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ABSTRACT 

ASSESSING THE IMPACT OF CONNECTED VEHICLES AT FREEWAY, ARTERIAL, 

AND PATH LEVEL: CHARACTERIZATION, MODELING AND ACTIVE 

MANAGEMENT 

Archak Mittal  

 

The term Connected Vehicle (CV) is broadly used to identify any ‘smart vehicle’ with wireless 

connectivity to the roadside infrastructure and other vehicles. CVs with automation capabilities 

are called connected automated vehicles (CAVs). With real-time communication and data 

transmission capability, CAVs have the potential to improve the transportation system’s traffic 

flow, reliability, and safety. However, due to lack of data on CAVs their potential has not been 

fully realized.  Consequently, this dissertation explores the potential of CAV technology in 

formulating 1) facility type-customized active management and control strategies, 2) assessment 

techniques, and 3) analytical methods with the purpose of enhancing existing transportation 

network’s operational capabilities. 

To explore the potential of CAVs, the dissertation is divided into three components. In the first 

component, the dissertation focuses on freeways and highways. At this level, study first puts 

forward a computationally efficient framework to model CAVs using existing simulation tools and 

relevant data. Using this framework, traffic flow conditions and travel time reliability were studied. 

Results of this framework show that CAVs can improve traffic flow conditions while increasing 

the reliability of the system under different demand levels and operational conditions including 

inclement weather condition. 
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In the second component, the dissertation focuses on the arterial roads in a transportation network. 

In this component, microscopic traffic flow models were utilized to emulate CAVs on the arterial 

road and formulate two advanced traffic signal control strategies. Two advanced traffic signal 

control logics are developed, via V2I and V2V communication. These signals provide 

synchronized traffic flow on major corridors while keeping the logic decentralized. CAVs compute 

their travel time delay accumulated on a route. This accumulated delay forms basis of decentralized 

but coordinated traffic signal strategies. Numerical experiments show that the decentralized but 

coordinated traffic signal strategies outperform state of the art practices.  

In the third component, the analysis is conducted at the user-defined path level. A user-defined 

path can consist of both arterial and freeways. Thus, the study of user-defined path opens an 

interesting avenue to analyze the combination of arterial and freeways and how they interact with 

each other. The analysis in this component formulates an innovative network partitioning concept 

based on the average path-level fundamental relationships among the traffic stream variables. 

Correspondingly, time-of-day control and management strategies can be tailored to suit specific 

paths’ operational characteristics. Furthermore, to adequately compute link travel time correlations 

and accurately determine path-based travel time distributions an analytical model was designed. 

Analytical form of path travel time variance was devised to correctly capture the spatiotemporal 

covariance of link travel times. Travel time distributions along the paths defined by users were 

estimated through solving a convoluting integral of correlated link travel times. Numerical 

experiments show that the model accurately estimates the travel time distribution along paths. 

The developed simulation techniques, control strategies, and assessment methods should be used 

to enhance model calibration and validation; enrich system’s performance, performance 



4 

 

evaluation; and provide a sound basis for making routing decisions taking quantifiable risk 

estimates into account. 
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CHAPTER 1. INTRODUCTION 

The pace of transportation innovation is accelerating towards safer, smarter and greener systems. 

Car manufacturers and researchers are designing and producing vehicles which are able to generate 

information regarding the vehicle’s performance, state, and trajectory – time-stamped position, 

heading, speed, routing, and driving style. Previous studies have established that trajectory-based 

measurements are more accurate than those based on information aggregated over road segments. 

Current transportation research and practice will benefit from trajectory-based studies as they 

provide more insightful and accurate measures for the state of the system. These aggregated 

measurements, such as travel time delay or variation of travel time, lose their underlying 

distribution and the extreme values get smoothened out. Connected Vehicles (CV) are equipped 

with the capability to communicate amongst themselves and with the traffic control infrastructure. 

Using the communication capability, CVs can share their data on how, when, and where they 

travel. Such data can help vehicle drivers to optimize their route and planners to predict the state 

of the system and decide the control strategy parameters. This dissertation explores the potential 

of CVs to make the transportation system more efficient, responsive, agile, reliable, and safe. 

CVs can provide data about their departure time, origin and destination of trip, route, condition, 

and features of the vehicle.  CVs can also provide their trajectories, which consist of time-stamped 

GPS positions. The produced data is transmitted to nearby traffic control infrastructure, a.k.a. 

Vehicle to Infrastructure (V2I) communication, or can also be shared with vehicles traveling in the 

vicinity, a.k.a. Vehicle to Vehicle (V2V) communication, using dedicated short-range 

communication (DSRC) protocol. In simple terms, DSRC can be seen as a short-range Wi-Fi 

connection established by the vehicles. Hence, CVs can transmit the location and progression-
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related information in a high-resolution format and at a faster rate than any other existing 

technology. Such capabilities of CVs can be utilized to improve the traffic flow condition and to 

increase the reliability of the transportation system. Some CVs may additionally have automated 

vehicle (AV) features. AVs are equipped with various types of detectors to sense the vicinity of a 

vehicle. Based on the information from the vicinity, vehicles make decisions to maneuver. AVs 

have practically zero reaction time, especially when receiving information from nearby CVs, 

allowing them to react quickly to emergency events. CVs with the features of AVs can be 

envisioned as the ultimate mode of automobile transportation. Connected automated vehicles 

(CAVs) have the potential to improve the transportation system’s traffic flow, reliability, and 

safety. CAVs are proactive, cooperative, and well-informed of their surroundings, thus, pave the 

way for supporting various applications. Such capabilities of CAVs motivate research to explore 

their potential to the greatest extent possible. The research focus, in the past, has been on the three 

principal areas: roadway safety, the mobility of vehicles, and eco-friendly standards. Similarly, in 

this dissertation, CAV enabled applications are being developed to promote the same 

transportation standards. 

Due to lack of information on each vehicle on roads, researchers estimate the traffic flow variables 

using measurements from road sensors. However, measurements based on individual vehicles’ 

trajectory information are more accurate than those based on aggregated information. With CAVs, 

researchers can obtain information on individual vehicles, and as a result information on traffic 

stream variables can be directly obtained. Additionally, the individual trajectory-based information 

offers high-resolution and precise information on the transportation system’s state to predict 
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events, such as a traffic breakdown, or the occurrence of  gridlock, and devise control measures to 

mitigate them, enabling more comprehensive traffic state characterization, analysis, and control.  

While studying CAVs’ potential, it is important to understand the environment in which they 

operate i.e. a transportation network. A transportation network is a grid of roads spread throughout 

an area. These roads intersect each other at nodes. A road segment connecting two nodes is a link. 

These links can belong to various transportation facilities: arterial roads, urban streets, freeway, 

highway, ramps, and alleys. Traffic flow patterns differ by link type, even when the same drivers 

traverse diverse types of facilities. Based on the type of traffic flow, link types can broadly be 

categorized into two groups as uninterrupted and interrupted. Uninterrupted traffic flow facilities, 

such as freeways and highways, are regulated by vehicle-to-vehicle interactions and their 

interactions with the roadway. Once on an uninterrupted facility, vehicle flow is not interrupted by 

the infrastructure of the facility. Interrupted flow facilities, such as arterial roads, are regulated by 

external means, most commonly traffic signals and stop signs. This dissertation developed two 

advanced traffic signal control strategies to design a smart and environment-friendly arterial 

corridor. For freeway facilities, platforms that enable faster movement of vehicle platoons, such 

as speed harmonization can be designed. A user generally takes a trip on paths comprised of 

different types of links. They are not constrained to one type of links. For example, a user may 

start on an urban street, move to a freeway and then again take an urban street to arrive at its 

destination. In this case, a good service just on the freeway segment does not guarantee a good 

overall experience for the user. A travel time delay incurred on urban streets will count towards 

the experience. Accordingly, analysis at a user-defined path level is essential to understand a user’s 
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experience and identify and address the issues accordingly. A path-level study requires rich, high-

resolution data that could be provided by CAVs.  

This dissertation proposes to answer the following fundamental research questions: 

 How can connected vehicle data and technologies be used to support offline and online 

performance-based management of facilities and transportation systems overall? 

 How much can the transportation system’s (or its elements’) mobility, efficiency, and 

environmental standards be enhanced in a meaningful manner, when only a fraction of the 

traffic stream is connected? 

 Can connectivity help isolate the underlying causes of system inefficiencies and facilitate 

the development of innovative analytical methods to describe and address these issues? 

 How can connected vehicle-generated traffic data be utilized for traffic state 

characterization and reactive and predictive analytics with respect to different operational 

conditions? 

These questions are addressed through several applications using a variety of simulation tools at 

different levels of spatial and temporal resolution, as described in the remainder of this chapter. 

 

1.1. Motivation and objectives 

CAVs can provide high-resolution trajectory data. Communication capability of CAVs enables a 

faster transaction of information. With CAVs, the state of a system can be assessed in real time, 

promptly and accurately. The opportunities around connected vehicle data are numerous. 

However, an extremely low market penetration rate (MPR) of CAVs on existing road facilities has 
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limited the data available on CAVs to date. Simulation-based studies are a widespread practice 

among researchers when data is scarce and when developing or evaluating a modern technology 

or new concept. Simulation tools and the models within them need calibration and validation, 

against the ground truth.  If simulation outputs are within a tolerance of ground truth (typically 

within 10% tolerance), the tools/models are considered reliable and consequently results credible. 

Along the same line, this study first puts forward a computationally efficient framework to model 

CAVs using already existing simulation tools. The framework is tool independent and transferable 

to any simulation setting as per the analyst’s choice. To demonstrate its feasibility, in-house 

dynamic traffic assignment (DTA) tools and a commercially available microsimulation tool were 

used. Different MPRs of CAVs and operational conditions were examined. The conducted analysis 

disaggregates a transportation network in multiple ways to account for different demand levels, 

operational conditions (such as weather), and types of facility and levels of analysis. This effort 

models a connected environment and explores its potential as both a data source and an application 

platform. Even though the models are based on simulation-generated traffic data, they are readily 

applicable to real-world vehicle trajectories. Applicability of the models to the real-world vehicle 

trajectory data is demonstrated in Chapter 9 of the dissertation. 

Current fixed sensor data as currently used in practice provide aggregated information on a 

facility’s performance, where extreme measurements of the collected information are lost. 

Transmission and processing of the data to optimize control measures experience a lag in time. As 

mentioned earlier, these control measures differ by the transportation facilities. Further lag is 

encountered when the optimized control measure is conveyed back to the drivers. CAVs can help 

manage the system better by providing real-time and high-resolution data and immediate feedback 
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message(s). Accordingly, this research examines the operational benefits of connectivity through 

facility type-customized active management strategies. Therefore, in this study, connected vehicles 

attributes and functionalities are investigated at four levels: 1) aggregate level, where the entire 

transportation network is treated as one entity; 2) freeways and highways level, where information 

on links of these types is aggregated together, 3) arterials roads, where information on arterial type 

links is aggregated together, and 4) user-defined path level, where a path may comprise links of 

any type, such as freeway, highways and arterials, and are consecutive. For the last level, no control 

strategy was developed as it is addressed in the second and third level of aggregation. At the path 

level, the study formulates a novel clustering method for user-defined paths, and study the 

fundamental diagrams of the path clusters. 

Analyzing rich trajectory data reveals meaningful connections, trends, and patterns that can help 

provide a better driver experience and improve transportation systems efficiency, quality and 

reliability. For this reason, the study is conducted on several aggregation levels - microscopic, 

mesoscopic, and macroscopic level - to identify and quantify the potential effect of connectivity 

on vehicle interactions, driving behavior, and traffic stream variables key relationships and 

characterize the macroscopic nature of the system as a whole. 

Quantification of link travel time correlations is a concept that has not yet been applied to any 

extent in actual practice. This concept makes use of the rich, high-resolution data offered by 

vehicle trajectories. One of the reasons for this concept to be at a nascent stage is the unavailability 

of relevant data. To address this gap, an analytical framework is developed to adequately compute 

link travel time correlations with the aim of accurately determining path-based travel time 
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distributions. The findings are intended to support an evaluation effort that will inform a broader 

cost-benefit assessment of connected vehicle concepts and technologies. 

 

1.2. Objectives and Contributions 

The primary objective of this dissertation is to explore the potential of CAV technology to improve 

the performance of the transportation system. The objectives of this study are decomposed into 

three major components: 

1. Modeling and assessing the impact of connected vehicles at a large network level 

2. Control strategies under a connected environment with mixed vehicular traffic 

3. Analytical assessment techniques for user-defined path-based analysis 

These are three independent components focusing on different aspects of transportation modeling 

and engineering in a mixed connected vehicle environment. 

 

1.2.1. Modeling and assessing the impact of connected vehicles at a large network 

level. 

As mentioned earlier, due to low MPR of CAVs, relevant data and infrastructure are not available 

to the researcher. Therefore, simulation technique in a testbed context constitute the initial focus 

of this dissertation. Here, CAVs as a data source and the latter’s impact on traffic operations is 

evaluated. The framework models communication between transportation system’s infrastructure 

and CAVs through a hybrid of microscopic and mesoscopic simulation models. Specifically, 

drivers’ behavior is emulated at the microscopic level and transferred to a mesoscopic simulator 
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for network level assessment. The framework is computationally efficient at large scale, 

independent of a simulation tool, and transferable to any simulation setting as per analyst’s choice. 

The feasibility of the framework has been demonstrated under different market penetration rates 

and operational conditions, using in-house DTA tools as well as commercially available 

microsimulation tool. To analyze the effect these vehicles have on the surrounding traffic, vehicle 

trajectory-based fundamental diagrams of traffic flow at the network level, known as network-

wide fundamental diagrams (NFDs) or macroscopic fundamental diagrams (MFDs), and travel 

time reliability measures were used. 

 

1.2.2. Control strategies under a connected environment with mixed vehicular 

traffic. 

To study the impact of new technologies on signalized urban corridors, an adaptive, prediction-

based traffic control strategy is developed to manage mixed traffic environments while optimizing 

vehicle trajectories to meet an eco-friendly objective. To further examine the communication-

enabled signal control, a real-time platoon self-identification traffic signal control strategy based 

on the V2X communication technology is developed and tested. These advanced intersection-level 

control strategies also help to maintain coordination on a corridor. To achieve coordination, CAVs, 

in this study, are assumed to compute and transmit their accumulated delay along a corridor or a 

facility, thus enabling corridor traffic flow synchronization when incurred delay justifies such 

actions. 
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1.2.3. Analytical assessment techniques for user-defined path-based analysis. 

Users’ experience in a transportation system that comprises multiple facilities and sometimes 

multiple modes of travel is captured through their trajectories. It is important to study the paths 

that are taken frequently by the users.  Popular paths can be identified using trajectories of the 

vehicles and clustered to find distinguishing patterns among them. Thus, user-centric measures of 

system performance are sought to translate objective measurements of attributes such as travel 

time and delay along links to overall time and delay measures at path level.  Accordingly, an 

analytical framework is developed to adequately compute link travel time correlations with the 

aim of accurately determining path-based travel time distributions. Furthermore, the study proves 

that fundamental diagrams exists at path level and formulates an innovative network partitioning 

concept based on the path fundamental diagrams. The findings are intended to support an 

evaluation effort that will inform a broader cost-benefit assessment of connected vehicle concepts 

and technologies.  

 

1.3. Organization of the Dissertation 

This section describes the organization of the dissertation. Figure 1-1 represents an overall analysis 

framework, comprising a transportation system with its major components as well as external 

factors that affect its performance. 



29 

 

 

 

Figure 1-1 Overall Framework. 

 

The focus of this dissertation is on the surface (private) vehicular traffic. The elementary 

infrastructure of this transportation system consists of facilities of different types, which will be 

referred to as the “network” henceforth. The network is used to move the two primary types of 

users, namely drivers (and their passengers) and freight. Here the author’s focus is on the drivers. 

This dissertation starts with a thorough review of the existing studies in Chapter 2: 

LITERATURE REVIEW, with emphasis on modeling, performance evaluation, operational 

benefits as well as new analytical methods and concepts not yet discussed in the previous studies. 

The focus of the literature review is on operational conditions, facilities and applications related 

to CV- enabled environments. Automated and connected vehicles are becoming a reality and soon 

will make a sizable proportion of vehicular traffic. Currently, CAV technology is not yet market-

ready. Consequently, there is not much information available on the potential impact of CAV 

technology on the system and its application-based benefits in a variety of traffic conditions. 

Researchers are circumventing this limitation by conducting simulation-based studies. 
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Accordingly, Chapter 3: INTEGRATED SIMULATION FRAMEWORK DEVELOPMENT 

puts forward a framework that integrates microscopic and mesoscopic modeling of connectivity 

in a large-scale traffic environment. The framework preserves microscopic details of drivers’ 

behavior of different vehicle types operating in various traffic conditions. Using microscopically 

calibrated fundamental diagrams a large-scale network is then macroscopically simulated. Next, 

Chapter 4: IMPACT OF CONNECTED VEHICLES estimates the impact of connected 

vehicles on overall traffic operations by applying the framework presented in the previous chapter. 

Connected vehicles are introduced along freeways and highways. To analyze the effect of CVs on 

the surrounding traffic, fundamental diagrams of traffic flow and travel time reliability measures 

were studied. Measures of effectiveness or operational performance indicators were computed 

based on individual vehicle trajectories. Various MPRs of connected vehicles are studied to study 

an incremental benefit of the technology. 

Chapter 5: ADVANCED SIGNAL CONTROL STRATEGIES introduces two signal control 

strategies for arterial roads. The first strategy is based on predictions of the future state of the 

system and the second strategy is based on self- identified vehicle platoons. The two signal control 

strategies’ introduction in this chapter serves as a precursor for the study on the impact of new 

technologies along signalized arterial corridors, in Chapter 6: PREDICTION-BASED 

ADAPTIVE SIGNAL CONTROL. In Chapter 6, an adaptive, prediction-based, traffic control 

strategy was developed to manage mixed traffic environments while optimizing CAVs vehicle 

trajectories to meet an eco-friendly objective. To further examine the connectivity-enabled signal 

control aspect along the same direction, real-time applications are considered in Chapter 7: 

REAL-TIME PLATOON SELF-IDENTIFYING ADAPTIVE SIGNAL CONTROL. A real-
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time, platoon self-identification, control strategy based on the V2I communication technology is 

developed and tested, and significant findings are presented in Chapter 7. 

A user is not confined to use any particular type of roadway while commuting from one point to 

the other. Previous studies are based on fundamental diagrams of either links or the whole network. 

When conducting a study at user-defined path, a question arises, do fundamental diagrams exist at 

path levels? Hence, a user-defined path level study is undertaken to establish path-based 

fundamental relationships between traffic parameters. Accordingly, in Chapter 8: PATH 

FUNDAMENTAL DIAGRAMS, a new clustering technique is designed to disaggregate a 

network by paths taken by the users. Popular paths were identified using trajectories of the vehicles 

and were clustered to find distinctive patterns among them. A new theoretical basis for clustering 

paths and a novel clustering technique is formulated. With the identified path clusters, fundamental 

diagrams were studied to characterize the clusters. In Chapter 9: TRAVEL TIME 

DISTRIBUTION ALONG USER-DEFINED PATHS: an analytical model to describe travel 

time distributions at a user-defined path level is developed utilizing vehicle trajectories. The model 

also computes the spatiotemporal covariance of link travel times. 
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CHAPTER 2. LITERATURE REVIEW 

This chapter summarizes the most relevant past research on the topics addressed in the dissertation. 

The literature review section is divided into several sub-chapters. The first focuses on studies 

modeling connected vehicle communication and interactions in micro/meso simulation 

environments. The emphasis is on understanding the effects of connectivity on traffic flow 

dynamics at the network level. The second summarizes past research on selected connected vehicle 

applications – i.e., dynamic speed limits – focusing on quantifying potential operational benefits. 

The third subchapter, unlike previous two, focuses on arterial-level applications of connected 

vehicle technology, with reference to individual vehicle (trajectory) information and its worthiness 

in developing advanced signal control strategies. Finally, relevant literature on techniques of 

identifying relevant paths in a transportation system, composed of the freeway and arterial links, 

are considered. Its utilization for connectivity-enabled network-level active traffic management 

schemes is discussed. 

 

2.1. Connected vehicles in the network 

There is a growing need for mobility and safety in transportation systems and cities are undergoing 

constant changes to accommodate this need. However, cities face limited resource availability to 

expand the current road networks. To address the challenge, cities are incorporating modern 

technologies into their current operational practices. Connected Vehicles technology, as one of the 

latest technologies in surface transportation, provides the opportunity to create a connected 

network of vehicles and infrastructure. In this network, individual vehicles can communicate with 
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each other through Vehicle-to-Vehicle (V2V) communications. Moreover, individual vehicles are 

connected to infrastructure and Traffic Management Center (TMC) through Vehicle-to-

Infrastructure (V2I) communications. The real-time information provided by this technology can 

improve drivers’ operational, tactical, and strategic decisions; thus, it can improve mobility and 

safety and reduce emissions and energy consumption in transportation systems. 

Despite a considerable number of studies that investigated the effects of different applications of 

Connected Vehicles technology (e.g. speed harmonization, cooperative adaptive cruise control, 

queue warning, and transit signal priority) on mobility and safety (2-7), the effects of this 

technology and its application at the network level has not been investigated to the same extent. 

Understanding the effects of connectivity on traffic flow dynamics at the network level is critical 

to assess the effects of this technology on surface transportation systems. Many previous studies 

observed a well-defined network-level relationship between flow and density (8-13). Aside from 

the pioneer works of Smeed (14), Thomson (15), Wardrop (16), and Godfrey (17) on investigating 

this relationship, Herman and Prigogine (18) showed that their two-fluid model could characterize 

the relationship between the fraction of moving vehicles and average velocity. Following the 

finding, several other studies investigated traffic flow dynamics at the network level (see Chang 

and Herman (19), Mahmassani et al. (10), and Williams et al. (11) for some examples). 

Recent advances in data collection and availability of large-scale, high-quality data create an 

opportunity to revisit the network-wide traffic flow relationships. Accordingly, Daganzo (20) 

further formalized the flow-density (or flow-occupancy) relationship at the network level, referring 

to it as a Macroscopic Fundamental Diagram (MFD). Following this study, several other studies 

investigate this relationship to characterize the observed patterns at the network level (see 
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Geroliminis and Daganzo (9), Ji et al. (21), Mazloumian et al. (22), Saberi and Mahmassani (13), 

Saberi and Mahmassani (12), Gayah et al. (23) for a few examples). There are also several studies 

that proposed different methodologies to estimate/characterize the network-wide flow-density 

relationship based on vehicle trajectory data. Saberi et al. (1) proposed a method to characterize 

this relationship using three-dimensional vehicular trajectory data at the network level. Nagel and 

Gayah (24) proposed a method to estimate this relationship using trajectories from probe vehicles 

at different market penetration rates (MPRs). These studies suggest that similar methodologies can 

be utilized to capture the effects of connectivity on surface transportation systems at the network 

level. Connected Vehicles technology is expected to have a significant effect on the characteristics 

of the network-wide flow-density relationship. Less significant hysteresis loops, better recovery, 

and less gridlock is expected since this technology can improve capacity and increase traffic flow 

stability (4). 

 

2.2. Adaptive traffic signal strategies for urban roads under a connected 

environment 

Traffic signals are the most common control strategy on arterial roads. Signal settings that are 

responsive to the changing traffic conditions can alleviate traffic congestion and consequently 

reduce associated delays. Actuated signal control strategies address the drawbacks of pre-timed 

signals by being responsive to the changes in the demand. Furthermore, adaptive signals are based 

on continuous monitoring of arterial traffic conditions and queuing at intersections as well as the 

dynamic adjustment of the signal timing to optimize one or more operational objectives (minimize 

delays, maximize throughput, etc.) (25).  
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Recently, signal control studies using wireless communication or more specifically CV technology 

came to be widely popular. As CVs collected data provide a much more complete picture of the 

arterial/intersection traffic states, opportunities to harness these for control purposes became 

evident (26). 

Consequently, CV-based signal control strategies rely on more accurate detection and in the case 

of rolling horizon approaches (27-30) offer a more reliable prediction. 

Goodall et al. (29) proposed a predictive microscopic simulation algorithm (PMSA) for signal 

control, which used data from connected vehicles including positions, headings, and speeds and 

imported them to a microscopic simulation model to predict the future traffic conditions. Other 

researchers detected the presence of platoons in advance and optimized signal control parameters 

to accommodate the incoming vehicles at a downstream intersection (31; 32). 

In addition, unlike conventional adaptive signal control systems that are restricted by the fixed 

location sensors, queue spillback issues under over-saturated traffic conditions can be addressed 

using CV technology (33; 34). 

Despite adaptive strategies’ successful implementation, their performance relies on the continuous 

and reliable operation of the detectors. The advent of V2V and V2I communication through DSRC 

is envisioned as a solution to the failure of detectors. Moreover, DSRC provides more information 

related to individual vehicles’ travel. Real-time position, and under the specific concept of 

operations, desired route, destination, etc. are readily available.  A comprehensive review of 

adaptive signal control strategies in a connected vehicle environment is presented by Jing et al. 

(35). 
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Past research distinguishes adaptive signal strategies based on dedicated short-range 

communications (DSRC) aimed at minimizing delay or travel time (36-42), queue length (27; 43-

48), waiting time (49-51), (only implicitly) pollutant emissions (49; 52), number of stops (53; 54), 

fuel consumption (as one objective among multiple) (38; 55), or maximizing throughput (47; 56; 

57) using data acquired through Connected vehicles (CVs), V2X communication, or vehicular ad 

hoc networks. However, relevant literature was found to be rather sparse in addressing the 

performance of advanced signal control strategies in mixed traffic conditions, at various MPRs of 

different vehicle types. 

Real-time control applications based on platoon recognition methods are relatively rare. 

Computational complexity as well limits its applicability in a variety of traffic conditions. In recent 

years, however, platoons of connected vehicles have been the basis of several control techniques. 

Real-time connected vehicles’ positions and speeds are essential information, which determines 

their arrival times when identifying or segmenting a platoon for traffic control purposes. 

Gradinescu et al. (42) were one of the first to propose a phase sequence/duration optimization, to 

minimize control delay and queue length using car-to-car and car-to-controller communication. 

The authors utilized Webster’s formula (58) to derive the amount of green per phase. 

Wunderlich et al. (59) proposed a queue size based maximum weight matching (MWM) control 

framework, which became the benchmark for many other researchers when developing platoon-

based strategies. The weights reflect the service urgency of each queue. The algorithm evaluates 

the size and weight of each queue and schedules phases to maximize throughput. Its flexible 

phasing setup provides superior performance regarding average vehicle delay compared to a 

sequential dual-ring phase scheme. 
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Accounting for minor shortcomings of the earlier approach by Wunderlich et al. (59), other models 

were formulated to account for variation in queue discharge rates. Longer queues discharged rates 

may be lower than those of shorter queues and shared lanes traffic mixture (straight and right/left-

turning vehicles) impact on queue clearing times is carefully inspected (60). By leveraging turn 

information and vehicle lane positions, the control method selects the next best phase and decides 

its duration for overall (intersection) throughput maximization, while promoting “fairness”: 

allocating more green time to those approaches with higher passing rates, and “occasionally” 

assigning right of way to lower ones for fairness provision. 

Please note that fairness, in the context of this study, signifies priority with respect to accumulated 

(total) delay of connected and regular vehicles. 

By utilizing the properties and relative positions of vehicles, attempts have been made to design 

vehicle scheduling-based control strategies (28; 61; 62). These methods incorporated look ahead 

horizons to either anticipate queues or platoons of vehicles. Similarly, given high-resolution 

vehicle trajectory information, advanced priority and pre-emption techniques were investigated 

(31; 52).  Many subsequent approaches used these features in designing connectivity-enabled 

control algorithms since timely and accurate information is made available to measure what was 

once only estimated: queues and platoons of vehicles. 

As part of a broader initiative to design advanced control strategies for connected vehicle 

environments, Smith et al.(33), designed multiple control strategies using intelligent transportation 

systems’ data as the primary data source: queue identification and monitoring, vehicle clustering, 

and rolling horizon approach to optimize offsets and splits at signalized intersections. A vehicle 

clustering algorithm (VCA) was proposed, to find a suitable gap among approaching vehicles for 
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each phase’s green end. The designed algorithm operates in three stages. The first calculates 

cumulative waiting times on each red-indication movement, second ensures gap out occurs as soon 

as the last vehicle has cleared the approach and the third, based on vehicles’ distances, determines 

which pseudo-platoon is the closest to the intersection, yet farther than a certain threshold distance. 

Accordingly, appropriate green-extension times are computed. After the extension, the time has 

elapsed, or the maximum time is reached, the right of way is given to the red-movement that had 

the highest cumulative waiting time. 

Extending their previous work (33) on fully connected control algorithms, Datesh et al. (63) 

developed an algorithm which determined the end-of-phase time by identifying a sharp decrease 

in vehicle density, calculated based on vehicle’s location and distance to the intersection. Their 

IntelliGreen Algorithm (IGA) uses k-means clustering to determine the optimal point in time to 

terminate a green phase. A natural break in the time-to-intersection distribution of the vehicles 

approaching the green signal partitions the vehicles into two clusters: green and red. The largest 

time-to-intersection value in the green cluster is set as the remaining green phase time while the 

“red cluster” is stopped. However, traffic flow was divided into at most two platoons, regardless 

of the actual arrival pattern. Similarly, a Schedule-driven Intersection Control strategy (SchIC) 

was designed to efficiently produce (near) optimal solutions in real time (28). SchIC reduces the 

search space by exploiting queue size and temporal arrival distribution in the prediction horizon. 

Outside of the conventional approaches to traffic control, Venkatanarayana et al. (34) devised an 

algorithm to monitor the queue length at an intersection in real-time and adjust offsets and splits 

of the upstream intersection in response to queue spillback. The procedure adjusts the upstream 

movement’s green phase either by delaying or shortening it. However, the algorithm was proved 
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to be active by reducing total delay only in a very simple network with 2 one-way streets 

intersections. The phase with the highest combined travel time was set to be the next in Lee et al.’s 

(37) cumulative travel-time responsive (CTR) real-time connected vehicle-based signal control 

algorithm for isolated intersections. 

Assuming advanced communication between vehicles and traffic controllers, He et al. (32) 

formulated an offline arterial traffic signal optimization framework for multiple travel modes 

named Platoon-based Arterial Multi-modal Signal Control with Online Data (PAMSCOD). A 

headway-based platoon recognition algorithm categorizes individual vehicle requests and clusters 

them into platoons by priority level and phase. The procedure assumes first come first serve rule 

and aggregating vehicles into platoons which request priority to address the issue of computational 

complexity. Another feature of PAMSCOD is its ability to control the discharge rate from 

upstream intersections to avoid the de-facto red since real-time information regarding queue length 

and size are available. Under the same V2I framework, the authors structured a simplified 

formulation and a heuristic algorithm for real-time applications (31). Multiple priority requests 

from different modes are explicitly accommodated while simultaneously considering virtual 

priority requests for coordination and vehicle actuation. When coordination is broken, a penalty 

will reflect it in the objective function calculation. 

As part of the initiative to design advanced control concepts for connected environments, 

Skabardonis et al. (64), developed and tested through simulation, a queue spillback avoidance 

strategy to improve mobility based on CV data. The method was formulated as a platoon-based 

control method. It comprised three distinct strategies: green extension, phase termination, and 

double cycling. Applying the most effective one depending on the associated total delay predicted. 
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The literature referenced, throughout, has one aspect in common: the most critical parameter in 

determining the effectiveness of control algorithms was the market penetration rate of connected 

vehicles. Most of the previous studies referred to offline (optimization) control strategies with 

100% penetration rate of connected vehicles. Feng et al. (30) developed an adaptive signal control 

for CV-enabled isolated intersections where a two-level optimization problem that minimizes total 

vehicle delay and the queueing length is solved in real-time. Later the authors extended this 

methodology to one that integrates coordination with adaptive signal control in a connected vehicle 

environment (65; 66). 

Alternative platoon-based methods pre-establish a platoon’s size, disregarding that traffic demand 

can be disproportionate to different approaches or that individual vehicles might incur extremely 

high delays. Pandit et al. (67) instead of identifying emerging breaks in traffic flow, divide 

incoming traffic flow into partitions, which can be treated as equal-sized jobs in a processor job 

scheduling problem. The platooning represents an exhaustive search over all the platoon 

configurations to determine the platoon combination that minimizes the difference between the 

maximum and minimum green times. Then, the oldest arrival/job first algorithm generates a 

conflict-free job schedule with respect to minimizing delay. The control scheme was shown to 

perform as well as vehicle-actuated type in heavy demand. Very similar work has been done by 

Kokiladevi and Kumar (2) who define a threshold-based partitioning algorithm, which partitions 

vehicles into platoons based on their temporal distance from the intersection. Earliest arrival first 

algorithm, then, schedules the right of way of platoons of vehicles in a safe conflict-free manner. 

Cumulative platoon headway defines the actual phase duration. Simulation-tested, the method 

outperformed pre-timed and Webster’s (42) controller logic, yet produced similar average vehicle 
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delay as a vehicle-actuated control. Under lighter traffic, the earliest arrival first algorithm can 

dynamically skip through phases and minimize the delay of vehicles whenever there is a gap in 

the traffic. However, platoon identification thresholds seem not to be actual demand-driven but 

subjective. 

Other unconventional platoon recognition indicators were proposed in recent years. For Lin (68) 

“the longest segment of consecutive vehicle groups with similar headways” constitutes a “platoon 

body.” The standard deviation of intra-vehicle headway establishes a cutoff, i.e., whether a vehicle 

belongs to a platoon. 

Some researchers sought to test their hypothesis that a factor of two to three can increase bottleneck 

capacity if vehicles are organized to cross the intersection in platoons with very short headways. 

In this regard, Lioris et al. (69) tried to predict the performance of a cooperative adaptive cruise 

control (CACC) enabled system, using three different delay estimation models and a simulation 

(hypothetical) case study, when saturation flows (on average) increase by any factor (up to 300%). 

Experimental results of platoons of self-organized short-headway CACC vehicles suggest that a 

saturation flow rate increase, indicates an increase in the demand by the same factor, with no 

increase in queuing delay or travel time, regardless of the control strategy applied. Simulation 

experiments were, however, limited to V/C < 1 conditions. 

Recognizing a traffic controller’s complex operational requirements, the adaptive control 

algorithm by Feng et al. (70) integrates various components, such as multimodal priority requests, 

platoon-based coordination requests, and normal vehicle-actuated control, when determining the 

sequence of signal phases and their durations. The reason for incorporating regular-vehicle 

actuation in the “connected” controller logic were the errors of the unequipped vehicle position 
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estimation algorithm, under low penetration rates. As the penetration increases, actuation may 

negatively affect the performance of the adaptive control algorithm since sufficient connected data 

are available to make better decisions. 

To reduce computational burden and complexity on the controller, Jin et al. (71) proposed a 

reservation-based intersection management system with vehicle self-platooning. Each platoon’s 

lead vehicle communicates with the intersection by sending the estimated earliest arrival and 

clearance time of its platoon. After the traffic controller confirms the reservation, the leader will 

design its trajectory and trajectories of its followers to meet the chosen criteria. 

Connectivity-enabled platoon-based control strategies continue to emerge. Yang et al. (72) tested 

their switch or extend signal timing logic to reduce platoons’ waiting time on a hypothetical four-

phase isolated intersection, where segmentation of platoons was based on critical headway 

threshold. For a pre-determined phase sequence and before running each phase, waiting time are 

balanced against the time it takes to clear the last queued vehicle times the number of vehicles 

served if the phase is to stay active. 

 

2.2.1. Joint optimization of vehicle trajectories and signal timing parameters. 

Additionally, there have been limited efforts to design approaches that control signal operations 

and vehicle trajectories in an integrated manner. Sun et al. (56) designed a method which controls 

lane changing and car-following behavior while optimizing splits to maximize intersection 

capacity. Under the V2I framework and with full connectivity, Li et al. (73) developed and tested 

a joint vehicle trajectories and signal control parameters optimization algorithm. The approach 

was, timing plan enumeration based to account for certain restrictions, to reduce combinatorial 
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complexity even further and fundamentally was focused on trajectories optimization. In a 

simplified setup (two-phase, two one-way roads), the proposed method was tested under a variety 

of demand scenarios (undersaturated conditions) and showed modest improvements are achievable 

compared to vehicle-actuated control. Subsequently, the authors extended the concept to 

incorporate mixed traffic environments (connected, autonomous and regular vehicles) and real-

time optimization of control parameters. Even in a basic intersection/signal/traffic configuration, 

the controller only decided whether to switch or extend the current phase (74). Similar work has 

been done by (75), where approximate dynamic programming found optimal traffic signal 

schedules, and optimal vehicle speed advice is given after the corresponding green has started, 

conditioned upon no queue had formed. Overall procedure was aimed at minimizing both delay 

and number of stops. Xu et al. introduced a cooperation method between signals and vehicles’ 

speed (76). The proposed method optimizes actuated cycle lengths while vehicle speeds are 

optimized on a rolling horizon basis. The model minimizes the travel time. Vehicle control 

minimizes the consumption by optimizing the braking and engine power. However, the study only 

considers autonomous vehicles. 

Some of the more recent studies propose frameworks for dynamic traffic management to optimize 

network level signal control decision variables and departure times of individual connected 

vehicles to determine their optimal routes. Signal control parameters are updated at every control 

interval, while departure times arise upon vehicle’s request. The latter problem is solved as the 

shortest path problem, where links availability depends on the decisions previously taken by all 

the other vehicles (77). A similar solution was proposed for grid subnetworks by (78). The authors, 
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however, predict vehicle turning movement, i.e., travel direction according to a discrete probability 

distribution function and assume phase sequence and duration are fixed. 

Control methods reviewed in this study, if tested, proved efficient only under light-demand 

scenarios, which is expected, considering the complexity of the problem and consequently 

computational effort required to solve the problem in a reasonable amount of time. 

 

2.3. Analysis of network performance at path level in a connected environment 

An elementary step in conducting a study is to identify a suitable measure or indicator of the state. 

Though detailed, knowing traffic conditions on every link of a city’s network at every second is 

not practical. On the other end, network-level aggregated traffic conditions over an entire day will 

lack most of the details. There is a trade-off between the level of detail and the state reporting 

conciseness. However, an aggregate model approach that considers the traffic dynamics of a large 

urban area at the right aggregation level is promising for such studies. A Network Fundamental 

Diagram (NFD) or Macroscopic Fundamental Diagram (MFD) links space-mean flow, density, 

and speed of a large urban area. Many types of research and studies have indicated the existence 

of NFD (1; 9; 20; 79-85). One of the advantages of using NFD is its capability to capture 

congestion, breakdown, and recovery. When a facility reaches its capacity, flow and speed 

decrease with the addition of vehicles and traffic approaches gridlock. This phenomenon is also 

known as ‘backward-bending’ (86; 87) phenomenon or ‘hypercongestion’ (88; 89). NFDs describe 

the regional traffic state, mainly the gridlock phenomenon during peak hours. Hence, NFDs can 

be used to study more closely the dynamics of traffic flow. The concept of NFDs can also be 
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extended and applied to arterial roads. It has been recognized that the arterial fundamental diagram 

(AFD) is significantly affected by signal operations. Wu et al. (2011) explored the impacts of 

signal operations on the AFD. The authors concluded that the stable form of AFD is of great 

importance for traffic signal control because of its ability to identify traffic states on a signalized 

link (90). It has been established that NFD (AFD) should be treated as an essential indicator for 

traffic states under signal control or any other kinds of control. Given the potential of NFDs, this 

work will recognize them as the measure of the traffic state. An important aspect to consider is the 

selection of the right level of aggregation, i.e., the right level of network partition into smaller 

regions. 

Clustering vehicle trajectories and discovering similar individual trips lead to a range of location-

based service applications (91; 92). Applications of spatial clustering in transportation have 

received more attention in the last couple of years. Using individual trajectories, Palma et al. (93) 

proposed a speed-based spatiotemporal clustering method to identify frequently visited places. 

Chen et al. (94) developed a coherence expanding algorithm and adopted the absorbing Markov 

chain model to investigate the problem of discovering the most popular route through global 

positioning system (GPS) trajectories. Guo et al. (95) conducted a spatial clustering of massive 

GPS points to recognize potentially meaningful places and extract the flow measures of clusters 

to understand the spatial distribution and movements. Bahbouh et al. (96; 97) proposed a 

framework to identify on-demand corridors from origin-destination information. One of the aims 

of this work is to design a trajectory clustering algorithm to select a set of popular paths for further 

NFD exploration. Relevant literature shows that the spatial variability of vehicle density is a 

critical factor that affects the shape, the scatter, and the existence of a well-defined and stable MFD 



46 

 

 

(22; 82). Ji and Geroliminis (98) developed an algorithm to cluster heterogeneous traffic networks 

into homogeneous regions. Figure 2-1 illustrates the clustering results obtained based on this 

method. It can be observed that the resulting clusters are divisions of the network based on the 

geographical location of the links.  

 

Figure 2-1  Cluster for heterogeneous transportation networks (source: Ji and Geroliminis 2011 (98)) 

 

This work will establish a clustering method based on the popular paths. Correspondingly, the 

clusters will not be obtained by factoring in the geographical positions and will be heterogeneous 

unlike the previous work (98). 

The question that arises is how information on the obtained clusters will be utilized? Obtained 

clusters can be used to study the traffic flow pattern that can help an operator manage and control 

the network based on the strategies tailored to specific clusters’ attributes. Management and 

control of multi-region NFD system can improve urban mobility, prevent overcrowding, and 

relieve congestion in cities. According to Geroliminis et al. (2012), the shape of NFD is not very 

sensitive to different demand patterns. This property is vital for control purposes because efficient 

active traffic management schemes can be developed without detailed knowledge of origin-

destination (OD) tables. 
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Conversely, this effort is aimed at studying the paths and their Path Fundamental Diagrams 

(PFDs). Clusters revealed that a difference in the shapes does exist. Consequently, a custom-made 

control strategy corresponding to a cluster can be developed. 

Another intersecting direction of research is determining the travel time distribution along the same 

lines is along the user-defined paths. There is a vast literature that considers link travel time as 

deterministic functions of traffic flows. Practitioners mainly apply this approach due to its 

simplicity and low computational burdens. However, link travel times are expected to be correlated 

over time and space and follow probability distributions that depend on that of the neighboring 

links. Numerous studies are conducted to estimate travel time joint distributions. Several stochastic 

network studies are performed to address the multivariate nature of the travel time distributions in 

stochastic pathfinding problems. Due to the analytical complexities, these problems mainly 

integrate the joint distributions with numerical integration or statistical sampling methods. In rest 

of the section, first, a review of the existing travel time distribution estimation studies is provided. 

Then, the existing efforts in integrating the travel time distributions along a set of links in path-

finding problems are introduced. 

This section contains a review of models and methods developed and practiced by researchers 

working on estimating travel time. Figure 2-2 presents a word cloud of the most frequent words in 

the reviewed documents. The literature review revolves around travel time distribution, correlation 

of travel time for links and paths (which consists of serial links), and models to capture correlation, 

different estimation and solution methods, random variable distributions, and data types. Based on 

the literature, a methodology is proposed to estimate travel time on paths using real-world 

trajectory data. 
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Figure 2-2  Frequent words in reviewed documents. 

 

Models in the literature can be categorized as parametric and non-parametric. Further, these 

models either assume link travel times to be independent or dependent. Most of the researchers in 

the literature demonstrated the application of their methodology for a corridor for which they could 

obtain data.  In the real world, one application of such studies is an online estimation, such as in 

Google Maps, Bing, etc., where a user makes an inquiry to estimate travel time over a path or a 

path and associated travel time between two points. However, in this project, the focus is on the 

offline estimation of travel times on user-defined paths. Extension of the developed methodology 

for the real-time application will be investigated in the future. 

Depending on the needs of a particular application, travel time is determined either at the link level 

or the path level. A path is defined as a collection of serial links. The links typically have correlated 

travel times. However, some literature does not incorporate the correlation when determining path 

travel time modeled as a sum of link travel times. This results in a wrong estimate of the variance 
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of path travel time. As emphasized and established earlier, understanding and modeling a correct 

variance is an essential part of the study. “The spatial and temporal correlation of traffic data are 

intrinsic characteristics of road networks, which can be leveraged to solve both sensor data 

aggregation and optimal sensor placement  problems in future smart cities.”(99) Accordingly, 

literature that assumes independence of link travel times is not discussed extensively below. 

Studies concerned with the estimation of travel time distribution are mostly categorized into 1) 

link, 2) route, and 3) network levels (100). For these types of studies researchers have used data 

retrieved through different technologies, such as GPS (101-107), probe vehicles (108), computer 

simulation models (109), wireless signatures (110), dynamic Gaussian models (108), Bayesian 

models (104; 105; 108), map-matching (111), Markov chain, Gaussian mixture models (103; 107), 

gamma distribution, kernel density (111), and other parametric models (101) to solve the problem 

with expectation maximization (103; 106; 107) or likelihood maximization (101; 104; 105). 

 

2.3.1. Link travel time distributions 

Lu (112) develops a model to estimate corridor-level travel time distributions considering spatial 

and temporal correlations in urban freeway traffic data and probe vehicle data. This study 

compares different probability distribution shapes and found that lognormal distribution obtains 

the best fit. 

Jenelius et al. (101) formulated a parametric model which takes into account the link attributes and 

operation conditions to estimate the link travel time rate. The model includes spatial moving 

average correlation structure for link travel times on the network and is demonstrated to be 

applicable at low market penetration rate (MPR) of GPS equipped vehicles. 
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A study by Hunter et al. (108) proposes a probe data-driven Gaussian model for a dynamic 

Bayesian network. The proposed method comprises three stages: identifying the stop and go 

behavior, computing the correlation in the behavior, and determining the correlations between link 

travel times. Based on the learning from the three stages, study infers the underlying travel time 

distribution. 

 

2.3.2.  Route travel time distributions 

Several researchers have proposed methods to estimate route travel time distributions. 

In (106) Ramezani and Geroliminis use probe vehicles travel times traveled along all links in an 

arterial route to estimate the route travel time distribution by a Markov chain bases method. Their 

method addresses the spatial correlations between successive links of a path by establishing a two-

dimensional diagram for travel times of every two-consecutive links. These diagrams are then 

clustered to states with homogeneous travel times, and finally, route travel time distributions are 

estimated by multiplying the continuous Markov chain matrices assuming that the transitions 

between different links are conditionally independent. 

A study by Isukapati et al. (113) constructs the corridor-level travel time distribution based on the 

segment-level travel time temporal and spatial distributions by adding together percentile-by-

percentile values of the travel times. However, this technique may succeed only under specific 

conditions. 

Eisele et al. (114) provide a method to estimate route travel time mean and variance as well as 

some link travel time distributional properties (e.g., confidence intervals). 
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Chen and Osorio (115) present an analytical method to approximate the standard deviation of path 

travel times and the results are compared with simulation models. However, the proposed method 

in this study is not validated with real-world data. 

In (116), Chen et al. introduce a copula-based model to estimate the path travel time distribution 

on urban arterials. Estimated path travel time distributions are compared with those by the 

convolution and the empirical distribution fitting approaches. The presented results indicate the 

advantages of the copula method over those convolution and distribution-fitting methods. 

However, the proposed copula method requires a set of segment travel times as inputs that need to 

be estimated by another method to estimate link travel time. 

Field data-based study by Kwong et al. (110) first identifies vehicles through their wireless 

signatures. For each vehicle, travel time was determined along the path as the difference between 

entry and exit time on the path. The study was conducted on a 1.5 km (0.93 miles) long signalized 

arterial road of San Pablo Avenue in Albany, California, under different traffic conditions. The 

study, however, does not provide any closed-form analytical solution to travel time nor does it 

provide a solution method. This study is merely basing results and presenting the obtained 

distribution from the collected data. However, Kwong et al. found that the travel time distribution 

is also a function of the lane. For example, the leftmost lane on a freeway, which is considered to 

be the fastest, is expected to have the lowest travel time or the rightmost lane can be the faster on 

an arterial road because no drivers are making left turns at intersections which do not have left-

turn-only arrow signals. Furthermore, they conclude that the mean travel time is an insufficient 

indication of travel time reliability. This finding is very intuitive, but a data-based study gives 

further validation of the finding. 
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2.3.3.  Network travel time distributions 

Mahmassani et al. (117) use both simulated and real-world GPS trajectory data to model network 

travel time mean and standard deviation. Their results indicate that these two measures are highly 

positively correlated. 

Hunter et al. (108) propose a method to estimate travel time distributions on a network using probe 

vehicle data. This study assumes that travel times on links are multivariate Gaussian distributed. 

However, assuming a single pattern for travel time distribution may lead to poor model fit. 

Reference (101) by Jenelius et al. develops a statistical framework to estimate the distribution of 

travel time on road network considering various factors including weather, speed limit, and 

seasonal effects. In this study, the travel time means, and variances are estimated as functions of 

these factors that expressed as explanatory variables. The link-level correlation structure is 

captured by a spatial moving average method using probe vehicle data. 

Westgate (104) proposes two statistical methods to estimate travel time distribution on a road 

network using GPS-enabled ambulance data, and the model parameters are estimated by Markov 

chain Monte Carlo approaches. This study points out that GPS data readings are biased in the same 

direction and introduces a method to address this problem. Despite the helpful methodological 

insights into the network travel time distributions, the applied ambulances trip data may not 

completely represent regular urban traffic features. 

Zheng et al. (100) present a network travel time distribution model based on Johnson curves, which 

can describe various travel time distributions patterns. The model parameters in this study are 
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estimated based on the percentiles in the field travel time data. Their results show that the applied 

method outperforms the widely used lognormal model by capturing the skewness in the field data. 

Though the studies have developed and demonstrated promising models and solution techniques, 

it is essential to be aware of some pitfalls. Rahmani et al. (111) point out and eliminate the 

following potential sources of bias in the estimation of travel time distributions: 

 Incomplete traversal of route: 

o It can underestimate the travel time of the path 

 Influence of adjacent network; 

o If a vehicle bypasses a portion of the route, it can overestimate the travel time 

 Non-uniform coverage of route: 

o Not all links will have the same number of observations 

 Non-representative vehicle sample: 

o For example, taxi data does not represent regular vehicles; however, with some 

corrections, it can be used as a proxy for the traffic conditions 

 

Autoregressive Integrated Moving Average (ARIMA) is another approach used in a set of studies 

that explicitly consider the correlation among the random variables. ARIMA is a popular technique 

that is used for prediction with correlated random variables. In the general traffic parameters that 

are predicted, for a short-term or long-term, are travel time (118-122), speed (123-125), and 

volume (123; 126). Given the importance of the correlation between spatial and temporal 

characteristics, studies on ARIMA are also reviewed, and a methodology around the technique is 
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formulated and presented later in the report. Use of ARIMA for prediction of traffic conditions is 

not a new concept (123; 127-131). These approaches invoke spatial and temporal relationship 

between random variables. As stated above, traffic state at a location gets affected by the neighbors 

and is correlated to the adjacent locations. Previous studies based on ARIMA involve the 

application of multivariate spatial-temporal autoregressive model (123), Space-Time 

Autoregressive Integrated Moving Average (STARIMA) model (128), spatial-temporal 

characteristics of flow on highways (129). Cheng et al. (130) compared complexities of models to 

compute correlations between links. Conventional methods to determine the spatial-temporal 

correlation include exploiting the information like neighboring links sharing a node (127), links 

that are approachable in a set number of time intervals (123), distance (131). Though studies 

develop new methods better than, regarding the computation efforts and the prediction accuracy, 

their past studies, assume stationary or quasi-dynamic spatial-temporal correlation. 

Min and Wynter (123) developed a methodology using a multivariate model that incorporates the 

spatial-temporal effect from neighbors. They segment a day in different templates to represent 

different congestion conditions. For each template, a spatiotemporal matrix is determined, which 

is static after that. Hence, the methodology is not completely static; it is a quasi-dynamic 

methodology. Authors claim that their approach scaled well for the entire network and required 

fewer computation efforts. With the addition of a dynamic spatial-temporal correlation matrix, the 

methodology can be made applicable to real-time DTA models. Vlahogianni et al. (132) mention 

the challenge is to develop responsive algorithms and prediction schemes. It is essential to 

incorporate the inclement weather conditions or other non-recurring events in a predictive model. 

As much as it is needed, it is also difficult to see these events ahead of the time. For example, it is 
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challenging to predict an accident. With advances in the technology, we have better insight into 

the incoming weather condition. Incorporating the effect of non-recurrent conditions can provide 

more accurate predictions, enabling traffic management systems to maintain a sustainable level of 

service. Vlahogianni et al. suggest to include weather and incident responsive algorithms, 

enhancing the efficiency of online computations using artificial intelligence, and standardizing the 

requirements regarding the spatial and temporal data coverage in prediction methods. (132) 

ARIMA models have been modified to incorporate effect from accidents or adverse weather to 

predict traffic states (118; 119; 123; 126). These studies do not explicitly mention incorporating 

the effects of weather in the reported results. It has been reported that the inclusion of rainfall (5 

min data) in short-term travel time predictions could reduce forecasting inaccuracies and improve 

the model robustness. (120-122; 124; 125) 

Studies revolving around travel time are not limited to transportation engineers. For example, study 

(133) was conducted by authors with computer science background. They identify the following 

major challenges in such studies: 

 The sparsity of the data or low MPR of the GPS enabled vehicles 

 Optimal aggregation level 

 Real-time application of the estimation which needs an effective, scalable, and efficient 

method 

Three-dimensional tensor is used to model travel time for different drivers on different links in 

different time slots. Using a dynamic programming solution an optimal value of the objective 

function is determined. The methodology is applied on 32,000 taxi trajectories collected over two 
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months. The authors introduced a tensor-based technique to stitch segments of a path together to 

obtain travel time. The method use vehicle trajectories to return travel time for a path inquired by 

a user. To obtain travel time along a segment where no or few trajectories are available, dynamic 

programming algorithm is used to fill the gaps where the objective is to find similar featured 

segments, learn the travel time pattern, and apply to the segment with missing values. This study 

is similar to an ARIMA technique presented in a tensor form. 
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CHAPTER 3. INTEGRATED SIMULATION FRAMEWORK 

DEVELOPMENT 

To model and investigate the impact of connectivity on transportation systems as well as its 

impending applications, a framework to integrate micro aspects of individual vehicle 

interactions/behavior within a mesoscopic simulation tool was proposed. To be able to investigate 

facility or network-level effects of connectivity, vehicle communication and interactions are to be 

captured. On the other hand, to do so with adequate detail representation, microsimulation outputs 

are necessary, since it would be computationally challenging, for large-scale networks, to attempt 

to embed the level of detail necessary into a meso/macro environment. Therefore, 

microsimulation-based traffic stream variables are characterized and utilized to calibrate a 

mesoscopic simulation model. The meso-simulation model is then used to simulate and analyze 

facility/ network-level impact of connected vehicles. 

Microscopic models are utilized to simulate the information exchange through the vehicle to 

vehicle (V2V) or vehicle to infrastructure (V2I) communication as well as individual vehicle 

(driving) behavior. Subsequently, a mesoscopic or macroscopic tool is needed that can scale and 

be computationally economical at a network level. This study integrates the microscopic aspect of 

V2V communication and driving behavior with the macroscopic aspect of dynamic traffic 

assignment at a network level. 
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3.1. Microscopic Model Calibration 

To capture the effects of connectivity at network-level, it is critical to adequately model the 

collective effects of the interactions between connected and regular vehicles in the traffic stream. 

Accordingly, a microscopic simulation framework by Talebpour et al. (134) was adopted to 

identify the speed-density relationships at different MPRs of connected vehicles. This tool 

constructs different behavior modeling frameworks for regular and connected vehicles and can 

capture the collective effects of the interactions between them on traffic flow dynamics. The 

microsimulation outputs reflect this interdependent relationship and allow for mixed environment 

speed-density curves to be identified. These calibrated speed-density relationships are then used 

as the input to the mesoscopic simulation tool to simulate the network-wide effects of connectivity.  

The details of these modeling frameworks and the calibration approach are discussed below. 

 

3.1.1. Modeling Regular Vehicles 

The acceleration behavior of regular vehicles is modeled based on the state-of-the-art car-

following model of Talebpour et al. (135). This model, based on Kahneman and Tversky’s 

prospect theory (136), recognizes that drivers exhibit different perceptions depending on the 

encountered traffic flow regime – i.e. congested versus uncongested.. Accordingly, two value 

functions were introduced, one for modeling driver behavior in congested regimes and one for 

modeling driver behavior in uncongested regimes. The uncongested (UC) traffic value function in 

this model has the following form: 
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where UPT

UC  denotes the value function for the uncongested traffic conditions, g > 0andwmare 

parameters to be estimated, na is the acceleration chosen by the driver and
2

0 /1 sma  is used to 

normalize the acceleration. They proposed the following value function for the congested traffic 

condition: 
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where UPT

C  denotes the value function for the congested traffic conditions, ¢g > 0  and ¢wm  are 

parameters to be estimated. At each evaluation stage, based on drivers’ perception of their 

surrounding traffic condition, drivers employ the corresponding value functions to evaluate the 

gains from the chosen acceleration. Because the actual function applied by the driver is not known 

to the observer, the applicable regime is viewed as a latent state of the driver. Accordingly, the 

observer (analyst) can only formulate a probabilistic mechanism to predict the driver’s latent 

behavior regime. This introduces a binary probabilistic regime selection mechanism into the 

evaluation stage, given by: 
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where UPT
,P(C), andP(UC)denote the expected value function, the probability of driving in a 

congested, and the probability of driving in uncongested traffic regime, respectively. The utility of 

each choice is calculated using the following equation: 

Y = bK +e  ( 3-4 ) 

 

whereK , b , and e  denote a vector of variables (see table 1), a vector of unknown parameters to 

be estimated, and an independent and identically Gumbel distributed error term, respectively. The 

Gumbel distribution for the error term results in a binary logit expression: 

P(C) =
eY (C )

eY (C ) +eY (UC )
=
e

b (C )-b (UC )[ ]K

1+e
b (C )-b (UC )[ ]K

=
e

¢b K

1+ e
¢b K

 ( 3-5 ) 

P(UC) =1-P(C) ( 3-6 ) 

 

Table 1 shows the calibration results for ¢b . Note that it is assumed that drivers choose the 

acceleration value function that gives them the highest value for the observed acceleration. If the 

drivers choose na  as their acceleration, they will gain utility value of )( nPT aU  if they do not get 

involved in a crash. If they are involved in a crash, their disutility corresponds to the crash 

seriousness term, ),( vvk  , for the velocity of v an associated change in the velocity v . The 
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probability of crash involvement is calculated in the same way as proposed by Hamdar et al. (137). 

This work assumed crash involvement probability was normally distributed and calculated the 

probability of having negative spacing at the end of the evaluation period. The total utility function 

of acceleration is formulated as follow: 

U(an ) = (1- pn,i )UPT (an )- pn,iwck(v,Dv) ( 3-7 ) 

 

where pn,idenotes the crash probability. Finally, to reflect the stochastic response adopted by the 

drivers, the logistic functional form specified by Hamdar et al. (138) is used to calculate the 

probability density function: 
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where bPT  is a free parameter that reflects the sensitivity of choice to the utilityU(an ). Note that this 

study adopted Talebpour et al.’s acceleration model to model car-following behavior in the 

absence of communication. Note that the parameters of this model are calibrated against Next 

Generation Simulation (NGSIM) data (139). 



62 

 

 

Table 3-1 Calibration results from microsimulation. 

Data  Definition Coefficients Unites 

K0 Model Constant -37.8195 - 

K1 Driver’s speed 1.7535 m/s 

K2 

Average headway between driver 𝑖 and her leaders in 

all lanes. A value of 9,999 is assigned if there is no 

leader. 

0.0459 s 

K3 

Average Relative speed between driver 𝑖 and her 

leaders in all lanes. A value of 999 is assigned if there 

is no leader. 

0.3259 m/s 

K4 

Average Headway between driver 𝑖 and her followers 

in all lanes. A value of 9,999 is assigned if there is no 

leader. 

0. 0931 s 

K5 

Average Relative speed between driver 𝑖 and her 

followers in all lanes. A value of 999 is assigned if 

there is no leader. 

-1.0300 m/s 

K6 
Driver’s average surrounding density. It is defined as 

the total density (over the number of lanes). 
0.5911 Veh/km/lane 

 

Acceleration model parameters used in this study are shown in Table 3-2 in with their typical 

values. 
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Table 3-2 Acceleration Model Parameters and Their Typical Values 

Parameters Typical Value 

Sensitivity Exponents of the Generalized 
𝛾 = 0.5  

Utility Asymmetry Factor for Negative Utilities 𝑤𝑚
′ = 2  

Weighing Factor for Accidents 𝑤𝑐 = 40  

Logit Uncertainty Parameter (Intra-Driver Variability)  𝛽 = 3  

Maximum Acceleration  𝛼𝑚𝑎𝑥 = 4 𝑚/𝑠2  

Minimum Acceleration 𝛼𝑚𝑖𝑛 = −8 𝑚/𝑠2  

Acceleration Range Considered Near Interaction Point 𝑎0 = 1(𝑚/𝑠2)  

 

 

3.1.2. Modeling Connected Vehicles 

The acceleration behavior of connected vehicles is modeled based on the Intelligent Driver Model 

(IDM) (140). IDM specifies a following vehicle’s acceleration as a continuous function of the 

vehicle’s current speed ( nv ), distance ns  to the leading vehicle, and the difference between the 

leading and the following vehicles’ velocities ( nv ). Perceptive parameters such as desired 

acceleration, desired gap size, and comfortable deceleration are considered in this model (140; 

141): 
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wheredn (Free acceleration exponent),Tn (Desired time gap), na (Maximum acceleration), nb

(Desired deceleration), s0
n
(Jam distance), and v0

n
(Desired speed) are parameters to be calibrated. 

*s is the desired (safe) gap. Note that the braking term in the IDM is designed to preclude crashes 

in the simulation. 

 

3.2. Mesoscopic Model Calibration 

Micro-simulation setup accounts for the difference in behavior as well as the interactions between 

the two types of vehicles. This research identifies a mixed traffic environment speed-density 

relationship based on the microscopic simulation results. To translate traffic flow dynamics of a 

connected environment from the microscale to the mesoscale, this micro speed-density 

relationship is applied on a mesolevel. Correspondingly, a 5.5 miles long highway segment on 

Interstate 290 in Chicago is modelled with the above-mentioned microscopic simulation tool at 

different MPRs of connected vehicles and different speed limits. Figure 3-1 shows the geometric 

characteristics of this highway segment.  
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Figure 3-1 Geometric characteristics of the selected segment in Chicago, IL. 

 

Figure 3-2 shows the schematic of the calibration approach based on the microscopic simulation 

results. Speed-density curves are identified based on multiple simulation runs (with different initial 

random seeds) until convergence is achieved. Once the model is calibrated, it will form the basis 

for the mesoscopic simulations. 

 

Figure 3-2 Schematic of the Calibration and Simulation Frameworks. 

 

 

 

3.5 Miles
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Four different MPRs of connected vehicles are selected (i.e., 0%, 10%, 50%, and 90%) along with 

four different speed limit values (i.e., 15, 35, 45, and 55 mph). Figure 3-3 shows the calibrated 

speed density curves. At lower speed limits, higher MPRs delay flow breakdown and the speed 

drop is observed at higher densities. At higher speed limits, however, the breakdown occurs at 

similar densities overall MPRs. Moreover, regardless of the speed limit, as the MPR of connected 

vehicles increases, higher speeds can be achieved for the same density value. This is particularly 

noteworthy in the congested regime of the speed-density curves. 

 

Figure 3-3 Speed-Density Curves at Different Market Penetration Rates of Connected Vehicles for Different 

Speed Limits: (a) 15mph, (b) 35mph, (c) 45mph, and (d) 55mph. 

 

  
(a) (b) 

  
(c) (d) 
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3.3. Measuring NFD and travel time variability 

In practice, link-based measurements are computed to obtain the desired network-wide 

relationships among flow, density, and speed. Connected vehicle technology has the potential to 

change this widespread practice by providing information about individual vehicles throughout the 

network. Such information can be translated into vehicle trajectories and can be used to enhance 

the accuracy of measuring network-wide relationships as shown by Saberi et al. (1). They showed 

that trajectory-based measurements of network-wide traffic flow variables is indeed possible and 

provides a more accurate estimation of network-wide flow, density, and speed. In this study, 

trajectory-based measurements are adopted to obtain various variables and performance measures.  

Following the approach proposed by Mahmassani et al. (83), NFDs are obtained based on 

trajectory-based calculations as follows: 
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Where 

)(Q : Average Network Flow 
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)(K : Average Network Density 

)(V : Average Network Speed 

)(d : Total distance traveled by all vehicles in shape   

)(t : Total time traveled by all vehicles in shape   

)(d : Total distance traveled by all vehicles in shape   

)(xyL : Total length (in lane mile) of the network on x-y plane associated with the 

shape   

t : Time-height of the shape   

 

Moreover, following the approach by Mahmassani et al. (83), in order to study the travel time 

variability, distance-weighted mean (𝜇) and standard deviation (𝜎) of the individual travel time 

rates (i.e., travel time per unit distance) are computed as follows: 
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di ( ¢ti - m)2
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 ( 3-15 ) 

 

Where 

i : Vehicle Index 

n : Number of Vehicles 

di: Travel Distance of Vehicle i  

ti
' : Travel Time Rate of Vehicle i (Min/Mile) 

ti : Travel Time of Vehicle i  

These concepts and equations make the basis for performance measures throughout the 

dissertation. 
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CHAPTER 4. IMPACT OF CONNECTED VEHICLES 

There is a growing need to improve the mobility and safety of transportation systems and cities 

are undergoing constant changes to accommodate this need. However, cities face limited resource 

availability when expanding the existing road network. To address the challenge, cities are 

incorporating innovative technologies into their current operational practices. Connected Vehicles 

technology, as one of the latest technologies in surface transportation, provides the opportunity to 

create a connected network of vehicles and infrastructure. In this network, individual vehicles can 

communicate with each other through Vehicle-to-Vehicle (V2V) communications. Moreover, 

individual vehicles are connected to infrastructure and the Traffic Management Center (TMC) 

through Vehicle-to-Infrastructure (V2I) communications. The real-time information provided by 

this technology can improve drivers’ operational, tactical, and strategic decisions; thus, improve 

mobility, safety and reduce emissions and energy consumption of existing transportation systems. 

 

4.1. Numerical Experiments Results 

DYNASMART (DYnamic Network Assignment-Simulation Model for Advanced Road 

Telematics), a dynamic traffic assignment simulation tool, was used to simulate traffic dynamics 

at the network level. The tool includes a dynamic network analysis and evaluation. One of the 

advantages of the tool is its capability to model individual vehicles’ movements with different 

driver behavioral characteristics under various information guidance systems (142). Further details 

on the capabilities of the tool can be found elsewhere (143). The tool is being used in several 
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region-wide traffic management projects and can be made available to the public through the 

McTrans Center. 

In this chapter, results from numerical experiments for Chicago and Salt Lake City modeled 

networks are presented. Figure 4-1 and Table 4-1 present the characteristics of these networks.  

The Chicago testbed network was extracted from the entire Chicago Metropolitan Area network 

to enhance the estimation and prediction accuracy during the implementation procedure. The 

testbed includes Chicago downtown area located in the central part of the network, Kennedy 

Expressway of I-90, Edens Expressway of I-94, Dwight D. Eisenhower Expressway of I-290, and 

Lakeshore Drive. The testbed is bounded on the east by Michigan Lake and on the west by Cicero 

Avenue and Harlem Avenue. Roosevelt Road and Lake Avenue bound the testbed from south and 

north, respectively. A full-size Salt Lake City network, consisting of Ogden-Salt Lake City-Provo 

area, was also used in this study.  Details related to network configuration and calibration can be 

found elsewhere (144; 145). These two networks will represent testbeds throughout this research 

effort. 

Three demand levels (low, medium and high) are simulated at four different MPRs of connected 

vehicles (i.e., 0, 10, 50 and 90%); the remainder of vehicles are conventional vehicles with no 

connectivity. The typical demand level is calibrated in accordance with the historical static O-D 

matrix and time-dependent traffic counts on observational links. Different demand levels refer to 

the demand pattern that has the same distribution as the average level but different fractions of 

vehicles. Low demand level has 40%, medium demand level has 70%, and the high demand level 

has 90% of the average level vehicles. The entire planning horizon or simulation period was 

divided into a 5-min interval series. At each 5-min interval, generalized network-wide traffic flow 
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variables, based on the extended Edie’s definition, were computed using Equations ( 3-11 ) to ( 

3-15 ). To report travel time reliability, mean and standard deviation of travel times were calculated 

using Equations 12 and 13. 

 

 

Figure 4-1 Schematic Diagram of (a) Chicago and (b) Salt Lake City. 

 

Table 4-1 Network Configurations 

Network Chicago Salt Lake City 

Number of nodes 1,578 8,022 

Number of links 4,805 17,947 

Number of vehicles 805,275 937,483 

 

 

    (a)     (b) 
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Demand duration (hours) 24 15 

 

Results for the Chicago area are presented in Figure 4-2 through Figure 4-5. Figure 4-2a presents 

the fundamental diagrams for different connectivity levels in Chicago’s highway network at a low 

demand level. In this figure, an increase in connectivity results in a decrease in density and increase 

in flow. At the same density level, connectivity enables vehicles to move at a higher flow rate. The 

breakdown density and flow are increased, which results in a higher throughput in the highway 

network. Additionally, connectivity can reduce the maximum density observed in the network. For 

MPRs of up to 50%, the flow rate increases with connectivity, while the maximum density 

experienced in the network remains the same. At a 90% connectivity level, in addition to the flow 

rate increase, maximum density is reduced, as well. This indicates that connectivity can increase 

network’s capacity and throughput at low demand levels. 

Figure 4-3a shows the fundamental diagrams for different connectivity levels in Chicago’s 

highway network at a medium demand level. Compared to Figure 4-2a, the impact of connectivity 

increases. The flow rate increases with the increase in connectivity, for the same density levels. 

Moreover, at 50% or higher MPRs, higher flow rates are achieved at the same density, which can 

result in faster recovery after breakdown. Note that at high MPRs, a clear hysteresis loop is 

observed at both low and medium demand levels (see Figure 4-2a and Figure 4-3a). 

Figure 4-4a shows the fundamental diagrams for different connectivity levels in Chicago’s 

highway network at a high demand level. In this case, not all vehicles reach their destinations due 

to gridlock, making corridors highly dense. In fact, high demand operational conditions reveal the 
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effects of connectivity on network-wide traffic flow dynamics under extreme conditions. 

Significant breakdown and scatter in the NFDs are observed at all connectivity levels. In extreme 

conditions, low MPRs of connected vehicles do not result in the improvement in flow and/or 

density, and the flow-density relationship remains almost unaffected (MPR of 10%). At a 

connectivity level of 50%, the network starts to experience an increase in the flow rate for the same 

density level, as compared to 0% and 10% MPR cases. When the MPR is 90%, highway network 

performs at its best, as the highest flow rate is achieved. At this level, highways reveal a small 

hysteresis loop and finally break down to never recover again, still higher throughput is achieved 

as compared to the other lower MPRs. Therefore, connectivity enables the network to enhance its 

throughput rate, even in extreme conditions. 

Figure 4-2 through Figure 4-4 present the effects of connectivity on the network-wide flow-density 

relationship in Chicago’s full network at low, medium, and high demand levels. At a low demand 

level (Figure 4-2b), as the MPR increases, the network experiences a greater reduction in 

maximum density. At the same time, an increase in flow rate for the same density level is observed. 

Connectivity is increasing the throughput while controlling the density in the network. At a 

medium demand level (Figure 4-3b), closed loop hysteresis is observed at all connectivity levels. 

The width of the hysteresis loop reduces with the increase in connectivity. This implies that 

connectivity facilitates the recovery. At a high demand level (Figure 4-4b), grid-lock is observed, 

making the corridors highly dense. Network-level operational characteristics exhibit similar flow-

density relationships as shown in Figure 4-2 and Figure 4-3. It is the extent of the relationship that 

gets affected. Although, the extent of the relationship is altered. With the increase in connectivity, 
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the maximum density decreases. Moreover, connectivity increases the throughput of the entire 

network. 

 

 

Figure 4-2 Fundamental Diagram for Chicago (a) highway network, and (b) Full network at different market 

penetration rates of connected vehicles under low demand. 

  

    

    

(a) Highway Network (b) Full Network 
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Figure 4-3 Fundamental Diagram for Chicago (a) highway network, and (b) Full network at different market 

penetration rates of connected vehicles under medium demand. 

 

  

    

    

(a) Highway Network (b) Full Network 
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Figure 4-4 Fundamental Diagram for Chicago (a) highway network, and (b) Full network at different market 

penetration rates of connected vehicles under high demand. 

 

The results presented in Figure 4-5 show the effects of connectivity on the travel time reliability 

at low, medium, and high demand levels. For all connectivity levels, weighted mean and standard 

deviation of travel time follows a similar linear trend but the extent is different. This finding 

  

    

    

(a) Highway Network (b) Full Network 
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indicates that the linear relationship that Mahmassani et al. (83) found between the mean and 

standard deviation of travel time at the network-level is still applicable to the connected driving 

environment. At a low demand level (Figure 4-5a), with an increase in connectivity, the size of the 

distribution gets smaller, which implies that travel time variability decreases. Additionally, there 

is a slight reduction in the standard deviation for the same travel time with an increase in 

connectivity. This implies that travel time reliability increases as MPR of connected vehicles 

increases. At the medium demand level (Figure 4-5b), the impact of connectivity is more 

prominent than at the low demand level. Similar to the low demand case, with an increase in 

connectivity, the extent of the distribution reduced, but this reduction is more significant than in 

the low demand case. At the high demand level (Figure 4-5c), the weighted mean and standard 

deviation of travel time, follow the same linear pattern with different extents. With an increase in 

the MPR of CVs, the maximum mean and standard deviation of travel time decreases, and the 

standard deviation decreases for the same mean travel time. At all demand levels, the network is 

performing better and more reliably with the increase in the MPR of CVs, while following the 

same linear travel time variability relation. 
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(a) 

 

(b) 
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Figure 4-5 Travel time variability measures for Chicago with (a) low demand. (b) medium demand, and (c) 

high demand. 

 

Results for the Salt Lake City area are presented in Figure 4-6 through Figure 4-9. Overall, the 

results show similar trends as in the Chicago network, but at a different scale. Figure 4-6a shows 

the fundamental diagrams of the Salt Lake City’s highway network at the low demand level, 

different connectivity levels. In this figure, the highway network experiences a congested regime, 

which is prevented with advent of CVs. When the MPR is 90%, the breakdown is eliminated. 

Figure 4-7a shows the network-wide flow-density diagram at the medium demand level. In this 

figure, the highway network is highly congested, which ultimately results in a breakdown. 

However, high congestion levels are not observed at 90% MPR of CVs. Hence, as the MPR of 

connected vehicles increases, throughput increases as well. Figure 7-8a presents the network-wide 

flow-density diagram at the high demand level. Results are similar to those at the medium demand 

level, except the network does not reach jam density and shows recovery only at a 90% 

connectivity. However, at 50% MPR, the network-wide flow-density relationship is similar to the 

one observed when at 10% MPR of CVs. Throughput, however, still increases as the MPR of CVs 

increases. Hence, connectivity can help improve system’s performance by increasing throughput 

rate and lowering the maximum density attained. 

Part b of Figure 4-6 through Figure 4-8 presents the effects of connectivity on network-wide flow-

density relationships for the full network at low, medium, and high demand levels in Salt Lake 

City. At a low demand level (Figure 4-6), as the MPR increases, the network experiences the 

reduction in maximum density and the increase in flow rate at the same density level. With only 

regular vehicles in the system, the whole network experiences an unrecovered breakdown, whereas 
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with connectivity, the system realizes improved flow conditions. At a medium demand level 

(Figure 4-7b), the system experiences considerable congestion even at low MPRs (the network 

experiences a density level of around 180 vehicles/mile/lane, which is an indication of gridlock). 

At high MPRs, however, the network recovers from the breakdown. When the MPR is 50% and 

90%, the network flow increases and at in case of a 90% MPR, the system forms a closed hysteresis 

loop. At a high demand level (Figure 4-8b), the network only recovers when 90% of vehicles are 

connected, and the flow-density relationship is similar to the ones observed at 0%, 10% or 50% 

connectivity levels.  
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Figure 4-6 Fundamental Diagram for Salt Lake City (a) highway network, and (b) Full network at different 

market penetration rates of connected vehicles under low demand. 

 

  

    

    

(a) Highway Network (b) Full Network 
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Figure 4-7 Fundamental Diagram for Salt Lake City (a) highway network, and (b) Full network at different 

market penetration rates of connected vehicles under medium demand. 

 

  

    

    

(a) Highway Network (b) Full Network 
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Figure 4-8 Fundamental Diagram for Salt Lake City (a) highway network, and (b) Full network at different 

market penetration rates of connected vehicles under high demand. 

 

Results presented in Figure 4-9 demonstrate the effect connectivity has on the travel time reliability 

at low, medium, and high demand levels in a Salt Lake City testbed. At a low demand level (Figure 

4-9a), travel time reliability increases with the increase in connectivity. As found in the Chicago 

  

    

    

(a) Highway Network (b) Full Network 
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network case, the weighted mean and standard deviation of travel time at all connectivity levels 

follow a linear trend but to a different extent. 

At the medium demand level (Figure 4-9b), travel time variability reduces significantly with the 

increase in connectivity. At 0% and 10% connectivity levels, high mean travel times and standard 

deviations are observed. When MPR reaches 50% or even 90%, the system does not exhibit high 

travel times and performs very reliably as compared to the other tested lower MPR cases. Hence, 

travel time variability reduces, and the system becomes more reliable with the increase in 

connectivity. At a high demand level (Figure 4-9c), the travel time variability follows the same 

trend at all connectivity levels, except for the MPR of 90%. The range of the mean travel time 

decreases with the increase in connectivity (i.e., high travel times are not observed with higher 

connectivity levels). At a 90% connectivity level, the range of mean travel times is as half as much 

as the range at lower connectivity levels. Hence, connectivity can improve the system’s operational 

conditions by increasing throughput, lowering the maximum density attained, while reducing the 

travel time and its variability. 
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(a) 

 

(b) 
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Figure 4-9 Travel time variability measures for Salt Lake City with (a) low demand. (b) medium demand, 

and (c) high demand. 

4.2. Conclusion 

The analysis presented in this chapter explores the network-level impact of Connected Vehicles 

technology on a transportation system’s properties and travel time reliability. Traffic stream 

characteristics in a connected environment are identified based on a microscopic simulation tool. 

The calibrated speed-density relations are utilized in a mesoscopic simulation tool to study the 

network-wide effects of connectivity on travel time reliability. Simulations are conducted on two 

well calibrated, real-world networks, Chicago and Salt Lake City. An extensive calibration 

procedure of the networks and their respective traffic demands is out of the scope of this study, 

and the reader is encouraged to refer to (144). 

This work confirms that the linear relationship between distance weighted travel time and distance 

weighted standard deviation holds at a network level and is not affected by either the demand level 

or the market penetration rate of connected vehicles. Hence, the network appears to retain its 

inherent properties (signature). Observations from the simulated traffic data show that with an 

increase in the MRP of connected vehicles, the network attains a lower maximum density and 

exhibits an increased flow rate for the same density level. Thus, a highly connected environment 

has the potential to help a congested network recover from flow breakdown and avoid gridlock. 

Moreover, the effects of connectivity become more prominent as the demand increases. 

Connectivity is found to be effective in improving the travel time reliability. Connected vehicles 

reduce the mean travel time while making the system more reliable. Overall, connectivity can 

improve system’s performance by increasing throughput and travel time reliability at all demand 

levels. 
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CHAPTER 5. ADVANCED SIGNAL CONTROL STRATEGIES 

Chapter 3 and Chapter 4 focused on the integration of microscopic and mesoscopic simulation 

environments. A successful integration enables an optimal trade-off between the numerical 

precision and computational efficiency. The integration was used to demonstrate the impact of 

connected vehicles on freeway and highway operations. If higher efficiency is to be achieved at a 

transportation system level, opportunities for improved performance need to be realized at both 

significant components, freeways, and arterials, concurrently. Higher throughput on freeways in 

mixed traffic would cause gridlock on the arterial street network unless a considerable 

improvement in signalized intersection control schemes is achieved (147). Hence, in this and the 

following two chapters, the focus is shifted to the arterial road network. Accordingly, signal control 

strategies for connected environments under different mixes of vehicular traffic are developed and 

tested in this part of the study. To emphasize, the focus of this effort is on the utilization of 

communication capabilities between vehicles and infrastructure to enhance the system’s 

operational performance, and not on calibration of drivers’ behavior models. . 

State of the practice real-time signal control applications rely on infrastructure-based detection 

data, i.e., detector based adaptive signal control is dependent on detection accuracy and queue 

estimation.  Once the queue grows beyond the length of the detector, or the link is over saturated, 

accurate measurements are not possible. Moreover, estimation models based on occupancy are 

used to estimate the flow, and it becomes difficult to differentiate between high flows, stopping, 

queue spillback, etc. With vehicle trajectories, more information is available, and this information 

is more accurate and freed of assumptions, imputation, estimation, or sophisticated statistical 

models. With technological advances, obtaining such detailed, more accurate and more reliable 
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information becomes achievable. Trajectory data from connected and automated vehicles offer 

more reliable real-time traffic information and represent an essential data source for a growing 

number of applications, including signal control strategies (146). Until recently its exploitation in 

the realm of adaptive traffic control has been limited. Naturally, better information enables the 

potential for better insight into operations, and consequently, improved control and management 

(85). 

Previously proposed models used to optimize the traffic signal control might be complicated, and 

computationally expensive, sensitive to modeling errors. Furthermore, in order to facilitate the 

validation of the models, many scholars employed a simplified road or intersection model for 

simulation. However, road and intersections are relatively more complicated in reality, which 

poses a challenge to the adaptability of the models. This study attempts to address this gap by 

testing the strategy on a complex real-world network. The study addresses the question whether 

improvement is achievable, and if so, how significant it might be when only a fraction of vehicles 

is connected and automated. To this end, the proposed strategies compute vehicle-based 

performance metrics to optimize control parameters and individual vehicle trajectories.  

In this study control strategies are being optimized to provide a higher quality of service, given the 

objective is chosen (minimizing delay, maximizing eco-friendly driving behavior, or multi-

objective examining trade-offs, etc.) in a mixed traffic environment (automated vehicles, 

connected vehicles, and regular vehicles). More specifically, signals are optimized to combine the 

maximization of throughput with the minimization of delay, to keep vehicles moving, while 

clearing the queues. In the developed strategies, platoons of vehicles will not necessarily get 

service priority, and the control decision can be seen as the choice between clearing the queue or 
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progressing a platoon. The proposed advanced intersection-level control strategies are also 

designed to maintain the coordination along a corridor. Accordingly, CAVs are assumed to 

compute and transmit their delay accumulated along a route. The minimization problem accounts 

for the accumulated delay to enable traffic flow synchronization on the route. Traffic controllers 

are not communicating with each other, yet, V2X communication is presumed; controllers receive 

and process vehicle information as well as calculate and transmit signal information to the vehicles. 

Flexible controller logic and phasing sequence/duration driven by vehicle-based computation of 

performance metrics distinguish this method from the ones found in the literature. Considering a 

simplified signalized intersection and roadway configuration, previous studies predominantly 

focused on control decisions of whether to switch or extend the active phase. An advanced traffic 

controller operates in an “intelligent fully-actuated” mode. Its setup accounts for various 

constraints: maximum/minimum green time or the maximum allowed waiting time, yet it enables 

phase skipping, extension, truncation, etc. when required. 

Moreover, unlike previous work, this study incorporates the concept of marginal cost in its 

objective function calculation. When evaluating the next-optimal scenario, the proposed objective 

functions account for the negative externalities experienced by the vehicles on all approaches other 

than the one being served. This is to say that for any additional vehicle served, the delay 

experienced by vehicles on unserved approaches is augmented and balanced against the time 

savings gained, when deciding which phase should run next and for how long. 

Low MPR of CAVs is one of the critical issues when relying on connected vehicle data, especially 

in signalized intersection-related applications. As a result, robustness, versatility, and effectiveness 

of the strategies are examined under different mixes of traffic. To this end, an intelligent fully-
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actuated controller logic computes vehicle-based performance metrics to optimize control 

parameters and individual vehicle trajectories jointly. 

 

5.1. Conceptual Framework 

This study establishes a method to improve signal control strategies using individual vehicle 

trajectory information of a mixed fleet traffic environment. The proposed approach optimizes 

signal control parameters and trajectories of vehicles, interdependently and dynamically, to 

improve the traffic system’s performance. Figure 5-1 shows the overall conceptual framework of 

the control strategies. 

Three types of vehicles are considered in this study; Connected (with connectivity but no 

automation), Automated vehicles (with connectivity and automation), and Regular (with no 

connectivity and no automation). 

Connected Vehicles (CVs) are driven by human drivers and receive information from the 

surroundings through V2I and V2Vcommunication. Based on the information driver is provided 

with advice to control the vehicle. Final decisions regarding the vehicle’s motion are at driver’s 

discretion. 

Automated Vehicles (AVs) are the vehicles that are driven by robotic drivers and receive 

information from the surroundings through V2I and V2Vcommunication. All decisions are 

automated, and the vehicle is controlled accordingly. AVs can also represent a particular case of 

CVs where the driver has no reaction time and follows all conveyed messages for optimal flow. 



92 

 

 

Regular Vehicles (RVs) are driven by human drivers and receive no information from the 

surroundings except what the driver can observe. Decisions regarding the vehicle’s motion are 

based on the driver’s perception of the conditions and the signage on the road facility. 

In the study, different market penetration rates of CARs are tested. 

 

Figure 5-1 Schematics of the traffic signal control for mixed traffic environments 

 

By assuming wireless communication, the CAVs can collect and disseminate traffic information 

and, the controller can provide meaningful data to the driver. CAVs periodically transmit 

information about themselves (every 1 second). Each record consists of a position, identification 

number, speed, direction, state, and a timestamp of the moment when the information was created. 

CAVs can receive optimized advice as to their speed and position.   
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Traffic controller can receive all the information CAVs are exchanging, thus finding out how 

crowded intersection approaches are. The conceptual framework assumes adaptive traffic 

controller logic. It is capable of optimizing control parameters based on the calculated traffic 

performance measures (Signal Plan Optimizer). Our control method is, thus, capable of accurately 

computing vehicle-based traffic metrics. The most important metrics used are individual vehicle 

delay and queue length. 

Once the optimal signal timing scenario is known, the actual CAV’s trajectory can be optimized. 

Vehicle Trajectory Optimizer, accounting for the queue length and optimal signal control 

parameters, determines the adequate vehicle behavior and sends optimized advice to all the CAVs. 

The delay is calculated for each vehicle that passes through an intersection. The queue length and 

vehicles delay are computed by the traffic controller, who knows the traffic configuration every 

one second. For every vehicle record received, the controller checks it against its database. The 

record is stored and considered when calculating approach/movement parameters (demand, queue 

length, waiting time, etc.). 

 

5.2. Simulating CAVs in VISSIM 

To test and evaluate the methodologies simulation environment testbed was set up. The simulation 

framework presented here is primarily an evaluation tool of the method and strategies devised. 

Accordingly, a commercially available simulation environment VISSIM (148) was utilized. Please 

note that the methods presented in the dissertation are independent of the specific microscopic 

simulator used in this demonstration. Microscopic traffic simulation model of the real-world 
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corridor was used to emulate real-world roadway geometry and traffic conditions as well as the 

signal controller setup. In the prediction module, conventional vehicles are assumed to follow 

some standard car-following model, i.e., Wiedemann’s. Wiedemann defines four modes of driving 

behavior: free driving, approaching, following, or braking. The car following behavior was 

modified for CAVs to represent enhanced operational features of these vehicles. Parameters such 

as look ahead distance, lane changing, reaction times, following headways, etc. were modified 

based on recommendations given in reference (149). Table 5-1 enumerates the parameters used in 

the Wiedemann’s model for different vehicle types, i.e., CARs. 

 

5.3. Overview of new control strategies 

Basing on the conceptual framework, the next two chapters design and discuss two novel traffic 

control schemes. The first one represents a prediction-based adaptive traffic control strategy, while 

the second is a real-time platoon control strategy.  

Prediction-based adaptive control method formulated in this research, in which vehicle trajectories 

provide the basis for predictive information to the signals on anticipated demand, forms the basis 

for timing plan settings optimization. Next, the information on upcoming signal changes provides 

input to vehicles to optimize their trajectories to reduce unnecessary idling and breaking.  

Real-time platoon self-identifying control strategy represents a platoon-phase scheduling heuristic 

that considers clusters of vehicles as critical jobs. The framework devises an advanced, online, 

signal control logic for mixed traffic environments utilizing the information from CAVs to 
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augment controller/sensor data. A prerequisite of such an approach is the application of the 

innovative procedure for segmentation of traffic flows based on CV trajectory data. 
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Table 5-1 Car Following model parameters – Wiedemann 74 Model. 

Parameter 
Connected 

Vehicles 

Automated 

Vehicles 

Regular 

Vehicles 

Average standstill distance (ft) 5.74 4.92 6.56 

Additive part of safety distance 2.5 3 2 

Multiplicative part of safety distance 1.875 2.25 1.5 

Look ahead distance 0 to 1230 feet 0 to 1640 feet 0 to 820 feet 

Look back distance 0 to 735 feet 0 to 980 feet 0 to 490 feet 

Observed vehicles 6 10 2 

Maximum deceleration - own vehicle (ft/s2) -13.12 -13.12 -13.12 

Maximum deceleration - trailing vehicle (ft/s2) -9.84 -9.84 -9.84 

-1 ft/s2 per distance - own vehicle and trailing 

vehicle (ft) 
200 200 200 

Accepted deceleration - own vehicle (ft/s2) -3.28 -3.28 -3.28 

Accepted deceleration - trailing vehicle (ft/s2) -1.64 -1.64 -1.64 

Minimum headway -front/rear (ft) 1.435 1.23 1.64 

Safety distance reduction factor 0.525 0.45 0.6 

Maximum deceleration for cooperative braking 

(ft/s2) 
-11.48 -13.12 -9.84 

Maximum speed difference (mph) 6.71 6.71 6.71 

Maximum collision time (seconds) 10 10 10 

Collision time gain (seconds) 2 2 2 

Minimum longitudinal speed (mph) 2.24 2.24 2.24 

Time before direction changes (seconds) 0 0 0 

Overtake same lane vehicle -minimum lateral 

distance standing (ft) 
0.5775 0.495 0.66 

Overtake same lane vehicle - minimum lateral 

distance driving (ft) 
2.87 2.46 3.28 
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To compare the novel - adjusted spatial longitudinal variation (ASLV) - clustering technique 

against a more conventional approach – a critical headway-based platooning - was also examined 

within the same control logic. The ASLV method differs from what transportation research and 

practice consider platooning. Reported results demonstrate that at corridor level, conventional gap-

out platoon-based control, unlike the ASLV self-identification control method, fails to consistently 

achieve superior operational efficiency compared to the vehicle-actuated type of control. 

Connected and automated vehicles communicate with the signals to convey their desired turning 

movement and accumulated delay along the corridor. This allows for the isolated controller to 

operate in an intelligent, yet, fully-actuated manner, recognizing the need to coordinate major 

direction traffic flows, i.e., to enable progression along the corridor, when warranted. In the next 

two chapters, the strategies are discussed in detail, separately. 
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CHAPTER 6. PREDICTION-BASED ADAPTIVE SIGNAL 

CONTROL 

Advances in wireless communication have offered new possibilities for Intelligent Transportation 

Systems (ITS), aimed at improving driving safety and traffic efficiency. By adding short-range 

wireless communication capabilities to vehicles, these form a mobile network of vehicles that can 

exchange information with the infrastructure and among themselves. This study examines the 

possibility of deploying an adaptive signal control system at intersections, a system that can base 

its control decision on information coming from vehicles.  

The effort presented in the chapter is aimed at designing a signal control strategy which reduces 

delay and offers fairness of progression to all the drivers in a mixed vehicular traffic environment 

using vehicle trajectories’ information. Simultaneously, vehicle behavior is regulated with respect 

to the optimal signal scenario applied. The distinct contribution of the method is its ability to 

account for and optimize both components; i.e., it does not improve one aspect of the system at 

the expense of the other. While an improved control strategy is expected to enhance traffic 

performance, vehicle behavior is further adjusted, in response to signal indication encountered, to 

reduce idling thus serving an eco-friendly objective. Therefore, the proposed approach 

interdependently and dynamically determines signal timings and adjusts trajectories of vehicles to 

improve the traffic system’s performance. Furthermore, unlike previous integrated solutions, 

which independently optimize certain signal plan operational features (either splits or cycle lengths 

or offsets), the method proposes to advance the deployed signal control strategy in real-time fully. 
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6.1. Predictive Traffic Control Strategy Framework 

The overall framework comprises two interactive components: 1) real-time vehicle trajectories 

optimization and 2) predictive signal control parameters optimization. The methodological 

framework is presented in Figure 6-1. The framework defines the interaction between the two 

modules: predictive and real-time module. The selected corridor is modeled in the predictive 

module: this includes setting up a general intersection (corridor) configuration, demand levels, 

signal control parameters, etc. Based on prevailing demands from the field, the predictive unit 

evaluates a set of feasible solutions to determine the signal control scenario that optimizes the 

selected objective function. Signal control scenario which gives the optimal objective function 

value is identified as the next scenario and is communicated to the real-world controller. 

Simultaneously, CAVs also receive relevant information such as indication (and its duration) 

encountered at the first upstream signal. Real-world deploys an optimized signal timing strategy 

over the next Tplan seconds. While operational in the real world, an ongoing prediction decides 

the optimal strategy over the next Tplan seconds. 

Real-world signal timing plans are known over the next Tplan period. Based on the signal timing 

plan, trajectories of CAVs are optimized to achieve an environmentally friendly objective. 

Trajectory uncertainty is eliminated for CAVs since they are not surprised by the end of green 

indication, unlike regular vehicles. Furthermore, the queue length in each lane of every approach 

is known. 

At this stage, trajectory optimization takes place. CAVs adapt their speeds accordingly; based on 

when the current phase will end and how many cars are already queued CAVs will either avoid 
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unnecessary accelerations or react faster on the green. Fuel consumption and pollutant emissions 

are thus reduced. 

 

 

Figure 6-1 Modelling framework. 

 

6.1.1. Prediction Signal Control Optimization (P-SCO) 

P-SCO aims to dynamically optimize signal control settings, given the real-time traffic 

information. The solution method is based on a greedy heuristic (Figure 6-2) that has been designed 
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to optimize signal controller’s phasing, sequence, and duration in an acyclic manner (over a period 

i.e., prediction horizon). A fully-actuated intelligent controller logic is presented. The controller 

keeps track of the vehicles on all approaches within the predefined distance, and accurately 

measures volume, queue length, and delay. Individual vehicle delay is computed, aggregated, and 

used as the basis of the optimization procedure. The following optimization problem is the core of 

P-SCO. 

 

Given: 
 

 Φ: Set of feasible phasing scenario 

 Vehicle Data 

 𝑉𝑒ℎ_𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ: Set of vehicles approaching the intersection 

 𝐷𝑒𝑙𝑎𝑦𝑣, ∀ 𝑣 ∈ 𝑉𝑒ℎ_𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ  

  

Parameters:  

 𝒎�̃�: performance index of scenario �̃� 

 𝑣𝑒ℎ_𝑠𝑒𝑟𝑣𝑒𝑑�̃�: Set of vehicles who get served 

 𝑣𝑒ℎ_𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑�̃�: Set of vehicles who do not get served 

  

Objective:   

 𝑎𝑟𝑔 𝑚𝑖𝑛
𝒔∈𝛷

𝒎�̃�  
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Such that:   

 Vehicles respect the laws of physics  

 Drivers follow the Wiedemann 74 car following model  

 
No frequent transitions between signal plans so as not to disrupt the 

progression 
 

 Vehicles on the unserved vehicles are not waiting for more than 𝑻𝑴𝒂𝒙  

 𝑣𝑒ℎ_𝑠𝑒𝑟𝑣𝑒𝑑�̃�: vehicles in 𝑉𝑒ℎ_𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ who cross the intersection  

 
𝑣𝑒ℎ_𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑�̃�: vehicles in 𝑉𝑒ℎ_𝐴𝑝𝑝𝑟𝑜𝑎𝑐ℎ who do not cross the 

intersection 
 

 𝒎�̃� = ( ∑ 𝐷𝑒𝑙𝑎𝑦𝑣

𝑣∈𝑣𝑒ℎ_𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑�̃�

) ( ∑ 𝐷𝑒𝑙𝑎𝑦𝑣′

𝑣′∈𝑣𝑒ℎ_𝑠𝑒𝑟𝑣𝑒𝑑�̃�

)⁄  ( 6-1 ) 

 

 

Timing plan generation process takes place at the end of each phase and establishes a plan for the 

following Tplan duration based on the measured parameters. Further phasing adjustments may 

occur, such as phase skipping, extension, rotation, and truncation. Controller logic accounts for 

various limitations, such as max/min Green time or the maximum allowed waiting time, also, gap 

and max out are recognized. There is no notion of cycle length. Phasing is performance metrics - 

driven, i.e., delay of still unserved vehicles vs. total delay of served vehicles. Note that unusual 

waiting times on any approach, are considered a priority when establishing a phasing sequence 

and these vehicles will be served first. 

The algorithm determines the optimal control settings to service the predicted demand by 

minimizing the objective function, 𝒎�̃�. The objective function considers an individual vehicle’s 

delay, the negative externality of serving an approach and number of served and unserved vehicles. 

The objective function addresses two conflicting aspects: minimizing total delay while maximizing 
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throughput, it is calculated as the total vehicle delay on all unserved approaches divided by the 

total delay experienced by the vehicles being served. However, the choice of the objective function 

can be considered planner’s preference. 

At this stage, vehicle progression under different signal phase timings is predicted and utilized to 

determine the most desirable signal scenario with respect to prevailing traffic conditions. A 

microscopic traffic simulation model of the real-world corridor is the core of the prediction 

module. It is intended to emulate real-world roadway geometry and traffic conditions as well as 

the signal controller setup. In the prediction module, conventional vehicles are assumed to follow 

some standard car-following model, e.g., Wiedemann’s. Wiedemann defines four modes of driving 

behavior: free driving, approaching, following, or braking. The car following behavior was 

modified for CAVs to represent enhanced operational features of these vehicles. Parameters such 

as look ahead distance, lane changing, reaction times, following headways, etc. were modified 

based on recommendations given in reference (Stanek et al., 2018). 

 

Given current (real-time) signal settings and vehicle data, all possible signal timing/phasing 

settings are identified to form the vector, 𝑺. “Feasible phasing scenario” refers to potential phase 

combinations that account for and give the right of way to the movement if: (1) the number of 

inbound vehicles at an intersection approach/movement is the highest compared to that of any 

other approach and (2) there is no vehicle at any other approach that had been waiting longer than 

a pre-set maximum time 𝑻𝑴𝒂𝒙 (ex. 120sec). Each scenario that satisfies these two conditions serves 

the critical inbound demand and becomes a part of 𝑺. Vector of scenarios, 𝑺, evaluated when 

identifying the optimal scenario. For example, in a standard NEMA-RBC controller setting, an 
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approach corresponding to EBL (phase 1) has the longest queue, so either 1 and 5 or 1 and 6 can 

be implemented to serve this demand. (150) These two combinations will be included in 𝑺. Here 

the phase combinations consist of any two non-conflicting signal groups. To determine which 

phase should run next and for how long 𝑺 consists of higher ranked phasing scenarios (in terms of 

greater queue length or waiting time). The purpose of 𝑺 is to limit the search space and reduce 

computational effort. 

 

Then each of the feasible signal timing settings, �̃� ∈ 𝑺, is tested, one by one. Under each �̃� scenario, 

corresponding objective function value, 𝒎�̃� , is recorded and a vector 𝑴, (𝒎�̃� ∈ 𝑴) is created. 

Signal control settings associated with the optimal objective function value is determined and 

implemented in real-time. If more than one of the scenarios result in an optimal objective function 

value, signal timing plan most similar to the current one is preferred. 

In the predictive module, for each �̃� ∈ 𝑺 at every time step, the delay of served and unserved 

vehicles is being computed. In addition, maximum queue is recorded, regardless of the approach, 

as well as vehicle’s earliest entry on any approach, other than the one being served. Low demand 

conditions allow for current phase duration to be extended if no vehicle is waiting to be serviced 

at any other approach. High demand conditions require a phase maximum time to be defined. 

Earliest entry on a conflicting (or any other) approach starts the “Max Green” timer for an active 

phase. 

 

The time it takes to clear the queued vehicles at an approach/movement represents the optimal 

duration of a phase -𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛�̃�. Minimum 𝒎�̃� phase scenario will become the 𝑁𝑒𝑥𝑡𝑃ℎ𝑎𝑠𝑒 to run 

in RT and a part of the optimal signal information fed to RT. Once 𝑁𝑒𝑥𝑡𝑃ℎ𝑎𝑠𝑒 is determined, 𝑺 
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is updated. Previous step’s 𝑁𝑒𝑥𝑡𝑃ℎ𝑎𝑠𝑒 will not be included in the new 𝑺 unless extended due to 

lack of demand on conflicting approaches/movements. 

 

Figure 6-2. Predictive adaptive signal control algorithm 

The procedure is repeated until the entire prediction period is evaluated and as a result, optimal 

phasing order (and respective durations) are known over the next 𝑻𝑷𝒍𝒂𝒏 duration. 

 

Optimal adaptive traffic signal determining algorithm 

Require: snapshot of current traffic condition, vehicles’ accumulated delay and desired turns 

Objective: Minimize the delay at the intersection and externality of serving approach 

Procedure: Efficient Signal timing plan 

 for �̃� in 𝑺: 

  𝐷𝑒𝑙𝑎𝑦𝑠𝑒𝑟𝑣𝑒𝑑  = 0 

  𝐷𝑒𝑙𝑎𝑦𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑  = 0 

  𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛�̃� = 0 

 

  while (𝑊𝑎𝑖𝑡𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠  < 𝑇𝑚𝑎𝑥  and 𝐷𝑒𝑚𝑎𝑛𝑑𝑃𝑆  > 0): 

 
𝐷𝑒𝑙𝑎𝑦𝑠𝑒𝑟𝑣𝑒𝑑  += ∑ 𝐷𝑒𝑙𝑎𝑦𝑣

𝑣∈𝑣𝑒ℎ_�̃�_𝑎𝑝𝑝𝑟𝑜𝑎𝑐 ℎ

 

 

𝐷𝑒𝑙𝑎𝑦𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑  += ∑ 𝐷𝑒𝑙𝑎𝑦𝑣

𝑣∈𝑣𝑒ℎ_𝒏𝒐𝒕−𝒔 _𝑎𝑝𝑝𝑟𝑜𝑎𝑐 ℎ

𝒏𝒐𝒕−𝒔 ∈𝑺\�̃�

 

// Delayv  is control delay for all regular vehicles and delay accumulated over the corridor for 

the connected or automated vehicles. 

 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛�̃�+= 𝑇𝑖𝑚𝑒𝑆𝑡𝑒𝑝 

 

 𝒎�̃� =
𝐷𝑒𝑙𝑎𝑦𝑢𝑛𝑠𝑒𝑟𝑣𝑒𝑑

𝐷𝑒𝑙𝑎𝑦𝑠𝑒𝑟𝑣𝑒𝑑
 

 𝑁𝑒𝑥𝑡𝑃ℎ𝑎𝑠𝑒 =  arg min
�̃� ∈ 𝑺

𝒎�̃� 

 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛 = 𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛𝑁𝑒𝑥𝑡𝑃 ℎ𝑎𝑠𝑒  
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6.1.2. Real-time Component 

The real-time stage represents the actual real-world timeline and a real-world signalized corridor 

where the advanced signal control strategy is to be implemented. As mentioned above, the 

information exchange between a connected vehicle and the signal controller is enabled. The traffic 

signal system can retrieve high resolution (frequency of 1 second or higher) phase status and 

duration data as well as vehicle information within a pre-specified distance from the controller. 

Furthermore, the controller exchanges relevant information with the prediction component. It is 

also capable of computing traffic performance metrics through wireless communication of the 

traffic signal system with vehicles. Individual vehicle delay and queue length are considered most 

relevant in this analysis. The queue length and control delay is computed by the traffic controller, 

which is aware of the traffic configuration at every time step. An essential feature of this work is 

that CAVs are capable of computing their delays, accumulated along the corridor, and transmit it 

to the controller. Accumulated delay forms the basis of the decentralized strategy of flow 

synchronization over a facility. At this stage, CAVs are assumed to drive in an eco-friendly 

manner. Hence, their optimized speeds are determined. 

 

The heuristic in Figure 6-3 was designed to achieve vehicle trajectory adjustments with respect to 

anticipated green/red time onset and duration. Signal timing information was considered essential 

since no real-time trajectory adjustment can be realized without knowing signal control parameters 

a priori. Inbound vehicles are only considered, and once the stop bar is crossed, they are 

disregarded from signal/trajectory-related calculations. 
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Figure 6-3 Real-time speed advisory algorithm. 

In this study, queue lengths and arrivals on green are determined within the predictive module. 

These are calculated as the two parameters in the predictive stage and transmitted to the controller 

in real-time. This property illustrates another novelty of the proposed approach. The method 

transfers state variables, dynamically, from predictive to the real-time component of the system. 

As soon as this information is known in real-time, the associated module, on a second-by-second 

basis, adjusts CAV’s speeds to reduce idling along the trajectory. Based on the speed advisory 

heuristic presented in Figure 6-3, CAVs are being advised to accelerate if it is reasonable to cross 

Speed Advisory heuristics for adaptive traffic signal 

Require: Downstream signal plan, vehicles’ current progression status, vehicle 

attributes 

Objective: Reduce idling at the intersection 

Procedure: Efficient speed advisory 

 for 𝑣𝑒ℎ𝑖  in 𝐴𝑙𝑙_𝑉𝑒ℎ𝑖𝑐𝑙𝑒𝑠: 

  if 𝑣𝑒ℎ𝑖 ∈  𝐶𝑉, 𝐴𝑉 : 

   Compute 𝐷𝑖𝑠𝑡𝑖 ; Distance of 𝑣𝑒ℎ𝑖  to the downstream signal 

   Compute 𝑉𝐺𝑟𝑒𝑒𝑛  and 𝑉𝑅𝑒𝑑  for the 𝑣𝑒ℎ𝑖 , 

// 𝑉𝛷  is the speed that 𝑣𝑒ℎ𝑖  needs to arrive at the start of the next 𝛷 phase. If the 

current phase is already 𝛷, 𝑉𝛷  is set to a high number. 

   if (𝑉𝐺𝑟𝑒𝑒𝑛 < 𝑉𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑖𝑛𝑔 ): 

    𝑉𝑑𝑒𝑠𝑖𝑟𝑒  = 𝑉𝐺𝑟𝑒𝑒𝑛  

   else if (𝑉𝑅𝑒𝑑 > 𝑉𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑖𝑛𝑔 ): 

    𝑉𝑑𝑒𝑠𝑖𝑟𝑒  = 𝑉𝑀𝑖𝑛  

   else if (𝑉𝐷𝑒𝑠𝑖𝑟𝑒 ≅ 𝑉𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑖𝑛𝑔  and 𝑉𝑅𝑒𝑑 < 𝑉𝑝𝑟𝑒𝑣𝑎𝑖𝑙𝑖𝑛𝑔 ): 

    𝑉𝑑𝑒𝑠𝑖𝑟𝑒  = 𝑉𝑆𝑝𝑒𝑒𝑑𝐿𝑖𝑚𝑖𝑡  
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the intersection given the information regarding the next green indication and corresponding 

duration. Distance to stop bar and required range of speeds (𝑉𝑅𝑒𝑑, 𝑉𝐺𝑟𝑒𝑒𝑛) is computed for each 

connected/automated vehicle. A vehicle needs to attain the speed 𝑉𝑅𝑒𝑑 in order to reach the stop 

bar at the next onset of red; similarly, speed 𝑉𝐺𝑟𝑒𝑒𝑛 guarantees that the vehicle will clear the 

intersection within the next green indication. If the vehicle is moving at a speed lower than 𝑉𝐺𝑟𝑒𝑒𝑛, 

its desired speed is set to be 𝑉𝐺𝑟𝑒𝑒𝑛. If the vehicle is anticipated to arrive at the beginning of next 

red, its desired speed is reduced to its minimal speed 𝑉𝑀𝑖𝑛 to avoid idling i.e., stopping. In case 

current prevailing speed is, approximately, the desired speed, yet higher than 𝑉𝑅𝑒𝑑, the desired 

speed is set to be the maximum allowed speed i.e. the speed limit. 

 

6.2. TESTBED SETUP AND IMPLEMENTATION 

A simulation environment testbed set up is required to test and evaluate the methodology. Two 

identical microsimulation models were utilized to investigate the validity of the proposed 

conceptual framework: (1) Real-Time (RT) module, emulating real world and running in real time, 

and (2) Prediction (P) module, running as virtual reality, predicting traffic conditions. The RT and 

P modules are being run simultaneously; the P module designs an advanced signal control strategy, 

while the RT is implementing it and optimizing vehicle trajectories in response to said optimal 

strategy in real time. In this regard, the framework adopts a similar architecture as previous traffic 

estimation and prediction systems (151). 

Based on predicted trajectories, optimization of signal control settings is performed, and at the end 

of each prediction horizon, optimal signal parameters are fed to the real world. The adaptive 
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control method performs a rolling horizon-based optimization of signal settings via second/parallel 

simulation. The adaptive traffic control design assumes the controller, within the P module, 

decides the phasing according to the traffic configuration. Prediction uncertainty is modeled 

through a compliance rate of CAVs, acknowledging only the rate itself is unchanged when 

predicting trajectories. Vehicle trajectories are predicted based on the current field conditions and 

are expected to differ from the ones in real time. Furthermore, the two modules: RT and P used 

different random seeds. 

6.2.1. Communication between modules 

The two modules (models) communicate by transferring vehicle and signal information at 

predetermined time intervals. Real-Time Horizon represents a roll period when vehicle 

information is transmitted. Prediction Horizon represents the duration of time for which advanced 

control strategy is designed. 

At the beginning of each Prediction period, vehicle and signal controller information, representing 

the current state of the system in real time, are captured in RT and transferred to P. They contain 

the data related to all the vehicles in the network (location and position on approaches/movements) 

as well as signal timing – phasing and duration. 

At the end of each Prediction period, the controller retrieves predicted signal timing information - 

a sequence of phases along with associated durations - to be implemented in real time, over the 

next prediction horizon. It is essential to recognize the existence of the overlap (simulation 

running) time between the two modules. 
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Figure 6-4 Interaction between the modules. 

 

6.2.2. Overlap (BUFFER) time 

After initialization, buffer time represents the overlap in a simulation running time between the 

two modules. This overlap period initializes each prediction cycle. Each Real-Time Horizon ends, 

and each Prediction initializes representing the same signal and vehicle system state. At the start 

of each overlap time, vehicle state information is transferred from RT to P. 

Since overlap related signal information is already available in P - from the previous prediction - 

once vehicle information is exchanged between the two modules a new prediction cycle can start: 

first reproducing overlap, then the actual prediction time. 

Buffer time serves three purposes: 1) eliminates abrupt switching between phases when going from 

RT to P and vice versa, 2) ensures a continuous and seamless information exchange between the 
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modules, 3) enables P to “warm-up” by incorporating previous signal and vehicle states before 

phasing scenarios evaluation begins. 

 

6.2.3. Real-time Module 

The real-time simulation model emulates the real-world traffic network and its operational 

characteristics. The simulation model runs at the same rate as the actual physical system. 

A warm-up period of 300 seconds is assumed, of which the last period representing the buffer time 

(warmup overlap). Initial signal control parameters obtained from the warmup overlap are fed to 

prediction. 

At the beginning of each Real-Time Horizon, vehicle information is being communicated from 

RT to P and traffic conditions prediction is being executed. Real-Time Horizon assumed here is 

180 seconds. At the end of Prediction Horizon, P module has generated an optimized signal control 

strategy, and the RT module implements it in real-time. These two data exchanges are executed 

continuously in real time. 

 

6.2.4. Prediction Module 

The interaction between the two modules, RT P, is continuous and occurs at predetermined 

intervals. It should be noted that in addition to (before the beginning of any) Prediction Horizon 

time, overlap time is also being simulated in P. This time is not considered as part of the Prediction 

Horizon time. 
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The P module replicates the overlap time sequence of phases and their duration while predicting 

traffic conditions based on the “current state of the system.” The current state of the system 

characterizes real-world traffic conditions as if an aerial snapshot was taken referencing actual 

locations and positions of the vehicles along the corridor. 

The current RT signal controller state and timing information from the previous prediction, i.e., P 

cycle is thus equivalent and, as soon as current vehicle data from RT is available, the new 

prediction cycle can begin. Once this overlap time runs out, prediction evaluates which signal 

group should run next and for how long. When these are determined, P module re-simulates 

overlap time and continues onto the signal group sequence identified as optimal in the previous 

steps, so that traffic demand and vehicle interactions can be re-estimated iteratively Figure 6-4. 

The procedure is repeated until the entire Prediction Horizon is exhausted and therefore optimal 

control strategy determined. At this point, the Tplan is communicated to (and applied in) RT over 

the next 180 seconds (Real Time horizon). (). 

 

6.3. Vehicle-Trajectory based Signal Control Optimization Logic 

The method to dynamically optimize signal control settings is applied within the predictive 

module. 

An algorithm has been designed to optimize the signal controller’s phasing, sequence, and duration 

in an acyclic manner (over a period i.e., Prediction Horizon). The heuristic determines the optimal 

control strategy to service the predicted demand by minimizing the objective function. For each 

feasible phase scenario (PS) objective function value is being evaluated at each time step. The 
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objective function considers two aspects: minimizing total delay while maximizing throughput. For 

a chosen phasing scenario, it is calculated as the total delay on all unserved approaches divided by 

the total delay of served vehicles; please refer to the equation ( 6-1 ). 

“Feasible phasing scenario” refers to the potential phase combinations that account for and give 

the right of way to the movement if  

1) the number of inbound vehicles on an intersection approach/movement is the highest 

compared to that of any other approach, and  

2) there is no vehicle at any other approach that had been waiting longer than a pre-set 

maximum time, i.e. T_max (e.g., 120sec). 

Each PS that satisfies these two conditions serves the critical inbound demand and becomes a part 

of the CASELIST. CASELIST is a vector of scenarios that will be considered for evaluation when 

identifying the optimal scenario. For example, in a standard NEMA-RBC controller setting, an 

approach corresponding to EBL (e.g., phase 1) has the longest queue, so either 1 and 5 or 1 and 

six can service this demand (150). Accordingly, these two PSs are included in the CASELIST. 

Here, the phase combinations consist of any two non-conflicting signal groups. 

CASELIST consists of higher ranked PSs (regarding greater queue length or waiting time) when 

determining which phase should run next and for how long. The purpose of the CASELIST is to 

limit the search space and reduce computational effort. 

In the P module, under current PS, at every time step, the number of Queued (Q) and Served (S) 

vehicles is being recorded. Q and S correspond to the movement being served under evaluated PS. 

Also, maximum Queue (max_Q) is recorded, as well as vehicle’s earliest entry on any approach, 
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other than the one being served. The last two parameters are important when accounting for 

demand extremes. Low demand conditions allow for current PS duration to be extended if no 

vehicle is waiting to be serviced at any other approach. High demand conditions require a 

maximum phase time to be defined. Earliest entry on a conflicting (or any other) approach starts 

the maxGreen timer for an active phase. 

The time it takes to clear the queued vehicles at an approach/movement represents the optimal 

duration of a phase scenario under evaluation. For each PS in the CASELIST, optimal duration 

and objective function value is being calculated. It will become a part of the optimal signal file fed 

to RT if the associated objective function value is found to be optimal. The optimal objective 

function value will determine which PS will be applied next in the RT. 

Once the next optimal phasing scenario to execute in RT is determined, the CASELIST is updated, 

once again enumerating only feasible PSs. Previous step’s optimal PS will not be included in the 

new CASELIST unless extended due to lack of demand on conflicting approaches/movements. 

The procedure is being repeated until the entire prediction period is evaluated and as a result, 

optimal phasing order (and their durations) are known over the next 180 seconds. At this time 

optimal signal timings file is transferred to the RT module and starts running in real time. 

 

6.3.1. Signal Controller Logic 

The advanced intelligent fully actuated type of controller operation builds on the logic of a NEMA-

RBC controller (150). Phase status and duration is determined based on the queue length and delay 

experienced by individual vehicles. The controller continuously monitors the vehicles within the 
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predefined distance from the controller, so it can measure both volumes and delay accurately. The 

queue-based delay is calculated and used as the basis of the optimization procedure. 

The timing plan generation process takes place once during each period and establishes signal 

timing over the next Tplan seconds based on the measured parameters. However, further phasing 

adjustments may occur, such as phase skipping, extension, rotation, and truncation. 

 

Acyclic controller nature is assumed – there is no notion of cycle length. Phasing is driven by 

computing the ratio: served vs. total unserved vehicles’ delay. 

The signal plan is adjusted to meet various limitations, such as max/min Green time or the 

maximum allowed waiting time. After the minimum green time, the phase gaps out if no (or less 

than a pre-specified number of) incoming vehicles is detected. It should be noted that the concept 

is considering a distance gap out. The extension is enabled if vehicles are still incoming, but no 

other movement is calling a phase. Additionally, if next (optimal scenario) phase is Green and 

determined to be less than minGreen, active phase is extended until an acceptable (minimum) 

number of vehicles are recorded on any of the approaches.  Duration based max out, like with RBC 

controllers, accounts for earliest vehicle entry on any approach-movement except the one served. 

Phase Rotation/Skipping is only possible after a phase maxes out and no vehicle is waiting longer 

on any other approach than the one calling this phase. Low demand allows for optimal green time 

to be shortened. 

Note that unusual waiting times on any approach, are considered a priority when establishing a 

phasing sequence and those vehicles will get served first. 
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6.4. Numerical Experiments Results 

The method proposed was evaluated on two testbeds. 

1. An isolated-intersection under different MPRs of CARs and different demand levels. 

2. A real-world corridor under calibrated demand under different MPRs of CARs. 

An isolated intersection in (1) is a part of the real-world corridor in (2) and the experiments are 

designed in such a way to first analyze the validity of the strategy on an intersection-control level. 

Next, to extend the concept and evaluate its potential to, de facto, synchronize traffic flow, when 

warranted by, CAVs accumulated delay, the analysis is conducted on a corridor level as well. 

As shown in Table 6-1, in both cases, isolated intersection and corridor, 4 cases of traffic mixes, 

i.e., different MPRs of CARs, are considered. 

Table 6-1 Summary of the MPRs of CARs. 

MPR 

Case 

Market Penetration Rate (%) 

Connected Vehicles Automated Vehicles Regular Vehicles 

1 0.0 % 0.0 % 100.00 % 

2 33.33 % 33.33 % 33.33 % 

3 0.0 % 100.00 % 0.0 % 

4 100.00 % 0.0 % 0.0 % 

 

East-West direction is assumed to be the major direction. As shown in Table 6-2, three demand 

levels: low, medium, and high, are considered for the isolated intersection. Demand scenarios were 
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designed to cover a 2-hour period, where each demand level is simulated for 30 minutes, starting 

from low, then medium, high and the simulation ends with a medium demand level. The chosen 

high demand level is unrealistically high and was chosen to test the capabilities of the strategy 

under extreme conditions. The corridor-level analysis considered real-world calibrated demand 

and the experiments were conducted to cover a 1-hour period. 

Table 6-2 Flow on each approach under different demand levels. 

Demand Case 
Direction Flow (vehicles/hour/lane) 

East  West North South 

Low 600 600 270 270 

Medium 800 800 360 360 

High 1200 1200 540 540 

 

Three measures of effectiveness (MOEs) are presented in Figure 6-5 through Figure 6-7, for each 

of the testbeds. Active signal-speed advisory strategy in a mixed traffic environment significantly 

improves traffic operations concerning primary performance indicators such as total delay, stopped 

delay and queue length. The results are aggregated for all approaches, over a single evaluation 

period, for each of the cases reported. As for the isolated intersection, overall queue lengths were 

reduced by as much as 74% (period 7 and 8, traffic mix 1 and 2). Comparing all of the approaches, 

total delay decreased by at most 33 %, while stopped delay was reduced by 43% at most. 
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(a) (b) 

  

Figure 6-5. Queue length reduction (a) isolated intersection; (b) whole Corridor. 

 

(a) (b) 

  

Figure 6-6. Total delay reduction (a) isolated intersection; (b) whole Corridor. 

 

As for the overall corridor performance, the figures below establish a global, positive, trend as 

well, demonstrating considerable improvement in each of the three MOEs. Fuel consumption and 

emissions savings seemed modest, at best. Up to 10% reduction in fuel consumption was observed, 
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but the results were not consistent throughout the experiments. Conversely, overall delay stopped 

delay, and queue length was significantly reduced in all tested scenarios, with, in some cases, up 

to 43% (delay) and 66% (queue length) reduction. 

 

 

 

(a) (b) 

  

Figure 6-7. Stopped delay reduction (a) isolated intersection; (b) the whole Corridor. 

 

6.5. Conclusion  

 The framework proposed in this study formulated an adaptive traffic signal system based on short-

range wireless V2X communication. With traffic configuration fed continuously to the traffic 

controller, vehicle-based performance metrics were computed to optimize control parameters and 

vehicle speeds. CAVs were presumed to calculate and transmit their accumulated delay along a 

route. Accumulated delay formed the basis of the decentralized strategy of flow synchronization 

over the facility.  
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A microsimulation-based prediction module was designed to project the demand and optimize 

control parameters to be applied in real-time. In this setting, connected and automated vehicles 

communicate with the signals to convey their desired turning movement and accumulated delay 

along the corridor. Communication of such information allows for the isolated controller to operate 

in an intelligent, yet, fully-actuated manner, recognizing the need to coordinate major direction 

traffic flows, i.e., to enable progression along the corridor, when needed. Furthermore, there is no 

issue of privacy violation as vehicles are not being tracked throughout their route. Also, controllers 

do not store any data regarding the vehicles once they clear the intersection. 

This architecture demonstrated clear benefits over current adaptive systems based on sensors or 

cameras. An integrated modeling framework to validate the method and its effectiveness in a 

microsimulation environment was developed. Testbeds included a corridor and an isolated 

intersection that is a part of a signalized urban arterial. 

The focus of the analysis was on traffic operations during oversaturation, and how the system 

behaves in such circumstances. Total and stopped delays, as well as queue lengths, were 

significantly reduced with the strategy applied; however, pollutant emissions did not decrease 

consistently. Please note that the authors did not derive the fuel consumption measurements, these 

were the output of the microsimulation tool used. Of course, as more of the vehicle fleet becomes 

electrified, this particular performance metric becomes a less important consideration. The rest of 

the operational metrics were calculated independently of the tool. 

Although the study puts forward an innovative and promising approach that provides a useful 

foundation for traffic control in a mixed connected vehicle traffic environment, several 

implementation challenges would have to be addressed, including: 



121 

 

 

 CAVs need to convey their information to the intersection controller infrastructure which 

means that data transmitted should be of a particular format. Hence, there is a need for the 

standardization of the format and the exchange process itself. 

 CAVs, currently, do not estimate/calculate their delay. Technology to achieve this should 

be such that the users are not able to change the parameters and the models utilized are to 

be standardized. 
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CHAPTER 7. REAL-TIME PLATOON SELF-IDENTIFYING 

ADAPTIVE SIGNAL CONTROL 

As established previously, with the emergence of connected vehicle technology, an abundant 

amount of high-resolution data become available. Trajectory data from connected/automated 

vehicles offer more reliable real-time traffic information and represent an essential data source for 

a growing number of applications, including signal control strategies (146). Until recently its 

exploitation in the realm of adaptive traffic control has been limited. State of the practice real-time 

signal control applications relies on infrastructure-based detection data. With technological 

advances, obtaining detailed, more accurate and more reliable information becomes achievable. 

Naturally, better information enables the potential for better insight into operations, and 

consequently, improved control and management (85).  

If higher efficiency is to be achieved at a transportation system level, opportunities for improved 

performance need to be realized at both significant components, freeways, and arterials, 

concurrently. Higher throughput on freeways in mixed traffic would cause gridlock on the arterial 

street network unless a considerable improvement in signalized intersection control schemes is 

achieved (147).  

Consequently, this study combines the maximization of throughput with the minimization of delay, 

to keep vehicles moving, while clearing the queues, whenever warranted by the delay incurred. 

The developed strategies will not necessarily give service priority to the largest platoon as the 

control decision is tradeoffs between clearing the queue and progressing a platoon. 
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The proposed control scheme represents a platoon-phase scheduling heuristic that considers 

clusters of vehicles as critical jobs. The basic premise of the proposed control strategy is that a 

platoon should be given preferential treatment, so it can traverse the intersection unimpeded by a 

red signal indication when delay savings are more substantial compared to any of the alternative 

phase-platoon pairs. This framework formulates an advanced, real-time, signal control logic for 

mixed traffic environments utilizing the information from CAVs to augment controller/sensor 

data. A prerequisite of such an approach is the application of the formulated procedure for 

segmentation of traffic flows based on CV trajectory data. 

This study incorporates vehicle-following behavior standards into its platoon self-identification 

logic. The drivers are expected to adjust their behavior according to the actions of their immediate 

surroundings, i.e., other drivers. Consequently, the vehicle’s actual position is dependent on 

whether a preceding vehicle can be identified, and if so, acknowledging longitudinal spatial 

adjustment applies. 

This study proposes an advanced decentralized control strategy, designed to also when warranted, 

maintain the coordination along the corridor. Accordingly, CAVs are,  as was already established 

in the previous chapter, assumed to compute and transmit their accumulated delay, along a route, 

thus enabling corridor traffic flow synchronization when incurred delay justifies such actions. 

Moreover, this study incorporates the concept of marginal cost in its objective function calculation. 

When evaluating the next-optimal scenario, the proposed objective function accounts for the 

negative externalities imposed by the said scenario. 

Flexible controller logic and phasing sequence/duration driven by vehicle-based computation of 

performance metrics distinguish this method and one presented in Chapter 6 from the ones found 
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in the literature. Considering the overly simplified signalized intersection, signal, and roadway 

configurations, previous studies predominantly focused on control decisions whether to switch or 

extend the active phase to accommodate an incoming platoon. As mentioned in Chapter 6, an 

advanced traffic controller operates in an “intelligent fully-actuated” mode. Its setup accounts for 

various constraints: maximum/minimum green time or maximum allowed waiting time, yet it 

enables phase skipping, extension, rotation, truncation, etc., when required. Connected and 

automated vehicles communicate with the signals to convey their desired turning movement and 

accumulated delay along the corridor. This allows for the isolated controller to operate in an 

intelligent, yet, fully-actuated manner, recognizing the need to coordinate major direction traffic 

flows, i.e., to enable progression along the corridor, when warranted. 

Differing from Prediction-based adaptive control (Chapter 6), this chapter presents real-time 

platoon self-identifying control strategy. The strategy represents a platoon-phase scheduling 

heuristic that considers clusters of vehicles as critical jobs. The framework devises an advanced, 

online, signal control logic for mixed traffic environments utilizing the information from CAVs to 

augment controller/sensor data. A prerequisite of such an approach is the application of the 

innovative procedure for segmentation of traffic flows based on CV trajectory data. 

The generic structure of the control algorithm is intended to handle a variety of traffic conditions 

successfully such as, undersaturated and oversaturated flow conditions. Furthermore, the formal 

framework introduced in this study is novel and generic such that it has the potential to be applied 

to any intersection/signal configuration. 

Low penetration rate is one of the critical issues with relying on connected vehicle data, especially 

in signalized intersection-related applications. The novelty of the proposed approach along with 
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connected vehicles’ data availability limits its design, application, and testing to a simulation-

based environment. The traffic controller can record intersection traffic state, i.e., vehicle 

trajectories data and signal events via screenshot-type of feature and process this information in 

real-time to determine the next best phase-platoon pair. Furthermore, marginal cost-based phase-

platoon allocation algorithm is proposed to optimize phase scheduling in real-time. By tracking 

traffic configuration on a second-by-second basis, the controller determines the actual green time 

duration in real-time. 

 

7.1. Platoon Identification and Phase Allocation Control Method 

This section puts forward a real-time signal control strategy that uses vehicle trajectories 

information to decide which phase-platoon should be given the right of way. Phase-platoon control 

strategy is based on a procedure referred to as platoon self-identification – a novel approach to 

traffic flow partitioning named adjusted spatial longitudinal variation (ASLV) clustering. The 

proposed clustering procedure represents a unique platooning framework since vehicles are not 

forced into platoons but self-identified as platooned depending on their inter-vehicular longitudinal 

spatial variation. The proposed concept explicitly considers micro-level vehicle-following 

behavior and determines inherent discontinuities is traffic patterns, which differentiate platooned 

over the non-platooned arrivals. 

As for the proposed phase scheduling logic, the motivation aligns with the prevailing state of the 

practice: solve a phase allocation problem in real-time, based on the most reliable high-resolution 

data obtainable, while assuring applicability in a variety of traffic conditions and 
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intersection/signal configurations. The method stays away from complex mathematical and 

statistical models and focuses on operational logic and ease of implementation. 

Based on the current signal status and estimated temporal gaps in platoon arrivals, phase allocation 

is performed such that it minimizes total intersection delay accounting for the marginal cost of 

serving a specific platoon vs. any other. Control scheme proposed in this study assumes a flexible 

phasing sequence, which is vehicle trajectories (data)-driven. There is no notion of cycle length as 

such, the controller is unrestricted, sequence-wise, when scheduling platoon-based phases, 

provided vehicle-based objective function computations warrant it. Accordingly, phase rotation, 

skipping, extension and truncation are allowed. 

To make sure no vehicle, on any approach, waits excessively, maximum allowable waiting time is 

imposed on the control parameters optimization. The proposed method accounts for two 

conflicting objectives: minimizing total delay and maximizing throughput.  

The overall procedure consists of the following three sequential stages: 

1. Platoon Self-Identification Algorithm 

Identifies platoons formed by the vehicles 

2. Phase-platoon Allocation Algorithm 

Identifies the order of serving the platoons and associated signal phases 

3. Determining Phase Duration in Real-time 

Determines the duration of the signal phases 
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7.1.1. Platoon Self-Identification Algorithm 

Vehicles traveling in temporal and spatial proximity constitute a platoon. Vehicles traveling in the 

same direction, scattered among different lanes, can be partitioned into different platoons. 

On a multilane approach, vehicles are mostly affected by the vehicles with which they share lane 

and traffic flow characteristics. Rarely and less significantly, vehicles are affected by the vehicles 

in adjacent lanes. Furthermore, drivers adjust their positions and speeds in response to vehicles in 

their immediate vicinity, primarily the vehicle ahead. Considering this to be the standard in a car 

following behavior, and acknowledging no overtaking is expected near the intersection’s cross-

section, this study designs a clustering technique which considers the positional adjustment drivers 

make. This study conducts a movement-based analysis, due to prerequisite compatibility between 

movements and traffic controller phases. All lanes corresponding to a movement can be observed 

as a single constitutive element of the control system which allows for headways between the 

vehicles to be quite small. As a result, it can be inferred that most vehicles tend to keep short 

headways with their leading vehicles (64). 

Therefore, the proposed procedure considers, primarily, a vehicle’s spatial longitudinal variation, 

contingent upon the clustering method identifies platoons on each approach. Initially, vehicles are 

grouped based on their distance from the intersection (cross-section), to eliminate vehicles’ lateral 

position variation on multilane approaches. Again, this reasoning is justified since vehicles are 

separated per movement, and then grouped longitudinally. In this setup, the vehicles in adjacent 

lanes, conditioned upon their longitudinal proximity, belong to a single platoon. This concept is 

visualized in Figure 7-1. Each vehicle’s front edge is projected onto the center line of the approach. 
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Figure 7-1. Illustration of longitudinal spatial variation 

 

ASLV clustering technique is applied to each movement group of vehicles according to the 

following steps: 

Step 1. Calculate spatial distance from any vehicle (on each approach) to the vehicle closest 

to the intersection 

Step 2. For each vehicle, identify its leading (influencing) vehicle 

Step 3. Adjust the position of the following vehicle with respect to its lead vehicle’s 

position 

Step 4. Apply the K-means clustering method until convergence criteria are reached 

 

Drivers adjust their behavior according to actions of the vehicle ahead. The preceding vehicle is 

identified as influencing, if and only if, the distance between the two vehicles (subject and 
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preceding one) is within the look ahead distance. In this manner said the vehicle is verified to exist 

within reasonable proximity of its preceding vehicle and could have been expected to occupy its 

position, had there been no lead vehicle. 

Look ahead distance is computed as:  

𝑉𝑒ℎ𝐿𝑒𝑛 +  𝑆𝑎𝑓𝑒𝐺𝑎𝑝 ∗ 𝑉𝑓 ( 7-1 ) 

 

𝑉𝑒ℎ𝐿𝑒𝑛, represents a single (regular) vehicle length to account for the preceding vehicle’s length. 

𝑆𝑎𝑓𝑒𝐺𝑎𝑝 ∗ 𝑉𝑓, represents a safety gap between vehicles multiplied by the prevailing speed of the 

vehicle-follower and accounts for the safe distance between vehicle follower and its lead. 

In the presence of influencing vehicle, driver-follower adjusts its position.  

Adjustment in the position (adjustment margin) is computed as: 

𝑉𝑒ℎ𝐿𝑒𝑛 +  𝑆𝑎𝑓𝑒𝐻𝑒𝑎𝑑 ∗ 𝑉𝑓 ( 7-2 ) 

 

𝑆𝑎𝑓𝑒𝐻𝑒𝑎𝑑 represents the safe headway time i.e., desired headway time in seconds between the 

leader and follower vehicle. In addition to the adjustment margin, the correction includes the lead 

vehicle’s already applied the positional correction. For each follower, this means modifying its 

current position by subtracting the adjustment margin and the correction already applied to the 

influencing vehicle. 

As a result, approach/movement traffic flows are partitioned through Adjusted Spatial 

Longitudinal Variation (ASLV) clustering. ASLV clustering is a type of K-Means clustering 

repeatedly performed until the convergence criteria are satisfied concerning vehicles adjusted 

longitudinal positions. 
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The K-Means clustering method minimizes a within-cluster sum of squares (WCSS). Hence, the 

observations are divided into 𝐤 clusters such that each observation belongs to a cluster with the 

nearest mean. In this analysis, 𝐤 was NOT pre-defined by the user and varies with real-time 

recorded vehicle positions. Let, 𝐗 be a set of observations (𝐱𝟏, 𝐱𝟐,…, 𝐱𝐬), where each observation 

represents an n-dimensional real vector, k-means clustering aims to partition s observations into k 

(≤ s) clusters 𝐶 =  𝐶1, 𝐶2, … , _𝐶𝑘  so as to minimize the WCSS given by equation ( 7-3 ): 

arg min
𝑐

∑ ∑‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 ( 7-3 ) 

 

where, 𝜇𝑖 is the mean of cluster 𝑪𝒊. The method establishes three criteria of convergence to confirm 

vehicles have been partitioned into representative clusters. 

1. There are fewer clusters than the number of vehicles 

2. WCSS is shorter than the average vehicle length 

3. Marginal reduction in the WCSS is less than 20%. 

The results of the applied clustering method are presented in Figure 7-2. Vehicles are, as 

mentioned, separated per movement, corresponding to a NEMA standard dual-ring barrier phase 

configuration (150) and clustered accordingly. Each of the platoons is classified by its 

corresponding approach, phase (movement), platoon ID (platoons are ordered with respect to their 

arrival times), arrival time, associated total delay, estimated intersection clearing time1 and end 

time (exit time when last vehicle has cleared the intersection) as shown in Figure 7-2. 

                                                 
1 Please refer to Appendix for details. 
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Figure 7-2. Sample result of clustering 

 

7.1.2. Phase-platoon Allocation Algorithm 

Identified platoons are served on a quasi-first come first serve basis. For each of the identified 

platoons, corresponding arrival times are determined. Arrival time is referred to as the time of 

arrival of the platoon’s head vehicle at the approach stop bar. For example, queued vehicles (at the 

stop bar) will constitute a platoon whose arrival time is 0. 

Platoons arriving within 5 seconds of the earliest arriving platoon are chosen as candidate platoons 

to be served. This subset of platoons forms the set 𝑪𝒂𝒏𝑷.  

Given:  

 𝑪𝒂𝒏𝑷: Set of platoons approaching the intersection 

 𝑇𝑖
𝐴, ∀ 𝑖 ∈ 𝑪𝒂𝒏𝑷: Arrival times of the identified platoons 
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 𝑇𝑖
𝐸 , ∀ 𝑖 ∈ 𝑪𝒂𝒏𝑷: Exit times of the identified platoons 

  

Parameters:  

 𝒎ϕ: performance index of platoon ϕ 

  

Objective:   

 ϕ∗ = argmin
𝜙 ∈ 𝐶𝑎𝑛𝑃

 𝒎ϕ ( 7-4 ) 

   

Subject to:   

 𝑀𝐶𝜙
𝛾
= {

(𝑇𝜙
𝐸 − 𝑇𝛾

𝐴)𝑁𝛾  𝑖𝑓 𝑇𝜙
𝐴 ≥ 𝑇𝛾

𝐴

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 ( 7-5 ) 

 𝑀𝐶𝜙 = ∑ 𝑀𝐶𝜙
𝛾

𝛾 ∈ 𝑪𝒂𝒏𝑷 ∖ 𝜙

 ( 7-6 ) 

 𝒎ϕ =

(

 
𝑀𝐶𝜙 + ∑ 𝐷𝑒𝑙𝑎𝑦𝛾

𝛾 ∈𝐶𝑎𝑛𝑃 ∖ 𝜙

𝐷𝑒𝑙𝑎𝑦𝜙

)

  
( 7-7 ) 

 Vehicles respect the laws of physics 

 Drivers follow the Wiedemann 74 car following model 

 No frequent transitions between signal plans so as not to disrupt the progression 

 Vehicles on the unserved vehicles are not waiting for more than 𝑻𝑴𝒂𝒙 
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Considering the marginal cost of activating a phase in addition to the total delay experienced by 

the vehicles, the next phase is determined. 𝒎ϕ represents system’s performance if platoon 𝜙 is to 

be served. Procedure to determine 𝒎ϕ is described below. 𝐷𝑒𝑙𝑎𝑦𝑣 is the delay experienced by the 

vehicle 𝑣. For CAVs it is the accumulated delay along the corridor and for regular vehicles, the 

delay experienced at the intersection approach under consideration. 

 

 

Figure 7-3. Visualizing marginal cost. 

 

Marginal cost, 𝑀𝐶𝜙
𝛾
, is defined as the additional delay incurred by a non-served platoon 𝛾 due to 

the right of way afforded to platoon 𝜙. Computation of marginal cost depends on the platoon 

service/clearing time. Service time is defined as the time duration between the arrival of the first 

vehicle and exit of the last vehicle in the platoon. Detailed calculations are provided in the 

APPENDIX I. 𝑇𝑝
𝐴 and 𝑇𝑝

𝐸 are the arrival and exit time of a platoon 𝑝. 𝑁𝑝 is the number of vehicles 

in platoon 𝑝. 
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Referring to the example presented in Figure 7-3, marginal cost is computed per case: 

Case 1: An unserved platoon is expected to arrive or exit earlier than the one served. Therefore, 

an unserved platoon must wait for the entire served platoon phase duration (𝑀𝐶𝜙
1 , 𝑀𝐶𝜙

2 , 

𝑀𝐶𝜙
3). 

Case 2: An unserved platoon is expected to arrive or exit later than the considered platoon. 

Consequently, it will only wait for the overlapping time duration (𝑀𝐶𝜙
4). 

Case 3: An unserved platoon is expected to arrive later than the considered platoon. Hence, it 

incurs no marginal cost (𝑀𝐶𝜙
5). 

Marginal cost aggregated over all unserved platoons gives the total marginal cost of serving the 

platoon 𝜙, 𝑀𝐶𝜙, and is defined in equations ( 7-6 ) and ( 7-7 ). 

Marginal cost together with the total platoon delay governs the “optimal” next phase selection. To 

determine which phase-platoon pair to service next, out of the 𝑪𝒂𝒏𝑷 set of alternatives, a tradeoff 

is calculated between the incurred delay and time savings if one platoon is to be discharged instead 

of another. Total delay 𝐷𝑒𝑙𝑎𝑦𝑝 of platoon 𝑝 is defined as the sum of individual vehicle delays. 

CAVs are assumed to log the delay along their route and this accumulated delay is considered 

towards total platoon delay calculations. The platoon, 𝜙∗,  for which the objective function, 

presented in equation ( 7-4 ) the value is minimized will be served next. 

 

The phase associated with platoon 𝜙∗ is referred to as 𝜁′. Considering NEMA-RBC non-

conflicting phasing combinations (150), the algorithm then continues to find a potential concurrent 

phase, ζ′′, if warranted by the demand. If multiple phases have the same associated objective 



135 

 

 

function value, the one serving the largest number of vehicles will be preferred. Referring to Figure 

7-3, platoon 3 can be served along with 𝜙 platoon as long as their phases are not conflicting. To 

determine if multiple platoons that can be served with 𝜙∗, the optimization problem is again solved 

after updating the marginal cost and objection function values as per equation ( 7-8 ) and ( 7-9 ). 

Accordingly, 𝜙∗∗ is identified as the platoon to be served along with 𝜙∗. The phase associated with 

platoon 𝜙∗∗ is referred to as 𝜁′′. 

𝒎ϕ
′ = (

𝑀𝐶𝜙 + ∑ 𝐷𝑒𝑙𝑎𝑦𝛾𝛾 ∈ 𝐶𝑎𝑛𝑃 ∖  𝜙,𝜙∗ 
− 𝑀𝐶𝜙∗

𝜙

𝐷𝑒𝑙𝑎𝑦𝜙 + 𝐷𝑒𝑙𝑎𝑦𝜙∗
)   ( 7-8 ) 

ϕ∗∗ = argmin
𝜙 ∈ 𝐶𝑎𝑛𝑃 ∖ 𝜙∗

𝒎ϕ
′   ( 7-9 ) 

 

Once 𝜁′ and 𝜁′′ are identified, the actual phase duration is determined based on vehicle trajectories 

in real-time, monitored every second. 

 

7.1.3. Determining Phase Duration in Real-time 

Once the phases are identified, the algorithm (in real-time) continuously checks, with the 

frequency of one second, whether enough phase time has been allotted to a platoon being served, 

given that additional vehicles might arrive before the phase has terminated. If this is the case, the 

green will be extended to service the incoming vehicles, within a prespecified distance from the 

intersection. Conversely, if the platoon has cleared the intersection sooner than expected, the green 

terminates. 



136 

 

 

These control parameters are defined under restrictions such as upper bound on green time and 

distance-based extension time. Distance-based maximum green is established to limit the amount 

of time allocated to a phase, to avoid excessive waiting times at unserved approaches/movements. 

Also, a distance-based gap out (adjustment margin) defines whether the newly arriving vehicles 

will be served during the current green or stopped to wait for the next green indication. 

Four basic variables characterize each platoon: size (number of vehicles in the platoon), platoon 

intra and inter-headway or location (of the head and tail vehicle) and speed (of individual vehicles 

in the platoon), from which the arrival and intersection clearing times can be estimated. Please 

note, that intersection clearing time was computed based on standardized values of signalized 

approach discharge headway (if stopped to account for start-up lost time), current speed and 

allowed acceleration rates to estimate corresponding phase’s duration. Platoon service time is 

determined as the time elapsed between the arrival of the first vehicle and the exit time of the last 

vehicle in the platoon. This duration gives an estimate of the actual phase duration. 

 

7.2. Numerical Experiments Results 

The control strategy developed in the study is a platoon-based heuristic that aims not to delay and 

interrupt platoons’ progression. It is considered preferable to clear the vehicles before the platoon 

arrives at an intersection but whether this is possible depends on the conflicting movements’ 

vehicle and signal state. Demonstrating the effectiveness of such a control concept was one of the 

primary goals of this research. 
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Presently, the lack of available connected vehicle information is an issue when relying on such 

data signal control-related applications. For this reason, conceptual framework, experiments, and 

evaluation in a mixed vehicle environment of automated, connected and regular vehicles, with 

high-resolution vehicular information, were conducted in a microscopic simulation setting. A real-

world intersection, of SR7 and Broward Blvd, in Fort Lauderdale, Florida, was modeled and 

calibrated in VISSIM (148), to represent field conditions as realistically as possible. Actual time 

of day (TOD) signal timing plans were utilized as the baseline state of the traffic signal system. 

Then, the robustness and effectiveness of the proposed control method were examined under 

different mixes of traffic and demand levels. 

Demand levels were divided into three categories: low, medium and high, each being 30 minutes 

long. A 2-hour long simulation horizon was created to represent the demand build up from low 

(off-peak conditions), then medium to oversaturated (morning or evening peak) and then reverting 

to medium, to characterize recovery after oversaturation dissipates. Directions East and West 

(Broward Blvd.) are major approaches with 100% demand factor of the corresponding demand 

level. Please refer to the representation of traffic mixes and demand levels in Table 7-1 and Table 

7-2, respectively. Overall, four different Connected, Automated and Regular (CAR) vehicle mixes 

were tested over a 2-hour long horizon with three demand levels. Additionally, a segment of 6 

intersections was also modeled to as close to the reality as possible emulating the field conditions. 
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Table 7-1  Traffic composition. 

Case 
Traffic mix 

C A R 

1 0.0% 0.0% 100.0% 

2 0.0% 33.3% 66.7% 

3 33.3% 100.0% 66.7% 

4 0.0% 66.7% 33.3% 

5 33.3% 33.3% 33.3% 

6 66.7% 0.0% 33.3% 

7 0.0% 100.0% 0.0% 

8 33.3% 66.7% 0.0% 

9 66.7% 33.3% 0.0% 

10 100.0% 0.0% 0.0% 

 

Table 7-2  Traffic demand levels. 

Demand Level  Demand Factors 

Case Flow  Dir % 

Low 1800  EB 100% 

Medium 2400  WB 100% 

High 3600  NB 45% 

  SB 45% 

 

The control strategy was tested during consecutive demand periods for each CAR mix and assessed 

against the corresponding baseline of SYNCHRO (152) optimized TOD signal timing plans. The 

entire 2-hour testing horizon was divided into eight 15-minute demand periods. This is to say that 

demand periods 1 and 2 pertain to the low demand level, the next two correspond to the medium 

demand level and so forth. 
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The platoon-phase allocation algorithm was applied to two platooning techniques – ASLV and 

simple platooning, to examine and isolate the effect of ASLV platooning. Simple platooning 

represents a conventional gap-out platooning method, which utilizes a critical headway threshold 

of 2.5 seconds to distinguish between platoons of vehicles. Vehicle-actuated control logic was the 

baseline in this study. The reported results in the figures below, present the three cases 

comparatively. With respect to the baseline (black numbers in the center of the figure), operational 

success of the other two strategies is presented in relative terms – percent change in the 

corresponding performance metric relative to the ground truth value. Green (orange) bars mark the 

improvement of the ASLV (simple) platooning strategy compared to the base case. Similarly, 

brown (red) colored portions in the charts indicate the worsening in performance indicators, 

respectively. 

The results are reported at two levels – isolated intersection level and arterial corridor level. 

Overall, at both levels – a similar trend is observed referring to each measure of effectiveness. The 

two platooning methods seem to be performing similarly, with the ASLV method offering 

incremental improvements over the simple platooning strategy.  

As mentioned earlier, the signalized corridor testbed deploys the ASVL platooning and advanced 

control logic at only one intersection. Isolated intersection results offer more significant 

improvements in performance, compared to the corridor-level, which is to be expected. 

Aggregation of results, at corridor level, cancels out some of the positive effects achieved at an 

individual intersection level.  

Figure 7-4 through Figure 7-9 illustrate the state of the system after the strategy is applied, against 

specific case’s ground truth, i.e., baseline conditions and the conventional gap out platooning 
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strategy. Several MOEs were considered to evaluate the performance of the ASLV platoon-based 

control strategy.  

For the isolated intersection case, the entire 2-hour testing horizon was divided into eight 15-

minute demand periods. For the whole corridor, the testing horizon was divided into 10-minute 

intervals.  

Referring to Figure 7-4, the positive effect of the strategy on queue length reduction is evident. 

Except CAR mix Case 1 (100% regular vehicles) during the second oversaturated period (demand 

period 6), when increment in queue length is observed, in all other cases, the strategy significantly 

outperformed the no-strategy alternative. The strategy proves to be effective in reducing the delay 

as well, as can be observed in Figure 7-5. Total delay reduction is found to be significant in the 

isolated intersection case, especially during oversaturation, for both strategies tested. In some 

cases, even higher with the traditional platooning framework applied – as high as 50% reduction. 

However, the reduction in total delay achieved at the corridor level was up to 7% (8% with 

traditional platooning applied). To isolate the effect of congestion delay from stopped delay, the 

effect of the strategy on stopped delay was also studied. The trend in the stopped delay was similar 

to that of total delay, but with a higher magnitude. The strategy allowed for a reduction in stop 

delay of up to 8% at the corridor level. More significant improvements were achieved during 

oversaturated traffic conditions. The improvement in the quality of service was realized even in 

highly congested conditions. 

At corridor level, conventional gap-out platoon-based control, unlike the ASLV self-identification 

control method, fails to consistently achieve superior operational efficiency compared to the 

vehicle-actuated type of control (e.g., Figure 7-7 through Figure 7-9).  
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At an isolated intersection level - period 6 – the second oversaturated period – proves to be the 

most challenging, as expected. Both strategies underperform compared to the vehicle actuated 

base-case, for traffic mixes 1 and 6. While it is reasonable to assume the strategy might 

underperform when the traffic stream consists of regular vehicles only (Case 1), it is 

counterintuitive that the same occurs when 66 % of the fleet is connected and 33 % regular 

vehicles. Such an outcome could be attributed to the presence of regular vehicles which reduces 

the estimation accuracy of platoon arrival/exit times. 
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Figure 7-4. Impact of control strategy on queue length – isolated intersection. 
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Figure 7-5. Impact of control strategy on total delay – isolated intersection 
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Figure 7-6. Impact of control strategy on stopped delay – isolated intersection 
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Figure 7-7. Impact of control strategy on queue length – corridor  
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Figure 7-8 Impact of control strategy on total delay – corridor  
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Figure 7-9 Impact of control strategy on stopped delay – corridor  
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7.3. Conclusions 

This section discussed the design of an efficient generic adaptive signal control algorithm for 

mixed vehicular traffic environments aimed at improving the quality of service, given the 

objectives - minimizing delay and maximizing throughput. To this end, an intelligent fully-

actuated controller logic computes vehicle-based performance metrics to optimize control 

parameters in real-time. CAVs are again, as in Chapter 6, assumed to transmit their accumulated 

delay thus enabling vehicle progression when warranted by the incurred delay. The real-time signal 

control scheme presented incorporates the concept of marginal delay cost in its objective function 

calculation, i.e., accounts for the unserved vehicles’ extra delay for any additional vehicle served.  

Most of prediction-based signal control strategies fail due to the discrepancy between the 

predicted/estimated and real-world traffic conditions. Obtaining relevant information at the right 

time should ensure efficiency of the adaptive control schemes (153). The proposed strategy 

addresses this issue successfully. Most of the strategies found in the literature revolve around 

merely deciding whether to switch or extend the current green to accommodate the incoming 

platoon. Conversely, the proposed method puts forward a control logic which proactively 

determines the next optimal phase-platoon to serve and then continually adjusts its phase duration 

in real-time reacting to the prevailing flow patterns. 

Its distinctive features are: 

 Platoon self-identification technique, which delineates platoons based on vehicles adjusted 

spatial longitudinal variation. 
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 Phase-platoon sequencing which accounts for total delay experienced by vehicles on each 

approach and the marginal cost of affording the right of way to a platoon vs. another. Please 

note that total delay includes CAVs accumulated delay along a route 

 Phase duration is effectively adjusted in real-time based on actual vehicle arrivals on a 

second-by-second basis. 

The focus of this research effort was to develop a control methodology that will provide 

progression on arterial roads through improved local intersection control, i.e., platooning. 

Operational efficiency at a corridor level was achieved by identifying natural breaks in traffic flow 

and consequently, grouping vehicles into platoons. The concept of platooning in this research 

deviates from what the traditional transportation research establishes. A notion of adjusted spatial 

longitudinal positioning is devised to scrutinize for the standard in driving behavior, i.e., that a 

driver will innately correct its position in reaction to its leading vehicle’s actions. If there is no gap 

in the incoming traffic, such vehicles should be considered as a single entity – a platoon. 

Adjustment margin was established to account for the position correction of vehicles on an 

approach, had there been no lead/preceding vehicle. The assumption is that the vehicle would have 

positioned itself in its preceding vehicle’s place on the link/lane. The optimal number of clusters, 

i.e., platoons (per approach) is demand-driven, therefore, independent of any (critical) threshold 

such as critical inter-vehicle spatial or temporal headway, cumulative headway, (minimal) number 

of vehicles constituting a platoon, etc. 

Benefits cited in most previous studies’ do not relate to the real-world representative geometric, 

traffic and control characteristics. In reality, these configurations can be complex, which poses a 

challenge to the adaptability of the proposed methods. Therefore, the proposed strategy was tested 



150 

 

 

on a real-world signalized intersection, albeit using microsimulation. The adaptive control method 

developed, although unique in its design logic, information utilized, objective function and 

modeling approach apply the fundamental NEMA-RBC controller standard of non-conflicting 

movements grouping. (150) 
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CHAPTER 8. PATH FUNDAMENTAL DIAGRAMS 

As it was already discussed, the type of facility influences the driving behavior and vice versa. As 

demonstrated in Chapter 4, Chapter 6, and Chapter 7, the impact of connectivity, as well as the 

effectiveness of strategies, was examined, separately, and conclusions drawn were facility-based. 

Considering the dynamic nature of demand patterns and hard to predict driver’s behavior, identify 

and quantify the differences in driving behavior and traffic stream variables’ relationships at a 

higher level was critical. Fundamental diagrams are the basis of such studies. Fundamental 

diagrams are known to hold at the link level and a network level. The next question that arises is 

that do fundamental diagrams hold at the path level. Paths are defined by the drivers. The effort in 

this chapter is aimed at answering this question. This chapter also offers a new perspective on 

transportation system partitioning based on user-defined paths’ flow relationships. 

Advances in the theoretical sophistication of available urban transportation models have steadily 

increased over the decades. Modeling approaches progressed considerably since the original, static 

and mainly, aggregate four-step models dating between the1950s and 1960s; to the disaggregate 

demand and network equilibrium extensions in the 1970s and 1980s; and then the recent 

advancements with dynamic simulation models of the 1990s and 2000s. Along with theoretical 

advances, practices were also improved and deployed in the field to achieve congestion relief. A 

few successful attempts include a regional scale pricing policy deployed in London and 

Stockholm, based on a pre-determined time of day pricing scheme. Recently, state-dependent 

pricing has been researched and successfully tested in simulated environments for real-time 

freeway management. Concerning arterial corridors, traffic signals have also been reasonably 

successful in providing efficient vehicle progression. Traffic control systems were upgraded 
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considerably since fixed types of control - UTCS (Urban Traffic Control System, FHWA, 1970s) 

Through traffic responsive to real-time adaptive control such as SCATS (154), SCOOT (155), 

OPAC (156), UTOPIA (157), RHODES (158), ACS-Lite (159), MOTION (160), and others.  

With technological and conceptual advances came more sophisticated simulation models. These 

models have been successfully implemented to simulate and predict traffic flow characteristics of 

multi-modal transportation networks. However, field practices based on control strategies and state 

prediction models are still far behind (20). Congestion is a dynamic, large-scale and heterogeneous 

problem. Furthermore, non-recurrent traffic events like accidents or other unprompted events are, 

in their nature, unpredictable. The consequences of which might be chaotic oversaturation. Hence, 

there is a need for a practical study that can address dynamic demand patterns and hard to predict 

driver’s behavior. It is essential to isolate the problem and investigate it at the right level. 

The fundamentals of the proposed framework consist of understanding and characterizing drivers’ 

behavior at a microscopic level, modeling traffic flow at a mesoscopic level, then identifying 

popular user-defined paths, i.e., between O-D pairs, and clustering them based on their traffic flow 

relationships. This approach, as already mentioned, reduces the computational burden while 

maintaining as much network detail as possible. 

The traffic network, for this research, was subdivided based on the route choice behavior, which 

represents a novel approach to network path clustering. Also, a new clustering technique was 

designed and demonstrated to outperform the existing methods. 
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8.1. Data Description 

Simulated vehicle trajectories were used to conduct the analysis. Trajectories were obtained from 

the Chicago City network simulation model, where operational conditions were established as the 

clear weather with no precipitation and normal visibility. 

Chicago testbed was extracted from the entire Chicago Metropolitan Area network to enhance the 

estimation and prediction performance during the implementation procedure. This testbed 

represents a section of the network previously described in Chapter 4 that was utilized to evaluate 

the impact connected vehicles had on operational efficiency at a network level. 

Obtained vehicle trajectories comprised of the entry and exit time of vehicles for each link 

traversed. At each link, 𝒍𝒊𝒏𝒌, a vehicle, 𝒗𝒆𝒉, was assumed to be travelling with a constant speed, 

𝑉𝑣𝑒ℎ
𝑙𝑖𝑛𝑘, that was determined by the length of the link, 𝐿𝑙𝑖𝑛𝑘, divided by the time a vehicle spent on 

that link, 𝑇𝑣𝑒ℎ
𝑙𝑖𝑛𝑘. To eliminate the errors due to (at origin nodes) demand sources and similarly (at 

destination nodes) demand sinks, the first and last link were not considered in the analysis. 

Mathematical formulation is presented below: 

𝑉𝑣𝑒ℎ
𝑙𝑖𝑛𝑘 =

𝐿𝑙𝑖𝑛𝑘

𝑇𝑣𝑒ℎ
𝑙𝑖𝑛𝑘

 ( 8-1 ) 

 

As previously stated in the conceptual framework, Chapter 3, link-based measurements are 

necessary to obtain network-wide relationships among flow, density/occupancy, and speed. Since 

obtaining vehicle-trajectories will become readily available in the near future, applying the 

approach designed by Saberi et al. (1) seemed warranted. The authors demonstrated that trajectory 
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based measurements of network-wide relationships provide higher accuracy as compared to that 

of link-based (1). 

 

8.2. Methodology 

The methodology adopted in this chapter is divided into three modules (Figure 8-1). 

Module 1 represents a mesoscopic DTA tool. DYNASMART-P, a mesoscopic dynamic traffic 

assignment simulation tool, was used to simulate traffic dynamics on a network level. Further tool 

specifications and relevant resources are provided in Chapter 4. 

Module 2 designs the procedure for identification of the popular paths taken by the drivers. It is 

based on the vehicle trajectories output from Module 1. With richer data availability and associated 

information processing technologies, it is possible to track drivers’ trip trajectories through probe 

data from GPS or smartphones. Popular paths are defined as the paths (or sub-paths) shared by a 

considerable number of travelers given spatial and temporal boundaries. To identify popular paths 

a data-driven clustering method for trajectories was adopted. The core part takes advantage of the 

network topology to detect common links in a road network with archived vehicle trajectory data. 

The detailed problem formulation and algorithmic procedures for trajectory clustering have been 

described in Hong et al. (161; 162). 

Module 3 comprises clustering of the Path Fundamental Diagrams (PFDs). PFDs were obtained 

for each of the identified popular paths. For a single path, flow, density, and speed were computed, 

as described in section 8.1 and 3.3, for all links that constitute said path and was aggregated over 

5-minute intervals. 
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Figure 8-1  Schematics of the methodology adopted in the study. 

Clustering PFDs and their characterization is the focus of this chapter’s effort (Figure 8-2). The 

following subchapters, along with the one proposed, describe the clustering methods that were 

widely exploited according to the relevant literature (and were also examined in this research). The 

first two methods can be considered conventional and will be discussed in brief. A third method is 

a novel approach established by the author. The first two methods were implemented in R language 

(163) while the third one was implemented in AMPL (164). 

 

 

Figure 8-2  Schematics of module 3. 
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8.2.1. Method 1: Dynamic Time Warping (DTW) Clustering 

DTW is used to compute the distance and alignment between time series. Through DTW, the time 

axis of the series is distorted to measure the similarity between the series. The concept is illustrated 

in Figure 8-3 below. The gray dashed lines show the mapping between the two time-series. 

 

Figure 8-3  Graphical representation of DTW technique. (Source: Giorgino (165)) 

 

The partitioning was performed on the remapped data, to identify the clusters of the paths. Time 

series of the velocity of paths were clustered in this method. The mathematical representation of 

the method is as follows. 

Let 𝐱𝟏 and 𝐱𝟐 be the two time-series of length 𝒏 and 𝒎 respectively. Please note that, for this 

study, 𝒏 and 𝒎 are equal. 
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𝐷𝑇𝑊𝜙(𝑥1, 𝑥2) = ∑
𝑚𝜙𝑙𝑐𝑚(𝑘)

𝑀𝜙
 , 𝑘 ∈ 𝜙  

( 8-2 ) 

𝑙𝑐𝑚(𝑖, 𝑗) = (𝑥1𝑖 − 𝑥2𝑗)
2
 ( 8-3 ) 

 

Where 𝑙𝑐𝑚(𝑘) is the local cost matrix of size 𝒏 x 𝒎, and is computed as defined in the equation ( 

8-3 ). Warping curve, 𝜙, is the optimal path which is obtained with the following objective. 

arg min
𝜙

𝐷𝑇𝑊𝜙(𝑥1, 𝑥2) ( 8-4 ) 

Where 𝜙(𝑘) = (𝜙𝑥1
(𝑘), 𝜙𝑥2

(𝑘)) with 𝜙𝑥1
(𝑘) ∈  1,… , 𝑛  and 𝜙𝑥2

(𝑘) ∈  1,… ,𝑚 . As defined in 

the original work, 𝑚𝜙 is a per-step weighting coefficient and 𝑀𝜙 is the corresponding 

normalization constant (165). 

This analysis was performed in R language using the “tsclust” command which is a part of the 

“dtwclust” library. Readers are strongly encouraged to read the documentation provided with the 

library and references therein. Another crucial reading reference about the technique is the work 

by Giorgino (165). 

 

8.2.2. Method 2: K-Means (KM) Clustering 

The KM clustering method minimizes a within-cluster sum of squares (WCSS). Hence, the 

observations are divided into 𝐤 clusters such that each observation belongs to the cluster with the 

nearest mean. In this analysis, 𝐤 was pre-defined by the user. Let, 𝐗 be a set of observations (𝐱𝟏, 
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𝐱𝟐,…, 𝐱𝐬), where each observation represents a n-dimensional real vector, k-means clustering aims 

to partition the s observations into k (≤ s) clusters 𝐶 =  𝐶1, 𝐶2, … , 𝐶𝑘  so as to minimize the WCSS 

( 8-5 ). 

arg min
𝑐

∑ ∑‖𝑥 − 𝜇𝑖‖
2

𝑥∈𝐶𝑖

𝑘

𝑖=1

 ( 8-5 ) 

𝜇𝑖 is the mean for 𝑪𝒊. This analysis was performed in R language using the “kmeans” command 

which is a part of the “stats” library. 

 

8.2.3. Method 3: Two-Dimensional Time Correlation (TDTC) Clustering 

TDTC is a novel clustering method that was formulated to cluster the paths based on the temporal 

correlation of flow and density. Parameters, variables, problem statement, and the constraints are 

presented and discussed below. 

Parameters: 

𝑐: Clusters ∈ [1,2,3, … , 𝑐𝑒𝑛𝑡𝑒𝑟𝑠] 

𝑝: Paths ∈ [1,2,3, … , 𝑝𝑎𝑡ℎ𝑠] 

𝑡: Set of time intervals ∈ [1,2,3, … , 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠] 

𝐷𝑎𝑡𝑎𝑝: PFD data 

𝐷𝑖𝑠𝑡𝑝: Distance of path 𝑝 to its corresponding center matrix 
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Variables: 

𝛿𝑐𝑝: Probability that path 𝑝 belongs to cluster 𝑐 

𝑍𝑝: {
1 , 𝑖𝑓 𝑝𝑎𝑡ℎ 𝑝 𝑖𝑠 𝑎 𝑐𝑒𝑛𝑡𝑒𝑟
0 , 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 

 

Minimize: 

∑ 𝐷𝑖𝑠𝑡𝑝

𝑝𝑎𝑡ℎ𝑠

𝑝=1

 ( 8-6 ) 

Subject to: 

𝐷𝑖𝑠𝑡𝑝 = ∑ [[ ∑ ‖[𝐷𝑎𝑡𝑎𝑐]𝑡 − [𝐷𝑎𝑡𝑎𝑝]𝑡‖

𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑠

𝑡=1

] 𝛿𝑐𝑝]

𝑝𝑎𝑡ℎ𝑠

𝑐=1

; ∀ 𝑝 ∈ [1,2,3, … , 𝑝𝑎𝑡ℎ𝑠] ( 8-7 ) 

∑ 𝛿𝑐𝑝

𝑐𝑒𝑛𝑡𝑒𝑟𝑠

𝑐=1

= 1;       ∀ 𝑝 ∈ [1,2,3, … , 𝑝𝑎𝑡ℎ𝑠] ( 8-8 ) 

∑ 𝑍𝑐

𝑝𝑎𝑡ℎ𝑠

𝑐=1

≥ 𝑐𝑒𝑛𝑡𝑒𝑟𝑠 ( 8-9 ) 

0 ≤ 𝛿𝑐𝑝 ≤ 𝑍𝑐;        ∀ 𝑝 ∈ [1,2,3, … , 𝑝𝑎𝑡ℎ𝑠] , 𝑐 ∈ [1,2,3, … , 𝑝𝑎𝑡ℎ𝑠] ( 8-10 ) 
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The constraint presented in the equation ( 8-7 ) is the probabilistic Euclidean distance of path’s 

distance from a cluster’s center. ‖∙‖ represents the Euclidean distance which is then multiplied by 

𝛿𝑐𝑝, i.e., the probability that a path, 𝒑, belongs to a cluster, 𝒄. Equation ( 8-8 ) constraints the sum 

of probabilities (of a path) across all clusters to add up to one. Please note that, 𝑫𝒊𝒔𝒕𝒑 and 

𝑪𝒆𝒏𝒕𝒆𝒓𝒄 are two-dimensional matrices. [𝑪𝒆𝒏𝒕𝒆𝒓𝒄]𝒕 and [𝒅𝒂𝒕𝒂𝒑]𝒕
 contain density and flow 

measurements for time step 𝒕 and center 𝒄 or path 𝒑, respectively. 𝑪𝒆𝒏𝒕𝒆𝒓𝒄 is calculated as the 

average of data from all member paths of the clusters. This analysis was performed in AMPL using 

KNITRO solver due to the existence of nonlinear constraints. 

A simulation-based analysis was conducted to test the applicability and effectiveness of the 

framework developed. The following section first presents the outcomes of each of the clustering 

techniques tested, individually. It was observed that each clustering technique produces four 

representative clusters, which may result in the similarity of clustering methods applied and the 

idiosyncratic features of the data itself. Accordingly, a comparison study was conducted to 

delineate the differences between the three series of results. Furthermore, common findings from 

the study are presented towards the end of the section. 
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8.3. Numerical Experiments Results 

8.3.1. DTW clustering 

  

Figure 8-4  DTW based a) NFDs for all the paths with four centers; b) centers of 4 clusters with NFDs of 

different road types. 

 

    

Cluster: 1 Cluster: 2 Cluster: 3 Cluster: 4 

Figure 8-5  NFDs for all the paths by DTW based clusters. 



162 

 

 

 

 

 

Figure 8-6  Spatial distribution of the paths by DTW based clusters. 

 

Results based on DTW clustering are presented in Figure 8-4 through Figure 8-6. As discussed 

previously, time series of velocities were used to identify the path clusters. Four significantly 

different clusters were obtained whose characteristics are as follows: 

 Cluster 1: Slightly congested, high flow, (representing primarily) arterial roads with 

segments of Lakeshore Drive highway 

 Cluster 2: Moderately congested, a mix of arterial and FWs 

 Cluster 3: Highly congested, but maintains the flow rate, big hysteresis loop, mainly FWs, 

in this case, hysteresis loop vertical distance is the largest  

 Cluster 4: Moderately congested, low flow rate when congested, primarily the HWs 

It is interesting to note that a spatial pattern emerges from the clusters. 
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8.3.2. KM clustering 

  

Figure 8-7  KM based a) NFDs for all the paths with four centers; b) centers of 4 clusters with NFDs of 

different road types 

 

    

Cluster: 1 Cluster: 2 Cluster: 3 Cluster: 4 

Figure 8-8  NFDs for all the paths by KM based clusters. 
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Figure 8-9  Spatial distribution of the paths by KM based clusters. 

 

Results based on KM clustering are presented in Figure 8-7 through Figure 8-9. As in the case of 

DTW clustering, time series of velocities were used to identify the path clusters. Again, four 

significantly different clusters were obtained with very similar characteristics. However, the spatial 

pattern that emerged was more distinguishable when compared to the spatial patterns obtained 

from the DTW clustering. 
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8.3.3. TDTC clustering 

  

Figure 8-10  TDTC based a) NFDs for all the paths with four centers; b) centers of 4 clusters with NFDs of 

different road types 

 

    

Cluster: 1 Cluster: 2 Cluster: 3 Cluster: 4 

Figure 8-11  NFDs for all the paths by TDTC based clusters. 
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Figure 8-12  Spatial distribution of the paths by TDTC based clusters. 

 

Results based on TDTC clustering are presented in Figure 8-10 through Figure 8-12. TDTC 

clustering produces results which are similar to the results obtained from DTW and KM clustering 

methods. However, as it can be observed in Figure 8-12 the spatial patterns of the clusters are even 

more prominent. Cluster 1 consists of, primarily, arterial roads with no or very few highway links. 

Cluster 2 and 4 are similar in spatial patterns but differ in their PFDs. Cluster 2 is characterized by 

a higher density and lower flow as compared to cluster 4. Cluster 3 comprises paths consisting of, 

predominantly, freeway links. 

 

8.4. Comparison of clustering techniques 

The three clustering techniques were compared based on variations in within-cluster distances. 
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a)   

 

b)   
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c)   

 

Figure 8-13  Variation among the clusters based on a) DTW; b) KM; c) TDTC method. 

Presented in Figure 8-13 are the curves illustrating the within-cluster variations. For instance, 

Figure 8-13-a shows the variation within each of the 4 clusters based on the DTW method. The 

horizontal axis is the time of day, and the vertical axis is the mean distance from the cluster’s mean 

value at the corresponding time instance. The average within-cluster variation and the overall 

average per clustering technique for the entire day are presented in Table 8-1. It can be observed 

that the within-cluster variations are the smallest for the TDTC method. Therefore, the TDTC can 

be regarded as a reliable technique to cluster NFDs or PFDs. 
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Table 8-1  Summary of variations within clusters and clustering technique. 

 
Cluster1 Cluster2 Cluster3 Cluster4 

 
Average 

DTW 6982 3871 4273 2160 

 

4322 

KM 2550 2905 5523 4625  3901 

TDTC 2103 1361 3838 1728  2258 

 

8.5. Common findings among clustering techniques 

Emerging spatial patterns prompted further examination of the robustness of the clusters. 

Accordingly, paths which were clustered together with all the clustering techniques were 

identified. 

 

Figure 8-14  Spatial distribution of the overlapping path groups 

Figure 8-14 represents 4 groups of paths that were found to emerge thorough any of the three 

techniques. However, the uniqueness of these groups is very evident. To summarize, cluster 1 

represents arterial roads-based paths, cluster 2 - paths along the Lakeshore Drive highway, cluster3 

- freeways, while cluster 4 paths comprise of mixed facility type - arterial and freeway - links. 
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8.6. Conceptual Applications: NFD (MFD) for control strategies design 

With increasing research focus on NFDs, certain control and management policies upon NFDs 

have also been proposed. Geroliminis and Levinson showed that standard economic models of 

marginal cost could not accurately describe traffic congestion in time-dependent networks and 

suggested an equilibrium solution for a congested network in the no-toll case. The authors also 

devised a dynamic pricing model for morning commute as a combination of Vickrey’s bottleneck 

model and NFDs (86). Similar work has been done by Arnott, R. and Fosgerau and Small. 

However, when applying the NFDs, the whole network was assumed to be homogenous (89; 166). 

 

8.6.1. Local-wise Real-Time Traffic Control 

A practical control technique could potentially involve traffic signals for the endogenous demand 

and pricing for the exogenous demand inflow. Practically, with historical and real-time sensor 

data, it would be feasible to adopt an anticipatory strategy for real-time prediction and then 

evaluate whether the proposed control policy would organize traffic into its optimal state in the 

near future, with respect to historically steady NFD. 

Most real-time control strategies are focused on a single control method either pricing or traffic 

control or parking (80; 167). The effectiveness of a strategy will vary depending on the 

circumstances and type of facility, i.e., a small-scale network without endogenous demand versus 

an area with both endogenous and exogenous demand. The former could characterize arterial 

corridor operations, where almost the entire demand is externally generated. The latter usually 
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indicates a traffic high-generating area which also receives the demand from the neighboring areas 

such as CBD. Wu et al. conducted an empirical analysis based on arterial fundamental diagrams, 

focusing on the aggregated features of a network’s traffic state (90). Conversely, small-scale 

network empirical studies instead of observing the macroscopic traffic state focused on the queue 

spillover effects with particular control policies (81; 168). 

However, with respect to exogenous demand in an already congested area, the optimal strategy 

might be restricting the inflow from the outside.  This might require changing the chosen mode of 

transportation, especially if traveling by car. On the other hand, for the internally generated 

demand, route or departure time guidance along with advanced signal control strategies might 

prove to be the optimal choice. 

To accomplish this goal, an integrated control strategy with signal control for endogenous demand 

and pricing control for exogenous demand are designed for real-time networks. 

In lieu of the work presented in this chapter, a potential control policy could consider the paths in 

a cluster as a single reservoir and accordingly control inflows (queuing behavior) as well as its 

corresponding outflows. The concept is aimed at decreasing the inflows in regions with high 

destination densities (unstable flow data points of an NFD) and managing the accumulation to 

maintain the flow at its maximum. 

8.7. Corridor-wise Real-Time Traffic Control  

The implementation of adaptive traffic signal control, dynamic lane assignment, and other 

corridor-based control strategies assume recognizing which operational conditions are most 

unfavorable. 
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Similarly, identification of high-demand corridors is dependent on the number of vehicles in the 

network (demand) and their respective chosen paths or trajectories. Therefore, the paths or 

trajectories (or sub-trajectories) with high demand can be regarded as the demand corridors. This 

analysis identified four clusters, consisting of paths that share similar NFD features, and thus are 

preferable to be regarded as a single entity when designing signal control policies for the paths 

within the same cluster. 

 

8.8. Conclusions 

In this chapter, the transportation system’s user-defined paths were studied to identify the 

characteristics associated with those paths. In an attempt to study a network at a disaggregated 

level, researchers have been dividing large-scale networks into regional zones. Here, the network 

was studied at the path level. To identify popular paths, simulation-based vehicle trajectories were 

utilized. A popular path is defined as the path (or sub-path) shared by a considerable number of 

travelers given spatial and temporal constraints. To determine a set of popular paths a data-driven 

trajectories clustering method was adopted. Next, Path Fundamental Diagrams (PFDs) are 

obtained for each of the identified popular paths. PDFs are then clustered using three different 

methods; one of them is a novel method developed in this study. A comparison study shows that 

the new clustering technique, a two-dimensional time correlation (TDTC) method outperforms the 

other conventional methods. However, a certain level of consensus was found among all three 

clustering methods. Four different clusters were obtained from all three methods. An exciting 

outcome of the clustering was their spatial signature. Even though geolocations of the paths were 

not considered in the process, a spatial pattern emerged. 
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The study puts forward a new concept of disaggregating a transportation network based on user-

defined paths. This method is different from conventional grid-based clustering. Based on this 

disaggregating concept, a new clustering algorithm was developed and demonstrated to 

outperform the other explored clustering methods. 

Most noteworthy features presented in this chapter are as follows: 

 Paths based on drivers’ or users’ route choice behavior are identified and clustered 

 Relationships between traffic flow parameters are determined on a path level  

 Fundamental diagrams hold at (user-defined) path level 

 A new theoretical basis for network partitioning was suggested – a path or route choice 

behavior-based clustering, which incorporates a time of day correlations. 

 

Reported results demonstrate that even networks with similar NFDs may require different 

management strategies depending on the time of day traffic patterns. Hence, spatial and temporal 

profiling of a large-scale system is needed, that could help planners and practitioners design 

dynamic control and flow management strategies. In summary, the study explains how to divide a 

regional network into sub-networks, based on demand patterns dynamics. Incorporating the time 

of day correlations allows for control/management strategies to be dynamic. An online application 

of such study could, potentially, be deployed for real-time traffic flow control. 
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CHAPTER 9. TRAVEL TIME DISTRIBUTION ALONG USER-

DEFINED PATHS 

Travel time between two points is a random variable with non-stationary distribution. It is 

stochastic in that a single value cannot be associated with it; only a range can be given with 

confidence. It is non-stationary because the associated probability distribution changes with time 

as well. Consequently, to determine travel time on a facility, observations covering an entire day 

over multiple days and seasons are required. A simple distribution obtained from data for a 

particular time of day say noon peak period, is not enough. 

In the previous chapter, the transportation system was characterized based on user-defined paths. 

To understand the system at the same level, in this chapter, the assessment of travel time reliability 

is the main premise. 

Availability of such a significant amount of observations is a challenge in itself. Several data 

sources have been explored and utilized to conduct such studies. The data sources include, for 

example, GPS, probe vehicles, computer simulation models, and wireless signatures. Observations 

from the sources, located on the same facility, can be combined to develop a richer data set in a 

consensus format. With the rapid development of information and communication technologies 

(ICT), equipping automobiles with wireless communication capabilities are expected to be the next 

frontier for automotive evolution. Connected vehicles are proactive, cooperative, well-informed, 

and coordinated, and will pave the way for supporting various applications for road safety (e.g., 

collision detection, lane change warning, and cooperative merging), smart and green transportation 

(e.g., traffic signal control, intelligent traffic scheduling, and fleet management), and location-
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based services (e.g., point of interest and route optimization). Connected vehicles offer valuable 

information regarding the performance and state of the vehicle and its trajectory, including time-

stamped position, direction, speed, routing, and driving style and preferences.  Connected vehicles 

can transmit their location and progression-related information in a high-resolution format and at 

a faster rate than any other currently available technology. Vehicle to vehicle (V2V) and vehicle 

to infrastructure (V2I) communication along with connected and automated vehicles (CAVs) 

makes this information readily available. Trajectories provide in-depth information about users’ 

travel experience in a transportation system. Moreover, trajectory-based measurements are more 

accurate than those based on link (aggregated) information. 

On the other hand, behavior studies have consistently shown the importance of travel time 

reliability to user satisfaction with the experience delivered by a transportation network, as well as 

to the travel and activity choices that individuals make (169). Travel time reliability also has a 

direct economic impact on the decisions of logistics firms and delivery vehicles, and the service 

levels ultimately experienced by shippers, firms, and consumers. For example, Fosgerau et al. 

(169) assume a deterministic model of travel time distribution for a given departure time of the 

day to model the utility of reliability in scheduling. Authors illustrate that the standardized travel 

time distribution is independent of time of day, but not the mean and standard deviation. With this 

in consideration the developed model has mean and variance as a function of departure time and 

the standardized trip duration distribution independent of the departure time. 

A critical question that arises from the perspective of a given user (i.e., a traveler or good shipping 

company) pertains to the variability of travel times along specific paths contemplated by the user 

(170). Related to that is the problem of finding paths that are in some way optimal (171) or meet 
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specific reliability targets (172) when the network travel times are stochastic with non-stationary 

distributions (173). Accordingly, there is a need to study the travel time as a function of time and 

day. The mere addition of expected travel time over the links to obtain a path’s travel time is not 

sufficient. 

Underlying all measures of travel time reliability is the variability of travel times, experienced 

along individual links, by various modes, at junctions and intermodal terminals, through the 

individual trajectories of travelers and goods. The importance of trajectories as the complete 

representation of the travel experience has been recognized recently in the literature (102), 

particularly in project L04 under the second strategic highway research program (SHRP2) (174). 

Most early work on pathfinding with stochastic travel times assumed that travel times are 

independent random variables; a variation on one link at a given time is treated as an independent 

process from a variation on adjacent links, or at different times. The main factors known to affect 

travel time variation, such as congestion and weather, tend to act on multiple links simultaneously, 

and their impact tends to linger long after the event itself may have cleared. This results in varying 

degrees of correlation in the travel times observed on different links in different time periods. 

While correlation tends to be stronger along contiguous or adjacent links, it is not limited to these 

situations, as recently shown by Zockaie et al. (109). Accordingly, the study seeks to develop a 

methodology to incorporate link travel time correlation. Estimating general correlation patterns is 

challenging because it requires a much more significant number of observations than estimating 

the first or second moments of these distributions. Also, obtaining the path-level distributions 

requires convolving the link-level distributions, a process that typically do not have closed-form 

analytical solutions, and for which numerical integration techniques may not always converge. For 
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this reason, statistical sampling methods, such as Monte Carlo techniques, have been used 

effectively for that purpose in a variety of areas. For example, calculation of sample likelihoods 

for maximum likelihood estimation of discrete choice models with general correlation patterns, 

such as multinomial probit or mixed logit, is commonly performed with statistical sampling 

techniques using both quasi-random methods such as Monte Carlo or pseudo-random techniques 

such as Halton sequences. 

 

 

Figure 9-1 Methodology to estimate path travel time distribution. 

 

In the interest of addressing the aforementioned subjects, the study aims at 1) using vehicle 

trajectory data to identify the paths traversed by drivers, recognizing that these paths are 

continuous but may comprise of different facility types, and 2) using the same data set to develop 
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the methods to successfully synthesize and replicate traveler-based distributions of travel time 

along the identified paths. The methods shall formulate and develop the path-level distributions as 

convolutions of link-level travel times that follow general distributions (i.e., recognizing spatial-

temporal correlations). Sequence steps need for such a study are presented in Figure 9-1 above. 

 

9.1. Methodology framework 

As is shown in Figure 9-1 above, the sequential framework consists of four modules: a) raw data, 

b) trajectory processor, c) link-level information library, and d) path travel time distribution. 

a) Raw data: Real data retrieved from infield observations are frequently contaminated with 

noise, missing values, erroneous measurements. In data-driven studies preliminary step is 

to clean and scrub the data to make it readily available for investigation. After cleaning 

data is reformatted as per analyst’s desire. 

 

b) Trajectory processor: Cleaned and reformatted trajectories obtained from the previous 

step are processed to create a library containing travel time distribution for links 

individually. At step, also the path, i.e., a set of consecutive links is identified between a 

given origin-destination (O-D) pair. 

 

c) Link level information library: For the identified paths and with the library, links 

comprising the paths are a subset of the library, and correlation relationship among the 

paths is identified.  

 

d) Path travel time distribution: Finally, with all the information retrieved from the previous 

steps, convolving integral with correlated random variables is solved to determine the 

underlying travel time distribution. 
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9.2. Existing data sources and types 

The study aims to develop solution methods with the real trajectories data which calls for a need 

of adequate data source. Popular data sources found for such a study include 1) fixed sensor, 2) 

floating car data, and 3) GPS information from equipped vehicles. Fixed sensors are limited in the 

coverage and the information they can provide. In general, they provide occupancy and speed. 

This leaves the analyst to estimate the flow and density. Floating car data (FCD), provide 

information such as speed, location, the direction of travel from active mobile phones in the 

vehicles. This provides better coverage and more information as compared to fixed sensors. In 

addition, to improved data quality, FCD also eliminate a need for additional hardware installation 

or any approximations. To further enhance the quality of the information, data from the vehicles 

equipped with GPS are being used.  

Sources used in the study: 

 Simulated trajectory data 

 Google Maps “Distance matrix” API 

 TomTom trajectory data 

 

9.2.1. Simulated Trajectory Data 

Simulated vehicle trajectories were used to conduct the analysis. Trajectories were obtained from 

the Chicago City network simulation model, where operational conditions were established as the 

clear weather with no precipitation and normal visibility. 
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Chicago testbed was extracted from the entire Chicago Metropolitan Area network to enhance the 

estimation and prediction performance during the implementation procedure. This testbed 

represents a section of the network previously described in Chapter 4 and shown in Figure 9-2. 

Detailed calibration and other characteristics are out of the scope of this study and can be found in 

the previous work (45; 46). Data contains information for vehicle regarding its entry, travel time 

and exit time for each link it traveled on. 

 

 

Number of nodes 1,578 

Number of links 4,805 

Number of vehicles 805,275 

Demand duration (h) 24 

 

Figure 9-2  Schematic Diagram of Chicago network. 
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9.2.2. Google Maps “Distance Matrix” API 

Google provides an application programming interface (API) called “Distant Matrix”. Utilizing 

the API, it is possible to retrieve a temporal profile of travel time between two points. For the 

purpose of the study, the API was used to retrieve travel time on a 4-mile stretch of West Peterson 

Avenue, Chicago which connects I-94 Freeway on west and Lakeshore Drive Highway on the east 

side (Figure 9-3). It has 8 signalized intersections with spacing ranging between 0.17 and 1 mile 

and average spacing being 0.56 miles. Travel time was collected over several days, over 20 days 

so far, in one-minute intervals. Different from GPS data, this data provides only one data point for 

a timestamp and an OD. Please note that the data is being collected continuously to make an 

extensive dataset. 

 

Figure 9-3  West Peterson Avenue, Chicago (Source: Google Maps) 
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Figure 9-4 and Figure 9-5 the temporal profile of the collected travel time by day of the week. 

Profiles clearly capture the morning, mid-day and evening peaks over the weekdays. Over the 

weekend, due to lower demand, the travel time is observed to reduce as compared to that on 

weekdays. 

 

 

Figure 9-4  Temporal profile of the collected data by day of the week 
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Figure 9-5  Temporal profile of the collected data by day of the week 

 

From the figures, it can be observed that before 10 AM all days have a similar trend in the travel 

time. The difference in the trend starts to emerge after 10 AM. Between 10 AM and 3 PM, there 

is a peak for weekdays, where the peak is the highest for Monday. Over the weekend no peak is 

observed in the time period. The second peak in the travel time distribution is observed in the 

evenings of the weekdays. This peak was the lowest for Mondays, contrasting to morning peak 
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trend. A third peak was observed on the Fridays around 4-5 PM. This can be due to people leaving 

work early on the day. For the weekends, the trend showed no significant peak. 

 

9.2.3. TomTom Trajectory 

The acquired trajectory data pertains to the data provided by TomTom for an SHRP2 study. 

Following is a brief description borrowed from the SHRP2 study report. Detailed information can 

be found in the original report. (7) 

The observed probe data set was collected through TomTom portable navigation devices (PNDs); 

whenever a vehicle containing this device moves along a road network, a trace/log is produced 

that contains information related to location and time for that vehicle. Data were obtained from 

TomTom, which covered approximately 1,100 square miles within the New York metropolitan 

area. The coverage area is shown in Figure 9-6. The raw data contained information for 16 full 

days, spanning from Sunday, May 2, to Sunday, May 16, 2010. There were approximately 2.5 

million probe data records provided for each day. For privacy protection reasons, the information 

provider randomized some of the data records. Records related to the first and last 10 segments of 

a unique probe ID were aggregated into one record, and time stamps were randomized by ±6 min. 

Figure 9-7 shows a snapshot of the data contained in the raw probe data. 
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Figure 9-6  TomTom data coverage area 

 

The first column is the probe identification number (ID) and is unique for each navigation device. 

The second column is the section the vehicle is traveling along. Each section is geospatially 

referenced and is contained in a geographic information system (GIS) map. The unique ID 

numbers for each section contained in the probe data correspond to the section IDs in the GIS 

database. The third column contains the ingress time (in milliseconds) for each section. This is a 

time stamp for when the vehicle enters each section. The time stamp is referenced to provide an 

instant in the time measuring from the UTC epoch of January 1, 1970. The fourth column is the 

travel time in seconds that the vehicle takes to traverse each section of the network. The fifth 

column provides the section length traversed in feet. 
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Figure 9-7  Raw probe data 

 

In summary, the raw data contain individual records by section traversed by each probe within a 

24-h period. It, therefore, means that multiple trips taken by an owner of the PND are contained 

within the probe records for one day and to distinguish between the trips the data had to be 

processed to produce the trajectory traces related to separate trips for the same probe ID. 

 

1.1.1.1 Processing of the raw data: 

The raw data was processed to determine the a) link and b) route level travel time distributions. 

a.) Link level travel time distribution: 

Link level information was retrieved from the trajectories. All the trajectories which 

overlapped significantly with the link into consideration were accounted towards the travel 

time distribution of the link. To begin the analysis at this level, the whole city of New York 

was divided into pre-defined links. And then the trajectories were mapped to the links. Not 

all the trajectories swept the entire link into consideration. For the case when only a part of 

the trajectory was overlapping the link, a weight (<1) was assigned. The weight of 

trajectory, 𝜙𝑖, towards the travel time distribution of link 𝑙 is calculated as: 
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𝑤𝜙𝑖

𝑙 =
𝑜𝑣𝑒𝑟𝑙𝑎𝑝 𝑜𝑓 𝜙𝑖  𝑤𝑖𝑡ℎ 𝑙

𝑙𝑒𝑛𝑔𝑡ℎ 𝑜𝑓 𝑙
 ( 9-1 ) 

 

Hence, weight travel time rate distribution was determined for each link. The trajectories 

with weight greater than 0.5 were taken into consideration. The developed travel time 

distribution forms the library of the of link level time distribution as presented in Figure 

9-1. The library is referred to retrieve link level travel times to solve the convoluting 

integral of correlated random variables. The problem statement and process are described 

in section 9.3below. 

 

b.) Route level travel time distribution: 

A route is defined as a set of consecutive links. Information at this level of analysis forms 

the ground truth. Travel time distribution of a route into consideration was determined 

through the trajectories overlapping with the entire route. 

 

9.3. Numerical Solution Method  

The fundamental problem is to formulate and solve a convoluting integral where random variables 

are correlated. Moreover, the random variables may have distribution types that are different from 

each other. In this section, an integral that includes these aspects is formulated first. Model for 

correlation is yet an ongoing investigation. 

A path, 𝑃, consists of 𝑁 consecutive links ∈  𝑙1, 𝑙2, 𝑙3, … , 𝑙𝑁 . Travel time on link 𝑙𝑖, ∀𝑖 ∈

 1,2,3, … ,𝑁 , is denoted by 𝜃𝑖. Then the distribution of travel time on the path 𝑃, Θ𝑃(Τ), is 
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obtained from solving the integrals presented below. First link travel time are assumed to be 

independent and then dependent. In the dependent case, the model is made sophisticated by 

introducing non0stationary and operational conditions. 

 

9.3.1. Convoluting Integral with Independent Random Variables 

Convoluting integral with an independent random variable is solved using the method of induction. 

That is, the integral is solved with two random variables at the time where the result from the 

previous step forms a new random variable for the next step. 

 

Θ𝑃(Τ) = 

∫ …(∫ (∫ 𝜃1(𝜏1)

∞

0

. 𝜃2(𝜏2 − 𝜏1)𝑑(𝜏1)) . 𝜃2(𝜏3 − 𝜏1 − 𝜏2)

∞

0

𝑑(𝜏2))

∞

0

… 𝜃𝑁 (𝛵

− ∑ 𝜏𝑗

𝑁−1

𝑗=1

)𝑑(𝜏𝑁−1) 

( 9-2 ) 

 

9.3.2. Convoluting Integral with Dependent Random Variables 

When the correlation is assumed then the distribution of travel time on the path 𝑃, Θ𝑃
𝜊(Τ), of order 

𝜊 is obtained from solving the following integral: 
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Θ𝑃
ο(Τ) = 

∫ ∫ …∫ 𝜃1(𝜏1). 𝜃2(𝜏2 − 𝜏1). 𝜃2(𝜏3 − 𝜏1 − 𝜏2) … 𝜃𝑁 (𝛵

∞

0

∞

0

∞

0

− ∑ 𝜏𝑗

𝑁−1

𝑗=1

)𝑑(𝜏𝑁−1)…𝑑(𝜏2)𝑑(𝜏1) 

( 9-3 ) 
 

 

In the formulation, the order 𝜊 ∈  ℤ≥ is the maximum number of upstream links that are considered 

to be correlated. Accordingly, 𝜃𝑖 is assumed to be correlated with the previous 𝑛 = min 𝑖, 𝜊  links. 

In equation ( 9-3 ), probability distribution type of 𝜃𝑖’s is not restricted to any specific from. 

Furthermore, links within a path can have multiple distribution types of travel time. 

There are vehicles that do not travel the entire stretch of the path, but only a portion. Before they 

turn away from the path, these vehicles may slow down and thus impact the continuing vehicles. 

Hence, accounting for these vehicles in the same way as the continuing vehicles will give an 

incorrect estimate of path travel time. To address this issue, continuing vehicles to the next link on 

the path from the current link are given more weight to compute link travel time distribution while 

solving the integral in equation ( 9-3 ). 

The outcome of the integral is a distribution of travel time which will still be needed to fit into an 

analytical form. The first attempt is to fit a standard distribution type, like log-normal distribution. 

Another approach is to estimate a Fourier series. A decision criterion other that RMSE is needed 

because it was found that such estimation techniques are inaccurate around the mode values of the 

distributions. 
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Integral presented in equation ( 9-3 ) is stationary, to add a temporal dimension to it the integral is 

modified to take the following form: 

 

Θ𝑃
𝜊,𝑡′

(Τ)  = 

∫ ∫ …∫ 𝜃1
𝑡′
(𝜏1). 𝜃2

𝑡′
(𝜏2 − 𝜏1). 𝜃3

𝑡′
(𝜏3 − 𝜏1 − 𝜏2)…𝜃𝑁−1

𝑡′
(𝜏𝑁−1 − ∑ 𝜏𝑗

𝑁−2

𝑗=1

) . 𝜃𝑁
𝑡′

(𝛵

∞

0

∞

0

∞

0

− ∑ 𝜏𝑗

𝑁−1

𝑗=1

)  𝑑(𝜏𝑁−1)…𝑑(𝜏2) 𝑑(𝜏1) 

( 9-4 )  

 

In equation ( 9-4 ), 𝑡′ is prevailing time interval which simply can be four time-periods: 1) Early 

morning, 2) Mid-day, 3) evening, and 4) late evening to midnight. 𝑡′ can also be finer time interval 

bins of one hour. Former time intervals save on computational efforts and the later gives a precise 

estimation. However, for the later time intervals, there might not be enough data for estimation. 

Furthermore, there is an effect from operational conditions (OCs) as well. Accordingly, weather 

or seasonal attribute to represent different OCs is also added to equation ( 9-4 ). 
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Θ𝑃
𝜊,𝜁,𝑡′

(Τ)  = 

 

∫ ∫ …∫ 𝜃1
𝜁,𝑡′

(𝜏1). 𝜃2
𝜁,𝑡′

(𝜏2 − 𝜏1). 𝜃3
𝜁,𝑡′

(𝜏3 − 𝜏1 − 𝜏2) … 𝜃𝑁−1
𝜁,𝑡′

(𝜏𝑁−1

∞

0

∞

0

∞

0

− ∑ 𝜏𝑗

𝑁−2

𝑗=1

) . 𝜃𝑁
𝜁,𝑡′

(𝛵 − ∑ 𝜏𝑗

𝑁−1

𝑗=1

)𝑑(𝜏𝑁−1)…𝑑(𝜏2) 𝑑(𝜏1) 

( 9-5 ) 

 

In equation ( 9-5 ), 𝜁 is operational condition indicator. It can be divided in as many categories as 

a need, but it will increase computational efforts. If too few categories are used, it can cost the 

efficiency of the method. Hence, there is a trade-off here as well. An optimal balance will be found 

through conducting a sensitivity analysis. 

 

9.3.3. Solution Method 

In general, the convolution may not have a closed form particularly if the distributions are 

different. In such cases, numerical approximate solution techniques are established. For instance, 

let there be a convoluting integral with two correlated random variables. In this case, one simple 

technique would be to condition on them sequentially. This is to say that condition on one of the 

random variables and then un-condition on it. For example, if we want to find the distribution of 

𝑍 = 𝑋 + 𝑌, then the first condition on 𝑦, i.e., 𝑃(𝑍 ≤  𝑧) = 𝑃(𝑋 ≤  𝑧 − 𝑦|𝑌 = 𝑦) and then un-

condition on 𝑦. Another more complex method is to find a characteristic function (or the moment 

generating function as found in the studies in (15) and (16)) of 𝑍 as the product of characteristic 
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functions of 𝑋 and 𝑌 and then invert that characteristic function. However, such methods may not 

scale well at a large network level. To achieve computational efficiency in the estimation method, 

commonly, a sampling technique as in Monte Carlo simulation-based techniques are exercised. In 

an overview of such techniques, given a distributions of each link travel times which form a path 

and the correlation among them, conditional probabilities are to be established. Based on thus 

formed probabilities, samples are estimated to form a vector of realizations of the path travel times. 

If the correlation is ignored, i.e., samples are drawn independently, the result would be the same 

as to the solution of a regular convolution integral that assumed no correlation among its random 

variables. 

This study adopted a Markov Chain Monte Carlo simulation-based technique to produce a non-

stationary, non-parametric solution for the link travel time distribution based on the individual link 

travel time distributions. Two foundational steps in the technique are: 

 Estimate link travel time and correlation among them. 

 Solve convoluting integral with correlated random variables to convolve the link travel 

times together to compute path travel time. 

 

In what follows, four sampling techniques were used to reconstruct path travel times from 

corresponding link travel times: 

1. Link travel times were assumed to be independent 

2. Quasi-time dependency was introduced 

3. True time dependency was introduced 

4. True time dependency with correlated travel time was introduced 
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9.4. Independent Link Travel Times 

At this step, link travel times were assumed to be independent, i.e., uncorrelated. This step is based 

on the following iterative procedure: 

• One realized travel time was picked randomly for each of the links. A set of link travel 

times is constructed. 

• Picked link travel times are summed together to estimate a path travel time. 

• This process is reiterated multiple time to obtain a set of path travel time estimates. 

 

9.5. Quasi-Time Dependent Link Travel Times 

Here, the link travel times were assumed to be quasi-time dependent. The steps involved in this 

process are as follow: 

• Whole time duration is binned in uniform 15-minutes intervals. 

• A time bin is chosen randomly, 

• A realized link travel time for each of the constituting links is picked from the chosen time 

bin to form a vector. 

• Elements of the vector are summed to get a path travel time estimate for the time bin. 

• The process is repeated multiple times. 

 

9.6. Time-Dependent Link Travel Times 

This step is based on the previous step of quasi-time dependent link travel times. In the previous 

step, link travel times from the same (departure time) bin, say the 10:30 AM to 10:45 AM bin, 
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were selected to produce a travel time for the path for that same bin. However, this is not true time-

dependence, because the bin for a downstream link, in reality, may be different; for example, if 

the travel time from link 1 to link 5 is more than 15 minutes (technically 7.5minutes if selected a 

point at random), then one would be in a different time bin for the downstream link. Time-

dependence is about recognizing that the arrival time at a downstream node depends on the travel 

time along link or sub-path to that node. This is likely to be even more of an issue for the shorter 

time bins (e.g., 2-minute). To incorporate the true time dependency, the time bins were adjusted 

based on the arrival time at the start node of the link. 

 

9.7. Time-Dependent Correlated Link Travel Times 

Building on the previous step, at this stage correlation among link travel time in incorporated. That 

is, traffic flow conditions as experienced by a user on the upstream link is accounted for. The 

rationale behind this incorporation is that just basing on the arrival time at a link does not 

sufficiently determines a user’s experience on the route. To incorporate correlation, links traffic 

flow conditions were clustered to identify congested and uncongested regimes. Conditional on the 

upstream link’s congestion level, downstream link’s realized travel times were utilized to 

determine path’s travel time. 

 

9.8. Correlation Structure 

As pointed out by the authors in (106), most of the literature assumes independence among link 

travel time. This assumption leads to biased results that are far off actual measurements. If the 
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correlation is ignored, the estimated trip/path travel time is not accurate and is typically 

underestimated (105).  It is essential to capture and understand the correlation among the link travel 

times for studies that measure reliability in the system. Methodologies that incorporate correlation 

are readily applicable to the case where link travel times are independent, but the converse is not 

true. To model independence in such methodologies, merely setting the correlation matrix to zero 

would suffice as independence is a particular case of zero correlation. The challenge of summing 

correlated random variables often arises in cellular communication systems where a user preferred 

bandwidth is favored for efficient reception. Reference (175) is a study on calculating an 

approximate sum of lognormal RVs and has references on the same subject. However, in 

communication systems, link travel time is very short, and the networks are typically much denser 

than transportation networks, so a large number of paths may be available for close-to-optimal 

routing. 

Recent work by Zockaie et al. (109) on link travel time correlation address this in a recent study. 

The study provides an algorithm to compute the correlation structure with a different order of 

neighboring links. The developed algorithm is applied to a stochastic network. Their methodology 

incorporates temporal (within a day) and spatial variability. The correlation model is as follows: 

𝐶𝑜𝑟(𝑥𝑡, 𝑦𝑡′) =
∑ [(𝑥𝑡

𝑖 − 𝑥�̅�)(𝑦𝑡′
𝑖 − 𝑦𝑡′̅̅ ̅̅ )]𝐼

𝑖=1

√∑ [(𝑥𝑡
𝑖 − 𝑥�̅�)

2
] ∑ [(𝑦𝑡′

𝑖 − 𝑦𝑡′̅̅ ̅̅ )
2
]𝐼

𝑖=1
𝐼
𝑖=1

 ( 9-6 ) 

 

where 𝑥𝑡 and 𝑦𝑡′ are travel times of vehicle 𝑖 at time interval 𝑡 and 𝑡′ respectively and 𝑡′ =

 𝑡 − 1, 𝑡, 𝑡 + 1 . 
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Further, on correlation structure, Rakha et al. in (176) clearly state that assuming independence of 

link travel-times gives wrong estimates of variability of travel time on a path. Estimating mean 

path travel time is a simple addition of mean link travel times but as claimed in reference (110) 

mean is not sufficient to estimate a system’s reliability. Rakha et al. present multiple estimators of 

link travel time correlation. With given 𝑛, number of vehicles ∈ 𝑉(𝑠), on path 𝑠, path 𝑠 composed 

of 𝑚 ∈ 𝐿(𝑠) links, and 𝑡𝑖𝑗 being the travel time realized by a vehicle 𝑖 ∈ 𝑉(𝑠) on link 𝑗 ∈ 𝐿(𝑠). 

trip travel time for a vehicle 𝑖 the is calculated as: 

𝑡𝑖𝑡 = ∑ 𝑡𝑖𝑗
𝑗∈𝐿(𝑠)

, ∀𝑖 ∈ 𝑉(𝑠) 
( 9-7 ) 

 

moreover, expected travel time along a link is computed as: 

𝑡�̅� = 𝐸𝑖{𝑡𝑖𝑗} = (∑𝑡𝑖𝑗

𝑛

𝑖=1

) 𝑛⁄ , ∀𝑗 ∈ 𝐿(𝑠) 
( 9-8 ) 

 

Similarly, for a trip, the expected trip time is 

𝑡�̅� = 𝐸𝑖 𝑡𝑖𝑡 = 𝐸𝑖 { ∑ 𝑡𝑖𝑗
𝑗∈𝐿(𝑠)

} = ∑ 𝑡�̅�
𝑗∈𝐿(𝑠)

 
( 9-9 ) 
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Authors basing their research on other literature and own techniques give five methods to compute 

the variation of path travel time from composing links’ travel times retrieved from the vehicles 

who traversed on them. Table 1 gives five estimators of variations developed by the authors. 

 

Table 9-1 Travel time variability methods 

Method Symbol Equation  

1 �̂�1𝑡
2  

{ ∑ ( ∑ 𝑡𝑖𝑗
2

𝑗∈𝐿(𝑠)

)

𝑖∈𝑉(𝑠)

} 𝑛⁄ − ∑ 𝑡�̅�
2

𝑗∈𝐿(𝑠)

  
( 9-10 ) 

2 �̂�2𝑡
2  𝑡�̅�

2

∑ 𝑡�̅�
2

𝑗∈𝐿(𝑠)

. {( ∑ ( ∑ 𝑡𝑖𝑗
2

𝑗∈𝐿(𝑠)

)

𝑖∈𝑉(𝑠)

) 𝑛⁄ − ∑ 𝑡�̅�
2

𝑗∈𝐿(𝑠)

} 
( 9-11 ) 

3 �̂�3𝑡
2  𝑡�̅�

2

𝑚2
. ( ∑

𝜎𝑗

𝑡�̅�
𝑗∈𝐿(𝑠)

)

2

 
( 9-12 ) 

4 �̂�4𝑡
2  

{𝑡�̅�.𝑀𝑒𝑑𝑗(𝐶𝑉𝑗) }
2
 

( 9-13 ) 

5 �̂�5𝑡
2  𝑡�̅�

2

4
(𝐶𝑉𝑚𝑎𝑥 − 𝐶𝑉𝑚𝑖𝑛) 

( 9-14 ) 

 

�̂�1𝑡
2  assumes independency of link travel times. �̂�2𝑡

2  was developed based on the bounds on 

covariance as described in (177). �̂�3𝑡
2  assumed the trip 𝐶𝑜𝑉 is expected value of the realized 𝐶𝑜𝑉 

of the segments. 𝐶𝑜𝑉 is coefficient of variation calculated as the standard deviation divided by the 

mean. 
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Figure 9-8 Comparison of the methods [Source (176)] 

Figure 9-8 presents the comparison of the five methods. Authors found �̂�3𝑡
2  to give the least error 

between the estimates and empirical data. However, they also insist on making an exhausted 

research with more data. 

Let distribution of travel time on link 𝑖 be 𝐷𝑖𝑠𝑡𝑖, estimated based on data sets 𝑇𝑇𝑖
𝑖𝑛𝑑 and 𝑇𝑇𝑖

𝑐𝑜𝑟𝑟. 

𝑇𝑇𝑖
𝑖𝑛𝑑 is a set of travel time realizations on link 𝑖 from vehicles which do not continue to travel on 

the path and exit the path after link 𝑖. 𝑇𝑇𝑖
𝑐𝑜𝑟𝑟 is a set of travel time realizations on link 𝑖 from 

vehicles traversing to the next link on the path. In this project, we intend to use the Markov Chain 

Monte Carlo simulation approach. To establish Markov chain transitional probabilities are 

computed, similar to the studies in (106) and (107). In the reference (106) and (107), only 𝑇𝑇𝑖
𝑐𝑜𝑟𝑟 

and 𝑇𝑇𝑖+1
𝑐𝑜𝑟𝑟 sets are used to compute the transitional probabilities. However, using partial will 

understate the true distribution and the correlation. As not all the trajectories are available to begin 

with, a further subset will reduce the accuracy of estimations.  
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In this study, the variability in path travel time is based on a new correlation structure formulated 

to incorporate spatial and temporal parameters. Furthermore, moving away from pre-defined time-

based analysis of correlation, travel time correlation is determined among the neighboring links as 

a function of arrival times at the links. 

 

𝑉𝑎𝑟(Θ𝑃(𝑇)) = 𝑉𝑎𝑟 (∑𝜃𝑖(𝜏𝑖)

𝑛

𝑖=1

)

= ∑𝑉𝑎𝑟(𝜃𝑖(𝜏𝑖))

𝑛

𝑖=1

+ 2 ∑ 𝐶𝑜𝑣 (𝜃𝑖(𝜏𝑖), 𝜃𝑗(𝜏𝑗))
1≤𝑖<𝑗≤𝑛
|𝑖−𝑗|≤𝑜

 

( 9-15 ) 

𝜏𝑗 = 𝑇 + ∑𝜃𝑖(𝜏𝑖)

𝑗−𝑖

𝑖=1

, ∀𝑙 > 1 ( 9-16 ) 

 

where, 

Θ𝑃(𝑇) : The travel time of Path 𝑃 at time 𝑇 

𝜊 : 

(ℤ≥) The order is the maximum number of neighboring links that are 

considered to be correlated 

𝜃𝑖(𝜏𝑖) : Travel time on link 𝑖 when arrival time is 𝜏𝑖 

𝜏𝑖 : Estimated arrival time at link 𝑖 if departure from the first link is at time 𝑇 
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𝜏1 : Arrival time at link 1, it is the departure time, i.e., T 

 

The variance, 𝑉𝑎𝑟(Θ𝑃(𝑇)), in travel time, Θ𝑃(𝑇), over path 𝑃 at departure time 𝑇 is estimated 

according to equation ( 9-6 ). 𝐶𝑜𝑣 (𝜃𝑖(𝜏𝑖), 𝜃𝑗(𝜏𝑗)) is the covariance of travel times, 𝜃𝑖(𝜏𝑖) and 

𝜃𝑗(𝜏𝑗), on links 𝑖 and 𝑗 when the estimated arrival times at the links are 𝜏𝑖 and 𝜏𝑗. Arrival times are 

estimated as per equation ( 9-7 ). Arrival at the first link is the departure time, hence, it is equal to 

𝑇. 

 

 

9.9. EXPERIMENT RESULTS 

The results are produced with the simulated data as described in the section 9.2 above. A path 

consisting of 14 links was adopted to perform analysis on. Figure 9-9 through Figure 9-11 present 

temporal profile and other distribution characteristics of travel time on the path and constituting 

links. 
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Figure 9-9  Temporal profile of the path travel time distribution. 

 

Path travel times were retrieved from the vehicles that traveled the whole path, and for the link 

travel times, vehicles which traveled a part of the path were also considered. 
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Figure 9-10  Temporal profile of link travel times on the selected path. 

 

 

Figure 9-11  Distribution of link travel times on the selected path. 
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The three techniques mentioned above were implemented to reconstruct path travel times from the 

corresponding link travel times. Results are presented in Figure 9-12 through Figure 9-14. 

 

9.9.1. Independent Link Travel Time 

In this step, link travel times were assumed to be independent, i.e., uncorrelated. This step is based 

on the following iterative procedure: 

• One realized travel time was picked randomly for each of the links. A set of link travel 

times is constructed. 

• Picked link travel times are summed together to estimate a path travel time 

• This process is reiterated multiple time to obtain a set of path travel time estimates 

 

 

Figure 9-12  Travel time distribution on the path assuming independent link travel times. 
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Different numbers of iterations were tested to study the effect. There was no major change among 

different cases of iterations. As it can be observed from the Figure 9-12, assuming independent 

link travel times results in an inaccurate estimate of path travel time. 

 

9.9.2. Quasi-Time Dependent Link Travel Times 

Here, the link travel times were assumed to be quasi-time dependent. The steps involved in this 

process are as follows: 

• Whole time duration is binned in uniform 15-minute intervals. 

• A time bin is chosen randomly. 

• A realized link travel time for each of the constituting links is picked from the chosen time 

bin to form a vector. 

• Elements of the vector are summed to get a path travel time estimate for the time bin. 

• The process is repeated multiple times. 
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Figure 9-13  Travel time distribution on the path assuming quasi-time dependent link travel times. 

 

Various numbers of iterations were tested to study the effect. With the increase in iterations, 

estimate gets closer to the empirical distribution relaxing the assumption of independent link travel 

time’s results in the better estimate (Figure 9-13). 

 

9.9.3. Time-Dependent Link Travel Times 

This step is based on the previous step of quasi-time dependent link travel times. In the previous 

step, link travel times from the same (departure time) bin, say the 10:30 AM to 10:45 AM bin, 

were selected to produce a travel time for the path for that same bin. However, this is not true time-

dependence, because the bin for a downstream link, in reality, be different; for example, if the 

travel time from link 1 to link 5 is more than 15 minutes (technically 7.5minutes if selected a point 

at random), then one would be in a different time bin for the downstream link. Time-dependence 

is about recognizing that the arrival time at a downstream node depends on the travel time along 

link or sub-path to that node. This is likely to be even more of an issue for the shorter time bins 

(e.g., 2-minute). To incorporate the true time dependency, the time bins were adjusted based on 

the arrival time at the start node of the link. 
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Figure 9-14  Travel time distribution on the path assuming time-dependent link travel times. 

 

With the corrected time bin, the resulting path travel time distribution was estimated better than 

the previous steps Figure 9-14. 

 

9.9.4. Time-Dependent Link Travel Times 

This step is based on the previous and incorporates correlation in link travel times. It can be 

observed from Figure 9-15 that the estimates are better. In the previous step, the estimated 

distribution overestimated the travel time. The estimates are very close to the empirical 

distribution. 
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Figure 9-15  Travel time distribution on the path assuming time-dependent link travel times. 

 

 

9.9.5. The variance of Travel Time 

Figure 9-16 presents the estimated variance against the empirical. The empirical and the estimated 

data were binned into 6-minute intervals. It was found that with an increase in the interval size 

estimates were off from the empirical data. This is because the when the interval size is larger than 

the path’s travel time, the estimated arrival times at subsequent links fall in the same time bin. This 

results in wrong sampling and hence the wrong estimate of the variance. Hence, the size of the 

time bin is critical. Essentially, smaller time bin would be ideal, but with smaller bins, odds of 

having enough data points gets lowered. 
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Figure 9-16  Travel time variability. 

 

9.10. Conclusion 

In this chapter a travel time distribution along the paths defined by users was estimated through 

solving a convoluting integral of correlated link travel times. Travel time reliability is an important 

measure to assess a system’s performance. Underlying all measures of travel time reliability is the 

variability of travel times, experienced along individual links, by various modes, at junctions and 

intermodal terminals, through the individual trajectories of travelers and goods. The main factors 

known to affect travel time variation, such as congestion and weather, tend to act on multiple links 

simultaneously, and their impact tends to linger long after the event itself may have cleared. 

In this chapter a solution method was developed to incorporate link travel time covariation. 

Estimating general covariance patterns is challenging because it requires a much more significant 

number of observations than estimating the first or second moments of these distributions. Also, 

obtaining the path-level distributions requires convolving the link-level distributions, a process 
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that typically does not have closed-form analytical solutions, and for which numerical integration 

techniques may not always converge. 

In this chapter a new solution technique is formulated to convolve link travel times to estimate 

path travel time. The methodology explicitly incorporated time varying covariance structure. 

Furthermore, an analytical form of variance of path was devised to correctly capture the spatio-

temporal covariance of link travel times. 

Results from numerical experiments show that the formulated methods estimate travel times along 

a route close to the empirical distributions of travel time and its temporal variation. 
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CHAPTER 10. CONCLUSION AND FUTURE WORK 

The primary objective of this dissertation is to explore the potential of CAV technology in 

formulating 1) facility type-customized active management and control strategies, 2) assessment 

techniques, and 3) analytical methods with the purpose of enhancing existing transportation 

network’s operational capabilities. Particular attention was dedicated to investigating the 

opportunities to improve the mobility of vehicles, the efficiency of transportation systems, and 

environmental standards in a meaningful manner when only a fraction of the traffic stream is 

connected. 

This study models a connected environment to emulate data transmission and explores its potential 

as, both, a data source and an application platform. Furthermore, connected vehicle-generated 

traffic data was established as the basis of traffic state characterization and reactive and predictive 

analytics under different operational conditions. The conducted analysis disaggregates a 

transportation network in multiple ways to account for various aspects such as demand levels, 

operational conditions, types of facility and levels of analysis. 

To explore the potential of CAVs, the dissertation is divided into three major components. These 

components address different technical issues of research at different parts of a transportation 

network. First part evaluates the impact CAVs at freeways and highways via hybrid simulation 

framework developed in the study. The second component focuses on developing traffic signal 

control strategies for mixed vehicular traffic stream on arterial roads. The third component 

develops numerical assessment techniques for planners to understand a network’s performance 

through user-defined paths. 
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The current state of the transportation system does not have a significant number of deployed CVs, 

which in turn means there is not an adequate amount of data from such vehicles. To conduct such 

analysis, simulation-based studies are being conducted. Hence, the studies conducted in the 

dissertation are simulation based. However, the methodologies developed are independent of any 

simulation tool and can be applied with any tool with adequate models encoded in them. 

Calibration of models was not the focus of the study. Drivers’ behavior was emulated at the 

microscopic level with well-calibrated models adopted from the literature.  

The first part of the study analyzes at a large network level to assess the impact of connected 

vehicles on the freeway and network level. To be able to consider facility or network-level effects 

of connectivity, vehicle communication and interactions are to be captured at the individual vehicle 

level. Such microscopic analysis would be extremely computationally costly for large-scale 

networks. Hence, to model and investigate the impact of connectivity on transportation systems 

and its impending applications, a framework to integrate microscopic aspects of individual vehicle 

interactions and drivers’ behavior within a mesoscopic simulation tool was proposed. Therefore, 

microsimulation-based traffic stream variables are characterized and utilized to calibrate 

mesoscopic models under different MPRs of CVs. Mesoscopic models are then used to simulate 

and analyze facility or network-level impact of connected vehicles. With the integration, we 

achieve computational economy of mesoscopic level for a large-scale network while capturing 

driver’s behavior at the individual level. Hence, it is a balanced trade-off between accuracy and 

efficiency of estimation. In the overall analysis of the connected vehicle environment’s impact on 

transportation system state characterization, network-level fundamental diagrams were applied. 

Observations from the simulated traffic data show that with an increase in MRP of connected 
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vehicles, the network operates at a lower maximum density and exhibits an increased flow rate for 

the same density level. Thus, a highly connected environment has the potential to help a congested 

network recover from flow breakdown and avoid gridlock. Connected vehicles help reduce mean 

travel time while making the system more reliable. Connectivity can improve a system’s 

performance by increasing throughput and enhance travel time reliability at all demand levels. The 

analysis also confirms that the linear relationship between distance weighted travel time and 

distance weighted standard deviation holds for a network and is not affected by either demand 

level or Market Penetration Rate (MPR) of connected vehicles. Hence, the network appears to 

retain its inherent properties (signature). 

 

The second part of the study focuses on developing traffic signal control strategies to manage 

mixed traffic in a connected environment. The study addresses the question whether mixed traffic 

(automated vehicles, connected vehicles, and regular vehicles) operations could be improved, and 

if so, how significant such an improvement might be, when only a fraction of vehicles are 

connected. Accordingly, two types of control strategies were developed: 1) Prediction-based 

adaptive control strategy, 2) Real-time platoon self-identification control strategy. The current 

state of practice in the realm of traffic control is based on the fixed sensors which have limited 

coverage, and the estimation of the traffic state is not accurate, especially queue lengths. This study 

overcomes such shortcoming in the current state of practice by developing signal controls with 

connected vehicles as the source of data in addition to the controller’s vehicle tracking capability.  

Prediction-based adaptive control method formulated in this research optimizes timing plan 

settings based on anticipated demand. Vehicle trajectories provide the basis to anticipate demand 
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and optimize timing plans. Also, information on upcoming signal indications is then utilized for 

vehicles to optimize their trajectories to reduce unnecessary idling and breaking. Connected and 

automated vehicles communicate with the signals to convey their desired turning movement and 

accumulated delay along the corridor. This allows for the isolated controller to operate in an 

intelligent, yet, fully-actuated manner, recognizing the need to coordinate major direction traffic 

flows, i.e., to enable progression along the corridor, when warranted. Numerical experiments were 

conducted to evaluate the performance of the strategy. The strategy was compared to vehicle 

actuated signal control strategy, which is currently the state of art in practice. Admittedly, the 

effectiveness of the strategy may have been comparably less significant had there been a more 

advanced control logic to compare against. The pace of advances in the field urges a more 

advanced solution and future applications need to examine the multifaceted nature of data sources 

anticipated to be available in the near future. 

Real-time platoon self-identification control strategy represents a platoon-phase scheduling 

heuristic that considers clusters of vehicles as critical jobs. The framework devises an advanced, 

online, signal control logic for mixed traffic environments utilizing the information from CAVs to 

augment controller/sensor data. A prerequisite of such an approach is the application of the 

innovative procedure for segmentation of traffic flows based on CV trajectory data. The positive 

impact of the strategy was demonstrated by investigating the trend of several performance 

indicators with respect to the base case. To compare the proposed adjusted spatial longitudinal 

variation clustering technique against a more conventional approach – a critical headway-based 

platooning - was also examined within the same control logic. The method differs from what 

transportation research and practice consider platooning. Reported results correspond to two 



214 

 

 

analysis levels – isolated intersection and corridor. At corridor level, conventional gap-out platoon-

based control, unlike the ASLV self-identification control method, fails to consistently achieve 

superior operational efficiency compared to the vehicle-actuated type of control. 

 

When comparing both signal control strategies developed in this work, the prediction-based 

adaptive control method provides a marginally greater benefit, with an additional up to 2% 

decrease in the delay under the cases tested. However, this strategy tends to be computationally 

heavy. In future work, one can multithread the process where each scenario can be run 

simultaneously, considerably reducing the required simulation time. Further complex algorithms 

could also help cut down the simulation and optimization time. 

At an isolated intersection level, the oversaturated period proves to be the most challenging to 

operate satisfactorily. When the traffic stream consists of 100% regular vehicles, both strategies, 

compared to the vehicle actuated base-case, slightly underperform during this period. However, it 

should be noted that the method was explicitly devised for mixed environments and that in all 

other demand and traffic mix cases proposed strategy substantially outperforms the alternative. 

The strategies are based on the following new features: 

 Vehicle-based computation of performance metrics to optimize control parameters. This 

provides better insight into the prevailing condition resulting in better optimization of the 

control parameters. 

 “Intelligent fully-actuated” controller logic was developed that utilizes high-resolution 

information of the vehicles’ state. 
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 Accumulated delay over a facility forms the basis of the objective function with enables 

flow synchronization through decentralized logic. 

 In real-time platoon-based control strategy, platoons were self-identified based on the 

vehicles prevailing state rather than a conventional threshold headway. 

This study was conducted in a simulated environment, and the strategy was found to reduce delay, 

travel time rate, and queue buildups. 

It is evident that a driver is not restricted in taking only one type of facility when driving from 

origin to destination. Accordingly, in the third part of the study user-defined paths were studied to 

identify the characteristics associated with those paths. To determine a set of popular route choices 

a data-driven trajectories clustering method was utilized. Path Fundamental Diagrams (PFDs) are 

obtained for each of the identified popular paths. A two-dimensional time correlation (TDTC) 

method was adopted to group the popular paths into a cluster with similar traffic stream variables 

key relationships. The study puts forward a procedure that can be applied to divide regional 

networks into sub-networks based on demand patterns’ dynamics. Correspondingly, time-of-day 

control and management strategies can be tailored to suit specific paths’ operational 

characteristics. An online application, can, potentially, be deployed for real-time traffic flow 

control. 

Another fundamental question that arises from the perspective of a given user (i.e., a traveler or 

good shipping company) pertains to the variability of travel times along specific paths 

contemplated by the user. The mere addition of expected travel time over the links to obtain a 

path’s travel time is not sufficient. It is essential to capture and understand the correlation among 

the link travel times for studies that measure reliability in the system. Accordingly, an analytical 
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framework was designed to adequately compute link travel time correlations with the aim of 

accurately determining path-based travel time distributions. Travel time distribution along the 

paths defined by users was estimated through solving a convoluting integral of correlated link 

travel times. The solution method was developed to incorporated time-varying covariation 

structure explicitly. Furthermore, an analytical form of the variance of the path was devised to 

correctly capture the spatiotemporal covariance of link travel times. Results from numerical 

experiments show that the formulated methods estimate travel times along a route close to the 

empirical distributions of travel time and its temporal variation. 

 

This dissertation incorporated the emerging technology of CAVs in traditional transportation 

system practices. Different aspects of the transportation system ranging from simulation 

techniques to designing control strategies and finally, analytical methods were addressed. In future 

work, when the real-world data is available from CAVs, recalibration of the models will provide 

a more realistic magnitude of the impact of the technology. The current work will provide a 

tangible benchmark. The following tasks are recommended for future investigation: 

 Integrate the developed signal controls for arterial roads with freeway and highway hybrid 

simulation framework. This integration will help study the impact of the CAVs on the 

whole network. 

 Combine different tools into one composite tool. The combination of tools will provide 

researchers, planners, and practitioners a common ground to test different aspects of the 

emerging technology. 
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 With real-world data, recalibrate the driver behavior models to emulate to the reality as 

closely as possible. 

 Continuing the assessment work at path level, develop a user-friendly interface for planners 

to monitor system’s performance in real-time. Further, develop tools to predict an event 

such as congestion, breakdown, and gridlock. 
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APPENDIX I 

To estimate the arrival of vehicles at the stop bar and subsequently their exit times, basic speed 

and acceleration calculations were performed. 

With respect to vehicle’s arrival time, it is considered to consist of two parts, viz. 𝑇1 and 𝑇2. 

First, 𝑇1, is the time vehicles needs to accelerate at the rate 𝐴𝑐𝑐 to its desired speed, 𝑉𝐷𝑒𝑠𝑆𝑝𝑑, from 

its prevailing speed 𝑉𝑓. However, vehicle’s distance from the stop bar, 𝐷𝑖𝑠𝑡 may not be sufficient 

to achieve its desired speed before exiting the intersection. In that case, only the time the vehicle 

takes while accelerating until arriving at the stop bar is considered. 

Second, 𝑇2, is the time vehicles spend on an approach while travelling remainder of their 𝐷𝑖𝑠𝑡 at 

its desired speed until they arrive at the stop bar. 

 

𝑇1 = min

(

 
𝑉𝐷𝑒𝑠𝑆𝑝𝑑 − 𝑉𝑓

𝐴𝑐𝑐
,

−𝑉𝑓 + √𝑉𝑓
2 + 2. 𝐴𝑐𝑐. 𝐷𝑖𝑠𝑡

𝐴𝑐𝑐

)

  

𝑇2 =
𝐷𝑖𝑠𝑡 − (𝑉𝑓. 𝑇1 + 0.5 ∗ 𝐴𝑐𝑐 ∗ 𝑇1

2)

𝑉𝐷𝑒𝑠𝑆𝑝𝑑
 

 

Hence, the arrival time of the vehicle at the stop bar, 𝑇𝐴 is 

 

𝑇𝐴 = 𝑇1 + 𝑇2 
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For a platoon 𝑃, arrival, exit, and service times are calculated as follows: 

 

Variable Name Symbol Formula 

Arrival Time 𝑇𝑃
𝐴 min(𝑇𝑣𝑒ℎ

𝐴 ) , 𝑣𝑒ℎ ∈ 𝑃  

Exit Time 𝑇𝑃
𝐸 max(𝑇𝑣𝑒ℎ

𝐴 ) , 𝑣𝑒ℎ ∈ 𝑃  

Service Time 𝑇𝑃
𝑆𝑒𝑟𝑣𝑒 𝑇𝑃

𝐸 − 𝑇𝑃
𝐴 

 

Intersection clearing (exit) time estimation considers (additional) start-up lost time. A vehicle 

moving slower than its desired speed is assumed to accelerate until it achieves its desired speed 

and then continues to travel at its desired speed. For the stopped vehicles start-up lost time until 

saturation headway is achieved is also incorporated into computation of intersection clearing (exit) 

time estimate. 

 

 

Figure 0-1  Calculating the arrival/exit time of vehicles 
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For vehicles 1 through 6 in Figure 0-1, which are stopped, additional time is introduced when 

estimating their exit times. Start-up lost time and discharge headway is determined based on Figure 

0-2. For instance, for vehicle 5, start-up lost time based on its position in the queue (cumulative 

headway) calculation is 9.0 (3.2 + 3.0 + 2.8) seconds plus time needed to clear the intersection 

cross-section once it starts moving. 

 

 

Figure 0-2  Start-up lost time 

 


