s; s)
dG̃−i(y).

Then, G̃−i is differentiable on Player −i’s support with a continuous derivative.

Consider the case where Player i plays with full support on [0, s̄]. Because continu-

ous differentiability implies absolute continuity on a bounded interval, the above can be

rewritten as

(1.3) g̃−i(s) =
c′i(s)

vi(s; s)
−
∫ s

0

v′i(s; y)

vi(s; s)
g̃−i(y)dy.

Now, suppose that there are some points not on the support such that (1.1) does not

hold with equality. If there exists a positive g̃−i that solves (1.3), then at any such point,

t, ∫ t

0

vi(t; y)g̃−i(y) dy = ci(t) ≥
∫ t

0

vi(t; y) dH̃−i(y).

The Lebesgue decomposition ensures that H̃−i can be broken down to an absolutely contin-

uous portion (which must agree with G̃−i) and a continuous singular portion. Therefore,
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we can equivalently write

0 ≥
∫ t

0

vi(t; y) dĤ−i(y).

where Ĥ−i is the singular part of H̃−i.

We now show that Ĥ−i(s) = 0 for all s ∈ [0, s̄]. Suppose, by way of contradiction that

there exists an x such that Ĥ−i(x) > 0. By continuity, Ĥ−i(0) = 0.

Because Ĥ−i is continuous, there must exist a point t such that Ĥ−i(t) = 0 and

Ĥ−i(t+ ε) > 0 for all ϵ > 0. Then,

0 ≥
∫ t+ε

t

v−i(t+ ε; y) dQi(y)

≥
[

min
y∈[t,t+ε]

v−i(t; y)

] [
Ĥ−i(t+ ε)− Ĥ−i(t)

]
=

[
min

y∈[t,t+ε]
v−i(t; y)

]
Qi(t+ ε).

Therefore, for any ε > 0,

min
y∈[t,t+ε]

v−i(t; y) ≤ 0.

However, v−i(t; y) is continuous and v−i(t; t) > 0. This is a contradiction. □

A.1.2. Proof of Lemma 1.2

Lemma 1.2. Assume a two-player all-pay auction where (g̃i)i∈I satisfies the indiffer-

ence condition in (1.3). Then, for each i ∈ I, there exists s̄i ∈ Si such that

(1.5)

∫ s̄i

0

g̃i(y)dy = G̃i(s̄i) = 1,

and g̃i(s) is positive for s ≤ s̄i.
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Proof. The finite definite integral cannot diverge because the function is continuous.

Also note that (1.3) gives us gi(0) = c′−i(0)/v−i(0; 0) ≥ 0. This inequality is strict if

c′−i(0) > 0.

If the inequality is not strict, we find a positive value in a neighborhood of zero.

Because c′−i is positive everywhere but zero, we know that gi is strictly increasing near

zero. So there exists some δ > 0 such that gi(s) > 0 for s ∈ (0, δ).

We still need to confirm that g̃i(s) > 0 on the relevant interval {s :
∫ s

0
|g̃i(y)|dy ≤ 1}.

Suppose, by way of contradiction, that it is not. Then, by continuity, there must be an

initial point s⋆ > 0 such that g̃i(s
⋆) = 0,

∫ s⋆

0
g̃i(y)dy ≤ 1, and g̃i(s) ≥ 0 for all s ≤ s⋆.

However, this is impossible because

g̃i(s
⋆) =

1

v−i(s⋆; s⋆)

(
c′−i(s

⋆)−
∫ s⋆

0

v′−i(s
⋆, y)|g̃i(y)|dy

)
≥ 1

v−i(s⋆; s⋆)

[
c′−i(s

⋆)−
∣∣∣∣ max
y∈[0,s⋆]

v′−i(s
⋆; y)

∣∣∣∣ (∫ s⋆

0

|g̃i(y)|dy
)

︸ ︷︷ ︸
≤1

]

≥ 1

v−i(s⋆; s⋆)

[
c′−i(s

⋆)−
∣∣∣∣max

y
v′−i(s

⋆; y)

∣∣∣∣]︸ ︷︷ ︸
>0 (A1.2)

> 0.

We must now show that it is not possible for
∫∞
0

|g̃i(y)|dy ≤ 1. We can do this in one

step with Holder’s inequality.

c−i(s) =

∫ s

0

v−i(s; y)gi(y)dy ≤
(∫ s

0

|gi(y)|dy
)(

max
y∈[0,s]

v−i(s; y)

)
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so
∫ s

0
|gi(y)|dy ≥ c−i(s)/(maxy v−i(s; y)) which is assumed to be greater than one as s

approaches infinity (A1.3). By continuity, there exists an s̄i such that
∫ s̄i
0
|gi(y)|dy = 1

(A1.1). □

A.1.3. Proof of Corollary 1.1.1

Corollary 1.1.1. Consider a two-player all-pay auction where vi(s; y) is continuously

differentiable in both arguments for all i ∈ I (A1.1 guarantees differentiability in the first

argument). Then, we can alternatively express the unique equilibrium as

Gi(s) =
[
G̃i(si)− G̃i(s)

]
+ G̃i(s),

where

(1.6) G̃i(s) =
c−i(s)

v−i(s; s)
+

∫ s

0

∂v−i(s; y)

∂y

G̃i(y)

v−i(s; s)
dy.

The solution admits the following series representation

G̃i(s) =
c−i(s)

v−i(s; s)
+

∫ s

0

c−i(y)

v−i(y; y)

R−i(s; y)

v−i(s; s)
dy

where

R−i(s; y) := K0
−i(s; y) +K1

−i(s, y) +K2
−i(s; y) + . . .

for K0
−i(s; y) := ∂v−i(s; y)/∂y and Kn

−i(s; y), n = 1, 2, . . . , defined recursively by

Kn
−i(s; y) :=

∫ s

y

∂v′−i(s; z)

∂z

Kn−1
−i (z; y)

v−i(z; z)
dz.
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Proof. Equation (1.6) is obtained by applying integration by parts to (1.1). This

defines a Volterra Integral Equation which has a unique solution by lemma 1.1. This

solution coincides with the one in Theorem 1.1 because Equation (1.1) cannot have two

solutions. □

A.1.4. Proof of Theorem 1.2

Theorem 1.2. Consider a two-player all-pay auction where vi(s; y) is continuously

differentiable in s and y for all i ∈ I. Suppose that the following two conditions hold:

ci(s)

vi(s; s)
<

c−i(s)

v−i(s; s)
(1.8)

1

vi(s; s)

∣∣∣∣∂vi(s; y)∂y

∣∣∣∣ ≤ 1

v−i(s; s)

∂v−i(s; y)

∂y
(1.9)

for all s ∈ (0, s̄] and y ∈ [0, s]. Then, Player i has a positive payoff.

Proof. Consider equation (1.6). The main result of Beesack, 1969 allows us to com-

pare the solutions of two VIEs. In our setting, this means that conditions (1.8), (1.9)

imply

G̃2(s) ≤ G̃1(s) +
c1(s)

v1(s; s)
− c2(s)

v2(s; s)
< G̃1(s).

From this, it is clear that s̄1 ≤ s̄2 which implies that player 2 has a mass point. The

bound comes from

u1 = v1(0; 0)(1− G̃2(s̄)) ≥ v1(0; 0)

[
c2(s̄)

v2(s̄; s̄)
− c1(s̄)

v1(s̄; s̄)

]
.

□
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A.1.5. Proof of Corollary 1.2.1

Corollary 1.2.1. Consider a two-player all-pay auction with spillovers. Suppose the

players have the same value v(s; y) ≡ v1(s; y) = v2(s; y), which is continuously differen-

tiable in both arguments and c2(s) > c1(s) for all s. Then Player 2 has a positive payoff

only if

∂v(s; y)

∂y
< 0

for some s, y.

Proof. We want to apply Theorem 1.2. Because the prizes are identical, (1.8) is

satisfied by the ranked cost assumption and (1.9) holds with equality as long as the

derivative is non-negative. □

A.1.6. Proof of Proposition 1.1

Proposition 1.1. Consider a two-player all-pay auction. Suppose the players value

for the prize is given by the function v(s; y) := v1(s; y) = v2(s; y), and that c′2(s) > c′1(s)

for all s ∈ Si ∩ S−i. Then Player 2 has a positive payoff only if all of the following apply

(i) Costs are not scaled: there does not exist a 0 < λ < 1 such that c1(s) = λc2(s)

for all s.

(ii) There exist some t, z ∈ Si ∩ S−i such that

∂v(t; z)

∂z
< 0.

(iii) There exist some t, z ∈ Si ∩ S−i such that v′(t; z) > c′2(t)− c′1(t) > 0.
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(iv) There exists some s ∈ Si ∩ S−i such that

max
y≤s

v′(s; y)−min
y≤s

v′(s; y) > c′2(s)− c′1(s) > 0.

(v) There exist t, z ∈ Si ∩ S−i such that

∂v(t; z)

∂t∂z
< 0,

i.e. the common value function is not weakly supermodular.

We first prove that it’s not possible to have a reversal when costs are scaled (Condition

1).

Proof. Suppose v(s; y) := v1(s; y) = v2(s; y) and c2(s) = λc1(s) where λ > 1. Because

the two players have the same kernel, they must share the same resolvent (R). Then,

G̃1(s̄) =
c2(s̄)

v(s̄; s̄)
+

∫ s̄

0

R(s̄, y)
c2(y)

v(y; y)
dy

= λ

(
c1(s̄)

v(s̄; s̄)
+

∫ s̄

0

R(s̄, y)
c1(y)

v(y; y)
dy

)
= λG̃2(s̄),

implying G̃1(s̄) > G̃2(s̄) and thus Player 2 must have a mass point at zero. □

Condition 2 is Corollary 1.2.1. We then show that a reversal is impossible when

v′(t; z) ≤ c′2(t)− c′1(t) for all t, z (Condition 3).

Proof. We would like to show that g̃1(s) − g̃2(s) > 0 for all s ∈ [0, s̄]. This would

imply that G̃1(s̄) > G̃2(s̄), which implies that Player 2 must have the mass point at zero.
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By (1.3):

g̃1(s)− g̃2(s) =
c′2(s)− c′1(s)

v(s; s)
−
∫ s

0

v′(s; y)

v(s; s)
(g̃1(s)− g̃2(s)) dy.

This is positive by Lemma 1.2. □

Finally, we prove Conditions 4 and 5 by contradiction. The two proofs share the same

initial setup.

Proof. Suppose, by way of contradiction that Player 1 does not have a positive payoff.

Then, there exists an s̄ such that G̃2(s̄) = 1 and G̃1(s̄) ≤ 1. Note that G̃1(0)− G̃2(0) = 0

and

g̃1(0)− g̃2(0) =
c′2(0)− c′1(0)

v(0; 0)
> 0.

Therefore, there exists some r ∈ (0, s̄] that is the first point such that G̃1(r)− G̃2(r) = 0

and g̃1(r)− g̃2(r) ≤ 0.

If we assume c′2(r)− c′1(r) > maxy≤r v
′(r; y)−miny≤r v

′(r; y), then

g̃1(r)− g̃2(r) =
c′2(r)− c′1(r)

v(r; r)
−
∫ r

0

v′(r; y)

v(r; r)
[g̃1(y)− g̃2(y)]dy

=
c′2(r)− c′1(r)

v(r; r)
−
∫ r

0

v′(r; y)

v(r; r)
g̃1(y)dy +

∫ r

0

v′(r; y)

v(r; r)
g̃2(y)dy

≥ c′2(r)− c′1(r)

v(r; r)
−max

y≤r

v′(r; y)

v(r; r)
G̃1(r)dy +min

y≤r

v′(r; y)

v(r; r)
G̃2(r)

=
c′2(r)− c′1(r)− [maxy≤r v

′(r; y)−miny≤r v
′(r; y)] G̃1(r)

v(r; r)
> 0



109

If we assume ∂v(r; y)/∂r∂y ≥ 0 a.e.

g̃1(r)− g̃2(r) =
c′2(r)− c′1(r)

v(r; r)
−
∫ r

0

v′(r; y)

v(r; r)
[g̃1(y)− g̃2(y)]dy

≥ c′2(r)− c′1(r)

v(r; r)
+

1

v(r; r)

∫ r

0

∂v(r; y)

∂s∂y

[
G̃1(y)− G̃2(y)

]
dy > 0

where we apply integration by parts in the second line. □

A.1.7. Proof that WoA with costly preparation approximates WoA

Proof. A direct application of (1.3) yields the following differential equation:

g̃ϵ−i(s) =
1

ℓi(s)− fi(s)

(
ℓ′i(s)

[
1− G̃ϵ

−i(s)
]
+ ϵ′(s)

)
Because this is a continuous linear mapping, we can take the limit as ϵ′(s) approaches

zero. This simplifies to the same differential equation used to describe the equilibrium of

the WoA (e.g. in Hendricks et al., 1988):

g̃−i(s)

1− G̃−i(s)
=

ℓ′i(s)

ℓi(s)− fi(s)
.

□

A.1.8. Proof of Theorem 1.4

Theorem 1.4. Consider a symmetric n-player, m-prize all-pay auction with runner-

up spillovers. Assume v, c satisfy assumptions A1.1 to A1.4. Let Ĝ be defined as in

Corollary 1.1.1. That is, let Ĝ be the equilibrium cumulative distribution function of a
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two-player all-pay auction with spillovers:

Ĝ(s) =
c(s)

v(s, s)
+

∫ s

0

c(y)

v(y, y)

R(s, y)

v(s, s)
dy,

with

R(s, y) = K0(s, y) +K1(s, y) +K2(s, y) + . . .

for K0(s, y) = ∂v(s, y)/∂y and Kt(s, y), t = 1, 2, . . . , defined recursively by Kt(s, y) :=∫ s

y
(∂v(s, z)/∂z)(Kt(z, y)/v(z, z)) dz.

Then, the symmetric equilibrium of the n-player, m-prize all-pay auction with runner-

up spillovers is given by the unique G that solves:

(1.12) Ĝ(s) =
n−1∑

j=n−m

(
n− 1

j

)
[G(s)]j[1−G(s)]n−j−1.

Proof. Fix a symmetric auction with n identical players and m < n identical prizes.

The expected payoff of a Player who bids s is

∫ s

0

v(s; y)dĜ(y)− c(s),

Ĝ is the n−m order statistic of a sample of n−1 draws from the equilibrium distribution,

G. By standard arguments similar to the ones used in Lemma A.1, any symmetric equilib-

rium will be in mixed strategies, with all players randomizing continuously on an interval

[0, s] for some s > 0 and expected payoffs will be zero for all participants. Therefore, the

following condition holds for all s ∈ [0, s]:

∫ s

0

v(s; y)dĜ(y) = c(s).
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As in Lemmas A.1 and 1.1, the equilibrium condition can be rewritten as

(1.3) ĝ−i(s) =
c′i(s)

vi(s; s)
−
∫ s

0

v′i(s; y)

vi(s; s)
ĝ−i(y)dy.

which has a unique solution. Because this condition is the same as in the two-player case,

we know that Ĝ is the two-player equilibrium. Because it is the n−m order statistic of

a sample of n− 1 draws from G, we can write it as

(1.12) Ĝ(s) =
n−1∑

j=n−m

(
n− 1

j

)
[G(s)]j[1−G(s)]n−j−1.

All that remains is to show G can be recovered from Ĝ(s). To see that this is the case,

we rewrite (1.12) as Ĝ(s) = E[G(s)] where

E[p] =
n−1∑

j=n−m

(
n− 1

j

)
pj(1− p)n−j−1.

That is, E[p] is equal to the survival function of the binomial distribution evaluated at

n −m. This function is known to be strictly increasing in p for p ∈ [0, 1]. Therefore, E

is invertible. □

A.2. Optimal Contest Design

In this section, we consider how a designer should bias a contest to increase the scores.

Several papers have analyzed this problem of assigning prizes to maximize total scores,

or the average score of the winner. For example, Mealem and Nitzan, 2014 consider prize

redistribution in a two-player all-pay auction with fixed values and symmetric costs. They

show equalizing the prize values maximizes the total scores and that the this contest
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yields weakly more total score than any similar Tullock-type lottery contest. Che and

Gale, 2003 investigate the optimal design of contests for innovation procurement, and

find that the procurer might want to limit the maximum prize available to the most

efficient firms – effectively eliminating any positive rents – in order to increase their own

expected maximum surplus. The problem of optimal contest design in all-pay auctions

with spillovers has not been previously analyzed.

This is relevant because principals are constrained in the prizes that they can offer.

Many of the tools that principals use to make prizes have spillovers. For example, if an

employer chooses to construct a compensation package using a cash bonus and stock op-

tions, then the inclusion of the stock options will generate spillovers. This section analyzes

the optimal prize choice when prizes can be constructed from multiple instruments.

Let Λi ⊂ RS̃i denote the set of prize functions available to the designer for player i,

and let V :
∏

i∈I S̃i ×
∏

i∈I Λi → R denote the designer’s payoff function, i.e., given the

pair of scores s := (s1, s2) and the pair of value functions v = (v1(·; ·), v2(·; ·)), V (s,v)

denotes the designer’s derived net benefit from the contest.

We make the following (mild) assumptions:

Assumption A.1 (Completeness, DA.1). For each i ∈ I, set of prizes Λi, is convex

and its closure contains an element with vi(·; ·) ≡ 0.

Assumption A.2 (Productive scores, DA.2). For each i ∈ I and v ∈
∏

i∈I Λi, the

designer’s objective function V (s,v) is strictly increasing in si.
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Assumption A.3 (Costly prizes, DA.3). For each i ∈ I, s ∈
∏

i∈I S̃i and v−i ∈ Λ−i,

V (s,v) is decreasing in vi
2.

The primary complication with the construction in this paper is the mass point is

difficult to compute. Fortunately, if the mechanism designer can discriminate between

the two players, an optimal mechanism will have no atoms in many specifications. This

is formalized in the following proposition.

Proposition A.1. Assume a two-player contest where a fully informed principal with

payoff function V chooses the prize vi ∈ Λi for each i ∈ I. Assume that Λi and V satisfy

assumptions DA.1 to DA.3, and that for all i and all vi ∈ Λi, assumptions A1.1 to A1.4

hold. Then, no contestant in equilibrium can have a positive payoff. Equivalently, no

player will have a point-mass as part of their strategy.

Proposition A.1 implies that there will be no strictly dominant player in any discrimi-

nating contest design problem where the principal benefits from the efforts of participants

and pays for prizes. This proposition comes from the fact that the equilibrium strategy of

the dominant player is locally invariant to changes in her prize value. Intuitively, for any

contest with a strictly dominant player, there exists a more competitive contest where

their prize is reduced and scores are larger.

Proof. Take an optimal choice of v := (vi)i∈I ∈
∏

i∈I Λi. Suppose, by contradiction,

that player i has a strictly positive payoff. Her strategy is defined by

g̃i(s) =
c′−i(s)

v−i(s; s)
−
∫ s

0

v′−i(s; y)

v−i(s; s)
g̃i(y)dy,

2That is, if vi, v̂i ∈ Λi are such that vi(s; y) ≤ v̂i(s; y) for all (s, y) ∈ S̃i × S̃−i, then V (s, (vi, v−i)) ≥
V (s, (v̂i, v−i)).
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which does not depend on vi. Because player −i has an atom, we know that G̃i(s̄) −

G̃−i(s̄) > 0. Therefore, there exists a γ ∈ (0, 1) such that G̃i(s̄) = G̃−i(s̄)/γ.

Then, the principal could offer (γvi, v−i) without changing the equilibrium strategy of

player i. By the costly prizes Assumption DA.3, this is weakly preferable given a fixed

distribution of s−i.

By construction, player 2’s new equilibrium strategy is G̃−i(s̄)/γ. This first-order

stochastically dominates player −i’s original strategy. In fact, it is the same distribution,

but with the mass point removed. The productive scores assumption implies that this

mechanism is strictly preferred. □

Proposition A.1 demonstrates that the expected welfare of all agents is zero in a

large class of contest design problems3. It also suggests the optimality, from a design

perspective, of handicapping the most efficient players (as in, the players with lower costs

and lower marginal costs) The idea is very much analogous to the conclusion in Che and

Gale, 2003, for example: handicapping the player that has the technological upper hand

causes the less efficient player to become more aggressive, and to choose higher scores

than they would otherwise.

A.3. Removing assumptions

An auction which satisfies all assumptions A1.1–1.4 but one may have equilibria which

fail to meet our characterization. An auction which fails to satisfy any of A1.2–1.4 can

have multiple equilibria.

3Which is not to say that there are no settings where it would not apply to. For example, the designer
could wish to maximize the agents’ expected welfare. In this case, the principal’s objective function would
violate costly prizes. It would usually also violate productive scores.
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Assumption 1 (Smoothness). We assume continuous differentiability of vi and ci. Con-

tinuity is not sufficient to ensure that the equilibrium has interval support. For example,

consider the case where the prize is fixed at vi = 1 and the costs are given by the density

function of some distribution which uniformly assigns probability one to a dense subset of

[0, 1] with Lebesgue measure zero.4 This cost function is continuous because the distribu-

tion assigns uniform weight to infinitely many points. It is also strictly increasing because

the support is dense. However, it is not absolutely continuous. Then, the aforementioned

distribution is an equilibrium, which has support only on a set of measure zero.

Assumption 2 (Monotonicity). The case where v′i(si; y) > c′i(si) for some si is consid-

ered in Siegel (2014) without spillovers. In this case, the equilibrium distribution has gaps

and is thus not an interval. In the presence of spillovers, non-monotonicity may generate

pure-strategy equilibria or result in non-uniqueness. For example, consider the symmetric

game where

v1(s; y) = v2(s; y) = v(s; y) =


1 + s− y if s ≤ 1

(3− s)s− y if s > 1

and c1(s) = c2(s) = c(s) = s. Note that this prize value satisfies all assumptions except

for monotonicity, which is violated on [0, 1]. There are two asymmetric pure strategy

equilibria where one player bids 0 and the other player bids 1.5

Assumption 3 (Interiority). Consider the symmetric all-pay auction with spillovers

where v1(s; y) = v2(s; y) = v(s; y) = 2
√
y and c1(s) = c2(s) = c(s) = s. Then, there is a

pure strategy equilibrium where both players play zero. Moreover, there is also a mixed

4For example a uniform distribution over the countable union of cantor sets shifted by each of the
rationals modulo one.

5This game also has a symmetric mixed-strategy equilibrium.
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strategy equilibrium at

G⋆
1(x) = G⋆

2(x) =



√
x if x ∈ [0, 1]

0 if x < 0

1 if x > 1,

i.e. equilibria are no longer unique.

In the other case where costs are no higher than the prize value in the limit (that

is, limsi→∞ supy∈S̃−i
vi(si; y) ≥ limsi→∞ ci(si)), players might find it profitable to submit

unbounbed bids. This can result in non-existence.

Assumption 4 (Discontinuity at ties). Consider the symmetric all-pay auction with

spillovers where v1(s; y) = v2(s; y) = v(s; y) = 1y≤14
√
1− y and c(s) = s. Then, there is

a symmetric equilibrium where

G⋆
1(x) = G⋆

2(x) =



1−
√
1−x
2

if x ∈ [0, 1)

0 if x < 0

1 if x ≥ 1

such that both players have an atom at one, the point where the prize is worth zero in

the event of a tie. The usual argument that the two players cannot have atoms at the

same point fails here because a small increase in either player’s bid does not increase the

probability of winning a prize of positive value. There are also two asymmetric equilibria



117

in this game of the form

G⋆
i (x) =



1−
√
1−x
2

if x ∈ [0, 1)

0 if x < 0

1 if x ≥ 1

G⋆
−i(x) =



1−
√
1−x
2

if x ∈ [0, 1]

0 if x < 0

1 if x > 1.

That is, one player has an atom at zero while the other has an atom at 1. Any convex

combination of the symmetric equilibrium and the above is also an equilibrium.

A.4. Numerical Approximation

It is possible to approximate the solution by iterating numerically on this sequence:

g̃n+1(s) =
1

v(s; s)

(
c′(s)−

∫ s

0

v′(s; y)g̃n(y)dy

)

starting from g̃0 = 0 to find the true g̃. There is a much simpler and faster way.

Consider our original equation

∫ s

0

v−i(s; y)g̃i(y)dy = c(s)

and consider this 3× 3 discrete approximation of this problem for s ∈ [0, 1]

1

3


v−i(

1
3
, 1
3
) 0 0

v−i(
2
3
, 1
3
) v−i(

2
3
, 2
3
) 0

v−i(1,
1
3
) v−i(1,

2
3
) v−i(1, 1)


︸ ︷︷ ︸

V

·


g̃i(

1
3
)

g̃i(
2
3
)

g̃i(1)


︸ ︷︷ ︸

g

≈


c−i(

1
3
)

c−i(
2
3
)

c−i(1)


︸ ︷︷ ︸

c
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So, we can approximate g̃i(s) with

g = 3V−1c

To get a good estimate, we do the same thing with an N×N grid for N large on some

interval [0, T ].6



g̃i(
1
N
)

g̃i(
2
N
)

...

g̃i(T )


≈ N



v−i(
1
N
, 1
N
) 0 · · · 0

v−i(
2
N
, 1
N
) v−i(

2
N
, 2
N
) · · · 0

. . .

v−i(T,
1
N
) v−i(T,

2
N
) · · · v−i(T ;T )



−1

·



c−i(
1
N
)

c−i(
2
N
)

...

c−i(T )


Once you get (g̃1, g̃2) you just have to:7

(1) take the cumulative sum and divide by N to get (G̃1, G̃2)

G1, G2 = cumsum(g1)/N, cumsum(g2)/N

(2) truncate both distributions at the last value where both are ≤ 1

G1, G2 = G1[G1 <= 1 & G2 <= 1], G2[G1 <= 1 & G2 <= 1]

(3) add to each CDF vector so that both end with 1 (add the atom)

G1, G2 = (G1 - G1[-1] + 1), (G2 - G2[-1] + 1)

6The Python package allpy implements the approximation algorithm in this section and computes
mixed-strategy equilibria of all-pay auctions with spillovers

7Sample Python code provided below each item.

https://pypi.org/project/allpy/
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APPENDIX B

Chapter 2 Appendix

B.1. Proofs

B.1.1. Useful lemmas

In this section, we prove some lemmas that are used in the proofs of the general bargaining

results in Section 2.6. The main purpose of these lemmas is to ensure that the proofs

extend to the setting of Peters and Wakker (1991). In the ultimatum case, M(x, y) ≡ x

and these lemmas are trivial.

Lemma B.1. The functional,

L[ϕ] ≡ argmax
l,t≥ϕ(l)

M(f(l)− t, t− c(l)),

is sequentially continuous in the sense that ϕn → ϕ (under the Hausdorff metric) implies

L[ϕn] → L[ϕ].

Proof. Suppose that M is continuous and satisfies weak Pareto, then L is continuous

by Berge’s theorem of the maximum. Continuity implies sequential continuity because

the set of convex functions is a metric space under the Hausdorff metric.

In the setting of Peters and Wakker (1991), sequential continuity of bargaining ensures

that the payoffs are sequentially continuous in ϕ. Continuity of hours and payment is

immediate from continuity and strict concavity of the payoffs. □
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Lemma B.2. A point on the unconstrained Pareto frontier of M lies above all points

on the Pareto interior in some neighborhood of itself if and only if it is the overall optimum.

Proof. This is immediate from continuity and strict quasiconcavity of M . The pur-

pose of this lemma is to show this result under the assumptions of Peters and Wakker

(1991): Pareto optimality, IIA, and sequential continuity.

First, note that the overall Pareto frontier is the curve in (π, u) space where total

surplus is maximized. Because of transferable utility, this is a line with slope negative

one. Without loss, say that the space of feasible payoffs is the simplex.

Let z be a point on the Pareto frontier that is above all points in the interior contained

in an ϵ-ball centered at z for some ϵ > 0. Then, construct an ϵ/2-ball such that the point

is at the right with a triangle removed as in the left of Figure B.1. As δ decreases

towards zero, the bargaining protocol must still choose z as it is the most preferred point.

Continuity of the protocol implies that z must be chosen in the limit as well. Because

this limit contains this segment of the Pareto frontier, z must exceed all points above

it (preferred by the worker) on the frontier. The same argument can be applied for the

points below using the ϵ/2-ball to the right of Figure B.1.

Therefore, z is a local maximum on the frontier. By quasiconcavity of M , it is the

global maximum on the frontier. By monotonicity, it is the overall optimum. □

B.1.2. Proof of Proposition 2.1

Proposition 2.1. Let ϕ be a redistributive regulation that implements ℓ. There exists

a minimum wage, w̄, that implements ℓ such that w̄ℓ ≥ ϕ(ℓ).
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z

δ

ϵ/2

z

δ

ϵ/2

Figure B.1. Figure of ϵ/2-balls for Lemma B.2. As δ → 0, this sequence
approaches the full half circle, which contains a segment of the Pareto fron-
tier.

Proof. We prove this in the general setting of Section 2.6 where the worker and firm

contract according to a bargaining process defined by M . The proof for Section 2.4 is the

special case where M(x, y) ≡ x.

Because ϕ improves the welfare of the worker, the policy is binding. Then, ℓmaximizes

Mϕ(x) ≡M(f(x)− ϕ(x), ϕ(x)− c(x)).

By Lemma B.1, the function,

L(w) ≡ argmax
l

M(f(l)− wl, wl − c(l)),

is continuous. Because L(f ′(0)) = 0, if a minimum wage implements labor hours, z, we

can find a minimum wage to implement any labor hours less than z.

There are two cases.

In the first case, ℓ = ℓ∗. We established that w̄ ≡ c′(ℓ∗) implements ℓ∗ and that

ϕ′
−(ℓ

∗) ≤ c′(ℓ∗). The conclusion follows from convexity.
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In the second case, ℓ ̸= ℓ∗. Consider the minimum wage ϕ(ℓ)/ℓ. Clearly, we are done

if this also implements ℓ. If it implements labor greater than ℓ, continuity of L guarantees

that an even larger minimum wage implements ℓ. Then, the only case left to check is that

this minimum wage implements labor less than ℓ. This is impossible. Suppose by way of

contradiction that the minimum wage does reduce labor. Then,

argmax
x

M

(
f(x)− ϕ(ℓ)

ℓ
x,
ϕ(ℓ)

ℓ
x− c(x)

)
< ℓ.

However, this level of labor and transfer were available under ϕ (by convexity) and (ℓ, ϕ(ℓ))

is available in the above. That both are the unique optima of their respective problems

is a violation of IIA. □

B.1.3. Proof of Proposition 2.2

Proposition 2.2. A flexible-hours model with cost, cb, generates the same labor re-

sponse curve as an ultimatum model with the same production function and cost, cu,

where

cu(x) ≡ c′b(x)x.

Proof. In the flexible-hours model, the problem of the firm is to select a wage, w, and

hours-cap, ℓ̄ knowing that the worker will best respond with labor hours, ℓ, according to

ℓ = min{(c′)−1(w), ℓ̄}. Equivalently, by convexity of c, we can write that the firm chooses

w, ℓ subject to the constraint w ≥ c′(ℓ). Using the substitution τ = wℓ, we can write the

firm’s problem under any policy, ϕ, as

max
τ,ℓ

f(ℓ)− τ s.t. τ ≥ c′(ℓ)ℓ and τ ≥ ϕ(ℓ).
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This is equivalent to an ultimatum model where the worker’s labor cost is c′(ℓ)ℓ. We

use the assumption that this object is convex in order to ensure that this equivalent

ultimatum model is valid. □

B.1.4. Proof of Proposition 2.3

Proposition 2.3. The efficient minimum wage for the flexible-hours model with cost

cb (i.e., w̄
∗
b) locally minimizes welfare in the ultimatum model with cost cu.

Proof. By Proposition 2.2, we know that the two models generate the same contracts,

(τ, ℓ). The efficient minimum wage in the flexible-hours model maximizes labor hours.

Therefore, this same policy also maximizes labor hours in the ultimatum model. We want

to show that the labor-maximizing minimum wage implements labor hours that exceed the

efficient quantity. Because the total surplus is completely determined by the labor hours,

this would ensure that the labor-maximizing minimum wage is furthest from efficiency of

all policies in its locus. That is, it would be a local minimum.

This fact is proven in Corollary 2.2.3, but we can also find it directly by differentiating

the firm’s problem in the ultimatum model to find ∂ℓ
∂w̄

∣∣
w̄→+c(ℓ∗)/ℓ∗

= ℓ∗

c′(ℓ∗)−c(ℓ∗)/ℓ∗
> 0 (by

convexity of c). □

B.1.5. Proof of Proposition 2.4

Proposition 2.4. For any labor response curve, L:

• cb(x) < cu(x) ∀x > 0;

• w̄∗
b < w̄∗

u;

• ℓ∗b > ℓ∗u; and



124

• for i ∈ {b, u} and all w̄ ≥ 0,

d [f(L(w))− ci(L(w))]

dw

∣∣∣∣
w=w̄

> 0 =⇒ d [f(L(w))− c−i(L(w))]

dw

∣∣∣∣
w=w̄

< 0.

Proof. We go point by point.

• Immediate from convexity of c.

• Immediate from the shape of L and Proposition 2.2. The efficient minimum wage

must be larger in the ultimatum model to bring labor back down to the efficient

level.

• Immediate from the shape of L and Proposition 2.2. Alternatively, it is ensured

by the fact that the marginal labor cost is greater in the flexible-hours model.

• Immediate from the shape of L and Proposition 2.2. Note that total surplus

is increasing in the minimum wage in the flexible-hours model iff hours are in-

creasing. This always decreases total surplus in the ultimatum model. The only

segment where total surplus is increasing in the ultimatum model is the interval

that begins at the labor maximizing minimum wage and ends at the efficient

minimum wage. Total surplus is decreasing on this interval in the flexible-hours

model because labor hours are decreasing.

□

B.1.6. Proof of Proposition 2.5

Proposition 2.5. For i ∈ {b, u}, w̄∗
i is the largest minimum wage such that the worker

is not underworked in model i.
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Proof. In the flexible-hours model, it is well known that minimum wages above the

efficient minimum wage result in the worker obtaining fewer work hours than desired (i.e.,

labor is demand constrained).

In the ultimatum model, a minimum wage larger than f ′(ℓ∗) will obviously result in

hours fewer than ℓ∗ because f is concave. Because f ′(ℓ∗) = c′(ℓ∗), the worker is also

underworked with any such contract by convexity of c. □

B.1.7. Proof of Theorem 2.1

Theorem 2.1. There is a unique TS-maximizing satisficing policy. It is

ϕ∗(x) ≡



w0x if x ≤ ℓ̂

w0ℓ̂+
w0ℓ0
ℓ0−ℓ̂

(x− ℓ̂) if ℓ̂ < x ≤ ℓ0

∞ if x > ℓ0.

Proof. Refer to the Proof of Theorem 2.4 in Section B.1.11. This proof demonstrates

that ϕ∗ is both satisficing and minimal. By convexity of ϕ, the minimal phi also has

the minimal derivative pointwise of any policy. Because the policy is satisficing – and

therefore redistributive – the firm’s problem can be written as

max
ℓ
f(ℓ)− ϕ∗(ℓ).

Any increase to the derivative of phi will weakly decrease the implemented ℓ. Because this

ℓ is weakly less than ℓ∗, this reduction in labor hours reduces total surplus. Therefore, ϕ∗

is a TS-maximizing, satisficing policy.
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We now just need to ensure that the policy is unique. Suppose, by way of contradiction,

that it is not. Then, there exists another satisficing policy, ψ, which is greater than ϕ at

all points after some point, l, but implements the same total surplus for every possible

production function and labor disutility.

Because ψ is satisficing, l ∈ [ℓ̂, ℓ∗). Then, select an f such that f ′(l + ϵ) = w0ℓ0
ℓ0−ℓ̂

for

some ϵ > 0. This implements labor l + ϵ under ϕ∗ but less under ψ. It is clear that such

an f is possible. □

B.1.8. Proof of Theorem 2.2

Theorem 2.2. Let ϕ be an efficient regulation that implements τ . The worker is

overworked under ϕ if and only if there exists another efficient regulation ψ such that

ψ(ℓ∗) > τ .

Proof. The converse is trivial. If τ0/ℓ
∗ < c′(ℓ∗) = f ′(ℓ∗), ϕ(x) = f ′(ℓ∗)x binds and

implements ℓ∗.

For the forward statement, we know that the policy ϕ implements ℓ∗ and improves

the welfare of the worker. Therefore, z ≡ (f(ℓ∗)− ϕ(ℓ∗), ϕ(ℓ∗)− c(ℓ∗)) is the constrained

optimum but is not the overall optimum. By Lemma B.2, For any ϵ > 0, there is an ϵ-ball

around z such that z is not maximal. We want to show that that f ′(ℓ∗) ≥ ϕ′
−(ℓ

∗).

Suppose, by way of contradiction, that f ′(ℓ∗) < ϕ′
−(ℓ

∗). Intuitively, decreasing ℓ in

a neighborhood of ℓ∗ is the same as relaxing the policy constraint because the marginal

effect on profit and worker surplus are equal. As a result, there is an ϵ-ball around z

available under ϕ, which is a contradiction. Formally, we can access the upper part of

the ϵ-ball by transferring ϵ to the worker (because the constraint is in only one direction).
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We can access the lower part of the epsilon ball by decreasing ℓ by ϵ
ϕ′
−(ℓ∗)−f ′(ℓ∗)

:

f

(
ℓ∗ − ϵ

ϕ′
−(ℓ

∗)− f ′(ℓ∗)

)
− ϕ

(
ℓ∗ − ϵ

ϕ′
−(ℓ

∗)− f ′(ℓ∗)

)
= f(ℓ∗) + ϕ(ℓ∗) + ϵ−O(ϵ2)

ϕ

(
ℓ∗ − ϵ

ϕ′
−(ℓ

∗)− f ′(ℓ∗)

)
− c

(
ℓ∗ − ϵ

ϕ′
−(ℓ

∗)− f ′(ℓ∗)

)
= ϕ(ℓ∗)− c(ℓ∗)− ϵ−O(ϵ2).

This comes from taking a Taylor approximation near ℓ∗ and using the fact that f ′(ℓ∗) =

c′(ℓ∗). For ϵ sufficiently small, we can access any angle in the ϵ-ball on the Pareto interior.

This is a contradiction.

Therefore, c′(ℓ∗) ≥ ϕ′
−(ℓ

∗). Therefore, for all x ≤ ℓ∗, ϕ(x) ≤ c′(ℓ∗)x by convexity.

Because τo < ϕ(ℓ∗), we conclude τ0/ℓ
∗ < c′(ℓ∗). Therefore, the worker is overemployed.

□

B.1.9. Proof of Corollary 2.2.3

Corollary 2.2.3. Let L : R+ → R+ define the level of labor at each minimum wage

and w0 ∈ [c(ℓ∗)/ℓ∗, c′(ℓ∗)) be the wage in the absence of regulation. Then, the labor

response function, L, is continuous and

L(x)



= ℓ∗ if x ∈ [0, w0]

> ℓ∗ if x ∈ (w0, f
′(ℓ∗))

= ℓ∗ if x = f ′(ℓ∗)

< ℓ∗ if x ∈ (f ′(ℓ∗), f ′(0))

= 0 if x ≥ f ′(0).
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Proof. Continuity comes from Lemma B.1 and constant before the constraint binds

is immediate from IIA.

We show the third point. The proof is similar to Theorem 2.2. At w0, consider a

small increase in the minimum wage. If the worker’s incentive compatibility constraint

binds, then the effect of the wage on the equilibrium is the same as under monopsony.

Therefore, ψ′
+(w0) =

ℓ∗

c′(ℓ∗)−w0
> 0.

Then, suppose the constraint does not bind, we know that labor cannot decrease

because this is Pareto dominated. Therefore, it weakly increases at this point.

As in the proof of Theorem 2.2, increasing the labor perfectly counteracts an increase

in the minimum wage in a neighborhood around the point where it first binds. We want

to show that w ∈ (w0, f
′(ℓ∗)) leads to ℓ > ℓ∗.

Suppose, by way of contradiction, a w ∈ (w0, f
′(ℓ∗)) supports a contract z ≡ (ℓ∗, wℓ∗).

By Lemma B.2, for every ϵ > 0, there is an ϵ-ball around z such that it is not maximal

over all Pareto interior points. Therefore, there must be some angle within this ϵ-ball that

cannot be accessed under minimum wage, w. However, this is not true. We can access

the upper part of the ϵ-ball by transferring ϵ to the worker and can access the lower part

of the ϵ-ball by increasing ℓ by ϵ
f ′(ℓ∗)−w

:

f

(
ℓ∗ +

ϵ

f ′(ℓ∗)− w

)
−
(
ℓ∗ +

ϵ

f ′(ℓ∗)− w

)
w = f(ℓ∗) + wℓ∗ + ϵ−O(ϵ2)(

ℓ∗ +
ϵ

f ′(ℓ∗)− w

)
w − c

(
ℓ∗ +

ϵ

f ′(ℓ∗)− w

)
= wℓ∗ − c(ℓ∗)− ϵ−O(ϵ2).

For ϵ sufficiently small, we can access any angle in the ϵ-ball on the Pareto interior. This

is a contradiction.
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The other points are justified in the statement of the theorem. □

B.1.10. Proof of Theorem 2.3

Theorem 2.3. Any minimum wage in w∗(α) where

w∗(α) ≡ argmax
w≥f ′(ℓ∗)

α(wℓ− c(ℓ)) + (1− α)(f(ℓ)− wℓ)

s.t. ℓ = argmax
l

M(f(l)− wl, wl − c(l))

is a redistributive optimal regulation for α ∈ (0.5, 1].

The proof consists of two steps. We first find the optimal minimum wages (rather than

the optimal policies). We then use Proposition 2.1 to show that any optimal minimum

wage is also an optimal policy.

First, find the optimal minimum wages. The expression for an optimal minimum wage

is, by definition,

w∗(α) ≡ argmax
w

α(τ − c(ℓ)) + (1− α)(f(ℓ)− τ)

s.t. ℓ, τ = argmax
l,t

{M(f(l)− t, t− c(l)) s.t. t ≥ wl}

Second, simplify the expression. We would like to get rid of the minimum wage con-

straint and substitute τ = wℓ. However, the minimum wage is not always binding. How-

ever, in optimizing, we can restrict attention to minimum wages greater than or equal to

f ′(l∗) because: (1) this minimum wage maximizes total surplus and (2) a lower minimum
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wage redistributes less surplus to the worker because it involves less pay and more hours

than desired by the worker.

Theorem 2.2 establishes that f ′(l∗) is a binding minimum wage. Therefore, the mini-

mum wage constraint is binding on this restricted domain. Therefore, we can rewrite our

expression to the one in the Theorem.

Finally, show that any optimal minimum wage is an optimal policy. By way of con-

tradiction, suppose that an optimal minimum wage is not an optimal policy. Then, there

exists a “superior” policy that strictly dominates the optimal minimum wage (in that it

makes the objective larger). By Proposition 2.1, this “superior” policy is, itself, weakly

dominated by a (possibly different) minimum wage. This is a contradiction because it

implies that there is a minimum wage which strictly dominates an optimal minimum

wage.

B.1.11. Proof of Theorem 2.4

Theorem 2.4. There is a unique policy which is satisficing and NPD by any satisficing

regulation. It is

ϕ∗(x) ≡



w0x if x ≤ ℓ̂

w0ℓ̂+
w0ℓ0
ℓ0−ℓ̂

(x− ℓ̂) if ℓ̂ < x ≤ ℓ0

∞ if x > ℓ0.

Proof. We showed in the body of the paper that ϕ∗ is satisficing. To repeat the logic,

note that for all x ∈ (ℓ̂, ℓ0],

c(x)− c(ℓ̂) <
x− ℓ̂

ℓ0 − ℓ̂

[
c(ℓ0)− c(ℓ̂)

]
<

w0ℓ0

ℓ0 − ℓ̂
(x− ℓ̂) = ϕ(x)− ϕ(ℓ̂).
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The increased transfers make up for the extra work. So, ϕ∗ is satisficing.

We first show that any satisficing policy is greater or equal to ϕ∗. For this part, we

can use the ultimatum model because it must be robust to any bargaining framework.

The functions fε(x) ≡ (w0 + ε)x and

cε(x) ≡



w0x− εℓ0
2ℓ̂
x if x ≤ ℓ̂

w0x+
ε
2
(x− ℓ0) if ℓ̂ < x ≤ ℓ0

w0x+ 2ε(x− ℓ0) if x > ℓ0

are feasible for all ϵ > 0. Satisficing implies ϕ(x) ≥ w0x for all x < ℓ̂ and ϕ(x) > w0x for

all x > ℓ̂. However, if ϕ(ℓ) > w0ℓ, for all ℓ there exists an ε such that the firm shuts down.

So there must be some t such that ϕ(t) ≤ w0t to be chosen in this case. For satisficing to

hold, this implies ϕ(ℓ̂) = w0ℓ̂. Now, consider fN(x) ≡ Nx and

cN(x) ≡



0 if x ≤ ℓ̂

w0ℓ0
ℓ0−ℓ̂

(x− ℓ̂) if ℓ̂ < x ≤ ℓ0

w0ℓ0 + (N + 1)(x− ℓ⋆) if x > ℓ0

which are feasible. If there exists an x > ℓ̂ such that ϕ(x) < w0x+cN(x), then there exists

an N such that it will be chosen by the firm. Thus satisficing requires ϕ(x) ≥ w0x+cN(x)

for all N . Therefore, satisficing implies that there must be a cap at ℓ0. □
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B.1.12. Proof of Proposition 2.8

Proposition 2.8. Let ϕ∗
i be the never Pareto dominated satisficing regulation for

worker i. Suppose that the request, ℓ̂, is below the labor of each worker and that all workers

are overworked. The unique never Pareto dominated regulation which is satisficing for all

workers is

ϕ∗(x) = max
i
ϕ∗
i (x).

Proof. The function, ϕ∗(x), is convex (because it is the maximum of convex functions)

and satisfies ϕ∗(0) = 0. Therefore, it is a regulation. We now show that it is satisficing.

For x ≤ ℓ̂, there is a minimum wage equal to the maximum wage paid to any worker.

Because the worker is overworked, this wage is less than f ′(ℓ∗) < f ′(ℓ̂). Therefore, the

firm prefers ℓ̂ to any point below x. If the worker works less than ℓ̂ as a result of the

regulation, it is because she prefers this (by weak Pareto). Therefore, any contract with

ℓ ≤ ℓ̂ is satisficing under this policy.

For x > ℓ̂, there is a region that is the maximum of all of the policies for each worker.

These policies were designed such that all allowed contracts in this region were weakly

preferred to the requested contract for all workers. By taking the maximum, we ensure

that every allowed contract is weakly preferred by all workers.

This policy is never Pareto dominated because it is minimal. Suppose, by way of

contradiction, that a smaller policy existed which was satisficing for all workers, then it

would be smaller at some points than the minimal satisficing policy of at least one worker.

This is a contradiction.
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The proof that the minimal policy is uniquely never Pareto dominated follows the

same argument as Theorem 2.4. □

B.2. Robust maxmin regulation

Suppose that a regulator with no knowledge of f, c regulates an ultimatum monopsony.

The regulator knows that the assumptions on f, c hold. The objective of the regulator is

max
ϕ

inf
f,c

τ − c(ℓ)

s.t. ℓ = argmax
x

f(x)−max{c(x), ϕ(x)}

τ = max{c(x), ϕ(x)}.

The regulator has a lower bound on marginal productivity, f ′(x) ≥ f̄ ′(x), and an upper

bound on marginal cost, c′(x) ≤ c̄′(x) for all x. The regulator can make, f̄ ′ weakly

decreasing and c̄′ weakly increasing using his knowledge that the underlying functions are

concave. Assume that both bounds are left continuous.

Proposition B.1. A minimum wage with a labor cap is a maxmin policy. One such

policy is defined by

ϕ(x) =


f̄ ′(t)x if x ≤ t

∞ if x > t

where t ∈ argmaxz f̄
′(z)z − c̄′(z).

Proof. If f̄ ′(0) ≤ c̄′(0), the infimum in the regulator’s objective is zero. The worker’s

payoff is at least zero by the individual rationality constraint. So, any policy is maxmin.
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Suppose that f̄ ′(0) > c̄′(0). By left continuity, there exists at least one t that solves

t ∈ argmaxz f̄
′(z)z − c̄′(z). A minimum wage of f̄ ′(t) maximizes total surplus when the

bound holds exactly by granting the worker the contract (t, f̄ ′(t)t). In this state, this

gives the worker a surplus of f̄ ′(z)z − c̄′(z). It is not possible to achieve more than this

in maxmin because the minimal state is at least as bad as this one.

To guarantee this return, we need to ensure that the firm does not choose a larger level

of labor, ℓ > t, such that f̄ ′(t) < c̄′(ℓ). We did not place an upper bound on marginal

productivity. So, this needs to be guaranteed with some sort of convex policy. We could,

for example, place a labor cap at t or at the largest q which satisfies c̄′(q) ≤ f̄ ′(t). It’s

also possible to integrate c̄′ and add this to the wage after t. □

B.3. Complete information regulation under heterogeneity

Suppose that there are N ≥ 2 types of workers employed by a firm. Let ci denote the

cost of the i-th worker type. The costs and the production function, f , satisfy A1-3. For

convenience, order the types in terms of efficient labor hours. That is, for j > k, ℓ∗j ≥ ℓ∗k

where ℓ∗j ≡ argmaxz f(z) − cj(z) and ℓ
∗
k ≡ argmaxz f(z) − ck(z). The workers contract

in accordance with the ultimatum model.

Assume that the regulator treats all workers equally. That is, the objective of the

regulator is

α

(
N∑
i=1

τi − ci(ℓi)

)
+ (1− α)

(
N∑
i=1

f(ℓi)− τi

)
=

N∑
i=1

(2α− 1)τi + (1− α)f(ℓi)− αci(ℓi)

where α ∈ (0.5, 1].
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Lemma B.3. All workers who receive a positive surplus under regulation, ϕ, have the

same contract: (ℓ̃, τ̃). This contract is defined by f ′(ℓ̃) = ϕ′(ℓ̃) and τ̃ = ϕ(ℓ̃). If that

contract is a minimum wage, any worker, i, with zero surplus has ℓi ≤ ℓ̃.

Proof. If a worker, i, has a positive surplus, ϕ(ℓi) > ci(ℓi). Therefore, the IR con-

straint does not bind and ci has no effect on the firm’s problem. Therefore, all workers with

positive surplus must have the same contract defined by first order conditions f ′(ℓ̃) = ϕ′(ℓ̃)

and τ̃ = ϕ(ℓ̃).

If a worker, k, has zero surplus under minimum wage, w̄, τk = ck(ℓk) ≥ w̄ℓk. Suppose,

by way of contradiction that ℓk > ℓ̃. By concavity of f ,

w̄ = f ′(ℓ̃) > f ′(ℓk).

Because the regulation exceeds the worker’s marginal productivity, the firm would prefer

to hire the worker for fewer hours if this regulation were to bind. Therefore, the regulation

does not bind and is therefore weakly below the cost of worker k. Then, f ′(ℓk) is efficient

and this minimum wage is above the efficient minimum wage of k. This is a contradiction.

□

Lemma B.3 shows that the homogeneous and heterogeneous worker problems are fun-

damentally similar. All workers who benefit from a regulation receive the same contract.

So, there is no way to design a regulation that provides different redistributive contracts

to different workers.

If only the utility of the worker matters to the regulator, heterogeneity essentially has

no effect on the problem.
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Proposition 2.6. For α = 1, there is at least one optimal regulation that is a mini-

mum wage. Any optimal minimum wage is the same as the optimal minimum wage in a

single worker problem. This single worker has the average cost of all workers with positive

utility under the regulation.

Proof. When α = 1, the regulator maximizes the average utility of all workers. By

Lemma B.3, all workers with positive payoffs have the same contract. For every subset of

workers S ⊆ 21,...,N , the regulator can solve

(B.1) max
ϕ

∑
i∈S

ϕ(ℓ̃)− ci(ℓ̃) s.t. f
′(ℓ̃) = ϕ′(ℓ̃)

which is equivalent to

max
ϕ

ϕ(ℓ̃)− 1

|S|
∑
i∈S

ci(ℓ̃) s.t. f
′(ℓ̃) = ϕ′(ℓ̃).

This is the same as the single worker problem where c is replaced by the average of ci for

all i ∈ S. Therefore, the optimum is always a minimum wage.

Some of these problems may be invalid in the sense that the regulation does not

actually benefit all workers in S. Lemma B.3 ensures ℓi ≤ ℓ̃ for any worker, i, with zero

utility. As a result, there is no way to reach these workers with a regulation. Therefore,

the problem for S is invalid only if there is no optimal regulation that benefits all workers

in S. Therefore, the optimal minimum wages are valid solutions to (B.1). The regulator

chooses the set of S that maximize the objective. □

Proposition 2.6 suggests that multiple optimal minimum wages may exist. This is

because the set of workers affected by the regulation may differ across optimal policies.
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Example B.1 (Two optimal minimum wages). Suppose a firm with f(x) ≡ x − x2

2

contracts the services of two workers. Worker 1 has cost c1(x) ≡ 7x2

2
and worker 2 has

cost c2(x) ≡ x2

2
.

The three candidate optimal regulation problems are

max
x,w̄

w̄x− 1

|S|
∑
i∈S

ci(x) s.t. w̄ = f ′(x).

The solutions to the three candidate problems are ℓ1 = 1
9
, ℓ2 = 1

3
, ℓ1,2 = 1

6
with wages

w̄1 =
8
9
, w̄2 =

2
3
, w̄1,2 =

5
6
. The utility of worker 2 under w̄1 is

w̄1ℓ1 − c2(ℓ1) =
8

9

1

9
− (1/9)2

2
=

5

54
> 0.

This means the regulation is invalid because it should benefit only worker 1. The second

benefits worker 2, but does not benefit worker 1 because

w̄2ℓ2 − c1(ℓ2) =
2

3

1

3
− 7

(1/3)2

2
= −1

6
< 0.

Therefore, it is valid and the benefit of this regulation is

w̄2ℓ2 − c2(ℓ2) =
2

3

1

3
− (1/3)2

2
=

1

6
.

The combined benefit of the joint regulation is

(w̄1,2ℓ1,2 − c1(ℓ1,2)) + (w̄1,2ℓ1,2 − c2(ℓ1,2)) =

(
5

6

1

6
− 7

(1/6)2

2

)
+

(
5

6

1

6
− (1/6)2

2

)
=

1

24
+

1

8
=

1

6
.
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This is the same as the effect of the optimal minimum wage for worker 2. Therefore, both

w̄2 =
2
3
and w̄1,2 =

5
6
are optimal minimum wage policies. While both are optimal, their

distributive effects are different. △

The heterogenous worker problem has different implications for α ∈ (0.5, 1). The

largest effect comes in the case of total surplus maximization (α → 0.5). An immediate

implication from Lemma B.3 is that a regulation can be efficient and benefit more than

one worker only if the workers who benefit have the same efficient hours. If efficient labor

hours are strictly ranked, at most one worker can benefit from a regulation that maximizes

total surplus.

However, if heterogeneity is small, the problems for α ∈ (0.5, 1) are always similar to

the homogeneous case.

Proposition B.2. For each α ∈ (0.5, 1], there exists an ϵ > 0 such that maxx |ci(x)−

ck(x)| < ϵ for all i, k ≤ N implies there is at least one optimal regulation that is a

minimum wage. Any optimal minimum wage is the same as the optimal minimum wage

in a single worker problem. This single worker has the average cost of all workers.

Proof. We only need to show that for any α ∈ (0.5, 1], there exists an ϵ such that the

regulator gives every worker a positive payoff. Giving worker i a positive payoff requires

ϕ(ℓi) − ci(ℓi) > 0. Therefore, any regulation that increases the payoff of one worker

increases the payoff of all workers for ϵ sufficiently small. Therefore, we just need to show

that there exists a binding optimal regulation.
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The fact that there is such a regulation is obvious. Consider a minimum wage of f ′(ℓ∗N).

This regulation gives strictly positive benefit to all players. Loss in total surplus can be

made arbitrarily small. Therefore, this dominates not regulating for any α ∈ (0.5, 1]. □

From this proof, we can see that the required bounds on heterogeneity become more

strict as α gets closer to 0.5. From Proposition 2.6, we know that no conditions are needed

when α = 1.

Lemma B.2 does not hold for α → 0.5. In this case, there is no exactly efficient

regulation that increases the utility of workers when heterogeneity in costs is arbitrarily

small. However, an exactly efficient regulation that increases worker utility may exist

when heterogeneity is not small.

Proposition 2.7. Let α → 0.5. Suppose ℓ∗N ̸= ℓ∗N−1. If minN−1
i=1 {ci(ℓ∗i )/ℓ∗i } > f ′(ℓ∗N),

the optimal regulation is a minimum wage of f ′(ℓ∗N). Otherwise, consider

ϕ(x) ≡


Conv (x) if x ≤ ℓ∗N−1

Conv (ℓ∗N−1) + f ′(ℓ∗N)(x− ℓ∗N−1) if x > ℓ∗N−1,

and Conv is the largest convex function to fit under {(ℓ∗i , ci(ℓ∗i ))}N−1
i=1 with the restriction

that the slope is capped at f ′(ℓ∗N). If ϕ(ℓ
∗
N) > cN(ℓ

∗
N), then ϕ is an optimal regulation.

Proof. Lemma B.3 and efficiency ensure minimum wage redistribution can only be

used to benefit worker N . Affecting any other worker at all will reduce efficiency. There-

fore, the regulation must be nonbinding for all other workers. If if the first condition

holds, the efficient minimum wage is optimal because it is the largest efficient regulation

for N .
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If the second condition holds, any regulation for any other worker, i with slope f ′(ℓ∗i )

at ℓ∗i will also affect player N . Regulation, ϕ, is as large as possible while lying below all

other points and having slope f ′(ℓ∗N) at ℓ
∗
N . □

Proposition 2.7 demonstrates two important properties of these problems. First, the

optimal regulation may not be a minimum wage. The reason that a piecewise linear

regulation may be optimal in the heterogeneous worker setting is that it reduces the effects

of regulation the contracts of workers with zero payoff. Such regulation only affects firms.

So, the issue becomes less relevant as α increases. The second property is that minimum

wage regulation is also optimal in settings where heterogeneity is sufficiently large. In

this case, the problem is separable and the lowest cost worker can be regulated alone.

B.4. Oligopsony

We now add an entrant firm with production function g such that f ′(x) ≥ g′(x) for

all x. The incumbent must provide the worker enough surplus so that the entrant cannot

make any profitable offer to the worker. Therefore, the profit-maximization problem of

the incumbent under oligopsony is

(B.2) max
ℓ,τ

f(ℓ)− τ s.t. τ ≥ max {c(ℓ) + u[ϕ; g], ϕ(ℓ)}

where u is maximum surplus that the entrant can offer. That is,

(B.3) u[ϕ; g] = max
ℓ
g(ℓ)− c(ℓ) s.t. g(ℓ) ≥ ϕ(ℓ).
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Note that the regulation, ϕ, enters twice into the incumbent’s problem. As in the

monopsony case, it pushes the worker’s salary up. However, it also constrains the maxi-

mum in (B.3). This means that the regulation reduces competitive pressure. This tension

between regulation and competition is the main difference between oligopsony and monop-

sony.

B.4.1. Pre-regulation benchmark

In the absence of regulation, the incumbent offers the efficient level of labor and matches

the best offer of the entrant. So, the incumbent offers contract (ℓ∗, τ ∗g ) with ℓ∗ ≡

argmaxx f(x)− c(x) and τ ∗g ≡ c(ℓ∗) + u[0; g] where u is defined by (B.3).

Unlike under monopsony, it is now possible that the worker is underemployed. That

is, she might prefer to work more hours at the average wage offered by the incumbent.

Lemma B.4. Suppose an incumbent with production function, f offers labor quantity,

ℓ and receives profits, Π. Then, the worker is underemployed if and only if the incumbent

earns profit, Π < f(ℓ)− c′+(ℓ)ℓ and is overemployed if and only if Π > f(ℓ)− c′−(ℓ)ℓ.

For the incumbent, the right hand sides of the above inequalities do not depend on the

production function of the entrant, g. However, the equilibrium profit is weakly decreasing

in g. Therefore, markets with more competitive entrants (larger g) have underemployment

and markets with less competitive entrants (lower g) have overemployment. Because the

entrant receives zero profit, its best offer would underemploy the worker.

Because the entrant has lower marginal productivity than the incumbent, the entrant’s

best offer involves weakly less labor than the incumbent’s. This fact combined with Figure
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Figure B.2. A plot of labor holding the worker’s utility constant. The
lower intersections are contracts that underemploy the worker while the
intersections at the upper part of the curve overemploy the worker at the
same wages.

B.2 demonstrate the incumbent pays a lower wage than the entrant if the employee is

underemployed. This is because the incumbent is compensating the worker with more

labor, and therefore can pay less. If the worker is overemployed, the incumbent’s wage

may be greater than the entrant’s.

B.4.2. Minimum wage regulation

The competitive constraint ensures that τ − c(ℓ) ≥ u[ϕ; g]. If this condition is binding for

some policy, ϕ, it is impossible for the policy to increase the welfare of the worker over

the pre-regulation benchmark because the worker’s surplus is the left hand side of the

constraint and u is weakly decreasing in phi. When the competitive constraint does not

bind, the entrant is irrelevant.
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Therefore, for any policy that increases the welfare of the worker, the oligopsony

outcome and monopsony outcome are the same. Because of this, the justification for

restricting attention to minimum wage policies under Monopsony, Proposition 2.1, also

holds under Oligopsony.

On the other hand, the effects of minimum wages that do not improve the welfare of

workers are very different under Monopsony and Oligopsony. The most apparent difference

between the two is that a minimum wage can strictly reduce worker welfare because

workers have strictly positive welfare in the pre-regulation benchmark.

Because of this, it is not obvious that the market can be efficiently regulated.

Proposition B.3. Let (ℓ, τ) be the contract offered by the incumbent under minimum

wage, w̄ ≥ 0, and let ℓ∗ be the efficient level of labor. Assume f is differentiable at ℓ∗.

Then, there exists a larger minimum wage w̄′ > w̄ that implements ℓ∗ if and only if (ℓ, τ)

overemploys the worker.

Section 2.2 shows that, as in the neoclassical model, there is a binding minimum wage

that achieves the efficient level of labor under a monopsony. It is well known that this is

impossible under perfect competition when labor demand is a function.1

For w̄ = 0, Proposition B.3 demonstrates that if a worker is overemployed in the

absence of regulation, the market is uncompetitive enough for a minimum wage regulation

to be efficient. If the worker is underemployed in the absence of regulation, the market is

competitive enough that efficient minimum wage regulation is impossible.

1When f is not differentiable, demand is a correspondence. That is, there may be an interval of wages
assigned to any level of labor. In this case, imagine that supply intersects this demand at the bottom of
this interval. Then, it’s clear that you can impose a minimum wage to the top of the interval.
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This means that a regulator need only know if workers desired hours exceed their actual

hours in the pre-regulation benchmark to determine if efficient minimum wage regulation

is possible. The proposition goes further to say that if there is already a minimum wage in

place, a regulator can tell whether this existing regulation is above or below the efficient

minimum wage just by observing whether employees are underemployed or overemployed.

Proposition B.4. There f, g, c and ϕ such that, relative to the pre-regulation bench-

mark,

• worker hours are greater;

• the wage offered by the incumbent is strictly lower;

• the incumbent’s profits are strictly larger.

However, if the worker is underemployed in the pre-regulation benchmark, then none of

the above are possible.
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