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ABSTRACT 
Understanding and controlling microbial community assembly is critical to developing 

novel bioprocesses for nutrient and energy recovery from wastewater and preparing for global 

climate change. As molecular biology tools and DNA sequencing improve, microbial ecologists 

can progress from answering qualitative questions about “who is there, and what are they 

doing?” to rationally designing microbial communities for specific functions. Despite our 

increasing ability to monitor microbial community phylogenetic and functional composition, 

parsing the impact of community interactions, abiotic factors, dispersal limitations, and 

stochastic factors in complex microbial consortia remains a major challenge. This thesis first lays 

out important fundamental concepts and contemporary ‘omics and computational tools in 

microbial ecology. Next it investigates community assembly mechanisms at regional and 

watershed scales and then applies these concepts to designing a microbial electrochemical cell 

(MEC) based bioprocess and investigating MEC community structure.  

Chapters 1 and 2 introduce the background and methods for molecular microbial ecology, 

respectively. In chapter 3, a longitudinal field study was used to test for regional synchrony in 

population dynamics in activated sludge bioreactors. Using a nested experimental approach, 

longitudinal sampling of multiple reactors per site across several regional plants was performed. 

Community beta diversity over time and between sites was compared and temperature driven 

seasonal variation was the dominant process observed. This trend was consistent across multiple 

community scales in activated sludge systems and visible in nitrifier populations. In chapter 4, 

the amplicon sequencing, multivariate ordination and variance partitioning approaches developed 

previously were applied to study soil hydrology driven community assembly in an intensively 

managed landscape. In the final chapter, ongoing work integrating native prairie microbial 
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ecology with a novel longitudinal and spatially resolved groundwater monitoring system is 

discussed. The focus of these sections is demonstrating the impact of hydrology & soil moisture 

on community structure.  

The next two chapters are devoted to lab-scale bioreactor studies of microbial 

electrochemical cells for H2O2 production. Exoelectrogenic biofilms were enriched in 3D-printed 

bioreactors and biological acetate oxidation was coupled to H2O2 electrosynthesis via oxygen 

reduction. Buffer composition, electrode composition and hydraulic residence time were 

optimized for H2O2 titer and pH. The produced H2O2 was utilized for tandem catalytic 

sulfoxidation of a model aromatic thioether compound with a heterogeneous niobium(V)-

catalyst, and demonstrated similar activity to commercially produced H2O2. While this last 

finding is expected, the process demonstrates a novel approach for wastewater valorization 

through continuous production of H2O2 and its immeditate use as a selective oxidant in aqueous 

conditions for green chemistry applications. Finally, a genome-centric metagenomic approach is 

used to investigate the relationship between electron donor availability and MEC community 

structure, an open community assembly question of relevance for MEC scale-up. The 

methodologies applied in this thesis have applications for	rationally designing other bioprocesses 

based on underlying microbial community assembly rules as well as investigating physiological 

niches of keystone microbes for existing processes. 
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1.1 INTRODUCTION 
 

The evolution of microbial redox processes has reshaped the earth over its 4.5 billion year 

history. Microbial life drives many of Earth’s biogeochemical cycles and makes up 

approximately 15% of all biomass on Earth.1-3 In nature, microbes are present in diverse 

communities, but most industrial biotechnology processes use monocultures of model organisms 

like E. coli or S. cerevisiae. To address global challenges like access to clean water and food, 

climate change, and the spread of antibiotic resistance, it is critical to develop our ability to 

understand and engineer robust and resilient microbial communities.4  

The development of the activated sludge process for wastewater treatment was one of the 

first applications of microbial community engineering and one of the most important public 

health innovations of the 20th century. Although simple, this process contributed to a dramatic 

decrease in waterborne illness in the developed world and still forms the basis for most 

industrialized forms of biological wastewater management. First industrialized in the 1910’s, the 

process combines sewage aeration with biomass retention to select for microbial communities 

that rapidly oxidize organics and ammonia.5 Activated sludge processes select for rapidly 

growing aerobic heterotrophs, resulting in high-energy requirements due to aeration 

(approximately 3% of domestic electricity production)6 and production of large quantities of 

waste biomass that must be further treated. Despite these limitations, activated sludge processes 

demonstrate how environmental pressure can be utilized to select for and enrich beneficial 

communities of microbes at scale. 

New environmental biotechnology processes are still developed via long-term selective 

pressure and selective biomass retention, but the functional microbes that catalyze these 

processes are no longer treated as a black box. Recently, the term microbial resource 
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management was coined to describe the process of integrating microbial physiology, ecological 

theory, molecular tools and mathematical modeling to engineer microbial communities for 

specific functions.4 Critical to microbial resource management is understanding what makes 

microbial communities resistant (insensitive to environmental changes), and resilient (able to 

recover after disturbance), as shown in Figure 1.1.7 Studies across many engineered consortia 

demonstrate that microbial communities contain ecologically redundant populations and are 

inherently dynamic, even under undisturbed conditions or periods of functional stability.8, 9 Thus, 

differentiating between natural variability during functional stability and functionally relevant 

response to disturbance is essential for process monitoring and improvement.10  

 

 

Figure 1.1 Conceptual overview of predicting community robustness and stability for engineered 
microbial communities. Reproduced from reference.10  

  

Microbial resource management has been driven in part by next-generation sequencing 

(NGS). The development of high-throughput amplicon sequencing, analysis platforms and 

comprehensive phylogenetic databases has enabled low-cost population monitoring in 

engineered systems.11-13 Meanwhile, whole genome sequencing (WGS) and metagenomics have 
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aided discovery and characterization of functional organisms such as exoelectrogens, 

commamox, and anammox organisms.14-16 Recently, genome-resolved metagenomics has 

enabled direct reconstruction of genomes from environments, allowing detailed functional 

descriptions of the uncultivated organisms found in many environmental biotechnology 

processes. The success of microbial resource management approaches is evidenced in the 

commercialization of new wastewater bioprocesses based on metabolism of as-yet-cultivated 

anammox bacteria that catalyze direct anoxic conversion of ammonium to nitrogen gas (e.g. 

DEMON),17 and enhanced biological phosphate removal processes based on enrichment of as-

yet-uncultivated polyphosphate accumulating organisms (PAOs).18 Microbial resource 

management has also been employed to improve understanding of anaerobic digestion processes 

and struvite (MgNH4PO4·6H2O) production.8, 19 

While ecological theory can guide process operation and optimization, process design can 

be further improved by considering opportunities for resource recovery and evaluating waste 

management in a holistic or integrated manner. Traditional environmental biotechnology process 

development has focused on minimizing the cost of treating individual waste streams, however 

many of the processes described above have the potential to generate valuable co-products such 

as biogas or fertilizers. Life cycle analyses of existing wastewater resource recovery processes 

found that many are consistently beneficial when incorporating environmental benefits and 

considering broad system boundaries.20 While life cycle analyses can draw arbitrary system 

boundaries, in practice current planning processes emphasize direct costs to utilities. Integrated 

resource management planning methodologies that consider economic, social and environmental 

impacts for a broad set of stakeholders are needed in order to fully utilize new resource recovery 

options.21  
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Microbial electrochemical cells (MECs) are a promising technology that employ a mixed 

culture microbial community for sustainable wastewater treatment for waste carbon recovery and 

a useful platform technology for integrated resource management.22 MECs utilize anode 

respiring bacteria or exoelectrogens that use extracellular electron transfer (EET) to reduce solid 

extracellular substrates such as metals or electrodes.23 Current generated this way can be used for 

electricity in microbial fuel cells or can be coupled to a variety of other electrochemical reactions 

such as oxygen reduction to form hydrogen peroxide.24 In addition, MECs are particularly well 

suited for studying microbial community adaptation and metabolism as produced current can be 

directly related to metabolic flux through EET pathways.25 While these systems are highly 

versatile, their technoeconomic viability is currently limited by power density and difficulty 

maintaining performance in pilot-scale systems treating real waste.26, 27 MECs scale up 

challenges have been attributed to exoelectrogen maintenance and out-competition of 

methanogens, presenting a unique opportunity to explore both novel process design as well as 

community ecology.28 

1.2 BACKGROUND 

1.2.1 Microbial Community Assembly 

Microbial ecology is fundamentally concerned with understanding how and why diversity 

arises in microbial communities. Early microbiologists suggested that microbes faced fewer 

dispersal limitations than macroscopic organisms and were inherently cosmopolitan, leading to 

the maxim that “everything is everywhere, but the environment selects”.29 This strict 

environmental determinism dominated microbiology theory during the 20th century but was 

challenged by the arrival of neutral theory and molecular community fingerprinting techniques.30, 

31 Neutral ecological models state that ecological diversity is driven by stochastic factors such as 
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immigration, birth and death, rather than ecological processes. Concurrent with the development 

of neutral theory, molecular fingerprinting techniques based on PCR amplification of genes 

encoding ribosomal RNA followed by profiling with terminal restriction fragment length 

polymorphism (T-RFLP), or denaturing gradient gel electrophoresis (DGGE) profoundly shifted 

the focus of microbial ecology from culturing towards analysis of molecular data.30  

Molecular fingerprinting techniques enabled rapid characterization of microbial diversity 

within complex communities. DNA fingerprinting and later amplicon sequencing work revealed 

that microbial communities are highly dynamic, functionally redundant and diverse but globally 

resemble communities in similar environments.32, 33 Due to the inability to correlated 

phylogenetic gene marker abundance with community function, high sequencing error, and the 

inherent noisiness of individual populations, early fingerprinting studies of microbial ecosystems 

including those in wastewater suggested that species distributions were consistent with neutral 

theory predictions.34-36 These findings led to a debate over the extent to which stochastic 

(neutral) versus deterministic (environmental selection) processes influence microbial 

community assembly. More recent theoretical approaches such as the metacommunity 

framework have emphasized that multiple community assembly mechanisms including selection, 

dispersal, historical and neutral factors each play a role in an environment-dependent context.37  

Environmental bioreactors have proven to be useful model systems for testing and 

developing microbial ecology theory and have informed our understanding of community 

assembly mechanisms,9, 38, 39 resilience and stability.40, 41 Engineered environments possess well-

defined physical boundaries and clearly phylogenetically delineated functional guilds responsible 

for nutrient removal and resource recovery processes.42 Microbial resource management 

approaches to wastewater management have begun to recognize and account for ecological 
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processes, many of which are shared between engineered and other environments like freshwater 

lakes.38, 43-45 Repeatable community dynamics have now been demonstrated in both lab- and full-

scale bioreactor communities8, 46, as well as in regional lakes.47, 48 These patterns, termed 

‘regional synchrony’ or ‘temporal concordance’ can be linked to exogenous drivers like regional 

weather patterns, known as the Moran Effect, or due to time-dependent processes during startup. 

As microbial diversity becomes better characterized and community assembly is better 

understood, microbial ecologists can begin to move beyond the task of merely quantifying 

microbial diversity and instead focus on the mechanisms underlying diversity	rational design of 

microbial communities for specific functions.49 One approach is improved experimental design 

aimed towards hypothesis testing. Beyond this, shotgun metagenomic sequencing that does not 

rely on PCR amplification of marker genes has enabled a number of discoveries missed by 

phylogenetic approaches. Several metagenomic studies of bioreactors have found higher rates of 

functional stability (defined in terms of coverage of major pathways) compared with 

phylogenetic variability.43, 50 In addition, metagenomic sequencing has identified previously 

unknown organisms like comammox organisms (complete ammonia oxidizers), that are 

phylogenetically classified as nitrite oxidizing bacteria, but which contain a functional ammonia 

oxidation pathway due to a horizontal gene transfer event.15 These results demonstrate the utility 

of ‘omics approaches that more directly capture biological relevant information. Thus far, there 

are limited studies using transcriptomics, proteomics, and metabolomics in mixed 

communities51, however increased feasibility of these methods will improve efforts to predict 

and design stable community function. 

1.2.2 Microbial Electrochemical Cells for Resource Recovery 
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Successful application of microbial resource management strategies can enable recovery 

of reusable water, energy, and materials such as bioplastics, fertilizers or fuels from 

wastewater.21 Energy is currently recovered in the form of methane-rich biogas via anaerobic 

digestion (AD) and used in combined heat and power systems. This approach is mature but only 

technoeconomically viable for large scale treatment of concentrated waste streams.52 Recently, 

alternative approaches such as ethanol or hydrogen fermentation have been investigated.52 

Microbial electrochemical cells (MECs), including microbial fuel cells and microbial peroxide 

producing cells (MFCs and MPPCs, respectively) are another promising approach. As a resource 

recovery platform, MECs have several advantages compared with anaerobic digestion. They can 

operate at lower temperatures than AD processes, as most archaeal methanotrophs are 

thermophiles. In addition, they can handle much lower organic loading rates than AD 

processes.52 MECs can be designed to recover carbon via direct electricity, hydrogen, or 

hydrogen peroxide production from municipal wastewater.53 

Despite these potential advantages, MECs are limited by low volumetric power densities 

as well as scale-up and feasibility challenges. Extensive work has been done characterizing the 

impact of design variables including cell configuration, electrode materials, inoculum source, 

carbon source and concentration and enrichment strategies on MEC performance.54, 55 Key 

parameters controlling current density and electron recovery efficiency are the cell internal 

resistance, degree of exoelectrogen enrichment, and in the case of H2O2-producing cells, stability 

of the end product.56, 57 Internal resistance within electrochemical cells can be broken down into 

individual contributions from the electrodes, electrolyte and separator resistances or by 

mechanisms such as ohmic resistance or activation losses (Figure 1.2). Activation losses are 

caused primarily by the kinetics of the biological or electrochemical reactions themselves. 
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Ohmic losses on the other hand represent resistance within the anode biofilm or electrodes, 

electrolyte or separator membrane.58  

 

Figure 1.2 Schematic of potential loss (overpotentials) (η) within a two-chamber H2O2 
producing MEC. ηbiol is the loss owing to extracellular electron transfer. ηanode, ηmem and 
ηcathode are the overpotentials due to interfacial resistance at the anode, electrolyte and 
membrane resistance and cathode resistance, respectively.  

To minimize internal resistance, MECs are typically designed with minimal spacing 

between electrodes, high buffering capacity and high electrolyte conductivity. A variety of 

carbon based electrode materials including graphite, carbon cloth or felt, and 3D structures such 

as reticulated vitreous carbon (RVC), carbon fiber brushes and carbon nanotube (CNT)-coated 

sponges have been investigated as anodes.59 Micro-scale carbon fiber anode MFCs fed acetate 

have demonstrated power densities of up to 6.9W/m2 on the basis of anode surface area.58 

Despite the interest in anode materials, several studies have reported that cathodic overpotential 

is a larger contribution to resistance than anodic losses.58 

Translating lab-scale performance gains into performance at scale remains difficult. 

Stable exoelectrogen enrichment and outcompetition of methanogens in real waste streams is a 
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major challenge. The highest recorded MEC power density was over 1kW/m3 in a 2.5 mL 

reactor60; however a recently reported 1000L pilot-scale MFC reached a maximum current 

density of only 7.4 A/m3 and most (86%) removed COD was converted to methane.28 In 

addition, MEC power output is inherently variable and low voltage. Series-connected MEC 

stacks have been developed to increase voltage, but voltage reversals have been observed.61  

Another approach to converting electrical current into useful products is electrochemical 

synthesis. Hydrogen production is the most thoroughly characterized approach but recently, 

hydrogen peroxide (H2O2) production has been explored.62 Hydrogen peroxide has a number of 

uses including disinfection and bleaching, and a life cycle analysis found that high-performing 

MPPCs were environmentally and economically favorable compared to AD processes.27 Cathode 

conditions are especially important in MPPCs due to the tendency of produced hydrogen 

peroxide to be further reduced to water at the anode or degraded in solution, leading to low 

coulombic efficiencies (<25%)63 or high required energy inputs.64 Several strategies to stabilize 

produced hydrogen peroxide are possible. Transition metal ions are known to promote hydrogen 

peroxide breakdown, so chelating agents such as EDTA and DTPA could be used to inhibit this 

mechanism.65 H2O2 stabilizing agents such as acetanilide, phenol, tin or nitrates are another 

potential route.65 H2O2 stability varies greatly by pH, so effective management of pH increase in 

the catholyte is another approach to improving H2O2 yield. Finally, optimizing the catholyte 

residence time near the cathode to reduce electrocatalytic reduction is another route to limit 

degradation. Although hydrogen peroxide yield and stability in MPPCs has been pointed out as a 

challenge, little work investigating these methods has been done to date. Another approach to 

minimizing H2O2 degradation is immediate on-site utilization. In accordance with integrated 
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resource management approaches, MEC-derived H2O2 may be a cost-effective oxidant for lignin 

or for chemical synthesis via tandem catalysis. 

 

 

 

Figure 1.3 Energy metabolism in six Geobacter sulfurreducens genomes. ATP is generated via 
TCA oxidation. Periplasmic and outer membrane cytochrome proteins necessary for EET are 
shown. The enzymes are colored black if there were orthologs for every subunit in all of the 
species and red if there were not. OmcB is shown in gray because there positional but not 
sequence-based orthologs. Reproduced from reference.14 

1.2.3 Exoelectrogen Metabolism and Biofilm Communities 

Microbial electrochemical cells generate current from microbial extracellular electron 

transfer (EET). EET is a metabolic adaptation to environments lacking soluble electron acceptors 
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such as oxygen. By reducing insoluble substrates such as Fe(III) outside the cell, exoelectrogens 

can utilize fermentation byproducts such as acetate for energy production in subterranean 

anaerobic environments. The most well characterized exoelectrogens are Geobacter spp., 

members of the family Geobacteraceae within the Deltaproteobacteria class. Although there are 

other known exoelectrogens (e.g. Shewanella spp.), Geobacter are typically the dominant 

exoelectrogens in lab-scale acetate-fed MECs possibly due to their high affinity for acetate as 

well as their ability to grow thick conductive biofilms.66 Extracellular electron transfer in 

Geobacter is thought to proceed via TCA cycle oxidation, followed by electron transport along a 

complicated outer membrane transport chain and into a conductive pili network (Figure 1.3).14  

Despite thorough characterization of Geobacter physiology and EET mechanisms, 

practical implementation of MECs is limited by our ability to design and maintain microbial 

consortia capable of converting complex organics into electrical current. In addition, there are 

fundamental knowledge gaps about how complex organic carbon sources influence the structure 

and function of anode biofilm communities. Previous studies have shown that carbon source 

strongly influences Geobacter enrichment and performance in MECs.54, 67, 68 G Sulfurreducens, a 

well-studied exoelectrogen found in MECs, can only use acetate or hydrogen as electron 

donors.69 Performance in systems treating real waste streams is lower than in lab-scale systems 

because most exoelectrogens rely on syntrophic interactions with fermenters to break down 

longer volatile fatty acids (VFAs) into useable electron donors (Figure 1.4). These communities 

tend to be much more diverse and contain fermenters and homo-acetogenic bacteria that produce 

acetate as well as methanogens and exoelectrogens that compete for acetate.70 
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Figure 1.4 Conceptual map of syntrophic interactions in MFCs treating complex organic 
substrates. Community diversity is critical to maintain performance and metabolic flexibility but 
also presents challenges in terms of competition for acetate. 

 
Characterizing both the exoelectrogen populations as well as the flanking community is 

critical to improve scale-up and design of MECs. Much of what we know about Geobacter and 

exoelectrogen metabolism comes from pure culture experiments; however it is now possible to 

directly investigate functional populations within enrichment cultures using genome-centric 

metagenomics51. Metagenomic studies offer the potential to study previously unknown diversity 

and performance variation71 and investigate dominant EET mechanisms in MECs. In addition, 

few studies examining the prevalence of the more then 100 outer membrane cytochromes (OMC) 

in the Geobacter pangenome have been performed in MEC populations.72 

Beyond exoelectrogen physiology, the functional roles of flanking (non-exoelectrogenic) 

community members are poorly understood. Community-scale differences in flanking 

community function could be used to explain the effectiveness of enrichment strategies. Little is 
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known about how electron donor availability influences the abundance of genes associated with 

steps in the syntrophic fermentation process for acetogenesis such as formyltetrahydrofolate 

synthetase, (FTHFS)73 and unwanted processes such as methanogenesis, e.g. methyl-coenzyme 

M reductase (MCR).74 Gene abundance within these supporting pathways could be used to 

inform new strategies for selective enrichment of exoelectrogenesis over methanogenesis in the 

presence of complex organics.  

	

1.3 THESIS OVERVIEW 

The work in this thesis attempts to improve our understanding of microbial community 

assembly mechanisms and develop resource recovery processes using this knowledge. The first 

two works focus on field-scale studies of microbial diversity in engineered and natural 

environments. The last two works focus on development of microbial electrochemical cell-based 

resource recovery and investigation of metabolic processes in these systems.  

In chapter one, important microbial ecology frameworks and community assembly 

mechanisms are introduced. Known exoelectrogenic metabolic pathways and biofilm community 

structure is described. Current microbial electrochemical cell approaches and performance are 

reviewed. Chapter two describes the computational methods used to analyze amplicon and 

metagenomic next generation sequencing data. A brief review of algorithms and software tools is 

provided, followed by protocols and best practices for using the sequencing pipelines developed 

for the following work. 

The third chapter discusses regional population synchrony in full-scale activated sludge 

microbial communities.46 Synchronous population dynamics imply deterministic community 

assembly driven by regional exogenous environmental conditions. This finding is relevant to 

both environmental biotechnology practitioners and microbial ecologists because it demonstrates 
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a fundamental similarity between natural aquatic ecosystems and activated sludge bioreactors 

and provides a theoretical basis for rational design and engineering of microbial communities via 

operational parameters. Previous work had found mixed evidence for deterministic community 

assembly in full-scale activated sludge systems.35 Our work demonstrates predictable and 

consistent seasonal fluctuations across four regional plants and many scales (OTU, phylum, 

alpha and beta diversity). Moreover, these predictable fluctuations were evident in a key 

functional nitrite oxidizing bacterial population. 

The fourth chapter extends the community assembly mechanism work described above 

into natural soil and freshwater environments. The chapter is devoted to a study of microbial 

diversity in an intensively managed landscape at the watershed scale.75 Further work integrating 

a novel soil moisture monitoring system and derived hydrological model of a tallgrass prairie 

with spatially resolved community structure data is presented in the future work section of 

chapter seven. These environments represent extremes in terms of hydrological flow in 

Midwestern soils, from well-drained agricultural soils to native marshes. Together, these works 

focus on the impact of subsurface flow on community structure via dispersal and transport 

dependent environmental selection. 

Chapter five discusses development of a lab-scale process for carbon recovery via 

microbial electrochemical cells.76 After enriching an exolectrogenic biofilm from a wastewater 

community, bioelectrochemical H2O2 production was optimized by tuning buffer and electrode 

composition. Using this approach, a citric acid-phosphate buffered MPPC obtained a competitive 

H2O2 concentration (3.1 g L-1) at a low energy input (1.6 Wh g-1 H2O2) and pH (10) compared 

with previous results in the literature. While previous work had focused on H2O2 production 

only, we developed a two-step approach using the H2O2 for heterogeneous catalysis, focusing on 
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selective aqueous sulfoxidation of model compounds over niobium(V)-silica catalysts. We 

achieved 82% conversion of 50 mM 4-hydroxythioanisole to 4-(methylsulfinyl)-phenol with 

99% selectivity with a 0.5 mol% catalyst loading in 100 minutes in aqueous media. Immediate 

consumption of H2O2 overcomes both storage challenges and unlocks higher value applications 

than disinfection or bleaching.  

The sixth chapter discusses amplicon and metagenomic sequencing of exoelectrogenic 

biofilms enriched with different carbon sources. A major challenge of scaling up MECs remains 

the metabolic limitations of exoelectrogens. Because most carbon in common waste feedstocks is 

not readily biodegradable or accessible by exoelectrogens, it is necessary to convert this into 

volatile fatty acids (VFAs) or acetate. Previous attempts to characterize MEC biofilms enriched 

with different electron donors have relied on amplicon sequencing of the 16S rRNA gene, which 

cannot directly identify functional differences, with the exception of a few known monophyletic 

functions and pathways. A genome-centric metagenomic pipeline was developed and tested to 

identify and functionally annotate population bins for communities enriched under different 

conditions.  

The final chapter summarizes the overall conclusions and discusses future work. Looking 

ahead, a major future direction could be characterizing the response of different exoelectrogenic 

communities to electron donor perturbations, via both short-term (transcriptomic) and longer-

term (metagenomic) adaptations. Collectively, this thesis expands our capabilities to harness 

ecological principles for bioprocess design and carbon recovery. In addition, careful design of 

field studies and integration of novel sampling & monitoring approaches can greatly improve our 

ability to identify dominant assembly processes in complex environments and answer questions 

about what gives rise to biological diversity. By understanding the degree to which selection, 
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dispersal and stochasticity drive assembly under reactor conditions, as well as the physiological 

niche of target organisms, novel resource recovery processes can be scaled up and deployed 

more readily. Leveraging the ongoing NGS revolution, we can improve existing bioprocesses 

and develop new approaches based on microbial resource management strategies. 
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2. CHAPTER TWO 
	

Metagenomic Analysis Methods and Trends 
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A key technique used in the work presented in this thesis is the analysis of next-

generation sequencing (NGS) data. Since the completion of the human genome project, 

sequencing costs have rapidly decreased, enabling many of the approaches presented here.77 Due 

to the pace of technological innovation, a comprehensive review of state-of-the-art approaches is 

likely to be outdated as soon as it is published, but many such reviews exist.78-81 Although other 

approaches such as Minion nanopore sequencing82 and Pacific Biosciences’ Single Molecule 

Real Time Sequencing (SMRT) exist,83 the short-read sequencing-by-synthesis (SBS) approach 

developed by Illumina is the most widespread NGS method due to its low-cost and high 

accuracy. Sequencing-by-synthesis uses a repeated extension–termination–cleavage–extension 

cycle to produce millions to billions of ~100-300 base pair reads per run.84, 85 

Below, I summarize state-of-the-art methods for amplicon clustering and metagenomic 

assembly and describe workflows I have published on github for these bioinformatics tasks. I 

focus on analyzing sequencing data produced by Illumina’s Miseq and Hiseq platforms. Many of 

the tools described below were designed with the technical specifications of Illumina data in 

mind: high average base quality, short individual reads, and very low rates of indel errors 

compared to other methods.  

2.1 16S AMPLICON ANALYSIS 

Amplicon sequencing refers to targeted sequencing of PCR amplified genes of interest. 

Compared to whole-genome sequencing approaches it is much more cost-effective when 

targeting a small number of genes. One of its most common is profiling microbial community 

diversity via 16S rRNA gene sequencing.12, 86 The 16S gene codes for the small subunit of the 

prokaryotic ribosome, and has long been used as a universal phylogenetic marker gene for 

bacteria and archaea.87 Due to the functional secondary structure of the rRNA, there are a 
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number of highly conserved regions within the 16S gene interspersed with hypervariable regions 

that can be sequenced with short-read sequencing approaches.88  

 A number of amplicon clustering and analysis tools have been developed including 

Mothur89, QIIME13, UPARSE/Vsearch90, 91, DADA92, and Swarm.93 Generally speaking, all of 

these methods follow an approach similar to that in Figure 2.1, although the exact order of and 

boundaries between steps differs by implementation. The most active areas of development have 

been in clustering approaches.   

 

Figure 2.1 Amplicon sequence processing workflow. Input files (fastq files and sample metadata 
table) are shown in purple, and workflow analysis steps are shown in blue. The output of the 
pipeline is a feature table (sample x OTU), phylogenetic tree, OTU taxonomy table, and several 
standard alpha and beta diversity metrics. 

 
Early clustering algorithms (e.g. Mothur and QIIME) used reference-based clustering or 

de novo approaches with arbitrary global thresholds (canonically 97% sequence similarity) and 

randomly seeded agglomerative methods to cluster sequences into operational taxonomic units 

(OTUs). Reference-based clustering inherently ignores novel biodiversity, whereas the de novo 

clustering approaches introduce input-order dependency and fail to differentiate closely related 

strains and sequencing errors. To address these challenges, new open source de novo clustering 
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algorithms that prioritize abundant sequences (e.g. Vsearch)91, or utilize denoising to resolve 

sub-OTU level diversity into exact “amplicon sequence variants” (ASVs) (e.g. DADA2) have 

been developed.92 Workflow implementations of and documentation for Vsearch- and DADA2 

based pipelines are available at github.com/jimbopants/amplicon_processing and -

/DADA2_processing, respectively.  

 

Figure 2.2 Comparison of cluster abundances produced by DADA2 (x-axis) and Vsearch (y-
axis) corresponding to the same representative sequence. (A) All samples (blue dots) show 
nearly identical abundance (45 degree line). (B) This Vsearch OTU is represented by at least 2 
ASV clusters produced by DADA2, as indicated by the large number of samples with OTU 
abundance > ASV abundance.  

 
Comparing the two approaches, the Vsearch OTU clustering approach is faster due to 

DADA2’s error model training. In addition, the DADA2 developers recommend using run-

specific error cutoffs, requiring preliminary visualization of average per-base error profiles with 

something like FastQC. I compared Nitrospira affiliated OTUs and ASVs generated from a 

bioreactor time-series and found that most of the abundant ASVs had 1:1 correspondence with a 

single OTU, but occasionally Vsearch agglomerated multiple ASVs into a single OTU (Figure 

2.2). Benchmarking studies performed by others show that ASV clustering approaches 
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outperform OTU-based methods.94 Future amplicon sequencing projects are strongly encouraged 

to use ASV methods based on DADA2 or the recently developed Deblur.95 

2.2 ECOLOGY METRICS & STATISTICAL METHODS 

Alpha and Beta Diversity metrics offer a way to further reduce the complexity of 

amplicon sequencing datasets into interpretable results. Alpha diversity approximates the 

diversity within a sample, whereas beta diversity summarizes compositional differences between 

samples. Common alpha diversity metrics include richness (number of species) as well as 

metrics weighted by evenness (Shannon entropy) and phylogenetic differences (Faith’s PD).96, 97 

Testing for differences in diversity metrics between groups of communities is typically 

performed with Analysis of Variance (ANOVA), a multi-group extension of a t-test that 

compares intra-group to inter-group mean and variation. Alpha diversity can be linearly modeled 

as a function of environmental parameters or gradients using standard regression approaches.98 

While a number of macroecological beta diversity metrics are used in practice, one of the 

most widespread and useful metrics for classifying microbial communities based on amplicon 

sequencing data is Unifrac distance. Unifrac distance is calculated from the ratio of the 

intersection to the union of a phylogenetic tree spanning two communities.99 Weighted and 

generalized Unifrac are more statistically powerful approaches that incorporate species 

abundance differences as well as presence-absence data. In general, weighted Unifrac is the most 

powerful for detecting changes in abundant species whereas generalized Unifrac captures 

changes in moderately abundant community members while retaining the ability to detect 

changes in rare and abundant taxa.100 Beta diversity measures are inherently pairwise and require 

multivariate statistical approaches. Statistical significance of categorical groupings can be tested 

using Permutational Analysis of Variance (PERMANOVA) and Analysis of Similarities 
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(ANOSIM), non-parametric tests of group variance and similarity, respectively. Correlation 

between community dissimilarity and spatial, temporal, or environmental distance matrices can 

be detected via Mantel tests or Procrustes analysis.101  

Ordination methods like principal component analysis (PCA) are exploratory data 

analysis techniques used to visualize differences in community structure by reducing data 

dimensionality onto a set of uncorrelated principal components. In addition to unconstrained 

approaches like PCoA, constrained ordination techniques like redundancy analysis (RDA) can be 

used to visualize community composition changes correlated with explanatory environmental 

variables. RDA can be thought of as a multiple linear regression process followed by PCA of the 

linear model coefficients. RDA ordination only captures community variation explained by the 

explanatory matrix considered, skewing visual results if composition is not well correlated to 

measured covariates. This feature can also be exploited by comparing multiple RDA models 

containing different environmental parameters to identify community variance uniquely 

explained by subsets of parameters in a process known as partial RDA.102 A close analog of this 

process known as distance-based RDA, implemented as the “capscale” function in Vegan, allows 

extension of this process to distance matrices (e.g. Unifrac distances) as well as raw observation 

data. 

Excellent online and text references for numerical ecology methods are available.103, 104 

Software packages for calculation, visualization and statistical analysis of ecological metrics 

include Quantitative Insights Into Microbial Ecology (QIIME)13, the R Vegan105 and Phyloseq106 

packages, and Python scikit-bio package.  
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2.3 GENOME BINNING FROM SHOTGUN SEQUENCING APPROACHES 

 While amplicon sequencing drove many early NGS microbiome projects107, 108, 

phylogenetic marker genes surveys paint an incomplete picture of microbial diversity. In 

addition to technical challenges like chimeric 16S sequences109, 16S rRNA copy number 

variation and intra-genome heterogeneity110, marker gene studies are incapable of directly 

informing function. Horizontal gene transfer, evolutionary drift, and mobile genetic elements 

make extrapolating function from single marker genes challenging, although several tools have 

been developed to do so.111  

 Recent whole genome sequencing (WGS) or “shotgun metagenomic” approaches have 

been developed to sequence community DNA directly, without amplifying 16S genes. Among 

these approaches, genome binning or genome-centric metagenomics have recently become more 

popular. Genome binning is the process of assembling and sorting short reads into population 

“bins”. Ideally these bins represent a circular genome from a single cell, but in practice they are 

often a number of assembled scaffolds from closely related organisms. Most binning strategies 

revolve around using genetic signatures- GC content or tetranucleotide frequency- or differential 

coverage across multiple samples.  

I implemented the genome-binning pipeline shown in Figure 2.3 and available at 

github.com/jimbopants/metagenomics_assembly. It is comprised of read assembly, read 

mapping, genome binning, bin QC, and functional annotation steps, described below. Tool 

selections were initially based on recommendations from the Critical Assessment of 

Metagenomic Interpretation (CAMI) project in which method performance was compared across 

a gold standard dataset.112 
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Figure 2.3 Genome-centric metagenomic analysis pipeline developed during this thesis. Steps 
are outlined in boxes and specific software tools are shown in red. 

  

Read Assembly: De novo assembly of metagenomic data is computationally intractable with 

global sequence alignment methods due to their O(n2) complexity with the number of sequences. 

Current genome assembly approaches split reads into shorter kmers (>20 bp) and construct de 

Bruijn graphs by matching kmer prefix and suffixes.113 A 2017 benchmark of open-source 

metagenomic assemblers found that MetaSpades, IDBA, and Megahit performed best but 

recommends comparing the assembly quality (N50 and % assembled) from several methods with 
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Quast.114-118 If using differential coverage based genome binners, co-assembly of data from all 

samples is necessary to infer contig coverage profiles. Sample co-assembly is necessary for 

differential coverage binning but significantly increases assembly time.  

Read mapping: This step generates contig coverage profiles by sample. Reads from each sample 

are aligned to the contigs using Burrows-Wheelers Transform based alignment methods such as 

BWA or Bowtie .119, 120 Afterwards, coverage profiles can be generated using BEDTools.121 

Genome Binning: Metagenomic binning methods remain an active area of research. Some of the 

best performing tools available today are CONCOCT, Metabat and Maxbin.122-124 All of these 

approaches incorporate both differential coverage and genomic signatures such as tetranucleotide 

frequency. Bin quality is assessed via CheckM on the basis of inclusion of ubiquitous essential 

single copy genes.125 “Completeness” measures the fraction of essential single copy genes 

present in a bin whereas “contamination” measures the number of repeats for these genes. 

Metrics reported by CheckM cover a small fraction of a total genome and extrapolating these 

metrics genome-wide may produce overly optimistic quality estimates. Standard quality 

thresholds for evaluating genomes have been published as well.126 Beyond the individual 

methods themselves, a number of bin refinement tools exist that improve predictions by 

integrating bins from binning ensembles.127-129 Annotation consists of open reading frame (ORF) 

detection via Prodigal130, followed by classification against protein homolog families with 

HMMER131. 

 

2.4 CONTAINERIZATION OF BIOINFORMATICS SOFTWARE 

Bioinformatics analysis often depends on a variety of 3rd party software tools 

implementing sequential data manipulation steps. Many of these tools originate in academia, 
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where developers are rewarded for high impact papers, not necessarily software design and 

deployment practices. As a result, as new algorithms and tools are disseminated via research 

papers, users may be faced with significant time investments spent installing and maintaining 3rd 

party software pipelines.132 Each step in these pipelines may have incompatible dependencies 

and formats, require user modifications to interface with up- or downstream tools, and require 

replacement as time goes on. This leads to tradeoffs between following up to date best practices 

and avoiding time wasted installing and fixing software in the user’s environment. 

A current trend in bioinformatics software is the “containerization” of software using 

platforms like Docker. Docker containers are pre-built and encapsulated Linux environments that 

can be packaged with bioinformatics tools already installed. They are similar to virtual machines 

(VMs) but require less overhead to run. Docker containers are a promising approach to 

standardizing bioinformatics tools and minimizing time wasted on systems administration and 

debugging. Two repositories for bioinformatics-related Docker images are BioContainers133 and 

BioBoxes.134 At the time of this thesis, BioContainers contains > 2,000 validated containers 

including many of the tools discussed in this chapter. Benchmarking studies of common NGS 

analysis steps show that Docker containers do not add significant overhead compared to locally 

installed software.135  
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Figure 2.4 Software deployment and usage with BioContainers. Reproduced from reference.133 

	

Northwestern’s Quest High-Performance Computing (HPC) Cluster is in the process of 

installing and supporting Singularity, (personal communication) a Docker-like container 

platform designed to work with HPC resource schedulers.136 As a general rule, checking 

container repositories prior to installing software locally should improve efficiency. 

Northwestern metagenomics researchers may also benefit from running analyses via kbase137, a 

Joint Genome Institute project hosting many metagenomics tools, or purchasing resources on 

Amazon Web Services (AWS) for rapid deployment and benchmarking of new pipelines via 

Docker. Looking forward, Docker distribution of NGS tools is likely to become more 

widespread as it eases burdens on both developers and users. 
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Microbial Community Assembly In Full-Scale 
Activated Sludge Bioreactors 

 

 

 

 

 

 

 

 

 

 

Material in this chapter is based on the published work:  

Griffin, J.S. and Wells, G.F., 2017. The ISME journal, 11(2), p.500. 
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3.1 ABSTRACT 

Seasonal community structure and regionally synchronous population dynamics have 

been observed in natural microbial ecosystems but have not been well documented in wastewater 

treatment bioreactors. Few studies of community dynamics in full-scale activated sludge systems 

facing similar meteorological conditions have been done to compare the importance of 

deterministic and neutral community assembly mechanisms. We subjected activated sludge 

weekly samples from six regional full scale bioreactors at four wastewater treatment plants 

obtained over one year to Illumina sequencing of 16S rRNA genes, resulting in a library of over 

17 million sequences. All samples derived from reactors treating primarily municipal 

wastewater. Despite variation in operational characteristics and location, communities displayed 

temporal synchrony at the individual OTU, broad phylogenetic affiliation and community-wide 

scale. Bioreactor communities were dominated by 134 abundant and highly regionally 

synchronized OTU populations that accounted for over 50% of the total reads. Non-core OTUs 

displayed abundance dependent population synchrony.  Alpha diversity varied by reactor but 

showed a highly reproducible and synchronous seasonal fluctuation. Community similarity was 

dominated by seasonal changes, but individual reactors maintained minor stable differences after 

one year. Finally, the impacts of mass migration driven by direct biomass transfers between 

reactors was investigated, but had no significant effect on community similarity or diversity in 

the sink community. Our results show that population dynamics in activated sludge bioreactors 

are consistent with niche driven assembly guided by seasonal temperature fluctuations. 

3.2 INTRODUCTION 

Mixed-culture activated sludge systems are the most important form of modern 

wastewater treatment.138 Consistent system performance relies on a complex microbial 
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community to remove organic carbon and nutrients in the face of dynamic environmental 

conditions. In addition to their importance for protecting environmental and public health, 

engineered environments such as activated sludge have been shown to be valuable environments 

to study fundamental microbial ecology phenomena42, in part due to their physical partitioning 

into ecological “islands” with well defined and monitored ecosystem functions. Wastewater 

microbiology has informed our understanding of community assembly mechanisms9, 39, 139, 

resilience and stability40, 41, and identified novel microbes and metabolic pathways15, 140. 

Translating this knowledge into effective strategies for ‘microbial resource management’4 

remains a challenge due to the high diversity and dynamics in activated sludge bioreactors, even 

during times of functional stability.  

In both natural and engineered microbial ecosystems, the extent to which stochastic 

versus deterministic processes influence microbial community assembly is still debated. 

Traditional niche community assembly theory predicts that deterministic processes such as 

regional meteorological conditions and operational differences control assembly, whereas neutral 

theory predicts that trophically similar community members are ecologically similar and that 

stochastic processes such as immigration, birth and death lead to community differences.31, 36 

Community assembly theories such as the metacommunity framework incorporate both niche 

processes, such as species sorting and dispersal limitations, as well as neutral processes.37 

Previous studies have shown that deterministic factors explain much of the variation in activated 

sludge community structure within the same bioreactor, but neutral models can explain some 

aspects of community assembly, such as rare taxa dynamics.39 However, the factors controlling 

the relative contributions of different community assembly mechanisms are still poorly 

understood. 
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Longitudinal studies of full-scale bioreactors have found that microbial communities 

appear to display continuous rather than cyclical succession patterns in activated sludge 

systems.43, 139 Many of these studies focused on single reactors, making it challenging to identify 

whether observed associations were repeatable and generalizable. In contrast, seasonal 

population dynamics have been shown in a variety of marine and freshwater environments.44, 45 

The apparent differences between community assembly in natural and engineered 

environments141 have been ascribed to more highly controlled environments in engineered 

systems studied to date; however, seasonal differences in ecosystem function (performance) 

including nutrient removal are common.43  

Spatially correlated population fluctuations or ‘regional synchrony’47 and synchronized 

shifts in community structure or ‘temporal concordance’48  are  hallmarks of deterministic 

community assembly mechanisms. Concordance and synchrony dictate how broadly we can 

generalize from community studies. Regional population synchrony142 is explained by similar 

regional weather patterns, known as the “Moran Effect”, immigration between communities and 

historical factors143. Synchrony has been demonstrated during startup of lab-scale reactors8 but 

whether the same processes control dynamics in full-scale reactors is an open question. Regional 

population synchrony would provide further evidence for deterministic control of WWTP 

microbial community dynamics. To date, limited replication from full-scale bioreactors 

undergoing similar environmental conditions have made it difficult to identify synchrony in 

engineered systems.  

The primary objectives of this work were to test whether deterministic factors such as 

seasonal variability drove microbial community assembly and whether assembly mechanisms 

affected rare and abundant OTUs differently in regional activated sludge bioreactors. We 
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analyzed local communities within a plant that shared an immigration (influent) source as well as 

geographically distinct communities within a region to determine the relative importance of 

extrinsic environmental factors and immigration. Temporal population synchrony was quantified 

as a means of identifying repeatable deterministic responses of individual OTUs to regional 

environmental dynamics. We examined synchrony at multiple scales, from whole community 

metrics of alpha and beta diversity, to dynamics of individual OTU populations between 

reactors. We hypothesized that, similar to natural aquatic environments, seasonal variation would 

be a major determinant of community composition and diversity in activated sludge and would 

outweigh stable differences between plants. Further, we hypothesized that abundant and rare 

OTUs would exhibit different dynamics, with abundant OTUs tending to exhibit synchronized 

seasonal blooms in different reactors due to seasonal factors such as temperature and rare or 

transient OTUs displaying significantly less synchrony. 

3.3 RESULTS AND DISCUSSION 

3.3.1 Ecosystem function and operating conditions  

Operating data, environmental conditions, and effluent quality for all six reactors are 

shown in Table 3.1. Influent flow rate varied from 9 million gallons per day (MGD) at Hanover 

to 219 MGD at O’Brien. Influent composition, nutrient concentrations, and effluent quality were 

similar in all four plants; however average solids retention time (SRT) varied from 6.4 days in 

Egan North to 17.5 days in Hanover 1. Average sludge volume index, a measure of settleability 

and indicator for filamentous bulking problems, varied from 76 ml/g in Kirie to 206 ml/g in 

Hanover 1. Monthly summaries of environmental and operating parameters are shown in 

Supplementary Table S3.1. Water temperature varied seasonally from a low of 13° C in March 

2015 to 20° C in October 2014. Influent Total Kjeldahl Nitrogen varied seasonally with a peak 
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concentration of 32.8 mgN/L in November and a minimum concentration of 25.9 mgN/L in May, 

but nitrification efficiency remained above 94% throughout the year. Average SVI was highest in 

February, March and June when one or more plants experienced bulking events.  

3.3.2 Taxa showed consistent seasonal dynamics across plants 

Despite relatively stable performance throughout the year, core OTU populations in 

different reactors were highly dynamic and regionally synchronized. OTU abundances were 

highly skewed, with a small number of OTUs constituting most of the sequences recovered 

(Figure 3.1) A ‘core’ community of 134 OTUs was found in all reactors at all time points. These 

core OTUs made up 51% of the total reads. A total of 599 OTUs were constitutively present in 

one or more plants but not all, suggesting that individual plants harbored some stable differences 

in composition throughout the year.  

 

 

Figure 3.1 Rank abundance curves sorted by OTU raw abundance (A) and OTU frequency (B). 
134 OTUs were core to every time point, and accounted for over 51% of total reads. Similarly, 
the top 100 OTUs by absolute read abundance accounted for over 60% of all reads.  

 

Figure 3.2A shows synchrony coefficients for core OTUs compared to a bootstrap 

distribution of randomly selected OTU populations. Core OTUs were much more synchronized 
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than randomly compared taxa (Student’s T-test = 13.1, p < 0.001), consistent with niche driven 

selection influenced by regional environmental factors. Non-core OTUs present in at least 20% 

of samples displayed enriched synchrony as well (Student’s T-test = 31, p <0.001). In addition, 

there was a significant correlation between synchrony and OTU occurrence frequency (Pearson 

R = .55, p < 0.001) and average rank abundance (Spearman R = -.61, p < 0.001) (Figure 3.2B & 

C). Common OTUs displayed synchronized changes in abundance between reactors whereas rare 

OTUs tended to be uncorrelated. The apparent discrepancy between abundant and rare OTU 

synchrony suggests that seasonal effects may have a larger influence on shaping abundant OTU 

dynamics whereas operating conditions or neutral factors may play a larger role in shaping the 

rare microbiome of full-scale activated sludge bioreactors.  

 

 
Figure 3.2 Regional OTU synchrony in activated sludge communities. (a) Density plot of 
regional synchrony for ‘core’ OTUs (present in all samples) vs a bootstrap sample of 
randomly selected OTU time-series pairs. Density plots of synchrony as a function of 
observed frequency and average abundance are shown in b and c. Most OTUs were relatively 
rare and uncorrelated between plants, but a small number of frequent OTUs were highly 
synchronized. 

 
 
We further examined whether populations linked by plant specific factors (e.g. nutrient 

load and operational set points) were more synchronized than those that shared regional 



	 53	

environmental variables only (e.g. water temperature, precipitation). Mean synchrony 

coefficients for core OTU populations in the two pairs of bioreactors sharing influent, Egan 

South and North and Hanover 1 and 7, were compared to average population synchrony values 

across all fifteen reactor pairs. Egan populations were the most synchronized (average ρ = .62 for 

Egan compared to .44 across all reactors). Hanover populations were less synchronized (average 

ρ = .42) than the average across all regional reactors, likely owing to environmental differences 

imposed by the anoxic selector present in Hanover 1.  

Next we investigated whether synchronous OTU dynamics gave rise to similar shifts in 

broader phylogenetic groups. Class level abundances averaged by season and plant are shown in 

Figure 3.3. Classes with significantly different abundances in winter (December-February) and 

summer (June-August) are indicated by p-values in the legend. Relative standard deviations of 

class abundances within weeks are shown in Supplementary Table 3.2. Dominant taxa were 

consistent between plants, and within-week variation between reactors was low for most classes. 

However, class abundances varied throughout the year, in agreement with high rates of temporal 

OTU synchrony. Betaproteobacteria were the most abundant class throughout the year, followed 

by Saprospirae, Delta-, Alpha- and Gammaproteobacteria. Betaproteobacteria were most 

dominant during winter, making up on average 44% of the total reads, but were significantly less 

abundant (Student’s T-test = 22.1, p < .001) and accounted for only 27% of total reads in 

summer. Student’s T-tests comparing class abundances in samples collected in summer and 

winter revealed that 11 of the 15 most abundant classes were significantly more abundant during 

summer than winter after Bonferroni Correction (Student’s T-test, all p < .0001). Among these, 

Nitrospira were on average 84% more abundant in summer than winter samples.  
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Figure 3.3 Average abundance of the top 15 most abundant bacterial classes at each time point. 
Sampling date is shown on the x axis. Black lines represent cutoffs for different seasons starting 
from Fall 2014. Betaproteobacteria were the most dominant class at all time points, but 
increased in relative abundance between winter and summer. P-values for classes with 
significantly different abundance in winter and summer are shown in the legend. 

 

3.3.3 Alpha diversity is driven by seasonal temperature fluctuations 

Population synchrony and shifts in broad phylogenetic abundance were accompanied by 

repeatable and putatively seasonal alpha diversity patterns. Faith’s Phylogenetic Diversity and 

Shannon Diversity were used to quantify richness and evenness and phylogenetic diversity 

throughout the sampling period (Figure 3.4). One-way ANOVA revealed statistically significant 

differences between seasons for both phylogenetic (RANOVA = 93.23, P < 0.001) and Shannon 

(RANOVA = 42.84, P < 0.001) diversity. For both metrics, diversity peaked in fall between 

September and November and reached a minimum in all reactors in March or December. 

Diversity in all plants gradually increased during spring and summer, such that there was no 

statistically significant difference in Shannon diversity (Student’s T-test, T = .98, P = .33) 
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between September 2015 and October 2014 samples. Pairwise Pearson correlation coefficients of 

alpha diversity between plants confirmed synchronized changes in community diversity over 

time based on both Faith’s Phylogenetic Diversity (mean R = .65± .11, all p < .001) and Shannon 

Diversity (mean R = .54 ± .16, all p < .001). In addition to reproducible and synchronized 

seasonal variation in alpha diversity, ANOVA revealed that individual reactors harbored stable 

differences in diversity throughout the year (RANOVA = 11.4, P <0.001). Kirie was the most 

diverse community in 29 time points (60%), and Egan South and O’Brien were the least diverse 

in 31% and 39% of all samples, respectively.  

 

 

Figure 3.4 Time series of (a) Shannon and (b) Faith’s PD alpha diversity for all six reactors. 
Data shown are average of all samples taken during each month. Alpha diversity was highest 
in October and November, and lowest in December and March. 

 

Multiple linear regression was used to identify the unique fraction of variation in 

Shannon Diversity that could be linked to environmental and operational factors (Supplementary 

Table S3.3). Regressors included regional environmental gradients (influent water temperature, 

chloride concentration and precipitation) that varied seasonally, local environmental conditions  

(BOD, N, P influent concentration) and plant location, operational parameters (SVI, SRT, and 
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MLSS) and performance indicators (effluent nitrite concentration, BOD, N and P removal). The 

relative importance of each variable was assessed by averaging sequential sum squared error 

over all orderings of regressors to account for potential colinearity between regressors. Together, 

these factors explained 49% of the variation in Shannon diversity.  

Plant identity and temperature were the most important predictors of Shannon diversity 

and explained 25% and 12% of the variation respectively. One caveat of interpreting relative 

importance of regressors is that predictors with higher variance tend to have inflated effect 

sizes144. Despite this, temperature is an important driver of community structure in many 

microbial ecosystems and is likely to be important in nutrient and oxygen rich environments like 

activated sludge. In addition, increased SVI, which is typically associated with enrichment of 

filamentous bacteria, was linked to decreased Shannon diversity. Operational parameters that 

could be most easily controlled, solids retention time and suspended solids concentration, 

accounted for less than 4% of total variation. 

3.3.4 Community similarity was controlled by region-wide factors  

  Principal Coordinates Analysis (PCoA) of weighted unifrac community distance 

revealed seasonal clustering of communities (Figure 3.5). Mantel correlograms (Figure 3.6) 

comparing weighted unifrac distance and time lag between samples were created to assess 

periodic changes in community structure, as well as conserved differences between reactors. 

Dissimilarity was plotted as a function of time for samples originating from the same reactor, 

samples taken from separate reactors in the same plant with similar influent, and samples taken 

from different plants. At low temporal lag, communities from the same reactor were more 

autocorrelated than communities from other reactors or plants. As time lag between samples 

began to increase, average dissimilarity increased for all groups of reactor pairs. However, the 



	 57	

beta diversity difference between intra- and inter- reactor sample pairs diminished. Average 

dissimilarity peaked at a lag of 28 weeks. The mean dissimilarity between samples taken 6 and 

51 weeks apart was comparable, indicating that both continual succession as well as seasonal 

effects controlled overall community dynamics.  

 

Figure 3.5 Principal Coordinate Analysis of all samples, colored by season of origin. Samples 
roughly grouped by season with winter and spring together and summer and fall grouped.  

 

On average, samples taken from different reactors within the same plant were more 

similar to each other than those taken from different plants at every time point, suggesting that 

influent composition or plant-to-plant difference in operating set points also influenced 

community structure. Mantel tests were used to calculate the correlation between weighted 

unifrac distance and temporal distance. The total time between samples and the day number lag 

between samples (182 days for samples half a year apart and 0 for samples exactly a year apart) 

were calculated for each pair of samples. The day number lag was more correlated with 
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differences in community structure between all communities (Rpearson= .47, P < 0.001) than 

absolute time difference (R = .36, P < 0.001).  

 

Figure 3.6 Temporal correlograms of time lag between samples versus dissimilarity (weighted 
unifrac distance) showing the mean and standard deviation (shaded area) for each week. 
Colors represent whether the compared samples originate from the same reactor (red circles), 
different reactors at the same plant (blue squares) or different plants (green triangles). The day 
of year lag between samples correlated well with weighted unifrac distance (Rpearson= 
0.47, P<0.001).  

 

To better visualize seasonal community structure, weighted unifrac trajectories for each 

reactor were plotted individually, with points colored by season of origin and connected over 

time by lines (Figure 3.7). In general, samples from the same season grouped together, with 

communities tending to be highly similar to one another in winter and summer, and transition 

between these clusters in fall and winter. The overall placement of the seasonal clusters along the 

principal coordinates was similar across reactors. In addition, a strong annual cycle was observed 
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for all of the reactors studied, and samples taken in fall of 2015 closely resembled those taken 

from the fall of 2014. PERMANOVA was used to test the significance of bacterial community 

groupings by reactor and season. Grouping by both season (Pseudo-FPERMANOVA = 49.15, P < 

0.001) and reactor (Pseudo-FPERMANOVA = 11.61, P < 0.001) showed significantly different 

community structure.  

 

Figure 3.7 Principal coordinate analysis of weighted unifrac distances between samples. 
Colors represent season of origin and lines connect samples taken on consecutive sampling 
trips. 

 

 

Using partial redundancy analysis (partial RDA) the beta diversity that could be uniquely 

explained by regional, local, operation and performance regressors was calculated 

(Supplementary Table S3.4). Weighted unifrac distances were constrained by each set of 

explanatory variables after partialing out the other sets of variables. Variance that was explained 

by one or more set of variables is listed as covariation. Together, 52% of total variation was 
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explained. Similar to alpha diversity, temperature was the largest individual driver of community 

dissimilarity and accounted for above 10% of the total variation in beta diversity. Over half of 

the total explained variance (28%) was controlled by covariation between one more variables. 

The largest portions of covariation were between temperature, local and performance factors due 

to seasonal fluctuations in influent nutrient load and effluent quality (Supplementary Table S3.4). 

Taken together with the PERMANOVA results, reactor communities in the system were highly 

controlled by deterministic factors.  

Finally, direct sludge transfers between plants were used to quantify the impact of mass 

effects on community similarity. During the sampling period, waste activated sludge was 

transferred between Kirie, Egan North and Egan South on six occasions to in an attempt to 

improve settling during SVI upsets. We compared weighted unifrac distance between source and 

sink communities collected the week before and after transfers to find evidence for colonization 

of the sink community by the source. Transfer sludge source and sink reactor, mass, and pre- and 

post-transfer weighted unifrac distance are shown in Table 3.1. No significant change in 

similarity in source and sink communities was evident before and after reseeding, (Student’s T-

test = .39, P = .71) suggesting that sink communities were resistant to colonization or invasion at 

tested levels of immigration or effects were too transient to see with our sampling strategy. 

Table 3.1 Impact of mass effects on community WU distance 

Date Source Sink Transfer mass %1 Pre-transfer WU Post-transfer WU 

12/15/14 Egan_North Egan_South 5.34 0.086 0.073 

12/23/14 Egan_North Egan_South 4.19 0.073 0.079 

1/8/15 Kirie Egan_South 10.82 0.108 0.118 

2/5/15 Kirie Egan_North 12.23 0.117 0.104 
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3/4/15 Kirie Egan_North 8.47 0.104 0.102 

3/10/15 Kirie Egan_North 9.17 0.102 0.091 

1 As a percent of total solids load in the sink reactor     

Student T-Test of pre vs. post transfer: t=.39 p=.71   

 

3.3.5 Seasonal changes in ecosystem function 

Lastly, we examined whether synchronous population shifts could explain seasonal 

differences in nitrification performance and bulking event frequency observed in these plants. 

Operating data showed that several plants experienced seasonal increases in effluent nitrite 

residual during winter between 2010 and 2014 (Figure 3.8). Nitrification is traditionally thought 

to be a two-step process in which ammonia oxidizing bacteria (AOB) such as Nitrosomonas 

convert ammonia to nitrite and nitrite oxidizing bacteria (NOB) such as Nitrospira further 

oxidize nitrite to nitrate145. We found that Nitrospira abundance decreased by nearly 70% from 

October to April (~2.3% to .75%) (Figure 3.9A) before rebounding in the summer. Hanover 1 

was the only plant that did not experience a decrease in Nitrospira, possibly due to higher SRT 

preventing washout. In contrast, the dominant genus of AOB in each reactor, Nitrosomonas, 

showed little seasonal variability (Figure 3.9B).  
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Figure 3.8 Seasonal temperature (top) and effluent nitrite concentration (bottom) over a four-
year period showing seasonal effluent nitrite residual in multiple plants.  

 

During our time-series monitoring, several bulking events lasting longer than a week 

were investigated. Bulking sludge is a common process disturbance caused by blooms of 

filamentous or bulking bacteria such as Microthrix or foaming Actinomycetes.146 During the 

startup phase of MLE operation, Hanover 1 had a 3 day average SVI > 150 for a period of 8 

months from December 2014 – August 2015. Hanover 7 had several instances of elevated SVI in 

November 2014, and May, June and July 2015. Egan North had a bulking event from February – 

Mid March 2015 and again from May – June 2015. Based on bulking and filamentous bacteria 

(BFB) previously identified using 16S rRNA amplicon-based sequencing147 we identified 11 

genera putatively linked to poor settling characteristics with abundance >1% in at least 1 sample, 

including Microthrix, Thiothrix, Caldilinea, Trichococcus, Rhodococcus, Haliscomenobacter, 

Gordonia, Kouleothrix, Mycobacterium, Tetrasphaera, and Isosphaera.  



	 63	

	

Figure 3.9 Seasonal variability in Nitrospira and Nitrosomonas at genus level. All but one 
reactor (Hanover 1) exhibited strong seasonal variability in Nitrospira abundance and relatively 
stable Nitrosomonas abundance.  

	

The most common taxa in terms of average abundance were Thiothrix (2.2%), 

Kouleothrix (1.3%), Caldilinea (1.2%), and Microthrix (.8%); however, the BFB were highly 

dynamic (Figure 3.10). Of the observed bulking bacteria, Caldilinea, Mycobacterium, 

Haliscomenobacter & Gordonia primarily displayed seasonal variation and synchrony between 

plants but did not correlate with SVI. Elevated Microthrix abundance was linked to increased 

SVI (Rpearson = .44, p <0.001), however. Microthrix (S7A) and Thiothrix (S7B) were inversely 

correlated with one another (Rpearson = -.37, p <0.001), Microthrix tended to dominate in reactors 

with elevated SVI whereas Thiothrix were more abundant in the three reactors that did not 

experience bulking events. In general, bulking bacteria tended to be more diverse in fall and 

dominated by a few taxa during the winter and spring.  
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Figure 3.10 Seasonal variation in the top 6 most abundant bulking and filamentous genera. 
Microthrix (A) and Thiothrix (B) were the two most abundant genera and Microthrix was present 
during several bulking episodes. Other genera displayed synchronized variation.  

 

3.3.6 Dominant taxa were regionally synchronized 

In this study, community dynamics in regional activated sludge bioreactors were 

monitored to identify the relative contribution of different assembly mechanisms. Our results 

show that OTU populations are highly regionally synchronized between reactors (Figure 3.2) 

across several scales. Synchrony in macroscopic ecological systems is explained by deterministic 
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assembly mechanisms such as spatially correlated environmental conditions148 and trophic 

interactions such as predation149. In microbial communities, synchrony has been observed in 

rivers45 and dispersal limited lakes48, but this effect has not previously been observed in full-

scale activated sludge bioreactors.  

The observation of synchrony in dispersal limited reactors combined with the strong 

effect of temperature on community structure (Supplementary Table S3.4) supports regional 

temperature fluctuations as a primary driver of community assembly. In addition to temperature, 

seasonal nutrient variation is typically a driver of regional synchrony in aquatic microbial 

ecosystems,47, 150 but we found that influent nutrient concentrations in the studied WWTPs were 

stable over the course of the year and contributed little to observed variation.  While all reactor 

pairs showed significant synchrony in microbial community dynamics, this effect was highest for 

core OTU populations in the two Egan bioreactors that shared the same influent as a potential 

immigration source. Interestingly, population dynamics in the Hanover bioreactors that also 

shared the same influent were less similar than between plants, likely due to environmental 

differences caused by the anoxic selector in Hanover 1. Previous studies investigating the impact 

of immigration from raw influent on activated sludge community structure have found highly 

variable estimates for the fraction of OTUs shared between influent and activated sludge, from 5-

10% OTU overlap151 to 35%152. Communities from linked processes within a single WWTP also 

show evidence for within-plant immigration153 further suggesting that both selection and mass 

effect mechanisms influence community assembly. Although we did not find strong evidence 

that local immigration affected synchrony, it is possible that synchrony could be explained in 

part by region-wide changes in influent community structure, in addition to direct effects on the 

activated sludge community. 
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Despite high phylogenetic diversity and stable nutrient removal performance, 

functionally redundant taxa did not appear to randomly dominate different bioreactors. Instead, 

individual taxa displayed synchronized patterns across multiple plants. High rates of synchrony 

have previously been observed in the startup of replicate lab-scale anaerobic digesters8 but it was 

unclear whether similar assembly mechanisms would drive dynamics in full-scale open 

engineered environments. A high density of microbial interactions has previously been reported 

in activated sludge.154 In principle, these ecological interactions may compound seasonal 

environmental changes and increase synchrony. 

Few studies have quantified differences in synchrony between rare and abundant taxa in 

activated sludge or other environments. Population synchrony was strongest for core and highly 

abundant OTUs and was positively correlated with OTU frequency (Figure 3.2). By analyzing 

synchrony along a continuous gradient of average OTU abundance and observed frequency, our 

results show that community assembly mechanisms differ along a continuum between “core” and 

“rare” taxa. Previously, rare taxa have demonstrated higher variability and turnover rates 

compared to general taxa within activated sludge.9 In another study, 10% of the total reads found 

in WWTPs came from OTUs with negative growth rates in activated sludge that are likely 

inactive or slow-growing.152 Rare OTUs may be more impacted by dispersal or immigration 

from influent sources rather than environmental pressure within the reactors. 

One limitation of our approach to quantify synchrony and dynamics is the use of 16S 

rRNA gene abundance, which does not directly inform community functional capabilities. 

Further, 16S rRNA amplicon and shotgun metagenomic studies do not always yield similar 

estimates of community diversity and dynamics.155 However, amplicon sequencing enables 

higher temporal coverage of communities due to its lower cost. Phylogenetically related 
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organisms tend to be functionally similar156 and this has been used to predict functional 

capabilities for communities from phylogenetic studies.157 A combined metagenomic and 16S 

rRNA gene sequencing study of activated sludge revealed that community function was less 

seasonally variable than phylogenetic abundance.43 

3.3.7 Diversity and class abundance varied with temperature  

Phylogenetic (Faith) and non-phylogenetic (Shannon) measures of alpha diversity were 

highly synchronized between reactors (Figure 3.4). Notably, in all six reactors surveyed, 

diversity followed a cyclical trend, dropping sharply near the end of the year and increasing 

again in the spring. Averaging over orderings of regressors revealed that temperature was the 

single most important predictor of diversity (Supplementary Table S3.3). Measured 

environmental and operational parameters explained nearly twice as much variation as plant 

location. Kim et al. demonstrated a similar decrease in alpha diversity in a single activated 

sludge bioreactor in winter9, although the opposite effect was  found in marine systems44. 

Diversity has been shown to be critical for productivity, resilience to disturbance and 

functional stability in so-called “biodiversity ecosystem function relationships”.158 We found that 

nine of the top fifteen classes reproducibly decreased in abundance across all reactors surveyed 

while dominance by Betaproteobacteria increased during winter (Figure 3.3). These broad-scale 

shifts in diversity were accompanied by a decrease in nitrifier populations and an increase in 

bulking and filamentous bacteria (BFB). Shannon diversity was positively correlated with 

removal efficiency of BOD, nitrogen, and phosphorous, but negatively correlated with sludge 

volume index (SVI), suggesting that a positive biodiversity ecosystem function relationship 

exists for treatment communities. Elevated SVI is a process disturbance caused by blooms of 

BFB such as Microthrix or foaming Actinomycetes.159 Decreased alpha diversity is symptomatic 
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of bulking, as BFB accounted for more than 10% of all sequencing reads during some of the 

bulking episodes. It may also indirectly lead to susceptibility to bulking by opening niches for 

BFB, which typically bloom under low nutrient availability, temperature and dissolved oxygen 

conditions.160 

Nitrospira- a key nitrite-oxidizing bacteria- displayed much higher abundance in summer 

than in winter in all activated sludge bioreactors. Seasonal decline of Nitrospira may be related 

to increased effluent nitrite observed across several previous winters in the plants we surveyed 

(Figure 3.8), although effluent nitrite accumulation was not apparent during the time series 

described here. Nitrifier growth rates are strongly influenced by temperature and higher nitrite 

residuals have been observed in winter in nitrifying activated sludge bioreactors in previous 

studies.161 

3.3.8 Community similarity was driven by temperature and season   

In addition to cyclical alpha diversity, community similarity was temporally concordant. 

Mantel Correlograms (Figure 3.6) revealed a cyclical trend in weighted unifrac distance between 

samples. Strikingly, beta diversity peaked just over half a year apart, and communities sampled 

one year apart were as similar as those sampled 6 weeks apart on average. Differences between 

plants were evident at low temporal distance but disappeared in samples from different seasons. 

These differences reemerged for samples taken a year apart, and it is possible that plant-wide 

idiosyncrasies such as influent composition or distinct operational conditions (e.g. SRT) lead to 

consistent year after year differences in population structure. More longitudinal studies are 

necessary to test this hypothesis. Constrained multivariate analyses revealed that, similar to alpha 

diversity, temporal variation in community structure was primarily driven by changes in 

temperature (Supplementary Table S3.4). 
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Seasonal community succession appears to be a general feature of aquatic microbial 

communities 141. It has been shown across multiple years in marine162 and freshwater 

environments.163 However, in the limited studies available continual succession has been more 

frequently reported for activated sludge systems.164 The authors speculated that due to the 

controlled nature of WWTPs, intrinsic factors play a stronger role than extrinsic factors in 

shaping communities. Contrary to previous studies of activated sludge communities, continual 

drift accounted for only a minor portion of variation in community composition in our study. It 

should be noted, however, that deconvoluting short-term fluctuations and long-term seasonal 

variation is not possible with a single year of data, and more work is needed to identify whether 

synchronous OTU patterns repeat in following years, similar to multi-year patterns observed in 

other environments.165 

One mechanism that could explain observed regional synchrony and seasonal variability 

in WWTPs is large temperature fluctuations combined with biomass wasting. Because solids are 

continuously wasted during operation, bacteria must maintain a growth rate greater than the 

inverse of the SRT to be maintained to stay within the reactor. Lower temperatures reduce 

prokaryotic growth rates and may wash out slow growing microbes at low solids retention times 

(SRT). Cold weather plants can operate at SRTs as high as 30 days152 and it is possible that the 

relatively short SRTs in our reactors (8.0-13.9 days on average) contributed to the strong 

seasonal taxonomic shifts.  

 

3.4 CONCLUSION 

Regionally synchronized patterns of biogeography have been observed in a variety of 

microbial ecosystems, but the importance of these processes in highly managed ecosystems such 
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as activated sludge is not well known. Our primary objective in this study was to quantify 

microbial population synchrony as a means of clarifying the relative importance of deterministic 

seasonal environmental factors and stochastic processes on bacterial community succession in 

activated sludge. A clear seasonal pattern of microbial community structure was evident, from 

community-wide diversity metrics to dynamics of dominant OTUs between plants, and 

temperature was the primary driver of changes in alpha and beta diversity. In contrast, neutral 

factors such as immigration from continuous shared influent and intentional waste activated 

sludge reseeding attempts did not significantly alter beta diversity between communities. Core 

OTUs present in every sample were highly abundant and strongly synchronized between 

reactors, while less common OTUs tended to fluctuate more randomly, suggesting they were 

driven by local differences in operating conditions or stochastic processes. Key functional groups 

such as nitrite oxidizing bacteria displayed repeatable seasonal differences in fully aerated 

systems. Our results demonstrate the importance of seasonal variability on microbial consortia 

and the influence of deterministic community assembly mechanisms in wastewater treatment 

bioreactors. 

3.5 METHODS 

3.5.1 Plants, sampling, and sequencing  

Activated sludge biomass samples were collected between October 2014 and September 

2015. Six activated sludge bioreactors at four full-scale wastewater treatment plants (Hanover 

Park, Egan, Kirie and O’Brien Water Reclamation Plants) were sampled weekly for one year 

except during plant shutdowns. All but one of the reactors operated as fully aerated activated 

sludge systems performing BOD removal and nitrification. The Hanover 1 reactor operated with 

a Modified Ludzack-Ettinger process with an anoxic zone for denitrification, followed by an 
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aerobic zone for nitrification. Two independent reactors each at Hanover Park and Egan with 

separate return activated sludge systems and single reactors at Kirie and O’Brien were sampled, 

yielding a total of six independent activated sludge reactors sampled. Operational and 

environmental parameters were monitored according to standard methods166 (Table S3.1). Plants 

were located in the USA in Chicago, Illinois suburbs with Hanover Park in Hanover Park, Egan 

in Schaumburg, Kirie in Des Plaines, and O’Brien in Skokie, Illinois.  

For each weekly sample, 50ml mixed liquor grab samples were collected from near the 

inlet and outlet of the reactor and combined as a single time point. 1.5ml aliquots of activated 

sludge collected from the inlet and outlet of the reactor were centrifuged at 10,000g to pellet 

biomass, rinsed twice in 1ml of TAE buffer, and extracted according to the MP Bio Soil DNA 

extraction kit protocol (MP Biomedicals, Santa Ana CA). Amplification was performed in two 

steps using the Fluidigm Biomark: Multiplex PCR strategy. First, the hypervariable V4 16s 

region of the rRNA gene was amplified using the Earth Microbiome Project primer set with 

forward primer CS1-515f (5’- GTGCCAGCMGCCGCGGTAA) and reverse primer CS2-806r 

(5’-GGACTACHVGGGTWTCTAAT). Two 20 µL independent PCR reactions were performed 

per DNA extract, using Epicentre Premix F (Epicentre, Madison WI), Expand Hi-Fidelity Taq 

(Roche Diagnostics, Indianapolis IN), 200 nM primer, and 100 ng of genomic DNA in a Biorad 

T100 thermal cycler (Bio-Rad, Hercules CA) at 95 °C for 5 minutes followed by 28 cycles of: 95 

°C (30 s), 55 °C (45 s), and 68 °C (30 s) and a final elongation step at 68°C for 7 minutes.  

Amplicons from replicate PCRs were pooled for the second round of PCR and labeled 

with barcodes unique for each sample using Accuprime Supermix (ThermoFisher, Carslbad CA), 

50 µM forward and reverse primers (Fluidigm, South San Francisco CA), and 1 µL of template 

from the first round of PCR at 95 °C for 5 minutes followed by 8 cycles of of: 95 °C (30 s), 60°C 
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(30 s), and 68 °C (30 s). To minimize over-amplification, PCR products were checked via UV-

Vis and gel electrophoresis for smearing of the bands. The total cycle count was kept to 36 

cycles per the EMP guidelines. The resulting amplicons were processed with a Qiagen PCR 

purification kit and sequenced at the University of Illinois Chicago DNA Services Facility. DNA 

sequencing was performed using a Miseq V2 sequencer (Illumina, San Diego CA) at the 

University of Illinois Chicago DNA Services Facility. Sequences can be accessed on Genbank 

(PRJNA317773). 

3.5.2 Amplicon Sequence Processing and Quality Control 

Paired end Illumina V4 16S rRNA sequences were processed using Vsearch 1.9.1.167 

After merging paired end reads, sequences with more than one expected error, longer than 300 

base pairs, or with any unknown nucleotides were discarded. Singletons and likely chimeras 

were also discarded using default settings in Vsearch. Samples with fewer than 5,000 reads 

(<.5% of mean) were discarded due to low coverage. Representative sequences from each OTU 

were aligned using the Greengenes imputed core reference align and PyNast implemented in 

Quantitative Insights Into Microbial Ecology (QIIME 1.9.0-20140227).13, 168, 169 After filtering 

the alignment to remove gaps and hypervariable regions, a phylogenetic tree was built using 

FastTree.170 Samples were rarefied to the minimum sequencing depth ten times, and relative 

abundances were averaged between rarefactions before diversity metrics were calculated. Of the 

271 samples collected over 49 weeks, 22,551,652 unique sequences passed quality filtering, and 

were dereplicated and clustered into 19,171 operational taxonomic units (OTUs) at 97% 

similarity. After chimera filtering, 17,666,983 of the initial sequences (78%) were mapped back 

to OTUs.  
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Alpha and beta diversity metrics were calculated in QIIME using an OTU table rarefied 

to the lowest sequencing depth (11,542 sequences per sample). A phylogenetic alpha diversity 

metric, Faith’s Phylogenetic Diversity (PD) which weights changes in observed taxa by their 

phylogenetic distance to the nearest neighbor, and Shannon diversity, 1D, which measures 

community evenness as well as richness, were used to quantify ecosystem diversity over time in 

all six reactors. Weighted Unifrac was used to calculate beta diversity between samples.99 

Taxonomy was assigned to OTU representative sequences using uclust and the Greengenes 

sequence database.171  

3.5.3 Statistical Analysis  

All statistical analyses were performed in Python (2.7) using the skbio package (0.4.0) 

and R (3.2) using vegan (3.2). Significance of observed alpha diversity trends were assessed 

using Analysis of Variance (ANOVA). Then, multiple linear regression was used to identify 

factors that best explained changes in alpha diversity. Measured environmental and operational 

variables were normalized to unit variance. These were used alongside categorical variables for 

each plant as regressors to predict alpha diversity. Because the regressors were not independent 

of each other, relative importance was calculated by averaging sequential sum squared error over 

all orderings of regressors172 in the R package, relaimpo173 resulting in estimates of the variation 

uniquely explained by individual regressors.  

Two distinct methods were used to evaluate the effect of persistent reactor specific 

differences as well as seasonal and continual change on community similarity (Beta diversity). 

Permutational analysis of variance (PERMANOVA) was used to evaluate the significance of 

categorical groupings based on month and season. Mantel tests were used to evaluate the 

correlation between absolute temporal distance and beta diversity as well as seasonal temporal 
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distance and beta diversity. Ordination methods (Principal Coordinate Analysis and Redundancy 

Analysis) were used to visualize community similarity and calculate the fraction of variation in 

community structure explained by environmental gradients or influent differences. The 

preceding statistical methods are described in more detail in the supplementary methods. 

3.5.4 Regional Synchrony Calculations  

Regional OTU synchrony, defined as synchronous changes in individual OTU population 

in separate communities, was calculated using Pearson correlation.143 For each OTU, N, the 

Pearson rank correlation 𝜌!,!!  of its abundance time-series in each reactor pair, (i, j) was 

calculated. Regional synchrony values for each OTU were calculated by averaging 𝜌!,!!  across all 

reactor pairs. Due to compositional effects174, and the autocorrelation of populations over time143 

correlation coefficients will not necessarily be zero for uncorrelated OTUs. To test whether OTU 

populations in different reactors were more synchronized with each other than expected for 

independent OTUs, synchrony values were compared to a bootstrap confidence interval obtained 

from sampling 10,000 random pairs of OTU time-series. 

3.6 SUPPLEMENTARY TABLES 
 

Supplementary Table 3.1 Average operating data for 6 bioreactors in this study 

Plant 
and 

Reactor 

 
Egan North 

Egan 
South 

Hanover 1 
Hanover 
7a 

Kirie Obrien 

Coordinates 
42°01'11.4"N 
88°02'14.7"W 

" " 
42°00'00.1"N 
88°08'12.7"W 

" " 
42°01'17.6"N 
87°56'13.7"W 

42°01'12.1"N 
87°42'51.0"W 

Flow rate 
(mgd) 

23.8±4 
 

9.3±3 
 

30.7±12 218.8±37 

Solids 
Retention 
Time (days) 

6.4±1.2 11.5±4.2 17.5±4.8 14.2±4.1 10.2±2.1 9.7±1.1 
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Mixed 
Liquor 
Suspended 
Solids 
(mg/L) 

2243±217 2284±190 2113±282 2346±210 2806±290 2183±155 

Sludge 
Volume 
Index (ml/g) 

118±28 92±12 206±86 115±24 76±15 89±12 

Influent 

BOD5 
(mg/L) 

164.9±   28 
 

146.8± 31.8 
 

138.3± 29.4 126.3± 39.9 

Ammonia 
(mgN/L) 

16.3±2.8 
 

18.1±4.8 
 

16.2±3.8 14.7±2.4 

Total 
Phosphorous 
(mgP/L) 

5.8±0.9 
 

4.6±1.1 
 

4.2±0.8 3.9±1.1 

Effluent 

Suspended 
Solids 
(mg/L) 

4.8±1.2 
 

5.1±2.1 
 

2.2±0.3 7.1±2.2 

BOD5 
(mg/L) 

2.2±0.3 
 

5.5±3.4 
 

2.7±0.8 9.9±5 

Ammonia 
(mgN/L) 

0.1±0.1 
 

0.7±0.8 
 

0.4±0.2 1.1±0.8 

NO3- and 
NO2-
(mgN/L) 

15.9±2.3 
 

Not avail. 
 

9.2±3.1 9.7±1.2 

Total 
Phosphorous 
(mgP/L) 

2.9±0.8 
 

2.8±0.7 
 

1±0.6 1.5±0.3 

aEgan and Hanover plant-wide, influent and effluent values are the same for both sampled reactors. 

	

Supplementary Table 3.2 Average class level variation within weeks 

 Phylum Class Average Coefficient of Variation1 
p__Nitrospirae c__Nitrospira 0.76 
p__Actinobacteria c__Actinobacteria 0.67 
p__Firmicutes c__Bacilli 0.65 
p__Chloroflexi c__Chloroflexi 0.60 
p__Actinobacteria c__Acidimicrobiia 0.51 
p__Bacteroidetes c__Flavobacteriia 0.35 
p__Chloroflexi c__Anaerolineae 0.35 
p__Proteobacteria c__Gammaproteobacteria 0.31 
p__Planctomycetes c__Planctomycetia 0.30 
p__Bacteroidetes c__Cytophagia 0.29 
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p__Bacteroidetes c__[Saprospirae] 0.25 
p__Verrucomicrobia c__Verrucomicrobiae 0.24 
p__Bacteroidetes c__Sphingobacteriia 0.23 
Unassigned Other 0.20 
p__Proteobacteria c__Deltaproteobacteria 0.20 
p__Proteobacteria c__Alphaproteobacteria 0.16 
p__Proteobacteria c__Betaproteobacteria 0.14 
1 Coefficient of variation was calculated from mean and standard deviation across all reactors during each 
time point, then averaged across all weeks to identify clades with asynchronous abundance profiles. 
 

Supplementary Table 3.3 Relative Importance of factors for Shannon Diversity 

Predictors Percentage 
Lower 
95% 

Upper 
95% Category 

Correlation coefficient for 1 
term model 

  
    

  
Influent chloride 1.44 0.53 4.24 Regional -14.31 
Precipitation 0.37 0.09 2.07 Regional 0.18 
Water temperature 11.54 6.57 15.45 Regional 34.13 
Influent BOD 0.44 0.36 1.56 Local 2.53 
Influent NH4 0.64 0.41 2.43 Local -1.14 
Influent Phos 1.03 0.69 2.42 Local -5.07 
Hanover 3.88 1.24 6.15 Local 21.27 
Egan 3.80 1.89 5.53 Local -32.94 
Kirie 9.38 5.00 12.91 Local 77.82 
MLSS 1.14 0.76 2.06 Operational 10.23 
SRT 1.48 0.54 3.53 Operational -2.61 
SVI 0.99 0.31 2.58 Operational -8.49 
BOD Removal % 4.34 1.34 7.75 Performance -28.86 
Effluent Nitrite 
Residual 2.45 1.09 4.40 Performance -19.06 
NH4 Removal % 5.18 2.78 7.68 Performance -22.56 
Phos. Removal % 1.22 0.86 2.08 Performance -6.54 
Total variance 
explained 49.32 24.46 82.86 Total   
Sum of relative importance by category 
Regional 13.79 

   
  

Local 19.16 
   

  
Operational 3.61 

   
  

Performance 13.20         
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Supplementary Table 3.4 Partial RDA Variance Partitioning 
RDA Variable Value Grouping 
Influent chloride 0.38 Regional 
Precipitation 0.19 Regional 
Water temperature 10.14 Regional 
Influent BOD 0.45 Local 
Influent NH4 0.71 Local 
Influent Phos. 0.60 Local 
Hanover 1.51 Local 
Egan 1.60 Local 
Kirie 1.58 Local 
MLSS 0.52 Operational 
SRT 0.42 Operational 
SVI 2.79 Operational 
NH4 Removal % 0.30 Performance 
Effluent nitrite residual 0.47 Performance 
BOD Removal % 0.20 Performance 
Phos. Removal % 0.39 Performance 
Regional & Local 6.05 Covariation 
Regional & Performance 5.58 Covariation 
Regional & Operational 3.97 Covariation 
Local & Performance 7.52 Covariation 
Local & Operational 3.66 Covariation 
Performance & Operational 0.79 Covariation 
Total variance explained 49.82   
Variance explained by category  
Regional 10.70   
Local 6.46   
Operational 3.73   
Performance 1.37   
Covariation 27.56   
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4. CHAPTER FOUR 
	

Hydrology and Connectivity in an Intensively 
Managed Landscape 

 

 

 

 

 

 

 

 

 

 

Material in this chapter is based on the published work:  

Griffin, J. S., Lu, N., Sangwan, N., Li, A., Dsouza, M., Stumpf, A. J., ... & Gilbert, J. A. (2017). 
FEMS microbiology ecology, 93(10), fix120. 
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4.1 ABSTRACT 

Intensive management increases the rate of nutrient and particle transport within a basin, 

but the impact of these changes on microbial community assembly patterns at the basin scale is 

not yet understood. The objective of this study was to investigate how landscape connectivity 

and dispersal impacts microbial diversity in an agricultural watershed. We surveyed soil, 

sediment and water microbial communities along the Upper Sangamon River basin (USRB) in 

Illinois—a 3600 km2 watershed strongly influenced by human activity, especially landscape 

modification and extensive fertilization for agriculture. We employed statistical and network 

analyses to reveal the microbial community structure and interactions across water, soil and 

sediment media. Using a Bayesian source tracking approach, we predicted microbial community 

connectivity within and between environments. We identified strong connectivity within 

environments (up to 85.4 ± 13.3% of sequences in downstream water samples sourced from 

upstream samples, and 44.7 ± 26.6% in soil and sediment samples), but negligible connectivity 

across environments, which indicates that microbial dispersal was successful within but not 

across environments. Species sorting based on media type and environmental parameters was the 

dominant driver of community dissimilarity. Finally, we constructed OTU association networks 

for each environment and identified a number of co-occurrence relationships that were shared 

between habitats, suggesting that these are likely to be ecologically significant. 

	

4.2 INTRODUCTION 

Microbes play key roles in global biogeochemical cycles, yet the factors controlling 

microbial biogeography remain poorly understood.175, 176 Modern community assembly theories 

relate microbial diversity patterns to mechanisms such as selection, dispersal, drift and 
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mutation177 whose importance varies across different scales and environments. The selection or 

“species sorting” perspective emphasizes the influence of environmental heterogeneity on 

community composition. Meta-analyses of global biodiversity have revealed clear species 

sorting due to environmental selection but also identified unexpected overlap between soil, 

sediment and freshwater communities.32 Environmental selection occurring through periodic 

disturbances such as flooding, seasonal nutrient variation and biofilm erosion often leads to 

temporal shifts in community structure.178 In contrast to strictly selection based community 

assembly views, initial colonization of surface freshwater and biofilm communities occurs 

through dispersal from upslope soil communities179 followed by selection processes.180 Even in 

established communities, hydrological connectivity can facilitate microbial dispersal through 

hyporheic exchange between surface and groundwater as well as headwater mixing at stream 

confluences.181 Field experiments with model organisms such as E. coli have revealed that 

exchange between streams and underlying sediments can facilitate the dispersal of microbes, but 

few studies have been done to identify cross-environment dispersal on larger scales.182  

Intensive agricultural practices alter nutrient and soil particle transport within watersheds, 

though the impact of these modifications on microbial dispersal is currently unknown. Intensive 

landscape management has altered the hydrology of the Midwest region of the United States due 

to altered runoff, high prevalence of underground tile drainage183, and increased nitrogen loading 

from agriculture.184 Tile drainage consists of underground pipes below agricultural fields that 

quickly drain excess water from soils. It accounts for approximately 80% of runoff in the Upper 

Sangamon River Basin (USRB) and can increase landscape connectivity between soil and 

groundwater and accelerate soil erosion.185 Increased runoff combined with monocultural corn-

soybean crop rotations can minimize heterogeneity between habitat patches. Decreased 
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environmental heterogeneity and faster hydrological transport of microbes can increase dispersal 

between patches and alter microbial biogeography. In addition to increasing dispersal, this 

enhanced  “landscape connectivity” can reduce nutrient variability across a basin or watershed as 

well as decrease phylogenetic and functional diversity186 resulting in lower community resistance 

and resilience.187 

The impact of environmental gradients on microbial beta diversity is well documented. 

Within aquatic ecosystems (e.g., rivers and lakes) and semi-aquatic ecosystems (e.g., 

floodplains), nutrient loading, hydrology, land use type, and climate change have been shown to 

shape microbial communities.179, 188, 189 Similarly, microbial biogeographic patterns in soil are 

influenced by land use type, pH, soil composition, and climatic conditions across broad 

geographical scales.190-192 Microbial dispersal limitations have been reported less frequently193, 

but distance decay patterns in the absence of clear environmental gradients suggests that 

transport as well as historical factors can lead to increased beta diversity.194 Intermittently 

flooded river cut banks and floodplains with exposed sediments can facilitate dispersal between 

soil and aquatic environments but the importance of these areas impact on microbial dispersal 

and community similarity to surrounding environments is unknown. 

Here, we characterize the surface terrestrial (i.e. soil and floodplain sediments) and 

aquatic microbial communities within the USRB to illustrate the importance of landscape 

connectivity and agricultural land use in structuring microbial communities. We define 

connectivity as the ease of dispersal between habitat patches.195 We used 16S rRNA V4 

amplicon sequencing to analyze the microbial communities of diverse environments in the basin, 

which is part of the Intensively-Managed Landscape Critical Zone Observatory (IML-CZO) in 

central Illinois. We hypothesized that on the basin level, bacterial communities would be 
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influenced by both environmental selection as well as dispersal via fluvial transport. We also 

hypothesized that hydrology-driven dispersal would connect bacterial communities down-river 

in all three environments. We compared community composition, diversity, and co-occurrence 

patterns to test these hypotheses. Further, we employed source tracking to quantify the 

downstream longitudinal connectivity and lateral connectivity between media types. Lastly, we 

identified environmental gradients linked with community dissimilarity and then compared the 

relative importance of distance and environmental factors on community dissimilarity within 

each environment. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Dominant Taxa in the USRB Watershed 

The USRB microbiome survey yielded 14 million high-quality 16S rRNA V4 amplicon 

sequences representing 117,602 distinct OTUs (97% nucleotide identity) from 77 samples. Many 

taxa were present in multiple environments, and several were ubiquitous across all of the 

environments in this study, suggesting adaptation to a broad range of conditions or frequent 

connectivity between environments. We defined ubiquitous taxa as those found in at least 80% 

of the samples from each environment. We found that at the class level, Actinobacteria, 

Alphaproteobacteria, Betaproteobacteria and Deltaproteobacteria were ubiquitous. At the 

family level, Comamonadaceae and Burkholderiales were ubiquitous across all three 

environments studied.  
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Figure 4.1 Sampling locations within the Upper Sangamon River. Gold squares represent 
sediment samples, red diamonds are soil samples and blue circles are water samples. 

	
Despite the ubiquity of some organisms, the average relative abundance of dominant 

bacteria differed significantly between the water, soil, and sediment samples taken in the USRB 

(Figure 4.2). Proteobacteria was the most abundant phylum in all three environments (mean 

abundance = 36%). As expected, dominant phyla differed between water and soil communities. 

Surprisingly, similar taxonomic classes dominated sediment and soil communities in this basin. 
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The ternary diagram in Figure 4.2C shows the fraction of sequences from the nine most common 

phyla found in all three environments. Proteobacteria, Actinobacteria, and unclassified reads 

cluster near the center, indicating similar abundance communities in water, soil and sediment. 

The majority of Chloroflexi and Bacteroidetes sequences derived from soil and water samples 

respectively, and the remaining phyla had similar abundances in soil and sediment though much 

lower abundances in water samples.  

 
Figure 4.2 The abundance of microbial taxa across environments in the USRB. A) Average 
relative abundance of dominant phyla in water, soil, and sediment. B) Average relative 
abundance of Proteobacteria classes in each environment. C) Ternary plot indicating fraction of 
most abundant phyla from each environment. Circle size represents the average abundance of the 
phyla, and location represents the fraction of reads from that phyla found in each of the three 
environment types.  

	

Analyses at finer taxonomic resolution revealed larger differences in community 

structure. Differential abundance analysis (ANOVA, P < 0.001, Figure 4.2B) revealed 

significantly higher abundances of Alphaproteobacteria, Deltaproteobacteria, and 

Betaproteobacteria across soil (10.8 ± 8.1%), sediment (14.0 ± 11.3%), and water (33.1 ± 
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15.0%), respectively. Genus-level differential abundance analysis (ANOVA, P < 0.001, Figure 

S4.2) highlighted 20 genera as differentially abundant between soil, sediment and water samples. 

Known soil microbes such as Bacillus and members of the Rhizobiales predominated in 

terrestrial habitats, whereas water samples had higher abundances of commonly occurring 

freshwater genera, including Leptothrix, Terrabacter, and Polynucleobacter. 

	

4.3.2 Species sorting controls community assembly between environments 

We observed that the microbial communities maintained distinct compositions in 

terrestrial (soil and sediment) and aquatic environments on the basin scale (Figure 4.2). Our 

analysis confirmed that media type is a significant factor in shaping microbial community 

diversity.32, 196, 197 The clear differences between aquatic and terrestrial communities are not 

surprising, given the differences between planktonic and attached-growth conditions. Contrarily, 

the high degree of overlap between soil and sediment communities was surprising. We found 

that soil and sediment communities could not be distinguished using weighted Unifrac distances 

at the 97% OTU level (Figure 4.3C). We expected that soil communities would be distinct from 

sediment communities due to land cover, water saturation, and flooding frequency differences; 

however, we observed highly similar composition in both environments. Intensive landscape 

management in the USRB may contribute to this “biotic homogenization” by creating similar 

soil conditions (eutrophic, artificially graded, and relatively homogeneous) in both the 

agricultural soils and neighboring stream banks and floodplains. In addition, rapid water 

discharge through the tile drainage systems increases soil erosion and dispersal of microbes from 

soil to stream banks in the USRB.185 Combined with nutrient conditions and higher residence 

time for terrestrial microbes, these factors could explain the high similarity between soil and 

sediment communities 
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Despite compositional similarity between soil and sediment samples, we found that 

stream bank sediments had higher richness and Shannon diversity than the soil communities 

studied. Higher alpha diversity in sediment communities may result from the high degree of 

niche availability afforded by intermittent flooding and connectivity with the river. USRB 

sediments are flooded during high flow events due to the rapid discharge from stream ditching 

and agricultural tile drainage. The intermediate disturbance hypothesis predicts that community 

richness will decrease in environments with too few ecological disturbances because they 

become dominated by specialized taxa.198 Intensive landscape management decreases the 

duration of overland flooding and results in chemostatic nutrient conditions in the watershed199, 

which could decrease diversity in soil and aquatic communities. Intermittent connectivity could 

replenish microbial diversity that would otherwise be lost under such intensive management.  

To corroborate the sources of downstream microbes from upstream communities 

identified previously, we analyzed dispersal limitations using partial redundancy analysis (RDA) 

and distance decay curves. We compared the impact of environmental variables and geographic 

distance on aquatic community structure using partial RDA. By examining the variance 

explained by spatial and environmental differences separately, we identified that location and 

then nutrient concentrations explained the most variation in aquatic community beta diversity 

(Table S4.1). This supports our hypothesis that connectivity and transport are key factors that 

structure water communities, even when compared with species sorting processes. Our distance 

decay analysis revealed that distance did not explain variation in the soil communities we 

examined, suggesting that deterministic responses to local environmental factors explained most 

of the variation in this environment.197 In contrast, spatial distance was correlated with weighted 

Unifrac distance for sediment and aquatic communities, implying that unmeasured 



	 87	

environmental factors or stochastic processes, such as dispersal, regulated communities in these 

two environments. Interestingly, the most abundant (≥1% relative abundance) OTUs displayed 

stronger distance-decay patterns than rare (<1%) OTUs in these communities, suggesting that 

assembly processes impacted the rare and abundant biosphere differently. 

4.3.3 Microbial community dissimilarity patterns  

First we compared community alpha diversity between environments using richness 

(observed OTUs), as well as Shannon diversity after rarefaction to 10,000 sequences per sample. 

Both metrics were significantly higher for communities in sediment (Shannon diversity = 440 ± 

195) than soil or water (316 ± 311 and 216 ± 541, respectively, ANOVA, P = 0.027) (Figure 

S4.3). Within each environment, site conditions were compared with alpha diversity to identify 

factors that were correlated with richness. In the water samples, temperature, pH, specific 

conductivity, nutrient concentrations, and sampling depth were analyzed. Water temperature and 

pH were negatively correlated with community richness (Pearson R = -0.66 and -0.74, 

respectively, P < 0.001) (Figure S4.4). Other environmental parameters did not show significant 

correlations. Within the terrestrial communities, microbial community richness decreased with 

depth in the soil (r = -0.39, P < 0.05), but not with sediment depth. 

Beta diversity analysis (weighted UniFrac distance) revealed clear demarcations between 

environments—soil, sediment, and water, shown in a PCoA ordination plot of all samples in 

Figure S4.5. Figure 4.3 shows intra-group (e.g. all water vs. water and sediment vs. sediment) 

and inter-group (e.g. all soil vs. water) weighted UniFrac distances in blue and green, 

respectively, for each pair of environments. Results of ANOVA tests of inter- vs. intra group 

similarity are shown above each pair of environments. Panel A and B demonstrate the consistent 

and distinguishable community structures for terrestrial vs. aquatic communities. Weighted 
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unifrac distance was higher between than within environments for sediment vs. water samples 

(ANOSIM R = 0.77, P < 0.001). The mean of inter-group pairwise weighted UniFrac distance 

was 0.53 and those of intra-group comparisons were 0.39 and 0.29 for water and sediment, 

respectively, as depicted in the distance histogram. Similar to water and sediment communities, 

water and soil communities were distinct from each other (ANOSIM R = 0. 74, P < 0.001). In 

contrast, 3C shows that the soil and sediment consortia had a much lower inter-group 

dissimilarity (mean = 0.35) that was similar to the corresponding intra-group comparisons 

(ANOSIM R = -0.14, P = 0.951). These results indicate that microbial communities significantly 

differ between terrestrial (soil and sediment) and aquatic (water) environments.   

	
Figure 4.3 Differentiation of terrestrial and aquatic environments. Histograms of weighted 
UniFrac distances calculated within and between sample media types and associated ANOSIM 
R-values and P values. “Same Environment” (e.g. both water or both sediment) and “Different 
Environment” refer to beta diversity for samples originating from the categories above each 
histogram. (A) Histograms of “Water-Water” and “Sediment-Sediment” in blue and “Water-
Sediment” in green are statistically different, suggesting these communities are distinct. (B) 
Distribution of distances for all within and between water and soil samples. (C) Distribution of 
distances for all within and between soil and sediment samples showed no statistical significant 
differences, implying these communities were highly similar. 

	
In addition to environmental species sorting, microbial communities often display spatial 

autocorrelation or distance decay patterns. Typically, environmental selection is thought to 

increase distance decay whereas high dispersal minimizes this effect.177 To test whether dispersal 
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impacted overall or rare community structure in the basin, we quantified community beta 

diversity distance decay using weighted Unifrac distances based on all OTUs, as well as based 

on only highly abundant (≥1% average abundance) or rare OTUs (<1% abundance) (Figure 

S4.6). Communities differed more across medium type than by spatial distance across the 

watershed (ANOSIM R = 0.53, P < 0.001). Interestingly, the soil and sediment communities 

were more spatially homogenous than the water communities, which was unexpected due to 

higher dispersal and connectivity in the aquatic communities. We identified significant distance-

decay relationships for both abundant (≥1% average abundance) and rare OTUs (<1% 

abundance) in aquatic communities (Mantel r = 0.34 and 0.20, respectively, P < 0.05). Abundant 

OTUs in sediment samples displayed significant distance-decay as well (Mantel r = 0.39, P < 

0.05), though none of the soil community subsets showed distance-decay relationships. 

Using partial redundancy analysis (RDA), we calculated the fraction of beta diversity that 

could be uniquely explained by measured environmental factors and stream-wise distance 

between the water communities (Table S4.1). We individually constrained weighted Unifrac 

distances using nutrient concentrations (TKN, nitrate, and ortho-phosphate), other environmental 

factors (temperature, pH, and conductivity), and a single variable representing location in the 

drainage network (up- or downstream sites) while partialling out the other variables. Sites in the 

up- or downstream locations were separated by at most 9 km stream-wise, whereas at least 35 

km separated the two groups. The largest single factor in explaining community similarity was 

the location along the drainage network, which explained 13.6% of weighted Unifrac distance. 

Nutrient concentrations were the next most important factors with TKN and nitrate explaining 

8.2% and 10.0% of community variation, respectively. Covariation between measured variables 

explained an additional 8.5% of total variation. Similar to distance decay results, community 
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composition was strongly influenced by location, suggesting that microbial dispersal is important 

in structuring microbial communities within the USRB. 

4.3.4 Microbial connectivity within the USRB 

We characterized microbial community connectivity at the basin scale to test whether 

microbial dispersal influenced community diversity. Most notably, aquatic microbial 

communities were highly related throughout the watershed (64A). SourceTracker analysis 

revealed that 85.4 ± 13.3% of the sequences in downstream water samples derived from 

upstream water sources. However, there was significantly less contribution from upstream soil 

and sediment to downstream water samples (0.2 ± 0.8%, and 0.02 ± 0.08%, for sediment 

sources). Source proportions for downstream aquatic communities did not vary with distance 

from upstream sources (Mantel test, P = 0.99), suggesting that there was strong upstream-

downstream connectivity along the drainage network. A large unknown source was observed in 

all water samples. Both soil and sediment communities (Figure 4.4B and 4.4C) sourced higher 

proportions of OTUs from upstream soil and sediment  (soil—22.3 ± 23.3% from upstream soil, 

44.7 ± 26.6% from upstream sediment; sediment—38.49 ± 26.30% from upstream soil, 29.7 ± 

30.7% from upstream sediment) than from upstream water (to soil—0.5 ± 11.2% and to 

sediment—0.1 ± 3.5%). 

Notably, the proportion of sequences in sediment sourced from upstream samples 

decreased with distance from the source (Mantel R = 0.30, P = 0.007 for soil; R = 0.21, P = 

0.038 for sediment). No significant spatial patterns were found in upstream soil or sediment 

sources (Mantel P = 0.373 and 0.688, respectively) to downstream soil communities. Spatial 

differences in source community proportions could indicate that dispersal limitations prevent 

connectivity between up- and downstream communities in the sediment. Because hydrological 
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connectivity, and therefore dispersal between soil samples at different sites, is unexpected, the 

lack of distance decay may be explained by overall environmental similarity and spatially 

uncorrelated factors, such as soil depth. Cross environment dispersal of microbial communities 

due to strong lateral riparian connectivity was not observed. Bayesian estimation indicated very 

little connectivity between aquatic and terrestrial (soil and sediment) sources.  

Figure 4.4 Bayesian estimation of source communities for downstream A) water, B) soil, and C) 
sediment samples. Estimated source contributions from each media type are shown for each 
sample. 

To identify whether ground and tile water could serve as dispersal pathways, we 

compared ground and tile water community composition with soil, sediment, and river water 

samples. Ground, tile and, river water communities differed significantly based on weighted 

Unifrac distances (ANOSIM, R = 0.88, P < 0.001). These differences were due in part to 

differentially abundant taxa, including several taxa found only in terrestrial samples and ground- 

or tile water samples. Notably, nine OTUs were differentially abundant between river and tile or 

groundwater, including OTUs from phylum OP3, families Oxalobacteraceae and 

Syntrophobacteraceae and genus Rhodococcus.  All of the four differentially abundant OTUs 

observed in groundwater but not river water samples were also found in soil samples and three 

were found in sediment samples, suggesting that there is frequent dispersal between 
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terrestrial and groundwater environments. One of the five differentially abundant OTUs that was 

observed in tile water but not river water samples was also identified in soil samples suggesting 

that it may have originated from drainage through porous media.   

4.3.5 Connectivity influences fluvial microbial community structure  

We characterized diversity and connectivity in soil, sediment and water microbial 

communities within a highly managed and predominantly agricultural basin. Using 

SourceTracker, we identified a large proportion of the downstream aquatic communities that 

originated in upstream source aquatic communities in the USRB (85.4 ± 13.3%). Given the 

hydrological connectivity between these sites, the community similarity between them was 

unsurprising. Notably, we found that a substantial fraction of the microbial community in 

downstream terrestrial (soil and sediment) samples could have originated in upstream sediments 

(contributing up to 38.5 ± 26.3% to downstream terrestrial samples) and soil media (up to 44.7% 

± 26.6%).  The high overlap between soil and sediment suggests higher-than-expected dispersal 

between these environments combined with similar environmental pressure, which has led to 

community homogenization. We observed a low frequency of cross-habitat OTU sourcing, 

which was especially surprising between sediment and aquatic environments. The sediment 

samples in this study came from exposed sections of the river cut bank that were dry during 

sampling. Fully submerged sediments may show higher similarity to the water column itself, 

especially during late summer. 

Previously, downslope inoculation from terrestrial communities has been identified as a 

major factor in the dispersal of microbial communities in freshwater aquatic environments180, 200, 

however there is limited evidence for aquatic seeding of terrestrial communities. Shared OTUs 

between tile water and terrestrial communities, indicate that tile drainage is one route for 
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connectivity in this direction within the Sangamon River Basin. The extent of lotic connectivity 

to surrounding environments is influenced by factors including flooding frequency, drainage 

rates, stream order, and mixing.179 Our results indicate that hydrodynamic transport of bacterial 

cells plays an influential role in fluvial community structure, but cross-habitat dispersal is likely 

low due to fast drainage through tile drainage networks and intensively managed river flow. 

Cross-habitat connectivity and dispersal from terrestrial to aquatic environments occur 

through a variety of processes including overland transport, mixing of tributary water, discharge 

of groundwater from cut banks and hyporheic exchange.201 Few studies have attempted to 

quantify the impact of landscape management on microbial transport. Lindström and Bergström 

202 found that connectivity increased community similarity, but there was no difference in cell 

transport between lakes connected by ditches or by streams. Intensive management of the USRB, 

i.e. construction of drainage ditches and tiles, has drained seasonally flooded low-gradient areas 

and reduced the intensity of flooding. Tile drainage and groundwater discharge appear to connect 

terrestrial environments to the Sangamon River, as evidenced by OTUs found only in the soil, 

sediment and ground- or tile water (Table S4.2). Surprisingly, the total abundance of these OTUs 

was low and we observed limited evidence of lateral riparian exchange between soil or sediment 

and lotic communities in the USRB.  

Overland flooding is another mechanism for cross-habitat dispersal in the USRB. 

Flooding in the USRB occurs primarily in the spring and early summer. Sampling for this study 

was performed during late summer when baseflow was lower and it appears that there was not 

active exchange of organisms between the riparian sediments (streambank and floodplain) and 

river water during this time. Lowland flooding remains a source of intermittent connectivity in 

the watershed, but the effects on microbial community composition may be transient. Microbial 
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community responses to storm events can occur on the order of days203, and these episodic 

events would be missed by our sampling regime. More work comparing connectivity in highly 

managed and natural ecosystems is necessary to identify whether the low rates of cross-

environment connectivity in our study are typical outside of intensively managed landscapes. 

Further, higher frequency sampling in parafluvial sediments could address the potential for these 

areas to contribute to dispersal between terrestrial and aqueous media.  

One limitation of our work is that the SourceTracker algorithm used in this work assumes 

that sequences present in downstream samples originated from one of several possible upstream 

source communities. Species sorting or habitat selection presents a confounding factor and 

potential source of community overlap. Quantifying connectivity during flooding as well as dry 

conditions and in different types of hydrological networks could help elucidate whether 

community similarity is a result of connectivity or of habitat selection.  

4.3.6 Co-occurrence patterns differed between environments 

Based on the observed differences in landscape connectivity and differences between 

aquatic and terrestrial (soil and sediment) communities, we inferred meta-community co-

occurrence networks within and across environments. We used an ensemble correlation metric 

comprised of compositionality corrected Spearman’s and Pearson’s correlation coefficients as 

well as FDR-adjusted p-values to identify significant associations between OTUs and compared 

interaction frequency and network structure in different environments. The generated meta-

community co-occurrence networks captured 4553 relationships (edges) involving 500 OTUs 

(nodes). Co-occurrence networks for each environment and different strengths of correlation are 

shown in Supplementary Figure S4.7. Most of the identified relationships had correlation 

strengths > 0.5, including 1596 in soil communities, 405 relationships in sediment communities, 
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and 1939 in water communities. Correlations with ρ > 0.75 were much less common—200 in 

soil, 255 in sediment, and 137 in water. Compared to the other networks, the sediment network 

contained fewer relationships but a higher percentage of strong positive associations (38% of the 

total edges). The differences in network edge density and frequency of strong associations is 

surprising but may be due to differences in niche partitioning strength in different habitats. Only 

one exclusion relationship was identified in water with correlation < -0.5 in both metrics, and it 

was between OTU 113 (family Microbacteriaceae) and OTU 342 (genus Flavobacterium). We 

did not observe negative correlations < -0.5 in either soil or sediment networks  

We identified co-occurrence relationships that were consistent across environments 

(Figure 4.5). The sediment and soil co-occurrence networks displayed the highest overlap with 

60 shared relationships. Only 24 relationships were common to the soil and water networks and 

only 9 relationships were shared between the sediment and water networks.  Only a single co-

occurrence relationship with a correlation > 0.5 was found to be consistent across all 

environments, the relationship between OTU 142, (genus Arthrobacter) and OTU 867 (genus 

Mesorhizobium). Both genera are common soil bacteria, although their appearance in water 

samples was unexpected. We then calculated degree for each OTU in each environment. All 

three networks had long-tailed degree distributions fit by power law functions indicating scale-

free network structures and non-random co-occurrence patterns. Notably, the scaling exponent of 

the power law differed for water (a = 0.61) and soil and sediment (a = 0.44 and 0.43 

respectively) OTU networks. Networks in soil and sediment had degree distributions 

significantly different from those in water (Wilcoxon rank-sum test, P < 2.6×10-3 and P = 

1.6×10-24 , respectively). Despite their similar power law exponents, soil and sediment 
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communities also had significantly different degree distributions (Wilcoxon rank-sum test, P < 

5.7×10-10), due in part to fewer overall edges in the sediment network. 

 

 

Figure 4.5 Pairwise co-occurrence relationships across environments. The consistent pairwise 
co-occurrence relationships with ρ values greater than 0.5 were determined A) between water 
and soil, B) between soil and sediment, and C) between water and sediment. Consistent pairwise 
co-occurrence relationships with ρ values greater than 0.75 were only found between soil and 
sediment. We highlighted the OTU nodes coming from the eight most abundant phyla observed 
in all samples. The bubble size of each OTU node within a network is proportional to the degree 
of the node. 

 
Modern community assembly theories, such as the metacommunity framework, include 

both connectivity-driven dispersal processes as well as species sorting mechanisms.143 In the 

USRB, the river represents a high dispersal system in which community structure should be 

heavily influenced by transport. We analyzed co-occurrence networks formed by microbes 

within and across environments in the USRB for differences between aquatic and terrestrial 

community structure. Co-occurrence patterns in these networks indicate how the microbial 

communities are structured by interspecific competition and other mechanisms.204  

One interesting feature of the association networks we generated was the low prevalance 

of negative (co-exclusion) relationships. Only a single negative relationship with an FDR 

corrected P < 0.05 and R < -0.75 was observed across all three networks. Due to the 
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compositional and sparse nature of high-throughput sequence data, co-occurrence network 

construction can suffer from several sources of bias. Sparse datasets may result in a number of 

“none vs. none” comparisons that can interfere with detected true negative correlations between 

OTUs. In a recent comparison of different association metrics, Weiss et al. showed correlation 

metrics differed in their ability to detect certain relationship types. In particular, CoNet (the 

ccrepe package) was poor at detecting competitive (mutual exclusion) relationships compared 

with Spearman correlation. Despite this bias, when these metrics were combined in an ensemble 

metric, the overall precision and accuracy improved.  

Our results showed that consistent and significant pairwise co-occurrence relationships 

between OTUs were much more common in soil and water communities compared with 

sediment communities. The observation of non-random co-occurrence patterns suggests that 

deterministic processes such as interspecies competition or niche differentiation dominate the 

structure of communities in terrestrial environments.205, 206 Biotic interactions should increase the 

frequency of observed co-occurrence relationships whereas stochastic processes and dispersal 

should limit the appearance of co-occurrence patterns.207 Fewer observed associations combined 

with higher overall alpha diversity in the sediment communities suggest that the sampled 

sediments were more influenced by stochastic processes and disturbances.  

Similar to previously described microbial co-occurrence networks, OTU association 

networks in all three environments had ed degree distributions, although the scaling coefficients 

varied between all three environments. Limited consistent co-occurrence relationships were 

observed across all three media types, which indicates that each environment has distinct 

microbial communities (Lozupone and Knight, 2007; Nemergut et al., 2011). Just 2.9% of all co-

occurrence relationships found in either soil or sediment samples were present in both media 
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types, and consistent cross environment relationships were less common between the other 

environments.  

 Microbial biogeography patterns result from a combination of environmental selection 

and dispersal within and between environments. In this study, we identified strong signals of 

landscape connectivity within lotic communities, but we found little dispersal between terrestrial 

and aquatic environments. Dispersal along the river led to significant distance decay patterns that 

were evident in analyses via Mantel tests and SourceTracker. These trends persisted even after 

correcting for measured environmental variation in partial RDA analysis. However, terrestrial 

communities displayed fewer significant distance decay patterns. Together, our results are 

consistent with the metacommunity community assembly framework. More work is needed to 

identify whether dispersal and connectivity play a larger role in shaping communities during the 

wet season and how communities in more natural hydrological systems behave. 

 

4.4 METHODS AND MATERIALS 

4.4.1 Site selection and sampling  

We surveyed the microbiome of the USRB, a low-relief 3600-km2 area located in central 

Illinois.185, 208 A map of the basin is provided in Figure 4.1. The USRB is one of three primary 

field sites of the IML-CZO project. The USRB includes a wide variety of landscape and land 

cover types that have been highly modified by anthropogenic processes.209 Over 83% of the 

USRB land area is row-crop agriculture, primarily farmed for corn and soybeans210 (Figure 

S4.1). The remaining 17% of the land area is used for growing grains and specialty crops and 

cattle grazing (pastures), or covered by deciduous to mixed riparian forest, restored tallgrass 

prairie, urban land, and woody wetlands.211 The microbiome survey was conducted over a period 
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of several months in 2014. An initial set of soil and sediment samples were collected from two 

cores (CHAM-14-01 and CHAM-14-02) taken at one site on March 7, 2014 (Figure 4.1). 

Additional soil, sediment, and water samples were collected across the northern half of the 

USRB from August 21-August 22, 2014. A total of 77 samples were obtained. Sampling 

locations are shown in Figure 4.1.  

In the August 2014 campaign, samples were collected of river water, surface soil, and 

floodplain sediments from areas having a wide variety of land cover types. Soil samples were 

collected from the A and B soil horizons that are developed in different parent materials, 

including windblown silt and sand (loess), river alluvium, glacial outwash, and glacial till.212, 213 

Soil samples were obtained from 10–20 cm deep hand-dug pits, while sediment samples were 

taken from exposed cut banks along the Sangamon River and tributary streams and water 

samples were taken directly from their respective sources. Sediment samples included weathered 

and unweathered (leached and calcareous), sandy to clayey materials interpreted as river 

alluvium, colluvium, loess, glacial outwash, and glacial till, which form the floodplains, eroded 

slopes, and upland areas in the USRB.214, 215  

The soil and sediment samples were grouped into four classes based upon the land cover 

type at the site: 1) cultivated land for row crops—primarily corn and soybeans; 2) pasture, used 

for grazing by cattle and goats; 3) restored prairie recently converted from cultivated lands; and 

4) riparian deciduous and mixed forest. Water samples were classified as follows: 1) river water 

from the Upper Sangamon River and its tributaries, 2) groundwater from 6-inch and 12-inch 

deep lysimeters, and 3) outflow from tile drains. For both soils and sediments, 1 g of material 

was collected using a sterile scoop from the cleaned off walls in hand-dug pits or vertical faces in 

cut banks. The sampled material was transferred to a sterile Whirl-Pak bag and immediately 
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frozen on dry ice. For the river water, a 1L sample was collected for microbial community 

analysis using a sterilized bucket, then transferred immediately to a sterile 1L glass bottle, and 

finally transported on dry ice until the samples were filtered through a sterile Millipore 0.22 mM 

membrane. A separate 1 L water sample was obtained for chemical analyses, performed at the 

Illinois State Water Survey (ISWS). Soil, sediment, and filtered water samples were stored at -

80oC prior to DNA extraction. For the tile water samples, 1L of water was collected directly 

from the tile drain near the river outlet. Groundwater samples were pumped and collected 

through the lysimeters.  

4.4.2 Water chemistry measurement 

For each river and tile water sample, pH and specific conductivity were measured in the 

field using a Hydrolab HL4 Multiparameter Sonde manufactured by Ott Hydromet. Water 

samples for nutrient analysis were stored in the field on dry ice and sent to the ISWS for analysis 

within 24 hours of collection. Water samples were analyzed for total phosphorus (mg P/L), total 

Kjeldahl nitrogen (TKN, mg/L), dissolved phosphorus (mg P/L), orthophosphate (mg P/L), 

nitrate (mg N/L), and ammonia (mg N/L) following standard methods.216 Groundwater collected 

in the lysimeters was not analyzed for water chemistry due to the limited volume of this sample 

type.  

4.4.3 DNA extraction, 16S rRNA gene amplification and sequencing 

Genomic DNA was isolated from soil, sediment, and water filter membrane samples 

using a modified protocol of the PowerSoil®-htp 96-well Soil DNA Isolation Kit (MO BIO, 

Laboratories, Inc.). The modified protocol includes a step to heat the lysing solution and sample 

mixtures to 65oC for 10 min prior to bead-beating. Despite the known biases of amplicon 

sequencing and the 515F/806R primer set217, we selected this approach due to the large number 
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of samples and purpose of detecting broad scale dispersal between environments. Genomic DNA 

was amplified using the Earth Microbiome Project (EMP) barcoded primer set (515F-806R) 

targeting the V4 region of the bacterial 16S rRNA gene, and was adapted for the Illumina MiSeq 

platforms by adding flow-cell adapter sequences and twelve extra bases in the adapter region of 

the forward amplification primer that support paired-end sequencing. The reverse amplification 

primer also contained a twelve-base barcode sequence that supports pooling of up to 2,167 

different samples in each lane. PCR conditions followed the EMP protocol.86 Following pooling, 

amplicons were quantified using PicoGreen (Invitrogen) assay and a plate reader. Once 

quantified, different volumes of PCR product from each sample were pooled into a single tube to 

equalize the concentration of amplicons from each sample. This pool was then purified using the 

UltraClean® PCR Clean-Up Kit (MO BIO) and quantified using Qubit (Invitrogen). After 

quantification, the molarity of the pool was determined and diluted to 2nM and then the pools 

were denatured and sequenced together in a single Illumina MiSeq run (150 bp x 2). Raw 

FASTQ files were submitted to the Short Reads Archive (Accession number SRR5581933).  

4.4.4 Sequence data analysis 

Paired end reads were quality trimmed to remove sequences with more than 1 error per 100 

bases, de novo chimera filtered, and processed for operational taxonomic unit (OTU) clustering 

using the UPARSE pipeline90 in USEARCH v8171 at a 97% identity cutoff. A second chimera 

filtering was performed using the UCHIME algorithm109 after OTU clustering as a post-

processing step based on the ChimeraSlayer reference database from the Broad Microbiome 

Utilities (version microbiomeutil-r20110519). Taxonomy was assigned to OTUs using the 

Ribosomal Database Project (RDP) database11. Multiple sequence alignment and phylogenetic 

reconstruction were performed using PyNast and FastTree169. The filtered OTU table was 
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processed to remove samples with fewer than 150 reads, which are usually uninformative and 

indicative of low-quality reads218. Finally, we rarefied samples to 10,000 sequences for 

downstream alpha and beta diversity analyses.  

Alpha and Beta diversity metrics were calculated in Quantitative Insights Into Microbial 

Ecology (QIIME). Ordination methods (Principal Coordinate Analysis and Redundancy 

Analysis) and multivariate analyses (ANOVA, PERMANOVA, ANOSIM) were performed in 

Python v2.7.11 using the “skbio” package (0.4.0). Alpha diversity was calculated using Faith’s 

Phylogenetic Diversity (PD) and Shannon Diversity. Correlations between alpha diversity and 

soil and water quality measurements were calculated using Pearson correlation between diversity 

and each physical measurement and correcting for multiple comparisons using FDR. 

To assess differences between samples in terms of composition, pairwise Weighted 

Unifrac distances were calculated from rarefied OTU abundance counts using QIIME’s 

“beta_diversity.py” script. The UniFrac distance is defined as the fraction of a phylogenetic tree 

consisting of two communities that leads to taxa found in one community but not the other. 

Weighted UniFrac weights path lengths by OTU abundance before calculating similarity. Beta 

diversity comparisons were performed with weighted UniFrac distances using ANOSIM 

implemented in the R package “Vegan” to compare within and between environment 

distributions of beta diversity values for statistical differences.  

Partial Redundancy analysis (partial RDA) was selected to analyze the relationships 

between weighted Unifrac distances and environmental parameters due to its ability to detect 

community dissimilarity uniquely explained by different factors. For the partial RDA analysis, a 

matrix containing Z-score normalized environmental parameters and nutrient concentrations, as 

well as factors encoding up or downstream location was constructed. Partial RDA was performed 
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by comparing the variance explained by RDA models containing two groups of parameters 

separately and together and subtracting the variance explained by each component individually 

to quantify the covariation between parameters and variation uniquely explained by each group. 

Mantel tests were used to analyze correlations between weighted UniFrac distances and spatial 

distances.  

Both R and QIIME v1.913 were used for detailed downstream analysis, e.g. to estimate 

the total expected OTU richness from original OTU tables using the R package Vegan 

specnumber function105, 219 and to calculate alpha and beta diversity with filtered OTU tables. 

Abundant (>1% relative abundance) and rare (<1%) OTUs were separated for Mantel spatial 

analysis to better resolve the spatial patterns of microbes in different environments.  

4.4.5 Ternary Diagram and Violin Plot Construction 

The ternary diagram in Figure 4.2 shows the fraction of sequences assigned to the nine 

most abundant phyla observed in the three different environments as well as the relative 

abundance of each phylum. Each axis is labeled with an environmental media and an arrow 

representing increasing frequency of sequences found in that environment. For each phylum, its 

average relative abundance was calculated in each environment. Then its position in the ternary 

diagram was calculated by normalizing the relative abundance in each environment by the sum 

of its relative abundance over all environments. For instance, if a phylum had a relative 

abundance of 50% in the soil and sediment compartments, and 25% abundance in the water 

component, it would appear at the intersection of 40% on the sediment and soil axes and 20% on 

the water axis. The area of the circle corresponds to the log normalized average relative 

abundance of the phylum across all environments.  
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Violin plots of alpha diversity for each environment were created in Python using the seaborn 

package. A violin plot is similar to a histogram but continuous rather than discrete and similar to 

a box-and-whisker plot but contains modal information. 

4.4.6 Co-occurrence network construction 

Following the recommendations in Weiss, et al. 220 we analyzed co-occurrence patterns 

within and between environments. We rarefied our dataset to the top 1,000 OTUs by average 

abundance to remove rare OTUs and divided samples into groups by media type—water, soil, 

and sediment. We inferred the co-occurrence network in each media type using an ensemble 

correlation metric composed of Spearman’s and Pearson’s correlation coefficients, which 

represent the strengths of co-occurrence between pairs of OTUs.221 Positive correlations are 

considered to indicate co-occurrence relationships, while negative correlations indicate either 

competition or non-overlapping niches. We corrected correlation coefficients obtained with both 

metrics for compositionality effects using the ccrepe package in R222 and adjusted the p-values 

for multiple testing using the False discovery rate (FDR) method implemented in the fdrtool R 

package.223  

We constructed co-occurrence networks with the igraph R package.224 Each OTU is 

represented by a node, and pairwise relationships (co-occurrence or exclusion) are represented 

by edges. For our ensemble approach, edges were only included if they exceeded the FDR-

adjusted p-value and compositionality corrected ρ cutoffs in both metrics. We investigated these 

relationships based on the strength of correlation ρ values ≥ 0.5 and 0.75 for co-occurrence, and 

ρ values ≤ -0.75 and -0.5 for competition.221 The cutoff of FDR-adjusted p-values was set to 

0.05. We then characterized the co-occurrence network topology in terms of node degree 
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(number of adjacent nodes). Wilcoxon rank-sum tests were performed to test for statistical 

differences in network degree distribution between aquatic and terrestrial environments.   

4.4.7 Microbial community connectivity tests 

We employed a Bayesian-based community-wide approach in the software SourceTracker 

v0.9.8225 to identify connectivity patterns of microbial communities on the basin scale. 

Sourcetracker was originally developed to infer the proportion of sequences in a “sink” 

community originating from multiple “source” communities. It uses Gibbs sampling to assign 

each sequence in a sink community to a likely source community based on its abundance in each 

source. We performed source tracking on OTUs present in at least 7 samples (around 10% of all 

samples). All samples were rarefied to 1,000 sequences, using the default setting of a = 0.001. If 

<1,000 sequences were available for a sample, then all sequences for the sample were used. To 

test for longitudinal connectivity along the drainage network, we estimated the contribution from 

upstream source communities to those downstream. All the samples located upstream of each 

“sink” sample were considered as valid “source” communities in the analyses. Sources were 

grouped by sample media (upstream water, soil, and sediment). We evaluated lateral riparian 

exchange between environments by examining contributions from aquatic microbial 

communities to microbial communities in soil and sediment, and vice versa.  

4.4.8 Statistical analyses 

Statistical analyses were performed in R, Python and QIIME. Differential abundance 

across media types was analyzed using the Kruskal-Wallis test implemented in the QIIME script 

group_significance.py. ANOVA is a multi-group extension of a t-test that compares within-

group to between-group mean and variation. For each taxa, a one-way ANOVA test is conducted 

to test whether the abundance distribution for that taxa differs between the three environments 
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(soil, sediment, and water). The reported p-values were corrected for multiple comparisons by 

the Benjamini-Hochberg FDR procedure. The reported FDR corrected p-values were corrected 

for multiple comparisons by the Benjamini-Hochberg FDR procedure. Beta diversity 

comparisons were performed with weighted UniFrac distances using ANOSIM implemented in 

the R package Vegan. Partial Redundancy analysis (partial RDA) was selected to analyze the 

relationships between weighted Unifrac distances and environmental parameters due to its ability 

to detect community dissimilarity uniquely explained by different factors. Mantel tests were used 

to analyze correlations between weighted Unifrac distances and spatial distances.  

4.5 SUPPLEMENTARY MATERIALS 
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Figure S4.1 Map of 2015 USDA-NASS land cover categories in the Upper Sangamon River 
Basin. The land use layer is overlain on a hillshade of the digital elevation model of the land 
surface topography. Sample sites are located by the red dots.  

 

 

Figure S4.2 Hierarchical clustering of samples based on the abundance of differentially 
abundant genera in the three media types. The top color bar represents the media type of the 
sample, and the shade of grey represents the abundance of that genus in each sample. 
Differentially abundant taxa across the three media types were identified using the 
group_significance.py script in QIIME and the Kruskal-Wallis test. A higher-resolution 
version is available in the original manuscript. 

 

Figure S4.3 Violin plot of Shannon’s Diversity Index for all samples grouped by media type. 
The width of each violin represents a kernel density estimation of the underlying distribution of 
the Shannon Diversity index. 
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Figure S4.4 Factors significantly correlated with richness (observed OTUs) in water samples. 
Only significant factors are shown. The R2 is shown in the subfigure heading. 

 

 

Figure S4.5 Principal Coordinate Analysis of Weighted UniFrac data for all samples. Blue 
circles are sediment samples, green squares are soil and red triangles are water samples. 
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Figure S4.6 The pairwise relationships between weighted Unifrac and spatial distance for all 
species A), abundant B), and rare species C) in water, same groups in soil D), E), and F), and in 
sediment G), H), and I) samples. The regression slopes of the linear relationships are shown with 
solid (statistically significant, Mantel test, 999 permutations, P < 0.05) or dashed (not statistically 
significant) lines. The Mantel r values are reported for each test.   
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Figure S4.7 Co-occurrence network of interactions between OTUs within water (A), sediment 
(B), and soil (C). The networks were constructed based on the strengths of ensemble correlation 
coefficients (Spearman’s and Pearson’s correlation coefficients both greater than 0.5 or 0.75 for 
co-occurrence or less than -0.5 for competitive relationships). A cutoff value of less than 0.05 for 
FDR adjusted p-values in both metrics was used as well. OTU nodes are color coded based on 
phyla for the eight most abundant phyla observed in all samples.  

 

 

Figure S4.8 The distribution of node degree in water, soil, and sediment. 
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Figure S4.9 30-year flow data from a monitoring station near the downstream sampling 
locations. Bankfull channel flow is approximately 2000 ft3 per second based on the channel 
width at this location.  

	

Supplementary Tables 

Table S4.1 Partial RDA Variance Partitioning 

Factor Explained Variance Grouping 
Total Kjeldahl Nitrogen 8.20 Nutrient 
Nitrate 9.97 Nutrient 
Ortho-phosphate 4.42 Nutrient 
pH 1.68 Environmental 
Temperature 7.62 Environmental 
Conductivity 5.81 Environmental 
Upstream 13.60 Spatial 
Nutrient & Environmental 6.82 covariation 
Nutrient & spatial 0.19 covariation 
Environmental and spatial 1.50 covariation 
Total 59.80   
By category 
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Nutrient 22.59 
 Other environmental 15.10 
 Spatial 13.60 
 Covariation 8.51 
 Unexplained 40.20 
 	

Supplementary Table S4.2 Tile and ground water connectivity to terrestrial environments 

Reads by Media Type 

OTU 
Stream water 

reads 
Ground water mean 

reads 
Tile water mean 

reads 
Soil 

reads 
Sediment 

reads 
OTU_744404 0 0 254 764 0 
OTU_578701 0 636.5 0 61 5 
OTU_520222 0 177.5 0 36 9 
OTU_4429158 0 175.5 0 23 39 
OTU_4435984 0 66.5 0 1 0 
	

  



	 113	

	

	

	

	

	

5. CHAPTER FIVE 
	

Urban Biorefineries: Resource Recovery Via 
Bioelectrochemically Derived Hydrogen 
Peroxide  

 

 

 

 

 

 

 

Material in this chapter is based on the published work:  

Griffin, J., Taw, E., Gosavi, A., Thornburg, N.E., Pramanda, I., Lee, H.S., Gray, K.A., Notestein, 
J.M. and Wells, G., 2018. ACS Sustainable Chemistry & Engineering, 6(6), pp.7880-7889.  
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5.1 ABSTRACT 

In this work, we demonstrate a combined bioelectrochemical and inorganic catalytic 

system for resource recovery from wastewater. We designed a microbial peroxide producing cell 

(MPPC) for hydrogen peroxide (H2O2) production and used this bioelectrochemically-derived 

H2O2 as a green oxidant for sulfoxidation, an industrial reaction used for chemical synthesis and 

oxidative desulfurization of transportation fuels. We operated an MPPC equipped with a gas 

diffusion electrode cathode for six months, achieving a peak current density above 1.4 mA cm-2 

with 60% average acetate removal and 61% average anodic coulombic efficiency. We evaluated 

several cathode buffers under batch and continuous flow conditions for solubility and pH 

compatibility with downstream catalytic systems. During 24-hour batch tests, a phosphate 

buffered MPPC achieved a maximum H2O2 concentration of 4.6 g L-1 and a citric acid-phosphate 

buffered MPPC obtained a moderate H2O2 concentration (3.1 g L-1) at a low energy input (1.6 

Wh g-1 H2O2) and pH (10). The MPPC-derived H2O2 was used directly as an oxidant for the 

catalytic sulfoxidation of 4-hydroxythioanisole over a solid niobium(V)-silica catalyst. We 

achieved 82% conversion of 50 mM 4-hydroxythioanisole to 4-(methylsulfinyl)-phenol with 

99% selectivity with a 0.5 mol% catalyst loading in 100 minutes in aqueous media. Our results 

demonstrate a new and versatile approach for valorization of wastewater through continuous 

production of H2O2 and its subsequent use as a selective green oxidant in aqueous conditions for 

green chemistry applications. 

5.2 INTRODUCTION 

Modern wastewater treatment is vital for protecting human and environmental health. 

However, most design decisions are based on a cost benefit analysis that does not fully value 

resource recovery. This has resulted in an unsustainable “once-through” model that focuses on 
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waste removal and disposal. Bioelectrochemical systems (BESs) use a biological catalyst to 

produce electrical current from wastewater.22 Most BESs have focused on producing electricity 

in microbial fuel cell (MFC) configurations; however, there are some examples of cathodic 

electrochemical synthesis including hydrogen (H2) or hydrogen peroxide (H2O2) production in 

microbial electrolysis cells (MECs) or microbial peroxide producing cells (MPPCs), 

respectively.56, 226 A life cycle assessment of MPPCs found that at scale, MPPC-derived H2O2 

has nearly 60% lower life cycle greenhouse gas emissions than H2O2 produced via the traditional 

anthraquinone auto-oxidation process.27 Previous studies on H2O2 production in MPPCs62, 227, 228 

have focused on producing alkaline H2O2 for disinfection, industrial bleaching or non-specific 

advanced oxidative processes such as the bio-electro-Fenton process for removal of recalcitrant 

contaminants from water.229  

In addition to its proven uses in disinfection and bleaching, H2O2 is a promising green 

oxidant for sustainable chemistry applications because, unlike organic hydroperoxides, it 

generates water as its only byproduct.230-232 While the use of H2O2 with solid oxide catalysts to 

selectively oxidize sulfides has been extensively studied,233-236 there are few examples of 

selective oxidation in these systems in aqueous conditions, and none involving 

bioelectrochemically derived peroxide.237 We recently demonstrated high rates and selectivities 

in the oxidation of thioanisole and several benzothiophene derivatives by H2O2 over a highly 

dispersed supported niobium(V)-silica (Nb(V)-SiO2) catalyst in acetonitrile, which outperformed 

benchmark titania-silica and zirconia-silica materials.238 Thus, sulfoxidation of a thioanisole 

derivative over a similarly formulated niobium(V)-silica catalyst was chosen as a model reaction 

system for proof-of-concept testing of the direct use of bioelectrochemically derived H2O2 for 

selective oxidation in an aqueous buffer (rather than in acetonitrile or other organic solvents). 
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This approach could be adapted to the epoxidation and/or dihydroxylation of alkenes,239 the 

oxidative depolymerization of lignin macromolecules240, or other H2O2-dependent catalytic 

processes. 

H2O2 can be generated for these applications via electrocatalytic oxygen reduction. In 

BESs, anode respiring bacteria anaerobically consume organic matter using an external electrode 

as a terminal electron acceptor via a metabolic process known as extracellular electron transfer 

(EET).241 Current produced during EET can reduce oxygen to water via a four-electron reduction 

(Equation 1). Oxygen can also be partially reduced to H2O2 via a two-electron oxygen reduction 

reaction that occurs on graphitic cathodes (Equation 2).242 H2O2 can be reduced further, resulting 

in a net production of water and decreased coulombic efficiency in an MPPC.243 

𝑂! + 4𝐻! + 4𝑒!  →  2𝐻!𝑂  𝐸!" =  0.81V244    (Eq. 1) 

𝑂! + 2𝐻! + 2𝑒!  →  𝐻!𝑂!  𝐸!" =  0.28V244     (Eq. 2) 

H2O2 synthesis in acetate-fed MPPCs is exergonic,228 although most previous efforts have 

applied external voltage to improve H2O2 synthesis rates and titers at the cost of increasing 

energy intensity. Rozendal et al. developed the first bioelectrochemical H2O2 reactor and 

achieved concentrations of 1.9 g L-1 at an efficiency of 83% and energy input of 0.93 Wh g-1 

H2O2 using an acetate media as feed.62 Fu et al. demonstrated that H2O2 could be generated with 

a net positive energy production but achieved a maximum concentration of 79 mg L-1.228 

System design improvements such as minimizing electrode spacing56 and the use of 

composite carbon black-graphite-PTFE cathodes245-247 have led to higher efficiency and lower 

system overpotentials. Despite recent improvements in system performance and cell design, “pH 

splitting”, or opposing pH shifts at the anode and cathode chambers, remains a major problem 

limiting MPPC H2O2 titer. Proton consumption during oxygen reduction raises catholyte pH and 
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commonly used ion exchange membranes primarily transport ions other than hydroxide or 

protons at typical ionic strengths.248 Elevated cathode pH decreases coulombic efficiency by 

promoting H2O2 decomposition249 and increases cell overpotential in MPPCs, thus increasing 

energy input per gram of H2O2 produced. In a recent study, 80% of the initial H2O2 stored in pH 

12.5 NaCl electrolyte solution decomposed in three days.56 For the latter reason, there is 

significant motivation for the immediate use of the produced H2O2 in a continuous process. 

In this study, we present a novel hybrid biological and chemical catalytic approach to 

wastewater resource recovery via bioelectrochemical H2O2 production and subsequent use of the 

H2O2 solution as a green oxidant in chemical synthesis via heterogeneous catalysis. Specifically, 

we demonstrate thioether sulfoxidation, an industrially relevant process for the synthesis of 

medicinally relevant sulfoxides and sulfones250 and for the removal of sulfur compounds from 

fuels and industrial effluents. First, we optimized MPPC cell design, hydraulic residence time 

and cathode buffer composition to maximize H2O2 concentration at a pH compatible with a 

silica-based catalyst. We operated an MPPC using a continuous flow cathode for six months and 

produced H2O2 at average effluent concentrations of 3.2 g/L at a 40-hour HRT. Next we 

characterized the kinetics and selectivity of catalytic sulfoxidation of 4-hydroxythioanisole to 4-

(methylsulfinyl)-phenol by H2O2 in aqueous buffer solutions and used that to design and operate 

a system for continuous sulfoxidation using the MPPC effluent. 
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Figure 5.1 Schematic of the hybrid microbial electrochemical cell (MEC) inorganic catalytic 
system for wastewater valorization. In the MEC stage, acetate or wastewater is consumed by a 
biofilm in the anode and the resulting current generates H2O2 in the cathode. The H2O2 rich 
effluent is used in a heterogeneous catalysis process downstream as a green oxidant.  

 

5.3 RESULTS AND DISCUSSION  

5.3.1 Microbial Peroxide Producing Cell (MPPC) operation  

We operated two MPPCs with a fixed anode potential of -0.3V (vs. Ag/AgCl) and gas 

diffusion electrodes optimized for H2O2 production for six months. Bioelectrochemical current 

began after 5 days and rapidly entered an exponential growth phase. Current density peaked 10 

days after inoculation at 1.4 mA cm-2 but declined to an average of 0.8 ± 0.3 mA cm-2 for the 

duration of the experiment. Long-term cell current for one cell is shown in Figure 5.8. Consistent 

with previously reported long-term BESs, differences in current maxima before and after 

replacing media were apparent after short downtime periods.50 Current density varied during 

operation due to recurring batch acetate removal experiments, feed interruptions, and 

maintenance breaks during operation. After startup, average acetate removal was 8.7 ± 2.7 mg 

cm-2 day-1 (normalized to anode surface area), with a anodic coulombic efficiency of 61 ± 22% 

(Figure 5.9). During operation, attached growth on the sides of the reactor was observed, likely 
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due to the growth of microaerobic bacteria that could grow under the hypoxic reactor conditions 

(<0.1 ppm dissolved oxygen). Periodic removal of attached growth performed before the batch 

tests indicated by the arrows in Figure 5.9 led to higher coulombic efficiencies and lower overall 

acetate removal rates.  

During MPPC operation, we optimized cathodic H2O2 production in batch experiments. 

MPPCs equipped with carbon black-based gas diffusion cathodes and a 100 mL catholyte 

reservoir were operated for 24 hours at an anodic setpoint of -0.3V vs Ag/AgCl using several 

buffers to evaluate overall pH rise and cathodic coulombic efficiency. Results from a 24-hour 

batch test performed in a 200 mM phosphate buffer are shown in Figure 5.2. Average current 

density was 1.2 mA cm-2, and the resulting final pH and H2O2 concentration were 13.2 and 4610 

mg L-1, respectively. While the H2O2 concentration was promising, the high cathodic pH led us 

to consider alternative buffers that would be compatible with downstream supported metal oxide 

catalysts. 

 

Figure 5.2 Representative plot of a 24-hour batch assay performed in a 200 mM sodium 
phosphate buffer.  
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Figure 5.3 H2O2 production during a 24 hour batch operation. (A) Cell current was stable over 
the course of the experiment. (B) H2O2 titer reached 3.1 g L-1. Blue error bars represent standard 
deviation based on three technical replicates. (C) Average cathodic coulombic efficiency was 
66%. (D) Catholyte pH increased slowly throughout the batch until spiking to 10.1 when the 
buffer capacity was exhausted.  

	

Data from a typical run using a pH 3 citric acid/sodium phosphate buffer (132 mM 

C6H8O7 : 68 mM Na2HPO4) are shown in Figure 5.3. Average current over the course of 24 

hours was 0.91 ± 0.4 mA cm-2 and anodic coulombic efficiency, defined as the ratio of charge 

produced to acetate consumed, was 40%. The average H2O2 production rate was 127 mg L-1 

hour-1 (12.2 mg cm-2 day-1 based on cathode area) and the maximum concentration achieved was 

3075 mg L-1. Cathodic coulombic efficiency decreased from nearly 100% over the first several 

hours to 66% by the end of the experiment, and the final overall coulombic efficiency, defined as 
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the product of anodic and cathodic coulombic efficiencies, was 27%. As shown in Figure 5.3D, 

catholyte pH increased from a starting value of 3.0 to 10.1 by the end of the batch experiment, 

with a sharp increase in pH near the end of the experiment as the pH deviated outside of the 

buffer range.  

Electrode potentials and cell voltage over the course of the experiment are shown in 

Figure 5.4. Applied cell voltage varied between 0.7 and 1.0 V with an average of 0.78 ± 0.11 V. 

Many MFC and MPPC systems have reported high cathodic overpotentials on plain graphitic 

electrodes, and the relatively high applied voltage is not unusual at these current densities, 

despite the favorable thermodynamics of the reaction.251 Average energy input per gram of H2O2 

produced was 1.86 Wh g-1. Although cell current was relatively stable at 0.91 mA cm-2 over the 

duration of the experiment (Fig. 2A), cell power input decreased over the course of the 

experiment from 20 mW to 15 mW (Fig S5A). We observed a 0.2V decrease in cathode 

overpotential (Fig. S5B) during operation concurrent with a decrease in average cathodic 

coulombic efficiency. Together, these observations suggest that some overreduction of H2O2 to 

water occurred as the peroxide concentration increased. Cathode activation during oxygen 

reduction may also contribute to reduced overpotential and decreased cathodic efficiency due to 

enhanced reduction of H2O2 to water compared to a pristine electrode.243 
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Figure 5.4 (A) Cell power input during the batch H2O2 production experiment and (B) electrode 
and cell voltage traces.  

	
Although directly comparing performance from bioelectrochemical cells with different 

operating conditions is difficult, the MPPCs in this study performed favorably in terms of 

reported H2O2 titer and primary energy demand for peroxide compared to previous literature 

examples (Table S2). Compared to observations by Rozendal et al.62, our phosphate buffered 

batch experiment produced three times higher current at a slightly lower applied cell voltage 

(0.47 vs. 0.53V in Rozendal et al.). One study achieved comparable concentrations of H2O2 (2.26 

g L-1 in 21 hours) using real wastewater as feed, although they used an external energy input of 

8.3 Wh g-1 H2O2, similar to that in the traditional anthraquinone process.227 Ki et al. recently 

demonstrated H2O2 production from primary sludge at a slightly higher energy input (0.87 Wh g-

1 H2O2) although they obtained a H2O2 concentration of 0.23 g L-1.252 These studies demonstrate 

the challenges of using less readily biodegradable carbon as feedstocks. A recently reported 

study achieved considerably higher volumetric H2O2 production rates, (18.6 vs. 4.6 g H2O2 L-1 

day-1) due in part to increased cathode surface area: volume ratio (2.72 cm-1 vs. 0.25 cm-1 in this 
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study) that reduced the total aerial H2O2 production rate needed to achieve similar 

concentrations.56 Conventional industrial processes for electrochemically producing H2O2 

require 4.4 – 8.9 Wh g-1,253 which is significantly higher than the 0.5 – 2.8 Wh g-1 reported here. 

Despite this, significant improvements in energy intensity could be realized through cell design 

improvements such as decreasing electrode spacing and increasing anode surface area.  

Because our primary objective was to assess feasibility and demonstrate proof-of-concept 

of coupling bioelectrochemical peroxide production to downstream green chemistry applications, 

we elected to use a synthetic acetate-based wastewater as feed in order to focus on coupling 

bioelectrochemical peroxide production to downstream applications; however, there are 

examples of BESs treating real wastewater for extended durations over a year254 and at pilot 

scale.26 The scalability of bioelectrochemical peroxide production via MPPCs is a future research 

need. 
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Table 5.1 Comparison of performance in reported literature MEC systems. 

Ref. 
Process 

type 
Mem-
brane 

Catholyte 
HRT Anolyte Catholyte 

H2O2 
Concentration 

Current 
Density and 

Voltage 
Energy 

Intensity 

      Hours     g H2O2 L-1 mA & V 
Wh g-1 
H2O2

-1 

1 batch 

CMI-
7000 
CEM 4 

domestic and 
hospital 

wastewaters 
50 mm 
NaCl  0.34 

10 A m-2 at 
0.6V 2.5 

2 batch 

CMI-
7000 
CEM 24 

domestic 
wastewater and 

and acetate 
media 

50 mm 
NaSO4  0.2 

18.4 A m-2 at 
0.04V 

produced 
0.09 

output 

3 batch 
Nafion 
PEM 12 

glucose media 
w/ 50 mm PBS 

50 mm 
K3Fe(C
N)6+PB

S  0.08 

0.2 A m-2 at 
0.4V 

produced 
0.06 

output 

4 Cont. 

CMI-
7000 
CEM 0.023 

12 mm acetate 
media w/ 50 

mm PBS 
50 mm 
NaSO4 8.50E-05 

6.1 A m-2 at 
0.6V  56 

5 batch 
Nafion 
PEM 47 

Acetate media 
50 mm 
NaCl 5 

2.5 A m-2 at 
3.8V  2.3 

5 batch 
Nafion 
PEM 21 

domestic 
wastewater 

50 mm 
NaCl  0.08 

0.4 A m-2 at 
0.9V  1.8 

6 batch 
Nafion 
PEM 21 

6 mm acetate 
media/10 mm 

PBS 
50 mm 
NaCl  9.7 

1.7 A m-2 at 
11.8V  3 

7 batch 

CMI-
7000 
CEM 8 

12 mm acetate 
media/190 mm 

PBS 
50 mm 
NaCl  1.3 

5.3 Am 2 at 
0.5 V  0.93 

8 batch 

CMI-
7000 
CEM 4-24 

5 mm acetate 
media/50 mm 

PBS 
DI 

Water 1.3 
7.7Am 2 

at1V  2.6 

8 batch 

CMI-
7000 
CEM 2-10 

raw domestic 
wastewater 

DI 
Water 0.15 

0.56 Am 2 at 
6.3 V  28 

9 Cont. 
AMI-
7001 4 

acetate media 
200 mm 

NaCl 3.1 
10.1 A m 2 at 

0.31 V  1.1 
 

 



	 125	

5.3.2 Abiotic H2O2 buffer optimization 

Designing a buffer compatible with both the bioelectrochemical and catalytic system 

components in this hybrid system presents unique challenges because the buffer species must be 

electrochemically inert in the cathode potential window, non-reactive with H2O2, and compatible 

with the downstream sulfoxidation process. Highly alkaline conditions reduce H2O2 stability56 

and can destroy the active phase of the oxidation catalyst or alter the reactivity in the 

downstream oxidation reactor. Excessive buffer concentration is also undesirable, however, since 

excess phosphate could precipitate out in the less-polar environment of the downstream 

oxidation reactor or otherwise inhibit the oxidation catalyst. Most buffered MPPC systems have 

used carbonate or phosphate buffers that have effective pH ranges between 5.8-10.8.251 Despite 

this, cell overpotential can be reduced in acidic cathodic conditions255 due to increased 

availability of protons at the cathode surface and improve oxygen reduction thermodynamics by 

59 mV per catholyte pH unit decrease. 

 

Table 5.2 Results of 24-hour batch assays performed with different buffer systems  

		 Name	 Composition	
Ionic	

Strength	
Initial	
pH	

Final	
pH	

Final	
H2O2	

Cathodic	
Coulombic	
Efficiency	

Compatible	with	Nb.SiO2	
catalyst?			

	 	

mM	

	 	

g	/	L	 %	

1	
(Mono/di)-basic	Sodium	
Phosphate	

NaH2PO4	/	
Na2HPO4		

.
	(H2O)7	 100	 6	 12.8	 3.2	 82%	 Yes	

2	
(Mono/di)-basic	Sodium	
Phosphate	

NaH2PO4	/	
Na2HPO4		

.
	(H2O)7	 150	 6	 11.3	 2.9	 76%	 Yes	

3	
(Mono/di)-basic	Sodium	
Phosphate	

NaH2PO4	/	
Na2HPO4		

.
	(H2O)7	 300	 6	 10.7	 2.7	 52%	 No	(precipitation)	

4	
(Mono/di)-basic	Sodium	
Phosphate	

NaH2PO4	/	
Na2HPO4		

.
	(H2O)7	 500	 6	 6.9	 3.4	 76%	 No	(precipitation)	

5	
Citric	Acid	/	Sodium	
Phosphate	dibasic		

	C6H8O7	/	Na2HPO4	
.
	(H2O)7	 120	 3	 10	 3.4	 90%	

No	(no	sulfoxidation	
products	observed)	

 



	 126	

 To produce MPPC effluent compatible with downstream green chemistry applications, 

we optimized buffer conditions with the goal of producing modestly concentrated H2O2 solution 

at near neutral pH while maintaining solubility in the 25% ethanol solutions used for 

sulfoxidation. We screened pH 6 phosphate buffers at 100-500 mM total phosphate 

concentration in 24 hour abiotic batch tests along with a 200 mM pH 3 citric acid/phosphate 

buffer (Table S1). As expected, higher buffer concentration mitigated cathodic pH rise due to 

proton consumption. Although peroxide decomposition in alkaline conditions is expected, we did 

not notice a relationship between coulombic efficiency and final pH over the course of the 24-

hour trials suggesting that homogenous decomposition of H2O2 at high pH was less important 

than overreduction at the electrode. The citric acid-phosphate buffer system was effective at this 

stage, however it was not selected as no product formation was observed in the sulfoxidation 

reactor. The 500 mM phosphate buffer maintained a near-neutral pH (6.9) even after 24 hours of 

H2O2 formation. We selected the 200 mM phosphate catholyte previously screened in the biotic 

MPPC for downstream usage due to precipitation observed in the 300 and 500 mM phosphate 

catholytes when diluted with ethanol. Implementation of bioelectrochemical peroxide production 

for chemical synthesis may require further optimization of redox-stable, low cost buffers 

compatible with particular catalytic systems. Nonetheless, our efforts demonstrate the feasibility 

of combining electrochemical H2O2 production with downstream catalytic processes in aqueous 

solvents. 

5.3.3. Bioelectrochemical H2O2 generation in a continuously fed MPPC cathode  

Batch bioelectrochemical H2O2 production has been reported; however, few reports of 

continuous distributed bioelectrochemical H2O2 generation exist in the literature, despite its 

potential advantages in terms of avoiding decomposition and improved process control. Thus, we 
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explored H2O2 production in a continuously fed cathode chamber. We operated the cathode in 

batch mode for 24 hours to build up an initial H2O2 residual and then switched operation to 

continuous flow and monitored effluent H2O2 concentration for several days until H2O2 

concentrations reached steady state.  

 

Figure 5.5 Continuous H2O2 Production test at a 1.67 day HRT. (A) Current and effluent H2O2 
concentration shown over a 5 day period. A decrease in current was observed during an anodic 
acetate consumption test. (B) The decrease in current led to a decrease in effluent H2O2 
concentration and pH that recovered after restoring anode feed. 
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Results from a four-day experiment conducted at a cathodic flow rate of 60 mL day-1 (39 

hour HRT) are shown in Figure 5.5. Cell current was stable for the first three days and averaged 

1.1 ± 0.2 mA cm-2 over the duration of the experiment. Effluent H2O2 concentration averaged 

3150 ± 280 mg L-1 over the first three days with a maximum concentration of 3610 mg H2O2 L-1. 

Effluent pH varied between 7.9 and 10.1. Current and H2O2 concentration partially recovered 

after a feed disruption on day four indicated by the vertical lines in Figure 5.5, although pH 

continued to lag somewhat. Effluent pH and H2O2 concentration appeared to be correlated 

(Pearson correlation coefficient R = 0.61) but this relationship was not significant at this sample 

size. Cathodic coulombic efficiency was calculated by averaging the initial and final H2O2 

concentrations during each sampling period and then estimating the total H2O2 produced based 

on the flow rate and average concentration. Compared with the 24-hour batch experiments, 

cathodic coulombic efficiency was lower in continuous cathodic flow operation at this HRT and 

averaged 44 ± 5%. 

 We compared effluent concentration and pH over a range of cathode HRTs from 12 to 40 

hours to demonstrate how titer and pH can be tuned for different uses by adjusting HRT (Table 

S3). H2O2 concentration and pH increased with HRT from a steady-state concentration 1400 mg 

L-1 at a 12-hour HRT to 3150 mg L-1 at 40 hours. Cathodic coulombic efficiency decreased with 

increasing retention time from 75% at 12 hours to 44% at 40 hours, which was expected given 

the tendency for H2O2 to degrade in MPPC conditions.56 We did not evaluate HRTs beyond 40 

hours but it is likely that efficiency would decrease at longer residence times due to 

decomposition. Few studies have investigated continuous bioelectrochemical H2O2 production.  

However, Li et al. operated BESs for 10 minute increments with and without catholyte flow and 

identified a tradeoff between current and coulombic efficiency they ascribed to H2O2 
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overoxidation.247 Young et al. operated a system similar to ours with a four hour HRT which 

achieved lower energy intensity, in part due to lower HRT and resulting higher coulombic 

efficiency.56 Further optimization of cell design to minimize electrode spacing, cathode surface 

area to volume ratio and increase anode surface area could increase titer and reduce the need for 

long HRTs used in this study.   

5.3.4 Conversion, yield and kinetics of H2O2 assisted sulfoxidation on niobium catalyst 

We have previously described a highly dispersed niobium(V)-silica (Nb(V)-SiO2) 

catalyst for alkene epoxidation256, 257 and sulfoxidation with H2O2 oxidant in acetonitrile.238 An 

equivalent catalyst material was prepared here, and its high optical edge energy of 3.6 eV from 

diffuse reflectance UV-visible spectroscopy (Figure 5.11) indicates the high dispersion of the 

niobia phase that is correlated with high activity256, 257, 258, 259. We hypothesized that a similar 

selective sulfoxidation reaction could be catalyzed with dilute MPPC-derived H2O2 in an 

aqueous buffer, rather than in an organic solvent. There are few reports of sulfoxidation by solid 

oxide catalysts in protic solvents260 and to the best of our knowledge, no previous work using 

these materials in high ionic strength aqueous solutions such as the MPPC catholyte used in this 

study. Therefore, we evaluated the kinetic parameters of this reaction across a range of 

temperatures and catalyst loadings using mock MPPC catholyte and then compared these results 

with MPPC derived H2O2 for a subset of these conditions.  

Concentration time course plots for the disappearance of 4-hydroxythioanisole catalyzed 

by Nb(V)-SiO2 using mock MPPC catholyte is shown in Figure 5.6A, and the relation between 

rate constant and catalyst loading is shown in 5.6B. 4-hydroxythioanisole disappearance kinetics 

fit well to an assumed pseudo-second order model (i.e. pseudo-first order with respect to each the 

sulfide and H2O2), as has been shown for related systems,238, 261-263 and the resulting rate 
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constants increase linearly with increasing catalyst loading, also as expected. This is a generally 

useful finding, given the lack of studies of such catalysts in high ionic strength aqueous 

solutions.  

The uncatalyzed system, corresponding to the 0 mol% data in Figure 5.6, revealed some 

activity due to H2O2 alone. The rate constant for the uncatalyzed reaction was subtracted from 

the overall rate observed in the catalyzed system to determine an apparent rate constant for just 

the Nb(V)-SiO2-catalyzed reaction. In our previous work with a similar Nb(V)-SiO2 catalyst in 

acetonitrile (rather than in an aqueous solution, as in this study),238 complete oxidation of 

thioanisole to methyl phenyl sulfone was observed for a system with a 3:1 initial 

H2O2:thioanisole ratio. Significant accumulation of the sulfoxide intermediate was observed at 

low conversion, and the selectivity (k1/k2) was 2.4. Given the much lower excess H2O2 (1.1:1 

starting ratio) in this study, over-oxidation to 4-(methylsulfonyl)-phenol sulfone was unexpected 

and not observed.  

 

Figure 5.6 (A) Reactant concentration time course data at different catalyst loadings as measured 
by GC-FID. Solid lines are best fits to an overall 2nd order reaction rate that is first order w.r.t. 
both 4-(methylmercapto)phenol and H2O2 concentration. (B) Second order rate constant fits as a 
function of catalyst loading. 
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Arrhenius plots were developed for reactions carried out at 25 °C, 35 °C and 45 °C and 

are shown in Figure 5.11 for both the 0.5 mol% Nb(V)-SiO2-catalyzed and uncatalyzed systems. 

As seen in Figure 5.7, initial reaction rates were highest at 55 °C but the Nb(V)-SiO2 appeared to 

lose activity over time at this temperature; these data were not included in the activation energy 

calculations. A yellow tint was observed at the end of the 55 °C experiment, suggesting gradual 

leaching of the niobia active phase by chloride at this temperature, as has been observed 

previously for related catalysts.264 We have previously assessed leaching and recyclability of the 

Nb(V)-SiO2 catalyst used in this study for epoxidation of cyclohexene at 65 °C.256 Some leaching 

was observed, but recalcining spent catalysts at 550 °C in air between batch experiments 

recovered the selectivity and most of the reactivity of the initial material. Activity tests by others 

on similar Nb-SiO2 catalysts demonstrated gradual activity losses over five catalytic cycles, but 

found that these materials were relatively robust in the presence of aqueous H2O2.265 Additional 

studies of long-term catalyst stability and the capacity of the anion exchange membrane to shield 

the catholyte from contamination with wastewater anions is necessary to ensure performance in 

real wastewater operating conditions. 

The apparent activation energy of the uncatalyzed and Nb-catalyzed system is 52.0 kJ 

mol-1 and 44.8 kJ mol-1, respectively. The apparent catalyzed barrier here is 5-10 kJ mol-1 higher 

than other activation energies previously reported in organic solvents,238 suggesting a slight 

enthalpic penalty incurred by competitive binding of anions and water to Nb active sites that may 

occur under aqueous ionic conditions. 
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5.3.5 Selective sulfoxidation of 4-hydroxythioanisole using MPPC derived H2O2 

Finally, we combined separate knowledge of the MPPC and the sulfoxidation catalyst in 

order to demonstrate a hybrid MPPC-catalytic process for sulfoxidation using 

bioelectrochemically derived H2O2 as a novel green oxidant. We demonstrated both a batch 

process as well as the continuous two-stage reactor shown in Figure 5.1. In the batch process, 

MPPC catholyte generated over a 24-hour period was neutralized to pH 7 with HCl. The MPPC 

effluent was diluted to 83 mM H2O2 with unused phosphate buffer and mixed 3:1 with an ethanol 

containing the catalyst and 4-hydroxythioanisole. Batch sulfoxidation experiments were 

performed as above and product distribution was quantified with GC-FID. Figure 5.7A shows a 

typical time course of 4-hydroxythioanisole sulfoxidation using MPPC derived H2O2 at 35 °C 

along with results from experiments using mock MPPC catholyte and commercial H2O2 

performed between 25-55 °C. The system using MPPC derived H2O2 reached 82% yield after 2 

hours with a selectivity of 99%. Compared to the mock MPPC effluent, the 4-hydroxythioanisole 

sulfoxidation rate constant differed by only 18% in actual MPPC catholyte (kapp = 4.8x10-4 mM-1 

min-1 vs. 5.9x10-4 mM-1 min-1), possibly due to higher phosphate and chloride concentrations. We 

analyzed catholyte samples for acetate leaching through the anion exchange membrane after 24 

hours of H2O2 generation but observed low acetate concentration (<5 mg L-1) in all samples. We 

did not directly quantify catholyte phosphate concentration after H2O2 production here, though 

previous studies have found no significant change in catholyte conductivity during MFC 

operation.266 

In the continuous reactor, H2O2 generated in the MPPC was directly used downstream in 

a CSTR-style sulfoxidation reactor fed with 4-hydroxythioanisole. After allowing the MPPC 

effluent catholyte H2O2 concentration to reach steady state, we collected and neutralized 100 mL 
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of catholyte, and charged the sulfoxidation reactor with the same initial peroxide and reactant 

concentrations used in the batch experiments. Using the rate constant determined from the batch 

system, we selected a two hour HRT with a 50% 4-hydroxythioanisole solution: 50% diluted 

MPPC catholyte flow split as feed to the CSTR and monitored product concentrations over time 

for six hours. 5-minute composite effluent samples were collected for each time point and 

remaining H2O2 was neutralized with sodium bisulfite. The rate constant was determined from 

the 4-hydroxythioanisole reactor effluent time series data by numerically integrating the CSTR 

design equation as described in the Methods section. Figure 5.7B shows effluent reactant 

concentrations along with a best-fit line to an overall second order rate law. After curve fitting, 

the rate constant was found to be k = 5.8x10-4 ± 0.1x10-4 mM-1 min-1 within a 95% confidence 

interval. This value agrees with the rate constant obtained from the stand-alone batch reactor 

under similar conditions. Conversion reached approximate steady state after two hours and then 

declined slightly, possibly due to catalyst loss through the effluent filter. The agreement between 

continuous and batch performance demonstrates the ability to design and operate a tandem 

MPPC-catalysis system. 

The tandem MPPC-catalysis system described here provides the first demonstration of 

usage of MPPC derived H2O2 for industrially relevant chemical transformations beyond 

disinfection or nonselective advanced oxidation processes. It provides proof-of-concept of a 

route of valorization of wastewater organics via onsite H2O2 generation coupled to direct use for 

bio-based chemical production. Direct on-site generation of H2O2 reduces the need for transport 

and storage of concentrated H2O2 solutions and has already been demonstrated (for abiotic H2O2 

production) for paper bleaching253 and electro-Fenton based oxidation of organics.267  
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Figure 5.7 (A) Typical time course of sulfide consumption using MEC derived H2O2 at 35°C 
along with results from synthetic H2O2 experiments taken between 25-55°C. (B) Performance of 
a 20 mL sulfoxidation CSTR operated at 35°C and a two hour HRT. The solid line represents the 
best fit line from a second order overall reaction rate model fit to the CSTR data. 

 

MPPC-based resource recovery from real wastewater may benefit from a “closed loop” 

system in which produced H2O2 can be used on-site, further reducing waste treatment and 

oxidant costs. BESs excel in low-temperature and lower organic loading scenarios52 where 

mature technologies like anaerobic digestion do not function well. Additionally, recent studies 

have demonstrated successful BES treatment of hypersaline produced water that poses problems 

for traditional biological treatment processes.268 However, it should be noted that the complex 

nature of real wastewater provides challenges for BESs such as competing electron-accepting 

reactions like sulfate reduction and methanogenesis which can reduce coulombic efficiency.254 

Treatment of complex organics would likely require longer HRTs and anode biofilm adaptation 

to these conditions252, or a multi-stage treatment process in which complex organics are partially 

fermented prior to resource recovery in a BES.269  
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5.4 CONCLUSION 
	

In this work we demonstrate a new pathway for resource recovery, as well as shown the 

flexibility of this solid oxide catalyst for applications in high ionic strength aqueous media. This 

differs substantially from previous demonstrations for this catalyst in organic solvents (e.g. 

acetonitrile).238, 265 Substitution of “greener” solvents has benefits in terms of cost as well as 

environmental and human health.270 This overall scheme could be tuned to other reactions such 

as dihydroxylation of alkenes and/or epoxidation,239 as well as other H2O2-dependent catalytic 

processes. Building on the success of this proof-of-concept system for green chemistry using 

MPPC derived H2O2, performance could likely be improved by more tightly coupling the 

catalyst and MPPC design, including electrode construction, buffer choice, and catalyst 

architecture. Furthermore, catalytic systems that are unaffected or enhanced by the alkalinity 

inherent to bioelectrochemically derived H2O2 are a promising application. 

5.5 METHODS 

5.5.1 MPPC Reactor Configuration 

Bioelectrochemical cells were constructed from laser-cut acrylic with an anode chamber 

volume of 200 mL equipped with an Ag/AgCl reference electrode (BASI, West Lafayette, IN). 

During MPPC operation, a 25 cm2 piece of AvCarb carbon felt (Fuel Cell Earth, Woburn, MA) 

with a copper mesh current collector was used as the anode. The carbon felt was pretreated for 

24 hours in 1N nitric acid, followed by 24 hours in acetone and 24 hours in ethanol.271 During 

abiotic cathode optimization, the copper-backed carbon felt was replaced by a 10 cm2 Pt mesh 

(Sigma) that was used as a counter anode. The cathode chamber had a 100 mL chamber with an 

exposed cathode surface area of 25 cm2. A gas diffusion cathode was constructed as previously 

described245 using a carbon cloth electrode (GDL-CT, Fuel Cells Etc., College Station, TX) 
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coated with PTFE on one side and 5 mg cm-2 carbon black (Vulcan XC-72, Fuel Cell Earth, 

Woburn, MA) dispersed in Nafion on the other side. The chambers were separated by a 33 cm2 

anion exchange membrane (Ultrex AMI-7001, Membranes Intl., Ringwood, NJ).  The electrode 

spacing was 3.4 cm. Both chambers contained inlet and outlet ports to operate in continuous 

mode. During continuous H2O2 production and usage, cathode effluent was stored in a holding 

tank and neutralized and diluted before being used for sulfoxidation. A schematic of the 

combined MPPC and sulfoxidation reactor setup is shown in Figure 5.1, and photographs of the 

reactor setups are available in Figure 5.8. 

 

Figure 5.8 Reactor Setups. (A) MEC reactor with continuous cathode chamber on the left and 
bioanode on the right. (B) Sulfoxidation reactor using MEC derived H2O2. 

 

5.5.2 MPPC Operating Conditions 

The anodic biofilms used in this study were inoculated with 80 vol% synthetic acetate 

media, 10 vol% primary effluent from the O’Brien Water Reclamation Plant (Skokie, IL), and 10 

vol% effluent from a previously operated MPPC. The anode potential was set at -0.3V vs. 

Ag/AgCl using a VMP-3 potentiostat (Bio-logic USA, Knoxville, TN) and cell current, working 

and counter electrode potentials were monitored every 30 seconds. The anode was fed with a 

synthetic wastewater medium containing 25 mM CH3COONa in a 100 mM phosphate buffer.272 
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Each liter of anode medium also contained 0.3 mL of a trace metal solution.273 MPPC anodic 

hydraulic residence time (HRT) was initially 12 hours and then decreased to 5 hours as acetate 

consumption rates increased to avoid substrate limitation.274 The medium was continuously 

sparged with N2 gas to minimize oxygen introduction into the system. The reactor was operated 

continuously for over six months, during which time cathode HRT and buffer concentration were 

varied to study the effect of these variables on efficiency and effluent H2O2 concentration. All 

MPPC experiments were performed at room temperature (22 ±1°C) with continuous mixing.  

To identify buffer systems compatible with downstream catalytic processes, H2O2 

production was tested in abiotic cells equipped with Pt anodes. H2O2 production rates, cathodic 

coulombic efficiency and catholyte pH increase were evaluated in 24 hour batch assays with 

several phosphate and citric acid buffer compositions, listed in Table S1. Cathode potential was 

fixed at -0.6V vs. Ag/AgCl and samples were collected for pH and H2O2 measurement. During 

continuous MPPC operation, catholyte chambers were triple rinsed with deionized water and 

then allowed to accumulate H2O2 for 24 hours before starting continuous flow. Effluent H2O2 

concentrations were monitored until they reached steady state, and effluent was collected for 

sulfoxidation. 
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Figure 5.9 Longterm cell current performance of MEC operated at fixed anode potential of -
0.3V (vs. Ag/AgCl) for 5 months. Bioelectrochemical current began after 5 days and rapidly 
entered an exponential growth phase. Current peaked 10 days after inoculation at 1.4 mA/cm2 
but declined to an average of 0.8 ± 0.3 mA/cm2 for the duration of the experiment. 

	

	

	

Figure 5.10 Biofilm areal acetate removal rate (mg cm-2 day-1) and anodic coulombic efficiency 
for 5 months of reactor operation. Arrows indicate tests performed after removal of attached 
growth. 
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Table 5.3 H2O2 Production vs. Cathode HRT. Results from MEC cathode HRT experiments 
performed with, 12, 25, and 40 hour HRTs. For each experiment, the cathode chamber was triple 
rinsed and then operated in batch mode for 24 hours, then switched to continuous flow at the 
specified HRT for 4 days. For the 12 and 25 hour HRT experiments, only data from the last two 
days was averaged once steady state was reached. 

HRT Flowrate Current Density* Effluent pH Effluent H2O2 Cathodic Coulombic Efficiency 

hours-1 ml day-1 mA cm-2 

 

mg L-1 % 

12.2 197 0.99 ± 0.03 7.1 ± .1 1360 ± 200 75 ± 6** 

25.2 95 0.93 ± .04 8.7 ± .2 2490 ± 200 67 ± 4** 

39.8 60 1.10 ± 0.2 8.9 ± .7 3150 ±280 44 ± 5 

* Average ± Standard Deviation 
** Average over final two 48 hours (pseudo-steady state)	

	

5.5.3 Analytical Methods 

A Trace 1310 gas chromatograph (GC) (Thermo Scientific, USA) equipped with a 

diphenyl dimethyl polysiloxane column and an FID detector was used to measure anolyte acetate 

concentrations. A 0.1 µL sample was injected in the GC with a 50:1 split ratio under a constant 

flow rate of 1.0 ml min-1. The GC oven was held at 70 °C for one minute, then increased at 10 °C 

per minute up to 180 °C, and then held at a constant temperature of 180°C for five minutes. 24 

hour anodic acetate removal rates were calculated by measuring the difference between acetate 

medium and effluent concentrations at a given HRT. H2O2 concentration was measured in the 

catholyte effluent using the ammonium metavanadate method.275 A vanadate colorimetric 

reagent was prepared by slowly adding 9 M sulfuric acid to a 12.4 mM ammonium metavanadate 

solution under magnetic stirring at 50°C until complete dissolution. Triplicate 0.75 mL catholyte 

samples were diluted to 20-200 mg L-1 H2O2 in deionized water and added to an equal volume of 

the vanadate solution. Absorbance was measured at 450 nm on a BioSpectrometer UV-Vis 

spectrophotometer (Eppendorf). Anodic and cathodic coulombic efficiencies were calculated 
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based on the total current and measured changes in acetate and H2O2 concentrations using 

equations 3 and 4.244 

Anode coulombic efficiency (%):   !"#
!" ∆[!!!""!]!!"#$%

     (Eq. 3) 

Cathode coulombic efficiency (%):   !" !!!! !"#
!"# 

      (Eq. 4) 

where I is the total current, n is the electron equivalents per mole of H2O2 or acetate (2 and 8, 

respectively), [CH3COO-] and [H2O2] are the concentrations of acetate and H2O2, respectively, in 

mol L-1, V is the anode volume and Q is the volumetric flow rate of catholyte. Overall coulombic 

efficiency was calculated by multiplying the anodic and cathodic coulombic efficiencies 

together. Aerial current and power density were calculated by normalizing current and power to 

the anode and cathode surface area (25 cm2). Batch cathodic coulombic calculations were 

performed using the volume of catholyte remaining in the reactor while sampling to account for 

changes in catholyte volume during the batch assays.   

5.5.4 Catalyst Synthesis and Characterization  

The niobia-silica catalyst was synthesized by grafting a niobium(V)–calixarene 

coordination complex to partially-dehydroxylated silica gel (Alfa Aesar). 4.65 mmol NbCl5 

(Strem Chemicals) and 4.65 mmol p-tert-butylcalix[4]arene (Sigma) were dissolved in 150 mL 

anhydrous, degasified toluene inside of an Ar glovebox. After sealing and transferring the flask 

to Schlenk line under N2 purge, a reflux condenser was attached, and the solution was refluxed 

for 24 h. Then, 15.0 g silica gel, which was previously partially dehydroxylated at 300 °C for 10 

h under dynamic vacuum (<25 mTorr), was added to the flask under N2 purge, and the 

suspension was refluxed for an additional 24 h. Solids were vacuum-filtered in air, then washed 

with 5×100 mL toluene and dried under dynamic vacuum overnight. Dried, as-made solids were 



	 141	

sieved to <125 µm, and the sieved material was calcined in air immediately before use as catalyst 

at 550°C for 6 h using a ramp rate of 10 °C min-1. 

Catalyst metal content was quantified using inductively coupled plasma atomic emission 

spectroscopy (ICP-AES; Thermo iCAP 7600).  Prepared Nb(V)-SiO2 catalysts were digested in 

48 wt % HF, diluted with 0.9 wt % HNO3 and calibrated against a standard curve of a 

commercial Nb solution (Fluka Analytical) in 0.9 wt % HNO3. Diffuse reflectance UV-visible 

(DRUV-vis) spectra were collected from 800–200 nm at ambient conditions using a Shimadzu 

UV-3600 with a Harrick Praying Mantis diffuse reflectance accessory, using 

polytetrafluoroethylene (PTFE) powder as a baseline perfect reflector and a 20:1 catalyst diluent.  

 

Figure 5.11 Diffuse reflectance UV-visible spectrum of Nb-SiO2 catalyst. 

	

5.5.5 4-hydroxythioanisole Oxidation  

4-hydroxythioanisole oxidation kinetics were first investigated across a range of 

temperatures, catalyst loadings and aqueous buffer conditions using commercial H2O2 in a 

“mock MPPC catholyte” as follows: 1 mmol 4-hydroxythioanisole (Sigma) and 0.1 mmol phenol 

(internal standard, Sigma) were dissolved in a 2:1 deionized water: ethanol solution. Mock 
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MPPC catholyte was produced by pH adjusting a 200 mM pH 6 phosphate buffer (21 g L-1 

KH2PO4 (Sigma) and 6.6 g L-1 Na2HPO4 
. (H2O)7 (Sigma)) to pH 13 with NaOH and then 

neutralized with HCl to pH 7 to mimic the neutralization procedure used for the MPPC catholyte 

and achieve a similar chloride concentration in the mock and actual MPPC catholyte. 31.1 mg 

Nb(V)-SiO2 (0.16 mmol Nb g-1) was then added to a solution containing 15 mL of the 4-

hydroxythioanisole solution and 5 mL of mock MPPC effluent. Finally, 110 µL of H2O2 (30 wt 

% aqueous, 1.07 mmol) was added to start the reaction. Experiments were run between 25°C and 

75°C on a hotplate and magnetically stirred at 500 rpm. At the start of reaction, the 4-

hydroxythioanisole concentration was 50 mM and the molar ratios inside of the reactor were 

100:107:0.5 for 4-hydroxythioanisole:H2O2:Nb. Reaction aliquots (approx. 200 µL) were 

quenched with approximately 5 mg NaHSO3 (Sigma) at desired time points before GC analysis. 

Product identities were initially determined using GC-MS (Shimadzu QP2010, Zebron ZB-624 

capillary column) and quantified using GC-FID (Shimadzu 2010, TR-1 capillary column) via 

calibrated standards. The reaction was assumed to be first order in both H2O2 and 4-

hydroxythioanisole, giving second order overall, and rate constants were found by a satisfactory 

linear regression of  

ln !!!!
! !!!!

= 𝐶!! 𝑀 − 1 𝑘𝑡     (Eq. 5) 

where 𝑀 = !!!
!!!

= 1.1, k is the apparent rate constant, and A and B as 4-hydroxythioanisole and 

H2O2, respectively. Apparent activation barriers were calculated from the slope of ln(k) vs. 

1000/T (K) conforming to an Arrhenius model.  

4-hydroxythioanisole oxidation kinetics were quantified with MPPC-derived H2O2 using 

a similar procedure. The reactor sampling and GC quantification were as described above, but 

the mock MPPC catholyte and 30 wt% H2O2 were replaced with H2O2-laden MPPC effluent 
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adjusted to pH 7 with HCl. The volumes of MPPC effluent and deionized water added to the 4-

hydroxythioanisole solution were adjusted to give initial molar ratios of 100:110:0.5 for 4-

hydroxythioanisole:H2O2:Nb in the reactor.  

 

Figure 5.12 Arrhenius plot of (blue) uncatalyzed and (green) catalyzed (Total – uncatalyzed) 
ln(rate constants) vs. 1/T. Catalyzed reactivity decreased above 45C due to catalyst deactivation 
via possible niobium leaching from surface. 

 

In addition to batch experiments, continuous stirred tank reactor (CSTR) sulfoxidation 

experiments were performed in a 50 mL stirred round bottom flask controlled at 35 ºC with a 20 

mL holdup volume. Separate MPPC effluent and 4-hydroxythioanisole solutions were pumped 

into the reactor at 5 mL hr-1 each using a Minipuls 3 multichannel pump (Gilson, Inc., Middleton 

WI) to give a two-hour HRT. H2O2 was generated in an MPPC operated at sufficiently long 

HRTs (on average 1.7 days) in order to reach 110 mM H2O2 (3.7 g H2O2 L-1). MPPC effluent 

was acidified with HCl to pH 7 prior to usage. The sulfide reactant solution initially contained 

100 mM 4-hydroxythioanisole and 40 mM phenol dissolved in a 50:50 solution of water and 

ethanol. The reactor was initially filled with 10 mLs of 4-hydroxythioanisole and catholyte 
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solutions each and contained 0.5 mol% Nb(V)-SiO2 (relative to 4-hydroxythioanisole). Cotton 

dead-end filters were used to minimize catalyst loss through the effluent ports on the CSTR. 

Effluent sulfide product distribution (unreacted sulfide [4-hydroxythioanisole], product sulfoxide 

[4-(methylsulfinyl)-phenol], and sulfone [4-(methylsulfonyl)-phenol] concentrations) was 

measured as in the batch experiments, and the reactor was operated until the product distribution 

reached steady state. The apparent rate constant was determined from the effluent concentration 

from the CSTR using the Levenberg-Marquardt nonlinear least squares regression algorithm and 

the Runge-Kutta method for numerically integrating differential equations in MATLAB R2016b 

(The Mathworks, Natick MA). The nlparci function was used to obtain a 95% confidence 

interval. The effluent concentration was fit to the following differential equation, derived from a 

mass balance: 

!!!
!"

= !!!!!!
!

− 𝑘𝐶!(𝐶!! − 𝐶!! + 𝐶!)   (Eq. 6) 

where A and B are 4-hydroxythioanisole and H2O2, respectively. 

  



	 145	
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A Genome-Centric View of Anode Respiring 
Biofilms Enriched With Different Carbon 
Sources 
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6.1 INTRODUCTION 
Microbial communities are critical to global biogeochemical cycles as well as 

environmental biotechnology processes. Until recently, our ability to understand and engineer 

microbial communities for specific functions is limited by our ability to isolate and culture 

microbial species. Recently, metagenomics, or direct sequencing of environmental DNA has 

allowed us to better understand the physiology of the vast majority of uncultivable microbes. 

Many early metagenomic studies used gene-centric approaches that aggregated community 

genomic potential. More recent studies have attempted to resolve metagenomic data into “bins”, 

ideally representing individual populations within a community. Genome-centric metagenomics 

provides a more biologically meaningful view of communities as discrete populations. By 

resolving metabolic functions into separate species, microbial interaction networks and 

metabolic networks describing energy and material flux can be developed for prediction of 

community metabolic behavior.  

Microbial electrochemical cells (MECs) are environmental biotechnology processes that 

convert waste carbon into electrical current by harnessing a microbial metabolism process known 

as extracellular electron transfer (EET). During EET, microbes use insoluble compounds like 

Fe(III) as terminal electron acceptors, allowing them to oxidize un-fermentable carbon sources 

under anaerobic conditions. In addition to their resource recovery applications, MECs represent 

an excellent opportunity for developing community metabolic models for complex consortia. 

Currently, quantitative community metabolic models exist only for mock communities and 

highly simplified two-member interactions.276-278 MECs facilitate in situ monitoring of EET 

metabolism in the form of produced current. While full quantitative models of metabolic 

networks in MECs are not currently feasible, qualitative metabolic networks can be derived 
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using genome-centric metagenomics, and measurements of EET efficiency for various carbon 

feedstocks can be related to abundance of metabolic pathways.25, 279 

Deployment of MECs for resource recovery applications will require engineering a 

microbial consortium capable of efficiently converting diverse carbon sources into electricity. 

The communities and metabolic functions in MECs are similar to those found in anaerobic 

digesters used to generate methane from waste carbon.280 In addition to cellulose hydrolysis and 

degradation, a critical step is fermentation of simple sugars and short chain fatty acids into 

acetate. Many canonical exoelectrogens including Geobacter spp. require acetate or hydrogen as 

electron donors, and thus require flanking fermentative and acetogenic organisms to support their 

growth on more complex organic feedstocks. Achieving robust and resilient electricity 

generation from other substratres requires production of exogenous acetate through flanking 

community metabolism, or non-canonical exoelectrogens using other EET mechanisms. There 

are several relevant metabolic pathways that can generate acetate in anaerobic conditions 

including glycolysis, propanoate metabolism via the methmalonyl-coA pathway and butanoate 

metabolism via the butyryl-CoA:acetate-CoA transferase mechanism.  

The impact of carbon feedstock on MFC anode community composition and 

electrochemical performance has been studied, but there is a lack of metagenomic studies of 

long-term enrichment with different carbon feedstock. Significant work on performance and 16S 

based community analyses has been performed.280 More recently, metagenome assembled 

genomic (MAG) and metatranscriptomic analyses have revealed, at the genome scale, the major 

components of metabolic networks in acetate-fed MFCs and the (short-term) regulatory 

responses of these networks to perturbations (availability of a closed circuit for EET).25 MECs 

operated on mixed fatty-acids (butyrate, propionate, and acetate) have shown preferential use of 



	 148	

acetate and butyrate as electron donors281 as well as internal storage and secondary syntrophic 

metabolism in MECs fed with complex organics.282 There is a need to understand longterm 

community adaptation to carbon source in MEC metabolic networks at a mechanistic level. This 

has important practical implications for enrichment of MECs for treating real waste streams and 

relevance to fundamental microbial ecology questions such as resilience & resistance, 

intermediate disturbance theory and diversity function relationships in MECs.283 To address this 

need, we designed and operated replicate multi-anode MEC systems using different feedstocks. 

The multi-anode approach facilitated routine community biomass sampling and metagenomic 

sequencing. Finally, spike-in metabolic assays were used to test for volatile-fatty acid production 

and community wide EET efficiency. 

6.2 RESULTS 

6.2.1 Assembly & Differential Coverage Based Binning 

The influence of carbon availability of community structure and function in MECs were 

evaluated with parallel enrichment systems. Three lab-scale two-chamber MEC systems operated 

with acetate (Cell 1), a 1:1 mix of butyrate and propionate (Cell 2), and glucose (Cell 3) were 

operated continuously for 3 months. Biomass samples for metagenomic sequencing were 

collected on days 36 and 72 of operation. Raw metagenomic reads in each individual sample and 

the co-assembly were de novo assembled using IDBA284 with a kmer range of 21-101 and 

increment of 10, minimal contig length of 500bp and scaffolding enabled.284 The quality for each 

assembled scaffold was checked by QUAST.114 Raw sequence quality and assembly statistics are 

shown in Table 6.1 and 6.2, respectively. IDBA was selected for assembly after comparison of 

N50 and total assembly length with metaSpades and megahit, two recently benchmarked 

assemblers.112, 115, 117 Average GC content for the 2nd acetate cell timepoint (C1B) was 
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significantly higher than other samples, (Table 6.1) and this sample differed in composition as 

well (Section 6.2.2) 

Table 6.1 Raw Metagenomic Read and QC Summary 

Sample Feedstock 
Day of 
Operation # Raw Reads # Clean Reads 

% passing 
QC %GC 

C1A_S1 Acetate 36.00 5.00E+07 4.95E+07 99.1 61 

C1B_S2 Acetate 72.00 4.29E+07 4.23E+07 98.7 66 

C2A_S3 VFA 36.00 5.91E+07 5.81E+07 98.2 59 

C2B_S4 VFA 72.00 4.57E+07 4.50E+07 98.5 62 

C3A_S5 Glucose 36.00 6.06E+07 5.99E+07 99.0 60 

C3B_S6 Glucose 72.00 5.12E+07 5.07E+07 98.9 61 
 
Table 6.2 Assembly Statistics 
Sample # Contigs Total Length (bp) Average Length (bp) Largest Contig (bp) N50 
C1A_S1 67224 2.78E+08 4141 227528 5709 
C1B_S2 43097 1.52E+08 3531 130373 3861 
C2A_S3 78728 3.04E+08 3858 210262 4719 
C2B_S4 47939 1.67E+08 3483 229561 3596 
C3A_S5 90791 3.05E+08 3356 243550 3524 
C3B_S6 43508 1.51E+08 3472 128226 3856 
Co-assembly 179916 7.97E+08 4432 322784 6505 
* All statistics count only contigs > 1000 bp       
 

Population genome binning was performed on the co-assembled reads by aligning reads 

from each sample to the co-assembled contigs, and clustering groups on contigs with similar 

coverage profiles and genomic signatures (tetramer & GC content) using maxbin. Genome bin 

completeness and contamination were calculated in checkM by comparison of predicted coding 

sequences to known essential single-copy genes. While this approach may overestimate quality 

estimates for novel genomic portions, it captures the essential metabolic functions evaluated in 

this study. Genome binning resulted in 73 medium or high quality bins. (Figure 6.1) “High 

quality” genomes have >90% completeness and < 5% contamination and “medium quality have 
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50%<completeness<90% and <10% contamination, defined by the Genome Standards 

Consortium.126 Phylogenetic analysis was performed via phylophlan, a multi-protein based 

alignment and tree construction approach incorporating >3000 genomes. Predicted ORFs were 

translated and aligned against a reference database and phylogenetic ranks were assigned to the 

highest-resolution consensus rank.285 At a phylum level, the majority of assembled genomes (44) 

were identified as Proteobacteria, with 14 Bacteroidetes genomes, 7 Firmicutes, 5 Acidobacteria 

and 3 singleton phyla detected. No archaeal phyla were detected, despite being common 

members of anaerobic and fermentative communities. Bin refinement via ensemble bin merging 

(Metawrap) & manual bin curation (refineM) will be performed prior to more in-depth analysis. 

	

Figure 6.1 Metagenome-assembled genome (MAG) basic statistics and quality. (A) – (C) show 
histograms of genome size, GC content (out of 1.0) and number of contigs per bin. (D) shows 
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estimates of completeness and contamination based on inclusion of single copies of essential 
single copy genes. “High quality” genomes have >90% completeness and < 5% contamination 
and “medium quality have 50%<completeness<90% and <10% contamination, defined from 
MIMAG.126 

	

	

6.3.2 Functional analysis of metagenome assembled genomes 

MAGs were annotated using prokka. Enzyme classification (EC) annotated genes for 

each bin were compared to manually curated pathways for microbial beta-oxidation (butyrate 

metabolism), and propionate metabolism. Putative exoelectrogens were identified based on 

taxonomic affiliation to reported anode-respiring bacteria or the presence of multiple omC-like 

genes from COG annotated coding sequences. Due to partially incomplete genomes, genomes 

were thresholded as containing pathways if they contained genes coding for at least 75% of the 

overall pathway. Butyrate oxidizers were discarded if they lacked genes for either the butyrate 

kinase or butyrate acetyl-transferase pathways responsible for conversion of butyrate to 

butanoyl-CoA. Once butanoyl-CoA is produced, it can undergo beta oxidation, a 4 step process 

resulting in acetyl-CoA formation, where it enters the TCA cycle.  

Putative functional genome categories and per sample abundances are shown in Figure 

6.2 and 6.3. Figure 6.2A shows exoelectrogen abundance. Exoelectrogens were identified from 

the Geobacteraceae family, as well as a number of Desulfovibrio taxa, a sulfate-reducing  

Deltaproteobacteria. D. desulfuricans and D. vulgaris have previously been identified as anode 

respiring bacteria.286 Desulfovibrio and Geobacter possess a number of outer membrane 

cytochrome (omc_) and periplasmic cytochrome genes necessary for extracellular electron 

transfer. Genomes taxonomically identified as Rhodopseudomonas, Ochrobactrum and 

Achromobacter were included as potential exoelectrogens on the basis of previous literature, but 



	 152	

their EET mechanism(s) are poorly characterized. Ongoing work in the Wells Lab is focused on 

better identifying EET pathways in bins assigned to these phylogenies. Geobacter abundance 

was highest in the more mature glucose and VFA fed biofilms, with the highest coverage being 

found in the glucose-fed systems. This makes sense given the relatively fast conversion of 

glucose to acetate under anaerobic conditions due to acetate kinase (ack), a ubiquitous enzyme 

involved in glycolysis. there was almost no coverage of Geobacter genomes in the 2nd timepoint 

of the acetate sample. This is extremely interesting as it suggests either a novel exoelectrogen 

responsible for current production or sequencing failure. Achromobacter, an 

Alphaproteobacteria found in high abundance in this sample has been reported as both an 

exoelectrogen as well as a laboratory contaminant287, 288 
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Figure 6.2 Genome bin coverage by sample for putative exoelectrogens (A) and butyrate 
oxidizers (B). Phylum level bin names are shown on the left and the lowest taxonomic level 
provided by phylophlan is shown on the right. Average coverage was calculated by weighting 
coverage across each contig included in the bin by the contig length. 

	

Putative beta-oxidizers bins encoding genes for butyrate conversion to butyryl-CoA, 

butyrate kinase (buk) or butyryl- CoA:acetate CoA-transferase (but) as well as 75% of the genes 

responsible for beta-oxidation pathway to acetyl-CoA are shown in Figure 6.2B. Relatively few 

butyrate oxidizers were identified in the acetate cell samples, and the highest abundance of beta 

oxidizers was identified in VFA-fed cells as expected. Figure 6.3 shows abundance of several 

propionate oxidizers. Anaerobic propionate oxidation is relatively complicated and can be 
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directed to synthesis of amino acids, as well as via propionyl-CoA formation and conversion to 

succinyl-CoA or acetyl-CoA. Genomes encoding at least 75% of any of four degradation or 

bidirectional pathways identified in KEGG are included in Figure 6.3. In general, early 

timepoints possessed more propionate oxidizers than later timepoints, suggesting that propionate 

oxidation was not selected for in any of the MEC communities. Further classification of the 

specific pathways involved in propionate oxidation can help elucidate the reasoning for this. In 

addition, 20 recovered genomes have not currently been classified in any of the 3 major 

fucntions guilds described here. Their role fermentative organisms consuming glucose will be 

investigated.  
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Figure 6.3 Genome bin coverage by sample for putative propionate oxidizers calculated 
similarly to Figure 6.2  
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6.3 METHODS 

6.3.1 MEC Reactor Configuration and Operation 

Triplicate bioelectrochemical cells (Cells 1, 2 and 3) were designed in Autodesk Inventor 

(Autodesk, San Rafael, CA) and 3D printed from PMMA on a FormLabs V2 printer. Each call 

had an anode chamber volume of 95 mL and was equipped with an Ag/AgCl reference electrode 

(BASI, West Lafayette, IN) and two carbon fiber brush anodes. The carbon brushes was 

pretreated for 24 hours in 1N nitric acid, followed by 24 hours in acetone and 24 hours in ethanol 

prior to usage in the MFCs to remove surface contamination.271 Titanium wire was used to 

connect both anodes in a cell into a single electrode stack. This cell configuration was selected to 

facilitate routine subpassaging of and DNA extraction from biofilms to analyze microbial 

community structure and metabolic capabilities. The cathode chamber had a 30 mL chamber 

with an exposed cathode surface area of 17.5 cm2. A gas diffusion cathode was constructed as 

previously described245 using a carbon cloth electrode (GDL-CT, Fuel Cells Etc., College 

Station, TX) coated with PTFE on one side and 5 mg cm-2 carbon black (Vulcan XC-72, Fuel 

Cell Earth, Woburn, MA) dispersed in Nafion on the other side. The chambers were separated by 

a 37.6 cm2 anion exchange membrane (Ultrex AMI-7001, Membranes Intl., Ringwood, NJ).  The 

average electrode spacing was 1.57 cm. A schematic of the MEC is shown in Figure 6.1. 
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Figure 6.4 Two chamber 3D-printed mini-MEC schematic. The larger anode chamber is 
equipped with a reference electrode port and 2 small ports for anodes. Biomass can be harvested 
for DNA extraction from a single mature anode without disturbing the biofilm on the other 
anode. 

Cells were inoculated from existing bioelectrochemical reactors and operated as 

previously described in chapter 5 except the electron donor in the synthetic wastewater media 

was varied between the cells. Cells 1, 2 and 3 were operated with acetate, a 1:1 mixture of 

butyrate and propionate, and glucose, respectively. Cell feed concentrations were operated on 

equal electron-equivalent basis. Anolyte VFA concentrations were measured using a Trace 1310 

gas chromatograph (GC) (Thermo Scientific, USA) equipped with a diphenyl dimethyl 

polysiloxane column and an FID detector as previously described was used to measure anolyte 

acetate concentrations. A 0.1 µL sample was injected in the GC with a 50:1 split ratio under a 

constant flow rate of 1.0 ml min-1. The GC oven was held at 70 °C for one minute, then 

increased at 10 °C per minute up to 180 °C, and then held at a constant temperature of 180°C for 

five minutes. 24 hour anodic acetate removal rates were calculated by measuring the difference 

between acetate medium and effluent concentrations at a given HRT. Batch assays were 
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performed by allowing cell current to reach 0 and then spiking known quantities of VFAs, and 

subsequently measuring exogenous VFA concentrations.  

6.3.2 DNA extraction and amplicon sequencing  

BES subpassaging was performed approximately every two weeks of reactor operation 

by removing each anode chamber top and replacing the older anode with a fresh anode. Each 

removed anode was vortexed for 1 minute and then centrifuged at 4000G in a 50mL falcon tube 

for 20 minutes to pellet biomass. Replicate DNA extractions were performed using a Fast DNA 

SPIN Kit for soil (MP Biomedicals, OH). Duplicate DNA extracts were pooled, quantified and 

preserved for sequencing library preparation. V4-V5 16S rDNA amplicon sequencing library 

preparation and sequencing of biweekly samples was performed as previously described in 

chapter 3 via PCR amplifiation, barcoding and 2x250bp paired end sequencing on an Illumina 

Miseq. 

6.3.3 Metagenomic sequencing and assembly 

Duplicate DNA extracts from two time points approximately 1 month apart (days 36 and 

72 of operation) were selected for whole genome shotgun (WGS) sequencing. Library 

preparation and sequencing were performed by the NUSeq Core facility at Northwestern 

University (Evanston, IL) using a Nextera XT library preparation kit and 2x150bp paired end 

sequencing on an Illumina HiSeq 4000 sequencer (Illumina, San Diego CA) with an average 

insert size of 650 bp. 92 Gbp of raw sequencing data was produced. Quality control was 

performed in cutadapt289 by removing read ends with Q<20, trimming sequencing adapters and 

then removing any resulting reads less than 20bp long. 98.7% of reads passed QC and were used 

for assembly. The quality of metagenomic sequencing data for each sample was checked before 

and after QC by FastQC.290  
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Sequence coverage for each assembled scaffold was calculated by mapping raw reads 

from the sample to assembled contigs using BWA with default parameters.291 Open reading 

frame (ORF) calling and annotation were performed for each sample using prokka.292 Genome 

Representative metabolic pathways were constructed by matching prokka-generated enzyme 

classifier numbers to metabolic pathways in KEGG and MetaCyc.293, 294 When partial pathways 

were identified in genome bins, pathway presence or absence was determined using a 75% or 

greater criteria as well as by manual curation. Circular “ideogram” visualizations were generated 

in Circos.295 
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The work in this thesis focuses on characterizing the mechanisms influencing microbial 

ecology as opposed to merely quantifying diversity. The next logical steps in this progression 

towards microbial resource management or community design are improved environmental and 

physiological monitoring of microbial communities. In this chapter, I present ongoing work 

focused on integrating community analysis with novel long-term hydrological monitoring. 

Finally, I discuss future directions to incorporate metatranscriptomic sequencing to improve 

resolution of functional populations in anode-respiring biofilms or other mixed communities. 

While the shotgun sequencing work presented in Chapter 6 represents a significant improvement 

in our ability to identify functional responses to carbon availability in MEC communities, future 

work should incorporate more direct functional analysis of populations. 

7.1 FUTURE WORK & OUTLOOK 

7.1.1 Microbial community assembly in a native tallgrass prairies 

In Chapter 4, trends in soil microbiome biogeography in an intensively managed 

(predominantly agricultural) landscape were described and related to broad mechanisms such as 

ease of dispersal. As a follow-up to this work, we are currently investigating the impact of soil 

moisture on community diversity in the Indian Boundary Prairie, a native tallgrass prairie using a 

novel soil moisture sensing platform developed by Argonne. The soil microbiome is critical for 

nutrient cycling, carbon sequestration, and agricultural productivity yet the dominant drivers of 

community composition are poorly understood. Soil microbial communities display predictable 

biogeographical patterns despite their high diversity and functional redundancy.296, 297 At 

continental scales, pH is the most apparent driver of microbial community structure in near 

surface soils.176, 298 While some microbial surveys have measured soil moisture during sampling, 

wetting and drying can occur rapidly in response to precipitation,299 and to our knowledge, no 
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studies have characterized the effects of longitudinal hydrological conditions on soil microbial 

community structure in native prairies.  

Due to the difficulty of measuring soil moisture, many soil microbiology studies do not 

explicitly consider variation in moisture content due to the hydrological characteristics of a site, 

and this property has been ignored in favor of more easily measured variables such as pH, carbon 

content, redox status, and nutrient variability. Many of these factors covary with soil depth, 300 

and community variation along individual soil depth profiles can exceed that of surface variation 

across diverse biomes.301 In addition to empirical correlations observed for many soil parameters 

with depth, soil hydrology influences these parameters directly due to leaching of acids and 

cations in low-lying soil due to rain and subsurface flow.302 In this ongoing work, we used the 

16S methods described in Chapters 3 & 4 on samples taken from 120 cm deep soil cores at 10 

locations across an undisturbed Midwestern tall grass prairie. We combined depth-resolved 16S 

rRNA amplicon sequencing with long-term monitoring of soil moisture across a hydrological 

and elevation gradient (Figure 6.1). 

Figure 7.1 Elevation map of the native tall grass Indian Boundary Prairie. Soil sample locations 
and water level sensors are shown by the black dots, with soil type indicated by fill pattern. 
Higher elevations are shown in green and lower elevations are shown in brown. (Unpublished) 
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We hypothesized that relatively modest elevation and soil type differences can lead to 

compounding effects in flooding frequency and duration, leading to predictable differences in 

community structure between upland and lowland community structure. We demonstrated these 

effects at the community scale as well as individual OTU level and predicted metagenomic 

potential for denitrification. Moreover, these community differences persist even when 

accounting for factors like depth and pH. Our results suggest a stronger link between geographic 

and hydrological site characteristics and microbial community structure at field scales. 

Using longitudinal inundation data collected from piezometers installed at the sampling 

points used for microbial analysis, we quantified the fraction of time that each 10 cm depth 

section was inundated with groundwater in the year following sampling. These patterns reflect 

both the elevation gradients, subsurface flow paths and soil texture differences within the site 

(Figure 7.1). The low lying, clayey soils characterized as Selma loam were frequently fully 

inundated with water, whereas the elevated sand ridge samples were significantly drier (ANOVA 

p < .05). Samples from the Hoopeston fine sandy loam soil series were intermediate in terms of 

both elevation and flooding duration (Figure & 7.1 & 7.2). Although this data is ‘forward 

looking’ and does not represent the exact conditions experienced by the soil microbial 

communities prior to sampling, clear differences in hydrological regime could be observed. 
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Figure 7.2 pH and annualized inundation fraction as a function of depth for soil samples 
collected in the IBP. Deeper soils are more acid & flooded more frequently, although the 
trajectory of these patterns depends on local factors like soil type and elevation. 

	

Microbial community composition in the Indian Boundary Prairie (IBP) varied 

consistently with soil classification and edaphic factors. Samples obtained from communities in 

the three different soil types varied significantly from one another (PERMANOVA, Pseudo-F = 

21.9, P < 0.001). We used Constrained Analysis of Principal Coordinates or “distance based 

redundancy analysis” (RDA) to constrain the observed variation in community structure with 

measured environmental and hydrological gradients. The ordination revealed that samples 

collected from the sand ridge (wells 7-9) and classified as “Watseka loamy fine sand” were 

distinct from those found in the rest of the prairie (Figure 7.3). Soil characterization revealed that 

the sand ridge samples had consistently higher pH, and lower clay and cation content compared 

to those in the low-lying wells. These factors were highly correlated with Axis 1, which 

explained 27% of the total community variation. Communities found in the loam and sandy loam 

soils, (circles and squares in Figure 7.3, respectively) were not easily distinguished on the basis 
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of soil type. These communities were most clearly differentiated by differences in depth and 

measured annual inundation.  

 

Figure 7.3 Weighted Unifrac distance based RDA ordination of IBP samples. Annualized 
inundation fraction is shown by color, and sample soil type is indicated by the marker. Samples 
cluster by inundation fraction as well as source material. Arrows length and direction indicates 
the strength of correlation with environmental variables and constrained axes. (Unpublished) 

	

Additional work remains to categorize the community-wide differences seen in Figure 

7.3 at higher phylogenetic resolution, and to explore the impact on predicted functional potential, 

using functional prediction tools like Tax4Fun.111 In addition, we are working on comparing 

environmental predictors of beta diversity using depth-corrected, depth-only, and depth-naïve 

models to explore the extent to which classical depth-based approaches capture the soil diversity 

patterns explained by soil type and hydrological characterization used here. Beyond these field-
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scale studies, sensor networks could be used to improve monitoring of mesocosm-based 

experiments to capture specific and environmentally relevant soil community responses such as 

N2O production in flooded soils. 

 

7.1.2 Realizing Metabolic Potential with Transcriptomics 

An important question for scale up of MECs is their ability to resist and recover from 

dynamic conditions or pulse disturbances. To date, there are few studies of MEC community 

responses to dynamic conditions, and even fewer metatranscriptomic studies of microbial fuel 

cell communities.71 In this work, the authors identified specific c-type cytochromes associated 

with bacterial families that were differentially expressed under open circuit (no extracellular 

electron transfer) and closed circuit conditions. Using this approach, the authors were able to 

address specific populations responsible for EET. In addition to potential short-term responses to 

operational perturbations addressed in this study, there is a need to understand community 

responses to other types of disturbances, such as changes in carbon availability. 

The work presented in chapter 6 focuses on community responses to long-term press 

disturbances in the form of differences in electron donor. In addition to changes in anode 

community functional or genomic potential described in Chapter 6, metatranscriptomic 

responses to addition of electron donors could be used to profile ecological niches of the biofilm 

community via metatranscriptomic sequencing. The metagenomic approach used here can only 

address genome potential, and does not directly capture activity. By directly measuring 

transcriptomic responses to spike-in assays of different electron donors, it should be easier to 

assign functions to genome bins. A schematic of proposed methods is shown in Figure 7.4. 

Metatranscriptomic sequencing of anaerobic communities requires careful sampling to minimize 

community response to oxygen perturbations.71 In addition, recovery of mRNA from mixed 
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communities for sequencing can be difficult due to contamination with inhibitory compounds 

and the high ratio of rRNA to mRNA that must be filtered from sequencing results.303 

 
 
Figure 7.4 Schematic showing metagenomic and transcription based (metatranscriptomic) 
analysis of MEC communities. After combined nucleic acid extraction and separation, assembled 
genome bins (B) can be used as reference databases to map transcriptomic reads (C), enabling 
microbes with functional pathways to be distinguished from populations with incomplete 
pathways. 

 
To further improve metatranscriptomic analysis, high quality near-complete genome bins 

should be assembled when possible. Incorporating long-read sequencing or linked-read 

sequencing for de novo genome assembly304 with metatranscriptomic sequencing could improve 

functional classification of exoelectrogens and flanking community members in MECs. These 

sequencing approaches improve assembly of complex samples by producing short reads bound to 

a particular ~50kb stretch or generating longer individual reads that can be used as scaffolds. 

Increasing genome quality will make mapping reads and making functional predictions more 

straight-forward, which is often difficult for complex carbon metabolism in diverse 
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environments. In addition to improving detection of genomes with functional carbon metabolism 

pathways, electron-donor perturbation metatranscriptomics could be useful to identify novel 

instances of direct interspecies electron transfer (DIET). Anaerobic communities are known to 

harbor commensal relationships where metabolic functions are split between acetate producing 

and consuming microbes.305 Detecting these relationships is difficult but preliminary DIET 

interactions may be identified through complementary transcriptional activity in discrete 

populations. 

 

7.2 CONCLUSIONS 
 

This thesis combines modern advances in metagenomics with bioprocess design for 

resource recovery. Significant improvements in sequencing capabilities and cost have made it 

feasible to incorporate routine sequencing into process design and optimization cycles. Due to 

the relative underutilization of metagenomics in engineered systems to date, the bioinformatics 

analysis work presented here advances our knowledge of community structure in the systems 

studied. The metagenomic and bioinformatics tools and methods I developed and made available 

have broad application for microbial communities monitoring in bioprocesses as well as in 

human or environmental associated microbial communities.  

Despite these technical advances, microbial resource management still requires 

fundamental understanding of microbe physiology and ecological theory, as well as effective 

reactor design and operation. The work presented in chapters 3 & 4 improves our understanding 

of community assembly mechanisms in natural and engineered environments and demonstrates 

several new approaches to analyzing 16S marker gene datasets. The process developed in 

Chapter 5 demonstrates a novel bioelectrochemical resource recovery platform for chemical 
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synthesis from wastewater. Finally, the ongoing metagenomic analysis described in Chapter 6 

adds to our knowledge of anode-respiring biofilm communities and microbial electrochemical 

cells in general. Continued integration of community ‘omics approaches, hypothesis driven and 

statistically sound NGS experimental design, and a broad view of resource management will 

enable new bioprocesses to protect human and environmental health.   
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