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ABSTRACT

Co-Design of Bodies and Strategies

Ana Pervan

The field of robot design mostly focuses on careful construction of complex control and

planning algorithms (e.g., tuning neural network weights) which bear sole responsibility

for improving task performance, while the robot’s body is often assumed to be part of the

environment. In nature, however, biological organisms co-evolve both their neurological

capabilities and their physical morphology to improve their chances for survival. This

enables information and intelligence to be encoded not only in a centralized brain, but

also in a distributed body. This thesis focuses on co-design of control algorithms and

physical robot bodies.

This thesis begins by introducing elements of robot design on a minimal, micro-robotic

system. I analyze tasks (like micro-manipulation and target localization) in terms of the

fundamental capabilities and information required to achieve them, and use those to

generate robot designs ideally consisting of only the most essential components necessary

for the task. The resulting designs are compared in terms of task performance and design

complexity. These principles are then applied to the design of a group of robots, in
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which the collective system demonstrates emergent behaviors that the individuals are

incapable of. Designing for ensemble behaviors requires predictions and analysis of inter-

robot communication and collaboration. I compare the results of the collaborative robots

with individuals attempting the same task to show that the emergent behaviors greatly

benefit the system. I conclude this thesis by outlining a macroscopic extension of the

contributions in which a robot co-designs a flexible tool by bending it into a shape that

both informs and is informed by the control algorithm defining how the tool will be used

to achieve a goal.
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CHAPTER 1

Introduction

One of the goals of the field of robotics is to generate autonomous systems that can

perform tasks without external influence. To achieve this, roboticists must understand

the information that a robot needs to solve a given task, and how the robot will receive

that information and act on it.

Robots traditionally require three elements: sensors, computation, and actuators.

Sensors record all inputs to the robot, ranging from video of a crowded street to the degree

at which the robot’s own knee is bent. Computation encompasses all of the planning

algorithms and learning strategies that a robot might undertake in order to achieve its

task. Actuation comprises any output from the robot, including picking up a block,

driving a car, or saying hello.

In many instances, roboticists seek to develop autonomy by beginning with a task

specification and a preexisting standard robot (e.g., a Sawyer arm) and developing often

complex code, controllers, and algorithms to enable the robot to achieve the task. What

if we were able to design not only the “brains” of the robot, but also the body? Instead

of creating a control strategy for a robot based on the sensors and actuators it has, a

potential control strategy could inform one’s choice of sensors and actuators.

Simultaneous design of both the hardware and software of a robot could produce

outcomes similar to evolution, where animals’ brains and bodies develop concurrently to
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better accomplish their goals (survival and reproduction). This thesis investigates avenues

and applications for co-design of both the physical body and planned strategy of robots.

1.1. Main Contributions

This thesis examines robot design with respect to a desired task. It explores the in-

formation required to accomplish a goal and how to algorithmically choose components

from a library of possible sensors and actuators. Elements like design complexity, task

performance, memory, and multi-agent systems are taken into account. Through theoret-

ical analysis, simulations, and physical experiments, I show strategies for designing robots

across scales for specific tasks and explore the impact of those choices using various met-

rics of task performance. This thesis introduces methods and examples for autonomous

co-design of physical robots and their control strategies, as well as validation of their task

performance.

1.1.1. Primitives and Logic for Robot Comparisons

In the first chapter, a task-centered formal analysis of the relative power of several ro-

bot designs is presented, inspired by the unique properties and constraints of micro-scale

robotic systems. The task of interest is object manipulation. I present minimal conditions

on the sensing, memory, and actuation requirements of periodic “bouncing” robot trajec-

tories that move an object in a desired direction through the incidental forces arising from

robot-object collisions. Several robot designs are compared using an information space

framework and a hierarchical controller, emphasizing the information requirements of
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goal completion under different initial conditions, as well as what is required to recognize

irreparable task failure.

The contributions of this chapter are as follows:

(1) I present a novel demonstration of the information-based approach in [68] for

analyzing and comparing different robot designs with respect to an object ma-

nipulation task

(2) I describe a hierarchical method to combine high-level task completion guarantees

with components of low-level controllers using information requirements of goal

completion

(3) I use an information-based approach to determine what is required to recognize

irreparable task failure.

I would like to acknowledge Alexandra Nilles, who introduced boundary interactions

(which define a robot’s motion strategy when it collides with objects) and analyzed the

feasibility and dynamics of cyclic motion strategies, as well as Thomas Berrueta, who

derived information space relationships for minimal robots and performed formal analysis

of our system. This work was published in [77].

1.1.2. Algorithmic Design of Synthetic Cells

In robotics, complex control and planning algorithms often bear sole responsibility for

improving task performance. This dependence on centralized control can be problematic

for systems with computational limitations, such as mechanical systems and robots on

the microscale. In these cases, we need to be able to offload complex computation onto

the physical morphology of the system. In this chapter, I introduce an algorithm that
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arranges sensing and actuation components into a robot design, while enforcing a low

level of control policy complexity. This enables the resulting robot designs to work offline

– directly mapping sensory observations to actions – and on systems without computation

available, while still maintaining a high level of task performance.

The contributions of this chapter are as follows:

(1) I present quantitative definitions for design complexity and task embodiment

(2) I develop an iterative algorithm to create control policies with low design com-

plexity while increasing task information

(3) I introduce a mathematical projection operator which projects a low complexity

control policy onto a physically realizable set of sensor-actuator interconnections

(4) I establish a methodology for algorithmically organizing components for robot

design. The procedure begins either with a control policy based on a discrete

set of actuators and interconnects them with different possible sets of sensors or

begins with a control policy generated with a discrete set of sensors and combines

them with a selection of discrete actuators.

This work was published in [73], [74], and [76].

1.1.3. Bayesian Particles

The work presented in this chapter is inspired by biological processes in which components

(e.g., cells) are individually simple, but work together to create unimaginably complex

structures and functions – like the mammalian immune response. The goal is to build

simple agents that collectively exhibit emergent behaviors.
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In this chapter, I design minimal agents which use only a few bits of memory to search

for targets in a dynamic, stochastic environment. The exhibited behavior of the collective

agents functions as a Bayesian update: the agents play the role of the individual particles

in a particle filter. These results were validated in experiments using twelve driving robots

with infrared sensors and radio communication.

The contributions of this chapter are as follows:

(1) I show emergence of global learning behavior from simple agents executing local

algorithms and using only a few bits of memory

(2) I prove that this implementation of simple agents acts as a suboptimal Bayesian

filter, and therefore that the system inherits formal properties in the form of

guarantees on asymptotic performance and probabilistically predictable behavior

(3) I validate theoretical and simulated results in experiments with a macroscopic

robotic swarm system.

Joshua Cohen designed (and sourced, manufactured, coded, and tested) the swarm

robots that were used in the physical experiments. A custom-built system of collaborative

robots enabled us to run experiments under the exact conditions needed. Karalyn Baird

lead the physical experiments and data collection, which enabled analysis that validated

our theoretical claims and simulated results. Jamison Weber and Professor Andrea Richa

developed the definition of Uniformly Oriented (UO) graphs, and proved convergence

rates and mixing times for various cases.

Some of this work has been published in [75] and another publication is in preparation

[78].
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1.1.4. Flexible Tool Design

Although robot design and capabilities are simplest to analyze in minimal, discrete sys-

tems, these methods and conclusions can also be applied to macroscopic, continuous

examples. In this chapter, I introduce a methodology for designing a flexible tool. I

use the extended example of a bendable wire being manipulated by a dual-armed robot.

The robot grasps, bends, and re-grasps the rod-shaped tool while modelling the rod’s

configuration to create a desired shape. This type of geometric design (as opposed to a

component-selection type of design) still requires the robot to co-design the morphology

of the tool as well as its planned use of the tool.

The contributions of this chapter are as follows:

(1) I present results of a neural network model for reducing the dimensionality of the

configuration of a continuous flexible tool

(2) I demonstrate simulated examples of a robot grasping a flexible tool to bend it

into a desired shape

(3) I outline a framework and experimental plan for data-driven learning – boot-

strapped by optimization-based simulations – for tool design and manipulation

for task execution.

1.2. Thesis Outline

Chapter 2 will be an examination of robot primitives as the most fundamental behav-

iors and building blocks of a robot. These are used in an extended example as well as a

discussion of the information requirements and capabilities of robots. Chapter 3 furthers

these ideas and applies them to the design and selection of sensors and actuators for a



17

robot attempting a task. Chapter 4 investigates the application of low complexity design

to collectives of robots, and how the existence of multiple agents affects the design of the

individuals. Lastly, Chapter 5 discusses future directions and work toward co-design on

a macroscopic scale, in which a robot must simultaneously design both the shape of a

flexible tool and its strategy for how to use the tool.
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CHAPTER 2

Primitives and Logic for Robot Comparisons

In this chapter, a task-centered formal analysis of the relative power of several ro-

bot designs is presented, inspired by the unique properties and constraints of micro-scale

robotic systems. The task of interest is object manipulation because it is a fundamental

prerequisite for more complex applications such as micro-scale assembly or cell manipula-

tion. Motivated by the difficulty in observing and controlling agents at the micro-scale, I,

along with my collaborators Alexandra Q. Nilles and Thomas A. Berrueta, focus on the

design of boundary interactions : the robot’s motion strategy when it collides with objects

or the environment boundary, otherwise known as a bounce rule. I present minimal con-

ditions on the sensing, memory, and actuation requirements of periodic “bouncing” robot

trajectories that move an object in a desired direction through the incidental forces aris-

ing from robot-object collisions. Several robot designs are compared using an information

space framework and a hierarchical controller, emphasizing the information requirements

of goal completion under different initial conditions, as well as what is required to recognize

irreparable task failure. Finally, a physically-motivated model of boundary interactions

is presented, and the robustness and dynamical properties of resulting trajectories are

analyzed.
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2.1. Introduction

Robots at the micro-scale have unique constraints on the amount of possible on-

board information processing. Despite this limitation, future biomedical applications

of micro-robots, such as drug delivery, tissue grafting, and minimally invasive surgery,

demand sophisticated locomotion, planning, and manipulation [93, 94]. While certain

robotic systems have succeeded at these tasks with assistance from external sensors and

actuators [104], the minimal sensing and actuation requirements of these tasks are not

well-understood.

Ideally, designs at this scale would not require fine-grained, individual motion control,

due to the extreme difficulty in observing and communicating with individual agents. In

fact, micro-scale locomotion is often a direct consequence of the fixed or low degree-of-

freedom morphology of the robot, suggesting that direct co-design of robots and their

motion strategies may be necessary [19]. The work presented in this chapter provides

the beginning of a theory of task-centered robot design, used to devise micro-robot mor-

phology and propulsion mechanisms. In order to inform the design of task-capable micro-

robotic platforms, the information requirements of tasks will be analyzed [31].

The goal task will be micromanipulation with micro-robots, a fundamental task un-

derlying more complex procedures such as drug delivery and cell transplantation [54].

In this chapter, I investigate micro-robot motion strategies that explicitly use boundary

interactions: the robot’s action when it encounters an environment boundary. Identifying

minimal information requirements in this setting is essential for reasoning about robot

performance, and is also a first step toward automating co-design of robots and their

policies. In Section 2.3, physically motivated models are defined, aiming to roughly cover
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an interesting set of possible micro-robot realizations. Section 2.4 motivates the task of

interest and the assumptions. In Section 2.5, several robot designs are compared and re-

sults on requirements for task completion are stated with respect to controller complexity,

sensor power, and onboard memory.

2.2. Related Work

The scientific potential of precise manipulation at microscopic scales has been ap-

preciated for close to a century [21]. As micro/nano-robots have become increasingly

sophisticated, biomedical applications such as drug delivery [54] and minimally-invasive

surgery [94] have emerged as grand challenges in the field [107].

To formally analyze the information requirements of planar micromanipulation, many

physically-motivated actuators and sensors, such as odometry, range-sensing, differential-

drive locomotion, and others are defined abstractly. Additionally, similarly to the work

in [31], we avoid tool-specific manipulation by purposefully abstracting robot-object con-

tacts, in an effort to be more general. However, the focus of this work is on collision-

based manipulation instead of push-based. Recent publications have illustrated the value

of robot-boundary collisions in generating reliable and robust robot behaviors [48, 88].

Thus, a model of collision-based micromanipulation that can serve as a test-bed for micro-

robotic designs is developed and analyzed.

Despite substantial advances in micro-robotics, agents at micro/nano length-scales

face fundamental difficulties and constraints. For one, as robots decrease in size and

mass, common components such as motors, springs and latches experience trade-offs in
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force/velocity generation that limit their output and constrain the space of feasible me-

chanical designs [42]. Furthermore, battery capacities and efficiencies [69], as well as

charging and power harvesting [29], experience diminishing performance at small scales,

which restrict electrical designs of micro-machines. These limitations collectively amount

to a rebuke of traditionally complex robotic design at the length-scales of interest, and

suggest that a minimalist approach may be necessary. The minimal approach to robot

design asks, “what is the most simple robot that can accomplish a given task?”

Minimalist approaches to microrobot design often exploit the close relationship be-

tween morphology and computation. For example, a DNA-based nano-robot is capable

of capturing and releasing molecular payloads in response to a binary stimulus [32]. The

inclusion of a given set of sensors or actuators in a design can enable robotic agents

to sidestep complex computation and planning in favor of direct observation or action.

Alternatively, in top-down approaches the formulation of high-level control policies can

guide the physical design of robots [73]. While many approaches have seen success in

their respective domains, the problem of optimizing the design of a robot subject to a

given task has been shown to be NP-hard [87].

Due to information constraints, designing control policies for minimal robots remains

a challenge. In order to achieve complex tasks, controllers are often hand-tuned to take

advantage of the intrinsic dynamics of the system. For example, in [1] the authors show

that one can develop controllers for minimal agents (solely equipped with a clock and a

contact sensor) that can achieve spatial navigation, coverage, and localization by taking

advantage of the details of the agents’ dynamics. Hence, in order to develop control
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strategies amenable to the constraints of such robots, one requires substantial analytical

understanding of the capabilities of minimal robots.

A unifying theory of robotic capabilities was established in [68]. The authors develop

an information-based approach to analyzing and comparing different robot designs with

respect to a given task. The key insight lies in distilling the minimal information re-

quirements for a given task and expressing them in an appropriately chosen information

space for the task. Then, as long as one is capable of mapping the individual information

histories of different robot designs into the task information space, the performance of

robots may be compared.

The main contribution of this work is a novel demonstration of the approach in [68]

to an object manipulation task. Additionally, a hierarchical approach to combine the

resulting high-level task completion guarantees with results on the robustness of low-level

controllers is demonstrated.

2.3. Model and Definitions

Next, I introduce relevant abstractions for characterizing robots generally, as well as

their capabilities for given tasks. This is largely followed from the work of [51, 68].

2.3.1. Primitives and Robots

In this work, a robot is modelled as a point in the plane; this model has obvious limitations,

but captures enough to be useful for many applications, especially in vitro where the robot

workspace is often a thin layer of fluid. Hence, its configuration space is X ⊆ SE(2), and

its configuration is represented as (x, y, θ). The robot’s environment is E ⊆ R2, along
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with a collection of lines representing boundaries; these may be one-dimensional “walls”

or bounded polygons. The environment may contain objects that will be static unless

acted upon.

Following the convention of [68], I define a robot through sets of primitives. A prim-

itive, Pi, defines a “mode of operation” of a robot, and is a 4-tuple Pi = (Ui, Yi, fi, hi)

where Ui is the action set, Yi is the observation set, fi : X×Ui → X is the state transition

function, and hi : X × Ui → Yi is the observation function. Primitives may correspond

to use of either a sensor or an actuator, or both if their use is simultaneous (see [51] for

examples). Time will be modeled as proceeding in discrete stages. At stage k the robot

occupies a configuration xk ∈ X, observes sensor reading yik ∈ Yi, and chooses its next

action ui
k ∈ Ui for each i primitive in its set. A robot may then be defined as a 5-tuple

R = (X,U, Y, f, h) comprised of the robot’s configuration space in conjunction with the

elements of the primitives 4-tuples. With some abuse of notation, I occasionally write

robot definitions as R = {P1, ..., PN} when robots share the same configuration space to

emphasize differences between robot capabilities.

2.3.2. Information Spaces

A useful abstraction to reason about robot behavior in the proposed framework is the

information space (I-space). Information spaces are defined according to actuation and

sensing capabilities of robots, and depend closely on the robot’s history of actions and

measurements. We denote the history of actions and sensor observations at stage k as

(u1, y1, . . . , uk, yk). The history, combined with initial conditions η0 = (u0, y0), yields the

history information state, ηk = (η0, u1, y1, . . . , uk, yk). In this framework, initial conditions
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may either be the exact starting state of the system, or a set of possible starting states, or

a prior belief distribution. The collection of all possible information histories is known as

the history information space, Ihist. It is important to note that a robot’s history I-space

is intrinsically defined by the robot primitives and its initial conditions. Hence, it is not

generally fruitful to compare the information histories of different robots.

Derived information spaces should be constructed to reason about the capabilities of

different robot designs. A derived I-space is defined by an information map κ : Ihist → Ider

that maps histories in the history I-space to states in the derived I-space Ider. Mapping

different histories to the same derived I-space allows direct comparisons between different

robots. The exact structure of the derived I-space depends on the task of interest; an

abstraction must be chosen that allows for both meaningful comparison of the robots as

well as determination of task success.

In order to be able to compare robot trajectories within the derived I-space, I introduce

an information preference relation to distinguish between derived information states [68].

We discriminate these information states based on a distance metric to a given goal region

IG ⊆ Ider which represents success for a task. Using a relation of this type “preference”

over information states can be assessed, notated as κ(η(1)) � κ(η(2)) if an arbitrary η(2) is

preferred over η(1).

2.3.3. Robot Dominance

Here, a relation is defined that captures a robot’s ability to “simulate” another given a

policy. Policies are mappings π from an I-space to an action set: the current information
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state determines the robot’s next action. Additionally, a function F is defined that iter-

atively applies a policy to update an information history. The updated history I-state is

given by ηm+k = Fm(ηk, π, xk), where xk ∈ X.

Definition 1. (Robot dominance from [68]) Consider two robots with a task specified

by reaching a goal region IG ⊆ Ider:

R1 = (X(1), U (1), Y (1), f (1), h(1))

R2 = (X(2), U (2), Y (2), f (2), h(2)).

Given I-maps κ1 : I(1)
hist → Ider and κ2 : I(2)

hist → Ider, if for all: η
(1) ∈ I(1)

hist and η(2) ∈ I(2)
hist

for which κ1(η
(1)) � κ2(η

(2)); and u(1) ∈ U (1); there exists a policy, defined as π2 : I(2)
hist →

U (2), generating actions for R2 such that for all x(1) ∈ X(1) consistent with η(1) and all

x(2) ∈ X(2) consistent with η(2), there exists a positive integer l such that

κ1(η
(1), u(1), h(1)(x(1), u(1))) � κ2(F

l(η(2), π2, x
(2)))

then R2 dominates R1 under κ1 and κ2, denoted R1 � R2. If both robots can simulate

each other (R1 �R2 and R2 �R1), then R1 and R2 are equivalent, denoted by R1 ≡ R2.

Lemma 1. (from [68]) Consider three robots R1, R2, and R3 and an I-map κ. If R1�R2

under κ, we have:

(1) R1 �R1 ∪R3 (adding primitives never hurts);

(2) R2 ≡ R2 ∪R1 (redundancy does not help);

(3) R1 ∪R3 �R2 ∪R3 (no unexpected interactions).
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Figure 2.1. (a) A rectangular object in a long corridor that can only trans-
late to the left or right, like a cart on a track. The robot’s task is to move
the object into the green goal region. (b) The robot, shown in green, exe-
cutes a trajectory in which it rotates the same relative angle each time it
collides.

2.4. Manipulating a Cart in a Long Corridor

The information requirements of micro-scale object manipulation will be analyzed by

introducing a simple, yet rich, problem of interest. Consider a long corridor, containing

a rectangular object, as shown in Fig. 2.1(a). The object may only translate left or

right down the corridor, and cannot translate toward the corridor walls or rotate. This

object can be abstracted as a cart on a track; physically, such one-dimensional motion

may arise at the micro-scale due to electromagnetic forces from the walls of the corridor,

from fluid effects, or from direct mechanical constraints. The task for the robot is then

to manipulate the object into the goal region (green-shaded area in Fig. 2.1(a)). This

simplified example will illustrate several interesting trade-offs in the sensing, memory, and

control specification complexity necessary to solve the problem. On its own merits, this

task solves the problem of directed transport, and can be employed as a useful component

in larger, more complex microrobotic systems.
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To break the symmetry of the problem, it is assumed that the object has at least two

distinguishable sides (left and right). For example, the two ends of the object may emit

chemical A from the left side and chemical B from the right side. The robot may be

equipped with a chemical comparator that indicates whether the robot is closer to source

A or source B (with reasonable assumptions on diffusion rates). The object may have

a detectable, directional electromagnetic field. All these possible sensing modalities are

admissible under our model. A second necessary assumption is that the dimensions of the

corridor and the object are known and will be used to design the motion strategy of the

robot—often a fair assumption in laboratory micro-robotics settings.

Here, I investigate the requirements of minimal strategies for object manipulation,

given the constraints of micro-robotic control strategies. In the spirit of minimality, low-

level control policies will be tailored to the natural dynamical behaviors of the system prior

to the specification of increasingly abstract control policies. To this end, the system is

composed of “bouncing robots,” which have been shown to exhibit several behaviors, such

as highly robust limit cycles, chaotic behavior, and large basins of attraction [1, 67, 96].

Once discovered, these behaviors can be chained together and leveraged towards solv-

ing robotic tasks such as coverage and localization without exceedingly complex control

strategies [6]. The key insight in this paper is that by taking advantage of spontaneous

limit cycles in the system dynamics, trajectories can be engineered that, purely as a result

of the incidental collisions of the robot, manipulate objects in the robot’s environment.

Figure 2.1(b) shows an example of such a trajectory constructed from iterative execu-

tions of the natural cyclic behavior of the bouncing robots. A detailed analysis of this

dynamical system and its limit cycles are presented in [77].
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2.5. A Formal Comparison of Several Robot Designs

In order to achieve the goal of manipulating an object in a long corridor, several robot

designs will be introduced and then policies will be constructed so that each robot might

accomplish the task. Particularly, these robots were designed to achieve the limit cycle

behavior of bouncing robots, and to use this cyclic motion pattern to push the object in

a specified direction.

Prior to describing the robot designs, I will introduce the primitives that will be used

to construct the robots. Figure 2.2 shows four robotic primitives taken directly from [68]

(PA, PL, PT , and PR) and two additional primitives defined for the proposed task (PB

and PY ). The primitive PA describes a rotation relative to the local reference frame given

an angle uA. PL corresponds to a forward translation over a chosen distance uL, and

PT carries out forward translation in the direction of the robot’s heading until it reaches

an obstacle. In addition to these actuation primitives, PR is defined as a range sensor

where yR is the distance to whatever is directly in front of the robot. For the 4-tuple

specification of these primitives, the reader is referred to [68]. The chosen primitives

were largely selected based on their feasibility of implementation at the micro-scale, as

observed in many biological systems [96, 46].

To differentiate different facets of the object being manipulated, two primitives that

are sensitive to the signature of each side of the target are employed. PB is a blue

sensor that measures yB = 1 if the color blue is visible (in the geometric sense) given

the robot’s configuration (x, y, θ), and PY is a yellow sensor outputting yY = 1 if the

color yellow is visible to the robot. More formally, we define PB = (0, {0, 1}, fB, hB) and

PY = (0, {0, 1}, fY , hY ), where fB and fY are trivial functions always returning 0, and
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Figure 2.2. Simple robotic behaviors called primitives. PA is a local rota-
tion, PT is a forward translation to an obstacle, PL is a forward translation
a set distance, PR is a range sensor, PB senses the color blue, and PY senses
the color yellow.

the observation functions hB and hY return 1 when the appropriate signature is in front

of the robot. The “blue” and “yellow” sensors are deliberately abstract since they should

be thought of as placeholders for any sensing capable of breaking the symmetry of the

manipulation task, such as a chemical comparator, as discussed in Section 2.4.

These six simple primitives, shown in Fig. 2.2 can be combined in different ways

to produce robots of differing capabilities. Notably, we develop modular subroutines and

substrategies that allow us to develop hierarchical robot designs, enabling straightforward

analysis of their capabilities. The corresponding task performance and design complexity

trade-offs between the proposed robots and their constructed policies are explored in the

following subsections.
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2.5.1. Robot 0: Omniscient and Omnipotent

In many reported examples in micro-robot literature, the robots—as understood through

the outlined framework—are not minimal. Often, instead of grappling with the constraints

of minimal on-board computation, designers make use of external sensors and computers

to observe micro-robot states, calculate optimal actions, and actuate the micro-robots

using external magnetic fields, sound waves, or other methods [54, 104, 105]. Given

the prevalence of such powerful robots in the literature, a “perfect” robot is introduced

to demonstrate notation and compare to the minimal robots presented in the following

sections.

The primitive for an all-capable robot can be specified as PO = (SE(2), SE(2) ×

SE(2), fO, hO), where the action set UO is the set of all possible positions and orientations

in the plane, and the observation set YO is the set of all possible positions and orientations

in the plane of both the robot and the object. The state transition function is fO(x, u) =

(x+ uOxΔtk, y + uOyΔtk, θ+ uOθ
Δtk) where uOx , uOy , uOθ

∈ R, and Δtk ∈ R+ is the time

step corresponding to the discrete amount of time passing between each stage k. The

observation function outputs the current configurations of the robot and object. A robot

with access to such a primitive (i.e., through external, non-minimal computing) would be

able to simultaneously observe themselves and the object anywhere in the configuration

space at all times and dexterously navigate to any location in the environment. Given

that the configuration space of the robot is some bounded subset X of SE(2), the robot

definition for this omniscient robot is R0 = (X,SE(2), SE(2) × SE(2), fO, hO). Since

all robots employed in the task of manipulating the cart in the long corridor share the

same bounded configuration space X ⊆ SE(2), we also can define this robot using R0 =
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Figure 2.3. The Limit Cycle strategy uses the primitive PT , which moves
forward until coming into contact with an object, and PA, which rotates
relative to the robot heading. Once a limit cycle is completed, the count
variable is incremented.

{PO}. We use this alternative notation for robot definitions as it is less cumbersome and

highlights differences in capabilities. While it is clear that such a robot should be able

to solve the task through infinitely many policies, an example of such a policy π0 that

completes the task is provided in Algorithm 6 in Appendix A.

2.5.2. Robot 1: Complex

The underlying design principle behind each of the following minimal robotic designs is

modularity. We use a hierarchical control approach: at the highest level, there are a few

spatio-temporal states (see Fig. 2.4). In each state, the available primitives are used to

develop subroutines corresponding to useful behaviors such as wall following, measuring

distance to an object, and orienting a robot in the direction of the blue side of the cart.

These subroutines are specified in Algorithm 5 in Appendix A. Through these subroutines,

substrategies are constructed that transition the robots between states, such as moving
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from the right hand side of the object to the left hand side. The complete robot policy πi

is represented as a combination of these substrategies in the form of a finite state machine

(FSM).

The key substrategy that enables the success of the minimal robot designs is the

Limit Cycle substrategy (shown in Fig. 2.3), which requires two primitives, PA and PT ,

to perform. This substrategy is enabled by the fact that these bouncing robots converge

to a limit cycle for a non-zero measure set of configurations (as shown in [77]). All other

substrategies employed in the design of the robots serve the purpose of positioning the

robot into a configuration where it is capable of carrying out the limit cycle substrategy.

Hence, the robot is defined as R1 = {PA, PT , PB, PR, PL, PY }, which makes use of all

six of the primitives shown in Fig. 2.2. Its corresponding policy π1, as represented by

an FSM, is shown in Fig. 2.4. The details describing this policy are in Algorithm 7 in

Appendix A. We highlight that through this policy the robot is capable of succeeding at

the task from any initial condition. The substrategy structure of the FSM—containing

Initial, Left, Right, Middle and Limit Cycle states—corresponds to different configuration

domains that the robot may find itself in as represented by the shaded regions in Fig. 2.4.

Due to the structure of the FSM and the task at hand, if the robot is in the Limit Cycle

state it will eventually succeed at the task. Finally, although we allocate memory for the

robot to track its success through a variable count (as seen in the substrategy in Fig. 2.3)

the robot does not require memory to perform this substrategy and we have only included

it for facilitating analysis.
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Figure 2.4. (Left) A complex robot (composed of 6 primitives) can suc-
cessfully achieve its goal no matter its initial conditions. (Middle) A simple
robot (composed of 4 primitives) can only be successful if its initial condi-
tions are on the left side of the object. (Right) A minimal robot (composed
of 3 primitives) can only be successful if its initial conditions are within the
range of the limit cycle.

2.5.3. Robot 2: Simple

Robot 2, defined as R2 = {PA, PT , PB, PR}, is comprised of a subset of the primitives from

R1. As a result, it is not capable of executing all of the same motion plans as R1. As

Fig. 2.4 shows, R2 can enter its Limit Cycle substrategy if it starts on the left side of the

object, but otherwise it will get lost. The Initial state uses sensor feedback to transition

to the substrategy the robot should use next. The Lost state is distinct from the Initial

state—once a robot is lost, it can never recover (in this case, the robot will move until it

hits a wall and then stay there for all time). More details on policy π2 and the specific

substrategies that R2 uses can be found in Algorithm 8 in Appendix A.
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2.5.4. Robot 3: Minimal

Robot 3, R3 = {PA, PT , PB}, contains three robotic primitives, which are a subset of the

primitives of R1 and R2. Under policy π3 (detailed in Algorithm 9 in Appendix A), this

robot can only be successful at the task if it initializes in the Limit Cycle state, facing

the correct direction. Otherwise, the robot will never enter the limit cycle. Such a simple

robot design could be useful in a scenario when there are very many “disposable” robots

deployed in the system. Even if only a small fraction of these many simple robots start

out with perfect initial conditions, the goal would still be achieved. Despite the apparent

simplicity of such a robot, we note that R3 (along with all other introduced designs) is

capable of determining whether or not it is succeeding at the task or whether it is lost

irreversibly. Such capabilities are not by any means trivial, but are included in the robot

designs for the purposes of analysis and comparison.

2.5.5. Comparing Robots

We will compare the four robots introduced in this section, R0, R1, R2, and R3. In

order to achieve this we must first specify the task and derived I-space in which we can

compare the designs. The chosen derived I-space is Ider = Z+ ∪ {0}. Specifically, it

consists of counts of the Limit Cycle state (the count variable is shown in Fig. 2.3 and in

the algorithms in Appendix A). If we assume that after each collision the robot pushes

the object a distance �, task success is equivalently tracked in memory by count up to a

scalar.

The goal for the task of manipulating the cart in a long corridor is IG ⊆ Ider, where IG

is an open subset of the nonnegative integers. In this set up, as illustrated in Fig. 2.1(a),
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the robot must push the object some N times, corresponding to a net distance traveled,

to succeed. More formally, the information preference relation can be expressed through

the indicator 1G(η) corresponding to whether a derived information history is within

the goal region IG, thereby inducing a partial ordering over information states. Hence,

the likelihood of success of any of the proposed robot designs (excluding R0) is solely

determined by their initialization, and the region of attraction of the limit cycle behavior

for the bouncing robots, which will be explored in more detail.

2.5.5.1. Comparing R1, R2, and R3. The comparison of robotsR1, R2, andR3 through

the lens of robot dominance is straightforward given the modularity of the robot designs.

Since R1 and R2 are comprised of a superset of the primitives of R3, they are strictly as

capable or more capable than R3, as per Lemma 1(a). Therefore, it can be stated that R1

and R2 dominate R3, denoted by R3�R1, and R3�R2. Likewise, using the same lemma,

we can see that R2 � R1. This is to say that for the task of manipulating the cart along

the long corridor R1 should outperform R2 and R3, and that R2 should outperform R3.

While the policies for each robot design are nontrivial, Fig. 2.4 offers intuition for

the presented dominance hierarchies. Effectively, if either R2 or R3 are initialized into

their Lost state they are incapable of executing the task for all time. Hence, it is the

configuration space volume corresponding to the Lost state that determines the robot

dominance hierarchy.

Let η(1) ∈ I(1)
hist, η

(2) ∈ I(2)
hist, η

(3) ∈ I(3)
hist, and define I-maps that return the variable

count stored in memory for each robot. The information preference relation then only

discriminates whether the information histories correspond to a trajectory reaching IG ⊆

Ider—in other words, whether a robot achieves the required N nudges to the object in
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the corridor. Note that since there are no time constraints to the task, this number is

arbitrary and only relevant for tuning to the length-scales of the problem. Thus, the

dominance relations outlined above follow from the fact that for non-zero volumes of the

configuration space there exists no integer l for which κ1(η
(1)) � κ2(F

l(η(2), π2, x)). On

the other hand for all x ∈ X, κ2(η
(2)) � κ1(F

l(η(1), π1, x)). Through this same procedure

the rest of the hierarchies presented in this section can be deduced.

2.5.5.2. Comparing R0 and R1. To compare R0 and R1 a similar reachability analysis

can be used. From any x ∈ X, R1 and R0 are capable of reaching the object and nudging

it. This means that given that the domain X is bounded and information history states

η(0) ∈ I(0)
hist, η

(1) ∈ I(1)
hist corresponding to each robot, there always exists a finite integer

l such that κ0(η
(0)) � κ1(F

l(η(1), π1, x)), and κ1(η
(1)) � κ0(F

l(η(0), π0, x)). Therefore,

R1 �R0 and R0 �R1, meaning that R1 ≡ R0. Thus, R0 and R1 are equivalently capable

of performing the considered task.

It is important to note that despite the intuition that R0 is more “powerful” than

R1 in some sense, for the purposes of the proposed task that extra power is redundant.

However, there are many tasks where this is would not be the case (e.g., moving the robot

to a specific point in the plane).

2.5.5.3. Comparing R0, R2 and R3. Lastly, while the relationship between R0 and the

other robot designs is intuitive, an additional lemma is necessary.

Lemma 2. (Transitive property) Given three robots R0, R1, R2, if R2�R1 and R1 ≡ R0,

then R2 �R0.

Proof. The proof of the transitive property of robot dominance comes from the definition

of equivalence. R1 ≡ R0 means that the following statements are simultaneously true:
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R1 �R0 and R0 �R1. Thus, this means that R2 �R1 �R0, which implies that R2 �R0,

concluding the proof.

Using this additional lemma, it can be shown that R2�R0, and R3�R0, as expected.

Hence, we have demonstrated that minimal robots may be capable of executing complex

strategies despite the constraints imposed by the micro-scale domain. Minimality in

micromanipulation is in fact possible when robot designs take advantage of naturally

occurring dynamic structures, such as limit cycles.

For more information on the necessary conditions for establishing such cycles, as well

as the robustness properties of limit cycle behavior, which are important for extending

this work to less idealized and deterministic settings, the reader is encouraged to con-

sult [77]. The section on Feasibility and Dynamics of Cyclic Motion Strategies contains

propositions and proofs of bouncing strategy conditions and robustness, largely developed

by Alexandra Q. Nilles.

2.6. Discussion

In this chapter, robust motion strategies for minimal robots that have great promise

for micromanipulation were designed. We have analyzed the information requirements

for task success, compared the capabilities of four different robot designs, and found that

minimal robot designs may still be capable of micromanipulation without the need for

external computation. While the example of a rectangular obstacle in a corridor is simple,

it can be interpreted as robust directed transport, a key building block for future work.
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2.6.1. Future Directions

The setting of micro-robotics provides motivation for the approach laid out in this work.

At the micro-scale, coarse high-level controllers that can be applied to a collection of

many micro-robots are easier to implement than fine-grained individual controllers. This

requires formal reasoning about all possible trajectories, in order to funnel the system

into states that allow for task completion, as was illustrated in this chapter. In order

to be more applicable in the micro-robotics domain, it will be important to extend the

approach to multiple agents, as well as scenarios subject to noise. While these strategies

passively provide some noise tolerance by virtue of the limit cycle region of attraction,

there is much work to be done on more concrete applications to characterize and account

for sensing and actuation noise.

Outside of this particular model and application, this work has implications for the

future of robot behavior and design. Often, derived I-states are designed to infer informa-

tion such as the set of possible current states of the robot, or the set of possible states that

the robot could have previously occupied. In this work, the focus is on derived I-spaces

that encode information about what will happen to the robot under a given strategy.

With these forward-predictive derived I-spaces, a high density of task-relevant informa-

tion is encoded into a few-state symbolic abstraction. By making use of such abstractions,

minimal agents may be endowed with a passively predictive capacity leading to greater

task-capability.

More broadly, this work provides an exciting glimpse toward more automated anal-

ysis, through a combination of system identification techniques, hybrid systems theory,

and I-space analysis. Coarse-grained sensors provide an avenue for discretization useful
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for hierarchical control; such an approach is increasingly needed as our robotic systems

become more data-driven. Such a unified approach may be able to simultaneously iden-

tify coarse-grained system dynamics, predict their task-capabilities, and design fine-tuned

control strategies.
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CHAPTER 3

Algorithmic Design of Synthetic Cells

In nature, biological organisms jointly evolve both their morphology and their neuro-

logical capabilities to improve their chances for survival. Consequently, task information

is encoded in both their brains and their bodies. In robotics, the development of complex

control and planning algorithms often bears sole responsibility for improving task per-

formance. This dependence on centralized control can be problematic for systems with

computational limitations, such as mechanical systems and robots on the microscale. In

these cases we need to be able to offload complex computation onto the physical morphol-

ogy of the system. To this end, we introduce a methodology for algorithmically arranging

sensing and actuation components into a robot design while maintaining a low level of

design complexity (quantified using a measure of graph entropy), and a high level of task

embodiment (evaluated by analyzing the Kullback-Leibler divergence between physical

executions of the robot and those of an idealized system). This approach computes an

idealized, unconstrained control policy which is projected onto a limited selection of sen-

sors and actuators in a given library, resulting in intelligence that is distributed away from

a central processor and instead embodied in the physical body of a robot. The method is

demonstrated by computationally optimizing a simulated synthetic cell.
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3.1. Introduction

Embodied intelligence, the coupling of a system’s controller and morphology, has been

studied for quite some time [14], [79], [80], often in the context of biologically inspired

systems [28], [95], [102]. Recently, some significant and comprehensive efforts have been

made toward implementing components of embodiment in robotic applications [5], [39].

But still, most robot designers opt for approaches using centralized computations to ma-

nipulate existing robotic platforms, rather than offloading some of the computational

effort onto a robot’s morphology. In this work, we are motivated by a system that is

computationally limited but flexible in terms of physical design, and is therefore an ideal

candidate to take advantage of embodied intelligence.

The main challenge with embedding control information in material properties is the

contradiction between continuous, often complex, classical control and the discrete, sim-

pler capabilities that a materials-based system is likely to have. A conflict exists between

equipping a robot with what is sufficient and what is necessary—what can enable a robot

to succeed (and is likely complex) and what is minimally required for it to achieve its goal

(and is necessarily simple).

This is especially evident when designing for robots without any on-board, CPU-

based, traditional computational capabilities. Some robotic systems employ embodied

intelligence (which we’ll also refer to as embodied computation) to reduce weight and

energy—for example fully mechanical devices, like passive dynamic walkers [23], [97]

or those used in prosthetic limbs [3]—while others must necessarily resort to embodied

computation because of scale, for example, robots on the micro- or nano-scales [25], [55].

We focus on the latter case later. So although robot design is traditionally identifying
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which sensory, computation, and actuation elements can be combined to best achieve a

goal, here we will examine a framework for designing the sensory and actuation elements

of robots so that no traditional, CPU-based computation is necessary to accomplish a

goal.

We first examine the relationship between control policy design and physical robot

body design. A control policy assigns an action for a system at each time or state.

Symbolic control policies have been useful in robot control and motion planning [7], [60]

for systems with limited computational power [81]. An example is shown in Fig. 3.1,

where the system consists of three possible control modes: move right (blue), move up

(red), and stay still (white) and its goal is to navigate to the upper right corner of the

grid world. These simple control modes can also be thought of as primitives, as discussed

in Chapter 2. A simple robot placed in this environment with one of the shown policies

in its memory would be able to achieve its task without any traditional computation,

replacing logical operators such as inequalities with physical comparators to relate sensor

states to control actions.

Figure 3.1 illustrates the difference in complexity between these two policies. The

policy in Fig. 3.1 (a) requires a combination of sensors that are capable of differentiating

between three different regions of the state space, and the policy in Fig. 3.1 (b) requires

sensors that are able to discern between fifteen different regions. It is simpler to physically

implement the robot design implied by the control policy in Fig. 3.1 (a) than the policy

in Fig. 3.1 (b).

We pose the physical design problem as the projection of a policy onto an admissible

set of physical sensor-actuator interconnections, the complexity of which must be managed
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Figure 3.1. A simple example of a control policy. Here the state space is a
two dimensional 5× 5 grid and the desired state is in the upper right of the
state space. At each state, the suitable control is indicated by its assigned
color. (a) A simple control policy with only three different states in the
finite state machine. (b) A complex control policy, with fifteen different
states in the finite state machine. Both achieve the task with different
implementations.

during policy iteration. This complexity is a measure of logical interconnections between

sensor states and control modes (which correspond to arrows on the graphs in Fig. 3.1).

The policy projection will be performed both by computing a control policy assuming

discrete control modes (and continuous sensing) and then projecting onto a discrete sensor

set, and by generating a control policy assuming discrete sensing (and unconstrained

control authority) and then projecting onto a set of discrete control modes.
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Figure 3.2. This chapter outlines two possible paths to robotic control pol-
icy design: first assigning actuation, then sensors, or vice versa. The top
section of the flow diagram shown here illustrates beginning with a library
of actuators and assigning control modes in space. These spatial assign-
ments inform what the optimal sensor regions would be, which are then
approximated using a library of available sensors. Conversely, the bottom
section of the diagram illustrates the process beginning with a library of
sensors, and using those to determine which regions in the state space are
distinguishable. Then optimal control actions are calculated for each of the
spatial regions, and those optimal control actions are approximated using
a library of available actuators.

Methods from switched systems literature are used to organize these sensor-actuator

connections so that they change minimally as a function of state. This is challenging

because [8] shows that optimal solutions for discrete switched systems will chatter with

probability 1, and chattering implies a complex policy. That is, when choosing among a

finite number of sensor-actuator pairings, optimization of an objective function will neces-

sarily lead to arbitrarily complex dependencies on state, and the physical implementation

of such a policy would consequently be very complex (and often not physically realizable).

Results from [17] show that solutions with slow mode switching are “almost” as good as

chattering solutions. Properties from [17] are used here to design control policies with
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minimal mode switching and then project them onto sensor-actuator interconnections,

as illustrated in Fig. 3.3, resulting in a methodology for designing robots with embodied

intelligence.

After reviewing related work in Section 3.2, this methodology will be explored in terms

of an extended example. The example system, called a synthetic cell, will be introduced

in Section 3.3.1. The primary contributions of this work can be summarized as follows:

(1) Quantitative definitions are given for design complexity and task embodiment,

described in Section 3.3.2.

(2) An iterative algorithm is developed in Section 3.4.1, and is used to create control

policies with low design complexity while increasing task information.

(3) A projection operator is presented in Section 3.4.2, which projects a low com-

plexity control policy onto a physically realizable set of sensor-actuator intercon-

nections.

(4) A methodology for algorithmically organizing components for robot design is

established. The procedure begins either with a control policy based on a discrete

set of actuators (Sec. 3.4.1) and interconnects them with different possible sets of

sensors (Sec. 3.4.2) or begins with a control policy generated with a discrete set

of sensors (Sec. 3.4.3) and combines them with a selection of discrete actuators

(Sec. 3.4.4).

These are supported by simulations of synthetic cells. Versions of this work were

published in [73] and [76].
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3.2. Related Work

Policy Optimization while Evolving Morphology (POEM) [5], evolves the physical

body of a continuously controlled reinforcement learning agent and analyzes the relative

importance of body changes using cooperative game theory. The POEM method was

shown to produce stronger agents than optimizing the control policy alone. A common

motivation of the work in [5] and this chapter is the theory that a physical body that

is well-suited to a task is easier, and simpler, to control (and, in [5], easier to learn to

control). In this work, we characterize design updates in terms of moving task information

from centralized computations in control calculations to embodied computation in the

physical body.

The work in [18], [19], and [20] defines design problems as relations between func-

tionality, resources, and implementation and shows that despite being non-convex, non-

differentiable, and noncontinuous, it is possible to create languages and optimization tools

to define and automatically solve design problems. The optimal solution to a design prob-

lem is defined as the solution that is minimal in resources usage, but provides maximum

functionality. We apply this definition by proposing a min-max problem in which the goal

is to minimize design complexity (representative of the amount of sensors and actuators

required, i.e., the resources), and maximize task embodiment (i.e., the functionality of

the design).

A method for automatically designing action-based sensors was explored in [35]. This

was done by generating a strategy for a robot task using a planner that assumes perfect

sensing, and using that plan to specify sensors that tell the robot where to execute each

action. The methodology in [35] is very similar to the work presented in this chapter,
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which also first develops a control policy assuming perfect sensing (or perfect actuation)

and then specifies discrete sensors (or actuators) that approximate the original strategy.

The work in this chapter differs from the contributions in [35] by taking complexity into

account and by also designing actuators. In fact, Fig. 22 in [35], which shows the state

space divided into regions discernible by sensors and which actions to use in each of them,

closely resembles the ideas represented in Figs. 3.3 and 3.11 in this chapter.

Robotic primitives are introduced in Chapter 2 and [70] as independent components

that may involve sensing or motion, or both. These are implemented in this chapter as

actuator and sensor libraries from which we allow our algorithm to choose components.

Task embodiment, which is defined in Sec. 3.3.2, parallels the dominance relation proposed

in Chapter 2 and [70] that compares robot systems such that some robots are stronger

than others based on a sensor-centered theory of information spaces.

Similarly, our definition of design complexity (Sec. 3.3.2) parallels an existing notion

of conciseness, presented in [71]. The results in [71] are motivated by circumstances with

severe computational limits, specifically addressing the question of how to produce filters

and plans that are maximally concise subject to correctness for a given task. This is very

related to our goal of finding the simplest way to physically organize sensors and actuators

so that a (computationally limited) robot can achieve a given task.

The work presented in [47] produces asymptotically optimal sampling-based meth-

ods and proposes scaling laws to ensure low algorithmic complexity for computational

efficiency. These algorithms were originally developed for path planning, but we apply

similar ideas for generating simple control policies. The methods described in [47] start

with an optimal, infinite complexity solution, and from that develop simpler plans. In
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Sec. 3.4.1, we start with a zero complexity policy and move towards more complex, better

performing solutions—while maintaining a level of computational complexity appropriate

for physical implementations of embodied computation.

3.3. Model and Definitions

3.3.1. Motivating Example: The Synthetic Cell

How can we use control principles to organize sensor components, actuator components,

and their interconnections to create desired autonomous behavior, without relying on

traditional computation? To answer this question we will consider the extended example

of a synthetic cell—a small robot that only has a finite number of possible sensor and

actuator states and potential pairings between them [59]. The purpose of this example

system is to show a concrete implementation of the methods in Sections 3.4.1-3.4.4, and to

illustrate the relationship between control policy design and physical robot body design.

A synthetic cell is a mechanically designed microscopic device with limited sensing,

control, and computational abilities [59]; it is essentially an engineered cell. A synthetic

cell exists in a chemical bath and generates movement by interacting with its environment

using chemical inhibitors, and it contains simple circuits that include minimal sensors and

very limited nonvolatile memory [58]. Such a device is 100µm in size or less, rendering

classical computation using a CPU impossible. But these simple movement, sensory, and

memory elements can be combined with a series of physically realizable logical operators

to enable a specific task. How can these discrete structures be algorithmically organized

to combine sensing and control to accomplish an objective?
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Synthetic cells can contain sensors like a photodiode to detect light, a chemical com-

parator to compare chemical concentrations, or limited amounts of nonvolatile memory—

but they certainly cannot accurately estimate their location in a two (or three) dimensional

space. This is why a complex control policy (like the one shown in Fig. 3.1(b)), which

requires the agent to have knowledge of which relatively small region it is in, would be

difficult to physically implement, and why a less complex design must be found.

For the example in this chapter, a synthetic cell operates in a two dimensional space,

and its control authority is the ability to be attracted toward a specific chemical potential.

So at any location (x, y) the robot may choose a control mode σ ∈ {σ0, σ1, σ2, σ3, σ4, σ5, σ6},

where σ0 is zero control, and the other six modes are a potential that the synthetic cell

can be attracted to (their locations are shown in Fig. 3.3), with dynamics

(3.1) x =




x

ẋ

y

ẏ




, f(x, u) =




ẋ

sign (xSn−x)

r2n

ẏ

sign (ySn−y)

r2n




,

where rn is the distance from the synthetic cell to source n and (xSn , ySn) are coor-

dinates of the source locations. Because of the inverse squared terms in the dynamics,

chemical sources that are nearer to the synthetic cell will be able to accelerate the cell

faster than those that are far away. Boundary conditions, like those discussed in [15], are

necessary to avoid an infinite acceleration as rn → 0. We included a very small boundary

ε around the chemical source [15], so that the cell cannot be co-located with the source.

The maximum velocity was also bounded, to mimic terminal velocity in a fluid.
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The control synthesis problem is to schedule σ in space (x, y), based on an objective

(in this case, to approach a point P) specified in a cost function J (3.2) made up of a

running cost �(x(t), u(t)) (3.3) and a terminal cost m(x(tf )) (3.4).

(3.2) J(x(t), u(t)) =

� tf

0

�(x(t), u(t))dt+m(x(tf )).

(3.3) �(x, u) = (x− xd)
TQ(x− xd) + uTRu

(3.4) m(x) = (x− xd)
TP1(x− xd).

For our simulations, we used the parameters: prediction time horizon T = 0.1s; time

step ts = 0.02s; final time tf = 5s; desired state1 xd = [2− π
20
, 4− π

15
, 0, 0]T ; size of the source

ε = 0.001; maximum velocity vmax = 0.4; cost weights Q = P1 = diag[10, 10, 0.001, 0.001]

and R = 0; and source locations (xS1 , yS1) = (1, 5), (xS2 , yS2) = (3, 5), (xS3 , yS3) = (1, 3),

(xS4 , yS4) = (3, 3), (xS5 , yS5) = (1, 1), and (xS6 , yS6) = (3, 1). The state space, desired

point, and chemical sources are all shown in Fig. 3.3 (a)

1Point P is slightly off center, to avoid adverse effects of symmetry. This is reflected in the asymmetry
of the resulting control policies (e.g., green and orange not being perfectly even).
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3.3.2. Design Complexity and Task Embodiment

Graph entropy [2], [27] will be used as a measure of design complexity for comparing

robot designs. The complexity of a control policy is equated with the measure of entropy

of its resulting finite state machine.

A finite state machine consists of a finite set of states (nodes), a finite set of inputs

(edges), and a transition function that defines which combinations of nodes and edges lead

to which subsequent nodes [84]. The finite set of nodes that the system switches between

are the control modes, and the edges—inputs to the system which cause the control modes

to change—are the state observations (Fig. 3.1 (a)).

Finite state machines and their corresponding adjacency matrices are generated nu-

merically, by simulating a synthetic cell forward for one time step, and recording control

modes assigned at the first and second states. These control mode transitions are counted

and normalized into probabilities, and the resulting data-driven adjacency matrix A is

used in the entropy calculation,

(3.5) h = −
�

i

A(i) log (A(i))

which results in a complexity measure h for each robot design. This measure of

complexity is more informative than other metrics (e.g., simply counting states) because

it is a function of the interconnections between states—which is what we want to minimize

in the physical design.
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We define task embodiment as the amount of information about a task encoded in a

robot’s motion (not to be confused with embodiment found in human-robot interaction

[41], [101]). We focus on this motion-based task information so that the design update

can be characterized in terms of moving task information from the centralized compu-

tations in the control calculations to embedded computation in the physical body. One

measure that captures how much information one system encodes about another system is

Kullback-Leibler divergence. Here we measure the K-L divergence between a distribution

representing the task, P , and a distribution representing the robot design, Q [10],

(3.6) DKL (P�Q) = −
�

x

P (x) log

�
Q(x)

P (x)

�
.

To define the goal task distribution P , a model predictive controller (MPC) is used

to simulate the trajectories of a robot with an ideal (centralized, unlimited in sensing

(Sec. 3.4.1) or actuation (Sec. 3.4.3)) controller. The same method is used to generate a

distribution Q that represents the robot design—this time simulating trajectories using

the generated control policy. Task embodiment is a measure of the difference in task

executions between a robot with an ideal controller and a resource-limited robot with some

embodied intelligence. We use Eq. (3.6) to compare the two distributions of trajectories:

a low measure of K-L divergence indicates that the distributions are similar, and implies

a high level of task embodiment, and therefore a better robot design.

In other words, if a task is well-embodied by a robot, only a simple control policy is nec-

essary to execute it. Otherwise, more information, in the form of a more complex control
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Figure 3.3. (a) The state space and controls for the synthetic cell example
system introduced in Sec. 3.3.1. At any location in the state space, the
robot is able to choose one of seven different control modes: attraction to
chemical potentials at the six different sources or zero control. The goal
is to reach P . (b) A control policy for this system generated with discrete
controls and unconstrained sensing. (c) The control policy projected onto
a feasible set of sensor states. (These figures will be explained in detail in
Sec. 3.4.1 and Sec. 3.4.2.)

policy, is required. To construct these control policies, we will explore two opposing pro-

cedures: optimizing with respect to actuation assuming unconstrained sensing (Sec. 3.4.1)

and projecting onto discrete sensor sets (Sec. 3.4.2), or optimizing with respect to sensing

assuming unconstrained actuation (Sec. 3.4.3) and projecting onto discrete control modes

(Sec. 3.4.4).

3.4. Control Policy Generation

3.4.1. Generating Policies with Actuators First

The optimization problem of minimizing implementation complexity while maximizing

task embodiment is challenging, with many reasonable approaches. We use techniques

from hybrid optimal control because of properties described next.
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It was proven in [8] that optimal control of switched systems will result in a chattering

solution with probability 1. Chattering is equivalent to switching control modes very

quickly in time. In the case of these control policies, this translates to switching between

control modes very quickly in state. As a result, an implementation of the optimal control

policy would be highly complex. Instead of an optimal solution, we are looking for a “good

enough,” near optimal solution that results in a minimal amount of mode switching. It

was shown in [17] that the mode insertion gradient (MIG), which will be discussed in

Section 3.4.1.2, has useful properties, including that when the MIG is negative at a point

it is also negative for a region surrounding that point, and that a solution that switches

modes slowly can be nearly as optimal as a chattering solution.

This section will first review the topics of switched systems [8], [17], [33] and the

use of needle variations for optimization [34], [90], [106], then develop an algorithm for

building low complexity control policies. The algorithm creates a simple control policy

under the assumption that the system has perfect knowledge of its state. Mapping this

policy to physically realizable sensors is the subject of Section 3.4.2.

3.4.1.1. Switched Systems. A switched-mode dynamical system is typically described

by state equations of the form

(3.7) ẋ(t) = {fσ(x(t))}σ∈Σ

with n states x : R → X ⊆ Rn, m control modes2 Σ = {σ1, σ2, . . . , σm}, and con-

tinuously differentiable functions {fσ : Rn+m → Rn}σ∈Σ [34]. Such a system will switch

2Typically u is denoted as a control variable, but in this case the control value u could be anything in the
greater context of the control mode σ. The control mode may, in fact, consist of many different values of
u, which is why u does not appear in a significant way in the posing of this problem.



55

between modes a finite number of times N in the time interval [0, tf ]. The control policy

for this type of switched system often consists of a mode schedule containing a sequence

of the switching control modes S = {σ(1), . . . , σ(N)} and a sequence of switching times

T = {τ1, . . . , τN} [33], [106].

Here, we will consider a similar switched-mode system, but instead of implementing

an algorithm to optimize transition times between modes (so that control modes are

scheduled as a function of time σ(t)), we optimize transition states (so that control modes

are a function of state σ(x)). This way a robot can directly map sensory measurements

of state to one of a finite number of control outputs.

3.4.1.2. Hybrid Optimal Control. Let � : Rn → R be a continuously differentiable

cost function, and consider the total cost J , defined in Eq. (3.2). We use the Mode

Insertion Gradient (MIG) [34], [90], [106] to optimize over the choice of control mode at

every state. The MIG measures the first-order sensitivity of the cost function (3.2) to the

application of a control mode σi for an infinitesimal duration λ → 0+. The MIG di(x) is

defined

(3.8) di(x) =
dJ

dλ+

����
t

= ρ(t)T (fσi
(x(t))− fσ0(x(t))).

The adjoint variable ρ is the sensitivity of the cost function

(3.9) ρ̇ = −(
∂fσ0

∂x
(x(t)))Tρ− (

∂�

∂x
(x(t)))T , ρ(tf ) = 0.

The derivation of these equations is discussed in [34], [90], [106], but the key point

is that di(x) measures how much inserting a control mode σi locally impacts the cost J .

When di(x) < 0, inserting control mode σi at state x will decrease the cost throughout a
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 σ
k -γ

dk

Minimum Complexity

(b)

x

Low Complexity

σk+
1  =

 σ
k -γ

dk
Figure 3.4. The curves show σk+1 = σk − γdk for three different control
modes σ1 (blue), σ2 (green), and σ3 (red), where γ is the line search param-
eter and the background colors indicate which mode is assigned to state
x in the control policy. As step size γ increases from left to right, the
magnitude of γdk(x) surpasses that of the default control σk(x) (here the
default control is σ1 = 0). (a) Minimum Complexity: Only one control
mode is assigned throughout the entire state space. (b) Low Complexity:
A few control modes are employed, indicating that the cost function can
be reduced by including these extra control modes. (c) High Complexity:
The control mode switches often but the values are similar, indicating that
there is no significant difference in cost between these modes—despite the
large increase in complexity (i.e., chattering).

volume around x, meaning a descent direction has been found for that state. The MIG

can be calculated for each mode so that d(x) is a vector of m mode insertion gradients:

d(x) = [d1(x), ..., dm(x)]
T . Therefore the best actuation mode (i.e., the mode with the

direction of maximum descent) for each state x has the lowest value in the vector d(x).

As long as the dynamics f(x(t)) are real, bounded, differentiable with respect to state,

and continuous in control and time and the incremental cost, �(x(t)), is real, bounded,

and differentiable with respect to state, the MIG is continuous [17]. Sufficient descent of

the mode insertion gradient is proven in [17], where the second derivative of the mode

insertion gradient is shown to be Lipschitz continuous under assumptions guaranteeing

the existence and uniqueness of both x, the solution to the state equation Eq. (3.7), and

ρ, the solution of the adjoint equation Eq. (3.9). Combining this with the results of [47],
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Figure 3.5. A chattering control policy. The corresponding graph has en-
tropy h = 7.6035.

one can conclude that any sufficiently dense finite packing will also satisfy the descent

direction throughout the volume of packing. As a result, although chattering policies

may be the actual optimizers, finite coverings will generate descent throughout the state

space, resulting in a non-optimal but “good enough” solution. This provides the required

guarantee that we can locally control the complexity of the policy as a function of state.

This will be discussed further in Sec. 3.4.1.3.

Figure 3.4 illustrates differences in complexity as a result of optimizing using the mode

insertion gradient. The magnitude of the curves is the default control (the control we are

comparing to) minus the step size (a scaling factor, and also the line search parameter)

multiplied by the MIG. Therefore the magnitude of these plots correspond to the amount

of reduction in cost that can be achieved by locally employing each control mode at

the state x. The complex policy illustrated in Fig. 3.4 (c), occurs in simulation of the

chattering policy of Fig. 3.5. This happens when there is similar utility in employing more

than one mode in a region—there is only marginal benefit in choosing one control mode

over another, which results in increased complexity.
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3.4.1.3. Iterative Algorithm. An algorithm is introduced that can reduce the com-

plexity of a control policy in as little as one iteration, based on the work in [16], [17].

Algorithm 1 Iterative Line Search Optimization

Input Parameters: �h, �J
Initialize Variables: k = 0, γ = 0.001
Choose default policy σ0(x)
Calculate initial cost J(σ0(x))
Calculate initial complexity h0

Calculate initial descent direction d0(x)
hk−1 = ∞
while hk < hk−1 + �h
while J(σk(x)) < J(σk+1(x)) + �J
Re-simulate σk+1(x) = σk(x)− γdk(x)
Compute new cost J(σk+1(x))
Increment step size γ

Calculate new complexity hk+1

Calculate dk+1(x)
k = k + 1

In this line search algorithm the default control may be chosen arbitrarily, but for

simplicity we will show an example using a null default policy (in Fig. 3.6).

The cost J(σk(x)) of the entire policy is approximated by simulating random initial

conditions forward in time and evaluating the total cost function for time tf . We use

cost J rather than task embodiment DKL as the objective function because the line

search in the algorithm is a function of d(x) = dJ
dλ
. This way, the algorithm decreases

the objective function (plus tolerance �J) each iteration. After choosing a default policy

σ0(x), computing the initial cost J(σ0(x)), and calculating the initial entropy h0 (using

Eq. (3.5)) the initial descent direction d0(x) is calculated for the set of points in S, as

described in Sec. 3.4.1.2. A line search [4] is performed to find the maximum step size

γ that generates a reduction in cost in the descent direction dk(x), and then the policy
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Figure 3.6. Control policies for the system in Fig. 3.3, starting from a null
initial policy. (a) The control policies, mapping state to control for various
iterations of the line search. (b) A finite state machine representation of
each policy, representative of the complexity of the system. (c) The de-
sign complexity value calculated from Eq. (3.5). (d) 1000 Monte Carlo
simulations illustrate the results of random initial conditions using the as-
sociated control policies. (e) The Kullback-Leibler divergence between the
goal task distribution and the distribution generated by the control policy,
from Eq. (3.6). (f) The average final distance of the final states of (d) from
the desired point P .

σk(x) is updated to the policy σk+1(x). The new design complexity hk+1 and descent

directions dk+1(x) are calculated, and this is repeated until the cost can no longer be

reduced without increasing the complexity beyond the threshold defined by �h.
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The tolerances �h and �J are design choices based on how much one is willing to compro-

mise between complexity and performance. In the example illustrated in the next section,

the value for �h is significant because it represents the allowable increase in complexity—

how much complexity the designer is willing to accept for improved task embodiment.

For these figures, �h = 1.25 and �J = 10 were used.

This algorithm enforces low design complexity, meaning it will not result in chattering

outputs. The work in [17] showed that if d(x(τ)) < 0 then there exists an � > 0 such that

d(x(t)) < 0 ∀ t ∈ [τ−�, τ+�]. Since d(x) is continuous in x (as discussed in Section 3.4.1.2),

d(x0) < 0 implies that there exists an � > 0 such that d(x) < 0 ∀ x ∈ B�(x0). Note that

each point in B�(x0) does not necessarily have the same mode of maximum descent, but

they do each have a common mode of descent.

The MIG serves as a descent direction for a volume in the state space, rather than just

at a point. This property allows us to assign one control mode throughout a neighborhood

so that instead of choosing the optimal control mode (the direction of maximum descent)

at each point and causing chattering, we select a good control mode (a direction of descent)

throughout a volume and maintain relative simplicity in the policy. Figure 3.5 shows a

control policy that is the result of assigning the optimal control mode at each point, which

results in chattering.

Figure 3.6 begins with an initial control policy of zero control throughout the state

space, and increases design complexity and task embodiment until the line search algo-

rithm converges to a new control policy. Monte Carlo simulations were performed with

1000 random initial conditions, shown in row (d) and the average distance of the final

points from the desired point is shown in row (f). Most interesting are the trends in
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rows (c) and (e). These correspond to the min-max problem posed earlier, in which we

attempt to minimize design complexity, computed using graph entropy (c), and maximize

task embodiment, calculated using K-L divergence (e). The graph entropy in row (c)

increases as the K-L divergence in row (e) increases. This shows that the entropy must

increase (from 0) to ensure some amount of task embodiment.

Synthetic cells can encode these simplified control policies by physically combining

their movement, sensory, and memory elements with a series of logical operators, as

discussed next, in Section 3.4.2.

3.4.2. Projecting Policies onto Discrete Sensors

Section 3.4.1 described synthetic cells with perfect state measurement. In this section,

implementations using discrete sensors will be explored. In some design processes, it may

be possible to create sensors that are able to detect exactly where a robot should switch

between control modes (e.g., a sensor that can perfectly sense the boundary between the

green and orange regions of the control policy). It is also possible that a designer may start

with a fixed library of sensors, in which case the state space should first be divided into

sensed regions and then control modes should be assigned, as described in Section 3.4.3.

Another possible scenario, and the one we will examine in this section, is that a designer

has many sensors to choose from, and will want to use some subset of them.

For the synthetic cell example, we will assume discrete sensing is provided by a chem-

ical comparator—a device that compares the relative strength of two chemical concentra-

tions. From a given library of sensors, how should the combination of sensors, actuators,

and logical operators be chosen so that the task is best achieved?
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Figure 3.7. (a) Illustration of five individual chemical comparators, each
comparing the chemical potential of Source 1 with one of the other sources.
Each sensor can tell whether the robot is on one side of an equipotential—
the dotted line—or the other. (b) Using a combination of the five sensors,
a robot is able to sense which of these 9 regions it is in. (c) Sensor regions
resulting from the combination of all possible chemical comparators in this
environment.

Figure 3.7 (a) shows five different individual sensors: each comparing the strength

of chemical source 1 to another of the chemical sources in the environment, and how

each of these sensors is able to divide the state space into two distinct regions, while

Fig. 3.7 (b) illustrates which regions of the state space are able to be discerned using these

five sensors combined. Figure 3.7 (c) shows all possible combinations of comparators:

all six chemical sources compared to each of their five counterparts, and therefore the

maximum granularity of sensed regions in the state space using this sensor library3.

3Note that some comparators divide the state space in the exact same way, e.g., comparing chemical
sources 1 and 3 results in the same sensed regions as comparing sources 2 and 4 (this is true for three
other sets of comparators: 1/2 = 3/4 = 5/6, 1/5 = 2/6, and 3/5 = 4/6).
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The optimal scenario would be that these sensor regions correspond perfectly to the

control regions found using the iterative algorithm in Fig. 3.6. Since this will almost

never be the case, we must attempt to approximate our control policy using the library

of sensors.

Figures 3.8 and 3.9 demonstrate how the control policy synthesized in the previous

section combines with a library of sensors to create a physical design. Figure 3.8 (a) shows

two comparators chosen from the sensor library and how they each divide the state space

into sensed regions and Fig. 3.8 (b) is the policy that results from projecting the final

control policy found in the algorithm onto the feasible sensor space.

This projection from continuous sensing to discrete sensing is done by simulating many

rollouts, and finding the best discrete control mode for each sensor region. We pose the

question: assuming the best possible control (the unconstrained-sensing control policy

from Fig. 3.6) everywhere else in the state space, which control mode should be used

inside each individual sensor region?

In each rollout, a trajectory begins from a random initial condition x within the state

space (and therefore a random initial sensor region r in the set of sensor regions R). As

the simulated synthetic cell executes its trajectory, it uses a single control mode s when it

is inside its initial region r, and the continuous sensing control policy C(x) (from Fig. 3.6)

when it is outside that initial region r. This is executed for each of the S control modes,

and the cost J of each trajectory is calculated based on how long it takes the particle to

reach the desired point. In case a trajectory gets stuck in a loop, or for some other reason

never reaches the desired point, the algorithm will break the loop after imax increments,

and record a large cost for that control mode and sensor region combination. After N
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rollouts, we assign the lowest cost control mode s to each sensor region r to construct the

projected, discrete control policy D(r). As N → ∞, repeated execution of the algorithm

will not change the resulting policy D(r). The projection algorithm also does not depend

on the order of executions, and can be computed in parallel. An outline of this process

can be found in Algorithm 2.

Algorithm 2 Projection

for each rollout n ∈ N
x = random initial condition
r = initial sensor region of x
i = 0 (increment counter)
for each control mode s ∈ S
while x �= desired point P
if current sensor region of x = r
u = s

else
u = control from continuous policy C(x)

Update x using dynamics f(x, u)
Update cost J
if i > imax

Break loop and record large cost
Record cost J for each region r and control mode s

Generate discrete policy D(r) = argmin
s

J(r) ∀r ∈ R

Logical operators can be combined with sensory observations to represent the state

space with more fidelity than sensors alone (e.g., a single sensor in Fig. 3.7 (a))—so that

actions can be associated with combinations of sensory observations (e.g., Fig. 3.7 (b)).

Figure 3.8 (c) illustrates the logical diagram that would be physically encoded in circuitry

onto a synthetic cell so that the policy in Fig. 3.8 (b) could be executed.

Figure 3.9 is similar to Fig. 3.8, but illustrates the physical design corresponding to

the highest fidelity control policy from the library of comparator sensors. Figure 3.9 (a)
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Figure 3.8. Low-fidelity Design. (a) Two sensors. Left: comparing chemical
Sources 1 and 2 divides the state space into left and right. Right: comparing
Sources 1 and 5 divides the space into top and bottom. (b) Control policy
from Fig. 3.6 projected onto the sensed regions. (c) Logical decision diagram
for this system. (d) Circuit diagram for physical synthetic cell design.

shows each of the sensors in the library, including the ones that repeat sensed regions due

to the symmetry in this environment. The projected control policy shown in Fig. 3.9 (b)

and Fig. 3.9 (c) illustrates the logic of the physical circuitry.

It is notable that the designs in Figures 3.8 and 3.9 are quite dissimilar. Figure 3.10

shows how each of the physically feasible designs compare to each other, to another

physically feasible design, and to the control policy with perfect knowledge of state. The
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Figure 3.9. High-fidelity Design. (a) Ten distinct sensors. The equipotential
lines demonstrate how the device can use chemical comparators to estimate
its location in the environment. (b) Control policy from Fig. 3.6 projected
onto the sensed regions. (c) Logical decision diagram for this system. (d)
Circuit diagram for physical synthetic cell design.

high-fidelity design in the middle of Fig. 3.10 captures much of the structure of the sensor-

agnostic policy, and the results are evident in the relatively low K-L divergence. The

medium-fidelity design uses fewer sensors than the high-fidelity one and consequently

does not embody the task quite as well. The low-fidelity design has the highest K-L

divergence, corresponding to the worst task performance. But, depending on the goals of
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Figure 3.10. Left: The policy generated when perfect knowledge of state
was assumed. Right: A high-fidelity design using all of the (10 distinct)
sensors in the sensor library, as shown in Fig. 3.9. A medium-fidelity design,
using five sensors. A low-fidelity design, using only two of the sensors from
the sensor library, as shown in Fig. 3.8.

the designer, it’s possible that even this task performance is good enough to sufficiently

achieve the goal, and a synthetic cell would be designed in this simplest form.

3.4.3. Generating Policies with Sensors First

The main objective of this chapter has been to encode task information in material prop-

erties to produce a simple, physically feasible synthetic cell design that will best achieve a
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task. We have specified this problem statement to include a set library of sensors (chemi-

cal comparators) and actuators (attraction to chemical sources), and in Sections 3.4.1 and

3.4.2 we discussed taking a finite set of control modes, finding a control policy using those

discrete control modes and assuming perfect sensing, and then projecting that policy onto

discrete sensors. But there may be cases where a robot designer has good reason to solve

this problem in the opposite order.

In this section, we will discuss generating a control policy with discrete sensors and as-

suming continuous control authority, and then projecting this policy onto discrete control

modes.

Figure 3.11 (a) shows the (x, y) state space divided into 32 regions using chemical

comparators. To compute a control policy assuming continuous control capabilities, we

use the same type of control authority as the previous sections (the synthetic cell being

attracted to a chemical potential) but the location of that chemical potential is no longer

restricted to a few fixed positions.

Figure 3.12 shows an RGB (red, green, blue) color gradient that represents all possible

locations of a chemical source in this system. The value of red is increased as the x

location of a potential source increases (i.e., moves from left to right) and the value of

blue is increased as the position of the chemical potential increases in the y direction

(i.e., moves from the bottom to the top). The environment contains a constant amount

of green, so where x and y are both small, the color green is most visible (e.g., in the

bottom left corner, at (x = 0, y = 0)). This color-based representation of (x, y) locations

of potential sources allows us to illustrate continuous control authority.
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Figure 3.11. (a) Combinations of ten discrete sensors yield 32 distinct re-
gions in the state space. (b) Control policy generated with discrete sensing
and continuous control authority (chemical sources placed anywhere in the
environment). (c) Control policy projected onto discrete control modes.

A control policy was generated using the discrete sensor regions shown in Fig. 3.11 (a)

and the continuous control shown on the left of Fig. 3.12. The resulting policy is shown

in Fig. 3.11 (b). This was computed using rollouts: for each sensor region, a control mode

(i.e., a location for a chemical potential to be placed) was chosen that would minimize

the cost of trajectories starting in that region, and its location is illustrated by the color

of each region. The left of Fig. 3.13 shows the performance of this policy.

Note that we are using the same sensor regions (divided by equipotential lines from

Fig. 3.7) as in the last section, even though we are choosing new locations for the chemical

potentials. On synthetic cells, the ability to detect and compare specific chemicals (as a

chemical comparator does) and the ability to be attracted to a certain chemical (resulting

in locomotion) are distinct and unrelated. There might be many chemical stimuli in an

environment that a synthetic cell can use for state estimation which have no affect at all

on a cell’s actuation. Here we continue with the assumption that the synthetic cell has

chemical comparators on board that pertain to the 6 potentials shown in Fig. 3.3, but

assert that there is some possibility in the design space that sources might be added at
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new positions, or that we otherwise would be interested to know where the best possible

source locations are.

3.4.4. Projecting Policies Onto Discrete Actuators

Now that we have calculated our control policy with discrete sensors and unconstrained

control authority, the optimal scenario would be to create actuators that perfectly align

with the policy: if possible, we should place a chemical potential at each preferred location.

Since this is unlikely to be easily achievable, we will approximate our control policy using

a library of actuators.

For continuity, we assume that our library of actuators consists of the same control

modes shown in Fig. 3.3. We project the computed policy onto 3 subsets of these actuators,

shown on the right side of Fig. 3.12. The subsets are: all six control modes, a set of three of

the control modes (1, 2, and 3) and a set of only two control modes (1 and 4). We generate

synthetic cell designs with each of these sets of actuators by projecting the unconstrained

controls computed in the policy to these discrete control modes, and then compare their

design complexities and levels of task embodiment in Fig. 3.13.

The projection operator in this section is the same as the one described in Sec. 3.4.2.

But in this case, the continuous control policy C(x) (used outside each region being

evaluated) is the discrete-sensing, continuous-actuation policy shown in Fig. 3.11, rather

than the discrete-actuation, continuous sensing control policy shown in Fig. 3.3.

Figure 3.13 shows the projected control policies and the results of simulations per-

formed with each different design. Monte Carlo simulations were performed with random

initial conditions, shown in row (d), and the average distance of the final points from
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Figure 3.12. Left: All possible locations of chemical sources, represented by
RGB (red, blue, green) colors. As the x location of a source increases, the
color illustrating the source location becomes more red. As the y location
of the source increases, more blue is added to the color. There is a constant
level of the color green throughout the state space. Right: Three different
subsets of discrete control modes are shown: 6 discrete source locations, 3
locations, and only 2 locations.

the desired point is shown in row (f). Note the trends in rows (c) and (e). Similarly to

Fig. 3.10, we observe that as the graph entropy in row (c) decreases, the K-L divergence in

row (e) decreases. This shows that as the designs become simpler (i.e., use fewer control

modes), the task performance becomes worse. But, depending on the goals of the robot

design process, it’s possible that even the worst performance shown on the right would

be a worthy trade off for the simplicity of the design and ease of fabrication.

3.5. Discussion

In this work we addressed the question of designing robots while minimizing complexity

and maximizing task embodiment. We demonstrated our method of solving this min-max

problem, which included both solving for the organization of actuators first and then

projecting onto discrete sensors, and organizing sensors first and then projecting onto

discrete actuators. To accomplish the former, an iterative algorithm was introduced that
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Figure 3.13. Left: The policy generated when continuous control was as-
sumed. Right: A high-controllability design using all 6 of the discrete
control modes in the actuator library, as shown in Fig. 3.12. A medium-
controllability design using only three control modes (chemical sources 1,
2, and 3). A low-controllability design using only two of the actuators from
the actuator library: chemical sources 1 and 4.

resulted in a simple control policy assuming discrete control modes and perfect sensing,

and then projecting that policy onto a discrete space of sensed regions resulting from a

library of sensors. This is not necessarily an optimal design pipeline for all robot design

problems. There may be some instances where there is a fixed library of sensors, in

which case one would solve the latter problem, by first dividing the state space into

discrete sensor regions, then computing a control policy assuming discrete sensors and
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unconstrained control authority, and finally projecting the policy onto a discrete library

of control modes from a library of actuators.

When these two approaches were applied to the same libraries of sensors and actuators,

slightly different designs were generated (as seen in the second columns of Fig. 3.10 and

Fig. 3.13). Also, although both methods resulted in similar levels of task embodiment

across the different designs, the designs produced by the sensors-first method were more

complex. This is because the complexity of a design is directly related to the number

of states, which depends significantly on the quantity of sensor regions. In Fig. 3.3 each

subsequent design had fewer and fewer sensors where as in Fig. 3.11 each design had the

same number of sensor regions, keeping the complexity relatively high.

Overall, the algorithmic approach to robot design demonstrated in this chapter is

capable of producing low complexity control policies that are applicable to simple robotic

systems. Similar minimal robotic design analyses and comparisons were performed in the

previous chapter. One limitation of these results is the fact that minimal and microscopic

robots are constrained in their capabilities, and each agent can only have a small impact

on its environment. In the next chapter we will investigate how robots can be designed

for collaboration – so that they can work together to achieve things that are difficult or

impossible individually.
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CHAPTER 4

Bayesian Particles

Cells in the human body are individually simple, but create unimaginably complex

structures and functions when they work together. We can mimic these emergent phe-

nomena by building simple organisms that, when in a group, are capable of complex

behaviors. In this chapter, we demonstrate a scalable framework for theoretical analy-

sis of cyclic environments called uniformly oriented graphs. These UO graphs represent

topologies like that of mammalian circulatory systems, ventilation systems in buildings,

oil pipelines, and other naturally-occurring and man-made systems. We design simple,

minimal agents (with capabilities up to current state of the art [56]) that search for

targets in a dynamic, stochastic environment. Using only a few bits of memory, simu-

lated agents navigate through a uniformly oriented graph, detect a moving target, and

communicate their discovery to other agents. I show that the exhibited behavior of the

ensemble functions as a physical implementation of a Bayesian update. Lastly, I validate

the results by demonstrating our algorithms on macroscopic robots which work together

to find a moving target in a model of the human circulatory system using infrared sensors

and distance-based radio communication. These results pave the way for designing and

producing microscopic robots for a diverse spectrum of applications.
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4.1. Introduction

As robot size decreases to the order of a single cell, previously inconceivable appli-

cations and abilities emerge. These include monitoring of oil and gas conduits [50],

electrophysiological recordings with neural dust motes [89], minimally invasive medical

procedures [93], and much more. Because of recent advances in the manufacturing and

development of colloidal robots [56], researchers can reasonably assume that small-scale

untethered mobile robots can cooperate in collectives of hundreds or thousands of agents.

Applications for such large groups of such tiny robots include exploration, coverage, and

environmental monitoring. With these novel applications in mind, we pose the question:

what is the simplest, physically realizable coordination strategy that micro-particles could

use to guarantee physical coverage?

Many instances of microorganisms cooperating and self-organizing have been demon-

strated [109]. Complex behaviors (e.g., learning) do not only exist in multi-cellular or-

ganisms. Collective behaviors emerge even in (possibly, especially in) simple systems [88].

Slime molds are single-celled organisms that have neither neurons nor brains, but work

together as a single entity to achieve feats such as solving mazes and anticipating periodic

events [11]. They have been shown to solve the U-shaped trap problem—a common test

of autonomous navigational ability in robotics [85]. Our goal in this work is to emulate

this type of ensemble behavior where each individual cell works to ensure the success of

the group, using the extended example of mimicking the immune response.

The immune system protects the body by recognizing and responding to antigens,

which are harmful agents like viruses, bacteria, and toxins [22]. When white blood cells

find a target, they multiply and send signals to other cells to communicate their discovery
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Figure 4.1. (a) An illustration of the human circulatory system, inset with
an illustration of a synthetic cell [57]. (b) A graph representing a simplified
human circulatory system, with an agent (Bayesian particle) containing a
policy bit P and a success bit S. Similar to what’s shown in [57] (c) The
experimental set up of the circulatory maze and one of the Bayesian robots.

[66]. I show that a group of synthetic cells can imitate this discovery and communication

behavior by collectively executing a simple algorithm that manifests itself as a Bayesian

update over the control policy that brings cells to the location of an antigen.
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Figure 4.2. A cyclic maze that mimics aspects of the circulatory system.
A group of synthetic cells would require at least three bits each to navigate
through the four paths and record instances of target detection. One of the
paths (10) leads to a juncture where cells might get lost and not return.

Synthetic cells are microscopic devices with limited sensing, control, and computa-

tional capabilities [59]. They can contain simple circuits that include minimal sensors

and limited nonvolatile memory—barely a handful of bits [58]. These devices are around

100µm in size, rendering classical computation using a CPU likely impossible. But simple

movement, sensory, and memory elements can potentially be combined with a series of

physically realizable logical operators to enable a specific task [73, 57] and communication

about how to achieve that task.

A group of synthetic cells can learn to find a target by beginning with different control

policies—indicating how, and implicitly where, they will explore—and then communicat-

ing with each other that they have or have not been successful in detecting a target. After

communicating their success, some synthetic cells will change their control policies to re-

flect the successes of others in the group. Thus the distribution of synthetic cell control

policies reflects the expected location of the target.
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This update is similar to a particle filter, where samples from a distribution are rep-

resented by a set of particles, and each particle has a likelihood weight assigned to it

that corresponds to the probability of that particle being sampled from the distribution.

Particle filters also include a resampling step, to mitigate weight disparity [98] before

the weights become too uneven, which closely mirrors the communication step in this

synthetic cell implementation, as discussed in Section 4.4.

In this chapter we show how minimal agents can use simple, local algorithms and only

a few bits of memory to enable global learning behavior to refine their belief of a target lo-

cation. We also show that this implementation of the ensemble of agents is a sub-optimal

Bayesian filter, where the control policy of the agents is the independent variable. By

constraining individuals to collectively behave as a Bayesian update, the group inherits

formal properties in the form of guarantees on asymptotic performance and probabilisti-

cally predictable behavior. These properties will help us to reason about robustness and

safety in task execution. That is, we are replacing the model of a distributed system with

a single Bayesian filter. Lastly, we validate our results in experiments with a robot swarm,

using line-following robots shown in Fig. 4.1.

4.2. Related Work

Literature surveys of previous work on nanotechnology and mobile microrobots can

be found in [58] and [93], respectively. In the discussion of existing challenges associ-

ated with designing miniaturized robots for biomedical applications, [93] notes that most

robots with dimensions less than 1mm use an “off-board” approach where the devices

are externally actuated, sensed, controlled, or powered. In this work, we employ fully
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autonomous devices that process information and act independently of external drivers

and centralized computers.

Micro- and nanorobots can also be classified as either synthetic or biohybrid, where the

former are composed of fully synthetic materials (polymers, composites, metals) and the

latter are made of both synthetic and biological materials (bacteria, algae, protozoa). Both

have benefits, but biohybrid robots can only exist under specific biological conditions,

requiring limitations on the environment, temperature, pH, salinity, and more [50]. This

constrains the envisioned applications compared to purely synthetic devices, which is what

we employ in the models in this work.

Research in nanofabrication and synthesis methods have yielded sophisticated syn-

thetic devices, including particles that serve a particular function (e.g., light control for

nanoactuation [30], performing clocked, multistage logic [108], actuation using external

magnetic fields [92], [110]), but not particles possessing autonomous circuitry, logic ma-

nipulation, and information storage [50]. Besides the work published in [50, 57], existing

micro- or nanoparticles do not autonomously process information when decoupled from

their environment [44], [45]. The particles created in Koman and Liu et al. [50, 57] are

the basis for the synthetic cells proposed in this chapter, and we will make the following

assumptions based on this work:

(1) Synthetic cells can guide their own motion either mechanically [36], by means of

elaborate swimming strategies like rotating helical flagella [53], or (more likely)

chemically [63, 62], through use of Pt-Au bimetallic rods [72], self-electrophoresis

[38], [64], self-diffusiophoresis [40], or self-thermophoresis [43].
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(2) Synthetic cells can send and receive communications optically, using integrated

LEDs [103] and solid-state or organic light emitting diodes [103, 52].

(3) Synthetic cells can detect a target by using a chemiresistor to recognize the

target’s specific chemical analyte [50, 59, 58].

Safety and robustness guarantees are the most important qualities for biomedical

microrobots operating inside a body. If devices are to be employed in medical applications,

they must not damage tissues or cause any negative reaction from the body. One of the

primary contributions of the work in this chapter is constraining synthetic cells to behave

as a physical implementation of a Bayesian update, creating a basis for formal properties

and guarantees on their behavior. This ensures robustness in their performance, which

can be translated to safety guarantees in specific environments.

Bayesian approaches have been applied to reinforcement learning [82], [83], but often

in supervised scenarios where there are experts and learners. These methods also often

employ passive observations by the learners, rather than explicit communication from

experts to learners. In this chapter, we employ reinforcement learning of policy updates

in rollouts of executions. We also enforce communication between agents, specifically

from successful agents to unsuccessful ones when they encounter each other.

Many relevant papers on swarm robotics [12] and self-organized collective decision

making [26, 99, 86, 100] exist, but they generally apply to robot swarms that have sig-

nificantly more computation and capabilities than those presented in this chapter. There-

fore, the formalisms, perspectives, and strategies presented in these works are informative,

but not applicable at a scale where agents communicate only 6 bits of information.
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Figure 4.3. Left: An example cyclic maze with only two possible paths.
Based on the control policy (one bit: a 0 or a 1) of each two-bit synthetic
cell, the cell will follow either the right path or the left path in search of
the target ×. The cell uses its second bit to encode whether or not it has
detected the target. Right: A graphical representation of this synthetic cell
environment with node 0 as the heart node that every agent passes through.

4.3. Algorithm and Problem Definition

4.3.0.1. Environment. Our goal is to mimic the immune response, so I simulate a

model of the circulatory system [37] in Section 4.4. But this work also applies to cyclic

systems of different types. With the help of my collaborator Jamison Weber, I have

defined uniformly oriented graphs as the class of environments that will be considered.

A uniformly oriented (UO) graph is a specific class of directed random graphs, in which

there exists one vertex h that is an element of every directed cycle. More details about

UO graphs can be found in Section 4.6.

In this section, I present a simplified, introductory model. This model consists of a

maze, shown in Fig. 4.3, with only two possible paths: left or right. The central vertex,

or “heart node,” is node 0. In this example, the agents will search for a target located at

the black ×.
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Figure 4.4. Each agent begins with an initial control policy of either a 1
or a 0, which causes it to turn either left or right in the maze. If the cell
thinks it has found the target, it changes its second bit (its success bit)
to a 1. Due to stochasticity in the environment and the cells, there is the
possibility of a false positive or a false negative. Cells might communicate
in the middle region, shown in purple. (a) If both cells are unsuccessful
they will not communicate any information even if they are within range of
each other. (b) and (c) If one cell is successful and one isn’t, the successful
cell will communicate its policy to the unsuccessful one. (d) If both cells
are successful, one (selected randomly) will listen to the other.

4.3.0.2. Policy Execution. For this introductory example, each synthetic cell has only

two bits: one for its control policy (1 for left or 0 for right) and one to indicate whether

it has found the target (1) or not (0). Each cell begins with a random control policy and

loops through the maze. They have a probability of a false positive pfp (detecting the

target when it is not there) and a probability of a false negative pfn (not detecting the

target when it is there). If a synthetic cell thinks it has detected the target, it changes its

second bit, which we will call its success bit, to a 1. This policy execution is illustrated

in Fig. 4.4.

4.3.0.3. Communication. Using methods of optical information transmission discussed

in Section 4.2, synthetic cells are capable of local communication when they are within a
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certain distance of each other. Note that in the graphical representation of the environ-

ment, I model this as agents exchanging information when they are on the same node as

each other.

When agents reconvene in the middle of the maze (defined by the purple box in Fig. 4.4,

and the node 0 in Fig. 4.3), there is an opportunity for communication. I use a parameter

ρ to characterize how many other synthetic cells, on average, each agent will interact with

during one loop of the maze (no matter what control policy or success bit either cell has).

This parameter ρ is related to the density of synthetic cells in the environment, and how

likely they are to pass within communication range of each other.

If two agents come into contact, a successful agent (with a 1 for its success bit) will

tell an unsuccessful agent (with a 0 for its success bit) its “correct” policy—even if it is

successful because of a false positive. If both communicating agents are successful, one

will listen to the other, but which one is the listener is randomly chosen. By “randomly” I

mean that there is a probability of 0.5 that either agent will be chosen as the listener. And

if both are unsuccessful they will not tell each other anything. In this way, the success bit

also functions as a read/write bit. If it is a 0, the cell will listen to others (read) and if it

is a 1, the cell will try to broadcast its policy to others (write). These different scenarios

are depicted in Fig. 4.4.

4.3.0.4. Behavior Algorithm. These policy execution, communication, and target de-

tection behaviors are described in detail in Algorithm 3. The agents begin at the heart

node 0 with randomly assigned control policies and they step forward to successive nodes

according to that policy (line 17). There is a parameter r indicating the amount of ran-

domness that unsuccessful agents use to explore the environment (line 6). If the agents
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detect the target (lines 3 and 8), they record a success (lines 4 and 9), and will broadcast

their policy (line 12) to any other agent in their proximity (i.e., at the same node as

them). If an unsuccessful agent receives a message from a successful agent (line 14), it

will switch its policy to that of the successful agent (line 15). If two successful agents

hear each others’ policies and they are different, one will randomly listen to the other’s

policy. An agent that has listened to a new policy will also change its success bit (line 16)

to be nearly off – but not completely 0. This enables an agent to avoid randomizing its

behavior immediately upon encountering the heart node (line 6), so that it has a chance

to try out its new policy for a cycle or two.

Algorithm 3 Bayesian Particle Behavior

1: s = success bit, τ = target, u = current node, � = heart node, p = policy bits,
r = random policy generation rate, δ = decay amount δ << 1.
...

2: if s = 0 (agent unsuccessful)
3: if τ = 1 (target detected)
4: s ← 1 (flip success bit)
5: if u = � (at heart node)
6: Generate new random policy p with probability r
7: else if s > 0 (agent successful)
8: if τ = 1 (target detected)
9: s ← 1 (recharge success bit)
10: else if (target not detected)
11: s ← s− δ (decay success bit)
12: Broadcast policy p
13: Listen for policy pnew from other agents
14: if pnew received
15: p ← pnew (reset policy)
16: s ← clog(n)δ (reset success bit)
17: Step forward according to policy p

When synthetic cells enact their simple algorithm of policy execution, possible target

detection, and communication, the cells all end up with the policy that passes the target.
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Figure 4.5. Top: Results of a simulation with 1000 two-bit synthetic cells
for 15 iterations (15 loops around the maze shown in Figure 4.3), with
parameters pfp = 0.2, pfn = 0.2, ρ = 1.0, and r = 0.001.

In Fig. 4.5, the number of agents with each state are shown as they loop through the maze

multiple times and communicate with each other between loops. By the ninth iterate,

every cell has a policy that takes it past the target. An animation of this simulation can

be found at https://sites.google.com/u.northwestern.edu/bayesianparticles. This optimal

final result always occurs in the case of this simple maze, as long as pfp and pfn are

sufficiently small and ρ > 0. But with more complicated environments and possibilities

(for example, the maze in Fig. 4.2) it becomes more difficult to ensure this result. To

address this, we increase the number of bits on each cell.

4.4. Simulations

I now introduce a more complex example, where each synthetic cell has three bits

and the maze has four possible paths. The environment is shown in Fig. 4.2, where the
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Figure 4.6. Simulated results for 1000 three-bit synthetic cells executing
their policies and communicating in the maze from Figure 4.2, with param-
eters pfp = 0.2, pfn = 0.2, plost = 0.5, ρ = 1, and r = 0.001. Around 800 of
them converge to the correct policy where they will find the target.

possible control policies are: 01, which takes the synthetic cells past the target; 00 and

11, which both loop the cells around the maze; and 10, which leads the cells down a path

that they have probability plost of never returning from. The goal is for as many cells as

possible to end with the 01 policy, where they will all be heading toward the target.

The possibility of getting lost adds further complexity to the system, because not only

is the target not reachable with policy 10, but some cells with that policy will not return

at all. This could be equivalent to different environmental factors in a body, for example

an area with enough acidity to damage or destroy synthetic cells. In practice, I predict

that there will be many opportunities for synthetic cells to veer off course and get lost,

or to get stuck such that they can no longer contribute to the goals of the group. As the
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magnitude of plost increases, more cells get lost and fewer are able to reach the target and

combat an invading antigen.

Figure 4.6 shows results for 1000 three-bit synthetic cells exploring the environment

shown in Fig. 4.2. All but the lost cells converge to the target policy after 12 iterations.

4.4.1. Particle Filter

A particle filter is a nonparametric implementation of a Bayes filter that represents a

distribution using a set of random samples drawn from that distribution [10], [98]. In

a particle filter, the samples from the distribution are called particles. I denote these

samples Xn := x1
n, x

2
n, ..., x

L
n . Each particle x�

n is a hypothesis of the true world state at

time n—in our example, each particle would be a hypothesis of the policy that leads to

the target.

The most basic variant of a particle filter algorithm begins with the particle set Xn and

weights wn, which together represent a prior distribution. This distribution is sampled,

resulting in L particles x̄1
n+1, ..., x̄

L
n+1. The bar indicates that these samples are taken

before the measurement has been incorporated. Next, a measurement zn+1 is obtained,

and it is used to calculate new weights w�
n+1 for each particle. The weight is the probability

of the measurement given each particle, w�
n+1 = P (zn+1|x̄�

n+1). Lastly, the particle filter

resamples the distribution by drawing with replacement L particles from the weighted

set X̄n+1, where the probability of drawing each particle is given by its weight. The

resampled particles Xn+1 = x1
n+1, ..., x

L
n+1, along with the weights wn+1, represent the

posterior distribution—an updated estimate of which policy leads to the target. Note

that in the case of the synthetic cell ensemble, the particle filter is estimating discrete
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Figure 4.7. Synthetic cell executions for different values of ρ for 1000 syn-
thetic cells and pfp = 0.1, pfn = 0.1, plost = 0.5 and r = 0.001. The bottom
right panel shows a particle filter implementation for this system, where the
measurements are the current states of the synthetic cells. As ρ increases,
it approximates the particle filter. Note that the bottom left plot, where
ρ = 10, is nearly identical to the plot of the particle filter weights.

states: each particle can only take one of four different values. There are much more than

four particles, so many particles will hypothesize that the target is at the same state.

For the synthetic cell implementation, we begin with random policies (and random suc-

cess bits) on all of the synthetic cells, similar to starting with a uniformly distributed prior

distribution. This distribution of M synthetic cells has discrete states Yn := y1n, y
2
n, ..., y

M
n .

Each of these states are a policy, or a path through the maze that the target might be

along, and a success bit, that is on or off. The cells execute their policies and some return
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with an altered success bit, resulting in new cell states ȳ1n+1, ..., ȳ
M
n+1. The value of the

success bit smn+1 of each cell ȳmn+1 is a binary implementation of the weight wm
n+1 in a parti-

cle filter. Instead of calculating a conditional probability so that the weights are between

0 and 1, the weights are either 0 or 1 (before being normalized by the total number of

cells). A cell m with state ȳmn+1 with a 0 success bit will not communicate its policy to

any other cells, meaning, in particle filter terms, that it will not be sampled from—so its

weight is effectively wm
n+1 = 0.

For example, consider a situation where there areM synthetic cells (andM001 synthetic

cells with policy 00 and a 1 for a success bit, M110 cells with policy 11 and a 0 for a

success bit, etc.) and ρ = 1, meaning that each cell will communicate with one other

cell during each loop around the maze. Cell m (with state ȳmn+1) has a ρ
M

probability

of communicating with any other cell i (with state ȳin+1), where 1 ≤ i ≤ M , during a

given cycle. Cell m’s probability of sampling a cell with policy 00 is M001

M
, its chance of

sampling a cell with policy 01 is M011

M
, and so on. It also has a chance of staying the same,

anytime it communicates with a cell with a 0 success bit, which occurs with probability

M000+M010+M100+M110

M
.

This is the main difference between the particle filter algorithm and the synthetic cell

implementation: the synthetic cells have some probability of not resampling, and just

staying the same—unlike particles in a particle filter which are all resampled, every iter-

ation. This difference is demonstrated in Algorithm 4. If each cell always communicated

with a random successful cell, its behavior would be the same as that of a particle fil-

ter. This is illustrated in Fig. 4.7. The bottom right panel of Fig. 4.7 shows a particle

filter applied to the synthetic cell system. There are L = 1000 particles being randomly
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Algorithm 4 .

Particle Filter
1: Prior distribution is described by L par-
ticles and their weights

Xn, wn

2: Distribution is sampled, resulting in L
new particles

x̄1n+1, x̄
2
n+1, ..., x̄

L
n+1

3: Based on a measurement, weights1 are
assigned to each particle

w�
n+1 = P (zn+1|x̄�n+1)

4: Resample by drawing with replacement
L particles from weighted set X̄n+1

5: Posterior distribution is described by the
resampled particles and their weights

Xn+1, wn+1

Synthetic Cell Implementation
1: Prior distribution is described byM poli-
cies and success bits

Yn, sn
2: Cells execute their policies, resulting in
M new states

ȳ1n+1, ȳ
2
n+1, ..., ȳ

M
n+1

3: Based on its success bit, a cell might
broadcast its policy

smn+1 = 0 or 1
4: Each cell ȳmn+1 communicates with ρ
other cell(s). This approximates resampling
as ρ → M .
5: Posterior distribution is described by the
final synthetic cell policies and success bits

Yn+1, sn+1

sampled from the synthetic cell distribution (which is also comprised of M = 1000 cells),

and the weights are being updated based on observations of synthetic cell policies. As ρ

increases, the amount of resampling increases, and the synthetic cell behavior is guaran-

teed to converge to the particle filter behavior. The physical execution of the group of

synthetic cells approximates the particle filter algorithm.

Similarly, a particle filter approximates a Bayes filter. The approximation error of

a particle filter approaches zero as the number of particles goes to infinity—the error

depends on the number of particles, not on the resampling. In fact, some particle filter

implementations resample very infrequently, to reduce the risk of losing diversity [98].

Because the asymptotic guarantee on a particle filter approximating a Bayes filter does

not depend on resampling [98], it consequently holds for synthetic cells as well. Therefore,

since the synthetic cell implementation approximates a particle filter, and a particle filter
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approximates a Bayesian update, we can conclude that a synthetic cell system using this

algorithm approximates a Bayesian update.

This result, which is illustrated in Fig. 4.7, guarantees convergence properties for how

synthetic cells will probabilistically behave. These guarantees are valuable because they

can be used to reliably predict how synthetic cells will perform in new scenarios, and we

can be certain of robustness and safety requirements for physical experiments.

4.4.2. Circulatory System

Many models of the human cardiovascular system exist, including a 36 vessel body tree

[61], a lumped parameter model [49], and a mathematical model featuring both lin-

ear and nonlinear constitutive relations [24]. In this chapter, I use the model from

Hardy et al. [37], which clearly defines the 24 different chambers in the circulatory sys-

tem, as well as the connections going into and out of each one. This model is shown in

Fig. 4.8, where each number represents a chamber, as described in the legend, and the

connections depict inputs and outputs for blood flow. Figure 4.9 shows how the graphical

representation of the circulatory system can be illustrated as the same type of maze that

was shown in Figures 4.2 and 4.3.

How much memory does an agent require to navigate in this environment? I have

derived the following equation, which computes the number of bits, B, required for any

cyclic graph.

(4.1) B = 1 +
I�

i=1

ceil(log2(Pi))



92

Figure 4.8. Adapted from Figure 1, Figure 2, Figure 3, and Table 2 in
Hardy et al. [37]. Each number represents a chamber, as described in
the legend. The connections between chambers are inputs and outputs
illustrating blood flow.

In Eq. 4.1, B is the number of bits required to navigate the graph, I is the number of

intersections, or diverging nodes (nodes that have multiple edges leaving them), and Pi is

the number of edges leaving each intersection, i. For each intersection i ∈ I, I calculated

the binary log of the number of outgoing edges. This gives the number of bits necessary

to describe the policy at that intersection. The ceiling function ceil rounds up to the

nearest integer, as I only consider entire bits. The total number of bits required for each

intersection is summed, and one more bit is added to measure success.

The circulatory system shown in Fig. 4.8 has I = 2 intersections, at nodes 2 and 12,

which have P1 = 7 and P2 = 4 outgoing edges, respectively, and therefore B = 6 bits are

required to solve the graph. The policy bit organization is shown in Fig. 4.9.



93

Figure 4.9. A maze, similar to those in Figures 4.2 and 4.3, based on the
inputs and outputs of chambers in the circulatory system, shown in Figure
4.8. Bit assignments for each path are also shown, to illustrate the 5 bit
policies that describe each of the 28 possible paths through the system.

I simulated synthetic cell executions in this scenario, where the desired target was in

the leg, node 13. In this circulatory system model, there are many different policies that

will lead to finding the target. It doesn’t matter how the cells pass through the pulmonary

system (states 2 − 9 in Fig. 4.8 or the top part of the maze in Fig. 4.9), as long as they

reach the leg in the end. The results of this simulation are shown in Fig. 4.10, and an

animation of these simulations can be found at https://sites.google.com/u.northwestern.

edu/bayesianparticles.

In the previous example, shown in Figs. 4.2 and 4.6, I simulated a probability of

getting lost along one of the paths. This was to acknowledge that in practice, unexpected
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Figure 4.10. Density plots illustrating the distribution of 1000 six-bit syn-
thetic cells executing their policies in the maze from Figure 4.9, with pa-
rameters pfp = 0.1, pfn = 0.1, ρ = 1.0 and r = 0.001. The target is shown
by a yellow star and the cells with policies that pass by it are shown in blue.

events can happen where some synthetic cells will get lost, stuck, destroyed, or otherwise

do not contribute to the group’s estimate of the target location. We recognize that this

can happen no matter where the cell is, so in this example we implemented a small plost

on every execution of every synthetic cell. All of the cells, besides the ones that have been

lost to the environment due to plost, converge to the correct policy by about the twenty

sixth loop around the maze.

4.4.3. Moving Targets

In earlier sections, our algorithm was shown to enable all simulated synthetic cells to

converge to a policy that passed by a stationary target. In this section, I use the same

algorithm to show that moving targets can be found and communicated, without any

additional prior knowledge.
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To find a moving target, synthetic cells will have to rely on a small amount of random

exploration and decaying memory. I model the random exploration as the probability r

of each unsuccessful agent generating a new random policy each time they pass the heart

node, as shown in Algorithm 3. Decaying memory enables a cell’s success bit to turn

off (back to 0) after some amount of time has passed since it last detected a target. We

know from [50, 57] that this is physically feasible, given variable chemical decay rates

and reactions that act similarly to capacitors with a decaying charge.

Figure 4.11 shows simulated results for 1000 synthetic cells navigating through an

environment and learning the policies to keep finding the new location of a target which

moves from node 13 to node 3, and finally to node 20.

4.5. Experiments

To validate the simulated results, physical robots were constructed. The design of the

robots and execution of the experiments were made possible by my exceptional collabo-

rators Karalyn Baird and Joshua Cohen.

Each robot, shown in Fig. 4.12)(a), consists of a Pololu Zumo chassis, which is 95 mm

long on each side, and uses infrared reflectance sensors facing down toward the ground to

follow lines, micro gear motors to drive a pair of silicone tracks, and four AA batteries

for power. The robots use LEDs to display their states and they have two range sensors:

one facing straight forward and one at 45◦ to the right to avoid collisions with other

robots. We also custom designed a PCB to connect the Zumo circuitry to a TI CC1310

microcontroller, which enables inter-robot communication via a radio frequency (RF)

transceiver.
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Figure 4.11. Simulated results for 1000 six-bit synthetic cells executing
their policies in the maze from Figure 4.9, with parameters pfp = 0.1,
pfn = 0.1, ρ = 1.0, and r = 0.001 as they search for a target that moves
from node 13 to node 3 to node 20. Because nodes 13 and 3 are in series,
meaning that an agent can have a policy that passes by both of those nodes,
the agents converge relatively quickly to the new target policy (about 10
iterations). Conversely, at iteration 40, when the target moves to node 20,
all agents are still passing by node 13 which is mutually exclusive with node
20 – agents can’t pass by both nodes 13 and 20 because they are in parallel,
when the target moves to node 20, the agents take much longer to converge
to the new target location (about 25 iterations).

The maze, shown in Fig. 4.12, was printed on posters totaling 7 ft by 7 ft. It is

composed of black paths associated with policies and white triangles (preceded by short,

orthogonal grey lines) indicating intersections. The sensors on the robot that are directed

toward the ground record the reflectance of the different colors on the printed posters,

and enable the robots to drive along the lines.

When placed on the maze, the robots behave according to the same algorithm as the

simulated Bayesian particles, shown in Algorithm 3, and their resulting behavior was very
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Figure 4.12. Two views of the robots are shown in (a). The robots are 2.5
inches tall by 4 inches wide by 6.5 inches long. A few visible components are
the robots’ treads, the red CC1310 microcontroller on top, and the two IR
sensors – one facing straight forward and one 45 degrees to the right. The
circulatory maze used for experiments is shown in (b). This was printed on
a 7 foot by 7 foot poster, which was placed on the ground for the robots to
drive on. A robot is shown on the right side of the maze for scale.

similar. The agents began with randomized policies on the heart node of the map, and

then proceeded to execute their policies, turning left or right at each intersection, while

searching for the target. The target was a small mirror placed on either side of the path,

which the robots detected using their downward-facing infrared reflectance sensors. After

a robot successfully (or falsely) detected the target, it would broadcast its policy using its

RF transceiver to any other robot on the same path (between the same two intersections)

as itself. The heart node area consists of a long path which every robot, regardless of

policy, must pass through. This is where the most useful communications occurred, and

where the robots generated a new random policy if they had been unsuccessful on their

previous lap. For experiments, I used random policy generation rate r = 1, so the agents

generated a new policy each unsuccessful lap.
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Figure 4.13. The robots use infrared sensors pointing down to observe the
printed path below them, and to navigate through the intersections.

Dozens of hours of experimental data was recorded, although only about 8 hours of

data are presented here. This is for conciseness, as well as some robot sensor errors. For

example, in some experiments a robot would fail to detect an intersection and drive off

of the line it had been following. Most of these errors could be attributed to lighting

and reflectance issues, and none were due to algorithmic problems. Figure 4.13 shows

the robots driving through the maze, and a video of the experiments can be found at

https://sites.google.com/u.northwestern.edu/bayesianparticles.

The left side of Fig. 4.14 shows the convergence times and results over 15 experimen-

tal trials with 4 agents on the circulatory graph. Ten communication trials are shown in

green, overlaid with a dark green plot of the average of the trials. The five trials done

without communication are shown in orange, with the average of those five trials overlaid
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Figure 4.14. Over time, the robots converge to the target policy. On the left,
results of experiments with 4 robots are shown. The green lines show the
10 experimental trials performed where the robots used the communication
algorithm introduced in this chapter, and the orange lines show the 5 trials
where the robots did not communicate. On the right, results of experiments
with 12 robots are shown. The blue lines show the 10 trials where the robots
used communication, and the red lines show the 5 trials in which they did
not. Notably, the averages of both the 4 and 12 robot communication trials
(shown in dark green and dark blue, respectively) exhibit extremely similar
results.

in dark orange. The right side of Fig. 4.14 shows the experimental results for 15 trials

using 12 robots. Communication trials are shown in blue, and trials without communi-

cation are shown in red, with their averages similarly overlaid. Notably, the trials with

communication converged, on average, in about 8.5 minutes – with both 4 robots and

12 robots. The trials without communication took around 21 minutes on average for 4

robots, and nearly 60 minutes with 12 robots (and many trials went over an hour).

On average, it took 2 minutes and 38 seconds (2.64 minutes) for each robot to complete

a lap around the maze. There was a total of 483 minutes of data (slightly over 8 hours).

A total of 6 false positives occurred during data collection, and only 1 false negative.
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The results of the experimental robots closely mirror those of the simulated agents.

These validate our conclusions and demonstrate a physical implementation of the particle

filter analogy.

4.6. Robustness

We show that coverage guarantees can arise from the topology of an environment

and Bayesian inference, leading to the implication that the structure of the circulatory

system plays a role in the resulting immune response. A key observation in this work is

that the type of environment, which we define as a uniformly oriented (UO) graph, is a

requirement for the guarantees, and that animal circulatory systems happen to meet this

requirement. The work in this section was done in collaboration with Professor Andrea

Richa’s group at Arizona State University, including Jamison Weber, Anya Chaturvedi,

and Rebecca Martin.

4.6.0.1. Uniformly Oriented Graphs. A uniformly oriented graph is a specific class

of directed random graphs, in which there exists one vertex h that is an element of every

directed cycle. A directed cycle is one lap around the graph, beginning and ending at the

heart node h. The graphs have up to k degree and c� path length. These requirements en-

sure some probability of interaction between different agents, even in worst-case scenarios

like trees and graphs of low conductance.

Conductance is a measure of a graph’s connectivity. High conductance corresponds to

a well-connected graph on which agents experience high mobility, whereas low conductance

indicates that an agent is likely to be trapped in certain areas of the state space.
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Figure 4.15. Examples of Uniformly Oriented (UO) graphs. (a) is a figure
8 graph, (b) is a four path graph, (c) is the circulatory graph, and (d) and
(e) are randomly generated UO graphs with 12 and 50 nodes, respectively.
Notice the heart node 0 in each graph, which appears in each cycle. Also
note that each node only points to nodes of larger value. Each of these
examples satisfies conditions of UO graphs.

Figure 4.15 shows examples of UO graphs, ranging from relatively simple (a) and

(b) to randomly generated (d) and (e). Figure 4.15(c) shows a model of the circulatory

system, with a different organization than shown earlier in Fig. 4.8.

4.6.0.2. Convergence. For a UO graph with n nodes, path length parameter c =

c�/ log n where c� is the longest path length, the probability β of moving forward in the
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graph (i.e., not self-looping on the same node), and a constant γ� corresponding to the

number of particles, we are able to show that all particles will have converged to the

target within

tc := cγ� log6 n+
c

2β2
log2 n log2

�
c

4
log n

�
+ c log3 n = O(log6 n)

time steps with high probability [78].

We take this analysis further by drawing conclusions not only about high probability

results, but also the expectation (or average) convergence time of agents on a UO graph.

We can bound the expectation for the convergence time

E[conv] ≤ b · cγ� log2 n+
c

2β2
log2 n log2

�
c

4
log n

�
+ b · c log n = O(log2 n log2 log n)

where b = 1/β. These poly-log bounds are proven and discussed in detail in [78]. The

results are also verified in my simulations of high dimensional graphs, discussed next.

4.6.0.3. High Dimensional Trees. To emphasize the effectiveness of the algorithms

introduced in this chapter, they were simulated on large trees. Trees are graphs that start

from a single root node (analogous to the heart node required for UO graphs) and branch

out at some degree to some number of levels or height. The nodes at the bottom of the

tree are called leaves. To turn a tree into a UO graph, we connect edges leading from

each of the leaves back to the root node, which is also the heart node, to make the graph

cyclical. An example is shown in Fig. 4.16, which has a height of 5 and degree of 2. The

grey arrows point from the leaf nodes to the root node. This tree has a total of 63 nodes.

Simulated results are shown in Fig. 4.17. Simulations were run on various trees with

different rates of false negatives and false positives. The false rate fr is the probability
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Figure 4.16. A tree of height 5 and degree 2. Each node has two edges
leaving it, resulting in two child nodes. The last level of nodes (the leaves)
each have one edge (shown in grey) leading back to node 0.

of a false negative or false positive occurring for each agent (depending on whether they

have the target policy, either a false positive or a false negative is possible) during each

cycle. The red lines on the plots in Fig. 4.17 indicate results without any false positives

or negatives. Each line on the plots is an average of 10 trials run with those conditions.

The three trees that were simulated all had a height of 5. The plot on top of Fig. 4.17

shows results of simulations done on a tree with degree 2 (the same tree that was shown

in Fig. 4.16), which means it had 63 nodes. The plot on the bottom left of Fig. 4.17 shows

results from simulations on a tree with degree 3, and therefore 364 nodes. And the plot

on the bottom right are the results of simulations on a tree with degree 4, resulting in

1365 nodes. For each of the simulations, the number of agents interacting on the graph

was equivalent to the number of nodes. For the bottom right plot, with degree 4, only

three different false rates were tested.
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Figure 4.17. Simulations were run on different size trees with varying false
rates (fr). The false rates are the probability of detecting a false positive
or negative each cycle through the graph. As the false rates increase, the
agents take longer to converge to the target policy. The top plot shows the
portion of agents that have the target policy with respect to time, with and
without communication, for a tree of height 5 and degree 2 (resulting in
63 nodes). The communication trials converged much faster than the trials
without communication, so an inset plot shows a zoomed in picture of the
communication results. The bottom left plot illustrates the same results
for a tree of height 5 and degree 3 (resulting in 364 nodes). The bottom
right plot shows results for a tree of height 5 and degree 4 (resulting in
1365 nodes). Each line on the plots is an average of 10 trials run with those
conditions.
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The results demonstrate the significant benefits of simple agents employing our com-

munication algorithm on UO graphs. As the environments become more complicated

and the graphs have higher numbers of nodes, the performance differences between com-

munication and no communication become drastic. The trends in the simulated results

in Fig. 4.17 closely resemble the trends in the plots of the experimental data shown in

Fig. 4.14, especially the results of the simulations with 12 robots.

4.7. Discussion

This work was inspired by cooperation and self-organization behaviors that naturally

occur in microorganisms. This is relevant to understanding collective intelligence in the

biological response at the cellular level. It is also critical to the co-design of micro- and

nano-robotic systems that exist at scales where computation and actuation are not possi-

ble in classical senses. In this work, I demonstrated a scalable framework for theoretical

analysis of cyclic environments and the capabilities of minimal agents within them. I

proved that the simple behaviors shown in Algorithm 3 enable agents to collectively per-

form a Bayesian update, and I validated this algorithm in simulation and in a macro-scale

robotic system. In simulation, Bayesian particles cover their randomly generated envi-

ronments and converge to unknown targets within them. In hardware, robotic agents

demonstrate coverage and convergence on a model of the topology of the human circula-

tory system.

The consequence of this work is that environmentally-driven coverage combined with

analysis of Bayesian inference implies that extremely simple systems can complete tasks
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with complex specification. Moreover, this method inherits the robustness and conver-

gence guarantees provided by Bayesian inference which can lead to stable and reliable

implementations of microrobots (or other simple agents) providing coverage of and search-

ing for targets in complex environments. This work relates structure at extremely small

scales to structure at extremely large scales and how they interact to create a functional

organism.
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CHAPTER 5

Future Direction: Flexible Tool Design

Robot design does not only consist of selecting sensors and actuators, but also design-

ing geometry. In this chapter, I present a framework for designing a flexible tool. I use

the extended example of a bendable wire being manipulated by a two-armed robot, in

which the robot bends the tool into a desired shape before using it to attempt a task.

5.1. Introduction

It is most straightforward to analyze robot design in minimal robots, which typically

exist at small scales, and is what most of this thesis has been about. But the principles

discussed in the previous chapters need not only apply to very simple, microscopic robots.

In this chapter, I will present a pipeline for the design of a macroscopic soft tool, like a

bendable wire.

This project was inspired by the common use of a wire coat hanger as a multi-purpose

tool—not just to hang something, but as a hook, as a frame, to open an older-model

locked car—this example enables a single, malleable object to accomplish multitudes of

possible tasks. For a robot to shape its own tool to accomplish a task, it must design the

geometry of the tool and the strategy for using it simultaneously.
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Figure 5.1. An illustration of a two-armed robot manipulating a flexible
tool – in this case, into an ‘N’ shape.

5.2. Related Work

We begin by considering the problem posed in [13], which consists of a thin, flexible

wire of fixed length that is held at each end by a robotic gripper. This is illustrated in

Fig. 5.1. With the endpoints of the rod located anywhere and with any orientation in

reachable space (subject to the length of the wire, L), the rod settles into an equilibrium

configuration that can be characterized by a geometric optimal control problem.

Assuming that the rod is thin and inextensible, and that it is stiff enough to not be

affected by gravity along any unsupported length, we can describe the shape of the rod by

a continuous map q : [0, 1] → G, where G = SE(3) [13]. The map is required to satisfy

q̇ = q(u1X1 + u2X2 + u3X3 +X4)
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for some u : [0, 1] → U , where U = R3 and X is a basis defined in [13]. Here q is a

4× 4 transformation matrix, and the function u1 is the twisting strain and u2 and u3 are

bending strains along the rod.

The robotic grippers hold the ends of the rod in place at q(0) and q(1) and the

rest of the rod rests at its lowest energy equilibrium position, depending on its material

properties including the torsional stiffness c1 > 0 and bending stiffnesses c2, c3 > 0 of the

rod. Assuming that the rod is Kirchoff elastic [9], its total elastic energy is given by

1

2

� 1

0

(c1u
2
1 + c2u

2
2 + c3u

2
3)dt.

In a configuration with fixed endpoints, the rod will be motionless only if its configura-

tion locally minimizes this elastic energy. A configuration (q, u) is in a static equilibrium

configuration if

(5.1)

min
q,u

1

2

� 1

0

(c1u
2
1 + c2u

2
2 + c3u

2
3)dt

subject to q̇ = q(u1X1 + u2X2 + u3X3 +X4)

q(0) = e, q(1) = b

for some b that is in the set of physically reachable points from e, which we often take to

be I, the identity element of SE(3).

Finally, Bretl et al. [13] show that the set of equilibrium configurations for the rod

is a finite-dimensional smooth manifold that can be parameterized by a six-dimensional

coordinate chart. These coordinates describe all possible configurations of the elastic

rod and the smooth, quasi-static transitions between them [13]. To define them, they
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formalize a space A which is R6 with a two-dimensional plane removed.

(5.2) A = {a ∈ R6 : (a2, a3, a5, a6) �= (0, 0, 0, 0)}

Next they define a system of differential equations in µ : [0, L] → R6, where the function

µ is the vector of internal forces and torques along the rod

(5.3)

µ̇1 = u3µ2 − u2µ3 µ̇4 = u3µ5 − u2µ6

µ̇2 = µ6 + u1µ3 − u3µ1 µ̇5 = u1µ6 − u3µ4

µ̇3 = −µ5 + u2µ1 − u1µ2 µ̇6 = u2µ4 − u1µ5

subject to initial conditions µ(0) = a [13, 91]. In Theorem 5 of [13], it is shown that for

each (q, u) there exists a unique a ∈ A.

Planning in A is useful because any point in A uniquely defines an equilibrium config-

uration of the rod, and any two stable equilibrium configurations in A are path connected

[91]. The contributions in [91] detail a manipulation strategy in which a roadmap con-

sisting of A configurations and the corresponding (q, u) solutions is pre-computed and

stored in memory. The roadmap encodes a stable subspace of A, connects the nearby

points, and builds paths to rapidly connect start and goal configurations of the rod [91].

Bretl et al. [13] also extended their work to cases with multiple grippers. The work

in [65] demonstrated planar manipulation of an elastic rod and manipulation planning

when both ends of the rod were fixed. We build off of these conclusions in the following

sections.
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5.3. Results

5.3.1. Neural Network Model

My collaborator Bowen Feng and I extended the results of Bretl et al. [13, 65, 91]

by training a neural network to relate the (q, u) rod configuration to the A representa-

tion instead of using a roadmap to do so. I generated 16, 000 data points consisting of

random values for a = (a1, a2, a3, a4, a5, a6) between 0 and 1 and solved for the corre-

sponding (q, u) functions using the mathematical framework outlined in [13]. We then

constructed a simple neural network containing a long short-term memory (LSTM) ar-

chitecture. The LSTM included a 16-dimensional input (the flattened q transformation

matrix), two layers, and a 32-dimensional output, which were then passed through a linear

layer to compress the output to the 6-dimensional a.

We trained this network with a batch size of 1000 data points and an annealing learning

rate starting at 0.01 for 1000 epochs. This resulted in performance with an error of under

1%, as shown on the left of Fig. 5.2. The error, or loss, was calculated as the mean squared

error (MSE) between the actual a values and the values that our model predicted. The

model was evaluated on a test set of data that the learning agent had never seen before

and increased its accuracy and performance over time to end up with an error rate of less

than 1%.

This model enables us to quickly and accurately change the representation of our

rod for efficient calculations of stability and nearby equilibrium configurations during

manipulation of the rod. Unlike a roadmap, the neural network model can precisely

predict the coordinates of configurations it has never seen before. This feature will be
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Figure 5.2. Left: The mean squared error between the actual a values and
the predicted values on the test dataset over time, as the agent learns.
Right: Predicted results of the learned model compared to the actual con-
figuration.

beneficial in future simulations and experiments, when the robot is tinkering with the rod

and needs to know how to represent novel configurations.

5.3.2. Grasping and Bending

In this section I introduce a framework for two robot arms grasping, releasing, and re-

grasping a rod to bend it into a complex shape. The agent attempting this task will be

allowed a limited number of actions for affecting the rod and a limited number of sensory

measurements for observing the rod. The agent holds onto one end of the rod with one end

effector, and its action space consists of selecting where, �, along the length of the rod its

other gripper will grasp and then where, p, in the reachable region of SE(3) that gripper

(and the section of the rod that it is holding) will move to. Here � : [0, 1] → L, where

L = R, is the location, defined as a distance from the beginning of the rod, that the robot
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will grip and p = [x, y, z, xφ, yφ, zφ,ωφ] represents the new location in SE(3) to which the

gripper will move the section of the rod. The first three values of p describe its position

and the last four encode its orientation using a quaternion of the form xφ̂i+yφ̂j+zφk̂+ωφ.

The robot is able to take noisy observations (xobs, yobs, zobs) of the locations of the rod

along its length. In experiment, this will be approximated using two cameras at different

angles.

With the location �, the position and orientation p, and the formulation introduced

by Bretl et al. [13], [91], we can solve for the curve of the rod segment between two

grippers. This final shape depends on the endpoints of the rod segment, and also on the

initial configuration of the rod. The rod segment will settle into an equilibrium that is

a local minimum of Eq. (5.1), so the final configuration is significantly dependent on the

initial configuration and the path that the robot end effectors take to move the endpoints

of the rod.

After grasping and moving the rod, the robot has a piece-wise description of the new

rod configuration. The robot can re-grasp and re-calculate the expected rod shape by

using the new piece-wise description of the rod as its initial configuration and then re-

grasp and bend the rod as it wishes. Note that since we made the assumption that the

rod is not affected by gravity, any segments of the rod not between the grippers will hold

their previous shape.

I simulated this system using a custom-built environment in which an initial configu-

ration qinitial, �, and p can be inputted, and the resulting final configuration is determined.

Figure 5.3 shows the initial rod configuration on the left, in this case the identity I, which

is a straight line in the x direction. The inputted grasp location was � = 5
8
(note that
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Figure 5.3. Left: Initial rod configuration shown in blue, with the grasp
location, � = 5

8
L, shown in yellow, and the desired grasp final location and

orientation, p = (x, y, z, xφ, yφ, zφ,ωφ) = (0.3, 0.2, 0, 0, 0, 1
2
,
√
3
2
), shown in

red. Right: Final rod configuration with the grasped section at its final
location.

I use a unit length rod, L = 1), the spatial location was (x, y, z) = (0.3, 0.2, 0), and the

orientation was a π
3
radian rotation around the z axis, or (xφ, yφ, zφ,ωφ) = (0, 0, 1

2
,
√
3
2
) .

On the right of Fig. 5.3 is the final configuration of the rod, after the agent moves the

grasp location of the rod to the desired point, and the rest of the rod remains in its initial

configuration.

5.4. Discussion

In future work, we plan to use this simulated environment and a reinforcement learning

(RL) algorithm to bend the rod into desired shapes. The learning agent will able to select �

and p, subject to physical feasibility, and then observe the resulting (xobs, yobs, zobs), which
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Figure 5.4. Two WidowX 200 robots grip the ends of a pipe cleaner and
reconfigure it in physical experiments.

is a subset of the entire configuration (q, u) of the rod. The robot can then bend the rod

again, according to the error between the desired shape and the observed configuration.

We have already begun working on an experimental set up with two WidowX 200

robots, each with five degrees of freedom and grippers with soft pads, shown in Fig. 5.4.

We use a pipe cleaner as our rod, which is stiff enough to hold its shape despite gravity

while being lightweight and bendable enough for the robots to bend and manipulate. Pipe

cleaners also have the added benefit of a soft surface with friction to assist in gripping.

Equipping a robot with the ability to bend a malleable tool into any desired shape

will allow it to tinker with objects in its environment and attempt tasks with various

tools – all made out of one initial piece. This would open up a world of possibilities for

automated robot design – especially in real-world experiments.



116

References

[1] T. Alam, L. Bobadilla, and D. A. Shell. Minimalist robot navigation and coverage
using a dynamical system approach. In IEEE Int. Conf. Rob. Comp., 2017.

[2] K. Anand and G. Bianconi. Entropy measures for networks: Toward an information
theory of complex topologies. Physical Review E, October 2009.

[3] V. N. M. Arelekatti and A. Winter. Design and preliminary field validation of a
fully passive prosthetic knee mechanism for users with transfemoral amputation in
india. Journal of Mechanisms and Robotics, pages 350–356, 2015.

[4] L. Armijo. Minimization of functions having lipschitz continuous first partial deriva-
tives. Pacific Journal of Mathematics, pages 1–3, 1966.

[5] D. Banarse, Y. Bachrach, S. Liu, G. Lever, N. Heess, C. Fernando, P. Kohli, and
T. Graepel. The body is not a given: Joint agent policy learning and morphology
evolution. International Conference on Autonomous Agents and Multiagent Systems
(AAMAS), May 2019.

[6] A. Bayuelo, T. Alam, L. Bobadilla, L. F. Niño, and R. N. Smith. Computing feed-
back plans from dynamical system composition. In IEEE International Conference
on Automation Science and Engineering (CASE), pages 1175–1180, 2019.

[7] C. Belta, A. Bicchi, M. Egerstedt, E. Frazzoli, E. Klavins, and G. J. Pappas. Sym-
bolic planning and control of robot motion [grand challenges of robotics. IEEE
Robotics Automation Magazine, pages 61–70, March 2007.

[8] S. C. Bengea and R. A. DeCarlo. Optimal control of switching systems. Automatica,
pages 11–27, January 2005.

[9] J. Biggs, W. Holderbaum, and V. Jurdjevic. Singularities of optimal control prob-
lems on some six dimensional lie groups. IEEE Transactions on Automatic Control,
52(6):1027–1038, 2007.



117

[10] C. M. Bishop. Pattern Recognition and Machine Learning. Springer-Verlag, Berlin,
Heidelberg, 2006.

[11] R. P. Boisseau, D. Vogel, and A. Dussutour. Habituation in non-neural organisms:
evidence from slime moulds. Proceedings of the Royal Society B: Biological Sciences,
283, April 2016.

[12] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo. Swarm robotics: a review
from the swarm engineering perspective. Swarm Intelligence, January 2013.

[13] T. Bretl and Z. McCarthy. Quasi-static manipulation of a kirchhoff elastic rod based
on a geometric analysis of equilibrium configurations. The International Journal of
Robotics Research, 33(1):48–68, 2014.

[14] R. A. Brooks. New approaches to robotics. Science, September 1991.

[15] C. P. Burgess, P. Hayman, M. Williams, and L. Zalavári. Point-particle effective
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[25] B. Esteban-Fernández de Ávila, P. Angsantikul, D. E. Ramı́rez-Herrera, F. Soto,
H. Teymourian, D. Dehaini, Y. Chen, L. Zhang, and J. Wang. Hybrid biomembrane
functionalized nanorobots for concurrent removal of pathogenic bacteria and toxins.
Science Robotics, 2018.

[26] M. A. Montes de Oca, E. Ferrante, A. Scheidler, C. Pinciroli, M. Birattari, and
M. Dorigo. Majority-rule opinion dynamics with differential latency: A mechanism
for self-organized collective decision-making. Swarm Intelligence, 5:305–327, 2011.

[27] M. Dehmer and A. Mowshowitz. A history of graph entropy measures. Journal of
Information Science, pages 57–78, January 2011.

[28] M. H. Dickinson, C. T. Farley, R. J. Full, M. A. R. Koehl, R. Kram, and S. Lehman.
How animals move: An integrative view. Science, pages 100–106, April 2000.

[29] J. Ding, V. R. Challa, M. G. Prasad, and F. T. Fisher. Vibration Energy Harvesting
and Its Application for Nano- and Microrobotics. Springer, New York, NY, 2013.

[30] T. Ding, V. K. Valev, A. R. Salmon, C. J. Forman, S. K. Smoukov, O. A. Scher-
man, D. Frenkel, and J. J. Baumberg. Light-induced actuating nanotransducers.
Proceedings of the National Academy of Sciences, 113(20):5503–5507, 2016.

[31] B. R. Donald, J. Jennings, and D. Rus. Information invariants for distributed ma-
nipulation. Int. J. Rob. Res., 16(5):673–702, 1997.

[32] S. M. Douglas, I. Bachelet, and G. M. Church. A logic-gated nanorobot for targeted
transport of molecular payloads. Science, 335(6070):831–834, 2012.

[33] M. Egerstedt, Y. Wardi, , and H. Axelsson. Optimal control of switching times in
hybrid systems. International Conference on Methods and Models in Automation
and Robotics, 2003.

[34] M. Egerstedt, Y. Wardi, and H. Axelsson. Transition-time optimization for
switched-mode dynamical systems. IEEE Transactions on Automatic Control, pages
110–115, January 2006.

[35] M. Erdmann. Understanding action and sensing by designing action-based sensors.
The International Journal of Robotics Research, pages 483–509, 1995.



119

[36] M. Guix, C. C. Mayorga-Martinez, and A. Merkoçi. Nano/micromotors in
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APPENDIX A

From Primitives to Policies

Appendix pertaining to subroutines and robot policies from Primitives and Logic for

Robot Comparisons chapter.

Subroutines

We define how the subroutines introduced in Section 2.5 can be achieved. Subroutines

for wall following (in a random direction) for uL steps, observing the object yR, yB, yY ,

and orienting in the direction of the blue side of the object are shown below, in Algorithm

5.

For wall following, the robot continuously rotates a small angle (using the PA primitive)

until it detects that there is nothing in front of it (when the range detecting primitive PR

reads ∞), and is therefore facing a direction parallel to the wall. Then the robot uses

primitive PL to move forward uL steps.

For observing the object, the robot continuously rotates until it has either detected

the blue side of the object, detected the yellow side of the object, or completed a full

rotation. If it has detected a color, it records the distance to the object and the color

detected (if a color was detected). If the robot completes a full rotation without detecting

either color, it returns a range of ∞, to encode that no color was found. It is possible

to call a subset of measurements from this subroutine, for example in Algorithm 7 the

Middle substrategy only queries the observe object() subroutine for yB and yY .
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Algorithm 5 Subroutines

wall follow (input uL)
while PR(yR �= ∞) (while the robot is not parallel to the wall)
PA(uA = φ) (rotate a small angle φ)

PL(uL) (step forward a distance uL)
.
.
observe object (output yR, yB, yY )
inc = 0
while PB(yB = 0) and PY (yY = 0) and inc ≤ 360◦ (while neither yellow nor blue
. are detected, and the robot has
. not completed a full rotation)
PA(uA = φ) (rotate a small angle φ)
inc++

if yB = 1 or yY = 1 (if blue or yellow are detected)
yR = PR (measure the distance to the color)

else
yR = ∞ (otherwise, return ∞ to encode ‘no color’)

.

.
aim toward blue ()
while PB(yB = 0) (while blue is not detected)
PA(uA = φ) (rotate a small angle φ)

For aiming toward blue, the robot will rotate in place (using PA) until it detects the

color blue (using PB).

Robot 0 Policy

Robot 0 uses the primitive PO, and requires knowledge of the width of the channel,

�, and the length of the object, 2s. First, in its initial state, it observes its own position

(xr, yr) and the position of the object (xo, yo). If the robot, xr, is to the left of object’s

left edge, (xo − s) (where xo is the center of mass of the object and s is half the length of

the object), then the robot should execute substrategy Left.
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If robot is to the right of the object’s edge, it will go straight up, uOy = �/Δtk, to

either the top wall of the channel, or the underside of the object (if the robot happened

to start below the object), and then move left, uOx = ((xo − s) − xr)/Δtk, until it has

passed the object. Then the robot transitions to the Left substrategy.

In the Left substrategy, the robot translates to the left side of the object, and then

pushes it a set distance � to the right. It increases the count variable with each subsequent

push.

Algorithm 6 Robot 0 Policy: π0

Requires
Primitive: PO

Parameters: s is half of the length of the object, � is the width of the channel
.
Initial
count = 0
xr, yr, xo, yo = PO() (read the positions of the robot and the object)
if xr < (xo − s) (if the robot is to the left of the object’s left edge)
Switch to Left

else
PO(uOx = 0, uOy = �/Δtk) (move up, until the object or wall)
PO(uOx = ((xo − s)− xr)/Δtk, uOy = 0) (move to the left of the object)
Switch to Left

.

.
Left
PO(uOx = ((xo − s)− xr)/Δtk, uOy = (yo − yr)/Δtk) (go to the center of the
. left side of the object)
PO(uOx = �/Δtk, uOy = 0) (push the object a distance of � to the right)
count++
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Robot 1 Policy

Robot 1 uses the primitives PA, PT , PB, PR, PL, and PY , and requires knowledge of

the set of distances w from the object that allow the robot to fall into the limit cycle.

First, in its initial state, R1 measures the distance between it and the object, and the

color directly in front of it (if any). It uses this knowledge to switch to a substrategy:

either Limit Cycle, Left, Right, or Middle.

In the Limit Cycle substrategy, as shown in Fig. 2.3, the robot translates forward,

rotates, and repeats – continuously executing the limit cycle and counting how many

times it bumps the object forward.

In the Left substrategy, the robot orients itself so that it is facing the blue side of the

object, then switches to Limit Cycle, where it will translate toward the object, rotate,

and enter the limit cycle.

In the Right substrategy, R1 will measure the distance to the object yR old, move

along the wall a small distance δ, then measure the distance to the object again yR, and

compare the two distances. If the distance to the object increased, then the robot is

moving toward the right and must turn around, using primitive PA. Otherwise, the robot

is moving toward the left, and will continue in that direction until it detects the blue side

of the object and switches to the Left substrategy.

In the Middle substrategy, the robot is directly beneath or above the object, and

cannot tell which direction is which. It chooses a random direction to follow the wall,

until it detects either the blue or the yellow side of the object. If it detects blue it switches

to the Left substrategy, and if it detects yellow it switches to the Right substrategy.
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Algorithm 7 Robot 1 Policy: π1

Requires
Primitives: PA, PT , PB, PR, PL, PY

Parameters: w is the range of distances that are attracted by the limit cycle
.
Initial
count = 0
yR, yB, yY = observe object() (read object distance and color)
if yB = 1 and yR ∈ w (if blue was detected at a distance in w)
Switch to Limit Cycle

else if yB = 1 and yR /∈ w (if blue was detected at a distance not in w)
Switch to Left

else if yY = 1 (if yellow was detected)
Switch to Right

else
Switch to Middle

.

.
Limit Cycle
PT (translate forward to an obstacle)
PA(uA = θ) (rotate θ)
PT (translate forward to an obstacle)
PA(uA = θ) (rotate θ)
PT (translate forward to an obstacle)
PA(uA = θ) (rotate θ)
count++
.
.
Left (bounce off of blue side of object)
aim toward blue()
Switch to Limit Cycle
.
.

Algorithm continued on next page.
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Robot 1 Policy: π1 cont.

Right (wall follow toward object)
yR old = observe object() (read object distance)
wall follow(uL = δ) (step forward a small distance δ)
yR = observe object() (read object distance)
if yR > yR old (if the distance to the object increased)
PA(uA = 180◦) (turn around)

while yB = 0 (while blue has not been detected)
wall follow(uL = δ) (step forward a small distance δ)
yB = observe object() (scan for object and record color)

Switch to Left
.
.
Middle (wall follow until blue or yellow detected)
while yB = 0 and yY = 0 (while neither blue nor
. yellow have been detected)
wall follow(uL = δ) (step forward a small distance δ)
yB, yY = observe object() (scan for object and check if blue)

if yB = 1 (if blue has been detected)
Switch to Left

else if yY = 1 (if yellow has been detected)
Switch to Right
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Robot 2 Policy

Robot 2 uses the primitives PA, PT , PB, and PR, and requires knowledge of the set of

distances w from the object that allow the robot to fall into the limit cycle. First, in its

initial state, R2 measures the distance between it and the object, and the color directly in

front of it (if any). It uses this knowledge to switch to a substrategy: either Limit Cycle,

Left, or Lost.

In the Limit Cycle substrategy, as shown in Fig. 2.3, the robot translates forward,

rotates, and repeats – continuously executing the limit cycle and counting how many

times it bumps the object forward.

In the Left substrategy, the robot orients itself so that it is facing the blue side of the

object, then switches to Limit Cycle, where it will translate toward the object, rotate,

and enter the limit cycle.

In the Lost substrategy, R2 translates forward to a wall or the object, and then stays

still. It can never recover from this state.



133

Algorithm 8 Robot 2 Policy: π2

Requires
Primitives: PA, PT , PB, PR

Parameters: w is the range of distances that are attracted by the limit cycle
.
Initial
count = 0
yR, yB = observe object() (read object distance and color)
if yB = 1 and yR ∈ w (if blue was detected at a distance in w)
Switch to Limit Cycle

else if yB = 1 and yR /∈ w (if blue was detected at a distance not in w)
Switch to Left

else
Switch to Lost

.

.
Limit Cycle
PT (translate forward to an obstacle)
PA(uA = θ) (rotate θ)
PT (translate forward to an obstacle)
PA(uA = θ) (rotate θ)
PT (translate forward to an obstacle)
PA(uA = θ) (rotate θ)
count++
.
.
Left (bounce off of blue side of object)
aim toward blue()
Switch to Limit Cycle
.
.
Lost
PT (translate forward to an obstacle)
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Robot 3 Policy

Robot 3 uses the primitives PA, PT , and PB. In its initial state, R3 attempts to execute

the limit cycle (repeating PT and PA) six times – which, if R3 started in the limit cycle,

would translate to two cycles and the robot would detect blue twice during those two

cycles (each time it bumped the object). If this is the case, the robot increases its count

to 2 and switches to the Limit Cycle substrategy. If the robot attempts to execute two

limit cycles and does not detect blue exactly twice, that means it did not start with the

correct initial conditions, and switches to the Lost substrategy.

In the Limit Cycle substrategy, as shown in Fig. 2.3, the robot translates forward,

rotates, and repeats – continuously executing the limit cycle and counting how many

times it bumps the object forward.

In the Lost substrategy, R3 translates forward to a wall or the object, and then stays

still. It can never recover from this state.
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Algorithm 9 Robot 3 Policy: π3

Requires
Primitives: PA, PT , PB

.
Initial
count = 0
inc = 0 (variable for counting bounces)
B = 0 (variable for counting instances of blue detection)
while B < 2 and inc < 6 (while blue has been detected less than twice
. and fewer than six bounces have been attempted)
inc++
if PB(yB = 1) (if blue has been detected)
B ++ (count one blue detection)

PT (translate forward to an obstacle)
PA(uA = θ) (rotate θ)

if B = 2 (if blue has been detected twice)
count = 2
Switch to Limit Cycle

else if inc ≥ 6 (if six bounces have been attempted)
Switch to Lost

.

.
Limit Cycle
PT (translate forward to an obstacle)
PA(uA = θ) (rotate θ)
PT (translate forward to an obstacle)
PA(uA = θ) (rotate θ)
PT (translate forward to an obstacle)
PA(uA = θ) (rotate θ)
count++
.
.
Lost
PT (translate forward to an obstacle)


