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ABSTRACT 

This dissertation is a culmination of work spanning several modes of travel, multiple 

datasets, and different contexts. Because the proliferation of new mobility services disrupted the 

transportation ecosystem, I aim to understand travel behavior and investigate how new and 

traditional modes intermingle.  I focus my attention on Mobility-on-Demand which encompasses 

ridehailing services such as private ridehailing, ridesplitting, and microtransit. In the order listed, 

they represent an increasing degree of sharing; an increasing number of passengers will share the 

same vehicle at the same time. While each of them is distinct, there are interactions amongst 

them and other modes of travel. Therefore, this dissertation also examines the interactions of 

Mobility-on-Demand with other modes such as public transit, micromobility, and the private 

automobile.  

At the start of this research endeavor, the City of Chicago made available a 

comprehensive and novel dataset of ridehailing trips. I deploy an unsupervised machine learning 

technique to uncover patterns of utilization. The clustering of trips reveals identifiable trip 

categories that reveal the spatio-temporal dynamics of ridehailing demand. Examples of clusters 

include trips servicing the Chicago airports, trips in the evening likely for recreational activities, 

and trips to avoid bad weather. After understanding trip types, I use an econometric approach to 

study the determinants of ridehailing demand with an emphasis on socio-spatial community area 

differences. During this task, I discover a divergent relationship between private ridehailing and 

ridesplitting based on community vulnerability. I find that more vulnerable communities, 

identified via a novel index, are correlated with higher ridesplitting demand whereas the opposite 

is true for more privileged communities. More vulnerable communities may be taking advantage 

of the tradeoffs that are in favor of ridesplitting, where sharing a vehicle with a stranger, losing 

privacy, and increasing travel time are compensated with lower fares. These studies use a 
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ridehailing trip dataset filled with millions of observations, yet these analyses cannot ascertain 

individual-level contexts and choices because the data does not include rider information such as 

gender, age, and income. Consequently, I turn to survey-based data to understand individual 

mode choice. 

Microtransit is next in the evolution of ridehailing services. It begins to blur the lines 

between ridehailing and public transit by incorporating a mix of their attributes. For example, it 

represents an on-demand service and can operate as a curb-to-curb service. I design an efficient 

choice experiment with microtransit alternatives and accompany it with questions about 

respondent sociodemographics, attitudes, and current travel behavior. Using the respondents’ 

current commute mode, the choice experiment seeks to observe the tradeoffs between travel 

time, cost, and novel features when choosing between the respondent’s current mode and 

microtransit. By utilizing a discrete choice model that recognizes latent attitudes, I find not only 

differences between transit and car commuters when it comes to the effects of travel time and 

cost, but also differing effects of the COVID-19 pandemic: namely, that the pandemic increases 

the probability of choosing modes that are more private. This highlights the necessity of 

understanding the short-term impacts and long-term implications of COVID-19 on travel 

behavior.  

To investigate the effects of the pandemic, I use survey-based data collected from 

Chicagoland transit users. Represented in the data are users of the Chicago Transit Authority, 

Metra, and Pace transit agencies with information on past transit ridership, COVID-19 ridership, 

priorities for transit investments, and intent to use transit after the pandemic. Also covered in this 

data is the respondents’ travel behavior involving other modes, which connects to the Mobility-

on-Demand theme of this research. I model their ridership status, their intent to return when all 
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health concerns are alleviated, and the possibility of increased ridership with fare integration of 

multiple mobility services, which is a key feature of Mobility-as-a-Service. The model results 

indicate the importance of teleworking, the need to explore strategies that will bring back transit 

ridership equitably, and an opportunity for integrated transportation systems to attract ridership. 

What is clear from the pre-pandemic studies, microtransit, and transit ridership study is that 

Mobility-on-Demand plays an increasing role in the transport ecosystem. 

After all this research, I synthesize the results to understand ridehailing utilization, 

determinants of demand, the effects of the pandemic, and transportation equity. With a broader 

perspective on Mobility-on-Demand, I provide policy recommendations and discuss avenues for 

future research. 
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1 INTRODUCTION 

 Current urban transportation systems include public transit, on-demand, and shared forms 

of mobility which play a significant role in supporting the economic functioning and well-being 

of cities and their residents. Ongoing innovation in service models and delivery is reshaping how 

people engage with transportation, is shifting mobility patterns, and the competitive landscape 

between private and public modes. Among innovative smartphone app-based services exists 

ridehailing which connects drivers seeking compensation with riders through online booking, 

payment, and communication, and ridesplitting which is ridehailing with multiple parties being 

simultaneously consolidated into one vehicle (Shaheen & Cohen, 2018b). These services can 

complement transit and benefit both passengers and cities by improving accessibility while 

reducing transportation externalities such as air pollution and traffic congestion. Concurrently, 

there is increasing evidence from North American cities (New York, San Francisco, Chicago, 

Los Angeles, and Seattle) that ridehailing is a major contributor to traffic congestion (Erhardt et 

al., 2021; Graehler et al., 2019; Wu & MacKenzie, 2021) and may compete with mass transit 

(Yan et al., 2020). Measures like promoting ridepooling can help curb vehicle miles traveled 

(VMT), a negative impact of ridehailing. Yet, the effectiveness of ridesplitting in reducing 

congestion has come under scrutiny and depends on deadheading and pooling rates (Schaller, 

2021). 

 Juxtaposed against the private automobile, modern forms of mobility are powered by 

advanced Information and Communication Technology (ICT) which offers new opportunities to 

improve transportation accessibility and mobility. Because these novel modes are characterized 

by their on-demand availability, their introduction to the transportation system has been 

disruptive. The most salient of these disruptors is ridehailing. It is an on-demand service 
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facilitated by Transportation Network Companies (TNCs) which connect drivers-for-hire with 

riders through internet-based means, typically a smartphone application. Of the traditional 

modes, the most similar to ridehailing are taxis. While taxis are street-hailed and riders pay the 

driver directly, all transactions (whether they be informational or monetary) are handled by the 

TNCs through a smartphone application. Throughout the rest of this dissertation, I will refer to 

internet-based ridehailing systems as Mobility-on-Demand (MoD) which covers the evolving 

nature of TNC services. An example of this evolution is the leveraging of massive computational 

power in conjunction with advanced ICT where TNCs continue to expand their capabilities and 

provide services other than direct, door-to-door rides.  

I will refer to the first iteration of ridehailing as private ridehailing or solo ridehailing 

(e.g. UberX). One such evolution is ridesplitting which pools several trip itineraries that share 

similar departure times and trajectories together into one for-hire vehicle. Another evolution of 

ridehailing is microtransit which blurs the lines between ridehailing and fixed-route transit by 

incorporating characteristics from both. Similar to ridehailing, microtransit is provided by TNCs 

that optimize routing and match riders and drivers. Similar to public transit, it pools several trips 

together into a vehicle typically larger than a passenger sedan. Microtransit can be flexible, with 

variations ranging from completely accommodating, door-to-door rides to fixed-route, curb-to-

curb rides. In the early and middle 2010s, many lauded its benefits as tech-savvy users quickly 

adopted it. 

MoD has the potential to contribute to a more efficient transportation system. Because a 

rider can access their destination with another person’s vehicle, she can shed her car, relinquish 

space that would otherwise be used to park it, and avoid adding to roadway congestion. It can 

also act as a first-mile-last-mile mode to access public transportation and thereby complement 
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mass transit. This benefit is further improved with ridesplitting which reduces the fleet size 

needed to serve demand. Proponents of microtransit see opportunities to replace low revenue 

public transit routes with on-demand vehicles which reduces operational costs. However, from 

their inception to the present day, the notion that these and other benefits have accrued or will 

ever accrue to a net positive impact is questionable. In other words, individuals who can access 

internet-powered modes have much to gain from these significant improvements in mobility and 

accessibility, but whether MoD contributes to an overall more efficient transportation system is 

heavily debated. Therefore, the motivation for this dissertation is to investigate ridehailing and 

other forms of shared mobility, patterns of their utilization, and attitudes that riders hold towards 

them so that their benefits and disadvantages are better understood. 

The shifting travel behavior from familiar and traditional modes to modern offerings, 

included in the umbrella concept of Mobility-as-a-Service (MaaS), reveals the real benefits and 

disadvantages that ICT-powered mobility options can have on urban travel. Additionally, 

contextual factors such as the COVID-19 pandemic obfuscates rider behavior and motivations, 

calling for a careful investigation of their long-term impacts. By investigating these new modes, 

my goal is to push the boundaries of the state-of-the-art in transportation research by examining 

MoD from multiple angles. Specifically, this dissertation aims to answer the following four 

questions by completing the associated objectives.  

1. How is ridehailing utilized? 

a. Use Chicago big data and clustering algorithms to identify trip types 

b. Investigate MoD and traditional mode relationships with surveys 

2. What are the determinants of MoD demand? 

a. Regress ridehailing demand onto community-level variables 
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b. Utilize a mode choice experiment to study the individual-level tradeoffs 

when microtransit is offered as a commute alternative 

3. How did the COVID-19 pandemic affect short-term and long-term travel 

behavior towards public transit, MoD, and other shared modes? 

a. Study the short-term COVID-19 impacts on microtransit adoption 

b. Examine teleworking, shifting mode relationships, and opportunities for 

service integration to improve transportation accessibility 

4. What are the societal and distributional impacts of innovative mobility services? 

a. Map the spread of ridehailing utilization in and between communities 

b. Research the link between community vulnerability and ridehailing 

c. Analyze how MoD can serve disproportionately impacted population 

segments in the pandemic recovery phase 

 Figure 1 summarizes where each question originated, which data are utilized to answer 

them, and the methods employed to uncover relationships within the data. My first question 

about ridehailing was about its utilization, then after I analyzed the data and investigated its 

implications, more questions emerged. However, each question could be answered across the 

multiple analyses. Hence the overlap of questions across several chapters. Data and methods also 

spanned across multiple chapters with the Chicago ridehailing trip database being analyzed in 

chapters three and four, and with discrete choice methods being used in chapters five and six. 
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This dissertation research began around the same time that the Chicago ridehailing trip 

dataset became publicly available in November of 2018. Early research in this area depended on 

survey-based data or trip data that only represented a fraction of total trips. Therefore, I started 

this research by investigating how ridehailing is utilized. Because this novel and large dataset 

had not yet been rigorously analyzed, the objective of chapter 3 is to use an unsupervised 

machine learning method, K-Prototypes, and identify distinct ridership patterns. Six prototypes 

Figure 1 Summary of dissertation questions, data, and methods 
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(similar to clusters) are identified. When ridehailing data are supplemented with data on weather, 

transit performance, and taxi demand, it revealed that ridehailing is used to avoid bad weather 

and fill in the accessibility gap of traditional shared modes. However, one prototype (cluster) of 

trips that intrigued me is defined by nearly all rides being completed with ridesplitting rather 

than the private ride option. This inspired me to consider partitioning the data into private 

ridehailing and ridesplitting trips when analyzing community-based determinants of demand. 

In chapter 4, I continue to use the Chicago ridehailing data to complete a spatial 

regression analysis that identifies determinants of demand. Because the data are aggregated to a 

spatial dimension and do not contain information about the riders, I supplement it with data that 

are similarly aggregated, including the American Community Survey (ACS) and transit data. I 

regress the average daily demand for private ridehailing and ridesplitting for each of the 77 

Chicago community areas onto sociodemographic, transit accessibility, and other community-

based variables. In line with the ridehailing literature and my expectations, results indicate that 

population and recreational activity density variables are positively correlated with the demand 

for private ridehailing and ridesplitting. The analysis also reveals significant contrasting effects 

of social vulnerability indicators, which correlate positively with ridesplitting and negatively 

with private ridehailing demand. This demonstrates that community areas with higher levels of 

underprivileged circumstances, such as living on below poverty level income and single 

parenthood, have a higher demand for ridesplitting but reduced demand for private ridehailing, 

hinting at different strategies for balancing the tradeoffs between mobility, accessibility, and 

privacy. Additionally, I find that higher rail transit access is associated with higher demand for 

both single and pooled ridership along with substantial indirect effects of one community’s 

transit accessibility affecting its neighbors. I continue to investigate the determinants of 
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ridehailing demand by utilizing survey data, which seeks to understand individual level decision-

making rather than relying on trip-level data that lacks information about the riders. 

In addition to collecting data on individual-level determinants, I take part in designing a 

survey to study the decision-making of Israeli public transit and car commuters when offered 

novel microtransit options during the COVID-19 pandemic. In chapter 5, I investigate the 

tradeoffs between fare, walking time, waiting time, minimum advanced reservation time, and 

availability of shelter at designated boarding locations. Additionally, I analyze two latent 

constructs: attitudes toward sharing and risk-perceptions related to the pandemic arising from 

respondent experiences. Because ridehailing is not allowed in Israel at the time of survey 

distribution, it is an opportunity to investigate microtransit demand in a neutral country. I 

estimate Integrated Choice and Latent Variable (ICLV) models to compare the two commuter 

groups in terms of the likelihood of switching to microtransit, attribute tradeoffs, sharing 

preferences, and pandemic impacts. The results reveal high elasticities for travel time and 

COVID effects for car commuters compared to the relative insensitivity of transit commuters to 

the risk of COVID contraction. Moreover, for car commuters, those with strong sharing identities 

were more likely to be comfortable in situations where COVID contraction is higher and switch 

their commute mode to microtransit. Because the pandemic prolonged into multiple years and 

this survey captured behavior at the beginning of the pandemic, this dissertation also 

concentrates on investigating the pandemic’s effect on shared mobility overall. 

Specifically, I seek to understand the short- and long-term effects of the pandemic on 

public transit and identify opportunities to integrate new shared modes with traditional ones 

within this context. Chapter 6 covers this portion of the analysis where I obtain the data from a 

large survey of transit users (N = 5,648) in the jurisdiction of the Regional Transit Authority 
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(RTA) of Chicago, IL with variables concerning mode substitution, transit investment priorities 

from the user’s perspective, and different types of transit services: Chicago Transit Authority 

(CTA) which operates bus and heavy rail services within the City of Chicago, Pace which is the 

region’s suburban bus service, and Metra which is a commuter rail service with coverage 

spanning to the periphery of Chicagoland.  With this data I analyze why transit users lapsed in 

ridership during the pandemic, who plans to eventually return to their status quo transit ridership 

levels, and opportunities to increase transit ridership by seamlessly integrating the fare structure 

of multiple shared modes together in a MaaS arrangement. While investigating this data, I 

observed the changing relationships between MoD, public transit, micromobility, and new 

employment dynamics that were caused by the pandemic. In summary, the results of modeling 

the decision to reduce ridership reveal that employment characteristics (e.g. income, 

telecommuting, employment status) and vehicle ownership had the highest impact, followed by 

race, user priority for sanitation of transit facilities and vehicles, and type of transit service 

utilized. Similar to what has been identified in the literature, racial minorities (i.e. Asian, Black, 

and Hispanic) are less likely to lapse in ridership than their white counterparts. However, a novel 

finding is that racial minorities who did lapse in ridership are less likely to return to previous 

ridership levels, which emphasizes the need for future research in these communities. Next, I 

investigate the opportunity for MaaS to increase ridership. I model the willingness to increase 

transit usage should MaaS be implemented and find that racial minorities, those who used on-

demand modes to substitute transit or access it, and those who travel during off-peak times 

would use transit more. Altogether, the analysis of this survey data connects the observed effects 

of COVID on transit ridership with more hopeful and optimistic plans for the future. 
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Overall, this research covers many aspects of shared mobility by utilizing a wide array of 

datasets and methodologies. Figure 2 summarizes the range of analyses and areas where future 

work can shed more light on modern mobility services. Analysis of large-scale datasets reveals 

distinct ridehailing trip categories and provides inspiration for the next project after it identifies 

ridesplitting trips as its own category (Chapter 3). While regressing the demand for private 

ridehailing and ridesplitting onto community-based variables, I discover that the 

sociodemographic profile of the communities correlates differently between these modes 

(Chapter 4). Specifically, communities with higher indicators of social vulnerability are 

positively correlated with higher ridesplitting demand and negatively correlated with private 

ridehailing demand. However, without knowing the characteristics or attitudes of the riders, not 

much can be gleaned from this finding about individual-level factors of demand for shared 

mobility. Because this demand was especially affected by the COVID-19 pandemic, I analyze 

survey-based data to understand individual-level tradeoffs between travelers’ pre-pandemic 

commute modes and novel microtransit alternatives and the latent attitudes that affect mode 

choice in the pandemic context (Chapter 5). I also take this opportunity to see why transit riders 

lapsed in ridership during the pandemic, which rider-segments plan to return to transit, and who 

would use transit more with fare integration across several mobility services (Chapter 6). And at 

the core of the aforementioned research projects, I ask: what are the societal and distributional 

impacts implications of shared mobility? In the summary of my results (Chapter 7), I weave the 

results and implications from each chapter to gain a broader perspective of ridehailing utilization, 

demand determinants, the effects of the pandemic, and transport equity. At the end of the 

dissertation, I discuss limitations and future research. 
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This dissertation’s purpose is to provide details of my research on new shared mobility 

with special attention given to MoD. In the next chapter, I review the state-of-the-art in MoD 

literature to explain the motivations behind choosing ridehailing and its relationship with other 

shared modes as my research topic. While much has been covered in the literature, there still 

remains gaps for more research. After the literature review, the next chapters focus on the 

specific background, data, methodology, results, and implications. At the end of this dissertation, 

I synthesize the results and provide a broader view of Mobility-on-Demand, changing 

relationships among several modes existing in the urban landscape, the current opportunities for 

shared mobility to continue to improve urban travel, and suggestions for future research.

 

Figure 2 Range of research across the data and sharing dimensions 
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2 LITERATURE REVIEW 

Since the early 2000s, numerous companies have disrupted existing transportation 

systems around the world with novel mobility services. Chief among them are Transportation 

Network Companies (TNCs) who brought ridehailing to the market. Their initial service offered 

reliable, affordable (relative to traditional taxis), on-demand, and door-to-door transportation that 

is requested (hailed), tracked, and paid by users through smartphone applications. Today, these 

services are known as Lyft Classic and UberX (Lyft, 2022; Uber, 2022). Over time, TNCs began 

introducing new services that blended advanced ICT capabilities with attributes from traditional 

shared mobility. For example, they began offering pooled rides (ridesplitting) and increased 

operational efficiency by embracing curb-to-curb services. This new generation of mobility 

services are poised to alter how cities fulfill their mission to offer people access to goods, 

services, and opportunities. Public agencies are currently compelled to react to new services and 

ensure that they contribute to serving the public good. Yet, intervening effectively is extremely 

challenging as there is currently no consensus on the impact, behavioral factors, and ideal role of 

new Mobility-on-Demand (MoD solutions. Supporters of ridehailing view it as an alternative to 

driving alone and as part of a suite of shared mobility options that serve previously unmet 

demand for fast, flexible, and convenient mobility in urban areas. On the other hand, critics 

suggest that ridehailing services compete with public transit, increase congestion during peak 

periods, and overall contribute to urban woes.  

The proliferation of TNCs has produced a significant interest in the research community 

and a growing body of literature with search terms “transportation network company, ridehailing, 

and ridesourcing” producing more than 5,000 results from Google Scholar (Google Scholar, 

2020). But, despite the strong policy relevance and a steady stream of research, there are gaps in 
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our understanding of its impacts on equity, its usage, factors that contribute to its demand, and 

how the COVID-19 pandemic affects shared mobility as a whole. This chapter identifies the 

current state-of-the-art in MoD research and explains the motivations behind my research. 

The rest of this chapter covers the following topics. First, the definitions of shared 

mobility, MoD, and the modes they encompass are provided. These definitions are provided to 

differentiate between similar modes which are often misused in the media. Next, I explore the 

state-of-the-art in MoD research. This research covers ridehailing utilization by understanding its 

adoption, its impact on roadway congestion, and how it competes with or complements 

traditional modes such as public transit. After exploring what has been observed, I will cover the 

literature on stated choice research. This section focuses on the literature which utilizes choice 

experiments to understand how respondents react to traditional travel attributes such as cost and 

travel time along with novel attributes (to ridehailing) such as walking distance to and 

availability of shelter at designated pickup locations. I will also cover the recent literature on the 

pandemic risk perceptions and their effects on shared mobility. Completing this chapter, I 

summarize the research and highlight how this dissertation endeavors to expand the state-of-the-

art. 

2.1 Definitions of Shared Mobility 

 Definitions of several types of shared mobility services and MoD are provided below to 

clarify the terminology used henceforth. They are sourced primarily from Shaheen and Cohen 

(2018b) with additional sourcing from Feigon and Murphy (2016) and the Federal Transit 

Authority (2022). Using these resources, I disambiguate traditional shared mobility, their ICT-

enabled counterparts, and MoD which have been used interchangeably in the media (Huet, 2014; 

Weed, 2019).  
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 Firstly, shared mobility is an umbrella term used to include several modes where vehicles 

are publicly accessible and used for a multitude of trip purposes. This term includes traditional 

public transit such as public transit buses and its variants, rail and its variants, ridesharing, 

carpooling, taxis, and other for-hire transportation services that were not established on an 

internet-based platform. Modern shared mobility includes modes that are powered by advanced 

ICT. Though not the main focus of this dissertation, it is important to note that bikeshare and e-

scooters exist under the shared mobility umbrella. They are not analyzed individually in this 

thesis; however, they are included when MaaS is discussed. When mentioned individually, I will 

refer to these active shared modes as micromobility. 

The critical difference between ridesharing and ridehailing is the purpose of the trip from 

the driver’s perspective.  Shaheen and Cohen (2018b) include this in their definition by 

clarifying that ridehailing drivers use the platform for compensation whereas ridesharing is used 

for several purposes other than as a source of income. Though ridesharing may be facilitated 

through smartphone applications like ridehailing, the purpose of ridesharing ranges from splitting 

tolls to accessing carpool lanes because the driver and passenger(s) share similar trajectories and 

the driver’s trip is already planned. Ridehailing drivers provide services to earn an income. The 

first of the ridehailing modes that entered the market is private ridehailing which offers a door-

to-door experience that exclusively serves a single party of travelers during the entirety of a trip 

(e.g. UberX and Lyft Classic). I will refer to this mode as private ridehailing. Also included from 

Shaheen and Cohen (2018b) are the definitions for ridesplitting and microtransit. Ridesplitting 

(e.g. UberPool) and microtransit (e.g. Via) are forms of ridehailing with nuances that also require 

clarification. Ridesplitting occurs when a passenger allows the trip to be shared with another 

party if this party shares a similar trajectory. It is an evolution of private ridehailing. Next along 
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the sharing continuum is microtransit which is similar to ridesplitting.  It has a large range of 

operation, offering completely flexible routing with door-to-door services, semi-fixed routing 

with curb-to-curb services, to fixed-route services with each offering being demand responsive. 

Figure 3 illustrates the difference between door-to-door and curb-to-curb services. Passenger 1 

(P1) and passenger 2 (P2) are traveling in a similar trajectory. Door-to-door microtransit will 

pick up P1 and P2 at their origins and drop them off directly at their final destinations. Instead, 

with curb-to-curb microtransit, P1 and P2 will walk to a designated pickup location, disembark 

the vehicle near their destination, and walk the rest of their trip. This opens the door for semi-

fixed and fixed-route services which are more operationally efficient. The size of vehicles can 

also range from sedans to large-capacity vehicles that may require drivers to obtain commercial 

licenses. What differentiates ridesplitting and microtransit is microtransit’s flexibility. 

Ridesplitting does not offer curb-to-curb services. Throughout this dissertation, I will use MoD 

to include private ridehailing, ridesplitting, and microtransit because these modes can be hailed 

on demand unlike micromobility which depends on the availability of a bike or scooter.  

Importantly, with advanced ICT many of the modern shared mobility options can be 

bundled together. Mobility-as-a-Service (MaaS) exists to combine several personal mobility 

Figure 3 Comparing door-to-door and curb-to-curb Service Offerings 
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services from multiple providers through a single interface where all information and monetary 

transactions are handled (Smith & Hensher, 2020). This relies on cooperation from multiple 

TNCs and even public agencies to package and offer their services together.  

With the definitions of shared mobility established, the next sections are dedicated to 

discussing the observed trends, survey-based analyses, the effects of the pandemic on shared 

mobility, identifying where the literature can be expanded, and the motivations for this 

dissertation.  

2.2 Research on Ridehailing Utilization 

2.2.1 Ridehailing adoption 

The largest mobility-on-demand ridehailing provider, Uber, is present in 600 cities across 

65 countries and has surpassed 10 billion rides worldwide (Iqbal, 2020). The ridehailing market 

is growing rapidly, especially in and around urban areas where it is primarily offered. A national 

survey conducted by Pew Research Center showed that in 2015, 15% of American adults have 

used ridehailing services, 51% were familiar with these services but have not used them, with the 

rest having not heard of them (Smith, 2016). Pew Research Center ran the survey again in 2018 

and found that, in a mere 3 years, 36% of American adults have used ridehailing, 61% are 

familiar with it but have not used it, and only 3% are unaware of it (Jiang, 2019). Use appears to 

be concentrated in specific groups, with some authors suggesting the concept of supersharers 

which are users who routinely use MoD and multiple other shared mobility services (Feigon & 

Murphy, 2016). 

National US surveys suggest that there are no significant differences in adoption across 

gender or race (Clewlow & Mishra, 2017; Smith, 2016). Evidence suggests that ridehailing use is 

higher in younger, well-educated, and higher income population segments (Alemi, Circella, 
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Handy, et al., 2018; Clewlow & Mishra, 2017; Dias et al., 2017; Rayle et al., 2016; Wang et al., 

2019). Additionally, surveys have shown that participation is linked to technology and mobile 

phone savviness (Lavieri & Bhat, 2019a). Because TNCs rely on ICT, those who are unbanked 

and without smartphones are unlikely to adopt ridehailing (Brown, 2019). 

For the spatiotemporal profile of use the majority of ridehailing trips are undertaken 

during weekends (Yu & Peng, 2019), in the evening (Gehrke et al., 2019), and for leisure 

purposes (Rayle et al., 2016; Tirachini & del Río, 2019). It is broadly found that ridehailing 

demand is positively related to residential density (Dias et al., 2017; Conway et al., 2018; Yu & 

Peng, 2019; Li et al., 2019; and Goodspeed et al., 2019). 

2.2.2 Ridehailing trends using empirical data 

 MoD research spans several countries and considers ridehailing’s effect on existing 

transportation systems across several modes and contexts. At the end of this chapter, Table 1 

summarizes each of the studies in the order that they appear in the following subsections. It 

provides the author(s), where the data were collected, how the data were collected, methods, and 

a summary of the results.   

2.2.2.1 Ridehailing and Traditional Taxis 

The relationship between TNCs and taxis are the strongest in the literature with the 

consensus being that the market share for taxi shrinks once TNCs enter most markets. TNCs 

most resemble traditional taxi services as the difference between them hinges on ICT 

improvements and the use of personal vehicles that are typically not readily distinguishable in 

traffic like the traditional yellow cab. 

While ridership numbers are not the focus of this study,  Cramer and Krueger (2016) find 

stark differences between taxis and private ridehailing services, represented by UberX, in major 
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US markets. Their comparison is of utilization rates based on hours and miles driven with a 

passenger by the different services. Utilization rates for UberX were significantly higher in both 

measures. The higher utilization rates for UberX allow the platform operator to charge less per 

mile to passengers. The only market where utilization rates are identical between services is in 

New York City where the authors find that the higher density across the city aids taxis. Having a 

denser city makes it easier for riders to street hail a taxi. A major limitation of this study is that it 

does not examine the impact of ridehailing on the taxi industry. Instead, it is a comparison of the 

services and the advantages of ICT-enabled ride hailing over street hailing. 

Kim et al. (2018) explore the effect ridehailing has on taxis in New York City, New 

York. The authors use the number of daily taxi trips, average revenue per taxi driver, and 

occupancy rate of taxis from January 2009 to December 2015 as dependent variables in their 

regression models and find that the entrance of Uber did not decrease these measures. Rather, the 

entrance of Uber is statistically correlated with an increase in taxi trips and has no statistical 

effect on revenue per driver and occupancy rates. The authors include in their examination of 

Uber market entry the spatial distributions of taxi drop-offs and pickups over time to further 

explain their findings. They found that the once heavily concentrated drop-off and pickup zone 

in central Manhattan had eased following Uber’s entry but increased in other parts of the city. 

The authors conclude that while their model does not find Uber affecting their model’s 

dependent variables, the spatial dispersion shows that taxis reorganized themselves by serving 

different areas. Because they began serving other areas that were not frequented earlier, the new 

taxi strategies benefit consumers. 

While the previous authors find that average revenue per taxi driver did not decrease in 

New York City, Berger et al. (2018) find differing results using data at the national level. 
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Utilizing a sample of taxi drivers obtained from the American Community Survey, the authors 

find that the labor supply did not change, but existing drivers’ mean hourly earnings decreased. 

While controlling for these variables, the several models that the authors estimated conclude that 

the mean earnings of incumbent taxi drivers decreased 13% to 17%. On the effect of labor 

supply, the authors find that the model does not indicate a decrease in drivers but are not entirely 

convinced. The hesitation in this conclusion comes from the survey instruments’ inability to 

longitudinally track drivers. The authors posit that their results do not explain the compositional 

change of the workforce as more productive taxi drivers could have left and thereby decrease the 

wages found in the previous result.   

 To complete an analysis of taxi ridership in the United States, Contreras and Paz (2018) 

research on taxi ridership in Las Vegas, Nevada is examined. The data employed in this study is 

for trips that either end or begin at McCarran International Airport from July 2010 to July 2016. 

Regressing ridehailing ridership on transit ridership reveals a statistically significant negative 

coefficient while controlling for transit ridership, average daily traffic counts, airport visitors, car 

rentals, average lodging costs, and population.  

Taxi ridership globally also took a hit. Didi Chuxing, the equivalent of Uber and Lyft in 

China, similarly impacted taxi operations. Nie (2017) examines activity from 2,700 taxis in 

Shenzhen, China from 2013 to 2015. Utilizing GPS data from these taxis, the author developed 

four conclusions to explain the effect of ridehailing on Shenzhen’s taxis. First, the taxis 

experienced a short disruption from ridehailing competition that began to stabilize in the later 

months of data. The author attributes the stabilization of taxi utilization to the availability of 

street-hailing for busy people and the navigational experience of taxi drivers. Secondly, taxis 

were still able to compete with ridehailing during peak commute times in high-density areas. 
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Thirdly, utilization rates were increased with the introduction of ridehailing. The productivity of 

taxis increased during off-peak hours by as much as 15%. Lastly, ridehailing worsens congestion 

but the author ensures that the 8% decrease in travel speed is mild when looking at the whole 

year.   

Jiang and Zhang (2018) utilize taxi GPS data in November of 2012, 2014, and 2015 in 

Beijing, China. When comparing the average passenger trips per hour per day and average daily 

profit per taxi from 2012 to 2015, the authors find that they dropped 18.08% and 19.29%, 

respectively. Using the GPS data, the authors also found that taxis decreased the number of 

working hours and attribute it to competition and lower enthusiasm of drivers. Comparing more 

efficient to less efficient drivers, the efficient drivers tend to search locally, serve within inner 

Beijing, and complete their trips faster. Unlike in New York City, there was not a discernable 

increase in pickups outside of inner Beijing.  

Dong et al. (2018) combine trip data from taxis and ridehailing also from Beijing. The 

datasets comprising approximately 50,000 taxi trips and 40,000 ridehailing trips from December 

2015 to January 2016. Though the authors do not make any statement on ridership, they claim 

that their results show that ridehailing did not directly compete with taxis in Beijing. Rather than 

directly competing with taxis, the authors found that ridehailing filled a “spatial and temporal 

shortage” of taxis during peak travel hours. Another significant result is the number of trips per 

driver on workdays significantly varies across the services. During peak hours, taxi drivers 

completed about 7.8 trips per driver whereas ridehailing drivers completed 1.74 per driver. Given 

that this occurred during the same period this is evidence of lower vehicle utilization. 
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2.2.2.2 Ridehailing and Traffic 

A chief concern related to the increasing adoption of ridehailing services is the increase 

in vehicle miles traveled. With a dearth of disaggregated ridehailing trip data, the studies 

examining its effect on traffic flows have developed indirect methods. Without detailed data, the 

total amount of Vehicle Miles Traveled (VMT) and congestion added by ridehailing is not fully 

known. Rather, these studies provide insights into the network effects using available data or by 

means of non-traditional methods of data collection. 

 Henao and Marshall (2018) collect data by conducting an intercept survey. The 

researchers would work as a driver for two ridehailing companies, Uber and Lyft, to distribute it. 

Their pseudo-experimental design resulted in data for 416 trips. The authors find that the 

addition of VMT to the roadway is significant. They conservatively estimate that ridehailing 

adds 40.8% of VMT from deadheading and the driver’s commute home after finishing a driving 

shift. When accounting for deadheading, induced travel, and mode substitution, the estimated 

amount of VMT added to the system is 83.5%. The authors also estimate the occupancy of a trip 

to be 1.36 and when accounting for distance traveled it is 1.31 (not including the driver). This 

estimate drops down to 0.78 when considering deadheading which is lower than if the person 

drove themselves. 

 Nair et al. (2020) use 10 months of disaggregate data from ‘Ride Austin’ a local 

ridehailing initiative to study deadheading trips. The paper imputes deadheading related to the 

search for a new passenger by tracking the distance between the drop-off of one passenger to the 

pick-up of the next in different areas of Austin, TX which is relevant to predicting the local 

traffic flow impacts. What the authors find is that there is significant deadheading for trips 

originating in areas with low population density. After estimating expected deadheading 
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distances during the afternoon peak commuting period, their results reveal deadheading of nearly 

2 miles in the downtown core of Austin to greater than 11 miles in Traffic Analysis Zones 5 

miles away from downtown.  

 A study looking at ridehailing’s effect on traffic was completed by Li et al. (2016). In 

their study they use several measures to quantify the effect of ridehailing. Using data from the 

Urban Mobility Report, the authors use 2-stage least squares regression to find the effect of 

ridehailing entry into a market by utilizing several dependent variables. These variables are 

Travel Time Index, Commuter Stress Index, annual hours of total delay, annual hours of delay 

per auto commuter, annual congestion cost, annual congestion cost per auto commuter, annual 

excess fuel consumed due to congestion, and annual excess fuel per auto commuter. The results 

of their regression found that Uber entry improved nearly all dependent variables at a statistically 

significant level. The authors posit that Uber increases vehicle occupancy, reduces car 

ownership, shifts demand to different modes, changes demand around peak hours, and increase 

vehicle capacity utilization. Much like Henao and Marshall (2018), though, the lack of quality 

data stops the authors from testing these mechanisms directly. 

 Recent research, though, has used more comprehensive data and found nuances in the 

debate. Schaller (2021) combines several publicly available ridehailing trip datasets and accounts 

for mode substitution of non-auto modes for ridehailing. Focusing on Boston, Chicago, New 

York City, and San Francisco, the author estimates VMT increases ranging from 97% to 157%. 

He attributes much of this increased VMT to people switching from pooled modes such as public 

transit and ridesplitting to private options. In the same analysis, Schaller (2021) envisions a 

hypothetical scenario that leads to no changes in VMT from ridehailing. This scenario assumes 

that 85% of trips are pooled with most of the trips serving 3 passengers, that these pooled trips 
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also only spend 20% of VMT with only 1 passenger (and not serving other passengers), and 70% 

of ridehailing mode substitution comes from auto or taxi trips. All very lofty goals. 

 Generally, researchers are increasingly finding nuance in their results. Dhanorkar and 

Burtch (2021) take a different approach from analyzing spatially aggregated data and instead 

utilizes traffic data collected from 9,000 vehicle detectors across California. Their results from a 

difference-in-difference analysis show that ridehailing does indeed increase congestion with the 

most significant effect occurring on the weekend, in areas with high population density, and 

areas with a dense network of local roads. Li et al. (2022) support these findings with their own 

difference-in-difference analysis. Their results also show increased traffic congestion in highly 

compact urban areas. Results from both research articles are intuitive as adding additional 

vehicles in areas with existing congestion concerns (e.g. dense urban areas) is likely to be more 

impactful than in areas with less congestion (e.g. around suburban sprawl). 

2.2.2.3 Ridehailing and Public Transit 

The chief concern of the relationship between ridehailing and public transit is that they 

are competitive rather than complementary. If ridehailing complements public transit, then 

transit ridership would increase because ridehailing would support a multi-modal lifestyle. If 

ridehailing and public transit compete, then the effect is two-fold. Firstly, public transit agencies 

would have less fare revenue and resort to cutting services. Secondly, given the reliance on 

public transit by captive users, this raises issues of transportation equity for transit dependent 

populations.  

Hall et al. (2018) conclude in their study that Uber complements public transit systems. 

Their regression of Uber market entry into American Metropolitan Statistical Areas onto 

monthly transit ridership numbers from the National Transit Database from 2004 to 2015 finds 
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that Uber is correlated with an increase in transit ridership. The authors estimate that for the 

average transit agency, Uber’s presence increases ridership by 5% over two years. The authors 

explain that there is still significant heterogeneity in this effect as most of the increases in 

ridership occur in larger cities that have relatively smaller transit systems. 

Nelson and Sadowsky (2019) have similar findings. Their study also utilizes not only the 

market entry of the first TNC but also the effects of the second TNC entering a market. 

Regressing market entry of TNCs onto monthly transit ridership at the urbanized area (UZA) 

from the Federal Transit Authority, the authors find that the entry of the first TNC increased 

ridership. During the time between the first TNC entering and the second, the authors posit that 

“just enough” drivers saw TNCs as an easier way to access and egress from public transit. When 

the second TNC was introduced, transit ridership decreased back to levels equal to or lower than 

what it was before the entry of the first company. The introduction of the second TNC caused 

price and nonprice competition, thus making it easier for travelers to decide to take the whole 

trip by TNC rather than to use it to access public transit.  

The complementary nature of TNCs gains traction as another study supports this claim. 

Boisjoly et al. (2018) collect transit ridership data from 25 transit authorities from 2002 to 2015 

using the National Transit Database and the Canadian Urban Transportation. Although the 

authors do not consider the presence of ridehailing as statistically significant in their regressions, 

they associate it with higher transit ridership because of changes in travel behavior across the 

population with the availability of Uber. By implementing policies that support multimodality 

and reducing auto ownership, ridehailing may increase transit ridership.  

Babar and Burtch (2017) find different impacts on public transportation. With ridehailing 

being introduced to markets at different times, the researchers use cities without it as controls in 
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a difference-in-difference framework. In this framework the authors pair transit agencies with 

ridehailing in their markets with agencies without it which showed similar trends in transit 

ridership. Unlike the previous studies in this section, they conclude that ridehailing reduces 

ridership for city buses but increases ridership for commuter rail and subway systems. This result 

adds a more nuanced approach to the conversation by distinguishing the transit modes and 

making a concerted effort to establish criteria for their controls. With evidence to show that 

transit is affected differently, the authors also find that transit agencies’ quality of service before 

the introduction of ridehailing “attenuated and amplified” its competitive and complementary 

effects. That agencies with already high quality of service “benefit more (or suffer less)” with the 

introduction of ridehailing. 

 Erhardt et al. (2021) uses data scraped from the APIs of the two largest TNCs in San 

Francisco to study the ridehailing’s impact on traffic in San Francisco, CA. The authors estimate 

a fixed-effects panel data regression model and their results reveal that the net effect of 

ridehailing is less transit ridership. After accounting for service changes and population growth, 

they find a 10% decline in transit ridership. Altogether, the results of these works of research 

show the need for continued research to further develop the literature’s relationship between 

ridehailing and public transit. 

2.3 The COVID-19 Pandemic and its Effects on MoD and Public Transit 

2.3.1 MoD and the effects of COVID-19 

In March of 2020, the World Health Organization declared that the rapid escalation of 

COVID-19 cases had resulted in a global pandemic (Xu & Li, 2020). The novel coronavirus had 

spread to 203 countries by this point, and as a result, numerous governments implemented 

mitigation strategies such as social distancing requirements in a variety of sectors (Lewnard & 
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Lo, 2020). The transportation industry, both public and private, was heavily impacted. 

Ridehailing saw an 80% decrease in ridership (Higgins & Olson, 2020). While ridehailing 

remained operational during the pandemic for essential travel, one of the first actions of TNCs 

was to halt ridepooling operations (e.g. UberPool and Lyft Line) (Bond, 2020).  

As the pandemic evolved and lockdowns gradually eased, travel behavior is still 

impacted by the virus-related risk perceptions and contraction risk. Travelers will continue to 

evaluate the tradeoffs between the need to travel (e.g., to maintain livelihoods) and being 

exposed to COVID-19 in shared rides (Borowski et al., 2021; Rahimi et al., 2021). One negative 

long-term consequence is the persistent reluctance to use shared modes, rebounding in car travel, 

and an increase in car purchases (Hensher, 2020). Ongoing work is examining the perceptions 

and priorities of travelers in the uncertain COVID-19 era. Said et al. (2021) indicate there has 

been reduced intention to use pooled modes due to the pandemic. Another recent study found 

that approximately 41% of survey-takers would consider using ridehailing even if operators take 

extra precautions by providing masks, gloves, and sanitizing gel, whereas only 28% would be 

willing to pay more for the added protective measures  (Awad-Núñez et al., 2021). The 

percentage of those willing to use public transit under the same conditions was similar. A 

Toronto survey found that 15% of respondents declared an intention never to use ridehailing 

again, and 21% would never use ridepooling (Loa et al., 2020). From the same report, 

approximately 30% of riders prefer to wait until the virus is no longer a threat as the earliest 

point in time when they would consider using ridehailing or pooling. In general, travelers are 

moving from public to private modes (Das et al., 2021). 
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2.3.2 Public transit and the effects of COVID-19 

During the COVID-19 pandemic, transit ridership has been significantly disrupted. At its 

lowest, the total number of transit trips in the United States fell by 80% in April 2020 compared 

to April 2019 (National Transit Database, 2022). As a result, many public transport agencies 

made service cuts that disproportionately impacted low-income and otherwise vulnerable groups 

(Harris & Branion-Calles, 2021; Parker et al., 2021). A study of 40 major cities in the United 

States and Canada found that while local responses varied, almost all transit agencies made 

major service adjustments; however, Chicago is an outlier in this regard (DeWeese et al., 2020).  

 The Chicago Transit Authority (CTA) avoided making significant cuts, as they 

maintained that public transit is an essential service, particularly for healthcare workers and 

vulnerable groups (Chicago Transit Authority, 2020). Nonetheless, there were significant 

changes in traffic at 95% of transit stations in Chicago, with the city facing a 72.4% decrease in 

average ridership. This decline was steeper in areas with a greater proportion of white, educated, 

and high-income people, whereas ridership declined less in areas with more essential workers 

and a greater number of COVID-19 cases or deaths (Hu & Chen, 2021).  This mirrors other work 

where teleworking friendly professions can abandon transit and work from home, which will be 

further discussed shortly. 

2.3.3 Reasons behind reduced ridership 

 In general, the reduction in transit ridership was substantial and the reasons why riders 

used transit less are multifaceted. Causes of ridership decline include both motivations on the 

side of users and their behavior, and on the other side, operational and contextual changes 

occurring, often in response to the pandemic. In summary, the user motivations are driven by 

safety perceptions, while the closure of many activities during the pandemic, and the shift 
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towards teleworking and away from in-office work accounts for the lapsed ridership. This 

subsection is divided into three parts, discussing the evolving demand, supply, and workplace 

expectations. 

2.3.3.1 Demand changes during the pandemic 

 Safety perceptions of transit changed because the pandemic caused users to re-evaluate 

the tradeoffs and risks associated with riding with strangers. Several social distancing protocols 

were enacted by transit agencies. During the beginning of the pandemic, they added train cars to 

increase opportunities for distancing, taped off seats on buses and trains, added more physical 

barriers between riders, and reduced the capacity of vehicles (Gkiotsalitis & Cats, 2021; Kamga 

& Eickemeyer, 2021). Even with a plethora of strategies to mitigate health risks, perceptions of 

transit were affected. Shamshiripour et al. (2020) find that users perceived transit to have the 

highest risk followed by ridesplitting and ridehailing. During a particularly restrictive period of 

COVID lockdowns in Germany, risk perceptions were strong enough that some car-less 

households considered purchasing a vehicle (Eisenmann et al., 2021). Apprehension towards 

transit hygiene have since calmed after the initial stages of the pandemic, though passengers are 

still reluctant compared to pre-COVID times (Beck & Hensher, 2020). Because of this 

reluctance, there is a modal shift from transit to modes that better facilitate physical distancing 

such as using a private vehicle, especially for those with household vehicle access, and active 

modes which also include shared bikes and scooters (Abdullah et al., 2020; Das et al., 2021; He 

et al., 2022).  

2.3.3.2 Activity restrictions during the pandemic 

 The pandemic caused restrictions on non-essential activities including eating at 

restaurants, night life, sporting events, and other large social gatherings (Center for Disease 
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Control, 2022). Activity restriction affects are seen across modes (Beck & Hensher, 2020; Parr et 

al., 2020). Fatmi et al. (2021) finds that out-of-home activities were reduced by 50% with higher 

income groups less likely to decrease. Indeed, the closure of non-essential activities also affected 

the ability to access essential activities. For example, the pivot from in-person schooling to 

remote schooling caused difficulties for women in particular because of the change in domestic 

responsibilities (He et al., 2022). In areas where transit agencies reduced service in response to 

lower demand, captive riders would lose nearly all accessibility to essential activities (He et al., 

2022). For those who could, a major shift in activities outside of the home includes adopting 

work-from-home via advanced ICT. 

2.3.3.3 Remote work and telecommuting 

 Teleworking is not new with this subject appearing several decades prior to the pandemic 

(Mokhtarian, 1991). The pandemic pushed several companies to allow their employees to work 

remotely. 30 to 50 percent of survey respondents indicated they moved towards teleworking and 

other remote activities such as shopping, learning, and accessing healthcare (Abdullah et al., 

2020; Beck & Hensher, 2020; Mouratidis & Papagiannakis, 2021). Before the pandemic, 

researchers find that the choice and frequency of telecommuting are positively correlated with 

higher incomes, being well-educated, having children at home, and being white (Plaut, 2005; 

Popuri & Bhat, 2003). During the pandemic these factors remain the same with the opportunity 

to work from home predominately seen in high income, well-educated, and non-minority 

households (Barbour et al., 2021; Matson et al., 2021; Yasenov, 2020). 

Research is ongoing on the connections between future work policies and travel patterns. 

One important aspect is the experience of workers, which is diverse (Martin et al., 2022; Tahlyan 

et al., 2022). Experience with remote work during the pandemic has led to increased preferences 
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for hybrid work arrangements among employees (Venkataramani, 2021). The growing role of 

telework and hybrid work carries several implications for long-term travel behavior which will 

be discussed in the next section on the return to transit (Beck et al., 2020; Nayak & Pandit, 2021; 

Olde Kalter et al., 2021). 

2.3.4 Literature on the return to transit 

 As COVID-19 restrictions loosen, the need to understand the immediate to long-term 

effects of the pandemic on transit ridership is clear. Gkiotsalitis and Cats (2021) review transit 

and COVID measures and finds great importance of the transition of ad-hoc (e.g. initial social 

distancing measures) to evidence-based transit planning which adapts to the current state-of-the-

art in transit and COVID research. With a multitude of data to draw on, researchers look to a 

future without COVID-19 health-risks being the center of transit planning.  

 The hesitation among lapsed riders due to risk perceptions and ongoing working from 

home policies will make it difficult for public transit to return to pre-pandemic ridership levels 

(Rothengatter et al., 2021; Vickerman, 2021; Wang et al., 2021) finds that even a return to 100% 

capacity of transit services will not lead to a full return of riders due to behavioral inertia. 

Thombre and Agarwal (2021) suggest policies for short, medium, and long-term recovery and 

shift towards a more sustainable and resilient transport system. In the short-term, they suggest 

that transit agencies ought to re-establish trust with their constituents and expand services. In the 

medium term, they suggest incentivizing non-auto travel as the increased usage of private 

vehicles is likely to cause congestion. Shamshiripour et al. (2020) call for research to promote 

sustainable and safe non-auto travel to prevent car-dependency. In the long term, Thombre and 

Agarwal (2021) suggest infrastructure improvements to continue improving access by non-auto 

means (e.g. improve pedestrian and bicycle facilities and expand public transit infrastructure to 
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areas where it did not exist). Beck and Hensher (2020) warn that decision-makers should think 

carefully about policies that would promote auto travel. Other long-term strategies involve 

monitoring the effects of teleworking as residential choice location choices are likely to change 

and there may be more time and work schedule flexibility (Beck & Hensher, 2020; 

Shamshiripour et al., 2020). Beck and Hensher (2020) also point out a “two speed economy” 

where some are successfully transitioning to working from home while others cannot. Transit 

agencies will need to evaluate their priorities carefully, taking into account equity and the 

tradeoffs between attracting choice riders who reduced their transit usage and improving services 

for captive riders who fill essential roles during the pandemic. 

 The silver lining to the pandemic is that it has opened opportunities for public transit both 

assisting in the post-pandemic recovery and strengthening its role in the urban transport system. 

Dai et al. (2021) explains the case for aggressive public transit fare policies that drastically 

reduce the cost to ride. Three Chinese cities implemented policies to bring riders back. One city 

attempted fare-free transit during peak hours and did not significantly impact ridership; however, 

ridership significantly increased when fare-free transit was offered during off-peak times. 

Hensher (2020) sees an opportunity for MaaS to further reduce car dependency. One possibility 

the author discusses, which our reality most reflects, is that pandemic forces several months of 

teleworking which brings new expectations for working from home which directly affects the 

demand for travel. In that scenario, private auto usage is reduced since there is a lower demand 

for commuting. With mobility investments for walking and cycling and overall greater support 

for multi-modality, MaaS can integrate several services together that better suit non-work travel. 
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2.4 Literature Take-aways and Motivations for Research 

From the literature, the introduction of ridehailing and shared mobility in general has 

provided numerous opportunities for researchers to dissect their effects on the transportation 

system. My goal is to contribute to the literature by continuing to investigate who uses MoD, 

how it used, what factors contribute to its usage, how the COVID-19 pandemic affects it, and its 

relationship with other shared modes. 

Many of the studies in this review consider sociodemographic variables and have 

consistent findings. Ridehailing is adopted mainly by the privileged who are defined as having 

higher incomes and more education. In general, this is also true for other forms of new forms of 

shared mobility such as bikesharing and scooter-sharing (Fishman, 2016; Lee et al., 2021). 

Within the context of the United States, many dependent on transit come from less-privileged 

backgrounds. Additionally, car ownership can be a financial burden to low-income families 

(Clifton, 2004; Klein & Smart, 2017). Therefore, there is a unique opportunity outlined by 

Hensher (2020) to promote shared mobility and see significant transportation benefits for the 

less-privileged. To understand how policies and strategies can maximize these benefits, there is a 

need to further investigate how shared mobility relates to disadvantaged communities and its 

opportunities in a post-pandemic scenario. Consequently, in this dissertation I answer the 

following question using results from each of the analyses - what are the societal and 

distributional impacts of innovative mobility services? 

In the literature, many have studied the utilization of ridehailing across several continents 

and find a plethora of effects including, but not limited to, direct competition with traditional 

taxis, increased roadway congestion, and a complicated relationship with public transit. Because 

of the lack of available ridehailing trip data, though, few have been able to make concrete 
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conclusions about ridehailing utilization patterns. Therefore, there is a gap in the literature about 

ridehailing utilization informed by large representative data. Because the City of Chicago began 

to provide comprehensive ridehailing data, I take this opportunity to examine that dataset 

rigorously. While researching this novel dataset, I ask – how is ridehailing utilized? 

With the same Chicago ridehailing dataset, I also take this opportunity to examine the 

factors that affect ridehailing demand.  While many have found relationships between 

sociodemographics and built environment factors contributing to demand, I consider a 

perspective adopted from health research and use the intersectionality of several 

sociodemographic indicators to define an index, which I regress on private ridehailing and 

ridesplitting demand. However, this research was completed at the community level. In other 

words, the trip data are aggregated to a spatial level representing Chicago communities rather 

and do not contain information about the individual riders. I dive deeper and utilize stated choice 

data to understand microtransit adoption as a commute mode and analyze the tradeoffs among 

traditional and novel mode attributes as well as the effects of latent attitudes. Therefore, there are 

three gaps in the literature that I investigate. First, the literature has not yet explored ridehailing 

demand as a function of community-based while considering spatial effects. Second, research 

that does investigate the demand for ridehailing using trip data do not disentangle the difference 

between private ridehailing and ridesplitting. And third, the evolution of ridehailing to 

accommodate a wide range of services demands the need to understand the effects of novel mode 

attributes that have yet to be widely implemented. In these endeavors, I answer the question: 

what are the determinants of MoD demand? 

 Lastly, the COVID-19 pandemic drastically affected the transportation system. MoD and 

public transit were hard hit with the literature showing significantly lower ridership. Among the 
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reasons for this lower ridership is the transition to telecommuting and safety concerns. There is a 

gap in the research literature where researchers have yet to consider the factors that affect transit 

ridership during the pandemic recovery. Therefore, I investigate survey data collected throughout 

Chicagoland and the greater region to understand who reduced transit ridership, who will return 

once health concerns are alleviated, and how might MaaS increase transit ridership. During this 

study, I ask: how did the COVID-19 pandemic affect short-term and long-term travel behavior 

towards public transit, MoD, and other shared modes? 
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Table 1 Summary of research literature using empirical data to investigated Mobility-on-Demand 

Author(s) Location Data collection Focus Methodology Findings 

Cramer and Krueger 

(2016) 
USA 

Publicly available data 

from public agencies 

and data request from 

Uber 

Taxis 

Comparison 

of Utilization 

rates 

Uber utilization rates are higher than taxis in the case study cities except 

for New York City. 

Kim et al. (2018) 
New York 

City, USA 
NYC Taxi trip data Taxis Regression 

No evidence that number of taxi trips, revenue per driver, or occupancy 

rates changed since Uber entered the market. Rather, taxi drivers 

developed new strategies to reach status quo levels 

Berger et al. (2018)  USA 
ACS Sampling of Taxi 

Drivers 
Taxis Regression 

Labor supply did not change but existing taxi driver’s mean hourly 

earnings decreased 

Contreras and Paz 

(2018) 

Las Vegas, 

USA 
Las Vegas Taxi Data Taxis Regression Taxi ridership is down because of Uber entry 

Nie (2017) 
Shenzen, 

China 
Taxi GPS data Taxis GPS tracking 

There was a strong, temporary decline to taxi ridership after introduction 

of TNC services. Taxis still compete very well during peak periods due 

to heightened demand. TNCs lifted the capacity utilization of taxis. 

Jiang and Zhang 

(2018) 
Beijing, China Taxi GPS data Taxis GPS tracking 

Compared to 2012 taxi numbers, in 2015 avg. pax-delivery trip numbers 

per day per taxi dropped 180& and the avg. daily profit per taxi dropped 

19%. 

Dong et al. (2018) Beijing, China 
Taxi and ridehailing 

trip data 
Taxis GPS tracking 

As the population of Beijing grew, the number of taxi drivers did not 

mirror the growth. Rather, ridehailing came about and relieved the 

increased demand, especially during peak travel times. 

Henao and Marshall 

(2018) 

Denver, CO,                      

USA 

Quasi-natural 

Experiment 

Traffic 

Congestion 

Statistical 

comparison 

83.5% increase in VMT, 0.8 avg. occupancy of all rides, 34.1% 

substitution for transit or active modes 

Nair et al. (2020) 
Austin, TX, 

USA 
Ridehailing trip data 

Traffic 

Congestion 

Statistical 

comparison 

The farther away from the downtown core that a ridehailing trip is 

requested, there is more deadheading. 

Li et al. (2016) USA 
Urban Mobility Report 

from TTI 

Traffic 

Congestion 
Regression 

Entry of Uber in several markets correlates with lower traffic congestion 

indicators 

Schaller (2021) USA 

Publicly available data 

from public agencies 

and data requests 

Traffic 

Congestion 
Meta-analysis Increases in VMT are due to ridehailing users substituting public transit 

Dhanorkar and 

Burtch (2021) 
CA, USA 

Vehicle congestion 

detectors 

Traffic 

Congestion 
Regression 

Ridehailing caused more traffic on the weekend, areas with high 

population density, and areas with a dense network of local roads 

Li et al. (2022) USA 
Vehicle congestion 

detectors 

Traffic 

Congestion 
Regression 

Ridehailing caused increased traffic congestion in highly dense urban 

areas 

Hall et al. (2018) USA 

Transit Ridership from 

Multiple 

Municipalities 

Public 

Transit 
Regression 

After 2 years, TNC market entry is correlated with a 5% increase in 

transit ridership. TNCs complement transit because transit is still cheap 

enough for TNCs’ role to be adding flexibility 

Nelson and 

Sadowsky (2019) 
USA Transit ridership 

Public 

Transit 
Regression 

The entry of the first ridehailing service in a market is correlated with 

higher public transit usage. The entry of the second service does not 

correlate with higher transit ridership. After entry of second service, 

over time transit ridership declines to pre-entry levels. 
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Boisjoly et al. 

(2018) 
USA, Canada NTD and CUTA data 

Public 

Transit 
Regression 

The cause of declining transit ridership is decreasing vehicle revenue 

kilometers. The introduction of TNCs and bikeshare do not significantly 

impact model, but they are associated with higher transit ridership. 

Babar and Burtch 

(2017)                                                        
USA NTD 

Public 

Transit 
Regression 

ridehailing has mixed effect on public transit use. ridehailing decreases 

ridership for city bus service but increases for commuter rail and subway 

Erhardt et al. (2021)   
San Francisco, 

CA, USA 
API of TNCs 

Public 

Transit 
Regression Ridehailing can be attributed to a 10% decline in transit ridership 
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3 K-PROTOTYPE ANALYSIS OF THE CHICAGO 

RIDEHAILING TRIP DATA1 

3.1 Background 

The proliferation of ridehailing services has been a disruptive force as it transforms the 

mobility landscape. This transformation has not been comprehensively studied as many TNCs 

are reluctant to make their data publicly available. Recent data-sharing agreements with the City 

of Chicago, IL enables researchers to examine the role of ridehailing in the transportation 

ecosystem using an abundance of temporal and spatial data on ridehailing trips. Several studies 

have characterized the adoption, frequency, and attitudes towards ridehailing (Alemi, Circella, 

Handy, et al., 2018; Alemi, Circella, Mokhtarian, et al., 2018; Circella et al., 2016; Dias et al., 

2017), but few have used publicly available trip data at the scale and scope provided by the City 

of Chicago (Ghaffar et al., 2020) . In this chapter, I develop insights about ridehailing utilization, 

supplementing the trip dataset with information on weather, transit performance, and taxi 

demand.  

Researchers have tried to develop a better understanding of ridehailing trips, but data is 

scarce. TNCs generally do not publicly share their data so there has been a dearth of empirical 

studies. Because the data is limited, Henao and Marshall (2018) went so far as to become TNC 

driver and collect trip information themselves. Other researchers have utilized congestion data 

obtained from traffic detection devices to infer the effect of ridehailing.  

The current understanding of ridehailing travel is mostly informed by survey research. In 

the following I briefly summarize relevant ridehailing work and relate findings to the current 

 
1 Soria, J., Chen, Y., & Stathopoulos, A. (2020). K-prototypes segmentation analysis on large-scale ridesourcing trip 

data. Transportation Research Record, 2674(9), 383-394. 
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analysis of empirical large-scale data. Several studies delve into the trip purposes of ridehailing 

trips. Defined by its utilization of large capacity vehicles, microtransit (also known as demand-

responsive transit, on-demand transit, or flexible transit) can serve as a tool to address public 

transit overcrowding and the first-last mile problem (Shaheen & Chan, 2016). It is mostly 

utilized to commute (Lewis & MacKenzie, 2017; Shaheen & Chan, 2016). Trips made by the 

more taxi-like TNCs are mostly for social/recreational trips (Henao & Marshall, 2018; 

Mahmoudifard et al., 2017; Rayle et al., 2014; Zhen, 2015). Trip purpose is not included in the 

current analysis due to the data anonymization. However, in future works spatial examination of 

locations of interest combined with other trip attributes can be used to infer trip types 

The effects of TNCs on the transportation system is a core area of research. In particular, 

due to the similarity of the services, the impact on taxis has been widely studied. TNCs have 

significantly reduced the demand for traditional taxi services such that taxi drivers altered their 

strategies to remain profitable (Berger et al., 2018; Contreras & Paz, 2018; Dong et al., 2018; 

Jiang & Zhang, 2018; Kim et al., 2018; Nie, 2017). Schwieterman and Smith (2018) also find 

that TNCs are preferred over public transit especially when origin-destination pairs are not well 

served by transit. Further determinants of ridehailing use relate to the travel environment. Frei et 

al. (2017) found that weather affects TNC usage. Though their study focused on microtransit, 

TNC services may also be affected by adverse weather. Because 

The main purpose of this chapter is to identify mobility patterns present in the trip data by 

grouping similar trips together. I utilize an unsupervised learning algorithm to examine the 

underlying relationships in the data. Due to the mixed data types (i.e. data containing both 

numeric and qualitative/categorical variables), a clustering algorithm must be chosen carefully. 

The unsupervised learning technique proposed in this paper is the K-Prototypes algorithm 
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developed by Huang (1998). It is an extension of the K-Means algorithm that accepts categorical 

data. The results of this model are similar to K-Means algorithm as the output is a classification 

of the data into K number of prototypes, the equivalent of clusters. 

3.2 Data 

 The following subsections describe the Chicago ridehailing data and supplementary data 

on weather, taxi demand, and transit performance. Because the ridehailing trip data are used 

extensively in other chapters and I would rather not waste the reader’s time, I will explain in 

depth the trip dataset here and continue to refer to this section throughout the remainder of this 

thesis. A summary of the data used in this data are provided in Table 2 and Table 3. 

3.2.1 Chicago ridehailing trips 

Considering the privacy of both drivers and riders, much of the data are censored to 

protect their identities. Mainly, the trips are spatiotemporally aggregated such that the origin-

destination and trip departure times cannot be pinpointed and used to track the movement of 

either driver or rider. To mask the origin and destination, the data are aggregated, at the lowest 

level, to census tract level, and at the highest level to the community area. Additionally, the trip 

departure time are aggregated to 15-minute increments (e.g. 12:00PM to 12:15PM then 12:15PM 

to 12:30PM). Importantly, when a trip is the only trip within a 15-minute increment to occur in a 

census tract, then the census tract is censored and the community area is provided. In addition to 

censoring origin-destination pairs and departure times, the fare paid by riders is rounded to the 

nearest $2.50 increment and tips are rounded to the nearest $1.00 (if tipped through the 

smartphone application), though additional charges which include taxes, fees, and other 

surcharges are reported as is.    
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Also provided in this data are data on pooled modes. The data include information on if 

the trip is authorized to be shared. This includes trips made by ridesplitting and microtransit. 

Additionally, if the trip is matched to another itinerary, then the number of itineraries pooled into 

one trip are included. Figure 4 shows how the data presents how the data count the number of 

trips pooled together. In Case 1, all trips are authorized to be pooled, however, none of their trips 

are pooled as indicated by the bars representing the parties not overlapping. In the data, there are 

3 observations, each are authorized to be shared, but the number of trips pooled is only one for 

each observation. In Case 2, the parties overlap and the number of trips pooled together is equal 

to 3 for all 3 observations in the data. Although Party 1 and Party 3 do not overlap, there is a 

chain of 3 trip itineraries that were pooled into one vehicle. Unfortunately, the data does not 

provide information to identify which observations form a chain of trips. 

The data used in this project is a partition of the entire available TNC trip data made 

available by the City of Chicago (City of Chicago, 2019). The trip data begins on November 1, 

2018 and is updated monthly. For the purpose of obtaining lower optimization times and being 

able to match the equivalent transit travel times, the data is partitioned to weekdays in November 

2018. Holidays are not included. Additionally, rather than analyzing the census tracts because 

Figure 4 Trips authorized to be shared 
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there are missing data, I aggregate the origins and destinations to the community area level. This 

leaves a total of 3,085,070 trips in the analysis.  

3.2.2 Weather 

The weather data were collected from OpenWeatherMap specifically for the City of 

Chicago in November 2018 (Open Weather Map, 2019). The station collecting the data is located 

at O’Hare International Airport at the northwest tip of city limits. The data is at the hourly level 

and includes amount of rain and snow in the previous hour, qualitative description of the weather 

(such as raining, hazy, sunny, etc.), and temperature. To include weather with trip observations, I 

match the hour the weather data are collected and match it with the hour of trip departure. They 

are matched this way to estimate the current state of weather at the time of request. 

There are a few weaknesses worth noting. First, the data are collected at O’Hare 

International Airport which is located approximately 16 miles away as the crow flies from the 

downtown core of Chicago. Therefore, the data may not be representative of the weather 

experienced at the beginning of the ride. Second, the weather may not be representative of the 

weather at the time of request. A ride may have been scheduled well before trip departure or the 

amount of deadheading may take long enough for the weather to change. Because trips where 

these weaknesses may apply are not identifiable, I will assume that there are enough trips that 

are representative of the data for these outliers to not impact the results significantly. 

3.2.3 Taxi frequency 

The data used are when taxi demand is at its highest point in 2014 (Y. Chen et al., 2018). 

This data is also collected and made publicly available by the City of Chicago. Like the 

ridehailing trip data described earlier, this data also similarly aggregates the data 

spatiotemporally. The departure time and origin-destination pairs are aggregated to 15-minute 
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bins and census tracts, respectively. Origins and destinations that are outside of the city limits are 

also censored.  Unlike the ridehailing data though, the taxi company, payment method, and 

unique identifiers for the drivers are provided for each trip.  

To supplement the ridehailing data, the taxi demand between ridehailing census area 

origins and destinations are matched. The data are the monthly taxi trips between origin-

destination pairs, which are referred to as Monthly Taxi Frequency later in the analysis. It is 

included to characterize and compare the spatial relationship of taxi usage by matching each 

ridehailing trip with the total taxi flow between the same origin and destination.   

3.2.4 Transit performance 

The supplementary transit travel times dataset was created for each unique origin-

destination-time-day tuple. Transit travel time estimates were obtained using the Google 

Distance Matrix (Advanced) API by providing the census tract of origin, the census tract of 

destination, travel mode (transit), and departure time (Google, 2020). From the API, approximate 

transit travel times between origin-destination pairs are collected. Since the data were only 

collected from 6AM to 10PM, the TNC trips data are also restricted to these hours. The second 

piece of supplementary data are the monthly taxi trips between census tract origin-destination 

pairs. 

Table 2 Descriptive statistics of ridehailing, transit, taxi, and weather data 

Numerical Variable Median Mean (Standard Deviation) 

Travel Time (minutes) 13.32 15.47 (9.98) 

Distance (miles) 2.70 3.79 (3.19) 

Total Fare ($) 10.00 11.24 (6.27) 

Parties Joined in Trip 1 1.32 (0.77) 

Humidity (%) 71.00 73.58 (11.89) 

Wind Speed (mph) 3.00 3.82 (2.33) 

Rain last hour (inches) 0.00 0.061 (0.26) 

Minute after Midnight 930.00 887.5 (268.20) 

Transit Travel Time (min) 17.95 21.10 (15.40) 

Monthly Taxi Frequency 1004 14,976 (36,875.57) 
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Table 3 Community area characteristics of income, bar and tavern density, and transit 

access time 

Community Area Per Capita Income ($) 

Bar and Tavern 

Density (per sq. mi) 

Transit Access Time 

(min) 

Chicago Average 32,534 4.78 19.75 

Near North Side 91,948 32.66 13.00 

Near West Side 50,394 10.51 10.57 

West Town 54,429 11.86 11.03 

Loop 77,722 46.84 9.53 

Lincoln Park 73,965 13.43 12.94 

Lake View 67,066 19.15 11.17 

Midway 28,925 3.27 33.79 

O’Hare 27,212 0.17 84.64 

 

3.3 Methodology 

The methodology used to examine patterns of ridehailing use in this project is an 

unsupervised learning technique called K-Prototypes. K-prototypes is similar to K-means since 

both aim to cluster several observations together according to their attributes. The advantage K-

prototypes has in this situation is its ability to also accept categorical variables. More details on 

K-prototypes development can be found in Huang (1998). 

 The challenge of dealing with categorical variables has been considered for segmentation 

analysis. The problem is that the K-means algorithm relies on all variables to be numerical. 

Specifically, in the K-means algorithm for a continuous variable such as travel time, the distance 

between an observation’s travel time and the proposed cluster’s mean travel time is the key 

element for identifying clusters among observations. With a categorical variable such as vehicle 

type, the distance is no longer applicable. One strategy to include categorical variables in the K-

means algorithm is to code each category as a dummy variable (0 or 1). The distance calculated 

by K-means algorithm for a categorical variable is then 0 or 1 because it was coded as a dummy 

variable, but this no longer makes sense. With the K-prototypes algorithm the mode of the 
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category is used and a measure of a simple matching coefficient is used. The formulation from 

Huang (1998) of K-prototypes algorithm is summarized in the equations below. 

 The matching of observations to prototypes involves reducing the error or cost function. 

This cost function represents the distance between observation data and the assigned prototype 

center. Equation 1 shows that the error, E, is the sum of distances from the prototype center. 𝑋𝑖 

are the attributes of trip i, 𝑄𝑙 is the center of prototype l, and 𝑦𝑖𝑙 is a dummy variable that is equal 

to 0 when trip i is assigned to prototype l. It is then the sum of squared distances for n TNC trips 

across k number of prototypes. Equation 2 breaks down 𝑑(𝑋𝑖, 𝑄𝑙) into numerical and categorical 

components, where the first term is the squared numerical distance of attribute j of trip i from the 

center for attribute j of prototype l; the second term includes a term to determine the weight, 𝛾𝑙, 

of the categorical variables to the total error E. The error of prototype l is then calculated in 

Equation 3, where 𝐸𝑙
𝑐 is further explained by Equation 4. 𝐶𝑗 is the set of all unique values of 

categorical attribute j, and 𝑝(𝑐𝑗 ∈ 𝐶𝑗  |𝑙) is then the probability of unique value 𝑞𝑗 from set 𝐶𝑗 

being in prototype 𝑙. 

𝐸 =∑∑𝑦𝑖𝑙𝑑(𝑋𝑖 , 𝑄𝑙)
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The advantage of using K-Prototypes algorithm over other clustering algorithms is highlighted 

by Equation 4. A common way to code categorical variables for other data-driven methods is to 

use one-hot encoding. Using this method, the unique values of a category are coded as a dummy 

variable where they are equal to 1 when denoting the variable of interest and 0 otherwise. 

Algorithms using one-hot encoded data fail to recognize that these unique values belong to a 

categorical variable because categories are reduced to 0 or 1. The advantage of K-Prototype 

algorithm is then its recognition of these values being part of one categorical variable and using 

the probability of a unique value from a set 𝐶𝑗 being in prototype 𝑙. 

This model is implemented and tuned with the R programming language using the 

‘clustMixType’ package (R Development Core Team, 2008; Szepannek & Aschenbruck, 2019). 

Using this package, the error is minimized and the weighting of the categorical error is 

optimized. Much like other clustering methods, the number of prototypes is a tunable parameter. 

The final tunable parameters are discussed in the results section. 

3.4 Results 

 During the estimation phase, the K-prototype algorithm was tuned to select the optimal 

number of prototypes. This was determined by developing models including a number of 

prototypes ranging from 2 to 14 and calculating the total cost across all observations. The final 

number of prototypes chosen is 6 based on interpretability of segmentation variables and 

guidance from the plot which in Figure 5 shows a clear “elbow” at 6 prototypes (Madhulatha, 

2012). An elbow occurs when adding more clusters does not sufficiently improve the objective 

function. γ is the tradeoff between numerical cost and categorical cost optimized by the ‘kproto’ 

function in the ‘clustMixType’ package and is estimated to be 1.33 for all prototypes as per  

Equation 2 and Equation 4 (Szepannek & Aschenbruck, 2019). There is no intuitive meaning to 
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this value except that it can be user-specified, and higher values mean that the categorical 

variables receive a higher weight. Figure 6 shows how many observations belong in each 

prototype cluster. The clustering results are shown in Table 4 along with mean values of 

explanatory attributes in each prototype. 

 

Figure 5 K-Prototype error, choosing K number of prototypes based on the elbow method 

 

Figure 6 K-Prototype results, share of trips appearing in each prototype 
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An important observation related to variable selection in the presence of potential 

correlation needs to be made. In practice, transportation modelling often deals with concerns 

surrounding the correlation among time, distance and cost, either by interacting or dropping 

variables. Yet, ridehailing represents a special case due to the dynamic demand-responsive 

pricing that relaxes this typical correlation. While I cannot separate out instances of surge-pricing 

from this data I note that some interesting relationships are discovered when comparing 

prototypes. Notably, while the variables are correlated, on average, within the specific clusters 

the relationship reveal vast differences in per mile costs. Table 5 and related discussion highlight 

these insights. 

I now turn to summarize the contours of the six user clusters. On the whole, the analysis 

did not produce prototypes that were heavily differentiated by temperature or snow fall in the 

past hour. Yet weather effects were evident in the first segment of users (Prototype 1 or 

P1_weather). P1_weather is the second largest prototype and is characterized by its relatively 

low total fares and short travel times and distances. This short-distance travel, averaging 4 miles, 

is coupled with the strongest weather impacts observed, namely the presence of adverse weather 

seen with rain, humidity, and wind speed. The distinct nature of prototype 1 suggests the use of 

ridehailing for short distance travel to cope with adverse weather in the early part of the day.  

Prototype 2 (P2_late-night) is the largest segment with 30.2 percent of users. While still 

representing shorter trips, it is distinct from P1 due to the trip timing in the evening (average is 

1080 minutes after midnight or 6PM) and the lack of relationship to weather conditions. 

Observing Table 6, these trips are most heavily focused in the wealthy downtown and near north 

areas. Furthermore, Table 6 illustrates that trips in this cluster originate from areas with the 
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highest bar and tavern densities. This sizeable cluster suggests a strong tendency to use 

ridehailing for evening travel which is in line with findings from Lavieri and Bhat (2019a). 

Prototype 3 (P3_solo-non-transit) has longer travel times which tend to be associated 

with longer distances (albeit not associated with airport travel) and higher total charges. This 

large user segment (20.4 % of usage) suggests some transit gap-filling capacity of ridehailing in 

Chicago whereas the origin-destination and time-matched potentially available transit trip would 

take 30% longer on average with transit travel-time taken as base. Notably, considering the fixed 

transit pricing of $2.25, the ridehailing trips were on average six times more costly. Trips in this 

prototype are also typically not shared and concentrated in wealthier areas. This finding mirrors 

observations by Schwieterman and Smith (2018) that ridehailing is used even in areas with a 

wealth of transit options, although my analysis suggests that transit speeds are relatively low 

(Table 5) a factor that is easily tracked by travelers using real-time smartphone navigation tools. 

Prototype 4 (P4_airport) represents a small group of users with long travel times 

dominated by trips to and from the main airports O’Hare or Midway International Airports 

(Table 6). This prototype also has trips where the origins and destinations are not served well by 

transit as seen with the average transit travel time being more than 70% longer. Along with poor 

transit connectivity, this cluster features relatively low taxi frequency. The low taxi frequency 

shows low demand for taxis between similar airport-based trips, likely because airport trips are 

relatively infrequent and can be completed by carpooling with known associates such as a family 

member or friend. These trips’ fares are more expensive than in other prototypes, but relative to 

the cost of traditional taxis, are still affordable. Given that it is also more convenient to utilize 

ridehailing than to ask a family member to drive, the strong connection between airport travel 

and ridehailing is unsurprising. Taxi pickups at airports are declining and other revenue streams 
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such as parking and rental cars are also negatively impacted (Bergal, 2017; Wadud, 2020). This 

prototype highlights the strong competitive position against both transit and taxi for airport 

access, albeit it does not account for the issue of waiting time that might change this assessment 

in particular considering departures from Chicago airport where TNCs have limited access.  

Interestingly, prototype 5 (P5_transit-competitive) is a small cluster that stands out as 

representing the shortest trips and for being the only case where trips could have been served 

better by transit. Notably, the average transit travel times would be 12.44% lower than the 

observed TNC travel times. This is a stark contrast with other prototypes as Table 5 shows that 

most other prototypes’ transit travel times are at least 30% longer than the ridehailing equivalent 

ride. Most of these trips are in the Chicago Loop or just north of it where transit is highly 

concentrated in the core commercial area.  
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Table 4 K-Prototype attribute results and percentiles 

Prototype 

Travel 

Time 

(min) 

Distanc

e 

(miles) 

Total 

Fare 

($) 

Parties 

Joining 

Trip** 

Humid

ity (%) 

Wind 

Speed 

(mph)** 

Rain last 

hour 

(inches)** 

Minute 

after 

Midnight 

Transit 

Travel Time 

(min) 

Monthly 

Taxi 

Frequency 

Percent 

ridesplitting 

(%) 

P1_weather 

(Percentile) 

637.40* 

(36th) 

2.16 

(40th) 

9.05 

(41th) 

1.07 82.96 

(79th) 

4.32  0.15 702.5  

(37th) 

844  

(39th) 

11695  

(76th) 

18.77  

P2_late-

night 

600.9 

(33rd) 

2.07 

(38th) 

8.85 

(41st) 

1.07 66.07 

(31st) 

3.57  0.01 1080  

(72nd) 

804  

(37th) 

10031  

(75th) 

17.65 

P3_solo-

non-transit 

1284.0 

(78th) 

5.74 

(80th) 

15.56 

(85th) 

1.04 72.29 

(54th) 

3.66  0.03 878  

(45th) 

1838  

(78th) 

3558  

(64th) 

10.48 

P4_airport 2014.0 

(94th) 

12.25 

(97th) 

27.64 

(97th) 

1.17 75.09 

(61st) 

3.96 0.08 826.4  

(40th) 

3392  

(97th) 

3840  

(65th) 

16.58 

P5_transit-

competitive 

572.2 

(31st) 

1.39 

(21st) 

8.40 

(40th) 

1.12 73.64 

(56th) 

3.70  0.05 815.9 

(39th) 

501  

(19th) 

144687 

(98th) 

13.76 

P6_ridespli-

tting 

1320.0 

(79th) 

4.83 

(74th) 

7.43 

(15th) 

3 74.12 

(59th) 

3.66 0.05 870.7  

(45th) 

1545  

(69th) 

5286  

(68th) 

100 

* Bold type indicates important feature 

** Non-continuous variable with low range do not have percentiles included 

 

Table 5 Prototype specific average costs and speed 

Prototype Average $ per Mile Traveled Average $ per Minute Travel Time 

Average Speed 

(mph) 

% transit travel time 

above ridehailing 

equivalent trip*  

All Trips 2.97 0.73 12.16 36.39 

P1_weather 4.19 0.85 12.20 32.41 

P2_late-night 4.28 0.88 12.40 33.80 

P3_solo-non-transit 2.71 0.73 16.09 43.15 

P4_airport 2.26 0.82 21.90 68.42 

P5_transit_competitive 6.04 0.88 8.75 -12.44 

P6_ridesplitting 1.54 0.34 13.17 17.05 

* = (Transit Travel Time – Ridehailing Travel Time) / Ridehailing Travel Time 
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Table 6 Prominent prototype origins and destinations 

 ORIGINS DESTINATIONS 

Prototype Community % in Prototype Prototype % in Prototype 

P1_weather 

Near North Side 22.62 Near North Side 24.22 

Near West Side 13.63 Loop 15.40 

West Town 9.638 Near West Side 14.15 

Loop 9.537 West Town 5.280 

Lincoln Park 5.878 Lincoln Park 5.012 

Lake View 5.169 Lake View 4.561 

P2_late-night 

Near North Side 24.96 Near North Side 23.78 

Near West Side 12.84 Near West Side 13.16 

Loop 12.11 West Town 8.932 

West Town 7.502 Lincoln Park 8.162 

Lincoln Park 7.224 Loop 8.085 

Lake View 7.103 Lake View 7.664 

P3_solo-non-

transit 

Near North Side 16.77 Loop 18.21 

Loop 10.47 Near North Side 12.07 

Lake View 9.795 Near West Side 11.25 

Near West Side 8.263 Lake View 7.916 

Lincoln Park 7.144 West Town 4.967 

West Town 6.115 Lincoln Park 4.723 

P4_airport 

Midway* 13.80 O’Hare 16.17 

O’Hare 9.523 Midway 15.08 

Near North Side 7.606 Near North Side 9.966 

Loop 6.306 Loop 7.152 

Near West Side 5.624 Near West Side 6.974 

Lake View 4.607 Lake View 3.531 

P5_transit-

competitive 

Loop 45.57 Loop 54.35 

Near North Side 32.15 Near North Side 21.88 

Near West Side 8.719 Near West Side 8.013 

Lake View 5.986 Lake View 5.982 

West Town 3.156 West Town 4.160 

Lincoln Park 2.688 Lincoln Park 3.112 

P6_ridesplitting 

Near West Side 13.81 Near North Side 14.90 

Near North Side 11.54 Near West Side 13.20 

Loop 10.60 Loop 13.18 

West Town 7.686 West Town 6.060 

Lake View 6.510 Lake View 6.058 

Lincoln Park 5.489 Lincoln Park 4.873 

*Bold type denotes important prototype features 
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Prototype 6 (P6_ridesplitting) with 12.8% of users is defined by representing nearly all 

shared authorized trips. This segment appears to reflect a more cost-conscious user group given 

that the ridehailing price per mile is the lowest, and the competition in terms of price and time is 

closer to the potentially available transit trip.  

To further understand motivations of different users Table 5 highlights the insights from 

comparing trade-offs within clusters, namely fare per mile, fare per minute, and average speed to 

the average reference of all ridehailing trips. Table 5 shows that P1_weather, P2_late-night, and 

P5_transit-competitive prototypes have a more premium fare point with higher fare per mile and 

fare per minute than its counterparts. The results also show steep discounts for P6_ridesplitting 

as it has the lowest fare per mile and fare per minute. These results confirm the prototype 

interpretations as premiums are expected (through surge pricing or similar dynamics) for rides in 

bad weather, late at night when drivers may be few and potential-riders are unable to drive due to 

inebriation, and transit-competitive trips mostly occurring in the Loop community area which is 

the core commercial area. Discounts are also expected to appear with the ridesplitting prototype 

as reduced fares are expected with delays incurred by the detours when picking up a different 

party. 

3.5 Discussion 

 The K-prototypes analysis is geared at finding relationships in the ridehailing data by 

grouping similar observations together. The merging of multiple datasets further enables the 

prototypes search to identify the main ridehailing profiles with regards to trip attributes (e.g. 

travel time, fare, origin and destinations, being private or shared), and competing mobility 

services (transit and taxi) along with weather conditions. This discussion section focuses on how 

the results relate to current research and can inform future research directions. Four areas of 
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investigation are highlighted, centering on weather impacts, competition with transit and taxi, 

ridesplitting patterns and spatial distribution of ridehailing. 

3.5.1 Weather-dependence 

I find that while weather does not have a pervasive impact on ridehailing across clusters, 

it does strongly determine the choices in P1_weather highlighted by its higher average 

windspeed, humidity, and rainfall in the last hour. The identification of this prototype gives 

evidence that weather can have a significant impact on TNC usage for as many as 25% of trips. 

Taken together with results from Frei et al. (2017) demonstrating weather impacts in a micro-

transit choice experiments, this illustrates the importance of including weather as an explanatory 

variable in future TNC analyses. Inclusion of weather-variables in TNC analyses can further 

explain the interactions between ridehailing and other modes. For example, weather was shown 

to impact active modes of transport, so including weather as an explanatory variable between the 

relationship of ridehailing and active mobility can inform their demand in the future (Saneinejad 

et al., 2012). This is especially useful for understanding how TNCs might relate to bikeshare as 

adverse weather has been shown to decrease its demand and contribute to increased ridership of 

other modes (Gebhart & Noland, 2014).  find that ridehailing demand increases during adverse 

weather conditions and compared the supply of TNC drivers to taxis. Their results illustrate the 

benefit of TNCs – in particular its dynamic pricing – over taxis as a tool to increase the supply of 

drivers and meet consumer demand. 
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3.5.2 Mode-substitution with transit and taxi 

The importance of understanding the relationship TNCs have with other modes is further 

highlighted by P4_airport and P5_transit-competitive prototypes. The airport prototype shows 

that airport trips are a major source of demand for ridehailing because it provides more effective 

service than current transit options for many users.  

The transit-competitive prototype illustrates the competitive nature beyond travel time of 

TNCs. Though Figure 6 shows that this is a smaller portion of the trips, representing only 5.1% 

of the data, this is still an interesting prototype because it emphasizes how TNCs offer several 

advantages that go beyond shorter travel times. As discussed by Lavieri and Bhat (2019a), this is 

troubling because ridehailing’s relationship with transit is complex as solo rides do not 

necessarily substitute transit trips.  With shorter transit travel times and some demand previously 

met effectively by taxis, there is a need to map out the difficult to measure variables such as 

comfort, safety, and convenience that must be considered in conjunction with travel time. These 

insights may be critical to understanding the differing user perspective towards solo and shared 

ridehailing. 

The relationship between taxis and ridehailing is more straightforward as the services are 

more comparable. While the literature review section briefly discussed changes in the taxi 

industry, a thorough investigation of the interaction between these modes is completed by Nie 

(2017). Ridehailing is an attractive alternative to taxis, however, there still remains a role for 

taxis in the transportation system as they remain competitive in highly dense areas during peak 

commuting hours. The substitution of taxis for ridehailing also (though unintended) led to 

improved mobility equity in struggling communities as it is an option for those who do not 

possess bank accounts, credit cards, or smartphones (Young & Farber, 2019). 
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3.5.3 Ridesplitting patterns 

Another major area of the literature is on the potential for TNCs to be a more efficient 

people mover than privately driven vehicles. The dynamic ridesharing literature examines the 

efficiency gains of ridesplitting over private modes (Alonso-Mora et al., 2017; Xue et al., 2018). 

Despite theoretical findings on the advantages of ridesplitting, there has been limited exploration 

of how this functions in real systems. A notable result from this work is the low share of split 

rides despite a relatively high share of riders indicating that they are willing to share their ride. 

For the complete dataset, 26.7% of all trips were authorized to be shared but of these only 68.5% 

were actually shared. That implies that only 18.3% of the overall rides were truly pooled, likely 

reflecting a lack of matching travel itineraries that were close enough in space and time for the 

matching to occur. The percentage of authorized shared trips of all prototypes except for 

P6_ridesplitting is well below the 26.7% figure.  

When compared to the other prototypes, the ridesplitting prototype shows that pooled trip 

making can be seen as a separate profile of use. To further examine the patterns of ridesplitting, 

shows the number of trips by separate trip-makers within a pooled trip for each prototype. The 

ridesplitting prototype has a much higher share of pooled trips including more than 3 riders. 

However, this prototype only constitutes 12.8% of the data. With such a small share of trips 

being shared, decision-makers that support TNCs should consider strategies that increase the 

number of pooled trips. 
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Figure 7 Number of travelers pooling a ride for actual shared trips 

3.5.4 Spatial patterns of use 

Lastly, I discuss the spatial distribution of travel. Notably, the majority of trips occur in 

or around the Chicago Loop or airports with standouts Near North Side and Near West Side 

where there are typically more residential units than in the Loop and overall higher density 

compared to the rest of the city. Table 6 confirms that the top 6 origins and destinations hardly 

differ across prototypes. The strong concentration of flows is further illustrated in Figure 8 that 

shows the location of the top O-D pairs distinguished by bold borders. These areas tend to have 

higher influx of visitors, along with more leisure landmarks such as restaurants and night clubs. 

The residents of these community areas tend to have higher average incomes and possess higher 

educational attainments than the average Chicagoan. These results are in line with findings from 

Clewlow and Mishra (2017) as those who are college-educated, younger, and living in denser 

areas are more likely to adopt ridehailing.  
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Figure 8 Ridehailing flows in the City of Chicago with bolded boundaries of prominent 

community areas   

3.5.5 Policy implications 

 This study identified several patterns of ridehailing usage across Chicago that highlight 

the need for careful policy implementation. The discussion of policy implications will focus on 

modal interactions and ridesplitting due to the need for insights to guide ongoing efforts to tweak 

fares, promote partnerships and regulate ridehailing to better serve the comprehensive mobility 

needs of Chicago residents. The core questions that need to be explored relate to a) the challenge 

to provide effective service in areas with poor (or strong) transit options and b) to promote equity 

in hailing-access by understanding and promoting more affordable ride-splitting. Because 

ridehailing has been a disruptive innovation and lack of access to a comprehensive dataset on 

TNC activity, there is limited understanding regarding its relationship with other transport modes 

and the variation in ride-splitting adoption.  
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Much of the policy debate has focused on determining whether ridehailing is 

complementary or a substitute to other modes; this section discusses strategies that may facilitate 

synergy in the transport ecosystem. 

3.5.5.1 Ridehailing and air-mobility accessibility 

 Given the identification of an airport prototype with strong connections to the core 

commercial areas of Chicago, one major policy trend has been to control ridehailing’s effect on 

airport infrastructure. Examples of this include extra fees to ride into airports and curbside 

management of drop-offs and pickups. This prototype serves as evidence for continued 

development of policies that will better manage the relationship between airports and urban 

mobility including prominent use of ridehailing. With this prototype showing a strong 

connection between the commercial core of Chicago, policies should focus on connections that 

will appeal to business travelers. This remains a challenging area of research as new options 

including Vertical Urban Air Mobility is being tested in initiatives such as UberElevate with 

electric vertical takeoff and landing vehicles (Al Haddad et al., 2020; Kasliwal et al., 2019). This 

highlights the need to craft regulations and partnership arrangements such as security 

checkpoints and luggage drop-offs (Merkert & Beck, 2020). The rise of new services also 

highlights renewed equity and affordability concerns as they might give rise to further erosion of 

transit options.  

3.5.5.2 Ridehailing and transit performance 

Conversely, the airport prototype also suggests the need for policies to improve transit 

connections between downtown Chicago and the airports. The segmentation analysis revealed 

some intriguing patterns of competition. Ridehailing appears to be used by a small group of users 

even when transit is seemingly the better option (P5_transit-competitive 5.1%) and at the same 
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time, a sizeable segment will turn to their mobility-apps in areas where transit is in abundant 

supply but time-performances is poor (P3_solo-non-transit 20.3%). This opens a debate about 

perception and motivations of users, communicating options to travelers and developing new 

partnerships. 

 With the transit-competitiveness prototype showing that there are real possibilities for 

transit to be faster than ridehailing, a practical policy effort is to improve the dissemination of 

transit information. Local transit agencies can develop Advanced Traveler Information Systems 

that highlight cases where transit is competitive to increase their ridership (Shaheen & Cohen, 

2018a). Other strategies could be used in conjunction with MaaS in multi-modal systems to 

nudge riders towards transit. Studies have shown that travel behavior can be influenced using 

soft strategies (Gaker et al., 2010). These strategies such as making transit the default option or 

highlighting the broader benefits of supporting transit through patronage can be facilitated 

through navigation application. While this type of policy improves transit-competitiveness, 

ridehailing may still be dominant in many areas and promotion of sharing is vital in this 

situation. 

3.5.5.3 More ridesplitting? 

 Promoting ridehailing naively may worsen traffic conditions, however, promoting shared 

rides to increase the demand for ridesplitting may be a reasonable solution. Policies that 

incentivize shared rides such as a tax that increases fees for exclusive rides could lead to higher 

demand for sharing and increased transit ridership (Zhu et al., 2020). The trade-off between 

delays and lower fares could be used to promote sharing and even increase mobility for 

disadvantaged groups where high fares turn them away. Policies providing travel support for 

unemployed and low-income residents via vouchers or further lowering fares increases travel and 
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opportunities when other modes are not feasible. The ongoing debate in Chicago and cities 

around the US has focused on the lack of broader coverage, outside transit rich areas, of 

ridehailing. Figure 8 highlights the lower share of rides occurring in and between historically 

underserved communities on the South and West sides of Chicago. Policies geared at promoting 

shared ridehailing between underserved areas is an opportunity to reduce Vehicle Miles Traveled 

and to support disadvantaged communities. 

3.6 Conclusion 

 This study examines a unique TNC dataset from Chicago, IL by utilizing the 

unsupervised learning K-prototypes algorithm that accepts categorical data. The goal of this 

study is to identify patterns of TNC patronage regarding service attributes, weather, transit, taxis, 

characteristics of origins and destinations, and ridesplitting. The analysis revealed 6 distinct 

ridehailing user segments. The segments were identified in relation to adverse weather 

conditions, evening trips, longer trips, trips to the airport, trips that would be better served by 

transit, or trips that are pooled. The segments are discussed in the context of relative performance 

of ridehailing as well as examining the origin and destination of flows to better interpret the 

spatial and performance variation. 

 The identification of these distinct trip types shows where future research is warranted. 

The discussion in this study focuses on how future research should consider factors such as 

weather and other external factors when estimating the demand for TNCs and other modes, 

airport-based mobility options in the future, understanding why TNCs have competitive 

advantages besides faster travel times, and why more trips are not shared. The last point made in 

the discussion emphasizes how most of the trips are completed in and surrounding the CBD of 

Chicago. In summary, the concentration of trips in the downtown area where of mobility options 
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and amenities are abundant, along with notable variation in performance of ridehailing across 

user clusters, prompt a deeper discussion of where and for whom ridehailing enables mobility. 

 The main limitations of this study come from the constraints of the merged data-sets. 

Firstly, the weather data is collected at only one location. Considering the size of Chicago and 

the location of the station, the data may not be representative of local weather. Secondly, the 

TNC, taxi, and transit data are aggregated at the Census tract level. This aggregation was needed 

to jointly analyze mode performance and supply but might lead to less precise findings about 

competing transit service. To increase the accuracy of these comparisons, more granular data is 

needed. Lastly, future analysis should expand the analysis to a longer panel of observations 

thereby capturing more variation in weather and other seasonal factors that determine demand 

for mobility. 
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4 A SPATIAL DURBIN ANALYSIS OF CHICAGO 

RIDEHAILING DEMAND2 

4.1 Background 

Mobility-on-Demand (MoD) was seen to offer more options to urban travelers, improve 

access to transit by providing first-last mile connections, increase vehicle occupancy via pooling, 

and offer on-demand flexibility for customers (Alonso-Mora et al., 2017; Shaheen & Cohen, 

2018b). However, realization of these benefits has been questioned in recent studies (Diao et al., 

2021). Empirical studies have shown that ridehailing tends to be used for recreational trips rather 

than transit last mile access, and leans towards substitution effects with transit (Alemi, Circella, 

Handy, et al., 2018; Tirachini & del Río, 2019). Additionally, several researchers find that 

surveyed ridehailing users are likely substituting active modes like walking and biking  

(Clewlow & Mishra, 2017; Rayle et al., 2016), and that ridehailing can generate induced demand 

(Rayle et al., 2016; Tirachini & Gomez-Lobo, 2020). 

Research findings are also evolving to account for the constant service evolution of 

ridehailing. The creation of shared ridehailing service alternatives (also known as ridesplitting), 

such as UberPool, Lyft Line and Didi ExpressPool, match ride requests and give users a discount 

relative to the standard trip fare. These trips are authorized to be pooled and may possibly only 

serve one party when the demand is too low to efficiently match rides. In this paper I will refer to 

this service as ridesplitting, pooling, or pooled rides. I will also refer to the standard service (e.g. 

UberX and Lyft Classic) as private rides since this service is exclusive to one party (a party may 

consist of more than one rider). Though ridehailing has introduced a relatively more affordable 

 
2 Soria, J., & Stathopoulos, A. (2021). Investigating socio-spatial differences between solo ridehailing and pooled 

rides in diverse communities. Journal of Transport Geography, 95, 103148. 
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alternative, ridehailing in general is mainly used by narrow population segments, and 

consistently producing low shares of ridesplitting (Lewis & MacKenzie, 2017; Li et al., 2019; 

Rayle et al., 2016). 

 To date there is limited understanding of how MoD demand is shaped by different 

community contexts and the degree to which private demand differs from ridesplitting (Soria et 

al., 2020). More commonly, these modes are not differentiated. In this paper I expand the 

literature on ridehailing demand by using spatial modelling to examine the socioeconomic 

community determinants. Specifically, I compare private and pooled trip-making patterns from a 

large-scale Chicago database to identify the unique determinants that encourage ridesplitting 

while controlling for spatial effects. The results of my analysis uncover new insights on how 

ridehailing ties in with community factors, the importance of accounting for spatial effects, and 

whether private and pooled rides serve distinct communities. 

4.1.1 Potential for ridesplitting 

Ridesplitting has the potential to reduce the number of passenger vehicles on the road 

assuming riders substitute personal or private vehicle travel when opting to share. Simulation 

work suggests TNC fleet sizes can be reduced with shared rides (Alonso-Mora et al., 2017). 

However, the share of pooling likely needs to be much higher than currently observed to unlock 

benefits. Rodier et al. (2016) suggests above 50%, while Fagnant and Kockelman (2018) 

estimate that pooled services need to account for 20–50% of the market-share. To date, little is 

known about the current demand for pooled rides nor the determinants of use. Basic statistics are 

uncertain but suggest a market-share of pooling between 6 and 35 % (California Air Resource 

Board, 2019; X. Chen et al., 2018; Chicago Metropolitan Agency for Planning, 2019a; Li et al., 

2019; Lyft, 2018; Soria et al., 2020; Young et al., 2020). The estimated demand for pooling has 
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been examined in stated preference work, finding that the addition of co-riders generates non-

linear disutility in a shuttle setting and high sensitivity to time-cost trade-offs (Alonso-González, 

Cats, et al., 2020). In the context of a shared autonomous rides, Lavieri and Bhat (2019b) also 

suggest that the travel time/waiting time to cost trade-offs matter more than the perceived 

disutility of sharing a ride. In terms of mode-substitution, survey data from Hangzhou, China 

suggests that the biggest mode-shift of ridesplitting users would be to transit (bus and metro rail) 

(X. Chen et al., 2018).  

Recently, a limited number of major ridehailing data-releases is supporting initial 

empirical analysis of pooling. Analysis of large-scale trip data suggests that private and pooled 

demand has different spatio-temporal patterns in Chengdu, China (Li et al., 2019). Ensemble 

machine learning highlights the importance of pricing and timing variables for ridesplitting 

demand in Hangzhou, China (Chen et al., 2017). Clustering analysis on Chicago ridehailing data 

reveals that pooled rides have distinct patterns, linked to affordability and local transit 

performance (Soria et al., 2020). These works shed light on the user trade-offs and aggregate 

demand patterns of ridesplitting. Yet I still know little about the hurdles to the increased adoption 

of pooled rides to reach the critical mass needed to unlock significant mobility benefits in terms 

of Vehicle Miles Traveled (VMT) reductions. 

4.1.2 Spatial modeling of mobility impacts 

 There is ample evidence that transportation infrastructure is often associated with 

“broader” impacts via analysis of surrounding or neighboring spatial units (e.g. states, counties, 

Census Tracts).  Yu et al. (2013) find that transport infrastructure capital (roadways, railways, 

water transport, and civil aviation) in China has a positive spillover effect on GDP across 

regions; Berechman et al. (2006) find strong spillover effects of highway capital investment in 
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the US and, urban rail projects in the US have been tied to increased residential property values 

in surrounding areas (Chen et al., 1998; Diao, 2015). Similarly, other spillover effects such as 

increases in household income have been observed around urban rail stations in Denver, CO 

(Bardaka et al., 2018). Not all spillovers are positive, though.  observe negative spillovers of 

nuisances such as noise associated with light rail transit. In practice, investments such as light 

rail construction, often comport both positive (accessibility) and negative (nuisance) effects 

spillover effects (Chen et al., 1998). In addition, the spatial distribution of new transportation 

infrastructure is often distributed unevenly with regard to race and socioeconomic status of 

residents. Hirsch et al. (2017) found that health-promoting infrastructure (parks, bicycle 

facilities, off-road trails, and public transportation) in four US cities was spatially clustered, and 

often associated with income and employment status of residents. In sum, spatial spillovers exist, 

and often play an important role in terms of equity and health disparities. Knowing the nature 

and degree of spillovers related to transportation investments has evident practical value by 

improving planning and accounting for the equity in distribution of spillover effects across areas 

(Cohen, 2010).  

Little is known on the potential spatial aspects of ridehailing operations. This analysis is 

complicated by the spatio-temporal variation in on-demand services, limited data on both 

demand and supply, as well as continuous regulatory and service evolution. Research by Hughes 

and MacKenzie (2016) compared spatial variability in wait times for UberX throughout the 

Seattle region. Wait times increased in areas with higher average income and decreased in areas 

with greater population and employment density. Brown (2018) directly compared ridehailing 

and taxi performance for Los Angeles, California. She observed that ridehailing serves more 

diverse neighborhoods and have lower cancellation rates and waiting times than traditional taxis. 
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Other studies examine the competition between taxis and ridehailing by accounting for spatial 

differences. Kim et al. (2018) study the spatial effects TNCs have on New York City taxis where 

ridehailing’s entry decreased taxi demand in one part of the city while increasing it in others. In 

other markets, ridehailing filled spatial and temporal gaps in taxi supply (Dong et al., 2018). 

Moreover, initial evidence from observed trip-data suggests robust spatial differences between 

private and pooled rides (Chen et al., 2017; Li et al., 2019; Soria et al., 2020). With limited 

analysis it is difficult to draw general conclusions about spatial variation in the demand and 

impact of ridehailing, though I note that the effects appear to be dynamic and tied to local 

community conditions. A deeper analysis of different spatial patterns that also account for 

socioeconomic conditions and land-use variables, is needed to understand ridesplitting and 

inform better policies to maximize their benefits for users across diverse urban environments.  

4.1.3 Research objectives 

On the whole, the diffusion of ridehailing appears to be related to existing socioeconomic 

and mobility advantage of users. Despite the significant growth in use, suggesting that 36% of 

U.S.  adults have now tried ridehailing (Pew Research Center, 2018), adoption disparities persist, 

most notably between urban and rural communities, younger and older users, and income groups 

(Alemi, Circella, Handy, et al., 2018; Alonso-González, Cats, et al., 2020; Lavieri & Bhat, 

2019a). While the adoption gaps among population segments is well established, the spatial gaps 

in use and service, including relationships to competing modes, are still unclear.  

For both general ridehailing and ridesplitting analysis, most previous work typically uses 

an “aspatial” perspective, explaining usage patterns by accounting for characteristics within the 

spatial unit of analysis, but not controlling for spatial correlations nor investigating spillovers 

across neighborhoods. Ghaffar et al. (2020) and Dean and Kockelman (2021) consider similar 
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socioeconomic, built environment, and transit accessibility variables with methods that consider 

spatial effects with Chicago ridehailing data. These studies use census tracts as the spatial unit of 

investigation. This research considers Chicago Community Areas as the spatial unit of 

investigation to include approximately 24% of the data that are missing due to trip origin 

censoring. The definition of Chicago Community Areas and information about trip origin 

censoring are provided in the Methods and Materials section.  

I complement the existing research that considers spatial effects by considering a Spatial 

Durbin Model (SDM)  (Dean & Kockelman, 2021; Ghaffar et al., 2020; Lavieri et al., 2018; Yu 

& Peng, 2019). Additionally, I investigate and compare determinants of demand for private and 

pooled ride demand in depth. Previous research does consider ridesplitting separately and finds 

that it is different from private rides based on average travel time and distance, time of day when 

it is most utilized, and general economic indicators such as gross domestic product and average 

house price (Li et al., 2019). To build upon this research, I account for socioeconomic, land-use, 

and rail access time variables to understand community dynamics of ridehailing adoption, 

including community level spillovers. Methodologically, I employ the SDM (Anselin, 2003). 

This approach enables us to investigate whether the intensity of ridehailing demand in a 

community area is associated with the features of the observed area, as well as of its neighbors. 

In this paper I focus on three research objectives that each make a contribution to understanding 

ridehailing demand determinants.  

• Q1: What are the spatial patterns of demand for private and pooled rides, and do they 

differ? This research contributes to building fundamental insight from large-scale data on 

pooled demand distinctions. I further explain differences in Q2 and Q3. 
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• Q2: What is the impact of socioeconomic conditions of communities on ridehailing demand 

(private and pooled)? The specific contribution is to account for the bundled nature of 

socio-spatial privilege/vulnerability indicators and provide new insight on how pooling and 

private ridehailing relates to community vulnerability. 

• Q3: What is the demand-relationship between ridehailing (private and pooled) and transit 

accessibility? This research contributes to more understanding of the still mixed findings 

of how ridehailing relates to transit. 

My findings from the SDM analysis of Chicago ridehailing demand coupled with auxiliary data 

suggests uniformity in effects for land-use and density variables. Instead, private and pooled 

demand has nuanced and diverse effects when considering transit competition and social 

vulnerability impacts.  

4.2 Data 

4.2.1 Ridehailing trip data aggregation technique 

 The ridehailing trip data (plus metadata for spatial boundaries) are collected from the 

City of Chicago public data portal (City of Chicago, 2020). The data used in this analysis comes 

from the same database as the trip data used in the previous chapter. For the purpose of this 

study, I update the data to include trips after November 2018. It is processed and cleaned by 

removing observations with no origin or destination, fares of $0 and extremely high values 

(greater than $1,000), or 0 trip duration or miles recorded. The clean dataset used in this analysis 

comprises 127,598,605 ride records between November 2018 and December 2019. 

Approximately 25.5% of these trips were authorized to be shared, however, only 66.9% of these 

were truly shared, indicating that overall, 17% of all trips were truly pooled.  
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To preserve privacy, the Census tract info is censored if only one trip occurs in a 15-

minute interval, and spatially aggregated up to the community area level. These types of trips 

account for nearly 24% of the data. Owing to this restriction, and the availability of auxiliary 

data, I opt to model ridehailing demand at the more aggregate spatial level of the 77 community 

areas defined by the city. These community areas were originally based on groups of 

neighborhoods and physical barriers (Owens, 2012). Using this spatial unit of analysis is also 

advantageous because the boundaries rarely change, unlike Census based spatial units.  

The trip data were aggregated based on trip origins which are the most likely to reflect 

the socioeconomic origin of users, though I note that destination, or OD pairs could be used (Ni 

et al., 2018). I assume that the attributes of trip origins are the best descriptor of riders with 

Young et al. (2020) finding that 86.4% of trips were home-based. Owing to the varying sizes of 

community areas, the ridership data are normalized by the area of the communities (in square 

miles). Additionally, trip demand is heavily skewed towards the downtown areas. To account for 

this, a log transformation is applied. The dependent variable thereby represents long-term 

ridehailing intensity while controlling for community area and demand intensity variation. 

4.2.2 Transit access time estimation 

Studies have found that transit can play either a competing or complementary role with 

no consensus on which relationship is stronger (Babar & Burtch, 2017; Boisjoly et al., 2018; Hall 

et al., 2018; Nelson & Sadowsky, 2019; Young et al., 2020). To add to this discourse, I model 

the impact of transit accessibility on the intensity of ridehailing usage. The location of all 

Chicago Transit Authority and Metra public transit rail stations are collected from the public data 

portal (City of Chicago, 2020). The transit accessibility measure used in this study is akin to the 

Transit Access Time defined by Correa et al. (2017) where a hexagonal tessellation is overlaid 
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on a map of the city. The edge of each cell is 1750 ft so that the theoretical walking time across 

is within the pedestrian access time defined by the Federal Highway Administration guidelines 

(Nabors et al., 2008). To determine average transit access time in each community area, the 

Google Maps API is used to determine the walking time from the center of a hexagon to the 

closest rail transit stop and averaged across the community area (Google, 2020). A similar 

approach was used to derive bus station density, but this measure was found to be insignificant in 

modeling. 

4.2.3 Social Vulnerability Index derivation 

Across cities, urban mobility systems naturally intersect with long-running challenges, 

including spatial mismatch, enduring racial residential segregation and economic inequality. For 

Chicago, it is known that economically depressed areas tend to be poorly served by transit (The 

Chicago Urban League, 2016). The local planning agency, CMAP has called for more research 

to examine the benefits and pitfalls of new mobility technologies, such as ridehailing, with 

regard to accessibility, affordable mobility, and quality of life in underserved communities 

(CMAP, 2018). 

Moreover, work in the social sciences has established that numerous factors related to 

household structure, employment, income, wealth and racial status can make households more 

vulnerable to a lack of economic opportunity that is perpetuated as economic immobility (Sabol 

et al., 2020). Moreover, just like socio-demographic privilege, vulnerability comes in clusters, 

making it difficult to allocate the influence of separate factors (Smeeding, 2016). To date, 

existing ridehailing research has limited analysis to single socio-demographic factors, like race 

or income. In this paper I parse the simultaneous dimensions of socially vulnerable communities 

and how they correlate with the adoption of ridehailing services by developing a Social 
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Vulnerability Index (SVI). A similar index has been applied to examine the relationship between 

measures of deprivation and health outcomes (Butler et al., 2013). To determine the SVI I rely 

on data from the ACS 5-year estimates for the Census tracts, aggregated to the Chicago 

community area level (U.S. Census Bureau, 2019). A single factor Exploratory Factor Analysis 

(EFA) with a factor loading threshold of 0.30 and no rotations is used to obtain an SVI for each 

community area. The composition of the SVI is summarized in Table 7.  

The index has intuitive results and high internal validity (Cronbach’s 𝛼 =0.91), 

suggesting strong links between household income and a number of vulnerability factors. The 

advantage of using an index is to enable a more holistic analysis that does not define hardship by 

looking at single factors such as racial or ethnic minority status. Instead, the validity of the 

proposed factor analysis affirms the strong correlations among vulnerability metrics, and the risk 

of spurious results should the items be included separately.  

 Beyond the SVI that captures economic vulnerability, my analysis controls for other 

relevant socio-demographics that have been tied to ridehailing demand in the literature: user age, 

household size, and population density (Clewlow & Mishra, 2017; Lavieri & Bhat, 2019a; Rayle 

et al., 2016). I collected this data from the ACS (U.S. Census Bureau, 2019).  

 

 

Table 7 Social Vulnerability Index results 

Item Factor Loadings 

Percent of population with poverty level income 0.989 

Percent of households with single parent 0.873 

Percent of population that are non-white 0.769 

Percent of households with no vehicle 0.763 

Percent of households renting for housing 0.744 

Percent of working eligible that are unemployed 0.649 

Cronbach’s 𝛼 0.91 

* Result from Exploratory Factor Analysis on ACS data, unrotated single-factor results 
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Ridehailing use is also associated with land-use mix (Ghaffar et al., 2020). I define a 

land-use mix index, following Ghaffar et al. (2020), and measure it at the community area level 

using data from CMAP (CMAP, 2018). This index was tested in my model specification but did 

not yield statistically significant results. Given the connection of ridehailing use to recreational 

and leisure travel (Soria et al 2020), I extract data on the location of restaurants and bars with 

active licenses during 2018 and 2019 (City of Chicago, 2020). This measure represents the 

impact of third places, namely the localities that are separate from home and work that generates 

a sense of community and contributes to urban vibrancy (Oldenburg & Brissett, 1982; 

Trentelman, 2009). The bar/restaurant variable is normalized by area.  

Table 8 shows key socio-demographics, transit access, and ridehailing characteristics of 

major Chicago Districts (collection of community areas). I note that the areas with higher income 

(North and Central) tend to have better transit access (lower TAT) and more ridehailing pickups, 

but lower degrees of pooling, albeit with some variation across communities. Figure 9 maps the 

delimitations of these districts. Table 9 shows the summary statistics for all dependent and 

independent variables included in the final models. It shows that the model includes highly 

diverse communities with wide ranges of youth population, population density, bar and 

restaurant density, and TAT. Importantly, because the factor analysis only includes ACS data 

from Chicago, the SVI cannot be directly compared with other cities.  
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Table 8 Descriptive statistics of Spatial Durbin Modeling variables in Chicago districts 

  Chicago Far North Far NW North Central West South SW Side Far SE Far SW 

Avg. Income Per Capita ($) 32,535 33,744 25,172 57,393 87,061 26,755 24,364 17,570 19,737 26,682 

Avg. Income Per Household ($) 84,637 82,208 76,569 126,994 147,138 76,703 56,731 58,606 54,302 77,102 

HS Degree only (% of pop) 23% 20% 28% 11% 6% 24% 23% 37% 30% 27% 

Bachelor's or higher (%) 36% 45% 24% 66% 73% 31% 30% 11% 18% 26% 

Commuting SOV (%) 53% 53% 67% 41% 32% 49% 46% 62% 63% 71% 

Commuting Carpool (%) 8% 7% 11% 5% 4% 9% 8% 14% 9% 9% 

Commuting Transit (%) 30% 32% 19% 45% 30% 31% 33% 20% 26% 19% 

Commuting Active (%) 9% 7% 4% 9% 34% 11% 12% 4% 3% 1% 

Avg. Rail Access Time (min) 24.1 38.9 21.9 13.3 11.0 14.7 12.5 24.7 31.0 22.1 

Avg Daily TNC Pickups 263,192 27,030 7,763 53,727 77,952 57,390 18,833 11,371 5,619 3,507 

Avg Daily Authorized 

Shared TNC Pickups 
59,006 6,644 2,439 8,868 11,261 14,177 6,879 4,614 2,575 1,549 

TNC Rides 

Authorized to be Pooled (%) 
22% 19% 28% 17% 14% 24% 37% 35% 41% 37% 

TNC Rides  

Truly Shared (%) 
15% 12% 18% 12% 11% 18% 26% 23% 23% 22% 

Share of Authorized Pooled Rides 

that are truly shared (%) 
69% 65% 64% 73% 77% 72% 70% 65% 57% 58% 

Table 9 Model variable summary statistics 
Variable Median Mean Standard Deviation 

Dependent Variable: Log of Average Daily Private Trips per square 

mile 
5.698 5.957 1.357 

Dependent Variable: Log of Average Daily Shared Trips per square 

mile 
5.316 5.196 1.119 

Population 18yr to 34yr (%) 0.2530 0.2735 0.07741 

Population Density (per sq. mile) 11,521 13,113 7,002 

Mean Household Size 2.716 2.739 0.5407 

Bar and Restaurant Density (per sq. mile) 35.559 58.058 73.76 

Transit Access Time (minutes) 14.569 19.756 13.45 

Social Vulnerability Index -0.1683 0 0.9904 
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Figure 9 Chicago area district map 

4.3 Methodology 

Previous transportation research investigating ridehailing use has relied on representation 

of the context measuring only the “immediate spatial area”, with limited investigation of factors 

occurring in surrounding areas. Importantly, while a portion of the impact is determined in the 

immediate spatial area, some effects are likely to spill over across communities. This spill-over is 

not directly tied to demand awareness. Instead, while it is unlikely that riders are directly aware 

of ridehailing demand in neighboring areas, the local and surrounding community conditions are 

likely to affect demand for ridehailing via waiting times and social effects. That is, local mobility 

praxis, driver pickup biases and strategies, and perceived attractiveness and viability of 

alternatives can all shape spatial (spillover) demand for ridehailing. To study this, I regress the 

intensity of both solo and pooled usage on a range of potential explanatory factors. I find 
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evidence for a significant role of transit accessibility, SVI, along with four land-use/density 

variables, summarized in Table 9. 

I apply spatial econometrics to account for spatial interactions (Manski, 1993). After 

verifying the presence of spatial autocorrelation, and using Moran’s I and Lagrange Multiplier 

tests for model specification guidance, I specify a Spatial Durbin Model (SDM) to explore my 

three research questions (Anselin & Kelejian, 1997; Osland, 2010). The general SDM 

specification is summarized in Equation 5. Y is the response variable of community area 

ridehailing demand, 𝜌 is a coefficient for the lagged effect representing the response variable in 

one community to other neighboring communities, and W is a weight matrix representing the 

spatial structure of community influences on the residuals. This first term, 𝜌𝑊𝑌, measures the 

endogenous effect of ridehailing usage. The spatial weight matrix, W, is defined as a row-

standardized matrix where each row represents the spatial unit of analysis, contiguous neighbors 

have an equal effect, with 0’s along the diagonal. The row sum of the weights is equal to 1 for 

every spatial unit. The purpose of using the row-standardized weight matrix is two-fold. First, a 

row standardized matrix facilitates efficient maximum likelihood estimation of the SDM 

(LeSage & Pace, 2009). Secondly, the row normalization of W means that the effect of neighbors 

is averaged which is desirable when there is no a priori knowledge of neighbor influence. This W 

is used throughout the modeling to maintain comparability. X is a matrix of explanatory 

variables and 𝛽 is the vector of corresponding coefficients. 𝛾𝑙 is the vector of spatial lag 

coefficients of the explanatory variables 𝑋𝑙. An extension of this model is the Spatial Durbin 

Error Model (SDEM) which considers the error term as a function of W.  

 Because SDM includes an endogenous term, the estimated coefficients are not 

representative of the impacts of the explanatory variables. To translate them into interpretable 
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values, the coefficients are transformed. Equation 6, Equation 7, and Equation 8 are used to 

obtain direct (immediate local effects), indirect (spillovers), and total impacts (the sum), 

respectively, to examine the impacts of the explanatory factors on both private and pooled 

ridehailing. These impacts are calculated for each explanatory variable, k, using the 𝜌 estimated 

in Equation 5.   

 

𝑌 = 𝜌𝑊𝑌 + 𝑋𝛽 +𝑊𝑋𝑙𝛾𝑙 + 𝜖 Equation 5 

𝐷𝑖𝑟𝑒𝑐𝑡 =
3 − 𝜌2

3(1 − 𝜌2)
𝛽𝑘 +

2𝜌

3(1 − 𝜌2)
𝛾𝑘 Equation 6 

𝐼𝑛𝑑𝑖𝑟𝑒𝑐𝑡 =
3𝜌 + 𝜌2

3(1 − 𝜌2)
𝛽𝑘 +

3 + 𝜌

3(1 − 𝜌2)
𝛾𝑘 Equation 7 

𝑇𝑜𝑡𝑎𝑙 =
3 + 3𝜌

3(1 − 𝜌2)
(𝛽𝑘 + 𝛾𝑘) Equation 8 

 

4.4 Results 

Before analyzing the model results, I explore the general patterns of demand for 

ridehailing along with ACS data. Figure 10 depicts the percent of ridehailing rides that are 

private (a) and pooled (b), respectively. I also plot the SVI scores by community area in Figure 

11. Comparing Figure 10 and Figure 11 suggests the community areas with higher SVI index 

(more vulnerable) tend to rely more on ride-pooling, as these maps have stronger spatial 

similarity.  The trends are most evident with central and northern communities exhibiting lower 

rates of sharing and low SVI whereas western and southern community areas have higher rates 

of sharing with a higher SVI. Along with the statistics on ridesplitting shown in Table 8, this 

provides initial evidence that the spatial dynamics of private and pooled rides differ and have 

strong ties to socioeconomic vulnerability. 
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4.4.1 Spatial Durbin model specification  

Given the strong differences in spatial patterns of private and pooled rides, I estimate 

separate models. The modeling starts with a bottom-up approach: estimating non-spatial linear 

regression models by OLS including all the theorized ridehailing demand drivers. Residual 

diagnostics and the Moran’s I-test is used to detect spatial dependency. Both private rides 

(Moran’s I = 0.30705, p-value = 0.001) and pooling (Moran’s I = 0.37534, p-value = 0.001) 

gives evidence of spatial autocorrelation. Thereby I follow Elhorst (2010) combined approach 

using Lagrange multiplier (LM) and likelihood ratio testing. With the need to control for spatial 

effects apparent, the LM test is used to determine the need for spatial lag or spatial error controls. 

The spatial lag (statistic = 34.35, p-value < 0.001) and spatial error (statistic = 17.03, p-value < 

0.001) model specifications indicate that either approach is potentially valid. However, with both 

tests significant, the SDM is favored over a potential SDEM because it is more robust (Osland, 

2010). The estimation of the SDM was completed using the R programming language and 

spatialreg package (Bivand & Piras, 2015; R Development Core Team, 2008). Further 

comparison of SDM and SDEM likelihood ratio tests and inspection of spatial correlation 

confirms that the former provides more interpretable findings. Table 10 and Table 11 show the 

regression results and impacts, respectively.  The following section discusses the interpretation 

of the findings followed by a deeper analysis of the three research questions. 
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Figure 10 Community area percent use of private (a) and ridesplitting (b) map with bold 

borders depicting the boundaries of the Chicago sides from Figure 9 

 

Figure 11 Social Vulnerability Index mapped by community area 
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Table 10 Spatial Durbin model estimation result¹   
  Private Rides Authorized Ridesplitting Rides  

Variable Coefficient t-Statistic Coefficient t-Statistic 

(Intercept) 3.90*** 5.87 2.37*** 4.3 

Population 18yr to 34yr (%) 4.03*** 4.06 2.68** 3.26 

Population Density (100,000s per mile) 3.57** 3.28 3.02*** 3.47 

Mean Household Size -0.387*** -3.78 -0.163* -1.98 

Bar/Restaurant Density (1,000s per mile) 1.89^ 1.88 1.17^ 1.43 

Transit Access Time (minutes) 0.00122 0.278 -0.00904* -2.48 

Social Vulnerability Index (score) -0.124* -2.38 0.146*** 3.39 

Lag (𝛾) for Transit Access Time (minutes) -0.0411*** -4.32 -0.0201* -2.52 

𝜌 0.369*** 0.508*** 

Nagelkerke Pseudo 𝜌2 0.919 0.917 

AIC (OLS) 90.985 (105.97) 63.232 (91.301) 

Residual Autocorrelation  1.17 4.41* 

n. community areas 77 77 

¹ - Several variables were tested and found to be insignificant in both the Private and Authorized Pooled models 

were removed from the model specification. These were: bus stop density, percent of land area dedicated to parks, 

and mixed land-use 

^ - p-value < 0.1; * p-value < 0.05; ** p-value <0.01; *** p-value <0.001 

 

Table 11 Spatial impacts of explanatory variables from Spatial Durbin model results 

 Private Rides Authorized Ridesplitting Rides 

 Direct 

Impact 

Indirect 

Impact 

Total Impact Direct 

Impact 

Indirect 

Impact 

Total Impact 

Population 18yr to 

34yr (%) 
4.17 2.23** 6.40*** 2.870 2.59** 5.457*** 

Population Density 

(100,000s per sq. 

mile) 

3.69*** 1.97** 5.66*** 3.23*** 2.91** 6.14*** 

Mean Household 

Size 
-0.400^ -0.214** -0.614*** -0.175^ -0.157^ -0.332* 

Bar and Restaurant 

Density (1,000s per 

mile per mile) 

1.95** 1.04 2.98^ 1.25*** 1.13 2.38 

Transit Access Time 

(minutes) 
-0.00237 -0.0608*** -0.0632*** -0.0124** -0.0468*** -0.0592*** 

Social Vulnerability 

Index 
-0.128* -0.0685* -0.196* 0.157* 0.141** 0.297*** 

^ - p-value < 0.1; * p-value < 0.05; ** p-value <0.01; *** p-value <0.001 

 

4.4.2 Direct and indirect effects on ridehailing demand 

Table 10 shows the SDM results with a spatial lag effect ρ evident for both private and 

pooled rides. The lagged γ coefficient for TAT is highly significant (p-value < 0.001). This 
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suggests that in both ridehailing cases there is a need to account for spatial effects, including 

indirect impacts, most evident for transit accessibility. Both the private and pooled ride demand 

models produce a high goodness of fit with Nagelkerke pseudo 𝜌2 (similar to 𝑟2 in OLS) greater 

than 0.90 and AIC lower than equivalent OLS specifications, all suggesting the SDMs are valid 

and justified. There is evidence of residual spatial autocorrelation in the ridesplitting model, but 

the significance is low. Because these coefficients are not directly interpretable, the impacts of 

explanatory variables are calculated via the spatialreg package in R and summarized in Table 11 

in the form of direct, indirect and total effects as described in equation 2-4 (Bivand & Piras, 

2015; R Development Core Team, 2008). That is, a change in the independent variables in a 

community area will not only lead to a change in the demand in the same community (direct 

effect), but also affect the ridehailing demand in other community areas (indirect effects, related 

to the off-diagonal elements in W).  

There is evidence of six factors affecting the community area demand for ridehailing with 

some variability in terms of direct and indirect impacts. To gain more intuitive understanding of 

the effects, I use Equation 9 to compute impact measures, where Δx is the change in variable x 

and Ix is the impact of variable x from Table 11. I thereby estimate changes in average daily 

requested rides. Interpreting the direct effects of population density, I find that an increase of 

1000 in population density is associated with approximately 7,700 more private rides and 2,000 

additional pooled rides per day in that community. Using the average population density from 

Table 9, this translates to a 1% increase in population density being associated with a 0.49% and 

0.42% increase in daily demand for private and pooled rides, respectively. These findings do not 

account for the spillover effects into other community areas. Turning to investigate transit rail 

accessibility, given the pronounced indirect effects, the spillovers are computed instead. For 
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example, if a rail station were removed and a community area’s average rail access time 

increases by 1 minute, then the sum of changes in neighboring community areas results in 12,000 

fewer private rides and 2,700 fewer pooled rides. In terms of total (direct and indirect) impacts, 

on average, a 1% increase in TAT is associated with strong reduction in ridehailing requests (-

1.24% for private; -1.16% for pooled).  

ln(𝑟2) − ln(𝑟1) = Δ𝑥𝐼𝑥 ln (
𝑟2
𝑟1
) = Δ𝑥𝐼𝑥 

𝑟2
𝑟1
= exp (Δ𝑥𝐼𝑥) 

𝑟2 = 𝑟1exp (Δ𝑥𝐼𝑥) 
𝑟2 − 𝑟1 = Δ𝑟 = 𝑟1(exp(Δ𝑥𝐼𝑥) − 1) 

Equation 9 

 

4.4.3 Differences between private ridehailing and ridesplitting 

My first goal is to investigate the spatial usage patterns of private versus pooled 

ridehailing. Before studying the model results, I examine the spatial distribution of Community 

area centroid Origin-Destination flows. Comparing Figure 12 and Figure 13 reveals stark 

differences in the user patterns with a greater spatial dispersion of ridesplitting compared to 

highly concentrated OD flows of private rides, illustrated by the red connectors concentrated in 

the downtown and airport corridors. Taken together, the mapping of ridehailing intensity (Figure 

10) and flows (Figure 12 and Figure 13) strongly suggests that ridership patterns are distinct. I 

turn to the model results in Table 10 and Table 11 to examine the causes for these differences 

formally. Both private and pooled ridehailing demand is higher in community areas with higher 

population density, more bars and restaurants, and higher share of young (18-34yr) population, 

with slightly stronger impact of each factor for private use. This leads to a first observation that 

urban vibrancy factors stimulate ridehailing demand more broadly, with uniform impact on 

private and pooled ride requests.  
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This allows us to confirm established research findings on the key role played by urban density 

variables, and to extend those findings also to pooled ridehailing demand (Dias et al., 2019; Yu 

& Peng, 2019). 

However, this leaves the question of explaining the prominent spatial differences for 

private and pooled hailing open. The SDM models reveal that the main source of the divergent 

spatial patterns are the social vulnerability and transit accessibility metrics, examined further in 

Sec. 3.5 and 3.6. Notably, the relative socioeconomic vulnerability of communities appears to be 

the main differentiator for pooled versus private ridehailing demand. This finding suggests an 

intriguing new connection between the evolving service portfolio of ridehailing operators and 

diverse socio-economic demand segments. That is, the small share of dynamic ridesplitting 

requests are disproportionally requested in areas of socioeconomic vulnerability, in contrast to 

the typically observed patterns of ridehailing demand established in the literature.  

 

 

 
Figure 12 Intensity of OD flows of private 

ridehailing 

 

 
Figure 13 Intensity of OD flows of 

ridesplitting 
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4.4.4 Social Vulnerability Index and spatial effects  

The second research question centers on exploring the socioeconomic factors, and 

particularly the correlated socioeconomic vulnerability observed across Chicago. The SVI 

analysis and mapping confirm the correlated nature, as well as the spatial concentration of 

socioeconomic vulnerability indicators. The map in Figure 11, illustrates stronger vulnerability 

in the West, Southwest, South and Far Southeast districts (Figure 9) of Chicago. 

The modelling confirms that concentrated vulnerability is associated with fewer private 

requests. This evidence supports the argument that (private) ridehailing is related to ridership 

privilege (Lewis & MacKenzie, 2017). This is because ridehailing, private rides in particular, is 

offered as a premium service and at a higher price than other available mobility options in the 

area. Yet, this correlation with privilege is not supported by the model results for pooling 

requests. This suggests an intriguing interpretation that ridesplitting plays a gap-filling role for 

households with lower income and limited access to a personal vehicle (Tirachini & del Río, 

2019). It is worth noting that this higher demand occurs despite the higher price-point of 

ridehailing, even considering the discount for pooled rides. Considered jointly, I note that even 

after controlling for population and bar/restaurant density, the social and economic conditions in 

the community area still play an important role in shaping demand for ridehailing. A crucial 

question that arises from these results is the contradiction of a higher number of requests for 

sharing, occurring in the very areas where demand is generally low and matching multiple trip 

trajectories is challenging. This is also reflected in the Table 8 statistics. The share of effectively 

matched trips (15%) is lower than the requested share of pooling (22%) with the rate of effective 

matching being highest in the wealthier central district and lowest in the far southeast district. 
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A second observation concerns the robust spillover effects for the SVI for shared rides. 

The negative indirect effect implies that vulnerability in adjacent community areas reinforces the 

direct demand effects. I attribute this indirect impact to the social nature of technology adoption 

(Alemi, Circella, Handy, et al., 2018; Alemi et al., 2019). For other shared mobility services like 

bikesharing, there is evidence of social/community factors driving adoption (Biehl et al., 2018; 

Manca et al., 2019). It is not clear that ridehailing embodies the same level of symbolism or 

spatial visibility that bikesharing does. Therefore, I propose as an area of future investigation to 

disentangle whether the observed spillover of socioeconomic conditions is due to supply effects 

(ridehailing drivers avoiding, or not opting in to offer pooled rides, in certain areas) or demand 

effects (local service/acceptability, social diffusion). For the latter case, I would specifically need 

to examine whether there are spatially bound social network effects leading to more use of 

pooled services, or whether the spatially correlated challenges of longer commutes and poorer 

mobility options (i.e. spatial mismatch) drive the needs for pooled ridehailing to fill gaps in 

underserved community areas. 

4.4.5 Spatial effects and rail transit access 

The third research question probes the relationship between ridehailing (private and 

pooled) and local rail transit accessibility measured via the TAT variable. The research is still 

divided regarding the substitutional (Clewlow & Mishra, 2017) or complementary (Boisjoly et 

al., 2018) relationship of ridehailing with transit. Moreover, research suggests systematic 

variation is likely according to the size of the city (Hall et al., 2018), locations within a city 

(Grahn et al., 2020), the number of TNC competitors in the market (Nelson & Sadowsky, 2019), 

and the transit option type and performance (Babar & Burtch, 2017). What is more, the existing 

research offers limited insight on the connection of pooled ridehailing and transit.  
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Looking at Chicago, there are factors suggesting both relationships are possible. The 

strong variability in wealth and service access across the city could suggest complementarity 

since users, particularly in underserved community areas, may opt to use ridehailing to fill gaps 

in transit accessibility (Alemi, Circella, Handy, et al., 2018), albeit with a need to consider the 

steep price differences (Hall et al., 2018). I would expect this to occur particularly for more 

affordable pooled rides. Instead, Chicago’s expansive transit system with a high transit 

performance score (AllTransit, 2020) suggests that transit could remain competitive even in the 

presence of multiple TNC operators, as suggested by Babar and Burtch (2017). Finally, the loop-

centered radial nature of Chicago’s CTA rail system points to possible variation in effects 

according to the north-south corridor. 

On the whole, my SDM model results suggest a significant positive correlation between 

ridehailing and rail accessibility. That is, in community areas where transit performs better 

(lower access times) the demand for ridehailing is also higher, in line with Correa et al. (2017)  

and Brown (2019). While this result is not surprising given the previous research using real trip 

data, the results are important because they can provide evidence of the separate effect of pooled 

rides. I expected that ridesplitting could have a more competitive demand relationship with rail 

transit, given the lower price-point and shared reliance on sharing. For example, Lewis and 

MacKenzie (2017) found that UberHOP, a ridesplitting service, predominantly drew riders form 

transit.  

 Instead, I find a significant direct demand effect only for pooled ridehailing, and no 

significant differences overall between private and pooled requests. Additionally, there is a 

strong spillover effects for TAT (Table 11), suggesting that transit accessibility in one 



 

99 

community affects its neighbors. I attribute this to the spatial nature of transit systems where rail 

transit routes traverse several community areas.  

In summary, in the central and northern areas of Chicago, excellent rail transit 

accessibility is correlated with higher demand for ridehailing. A possible explanation is that 

ridehailing competes more directly with driving than with transit, and the lower auto ownership 

and parking availability makes ridehailing more attractive precisely in the areas where transit 

also performs well, and vice versa. I do not conclude that the positive correlation confirms a 

complementary relationship over a competitive one between ridehailing and transit. This is 

because the analysis is based on spatially aggregated data rather than single trip data revealing 

replacement or complementary travel. Rather, I suggest that future research focus on collecting a 

representative dataset of transit and ridehailing users. This dataset should be at the individual 

level and capture mode substitution and induced travel.  

On the whole, despite pooled rides serving a larger range of communities and more 

peripheral areas as discussed above, I cannot find any statistical evidence that pooling 

compensates for transit deserts. What is more, pooling seems to offer less gap-filling than private 

rides in areas where transit is poor, despite being more affordable. I speculate that ridesplitting 

might not be feasible or considered safe in transit-deserts. 

4.5 Discussion 

The findings suggest a number of implications for practice, ridehailing operators and 

researchers. On the public policy side, the finding that ridesplitting demand correlates with 

vulnerable socioeconomic living conditions measured by the SVI suggests that users in 

underserved community areas are benefitting from the convenience of an emerging mobility 

platform without paying the premium for private rides. In terms of policy, this points to a need 
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for greater focus dedicated to the positive socioeconomic outcomes that TNCs can facilitate via 

pooled ridehailing. By promoting ridesplitting, there are not only potential benefits from reduced 

congestion but also from users in vulnerable community areas accessing more opportunities for 

employment and recreation. Thereby, public agencies ought to carefully differentiate ridehailing 

taxes and regulations according to the type of service model, along with user-segment and 

locations, to avoid reducing mobility and accessibility for underserved communities.  

Concerning the operational and business perspective, an important challenge arises when 

considering the greater spatial spread of pooled ride requests. Notably, to maintain effective 

shared on-demand service operations it is necessary to match multiple requester trajectories in 

real time. However, with only one in five riders requesting sharing, and the requests being 

geographically dispersed, it is challenging to efficiently tie together trajectories. At the same 

time, on the side of riders, to maintain a growing customer base and loyalty to pooling, it is 

important to ensure service quality. Research suggests that riders likely care more about trip 

time/cost than sharing itself (Lavieri et al., 2017). Therefore, understanding user expectations, 

and the socio-spatial context is necessary to promote demand for pooled services, to in turn 

enable more stream-lined matching and unlock the critical mass of pooling. Given the benefits to 

vulnerable community areas, ridehailing operators and policy/mobility agencies have a strong 

motivation to work together to increase ridesplitting ridership. 

On the research side there are three main take-aways. First, findings highlight the 

importance of studying contextual variables, such as socioeconomic measures, more carefully. 

This calls for more research to disentangle how different mobility service offerings from the 

ridehailing portfolio serves and affects different user segments and community areas. Second, 

ridehailing service model effects are not monolithic. Specifically, the results point to a difference 
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in magnitude or even in direction of explanatory effects when looking at different ridehailing 

service models. Third, methodologically, this research uses a factor analysis-based index to study 

the overlapping factors of vulnerability that frequently affect communities. This helps overcome 

the underlying correlation between factors such as wealth, employment, and car-ownership, that 

jointly affect mobility decisions. An avenue for further work is to continue refining the indices 

that account for bundled factors to more accurately appraise the role of emerging mobility. 

4.6 Conclusion 

 Innovative mobility services can be important tools to limit rising urban congestion and 

improve mobility for vulnerable populations. Yet, despite the significant growth in both the 

ridership and research on ridehailing in recent years, findings on disparities in use have persisted 

not just along demographic dimensions such as income, gender, race/ethnicity, but also 

geographically. There is still limited understanding of the diverse demand patterns and the 

impact of varied services offered by ridehailing operators (private, pooled, shuttles, curb-to-curb, 

etc). The goal of this study is to investigate the demand for ridehailing services, focusing on the 

distinct socio-spatial patterns of private requests versus ridesplitting. The analysis sheds light on 

how different emerging mobility services, with different sustainability, accessibility and equity 

implications, are used by diverse communities. I use a Spatial Durbin Model including measures 

of Social Vulnerability and Transit Accessibility applied to a publicly available dataset with 127 

million ridehailing records from the City of Chicago. The results show that density and vibrancy 

variables related to concentration of restaurants, population and younger residents, have similar 

effects on the demand for private versus pooled rides. On the other hand, my analysis uncovers 

that pooling requests are geographically more dispersed and socially distinct from exclusive 
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ridehailing use. With regard to the three research questions posed in this work there are several 

implications. 

• For Q1 I uncover that ridesplitting is utilized among a broader range of community areas 

outside the central business district, thereby serving more diverse communities. Comparing 

the private and pooled ride determinants, I reveal that differences are mainly linked to 

community vulnerability. This suggests a novel connection between emerging mobility and 

vulnerability indicators where pooled services can serve entirely different needs and 

populations than what has been observed in the research focused on private ridehailing. This 

has two important implications. One, for the spatial modeling of ridehailing, vulnerability 

explain differences in demand, and also looms larger, that is, casts spillover effects across 

community areas. Two, the diffusion of pooling in underserved communities suggests an 

important socio-spatial dimension to consider in future work. Three, the more distributed 

demand pattern of pooled rides is tied to the sustainability of operations as critical demand-

thresholds are harder to reach. 

• For Q2 I develop an index that accounts for the bundled nature of socioeconomic 

vulnerability. The SVI represents the only flipped sign in my spatial model: higher 

vulnerability is associated with more ridesplitting, and less demand for private rides. Two 

implications arise. One, methodologically, there is value in using an index to account for 

overlapping factors that affect ridehailing demand. Two, a deeper analysis of the opportunity 

and barriers to accessing different ridehailing models is needed. Analyzing service attributes, 

socioeconomic circumstances and mobility context variables jointly is needed help understand 

which communities can access and benefit from pooling, and how it is used in practice. 
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• For Q3 I examined the impact of transit accessibility, finding that better rail transit access is 

correlated with more ridehailing pickups. The findings call for more investigation to clarify 

why ridesplitting demand, seemingly a closer transit substitute, surges in transit-rich areas, 

then tapers of more rapidly in transit-poor community areas. 

I note some important caveats of this study. First, owing to data censoring I are unable to 

distinguish Uber, Lyft and Via rides, leaving the different character and promotional strategies as 

unknown factors in shaping demand for private versus pooled rides.  Second, my trip data are not 

directly tied to rider sociodemographics. These are matched indirectly though the community 

area attributes and trip origin locations. Without precise rider data associated with each trip, it 

remains unknown whether the trips in high SVI areas, for example, are effectively requested by 

higher income trip-makers living in a vulnerable community. Third, the data do not include 

information on drivers search/driving patterns or on operator locational/pricing algorithms which 

could affect the choice to use ridehailing given that potential customers can view estimated 

waiting times and prices. 

 Future research should focus on further characterizing the differences between private 

and pooled demand patterns (such as focusing on other variables such as trip length, timing, and 

duration), and analyzing their complex relationship with transit (buses and rail). There are 

prospective benefits towards reducing (private) vehicle miles, and improving social outcomes, 

with increased use of pooling. Carefully designed stated and revealed preference/intercept 

surveys are needed to more fully capture the barriers to increased adoption of pooled rides. 

Finally, with an eye to the future, while the ridehailing industry tends to spearhead new 

forms of ride-sharing, currently and in the near future, societal values around sharing are 

changing drastically. As the world contends with the ongoing COVID-19 pandemic, and in many 
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cases suspension of pooled ridehailing services, it behooves researchers, policy-makers, and the 

ridehailing industry to investigate the perceived risks of vehicle sharing, and the tolerance for 

returning to various forms of shared mobility.  
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5 SWITCHING FROM TRADITIONAL COMMUTE MODES 

TO MICROTRANSIT: AN INTEGRATED CHOICE AND 

LATENT VARIABLE APPROACH3 

5.1  Background 

Building from previous chapters, it is evident that the Chicago ridehailing data cannot 

reveal individual behavior. With many of the concerns about ridehailing centering on its negative 

social and environmental impacts, it is important to understand new opportunities for ridehailing 

to pose less of a burden on urban transport networks. In response to these concerns, transit 

agencies and mobility startups have launched microtransit services—small-scale, on-demand 

transit fleets that can offer both fixed routes and schedules, as well as more flexible routes and 

on-demand scheduling (APTA, 2021). This new service model may produce environmental and 

rider benefits. It relies on Information and Communication Technology (ICT) to enable real-time 

service requests or coordination between riders and drivers for trip pooling. This coordination 

makes the transition from door-to-door to curb-to-curb (e.g. at transit stops) services easier to 

implement. 

The shift to microtransit calls for research on user behavior, motivations, and 

acceptability to understand demand and its impacts. Beyond traditional transit attributes like 

travel time and fare, microtransit entails new attributes related to curb-to-curb routing, 

scheduling, and different sharing configurations. Pinpointing how customers evaluate these new 

service dimensions is critical for researchers and decision-makers to design new mobility 

 
3 Soria, J., Etzioni, S., Shiftan, Y., Stathopoulos, A., & Ben-Elia, E. (2022). Microtransit adoption in the wake of the 

COVID-19 pandemic: evidence from a choice experiment with transit and car commuters. arXiv preprint 

arXiv:2204.01974. 
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platforms complementing existing transportation systems. Different mode experiences are also 

likely to lead to different service feature perceptions. An attribute such as expected walking time 

to the boarding location can be viewed as a disadvantage against the baseline of private car or 

ridehailing but is a familiar factor for transit users. Understanding how riders weigh microtransit 

attributes is key to designing and maintaining an efficient transportation service. Platform 

managers, either from the public or private sectors, can analyze this demand to optimize their 

fleet, attract patronage and minimize passenger delays. From the transportation system manager's 

perspective, knowledge of acceptability and attribute tradeoffs informs this mode's relationship 

to traditional commute options like personal vehicles and public transit, the outlook of public-

private partnerships, and the need for additional infrastructure to support microtransit options 

(Shaheen et al., 2020). 

Calderón and Miller (2020) highlight the range of service types within microtransit. This 

service model is positioned between current (typically single occupancy) ridehailing, and 

traditional fixed-route transit, owing to the promotion of pooling rides, walking to the curb to 

connect with optimal routes, and scheduling rides in advance of boarding time. In practical 

terms, I can characterize microtransit as a new form of ridehailing with transit-like attributes that 

aim to optimize trips collectively by minimizing vehicle miles traveled. I refer to Figure 3 in 

chapter 2 to compare door-to-door ride-pooling with curb-to-curb microtransit. Fewer vehicles 

are needed to serve demand by pooling trips, thus reducing VMT (Fu & Chow, 2021). Providing 

curb-to-curb services where passengers walk to a designated boarding location and alight nearby 

their final destination reduces the amount of vehicle travel. In Figure 3, Party 1 (P1) and Party 2 

(P2) can be served directly at their origins and destinations or meet the driver at a designated 

boarding location and alight nearby their destination. In the latter scheme, the vehicle travels 
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less. Additionally, reserving a seat in a shared vehicle well ahead of boarding allows the operator 

time to pool trips optimally rather than relying on real-time driver-rider matching.  

Research on van-based and other microtransit oriented ridehailing services is still limited. 

I can gain initial insight into the acceptance and behavior of shared rides by drawing on 

ridesplitting and related literature. Large fleets of shared-taxis have been shown in simulations to 

serve existing taxi demand without excessively long delays, not significantly reducing revenue, 

and importantly, mitigate VMT (Alonso-Mora et al., 2017; Martinez et al., 2015). However, 

achieving these outcomes requires a high market share of pooled trips, while VMT benefits can 

only be achieved with sufficiently large shared vehicles fleet sizes and passengers' demand 

(Rodier et al., 2016; Fagnant and Kockelman, 2018).  

In reality, reported rates of ridesplitting are typically low and vary considerably. 

Empirical estimates range from 6-35% (California Air Resource Board, 2019; X. Chen et al., 

2018; Chicago Metropolitan Agency for Planning, 2019b; Li et al., 2019; Lyft, 2018; Soria et al., 

2020; Young et al., 2020). Lastly, there is much room to grow wider adoption of pooling as 94% 

of ridesplitting trips are made by 10% of riders (Brown, 2020).  

Few empirical studies are available to evaluate microtransit in practice. The "Breng flex" 

pilot in the Netherlands stresses the risk of an excess shift of transit users towards microtransit in 

response to pricing differences (Alonso-González et al., 2018). A study of three U.S microtransit 

pilots concluded that implementation was fraught, and low ridership was a recurring problem 

(Westervelt et al., 2018). Additionally, an Uber-based microtransit service case study found that 

it did not attract single-occupant vehicle users and instead mainly drew users away from public 

transit (Lewis & MacKenzie, 2017). Similarly, pooling users are found to typically be 

multimodal already  (Kostorz et al., 2021). Lastly, microtransit users may highly enjoy the 
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service but be unwilling to pay higher fees. The Finnish pilot Kutsuplus found that substantial 

subsidies were needed for the program to be financially viable (Rissanen, 2016). In sum, for 

shared microtransit services to succeed in mitigating externalities, further research is needed to 

understand the tradeoffs travelers are willing to make to pool rides and optimal service 

implementation. 

In addition to the still growing body of literature on microtransit, the COVID-19 

pandemic and associated restrictive measures have drastically disrupted mobility systems 

worldwide—an additional layer of uncertainty to mobility demand analysis. Stay-at-home orders, 

move to telework, and other social distancing measures to prevent the spread of the coronavirus 

have led to steeply falling demand for mobility, especially public transit and shared vehicle 

mobility (Duarte, 2020; Higgins & Olson, 2020; Liu et al., 2020). Due to these changes and the 

lingering safety perceptions, the pandemic has likely heightened travelers' sensitivity to close 

physical interactions and consequently changed riders' priorities when trading off cost and 

comfort against health and safety. In 2021, as workers increasingly return to work, immunization 

rates increase, and people start commuting anew, the need for shared mobility services is 

growing. Notably, the need to understand the links between pandemic risk perceptions and mode 

preferences remains an urgent research priority (Hensher, 2020). Yet, I have limited insight into 

how people navigate the decisions of using different types of shared modes during the evolving 

pandemic (Shokouhyar et al., 2021). 

This chapter aims to analyze commuting travelers' acceptability of novel microtransit 

commute options in the wake of the COVID-19 pandemic. I address three specific research 

questions: First, I analyze user acceptance of microtransit options, emphasizing several new 

microtransit-specific attributes. Specifically, I examine the factors that explain the shift from the 
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status quo commute to microtransit travel and analyze attribute sensitivities and elasticities. 

Second, I explore the differences between current transit users and solo drivers. Given that 

microtransit combines on-demand rides and mass transit services' features, I expect differences 

based on current commute modes.  Third, I assess the joint impact of COVID experiences and 

concerns along with shared mobility and intrinsic motivations for sharing to build a new 

understanding of how vehicle pooling and other novel attributes are perceived in the COVID-19 

context. Thereby, the evolving perception and potential recovery of shared mobility and the 

trade-offs between traditional and novel mode attributes are further elucidated. Additionally, the 

examination of pandemic perceptions and sharing experience allows me to disentangle how 

different commuter groups view these novel services and attributes. 

I use data from a Stated Choice (SC) survey conducted in Israel following the first 

COVID lockdown in May 2020. An efficient choice experiment (CE) pivoted design was 

administered as a web-based study. The CE scenarios present two microtransit alternatives using 

the respondents' status quo mode and their stated travel time and cost. The first is ridesplitting in 

a sedan-sized vehicle with a passenger capacity of 4 (not including the driver) which I will refer 

to as Microtransit Sedan (MT-S). This service has not been introduced in Israel so far due to 

regulatory limitations. The second is ridesplitting in a van-sized vehicle with a capacity of 10 

passengers, which I will refer to as Microtransit Van (MT-V). This service is operated only on a 

limited scale—on a pilot basis in the main cities of Tel Aviv, Jerusalem, and Haifa and one rural 

area. Data about the respondents' sociodemographics, political views, COVID-19 attitudes, and 

sharing experiences is also collected. I employ an Integrated Choice and Latent Variable (ICLV) 

framework to examine the acceptance of these new commute options and the impact of user 

profiles, latent attributes of sharing motivations, and COVID perceptions. 
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The analysis reveals three key takeaways. (1) New mode attributes significantly affect the 

utility of the microtransit alternatives, with a notable aversion to walking and waiting among 

drivers. (2) Car and transit commuters have structural differences in attribute elasticities and the 

magnitude of latent variable effects. (3) For drivers evaluating microtransit, sharing experience 

and COVID Comfort play a key role in the decision-making. Overall, these results suggest that 

car commuters find out-of-vehicle travel and planning ahead highly unattractive. Transit users 

are much less affected by sharing and COVID constructs. The chapter also discusses the extent 

to which these results are due to captive transit users and the implications on their willingness to 

use microtransit modes for their commute. 

5.2 Data 

 The data were collected after designing and distributing a SC survey in Tel Aviv, Israel. 

The survey was distributed to car and transit commuters throughout the metropolitan region 

which comprises nearly half of Israel's 9M population and includes the core city of Tel Aviv, the 

main business, culture, and high-tech hub. Tel Aviv also operates a small-scale microtransit pilot 

service known as Bubble-Dan, which operated before and during the pandemic (Bubble-Dan, 

2021). A screening was applied to include only participants who commute at least three times a 

week with a commute duration of at least 10 minutes using only a personal vehicle or public 

transit.  Data about current commute attributes, socio-demographics, past and expected future 

life events, latent attitudes, and choice experiments with microtransit alternatives were collected. 

Using the respondents' current commute attributes, I determine their commute mode, cost, and 

travel time for the reference alternative in the CE—referred to as the "Status Quo" (SQ). 

 Latent attitudes were measured using items based on respondent's sharing experience, 

schedule-keeping, environmental stances, and comfort with situations related to risks of COVID 
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transmission. Sharing attitudes and COVID Comfort questions used in modeling are summarized 

in Table 12. The sharing-related items are drawn from previous research and modified to orient 

them around the sharing economy. The COVID-19 related items were created specifically for 

this survey. Each item uses a 5-point Likert scale that ranges from "Strongly Disagree" to 

"Strongly Agree" (Lehmann & Hulbert, 1972).  In addition, I asked respondents to report the 

degree to which the COVID-19 pandemic had affected their lives. Respondents were asked to 

respond to this question by indicating "No Change, Little Change, Not Sure, "Big Change," or 

"Very Big Change." These questions were then used to identify latent variable effects on 

microtransit decision-making. 

The experiment design and implementation was developed in sequential steps (Figure 

14) following best practice guidance (Johnson et al., 2013; Kløjgaard et al., 2012). Step 1 

covered attribute development, focusing on identification, selection, and presentation. Attribute 

selection was decided by identifying the attributes already studied in the research literature. 

Table 13 summarizes relevant studies involving ridehailing and the attributes used in 

their choice scenarios. Important to note, studies emphasizing automated vehicles (where the ride 

may be driverless) are not included in this analysis as the perceptions of sharing attributes can be 

highly affected by the automation feature (Etzioni et al., 2021; Krueger et al., 2016). 

Additionally, I exclude portfolio-based Mobility as a Service studies where ridehailing (and 

related attributes) is a minor focus, for example Caiati et al. (2020). 

Table 13 shows that each study covers different attributes and information provided to 

customers: Yan et al. (2018) provide survey-takers information about additional pickups; Frei et 

al. (2017) include headway for their flexible route, demand-responsive transit; Chavis and Gayah 

(2017) feature the availability of GPS tracking of vehicle for more traveler information; Al-
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Ayyash et al. (2016) consider in-vehicle WiFi capabilities. In Alonso-González, van Oort, et al. 

(2020), the choice experiment included uncertainty for the waiting and in-vehicle times to 

determine Values of Time for individual and shared rides. Alonso-González, Cats, et al. (2020) 

then considered mode choice of flexible transit alternatives specifically. While Yan et al. (2019) 

and Al-Ayyash et al. (2016) focus on commuting as the trip purpose, Kang et al. (2021) consider 

multiple trip purposes including commuting, shopping, and leisure. On the whole, the most 

common attributes included in choice experiments other cost and in-vehicle travel time are the 

out-of-vehicle travel time and additional passengers sharing the ride. Following literature and 

industry report analysis, seven attributes were selected, representing two microtransit vehicle 

sizes. Further informal testing in step 2 led to a fractional factorial experiment with six scenarios 

(see more details in Soria et al. (2019)). Given Israel's limited familiarity with microtransit 

services, several auxiliary questions were designed to measure attribute acceptance cutoffs, 

importance, and choice certainty. In step 3, a full survey implemented in Qualtrics was 

administered to 301 pilot respondents.  

Table 12 Sharing and COVID-19 comfort items with coding 

Item Coding Source 

I enjoy using sharing economy services SI1_enjoy Van der Heijden 

(2004) 

I can see myself increasing my use of shared mobility in the 

future 

SI2_increase Bhattacherjee 

(2001) 

I have never had a bad experience using sharing economy 

services 

SI3_exp Current study 

Inclusion of Other in Self (IOS) IOS Adapted from 

Aron et al., 

(1992) 

Given the current situation caused by the COVID-19 

outbreak, I would feel comfortable engaging in the following 

activities: 

- 

Current study 

     Ridesharing with strangers CC1_ride  

     Eating out at a restaurant. CC2_rest  

     Going to the grocery store CC3_grocery  
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Table 13 Microtransit stated choice experiments in the research literature and their alternative 

attributes 
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Chavis and Gayah (2017) x x x x  x       

Frei et al. (2017) x x x x   x x     

Yan et al. (2019)  x  x x   x  x x   

Al-Ayyash et al. (2016)  x x x          

Tarabay and Abou-Zeid (2019) x x    x       

Asgari and Jin (2020) x x         x x 

Alonso-González, Cats, et al. 

(2020) 
x x       x    

Alonso-González, van Oort, et al. 

(2020) 
x x x x x  x      

Kang et al. (2021) x x       x    
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Figure 14 Steps in development of a microtransit discrete choice experiment 

 Results were analyzed in step 4 using discrete choice modeling, leading to the 

development of priors for an efficient experimental design in step 5 using Ngene (ChoiceMetrics, 

2012). The resulting design included three alternatives: Status Quo (SQ, either car or public 

transit), Microtransit Sedan (MT-S), and Microtransit Van (MT-V). The pilot analysis led to 

broadening attribute ranges and providing a visual presentation for the seating variable. The 

travel time and travel cost attributes for current travel alternatives were pivoted off the reported 

(RP) levels to improve the realism of the experiment  (Etzioni et al., 2020; Hensher & Rose, 

2007; Train & Wilson, 2008). Table 14 lists the mode attributes included in the final experiment 

along with the attribute levels. Graphics were presented in the choice experiment to reflect the 
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number of additional passengers and which seats are available (Figure 15). The seating 

designation and vehicle seating configuration may also play a role in mode-sharing decisions 

(Etzioni et al., 2021). The respondents' current travel cost and time were defined using the 

following logic. If the typical commute mode is driving, the respondent provides further 

information about parking such as search time, if there is a reserved parking area, and if they pay 

for that parking. The travel costs are approximated for drivers by summing the daily parking fee 

and their travel distance in kilometers multiplied by two, using this information. In Israel, the 

value of 2 ILS per km is a gross estimate used by the public sector for reimbursing direct car use 

expenditures and is also  

Table 14 Microtransit choice experiment alternative attribute levels 
 Status Quo 

(fixed) 

Microtransit Sedan Microtransit Van 

Cost (per day) Current Cost 

-10%/-20%/-30% 

(CAR) 

-15%/-30%/-45% 

(CAR) 

+75%/+125%/+175% 

(PT) 

+50%/+100%/+150% 

(PT) 

Travel time 
Current Door-to-door 

Time 

-30%/ 0 / +30% 

(CAR) 

0/+15%/+30% (CAR) 

-30%/ 0 / +30% (PT) 0/-15%/-30% (PT) 

 

Number of      

occupants in a vehicle      

 

 

1 person (driver)/ 

2 people/ 4 people 

1 person (driver)/ 5 

people/ 8 people 

Minimum Reservation 

Time Before Boarding 

 2hr/10 min/5 min 

before 

2hr/10 min/5 min 

before 

Waiting Time 
 2 min/up to 5 min/up 

to 10 min 

2 min/up to 5 min/up 

to 10 min 

Walking Time 

 No walking/Up to 5 

min walk/Up to 10 

min walk 

No walking/Up to 5 

min walk/Up to 10 

min walk 

Station amenity 
 Designated-shelter 

(yes/no) 

 Designated-shelter 

(yes/no) 
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Microtransit Sedan 

 

1 person (driver) 

 

  2 People 

 

  4 People 

Microtransit Van 

 

1 person (driver) 

 

  5 people 

 

  8 people 

Figure 15 Depiction of additional passengers in microtransit choice experiment 

 

the maximal value allowed by the Ministry of Transport regulations for determining direct cost-

sharing in voluntary carpooling arrangements between driver and passengers. Travel time for car 

commuters is the sum of their stated commute time and parking search time. Travel cost 

corresponds to the single trip fare for transit commuters, and travel time is their current stated 

commute time. Because both car and transit commuters responded to this survey, the design was 

optimized for each commuter group separately.  

 The experiment is based on a D-efficient Bayesian design created using Ngene 

(ChoiceMetrics, 2012; Yu et al., 2011). The a priori coefficient values (Rose et al., 2008) were 

obtained using uniform distributions from the pilot survey (Soria et al., 2019). However, this 

pilot survey considered only car commuters; hence I assumed that the coefficient values for all 

attributes were equal across groups. Dominated and unrealistic alternatives were excluded using 
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the Federov algorithm (ChoiceMetrics, 2012). These actions are put in place to ensure designs 

are plausible and realistic. For example, the transit fare was relatively low, so the fare for the 

microtransit alternatives was always greater than the transit one for transit commuters. In 

contrast, with car commuters, costs for MT-S and MT-V were always lower than the car cost. 

The design extracted 12 choice scenarios for each SQ mode; however, the scenarios were 

randomly assigned to two fixed sets of 6 scenarios to prevent respondent fatigue (Caussade et al., 

2005). These sets are equally represented in the data of each respective commuter group.  

 In step 6, a web-based respondent panel was used to collect 1539 survey responses in 

May 2020. The data were cleaned by first removing responses that did not complete the choice 

experiment portion. To preserve data quality, responses that took less than 5 minutes or showed 

patterns of inattentiveness were removed. Because the average time it took to complete the 

survey was approximately 30 minutes, I treated 5 minutes as insufficient time to complete it 

earnestly.  I considered inattentiveness when there was a pattern of always choosing the first 

option in a string of questions, selecting responses to attitudinal items inconsistently, or when 

indicating adversarial attitudes in the items.  For the current analysis, current commute times 

greater than 90 minutes were removed to decrease heterogeneity and maintain a reasonable 

commuter service area for microtransit. After cleaning and subsetting the database, 1326 

responses (86%) were retained, resulting in 7956 choice experiment observations. Of these 1326 

responses, there were 879 (66%) car and 447 (34%) transit commuters.  

Table 15 contains the descriptive statistics for the observed variables, COVID-19 

impacts, and attitudes. For the respondents' current commutes, the largest difference between 

groups is the travel cost. Car commuters are also more likely to be married and male. The voter 

variable is a dummy variable denoting if the respondent voted in the 2020 legislative elections in 
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Israel, for which there is little difference between groups. On average, car commuters are likely 

to have more children. The Inclusion of Other in the Self (IOS) scale measures how close the 

respondent feels with strangers (Aron et al., 1992). In this study, I specifically asked respondents 

how close they feel to a stranger sharing a pooled vehicle. Overlapping circles are used to depict 

IOS, where the closer the respondent feels with the stranger in the vehicle, the more overlapped 

circles are seen in Figure 16. The pandemic has similarly impacted both groups. Lastly, they 

share nearly the same attitudes towards the sharing economy and COVID Comfort, with the most 

significant difference being the CC1_ride. Transit commuters are more comfortable sharing a 

ride with a stranger during the pandemic. 

 

Table 15 Descriptive statistics of Integrated Choice and Latent Variable modeling variables 

Variable All Commuters  

(std. deviation) 

Car Commuters 

(std. deviation) 

Transit Commuters 

(std. deviation) 

Current Commute    

   Travel Cost (ILS) 35.31 (38.98) 50.34 (40.23) 5.78 (2.94) 

   Travel Time (minutes) 33.20 (15.75) 31.59 (14.71) 36.37 (17.18) 

Individual Descriptors    

   Married 55.81% 61.43% 44.74% 

   Gender is Male 50.45% 53.12% 45.19% 

   Voter 89.97% 89.30% 91.28% 

   Number of Children 1.27 (1.63) 1.45 (1.60) 0.90 (1.64) 

COVID Impact    

   No Impact 1.96% 1.37% 3.14% 

   Little Impact 32.81% 31.63% 35.12% 

   Big Impact 41.86% 42.54% 40.49% 

   Very Big Impact 12.67% 12.97% 12.08% 

   Not Sure 10.70% 11.49% 9.17% 

Attitudes    

   IOS (min = 1, max = 7) 2.75 (1.60) 2.80 (1.64) 2.67 (1.52) 

   SI1_enjoy 3.05 (1.08) 2.97 (1.08) 3.20 (1.06) 

   SI2_increase 3.17 (1.04) 3.12 (1.06) 3.27 (1.01) 

   SI3_exp 3.25 (1.04) 3.25 (1.04) 3.26 (1.05) 

   CC1_ride 2.27 (1.11) 2.10 (1.04) 2.59 (1.16) 

   CC2_rest 2.46 (0.83) 2.45 (0.81) 2.49 (0.85) 

   CC3_grocery 3.66 (0.96) 3.63 (0.96) 3.75 (0.95) 

N 1326 879 447 
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        Self    Other      

    
1 3 5 7 

Figure 16 Inclusion of Other in the Self scale 

5.3 Methodology 

The purpose of this research was to identify the acceptability and tradeoffs among novel 

microtransit attributes and quantify the effect of latent variables on the decision-making process. 

Separate models were estimated using an Integrated Choice and Latent Variable (ICLV) model 

for the two commuter groups. The ICLV framework allows the choice and latent variable models 

to be estimated simultaneously (Abou-Zeid & Ben-Akiva, 2014; Bolduc & Alvarez-Daziano, 

2010; Temme et al., 2008). Figure 17 depicts the theorized relationship between the latent 

variables, mode attributes, utility of each mode, and, finally, mode choice. To estimate the 

ICLVs, I follow the guidelines from Walker (2001). From the guidelines, the first steps are to 

identify the choice model and structural equation model separately. Once this is completed, the 

models are jointly estimated. 

 

Figure 17 Integrated Choice and Latent Variable Framework 
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5.3.1 Discrete choice model 

The first step of the guideline is to identify the utility specification of the choice model 

correctly. I completed this step by estimating a Multinomial Logistic Regression (MNL) for each 

commuter group with PandasBiogeme (Bierlaire, 2018). Equation 10 and Equation 11 describe 

the general utility specification. 𝑈𝑖𝑛 is the latent utility of alternative I of observation n,  𝑋𝐶𝐸 is 

the matrix of explanatory variables from the choice experiment, L are the latent variables, 𝛽𝐶𝐸 

and 𝛽𝐿𝑉 are the corresponding coefficients, and 𝜖 is the independently and identically distributed 

(IID) error term.  

𝑈𝑖𝑛 = 𝑉𝑖𝑛(𝑋, 𝐿; 𝛽) + 𝜖𝑖𝑛 

 

 

Equation 10 

𝑈𝑖𝑛 = 𝛽𝐶𝐸𝑋𝐶𝐸 + 𝛽𝐿𝑉𝐿 + 𝜖𝑖𝑛 Equation 11 

  

5.3.2 Structural equational model for attitudinal indicators 

After identifying the mode choice model, the second step is to identify the latent 

variables. I estimated a Structural Equation Model (SEM) using the attitudinal items in the 

measurement component and explanatory variables including, socio-demographics, experience 

with sharing economy services, and the structural component's life impact and comfort related to 

COVID-19. Equation 12 and Equation 13 describe the measurement and structural 

components, respectively. The SEM's were first estimated using the R package psych, then 

confirmed again using PandasBiogeme (Bierlaire, 2018; Revelle, 2018). With both choice and 

latent variable models identified, the last step is to estimate the integrated models 

simultaneously.  

 Equation 12 (structural) and Equation 13 (measurement) below describe the SEM. L is 

the latent variable, the intercept θ,  observed variables XLV, the corresponding estimated 
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coefficients 𝛾, and the error term, η, which is IID multivariate normally distributed. I is the 

response for the attitudinal items listed in Table 12. It is a function of α an intercept, λ the 

estimated coefficients, L a matrix of latent variables estimated from Equation 13, and ζ the IID 

multivariate normal error term. σ is a random variable to capture the random taste heterogeneity 

of the sample and is added to estimate numerically the likelihood described in the following 

subsection. 

 Several latent variables were estimated representing the respondents' attitudes towards 

Environmental Sustainability, Schedule Making, Pro-Sharing Economy, and COVID Comfort. 

Only the last two were consistently significant in at least one commute group, with a hierarchical 

relationship shown in Table 12. The latent variables were validated with the following metrics 

and threshold values: Comparative Fit Index (CFI) > 0.90, Root Mean Square Error of 

Approximation (RMSEA) < 0.06 and Standardized Root Mean Square Residual (SRMR) < 0.08 

following recommendation in literature (Hooper et al., 2007; Hu & Bentler, 1999).  

𝐿 = 𝜃 + 𝑋𝐿𝑉𝛾 + 𝜂 Equation 12 

𝐼 = 𝛼 + 𝜆𝐿 + 𝜎 + 𝜁 Equation 13 

5.3.3 Integrated Choice and Latent Variable model 

The models are estimated simultaneously by maximizing the joint log-likelihood of each 

component. Equation 14 shows the joint likelihood. This integrand cannot be solved 

analytically, so it was estimated numerically with random variables, 𝜙, in the latent variable 

model. 𝑝(𝑋, 𝐿; 𝛽) is the likelihood from the standard MNL. 𝑓(𝐿, 𝑋𝐿𝑉; 𝛾) is the likelihood from 

the structural component of the SEM and 𝑔(𝐼, 𝐿, 𝜎; 𝜆) is the likelihood of the measurement 

component. 
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𝐿𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑 =∏∫ 𝑝(𝑋, 𝐿; 𝛽)𝑓(𝐿, 𝑋𝐿𝑉; 𝛾)𝑔(𝐼, 𝐿, 𝜙; 𝜆)𝑑𝐿
𝐿

𝑁

𝑛=1

 

 

Equation 14 

5.4 Results 

Two ICLV models were estimated, one for car commuters and one for transit commuters, 

and the results are shown in Table 16 and Table 17. The structure of the latent variables in the 

ICLVs is shown in Figure 18. Following extensive specification testing done individually, the 

models were similarly specified so that the results were as directly comparable as possible. Mode 

attributes were limited to the discrete choice portion of the ICLVs while attitudinal items and 

sociodemographic variables were limited to the latent variable models. Additionally, the latent 

variables were hypothesized to exist for both commuter groups and, subsequently, share the 

same scales. The final utility specifications are described in Equation 15, Equation 16, 

Equation 17, and Equation 18. Equation 15 shows COVID Comfort in the utility specification 

for the car alternative. Two latent variables were identified and included in the final model 

because Pro-Sharing Economy was found to indirectly affect the utility of car through a 

structural relationship with COVID Comfort as shown in Figure 18.   

𝑉𝑐𝑎𝑟 = 𝛽𝐶𝑎𝑟 + 𝛽𝐶𝑎𝑟,𝐶𝑜𝑠𝑡𝐶𝑎𝑟𝐶𝑜𝑠𝑡 + 𝛽𝐶𝑎𝑟,𝑇𝑖𝑚𝑒𝐶𝑎𝑟𝑇𝑖𝑚𝑒

+ 𝛽𝐶𝑜𝑣𝑖𝑑𝐶𝑜𝑚𝑓𝑜𝑟𝑡𝐶𝑜𝑣𝑖𝑑𝐶𝑜𝑚𝑓𝑜𝑟𝑡 
Equation 15 

𝑉𝑃𝑇 = 𝛽𝑃𝑇 + 𝛽𝑃𝑇,𝐶𝑜𝑠𝑡𝑃𝑇𝐶𝑜𝑠𝑡 + 𝛽𝑃𝑇,𝑇𝑖𝑚𝑒𝑃𝑇𝑇𝑖𝑚𝑒 + 𝛽𝐶𝑜𝑣𝑖𝑑𝐶𝑜𝑚𝑓𝑜𝑟𝑡𝐶𝑜𝑣𝑖𝑑𝐶𝑜𝑚𝑓𝑜𝑟𝑡 Equation 16 

𝑉𝑀𝑇𝑆 = 𝛽𝑀𝑇𝑆 + 𝛽𝑀𝑇𝑆,𝐶𝑜𝑠𝑡𝑀𝑇𝑆𝐶𝑜𝑠𝑡 + 𝛽𝑀𝑇𝑆,𝑇𝑖𝑚𝑒𝑀𝑇𝑆𝑇𝑖𝑚𝑒

+ 𝛽𝑀𝑇𝑆,𝑊𝑎𝑙𝑘𝑀𝑇𝑆𝑊𝑎𝑙𝑘𝑇𝑖𝑚𝑒 + 𝛽𝑀𝑇𝑆,𝑊𝑎𝑖𝑡𝑀𝑇𝑆𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒

+ 𝛽𝑀𝑇𝑆,𝑀𝑖𝑛𝑅𝑒𝑠𝑀𝑇𝑆𝑀𝑖𝑛𝑅𝑒𝑠𝑇𝑖𝑚𝑒 + 𝛽𝑀𝑇𝑆,𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑀𝑇𝑆𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠

+ 𝛽𝑀𝑇𝑆,𝑆ℎ𝑒𝑙𝑡𝑒𝑟𝑀𝑇𝑆𝑆ℎ𝑒𝑙𝑡𝑒𝑟 

Equation 17 

𝑉𝑀𝑇𝑉 = 𝛽𝑀𝑇𝑉 + 𝛽𝑀𝑇𝑉,𝐶𝑜𝑠𝑡𝑀𝑇𝑉𝐶𝑜𝑠𝑡 + 𝛽𝑇𝑉,𝑇𝑖𝑚𝑒𝑀𝑇𝑉𝑇𝑖𝑚𝑒

+ 𝛽𝑀𝑇𝑉,𝑊𝑎𝑙𝑘𝑀𝑇𝑉𝑊𝑎𝑙𝑘𝑇𝑖𝑚𝑒 + 𝛽𝑀𝑇𝑉,𝑊𝑎𝑖𝑡𝑀𝑇𝑉𝑊𝑎𝑖𝑡𝑇𝑖𝑚𝑒

+ 𝛽𝑇𝑉,𝑀𝑖𝑛𝑅𝑒𝑠𝑀𝑇𝑉𝑀𝑖𝑛𝑅𝑒𝑠𝑇𝑖𝑚𝑒 + 𝛽𝑀𝑇𝑉,𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠𝑀𝑇𝑉𝑃𝑎𝑠𝑠𝑒𝑛𝑔𝑒𝑟𝑠

+ 𝛽𝑀𝑇𝑉,𝑆ℎ𝑒𝑙𝑡𝑒𝑟𝑀𝑇𝑉𝑆ℎ𝑒𝑙𝑡𝑒𝑟 

 

Equation 18 



 

123 

 

 

Table 16 Microtransit choice models results 

Coefficient 

 Car  Public Transit 

Car  

(Std. 

Error) 

MT-S  

(Std. 

Error) 

MT-V  

(Std. 

Error) 

Transit  

(Std. 

Error) 

MT-S  

(Std. 

Error) 

MT-V  

(Std. 

Error) 

Constant 0 - fixed -4.31**  

(0.255) 

-3.58**  

(0.272) 

0 - fixed -1.56**  

(0.263) 

-1.67** 

(0.267) 

Travel cost (ILS) -

0.00319** 

(0.000954) 

¹-0.0068** 

(0.00207) 

¹-

0.00546* 

(0.00277) 

-0.116**  

(-0.0341) 

-0.0423** 

(0.0157) 

-

0.0683** 

(0.0174) 

In-vehicle travel 

time (minutes) 

-0.0494** 

(0.00509) 

-0.0312** 

(0.00455) 

-0.0364** 

(0.00444) 

-0.0386** 

(0.00592) 

-0.029** 

(0.00614) 

-

0.0248** 

(0.00675) 

Walk time 

(minutes) 
- 

-0.0450** 

(0.0111) 

-0.110** 

(0.0143) 
- NS NS 

Wait time 

(minutes) 
- 

-0.0306* 

(0.0143) 

-0.0691** 

(0.0176) 
- NS NS 

Minimum 

reservation time 

before boarding 

(minutes) 

- 

-0.00140* 

(0.000680) 

-

0.00363** 

(0.00105) 
- 

-

0.00348** 

(0.00131) 

-

0.0064** 

(0.00116) 

Number of people 

in vehicle - NS 

-0.0872** 

(0.0276) - 

-0.0978** 

(0.0381) 

-

0.0915** 

(0.0315) 

Sheltered Boarding 

Location 
- NS NS - NS 

0.378**  

(0.104) 

COVID Comfort -1.34**  

(0.0969) 
- - 

-0.14^ 

(0.0828) 
- - 

n observations 5274 2682 

𝜌2 0.164 0.296 

Final Loglikelihood -47665.05 -13590.62 

(NS) Not statistically significant at 𝛼 = 0.1, not estimated in final model 

(^) significant at 𝛼 = 0.1 

(*) significant at 𝛼 = 0.05 

(**) significant at 𝛼 = 0.01 

¹ Interacted with dummy variable for having commute time greater than 65 minutes, otherwise statistically 

insignificant 
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Table 17 Microtransit latent variable models results 

Coefficient 

Model 

Car (Std. Error) Transit (Std. Error) 

COVID Comfort - - 

   CC1_ride 1 – fixed 1 – fixed 

   𝛼𝐶𝐶1 - - 

   CC2_rest 0.496** (0.0323) 0.626** (0.0401) 

   𝛼𝐶𝐶2 1.41** (0.0696) 0.865** (0.106) 

   CC3_grocery 0.643** (0.0355) 0.649** (0.0425) 

   𝛼𝐶𝐶3 2.27** (0.0763) 2.07** (0.112) 

   𝜃𝐶𝐶  1.02** (0.122) 2.46** (0.111) 

   Impact - Unsure -0.572** (0.0976) 0.0887 (0.123) 

   Impact - No Change 0 – fixed 0 – fixed 

   Impact - Little Change -0.539** (0.0939) 0.333** (0.111) 

   Impact - Big Change -0.916** (0.0957) 0.0223 (0.112) 

   Impact - Very Big Change -1.32** (0.102) -0.383** (0.122) 

   Married -0.138** (0.0220) - 

   Male - 0.186** (0.0389) 

   Number of Children - -0.0472** (0.0116) 

   𝜎𝐶𝐶  0.113^ (0.0641) 0.628** (0.0259) 

Pro-Sharing Economy 0.661** (0.0302) - 

   SI1_enjoy 1 – fixed - 

   𝛼𝑆𝐼1 - - 

   SI2_increase 0.932** (0.0310) - 

   𝛼𝑆𝐼2 -0.355** (0.0939) - 

   SI3_exp 0.592** (0.0283) - 

   𝛼𝑆𝐼3 1.49** (0.0856) - 

   𝜃𝑆𝐼 2.21** (0.0469) - 

   Ridehailing App Experience 0.312** (0.0252) - 

   Carpooling App Experience 0.292** (0.0249) - 

   Carsharing App Experience 0.0301** (0.00621) - 

   IOS 0.110** (0.00731) - 

   Voter 0.201** (0.0371) - 

   Male 0.112** (0.0230) - 

   𝜎𝑆𝐼 0.609** (0.0159) - 

𝜒2/ 𝑑𝑓 2.67 2.47 

CFI 0.923 0.939 

RMSEA 0.044 0.055 

SRMR 0.032 0.028 

(-) Not applicable 

(^) significant at 𝛼 = 0.1 

 
 

(*) significant at 𝛼 = 0.05   

(**) significant at 𝛼 = 0.01   
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Figure 18 Structure of ICLV models for each commuter group 

5.4.1 Microtransit Acceptance and Mode Attributes 

All mode attributes for all alternatives were included in the discrete choice portion of the 

ICLV during model development. In the final estimations, statistically insignificant variables 

were not included. Table 16 intercepts show an inherent attraction to the status quo modes. It 

was expected that transit commuters would find the on-demand sharing alternatives inherently 

more attractive than the status quo; however, the results show the opposite. When examining the 

attribute effects, all features have the expected sign, while I note several differences between the 

two commuter groups. The more traditional travel cost and travel time attributes are statistically 

significant for all alternatives in either commute group. Yet, I note that transit commuters have a 

higher sensitivity to cost and lower sensitivity to time than solo drivers, which is true also for 

microtransit options, suggesting that transit commuters transfer their preferences onto new 

options. Generic travel cost sensitivities for drivers were not significant, prompting us to interact 

with other variables to examine segmentation. Unlike other work suggesting marginally 

decreasing sensitivities (Daly, 2010), I find that only drivers with long commutes (greater than 
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65 minutes) are consistently sensitive to the cost attribute, with a higher sensitivity for the MT-S 

and MT-V. I speculate that the limited cost sensitivity is due to drivers' difficulty to perceive the 

largely hidden cost of driving and parking, coupled with an experimental design effect where 

prices for the microtransit alternatives were set to be lower than solo driving (Andor et al., 2020; 

Shoup, 2021).  

 The novel attributes were only included for the microtransit alternatives, and on the 

whole, I note that car commuters are sensitive to a more extensive range of microtransit 

attributes than transit commuters. This likely reflects the fundamental dissimilarity between 

driving and microtransit, which comports several unfamiliar attributes (Alemi, Circella, 

Mokhtarian, et al., 2018). Specifically, I note a major difference for time-related attributes of 

walk time to the curbside pickup location, and waiting time. Car commuters appear to have a 

strong aversion to walking and waiting, with a strong penalty for the van option. Instead, transit 

users are only sensitive to the in-vehicle travel time, with insignificant walking and waiting 

parameters, similar to the results from Frei et al. (2017). The last time-related attribute, minimum 

reservation time, is statistically significant for both alternatives, albeit with a lower magnitude 

than other time measures. Instead, a few features come into play only for the transit commuters. 

The number of additional passengers matters for both vehicle sizes in the transit model while 

only impacting the larger MT-V among drivers. Finally, the 'sheltered boarding' attribute is only 

significant for MT-V in the transit model. Additionally, car commuters are not sensitive to the 

number of additional passengers for MT-S, possibly stemming from this mode being a familiarly 

sized vehicle with relatively low capacity. Alonso-González, Cats, et al. (2020) also posit that 

perceptions of sharing reach a tipping point at four additional passengers since a vehicle larger 
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than a regular car is needed. Finally, the presence of a sheltered boarding location is only 

statistically significant for MT-V.  

 In summary, transit users have likely interiorized the transit-like attributes of walking and 

waiting that are intrinsic to scheduled services. I note that transit users appear more sensitive 

than drivers to reservation time, shelter, and the number of other passengers, attributes that are 

more affected by the ICT-supported mobility platform and smaller vehicle sizes than experienced 

in current transit systems. 

5.4.2 Latent Variable Effect 

 Overall, model fit for both latent variable models indicates good fit with CFI > 0.90, 

RMSEA < 0.06 and SRMR < 0.08 in both models (Hooper et al., 2007; Hu & Bentler, 1999). 

The most evident difference between car and transit commuters is in the latent variable portion 

of the ICLVs. The structure of the latent variables in the ICLV models is illustrated in Figure 18. 

As shown by estimates in Table 16, decision-making by car commuters was affected by both 

latent variables, namely: Pro-Sharing Economy and COVID Comfort, while transit users, 

surprisingly, were not motivated by these factors. COVID Comfort is designed to represent a 

respondent's comfort with different COVID-19 risk situations. As such, respondents' comfort in 

grocery stores, eating in restaurants, and sharing a vehicle with a stranger are used to identify this 

latent variable. The COVID Comfort parameter in Table 16 shows a negative effect. That is, the 

more at ease respondents are with these situations, the more likely they are to accept trying the 

microtransit services. The structural component of this latent variable consists mostly of 

variables indicating the impact the pandemic has had on respondents' lives, measured by the 

Impact variable. The impacts are ordinal in nature; however, here, I chose to model the impact as 

a discrete categorical variable to facilitate separate modeling of the opt-out where respondents 
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indicate their uncertainty. This decision proved to be useful as those who were uncertain of 

COVID impacts were found to be less comfortable with COVID than those who experienced 

"Little Change." Additionally, it was advantageous because the jump in effect from "No Change" 

to "Little Change" in the car commuter group resulted in a larger impact than the jump from 

other levels. I also considered the risk of transmission to significant others related to a 

respondent and found that married people are less comfortable with risky COVID situations. 

Transit commuters who had "Little Change" in their lives from COVID were more comfortable 

with it than those who had had impacts at other levels or were unsure about its impact. I also 

considered the risk of COVID transmission to loved ones and found that families with more 

children were less likely to be comfortable with COVID. Lastly, I found that men tended to be 

more comfortable with COVID-19 risk situations, which resonates with observations that men 

are less concerned about virus contraction and less likely to get vaccinated (Galasso et al., 2020; 

Lazarus et al., 2021) 

Modeling also reveals that COVID Comfort is directly affected by the Pro-Sharing 

Economy construct (albeit only for drivers, as depicted in Figure 18). Because sharing in this 

context is of physical assets (including public areas), I hypothesized a structural relationship 

between these two latent variables. The positive sign implies that experience with sharing 

economy services — used to measure higher Pro-Sharing Economy — is underpinning higher 

comfort with sharing resources during COVID-19. There are two issues to note here. First, the 

hypothesized hierarchical causation suggests that sharing is an established trait that affects how 

respondents behave in the novel and temporary context of pandemic social distancing. In 

practice, it is likely that the evolving objective and subjective risks, as well as experience and 

fatigue from social distancing, will continue to shape willingness to ridesplit. Second, I expected 
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Pro-Sharing Economy to be a driving factor for transit users. Instead, I could find no evidence of 

this, affecting neither COVID Comfort nor likelihood to use microtransit directly. I speculate 

that the transit users I observe, especially during COVID-19, are not choice riders driven by 

shared ideals but rather by necessity. Like above, there are likely to be dynamic effects at play, 

connecting ridership to changing employment circumstances and COVID-19 risk levels. These 

issues warrant further research.  

In addition to the sharing economy constructs, the IOS scale is used to measure sharing 

propensity. My study finds that the more closely a respondent identifies with other riders, the 

higher they score on Pro-Sharing Economy. Several personal characteristics are found to be 

related to sharing ideals. Being a voter in the latest election is positively correlated with sharing. 

I speculate that voters may have higher civic duty orientation related to higher sharing identities 

(Bolsen et al., 2014; Fowler, 2006). Lastly, men tend to have higher sharing identities, and I 

attribute this to women's perceptions of (lack of) safety, especially in situations where personal 

space cannot be guaranteed (Morales Sarriera et al., 2017; Polydoropoulou et al., 2021).  

Finally, considering the limited specification for the transit sample, initial transit ICLV 

specifications included the Pro-Sharing Economy latent variable; however, it was not identified 

when the Structural Equation Model was estimated independently of the discrete choice model. 

Consequently, the only latent variable identified for transit commuters is COVID Comfort.  

5.5 Discussion 

5.5.1 Microtransit demand and curb-to-curb attribute elasticities 

The curb-to-curb attributes involving out-of-vehicle travel time were only statistically 

significant in the car commuter ICLV. In contrast, transit commuters were unaffected by the 

walking and waiting time. I hypothesize that this may be since transit commuters already 
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experience these attributes for their current commutes. Therefore, when trying to attract car 

commuters to microtransit to promote sustainability, attention must be paid to the effort needed 

to access the service in terms of expected walking and waiting time.    

One strategy is to decrease waiting and walking times and to increase the minimum 

reservation time to facilitate better routing. To better explore such scenarios and the relative 

importance of microtransit attributes, I derive attribute elasticities. Table 18 shows the 

elasticities at the mean of variables, which were calculated using Equation 19 (Train, 2009). 𝑃𝑖 

is the probability of alternative i, 𝛽𝑥,𝑖 is the coefficient of attribute 𝑥 and alternative i, and 𝑥𝑖 is 

the average of the explanatory variable. These elasticities reflect the percent change in demand 

for the alternative as a function of a unit percent change in the attribute. I note that most 

elasticities are inelastic, in the range of 4-76% change in demand for the Microtransit options. As 

expected from the model analysis, reservation time has a lower elasticity than in-vehicle, 

waiting, and walking time. In comparing the commuter groups, elasticities are in a comparable 

range for the sedan option, with a greater gap for the van microtransit option. Clearly, drivers are 

sensitive to more attributes and display significant aversion to access/walking time, while in-

vehicle travel duration elasticity even exceeds unity for the van option.  
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Table 18 Elasticities and differences between commuter groups 

Alternative Variable 

Elasticities 

Difference (Car-

Transit) Car Commuters 

Transit 

Commuters 

Status Quo Cost -0.04 -0.30 0.26 

Status Quo TT -0.41 -0.62 0.21 

Status Quo COVID -0.94 -0.20 -0.74 

Status Quo Sharing (Indirect 

effect) 

-0.83 NA  

MT-S Cost -0.59* -0.39 -0.2 

MT-S TT -0.77 -0.71 -0.06 

MT-S Reservation 

Time 

-0.04 -0.07 0.03 

MT-S Wait -0.13 NS  

MT-S Walk -0.13 NS  

MT-V Cost -0.49* -0.62 0.13 

MT-V TT -1.26 -0.64 -0.62 

MT-V Reservation 

Time 

-0.12 -0.19 0.07 

MT-V Wait -0.31 NS  

MT-V Walk -0.39 NS  

(*) Cost parameters are for car commuters with commutes > 65 minutes 

 

𝐸 = (1 − 𝑃𝑖)𝛽𝑥,𝑖𝑋𝑖 
 

Equation 19 

 

Operators can use these insights in several ways. Microtransit operators may unlock 

efficiency gains and reductions of passenger wait times by knowing the demand for rides well in 

advance. Indeed, the smaller elasticity suggests that increasing minimum reservation time would 

not be as consequential for the likelihood to opt for the microtransit alternatives as increasing 

walk and wait times. Thereby, the elasticity findings suggest an opportunity to extend reservation 

times to obtain more favorable walking and waiting performance as a means to attract drivers to 

the curb-to-curb mobility options. Similar to Alonso-González, Cats, et al. (2020), this reduction 

in travel time plays a prominent role in determining the likelihood of choosing microtransit. To 

further contextualize, Alonso-Mora et al. (2017) simulate scenarios with maximum waiting times 
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of less than 7 minutes; however, this was in the highly-dense area of Manhattan, New York 

where high levels of demand and the road network topology allow this. Therefore, for success in 

less dense areas, a large vehicle fleet size is another strategy to reduce wait and walking times. 

         For transit commuters, much of the focus for microtransit operators will be on cost and 

travel time as these commuters did not exhibit significant sensitivity to waiting and walking 

times. One attribute that was only significant in a single instance was the sheltered boarding 

location. While this may be a prominent feature for public transit, it may not be a worthwhile 

investment in this context, where other curb-to-curb attributes play a greater role in shaping 

initial demand for microtransit.  

5.5.2 Different perceptions for drivers and transit commuters: status quo effects 

When considering the latent variables identified in the ICLVs, the lack of Pro-Sharing 

Economy in the transit commuter group is intriguing. It was expected that Pro-Sharing Economy 

would be identified in the transit group since this embodies shared mobility, yet my modeling did 

not support this. Additionally, COVID Comfort is only weakly significant (0.10 < p-value < 

0.05). Taken together, the latent variable results suggest that the transit users in this sample are 

likely captive users (Etzioni et al., 2020). Indeed, the analysis of smartcard usage conducted 

before the pandemic shows that heavy users of transit in Israel are more likely to be regarded as 

captive with fewer mobility options—pupils, students, seniors, low income—while the modal 

split for the Tel Aviv metropolitan region is around 80/20 for car and transit respectively 

(Benenson et al., 2019; Etzioni et al., 2021).  

Instead, both latent variables are strongly significant in the car ICLV. Because Pro-

Sharing Economy is mainly determined by experience with sharing economy services like Uber 

and Airbnb, I hypothesized that knowledge and familiarity with these types of services would 
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lower the risk perceptions related to COVID-19. What is more, operators have taken significant 

and public measures to increase patrons' safety, which may have contributed to indirectly 

shaping virus exposure concerns in the context of hypothetical microtransit alternatives. 

Therefore, unlike transit commuters, I do not conclude that car commuters are captive to their 

status quo. The elasticity of the COVID-19 comfort variable is much larger among car 

commuters. I interpret this strong effect to reflect greater adaptiveness of drivers in response to 

COVID-19. In contrast, those that rely on private vehicles have greater ease in adjusting 

ridership to reduce the risk of viral exposure.  

5.6 Conclusion 

Microtransit with rider pooling may generate mobility system benefits, with the most 

aspired being the VMT reductions provided enough trips are pooled. The demand for 

microtransit, especially with a curb-to-curb service offering, is not fully understood. It is 

challenging to promote the adoption of microtransit given that the service attributes lie at the 

halfway point between door-to-door on-demand mobility and scheduled transit. That means that 

current mode experiences are likely to shape the perception of attributes that constitute a 

departure from the status quo which is especially critical given the need for microtransit to attract 

not only transit users to ensure VMT and congestion reduction. In this study I developed a SC 

survey to identify how commuters perceive microtransit with its curb-to-curb attributes. 

The survey included a choice experiment with two different designs for car and transit 

commuters. Utilizing a pivoted design with the status quo alternative, I identify how sensitive 

commuters are to a sedan (MT-S) and a van option (MT-V) and their curb-to-curb attributes such 

as walking and waiting times at a designated boarding location. Additionally, I included 

attributes that better represent scheduled transit services where advanced planning and amenities 
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are key attributes. Specifically, I included novel attributes for minimum reservation time before 

boarding and a sheltered boarding location. The results reveal differences among commuter 

groups. While car commuters were sensitive to walking and waiting time, transit commuters 

were not. Minimum reservation time significantly affected the utility of the microtransit 

alternatives; however, the elasticities show that in- and out-of-vehicle travel time have larger 

effects. From these novel attributes, the sheltered boarding location had no significant effect on 

the utility of the shared modes except for MT-V for transit commuters.  

This analysis took place after pandemic lockdown periods, and several questions were 

designed to measure COVID-19 risk and comfort to quantify the potential impacts. The latent 

variable portion of the ICLV reveals that COVID Comfort affects utility for car commuters but 

far less for transit commuters. Furthermore, the Pro-Sharing Economy latent variable was not 

identified for transit commuters, although public transit is defined by sharing. I take these results 

to interpret that car commuters are reliant on their cars while transit commuters are very likely 

captive. The latent variable results also show that COVID impacts have no significant effect on 

transit's utility, which shows that the risk perceptions across commuter groups are not uniform. 

Based on these results, operators of pooled on-demand ride services must consider 

several strategies to attract riders. These strategies should also differ by commuter groups as they 

show major differences based on the ICLV models. When additional passengers add more 

coveted travel time, strategies for attracting car commuters should focus on the cost-fare 

tradeoffs. Strategies for transit commuters will have to focus on making their relatively more 

private modes worth the extra cost. 

There are limitations to this study that should be noted. The sampling for this web-based 

survey may not represent the entire commuter population, especially digitally challenged 
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citizens. Secondly, the survey and modeling were done separately for the commuter groups. The 

objective of this research was to identify differences between groups explicitly so two models 

were developed, though a single model my reveal other phenomena. The pandemic also 

introduces a limitation to this study as it presents rapidly evolving circumstances for the 

respondent to consider—what occurred following the 1st lockdown is likely different after 

subsequent ones, the proliferation of new viral variants, and the rapid immunization campaign 

later on.  
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6 A REQUIEM FOR TRANSIT RIDERSHIP? WHO LEFT, 

WHO WILL RETURN, AND WHO WILL RIDE MORE 

6.1 Background 

Earlier chapters focused primarily on MoD whether it be private ridehailing, ridesplitting, 

or microtransit. Though without the ICT and real-time computing capabilities, public transit 

remains an essential component of urban transportation systems. This chapter examines the 

effects of COVID-19 on public transit, its evolving relationship with MoD and micromobility, 

and opportunities for them to work in tandem. Several researchers have studied the COVID 

effects on transit ridership at the aggregate level, understanding from a demand and operational 

perspective total ridership and revenue decline. There is still a dearth of understanding about the 

individual decision making that surround transit use variations during the pandemic, including 

the effects of novel work arrangements, safety attitudes, and sociodemographics. Figure 19 

compares national and Chicago transit ridership using data from the National Transit Database 

(2022). It illustrates percent ridership during COVID months compared to the same months in 

2019, before the pandemic started. While there is growth in ridership, it is not yet at pre-COVID 

levels. Therefore, the goal of this chapter is to investigate public transit ridership decisions at the 

individual-level with the support of a comprehensive survey.  

To achieve that goal, data from a survey conducted by the Regional Transit Authority 

(RTA) in the greater Chicago, IL metropolitan region is utilized. There are 3 objectives with this 

research. These are to analyze the factors relating to: (1) lapsed ridership during the pandemic, 

(2) the return to pre-pandemic transit usage assuming health risks from the COVID-19 virus has 

been alleviated, and (3) Mobility-as-a-Service’s (MaaS’s) potential to attract more ridership, 
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specifically focusing on fare integration (MAAS-fare). To achieve these objectives, 3 separate 

models within the logistic regression framework are estimated independently. Though modeled 

independently, each model regresses the dependent variables on the same set of 

sociodemographic, travel behavior, and transit priority variables such that model results can be 

compared as closely as possible. 

 

Figure 19 Transit ridership during COVID-19 across the nation and Chicago transit 

agencies 
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 By completing this research, it fills a gap in the transportation literature by utilizing a 

large survey of transit users (N = 5,648) with variables concerning mode substitution, transit 

investment priorities from the user’s perspective, and different types of transit services by three 

different operators: Chicago Transit Authority (CTA) which operates bus and heavy rail services 

within the City of Chicago, Pace which is the region’s suburban bus service, Metra which is the 

commuter rail service with coverage spanning to the periphery of the region. The results from the 

lapsed ridership model reveal that employment characteristics and vehicle ownership had the 

highest impact, followed by race, user priority for sanitation of transit facilities and vehicles, and 

type of transit service utilized. From the “return” model, it is revealed that racial minorities 

(Asian, Black, and Hispanic) are not only more likely to lapse in ridership but also less likely to 

return to transit which emphasizes the need for future research in these communities. Lastly, 

racial minorities, those who used on-demand modes to substitute transit or access it, and those 

who travel during off-peak times are the most willing to increase their transit usage should fare 

integration be implemented.  

6.2 Data 

The data were collected by the RTA who graciously shared it with me. The survey was 

distributed in two waves. The first wave lasted from November 9, 2020 to December 4, 2020. 

The second wave lasted from January 19, 2021 to February 5, 2021. Sending emails to transit 

users listed in customer databases maintained by the transit agencies was the primary method of 

solicitation. The secondary strategy of distributing the survey was through social media and 

through the transit agencies’ websites. Respondents were screened by collecting data on their 

revealed travel behavior as it relates to transit and COVID-19. To be included in the study, the 
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respondent must have used CTA, Metra, or Pace services prior to March 2020 and live in the 

Chicagoland region or near the distant Metra stations in Wisconsin or Indiana. 

The data were cleaned prior to being shared with the researchers and the process is 

outlined in RTA (2021). In summary, the data were cleaned of inconsistent responses and 

responses that were completed too quickly to be answered genuinely. In total, 5,648 observations 

are utilized in this research which represents 98% of all responses. All 5,648 observations were 

used in the lapsed ridership model. Some respondents did not respond to the attitudinal items that 

constitute the dependent variables in the remaining two models. Therefore, 5,518 observations 

were used in the ordered logit “Return to Transit” model, and 4,965 observations in the ordered 

logit “MaaS-fare” model. For more detailed information about the survey, I refer the readers to 

their report (RTA, 2021). The dependent variables obtained from the survey and their definitions 

are provided below. They are lapsed ridership status and two attitudinal questions with a Likert 

scale response about transit ridership when health concerns are alleviated. 

• LAPSED: Lapsed ridership status – Uses a transit service less than one day per week 

during the pandemic but used it one day per week or more leading up to the pandemic 

• RETURN: Return to Transit – Health Concerns Alleviated: I would return fully to transit 

as I used it before COVID-19  

• MaaS-fare: Health Concerns Alleviated: I would consider riding transit more frequently 

if fare payments were seamless across transit, shared bikes, and ride services (e.g., 

Uber/Lyft) 

The survey collected sociodemographic information such as age, income, ethnicity and 

race, and gender. It also collected data on employment characteristics such as sector, 

unemployment status, and teleworking frequency. In terms of travel behavior, respondents were 
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asked about past travel behavior, which transit agencies they used, their access modes, and which 

modes substituted transit during the pandemic. An innovative section of the survey that is the 

basis for further modeling is the transit investment priority allocation. 

An exploratory data analysis finds the high levels of multi-modality, investment 

priorities, low trip replacement, and a shift towards the automobile during the pandemic. Figure 

20 shows that 50.7% of respondents use more than one transit service with regularity. 16% of 

respondents use all three. Each respondent was presented with two investment allocation 

exercises. First, respondents were given a hypothetical $10 to allocate in any way they wished 

across pandemic related categories so long as the sum of their investment choices did not exceed 

their budget. The average budget allocation to the investment categories is shown with error bars 

representing the standard deviation in Figure 21. Respondents were given an additional 

hypothetical $10 to allocate in any way they wished across general transit investment categories. 

These investment categories along with the average budget allocation shown with error bars 

representing the standard deviation is shown in Figure 22. The investment allocation preference 

data, along with a number of explanatory variables were tested in the ridership models. Figure 

23 shows which modes are used to access transit. The CTA which operates within the core 

metropolitan city of Chicago is accessed primarily by active modes (79%) which is in stark 

contrast to the commuter rail service Metra where only 37% of respondents use personal active 

modes to access it. Private auto has the next largest share followed by ridehailing, shared active 

modes known as micromobility, taxi or shuttle, then other modes such as a moped. Figure 24 

shows that approximately 60% to 70% of respondents did not replace their transit trip. CTA trips 

had the lowest percentage with Metra and Pace trips not being replaced at a nearly equal rate. 

After considering only trips that were replaced, the modes that replaced transit are shown in 
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Figure 25. Approximately 80% to 90% of transit trips that were replaced were by the private 

auto followed by active modes, ridehailing or taxi, then other transit services. The definitions and 

descriptive statistics for all variables included in the modeling are provided in Table 19. With 

several of the explanatory variables defined, Table 20 and Table 21 shows the percent of the 

total budget allocation for each investment category across several dimensions including gender, 

race, lapsed ridership status, and by transit service. I include a heat map to show the rank of each 

investment with the highest priority (rank 1) having darker colors. This table will be further 

discussed in later sections. 

 

 

 

Figure 20 Share of users of each of the Chicago transit agencies 
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Figure 21 Average COVID-19 related public transit investment priorities by service out of 

a hypothetical $10 allocation (error bars show standard deviation) 
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Figure 22 Average general transit investment priorities by service out of a hypothetical $10 

allocation (error bars show standard deviation) 
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Figure 23 Percent of respondents indicating which access mode they used to reach public 

transit by service 
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Figure 24 Percent of respondents that did not replace their transit trip 
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Figure 25 Percent of respondents indicating which modes they replaced transit with only if 

the trip was truly replaced 
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Table 19 Descriptive statistics of explanatory variables in RTA analysis 

Variable Definition Count (%) 
Female Identifies as female 3182 (56.3%) 

Non-female 
Male, preferred not to express gender, or preferred to 

self-describe 
2466 (43.7%) 

Asian Identifies as Asian, considered minority 315 (5.6%) 

Black Identifies as Black, considered minority 851 (15.1%) 

Hispanic Identifies as Hispanic, considered minority 567 (10.0%) 

White Identifies as White 3993 (70.7%) 

Other Race or Ethnicity 
Identifies as Native American, Middle Eastern or 

North African, or Native Hawaiian or Pacific Islander 
160 (2.8%) 

Younger than 35 (base 35 < Age < 64)  1251 (22.1%) 

At or older than 65 (base 35 < Age < 64)  906 (16.0%) 

Unemployed 

Unemployed at the time of taking the survey 

Unemployed looking and unemployed not looking 

(retired, disabled, student) 

1225 (21.7%) 

Teleworking at least 4 days per week 

In the past 7 days, on how many days have you 

worked from home (instead of traveling to work)? Is 

it at least 4 days per week? 

2637 (46.7%) 

Has HH Vehicle 
Number of registered motor vehicles in the 

respondent’s current household 
4555 (80.6%) 

CTA Bus User Core city bus user (before or during the pandemic) 1358 (24.0%) 

Pace (Bus) User Suburban bus user (before or during the pandemic) 814 (14.4%) 

Substituted Transit with TNC 

During the pandemic, trips that were once completed 

with public transit were substituted with on-demand 

ride services 

571 (10.1%) 

Access Mode TNC Used on-demand ride services to access transit 151 (2.7%) 

Non-commute travel purposes only 
Used transit only to access non-work or school 

activities 
1590 (28.2%) 
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Table 20 COVID-19 transit investment priority rankings by different user segments 
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Ventilation on vehicles 
20% 

(1) 

21% 

(1) 

19% 

(1) 

19% 

(2) 

22% 

(1) 

23% 

(1) 

19% 

(2) 

19% 

(1) 

19% 

(2) 

20% 

(1) 

Sanitation/cleaning on vehicles 
19% 
(2) 

19% 
(2) 

19% 
(2) 

20% 
(1) 

16% 
(2) 

15% 
(3) 

20% 
(1) 

18% 
(2) 

21% 
(1) 

18% 
(2) 

Mask/distancing enforcement on 

vehicles 
18% 

(3) 

18% 

(3) 

17% 

(3) 

19% 

(3) 

15% 

(3) 

16% 

(2) 

18% 

(3) 

17% 

(3) 

18% 

(3) 

17% 

(3) 

General security presence on 

vehicles 
10% 

(4) 

10% 

(4) 

10% 

(4) 

11% 

(4) 

9% 

(5) 

11% 

(4) 

10% 

(4) 

11% 

(4) 

10% 

(4) 

10% 

(4) 

Ventilation at stops/stations 
9% 
(5) 

9% 
(5) 

9% 
(5) 

7% 
(6) 

11% 
(4) 

10% 
(5) 

8% 
(5) 

9% 
(5) 

8% 
(5) 

10% 
(5) 

General security presence at 

stops/stations 
8% 

(6) 

8% 

(6) 

8% 

(6) 

8% 

(5) 

9% 

(6) 

10% 

(6) 

8% 

(6) 

9% 

(6) 

8% 

(6) 

9% 

(6) 

Mask/distancing enforcement at 

stops/stations 
7% 
(7) 

7% 
(7) 

7% 
(7) 

7% 
(7) 

8% 
(7) 

7% 
(7) 

7% 
(7) 

8% 
(7) 

7% 
(7) 

7% 
(7) 

Sanitation/cleaning at stops/stations 
5% 

(8) 

5% 

(8) 

5% 

(9) 

5% 

(8) 

5% 

(9) 

4% 

(9) 

5% 

(8) 

5% 

(8) 

5% 

(8) 

5% 

(9) 

Mask/distancing education 

campaign 
4% 

(9) 

4% 

(9) 

5% 

(8) 

4% 

(9) 

5% 

(8) 

5% 

(8) 

4% 

(9) 

5% 

(9) 

4% 

(9) 

5% 

(8) 

Sum 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 
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Table 21 General transit investment priority rankings by different user segments 

Investment E
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) 
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 (
ra

n
k
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Seamless travel experience between CTA, 

Metra, and Pace 
22% 

(1) 

21% 

(1) 

24% 

(1) 

25% 

(1) 

16% 

(2) 

18% 

(1) 

23% 

(1) 

19% 

(1) 

26% 

(1) 

12% 

(5) 

Other shared mobility options (Divvy, 

scooters, etc.) 
17% 

(2) 

19% 

(2) 

14% 

(2) 

17% 

(2) 

17% 

(1) 

17% 

(2) 

17% 

(2) 

17% 

(2) 

16% 

(2) 

17% 

(1) 

Improved suburb-to-suburb transit service 13% 
(3) 

14% 
(3) 

13% 
(3) 

13% 
(3) 

15% 
(3) 

17% 
(3) 

12% 
(3) 

13% 
(4) 

13% 
(3) 

15% 
(2) 

Bus speed and reliability 11% 

(4) 

11% 

(4) 

11% 

(4) 

11% 

(4) 

11% 

(5) 

10% 

(5) 

11% 

(5) 

11% 

(5) 

10% 

(4) 

9% 

(7) 

Transit service for those who rely on it 

most 
11% 
(5) 

11% 
(5) 

11% 
(5) 

10% 
(6) 

14% 
(4) 

13% 
(4) 

11% 
(4) 

14% 
(3) 

9% 
(7) 

13% 
(4) 

Train speed and reliability 10% 

(6) 

10% 

(6) 

10% 

(6) 

10% 

(5) 

9% 

(7) 

10% 

(6) 

10% 

(6) 

9% 

(7) 

10% 

(6) 

13% 

(3) 

Technology (Ventra app, real-time info) 9% 

(7) 

9% 

(7) 

10% 

(7) 

9% 

(7) 

10% 

(6) 

9% 

(7) 

10% 

(7) 

11% 

(6) 

10% 

(5) 

12% 

(6) 

Flexible transit (vehicles on call or on 

demand by app) 
4% 
(8) 

5% 
(8) 

4% 
(8) 

4% 
(8) 

6% 
(8) 

4% 
(8) 

4% 
(8) 

4% 
(8) 

4% 
(8) 

5% 
(8) 

Improved transit service during off-peak 

times  
3% 

(9) 

2% 

(9) 

2% 

(9) 

2% 

(9) 

2% 

(9) 

2% 

(9) 

2% 

(9) 

2% 

(9) 

2% 

(9) 

2% 

(9) 

Sum 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 

 

6.3 Methodology 

Three models are estimated. The first model is a binary logit model using lapsed ridership 

status as the dependent variable. The second and third models are ordered logit models which 

analyze attitudes towards the return to transit and fare integration, defined as a 5-level ordered 

variable from “Strongly Disagree” to “Strongly Agree.” Each model was estimated using 

PandasBiogeme (Bierlaire, 2018).  

6.3.1 Binary Logit Model of Lapsed Ridership Status 

 The first model investigates the main determinants of the changed ridership status (lapsed 

versus non-lapsed) via thorough testing of variables relating to personal characteristics such as 

sociodemographics, employment, remote work status, transportation behavior, and transit 
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investment priorities. Based on those explanatory variables, a latent measure of utility is 

estimated for each alternative and the probability of each respondent being either lapsed or non-

lapsed is assigned. Because the probability of being lapsed or non-lapsed depends on differences 

in utility, the utility specification for the two alternatives can be simplified according to 

Equation 20 where the utility for being non-lapsed, 𝑈𝑛𝑜𝑛𝑙𝑎𝑝𝑠𝑒𝑑, is fixed to 0. The utility for 

lapsed ridership status, 𝑈𝑙𝑎𝑝𝑠𝑒𝑑, includes all explanatory variables as shown in Equation 21 

where X is a matrix of explanatory variables, 𝛃 is a matrix of estimated coefficients, and 𝛜 is an 

independent and identically distributed Gumbel(0,1) error term. The general form of the logit 

probability is described by Equation 22. By fixing the non-lapsed alternative utility to 0, the 

probability of being lapsed can be described with Equation 23. The coefficients, 𝛃, are 

estimated by maximizing the log-likelihood which is defined by Equation 24. 

𝑈𝑛𝑜𝑛𝑙𝑎𝑝𝑠𝑒𝑑 = 𝟎 Equation 20 

𝑈𝑙𝑎𝑝𝑠𝑒𝑑 = 𝑿𝜷+ 𝝐 Equation 21 

𝑃(𝑦𝑖) =
exp(𝑈𝑖)

∑exp (𝑈𝑛)
 Equation 22 

𝑃(𝑙𝑎𝑝𝑠𝑒) =
1

1 + exp(−𝑈𝑙𝑎𝑝𝑠𝑒𝑑)
 Equation 23 

𝐿𝐿(𝛽) = ∑∑(𝑦𝑛𝑖 ln(𝑃(𝑙𝑎𝑝𝑠𝑒)) Equation 24 

 

6.3.2 Ordered Logit model of returning to transit and fare integration 

 The ordered responses from attitudinal statements on transit ridership after health 

concerns are alleviated range from “Strongly Disagree” to “Strongly Agree.” Given the ordered 

nature of the question, modeling is based on the Ordered Logit, also known as the proportional 

odds model (Train, 2009). An interpretation of the Ordered Logit is to generalize the decision 

problem into several binary logits where the latent utility score in Equation 25, UOL, is also a 
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function of the matrix of explanatory variables X, the estimated coefficients 𝛃, and the error term 

𝛜 which is independently and identically distributed Logistic(0,1) Equation 26. shows which 

ordered response is associated with the latent utility score where k1 to k4 are the estimated 

threshold parameters.  

UOL = Xβ + ϵ Equation 25 

yi =

{
 
 

 
 
Strongly Disagree,                         UOL ≤ k1
Disagree,                           k1 < UOL ≤ k2
Neutral,                                    k2 < UOL ≤ k3
Agree,                                       k3 < UOL ≤ k4
Strongly Agree,                               k4 < UOL

 Equation 26 

 The probability of the respondent indicating that they “Strongly Disagree” with a 

statement is shown in Equation 27. Continuing from Equation 27, the probability of the 

respondent indicating that they “Disagree” can be described with Equation 28. The probabilities 

of other responses being chosen can be obtained similarly. The proportional odds assumption 

inherent in the model implies that in Equation 28, the coefficients 𝛃 are equal across the 

components. This implies that the effect of explanatory variables X has an equal effect in each of 

the categorical responses in Equation 26. To test this assumption a Brant test is employed 

(Brant, 1990).  

P(Strongly Disagree) = P(UOL ≤ k1) 
= P(XB + ϵ ≤ k1) 
= P(ϵ ≤ k1 − Xβ) 

=
exp (k1 − Xβ)

1 + exp (k1 − Xβ)
 

=
1

1 + exp(Xβ − k1)
 

 

Equation 27 

P(Disagree) = P(k1 < UOL ≤ k2) 
= P(k1 < Xβ + ϵ ≤ k2) 
= P(k1 − Xβ < ϵ ≤ k2 − Xβ) 
= P(ϵ ≤ k2 − Xβ) − P(ϵ < k1 − Xβ)  

=
exp (k2 − Xβ)

1 + exp (k2 − Xβ)
−

exp (k1 − Xβ)

1 + exp (k1 − Xβ)
 

Equation 28 
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6.4 Results 

Response frequencies for each dependent variable are shown in Table 22. Figure 26 

visualizes the responses by each service. Most respondents lapsed in ridership at the time of the 

study, 80% of respondents stated they would return to transit, and 38% agree that they would use 

transit more with MaaS-fare. Across the different services, lapsed ridership, the intent to return, 

and intent to use transit more with fare integration is consistent. The results for binary logit 

model and the two ordered logit models are shown in Table 23. Using the Brant test, the ordered 

logit models each satisfy the proportional odds assumption (Brant, 1990). Each model is 

estimated using as many common variables so that comparisons between models are more 

straightforward.  

Table 22 Response frequency for RTA analysis dependent variables 
Lapsed Rider Count (%) Response Return to Transit (%) MaaS-fare (%) 

No 1234 (22%) “Strongly Agree” 3101 (55%) 955 (17%) 

Yes 4414 (78%) “Somewhat Agree” 1390 (25%) 1165 (21%) 

Total 5648 “Neutral” 438 (8%) 1864 (33%) 

  “Somewhat disagree” 372 (7%) 498 (9%) 

  “Strongly Disagree” 217 (4%) 483 (9%) 

  “Don't Know or Not 

Applicable” 

130 (1%) 683 (11%) 

  Total 5648 5648 
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Figure 26 Lapsed ridership, return to transit, and MaaS-fare responses by service 
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Table 23 RTA logit model coefficients 

Coefficient Names 

LAPSED RIDER 

(Binary Logit) 

RETURN  

(Ordered Logit) 

MaaS-fare 

(Ordered Logit) 

Model 1 Model 2 Model 3 

PERSONAL DESCRIPTORS Value (t-stat) Value (t-stat) Value (t-stat) 

Constant (Lapsed) -1.07 (7.11) - - 

Female 0.202 (2.67) -0.157 (2.93) -0.201 (3.82) 

Asian -0.504 (3.37) -0.381 (3.42) 0.414 (3.64) 

Black -0.584 (6.00) -0.547 (7.24) - 

Hispanic -0.631 (5.63) -0.395 (4.50) 0.397 (4.55) 

Younger than 35 (base 35 < Age < 64) - -0.241 (3.62) 0.181 (2.78) 

At or older than 65 (base 35 < Age < 64) 0.396 (3.62) 0.267 (3.48) - 

Income ($10,000s) 0.0317 (4.81) - -0.150 (4.05) 

Unemployed 1.03 (10.6) - - 

Teleworking at least 4 days per week 1.98 (20.8) - - 

TRANSPORTATION    
Has HH Vehicle 0.959 (10.3) - - 

CTA Bus User -0.267 (3.16) 0.209 (3.23) - 

Pace (Bus) User -0.432 (4.62) 0.401 (5.02) 0.217 (2.84) 

Substituted Transit with TNC - - 0.33 (3.85) 

Access Mode TNC - - 0.51 (3.29) 

Non-commute travel purposes only 0.602 (7.00) 0.148 (2.48) 0.199 (3.36) 

INVESTMENT PRIORITIES    
Sanitation 0.0839 (4.5) - - 

Shared Mobility   - 0.118 (2.21)  - 

Transit for those who rely on it most  -  - 0.19 (10.6) 

Improve off-peak service  -  - 0.211 (4.75) 

THRESHOLDS    
Tau_1 - -3.21 (34.3) -2.02 (22.2) 

Delta2 - 1.08 (19.1) 0.842 (23.0) 

Delta3 - 0.659 (21.5) 1.77 (48.5) 

Delta4 - 1.26 (40.5) 1.2 (37.0) 

FIT STATISTICS    

Sample size (n) 5648 5518 4965 

Initial Loglikelihood -3914.895 -21207.14 -12338.51 

Final Loglikelihood -2324.28 -6438.101 -7204.744 

𝜌2 0.406 0.696 0.416 

AIC 4676.561 12904.2 14439.49 

BIC 4769.508 12996.82 14537.14 
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 Sociodemographic variables are highly significant in each model. Gender, race/ethnicity, 

and age appear in all models. Interesting observations can be made by comparing 

sociodemographic effects across models. For example, female respondents are more likely to 

lapse in ridership, and are also less likely to return to transit in the future, even with pandemic 

concerns alleviated and in combination with MaaS upgrade to encompass fare integration. Non-

white respondents are less likely to lapse to begin with, though looking to the future they are less 

likely to return to transit than white respondents. Future research should consider analyzing the 

attitudes towards transit in these communities as minority choice riders run a risk of not 

returning to transit. An interesting nuance is that, Asian and Hispanic respondents were more 

likely to use transit more with fare integration compared to Black and White respondents.  

Income appears in the lapsed ridership and MaaS-fare model where higher incomes are 

associated with increased probability of being lapsed but lower likelihood to use transit more 

with fare integration. Employment characteristics only appear in the lapsed ridership model. In 

line with expectations, unemployment status and teleworking at least 4 days per week increase 

the probability of lapsing. The decision to model teleworking as a dummy variable using at least 

4 days per week as the threshold was not arbitrary. During the model building process, using any 

threshold below 4 days per week was statistically insignificant. Additionally, Model 1 

outperforms an alternative model where telework is included as a count variable (AIC = 4698, 

BIC = 4791). This suggests that there is a strong threshold effect observed for workers that 

telework 4 or more days per week. 

Several transportation related variables are also included in each model. Access to a 

household vehicle affects ridership abandonment status, however, does not appear to affect 

intentions to return or not. Some instructive differences are observed for different transit 
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services: Bus users were less likely to lapse in ridership overall, are more likely to return to 

transit as they used it before, and specifically Pace bus users are more likely to state they would 

use transit more with MaaS-fare availability. Riders who substituted transit with MoD or used it 

to access transit also are more likely to indicate they would ride transit more with fare 

integration. Interestingly, a trip purpose variable that appears in all models is a dummy variable 

representing users who only use transit for non-commute purposes. This user segment is more 

likely to lapse but more likely to return and use transit more with MaaS-fare.  

The investment allocation preference variables show the impact of different service 

priorities on rider behavior and intentions. While most of the budget allocation measures were 

not significant in the modeling, three reveal valuable insights. Prioritizing sanitation correlated 

with a higher probability of lapsing, likely related to heightened concerns during the pandemic. 

Prioritizing improvements to shared mobility (e.g. e-scooters and bikeshare) correlated with 

increased intent to return to transit. More equity-oriented concerns, namely prioritizing transit 

improvements for those who need it most and during off-peak hours was associated with being 

more likely to increase use of transit if combined with MaaS-fare.  

While it is clear to see which variables affect each dependent variable, the coefficients 

themselves do not speak to the likelihood of each respondent lapsing in ridership, returning to 

transit, or utilizing transit more with MaaS-fare availability. Therefore, the odds ratios of 

explanatory variables are reported in Table 24 along with each variable’s impact ranked. The 

odds ratios represent the likelihood of being a lapsed rider in the lapsed rider model, and it 

represents the likelihood of agreeing with the attitudinal statements in the other two models. 

These results are highlighted in the next section.  
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Table 24 Odds ratios of RTA choice model results 

Coefficient Names 

LAPSED RIDER 

(BINARY) 

RETURN 

(ORDERED) 

MaaS-fare 

(ORDERED) 

Model 1 Model 2 Model 3 

PERSONAL DESCRIPTORS 
Odds Ratio 

(Inverse)* 

Rank

** 
Odds Ratio 

(Inverse)* 

Rank

** 
Odds Ratio 

(Inverse)* 

Rank

** 

Female 1.22 11 
0.854 

(1.17) 
8 

0.818 

(1.22) 
7 

Asian (base White) 
0.604 

(1.66) 
7 

0.683 

(1.46) 
4 1.51 2 

Black (base White) 
0.558 

(1.79) 
6 

0.579 

(1.72) 
1 - - 

Hispanic (base White) 
0.532 

(1.88) 
4 

0.674 

(1.48) 
3 1.49 3 

Younger than 35 (base 35 < Age 

< 64) 
- - 

0.786 

(1.27) 
6 1.20 10 

At or older than 65 (base 35 < 

Age < 64) 
1.49 9 1.31 5 -  

Income ($10,000s) 1.03 13 - - 
0.985 

(1.02) 
11 

Unemployed 2.80 2 - - - - 

Teleworking at least 4 days per 

week 
7.24 1 - - - - 

TRAVEL BEHAVIOR     

Has HH Vehicle 2.61 3 -  - - 

CTA Bus User 
0.766 

(1.31) 
10 1.23 7 - - 

Pace (Bus) User 
0.650 

(1.54) 
8 1.49 2 1.24 5 

Substituted Transit with TNC - - - - 1.39 4 

Access Mode TNC - - - - 1.67 1 

Non-commute travel purposes 

only 
1.83 5 1.16 9 1.22 8 

INVESTMENTS     

Sanitation 1.08 12 - - - - 

Shared Mobility  - - 1.13 10 - - 

Transit for those who rely on it 

most 
- - - - 1.21 9 

Improve off-peak service - - - - 1.23 6 

*   An inverse of the original odds ratio is provided when it is less than 0 

** Ranking is based on absolute impact, therefore the inverse of an odds ratio which is less than 1 is used for 

comparison 

 

6.5 Discussion and Transit Strategy Implications  

6.5.1 Top Community-informed Transit Investments 

 Before discussing the implications from the model results, the earlier data exploration 

informs us about users’ priorities for transit investments. From Table 20 and Table 21, the 

percentage of money allocated to the different investment priorities after summing the total 
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amount along with their rankings across the user segments is fairly consistent. The top pandemic 

investment priorities for all user segments are to directly reduce the health risks on vehicles. 

Ventilation, sanitation, and mask/distancing enforcement on vehicles are the top priorities by a 

large margin. These categories garnered between 15% to 23% of the total budget allocation 

while the other 6 categories ranged between 4% and 11% across all user segments. Though 

investments at stations and stops garnered some support, investing in and advertising clean 

vehicles can be an important tool to attract ridership. For nearly all user segments, general 

security presence on vehicles is the next priority which further emphasizes the need to have a 

safe riding environment during travel.  

 The top priority from general investments is seamless travel across the different transit 

services and agencies. With transfer penalties having a high value, it is expected that this is one 

of the top priorities (Lee & Vuchic Vukan, 2005). While faster buses and trains has some 

support, reducing the penalties associated with inefficient transfers could increase the 

attractiveness of transit more than the equivalent time savings from improving vehicle speeds. 

The next two investment priorities have a common theme. Transit users prioritized investments 

into micromobility. These mobility options could be used to access transit or to replace a trip. 

The third highest priority is improved suburb-to-suburb services. Both of these investment 

priorities focus on accessibility. However, these improvements should coincide with the 

necessary policies that can increase the likelihood of success. Examples of support for 

micromobility is the installation of protected bike lanes, which is shown to increase bike lane 

ridership (Karpinski, 2021). Micromobility can also aid with improving suburb-to-suburb 

services by being strategically placed in areas for customers to access public transit. Though, a 

better strategy may be to focus bicycle infrastructure and build protected bikeways between 
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suburbs. Figure 23 shows that micromobility is hardly used as an access mode to transit. If not 

to access transit, micromobility can be used as an alternative to it. Although this may not 

increase transit ridership, micromobility and supporting investments still contribute to reducing 

auto-dependency.  

6.5.2 Key Contextual Factors to Consider 

Employment variables had the highest impact on lapsed ridership status with teleworking 

at least 4 days per week and unemployment status having odds ratios of 7.24 and 2.80, 

respectively. This suggests that those who teleworked a majority of the week are 7.24 times as 

likely to be lapsed riders than those who do not. Similarly, those who are unemployed are 2.80 

times as likely to be lapsed riders than employed respondents. These results were expected as 

transit ridership during the pandemic depended on employers’ teleworking policies and whether 

there was even a need for a commute trip given that jobs relating to non-essential activities were 

heavily impacted by pandemic restrictions.  

Outside of employment, trip purpose appeared significant in all three models. 

Respondents who used transit for only non-commuting purposes likely lapsed in ridership due to 

the lack of recreational activities. The two other models suggest that these users, though, are 

likely to return and use transit more with MaaS focused on fare integration. The loosening of 

restrictions on recreational activities will likely cause more trip making and should be closely 

monitored. 

While employment characteristics and the loosening of restrictions on recreational 

activities are not within the control of transit agencies, the importance of agencies to be prepared 

for increased demand is clear. DeWeese et al. (2020) find that several agencies chose to reduce 

their services which leaves them vulnerable to missing out on ridership when demand increases. 
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One strategy that could prepare agencies is to increase their employment. The return to transit 

and maintaining ridership may depend on the level of service that an agency can provide. This is 

motivation for agencies to consider increasing their labor pool. Mack et al. (2021) found that 

30% of urban transit employees could not work because of the pandemic. In Chicago worker 

shortages caused service disruptions that led to significant delays for users (Freishtat, 2021).  

In addition to the contextual factors and their own labor pool, transit agencies can 

consider other avenues to increase ridership. The next subsections discuss the model results for 

race and ethnicity, the potential for fare integration to attract more ridership, and strategies transit 

agencies may consider to prepare for in the future when COVID-19 no longer poses a significant 

health concern.  

6.5.3 On an Equitable Return 

The model results on lapsed ridership and the intent to return to transit show a concerning 

result for gender. Women are more likely to lapse in ridership and less likely to return to pre-

pandemic ridership levels. They are also likely to not have access to a household vehicle because 

of gendered household car use dynamics where women are less likely to use the household 

vehicle to complete tasks (Palm et al., 2021). Therefore, women are particularly vulnerable to 

reduced access to public transportation. 

Also of importance are the race and ethnicity results. These factors appear in all models 

and are all highly impactful as well. As a group they are the second most impactful factor 

compared to the employment characteristics with minority riders being less likely than their 

counterparts to lapse in ridership. This result reflects the high representation of minorities 

holding essential jobs (Wilder, 2021). However, race and ethnicity are the most impactful 

variable in the return model which indicates that even if abandonment is lower, minorities are 
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less likely to return to transit as they used it before. I hypothesize that the disproportionate 

impact of COVID on minority communities within Chicago plays a major role in the decision 

not to return (Pierce et al., 2021). With higher rates of infection in these communities, minority 

transit users may consider the risk of infection too high to consider sharing a bus or train with 

others. Indeed, Table 20 does show that the top priorities among minority riders are ventilation, 

sanitation, and mask/distancing enforcement on vehicles. In addition to risk perceptions, there 

may be another issue which compound this surprising finding that Asian, Black, and Hispanic 

users are less likely to return to transit. 

 With the substitution of transit for ridehailing being correlated with crime (Meredith-

Karam et al., 2021), an increased general security presence around transit infrastructure can 

create a safer environment that attracts lapsed riders, especially in minority communities where 

crime rates are higher. Increased security may also help transit be an attractive mode for women 

as perceptions of safety are important (Lubitow et al., 2017). Though, security measures must be 

taken carefully so that policing does not become discriminatory (Carter & Johnson, 2021). 

Beyond increasing security, transit agencies can also improve the level of service in these 

communities, though with equity being the focal point of any strategy’s implementation.  

Improving access to jobs for minority and low-income communities by responding to the 

spatial mismatch of people and employment centers could spur ridership, especially for low-

income workers who live outside of the inner city (Liu & Kwan, 2020). For women in particular, 

investigating the relationship between household responsibilities and travel and could lead to 

opportunities to reduce their transportation vulnerability (Scheiner & Holz-Rau, 2017). This 

further emphasizes the need to understand the dynamics surrounding teleworking, labor, and 

household dynamics as cities transition out of restrictive measures. Strategies which emphasize 
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transit-oriented development ought to consider strong community engagement to ensure 

equitable outcomes (Lubitow et al., 2017; Lung-Amam et al., 2019). Increased security presence 

and continued development of transit services improves access and are ongoing efforts by many 

agencies. One effort that transit agencies may consider is to accelerate fare integration with 

private services such as micromobility, ridehailing, and carsharing. 

6.6 Conclusion 

In this chapter I examine the determinants contributing to transit commuters reducing their 

ridership during the COVID-19 pandemic, returning to transit once health concerns are 

alleviated, and increasing ridership should MaaS with fare integration be implemented. Three 

models are estimated to understand how these details contribute to their transit ridership 

decisions. The first model focuses on understanding the factors leading to reduced transit 

ridership during the pandemic. The strongest factors which lead to ridership cessation are 

teleworking a majority of the work week, being unemployed, and household car ownership 

levels. The second model considers the potential return to pre-pandemic transit ridership levels. 

It showed the concerning impact of race and ethnicity on the reduced likelihood of returning. 

Though being a minority is not in itself a reason to shift away from transit, this highlights a need 

to understand how transit is perceived in these communities and how to best serve them with an 

attractive alternative to private auto ownership and use. This model also highlights that bus users 

are more likely to return than train riders and that age does play a role with younger commuters 

being less likely to return. The third model analyzes the factors leading to increased transit 

ridership should the fare system across several shared modes be integrated. The model shows 

that transit riders who use ridehailing are likely to increase their usage, pointing to an 

opportunity for ridehailing and public transit to complement each other for multimodal lifestyles. 
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Interestingly, race and ethnicity play a role here and show the reverse outcome seen in the 

second model, namely that Asian and Hispanic transit riders are more likely to increase their 

ridership. The third model also reveals how transit investment priorities reveal the relationship 

between MaaS and accessibility, where those who prioritize off-peak services are likely to use 

transit more with fare integration.    

 With these models, I also provide avenues for future research and policy 

recommendations. For future research, an equitable public transit system depends on 

understanding the unique needs in minority communities. It behooves researchers and service 

providers to understand how transit can attract these customers during the pandemic recovery. 

Additionally, the importance of telecommuting is seen here and confirmed in other studies. This 

shift towards normalizing telecommuting highlights the need to investigate long-term residential 

and mode choices. On the policy side, the transit investment priorities shed light on what riders 

would like to see. Among several population segments, improved coordination between CTA, 

Metra, and Pace services was the consensus top priority. The next top priority is more shared 

mobility options, specifically bikeshare, scooters, and carsharing. The third top priority is 

improved suburb-to-suburb services. These last two priorities focus on transit accessibility where 

shared mobility can be used to fill the gap for fixed-route transit and suburb-to-suburb services 

increase accessibility in the Chicago radial system. 
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7 CONCLUSION 

7.1  Summary of Dissertation Research 

 This dissertation explores shared mobility across several dimensions to answer the 

following four questions: 

1. How is ridehailing utilized? 

 

2. What are the determinants of MoD demand? 

 

3. How did the COVID-19 pandemic affect short-term and long-term travel 

behavior towards public transit, MoD, and other shared modes? 

 

4. What are the societal and distributional impacts of innovative mobility services? 

I began this research when the Chicago ridehailing trip data first became available at the end of 

2018. Earlier research relied on surveys or a small sample of trips to understand ridehailing 

utilization.   Because of the novelty of the data, I aimed to also understand the general trends of 

ridehailing and supplement the literature with evidence from empirical data. I completed a K-

Prototypes analysis to cluster similar trips together. In total, 6 types of trips were identified. 

What appeared are several categories that mirror what has been found in survey-based studies. 

Ridehailing is being used in the evening in areas known to have bustling nightlife, to access the 

airport, avoid bad weather, and replace public transit where service is sparse. Disconcertingly, I 

identify a category of trips where public transit is highly competitive. Ridehailing had a slower 

travel time and most certainly higher cost than an equivalent transit ride. And surprisingly, a 

category of only ridesplitting trips is identified. To continue my investigation of this ridehailing 

data, I then estimated models to understand the factors informing its demand. 

 I estimated several models that regressed the average daily ridership of the 77 Chicago 

community areas onto several variables representing social vulnerability, population 
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characteristics, recreational activity density, and transit accessibility. Given the spatial nature of 

the ridehailing dataset, I utilized a Spatial Durbin model which accounts for a community’s 

direct effect on ridehailing demand and its indirect effect on neighboring communities. 

Additionally, I modeled the demand for private ridehailing and ridesplitting separately, owing to 

the surprising result in the K-Prototype analysis that ridesplitting represented its own category of 

trips. Much of what has been found in the literature was confirmed in this study. Communities 

that had higher population density, a younger population, smaller households likely without 

children, and more recreational activities (bar and restaurant density as a proxy) are correlated 

with more private ridehailing and ridesplitting demand. This study also added to the discourse on 

the status of ridehailing platforms as competitors or as complementary modes to public transit. 

The model results indicate that better transit accessibility measured by the average walking time 

to a heavy rail transit station is correlated with more private ridehailing and ridesplitting trips. 

And lastly, a difference between the two modes is identified. To represent the social vulnerability 

of a community, I develop an index to account for the intersectionality of race, poverty, and 

access to transportation and regress demand on it. The Spatial Durbin modeling results reveal 

that more social vulnerability is correlated with ridesplitting trips but less private ridehailing 

demand. Unfortunately, the ridehailing data cannot be paired with personal data about the riders 

and only community-level factors can be used. Therefore, I turn to survey-based data to 

understand individual-level mode choice to understand the tradeoffs between cost, travel time, 

privacy, and other variables affecting the decision to use shared mobility. 

 I collected individual-level mode choice behavior by designing a choice experiment for 

car and transit commuters. The focus of the study is to understand microtransit being used as a 

commute mode. Attributes of interest centered around novel (to ridehailing) mode attributes that 
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blur the line between demand responsive and traditional public transit. The choice experiment is 

a pivoted, D-efficient design that also incorporates realism. Not only is the current commute and 

its attributes used as the reference alternative, but the microtransit alternatives’ cost and travel 

time reflect realistic values. For example, the choice experiment presented to car commuters was 

designed in a way to ensure that microtransit costs were always lower than driving, while at the 

same time never microtransit would never outperform driving in terms of speed. For transit 

commuters, microtransit was always just as fast or faster than their current commute but costs 

were always greater. In the survey, I also account for latent attitudes including the respondents’ 

comfort in COVID risky situations as the survey was distributed at the beginning of the COVID-

19 pandemic. After estimating an Integrated Choice and Latent Variable model for each 

commuter group, I found that car commuters’ utility towards microtransit was insensitive to 

travel costs but was sensitive to travel time, the number of people sharing the vehicle, and 

COVID risk perception. Conversely, transit commuters were sensitive to cost while being 

insensitive to out-of-vehicle travel time and COVID risks. While the COVID Comfort latent 

variable is not a statistically significant variable in the transit commuter choice model, public 

transit did see a drastic decline in ridership due to lockdowns which closed several businesses, 

companies shifting to teleworking, and several transit agencies reducing services. With the 

prolonged pandemic bringing the possibility of permanent shifts in mobility, I again turn to 

survey-based data to understand the pandemic’s effect on public transit, MoD, and micromobility 

from the perspective of a transit user. 

 Data collected from a comprehensive transit survey conducted by Chicago’s Regional 

Transit Authority revealed many of the effects of COVID-19 on public transit. Nearly 80% of 

transit users significantly reduced their ridership. After modeling the decision to reduce transit 
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ridership, teleworking and employment status are highly impactful. Those who teleworked a 

majority of the week were nearly 8 times as likely to lapse in ridership than those who do not, 

and riders who are unemployed are nearly twice as likely to lapse in ridership. 20% of 

respondents indicated they are unlikely to use transit at pre-pandemic levels once all health 

concerns have been alleviated. Concerningly, Asian, Black, and Hispanic transit users are more 

likely to not return. For public transit to be part of an equitable pandemic recovery, research is 

needed to understand how transit can attract those who did not intend on returning. One solution 

is to integrate the public transit fare system with other shared mobility services. The survey 

found that 38% of respondents are willing to increase their transit usage if fare integration is 

implemented. Modeling these responses, Asian and Hispanic riders are more willing to increase 

their ridership with this feature. Altogether, these results highlight the negative impact of 

COVID and the opportunities for transit agencies and private mobility companies to collaborate. 

 In Chapter 7, I summarize my research, synthesize the results of each study to gain a 

broader perspective on shared mobility, discuss the limitations, and possibilities for future 

research. I conclude that ridehailing is generally used for irregular trips and is unlikely to unseat 

traditional modes as a commute option. Hardly used as a transit access mode, ridehailing can act 

as an alternative to poorly accessible transit. The determinants for demand at the community 

level generally follow what has been found in the literature. Higher population density, higher 

density of recreational activities, and communities that are more suitable for multi-modality are 

correlated with higher ridehailing demand. At the individual level, car commuters are highly 

sensitive to travel time while transit commuters are sensitive to the cost of microtransit 

alternatives. Because of the pandemic, public transit ridership drastically decreased and travelers 
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became more likely to shift towards private modes. There is an opportunity for transit, MoD, and 

shared mobility to work together, though, and aid in an equitable pandemic recovery. 

7.2 How is Ridehailing Utilized? 

 Ridehailing utilization is analyzed several different ways. It is the first question I asked at 

the beginning of this journey, and from there spawned the subsequent questions on demand 

determinants. Though it is the first question and the motivation behind the K-Prototype analysis, 

the answer to it can be bolstered by synthesizing the results of all studies. 

 The analysis revealed distinct categories of trips which accounted for the ridehailing trip 

data, weather, transit performance, and taxi connectivity. The categories, or ‘prototypes,’ showed 

that ridehailing is used to fill the gaps in transit service. One of the main categories of trips was 

defined by poor transit performance when compared to the other categories. More evidence can 

be found in the results from the Spatial Durbin modeling of ridehailing demand, where more 

demand is correlated with communities with higher vulnerability indicators (e.g. large share of 

minority population, many families living below the poverty line, single parenthood, etc.). These 

communities with higher vulnerability also have relatively poor access to transit when compared 

to affluent neighborhoods that are served with high heavy rail and bus frequencies due to their 

proximity to the business core of Chicago. Therefore, it is likely that they are using ridesplitting, 

which offers lower fares than private ridehailing and often times with the same travel time 

performance, to fill in an accessibility gap that transit could not.   

 Additionally, ridehailing can be highly competitive with transit which supports the 

findings from Babar and Burtch (2017) and Erhardt et al. (2021). A different prototype identified 

in the analysis was defined by public transit having lower travel times than the ridehailing trip. 

And most certainly, these trips were cheaper. The research literature warns against dominated 
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alternatives in choice experiments because respondents will not examine tradeoffs beyond 

attributes when the choice is straightforward, yet the empirical data shows that ridehailing was 

still chosen over highly competitive transit services. This highlights the need to understand the 

role that pooling plays in mode choice, where public transit has the highest degree of sharing. 

Indeed, the microtransit alternatives for car commuters in chapter 6 always had a lower price 

and, in some choice scenarios, the same travel time, yet there were instances of respondents 

never choosing microtransit once. It is likely that microtransit will need a much steeper fare 

discount to be competitive with the private automobile for commuting. For public transit 

commuters, more respondents were willing to switch to microtransit though not a substantial 

amount. Unlike their car commuter counterparts, there was no strong indication that microtransit 

would replace their status quo commute mode. The analysis found that many of the transit users 

are captive riders, constrained by small budgets, so in regards to commuting it is unlikely that 

microtransit will take away from public transit ridership. Ridehailing then is highly competitive 

for non-commute trip purposes. 

 The Regional Transit Authority conducted a survey to find the effects of COVID-19 

several months more into the pandemic than the Israeli microtransit survey, allowing for an 

analysis of travel behavior after the initial onset of the pandemic. Prior to the pandemic, there 

was a somewhat complementary relationship between ridehailing and public transit. Overall, 

only 2.2% of all transit riders use ridehailing as an access mode. When looking at individual 

transit services, 0.8% of CTA riders, 2.5% of Metra riders, and 1.0% of Pace riders use it to 

access transit. CTA riders had the lowest rate of using ridehailing to access transit because they 

likely have other alternatives such as active modes, meeting my expectations because this transit 

service has the highest stop density. The highest rate being for Metra riders is unsurprising, as 
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this service serves a sparse network in the suburban areas of Chicagoland as a commuter service 

for higher-income earners. Pace riders are typically captive riders, so they likely do not have 

access to a household vehicle and ridehailing is the next best alternative. However, the rate of 

ridehailing as an access mode is lower than Metra riders likely due to budgetary constraints. 

During the pandemic, ridehailing shows larger percentages of substitution rather than 

complementing transit. 

 22% of transit riders substituted transit for ridehailing. Looking at the different transit 

agencies, 28% of lapsed CTA riders, 26% of lapsed Pace riders, and 10% of Metra riders 

substituted their transit usage for ridehailing. The lower percentage of riders switching to 

ridehailing from Metra are likely not switching to ridehailing because that mode serves primarily 

higher-income commuters from the suburbs to downtown Chicago, which is heavily affected by 

telecommuting. For Pace riders, the relatively higher rate of substitution for ridehailing is likely 

to fill in the gaps of service while taking into account the health risks posed by COVID. And the 

switch to ridehailing from CTA riders is the highest likely from many of these riders already 

being multi-modal, having lower car ownership rates so ridehailing is has less competition, and 

concerns about transit safety.  

 In summary, ridehailing utilization is tied to its highly competitive nature. The K-

prototype analysis saw several trip types that are also seen in the literature, using ridehailing for 

airport trips, in rough weather, and as a substitute for transit. From the Spatial Durbin results, 

communities with higher vulnerability indicators are using ridesplitting when transit access is 

poor. Without more details about trip purposes and riders in the Chicago ridehailing dataset, 

survey data can shed more light on ridehailing utilization. Microtransit is unlikely to be used as a 

commute mode, where the Israeli study found car and transit commuters alike are likely 
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unwilling to switch to microtransit for a plethora of reasons ranging from the cost-travel time-

privacy tradeoffs to COVID risk perceptions. Extremely small evidence of a complementary 

relationship is seen in the RTA survey data with 2.2% of transit riders using ridehailing as an 

access mode. Using the same data, the high competitiveness of ridehailing with transit is evident 

during the pandemic. 22% of transit riders substituted their lapsed ridership with ridehailing.  

7.3 What are the Determinants of MoD Demand? 

 Determinants of ridehailing demand are observed from each of the datasets used in this 

dissertation. The large Chicago ridehailing dataset allowed me to understand demand factors at 

the community-level, while survey-based data gave insights into individual level decision-

making. 

 The Chicago ridehailing data revealed and confirmed many of the factors found in the 

ridehailing literature. Higher population density, higher density of recreational and leisure 

activities, and higher transit accessibility are positively correlated with ridehailing demand 

(Rayle et al., 2016; Yu & Peng, 2019). When ridehailing rides are differentiated by private rides 

and ridesplitting, more nuance can be seen from a community sociodemographic perspective. 

Communities with higher indicators of social vulnerability are correlated with more ridesplitting 

trips but fewer private trips. Survey data reveals more about decision-making at the individual-

level. 

 The microtransit study is able to understand decision-making from the perspective of car 

and transit commuters. Additionally, this study examines novel (ridehailing) features not listed in 

Table 13. For microtransit, the determinants of demand for it being a commute mode are 

interesting with a highly realistic choice experiment uncovering the steep tradeoffs needed for 

commuters to switch to it. The choice experiment for car commuters considered scenarios where 
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the cost for microtransit was always less than the cost for commuting by car, taking into account 

parking fees and operational car costs, yet many commuters never considered microtransit even 

when the travel times are equal. An interesting result from the choice model for these commuters 

is that the cost attribute did not significantly impact the utility, stressing the importance of other 

microtransit attributes such as walking and waiting time. When these values are too high, the 

likelihood of choosing microtransit decreases.  Car commuters also exhibited significant effects 

for shared mobility familiarity. Those who used ridehailing abroad or have used other sharing 

services are more likely to use microtransit.  

 Transit commuters saw microtransit travel times that were as quick or quicker in their 

choice experiment. While most microtransit attributes are statistically significant and in the 

direction expected, the model results also show that walking and waiting time do not 

significantly impact the utility of microtransit. Similar to car commuters with familiarity with 

shared services, transit commuters already experience out-of-vehicle travel time so may not 

consider these attributes when examining the microtransit utility.  

 Both commuter groups had significant disutility for microtransit attributes such as the 

number of people sharing the trip and how long before trip departure a trip must be scheduled. 

Conversely, both commuter groups had no effect on utility of microtransit with the availability of 

a sheltered boarding location much like what can be found at existing bus stops. 

 In summary, community-based and individual decision-making affect the demand for 

ridehailing whether it be private ridehailing, ridesplitting, or microtransit. Population density, 

recreational activity density, and higher transit accessibility are positively correlated with overall 

ridehailing demand. These community-based factors point to ridehailing demand being mainly a 

response to urban restrictions. In highly dense areas where transit accessibility is likely to be 
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high, using a private automobile is costly because drivers consider congestion and parking costs. 

At the individual-level, ridehailing attributes such as cost and travel play an important role, 

though trip purpose plays an important role, too (Al-Ayyash et al., 2016; Tarabay & Abou-Zeid, 

2019). Seen in the microtransit study are car commuters who may not have found the cost 

savings worth the travel time and privacy tradeoff, and transit commuters are likely captive and 

would not consider microtransit as a regular commute option. Therefore, ridehailing is unlikely 

to be used as a regular commute option. Additionally, demand is likely to depend mainly on 

attributes relating to the cost and time commitments (in-vehicle travel time, out-of-vehicle travel 

time, and minimum reservation time) of ridehailing modes rather than “luxuries” such as a 

sheltered boarding location. 

 Contextual factors such as trip purpose being commute or non-commute related play an 

important role in ridehailing demand. The K-Prototype analysis identified evening recreation 

trips, trips in bad weather, and trips to the airport. These are not regular events. Therefore, it is 

likely that ridehailing demand is mainly based on the amount of irregular travel rather than 

regular events such as commuting to work or school. A large contextual factor for ridehailing 

demand, and more broadly shared mobility demand, is the pandemic which is discussed at length 

in the following subsection.    

7.4 How did the COVID-19 pandemic affect short-term and long-term travel 

behavior towards public transit, MoD, and other shared modes? 

 The pandemic began soon after the winter of 2019-2020. Thus began an era where 

mobility became severely afflicted by hysteria caused by an easily spreadable and fatal sickness. 

The first analytical chapters utilized Chicago ridehailing data before the start of the pandemic, 

using data from 2018 and 2019. From the onset of the pandemic in March of 2020, shared 



 

174 

 

mobility usage was heavily impacted. In the United States, public transit ridership decreased and 

private shared mobility companies quickly scrambled to devise and implement strategies that 

responded to health risks posed by COVID-19, the perceived health risks, and severely reduced 

demand. The latter analytical chapters of this thesis are based on surveys that were distributed in 

2020 and 2021 to capture travel behavior towards shared mobility. 

 During that time, I collected data on mode choice which compared a respondent’s status 

quo commute mode before the pandemic to novel microtransit alternatives. Mode choice in these 

choice experiments was heavily affected by pandemic perceptions. Indeed, latent variables are 

important to consider when investigating mode choice and ridehailing (Alemi, Circella, 

Mokhtarian, et al., 2018; Lavieri & Bhat, 2019a). In both car and transit commuter groups, a 

latent variable that was interpreted as a respondent’s comfort in COVID risky situations, or 

“COVID Comfort,” did indeed affect mode choice. The latent variable had a pronounced effect 

on microtransit utility as revealed by COVID Comfort having a higher elasticity than cost and 

time attributes.  

 In the short-term due to the pandemic, 80% of transit users in Chicagoland reduced their 

ridership. When modeling ridership status, the most impactful variable was about employment 

and highlights the motivation to understand the long-term impacts of COVID. Those who 

teleworked 4 or more days per week are more than 7 times as likely to lapse in ridership than 

those who do not. Though employment is not controlled by public transit, COVID has caused 

some companies to consider permanently adopting hybrid teleworking scenarios, if not fully 

adopting it. Therefore, the shift towards teleworking can severely impact shared mobility, 

especially public transit, since teleworkers no longer need to commute. Additionally, teleworkers 

may not need to live in proximity to their place of employment. There is a possibility that 
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populations will shift to areas outside of the urban core where transit obtains most of its 

ridership. For the long-term, transit agencies must account for these shifts. 

 In addition to understanding lapsed ridership, respondents were asked their likelihood of 

returning to their pre-pandemic transit ridership levels once all health concerns were alleviated. 

80% of respondents indicated that they will return which still leaves 20% of riders unlikely to 

return. When modeling these responses, race collectively had the highest impact with Asian, 

Black, and Hispanic respondents being less likely to return. In general, these population 

segments are more transit dependent. Therefore, more research is needed to understand why they 

may not return. Younger transit users are also less likely to return. From a long-term perspective, 

losing these groups of riders is concerning. It is recommended that transit agencies make a 

concerted effort to understand why minority and younger riders may not return to transit.  

Reducing services in response to lower demand in these communities may exacerbate prevailing 

equity concerns, where reducing services in communities that do not quickly regain transit 

ridership could permanently drive lapsed riders to less efficient modes. Though as doom and 

gloom this result is, the RTA analysis also collected data on other opportunities for shared 

mobility. 

 Specifically, the RTA survey found that 38% of respondents agreed that they would use 

transit more if its fare system is integrated with other shared services such as ridehailing and 

bikeshare, in other words MaaS. Importantly, modeling these responses revealed that Asian and 

Hispanic users are more likely to use transit more with MaaS. While these minority groups may 

be less likely to return to transit, they may return if MaaS were implemented. Additionally, this 

model also finds that those who used ridehailing to access or substitute transit would be willing 

to increase their transit ridership with fare integration. What the pandemic did in the long-term is 
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open the door for public transit and other shared mobility services to work in tandem. Indeed, the 

top priorities across most population segments for future transit investments are a seamless travel 

experience between existing traditional transit services and increased coverage of micromobility.  

 Overall, the pandemic may have inadvertently induced an opportunity for shared mobility 

to take a stronger role in urban transportation systems. At the time of writing this dissertation, 

public transit ridership has yet to rebound to pre-pandemic levels, there is a possibility that riders 

may not return, and other concerns such as security may linger long after health concerns have 

subsided. The post-pandemic landscape is ripe with opportunities for public transit agencies and 

private mobility companies to collaborate and offer an attractive, comprehensive, and efficient 

travel experience. Hensher (2020) also points out this opportunity for MaaS to play a vital role in 

pandemic recovery, even promoting beyond the collaboration of shared mobility services to non-

transportation services.  

 To inform the implementation of MaaS, transit agencies and private mobility companies 

alike ought to take heed of previous pilot programs (Karlsson et al., 2020; Sochor et al., 2016). 

This is further discussed in the following subsection. 

7.5 What are the Societal and Distributional Impacts of Innovative Mobility 

Services? 

 Accessibility and mobility are undoubtedly tied to prosperity. With several modes that 

can quickly bring travelers to their destination, they can optimize resource utilization and use the 

remaining resources for other purposes. For example, an urban dweller has access to bikeshare, 

e-scooters, and public transit to serve his needs and does not need to own a vehicle. Rather than 

spending resources on vehicle ownership, he can use that money for other purposes. On the other 

hand, rural folk rely on personal vehicles to access destinations that are miles away from each 
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other. In this subsection, I focus on the equity implications of shared mobility. Specifically, I 

synthesize the results of previous chapters to understand how shared mobility can be leveraged 

for more equitable accessibility and mobility outcomes. 

 Shaheen et al. (2017) summarize five barriers to accessing transportation, causing 

resource burdens on underprivileged households that have few choices. These barriers are 

spatial, temporal, economic, physiological, and social. Spatial barriers exists when transit stops 

or other destinations are too far to reasonably access; temporal barriers exist when travelers 

cannot complete time-sensitive trips; economic barriers exist when a traveler cannot bear the cost 

of traveling; physiological barriers exist when a traveler has physical or cognitive complications 

when trying to access transportation; and social barriers exist when a traveler experiences 

societal exclusion based on race, language, cultural, and political characteristics.  This 

dissertation finds several ways that shared mobility can lower these barriers. 

 By utilizing the Chicago ridehailing trip dataset and analyzing the demand, I found that 

greater ridesplitting demand is correlated with a community’s vulnerability index. Because 

communities with higher vulnerability indicators are more likely to have poor access to 

transportation and more specifically public transit, ridesplitting may be a cost-effective 

alternative to auto ownership, traditional taxis, private ridehailing, and sparse public transit. 

Among the barriers to equitable transportation accessibility and mobility, ridesplitting lowers the 

spatial, temporal, economic, and social barriers. The on-demand characteristic of ridehailing, and 

by extension ridesplitting, means that users can request a door-to-door trip at any time of day. 

Indeed, convenience of ridehailing is cited as one of its main attractions (Rayle et al., 2016). 

Ridesplitting trips are also less expensive than private services to account for the privacy and 

travel time tradeoffs. Though, because many of the ridesplitting trips occur in less dense areas, 
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the likelihood of a trip being shared and adding extra travel time is lower. Therefore, ridesplitting 

users in vulnerable communities may very well be using ridesplitting with the same level of 

service they could have received with more expensive alternatives. On the social side, ridehailing 

was found to overcome discrimination by traditional taxis that would choose not to serve 

minority neighborhoods (Brown, 2019). Altogether, the Spatial Durbin analysis of ridehailing 

demand finds that ridesplitting can lower the barriers to transportation accessibility. However, 

these findings taken at face-value could leave policy-makers to interpret wrongly that 

ridehailing’s potential has been fully realized.  

 The proponents of ridehailing hailed it as an opportunity to solve the first-mile-last-mile 

transit problem, but the RTA study found that only 2.2% of transit users ridehailing to access 

transit with the highest rate coming from higher-income users. For CTA and Pace which serve a 

broader customer-base, only 0.8% and 1.0% used ridehailing as an access mode, respectively. 

Additionally, ridehailing is unlikely to replace transit for commuting in urban areas, especially 

for captive users. The microtransit choice experiment found low adoption of ridehailing 

alternatives for commuting. If not as an access mode or to replace transit entirely, how then does 

ridehailing evolve to achieve equitable transportation accessibility? The results from the RTA 

analysis may shed some light on the answer.  

 The third model estimated in the RTA analysis was on the likelihood of increasing transit 

ridership if the fare payments were seamless across shared mobility services. As discussed 

previously in this chapter, race was an important factor when examining how MaaS system can 

promote transit. Asian and Hispanic riders are more likely to use transit with MaaS 

implementation. Indeed, previous research found that these two population segments were quick 

to adopt ridehailing and their propensity to be early adopters may apply to MaaS (Lavieri & 
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Bhat, 2019a).  The RTA data also reveals that minority riders’ highest general transit investment 

priority are shared mobility options such as bikeshare and scooter-share. These modes can serve 

two purposes. Bikeshare and scooter-share can be used to access transit or replace an otherwise 

unattractive transit trip. Moreover, pairing ridehailing with these modes fills the rest of the 

mobility and accessibility gap. Additionally, lower-income respondents are also more likely to 

increase transit ridership with MaaS. In the same way that the fare system for the three transit 

agencies in Chicagoland can recognize different types of riders (e.g. senior, student, low-income, 

etc.), it is possible that specific fare considerations can be applied for certain rider segments 

across all MaaS services. With both traditional and new shared mobility working in tandem, a 

platform that can seamlessly handle transactions between services contributes to improved 

transportation accessibility for underprivileged transit users.  

Even with much a plethora of benefits, getting multiple service providers to collaborate 

and engage in fare integration can be challenging. Karlsson et al. (2020) highlights challenges at 

several levels of implementation. Some of the main challenges include building a shared vision 

on the role of MaaS and cooperation among stakeholders and operators. Dialogue can start 

between government agencies and service providers centered around high-level goals. Some 

examples from pilot programs include MaaS supplementing existing fixed transit routes or 

identifying where flexible, on-demand services can replace low revenue routes. With the service 

providers and stakeholders, the challenges are centered on uncertainties over their roles and the 

fear of being dominated by competitors (Monahan & Lamb, 2022).  At the user level, a main 

challenge is difficulty in changing travel behavior. Karlsson et al. (2020) finds that users 

assessed the benefits of MaaS based on their specific situation as opposed to the broad 

availability of connected services, which may still include services that hold no benefit to them at 



 

180 

 

all. Additionally, MaaS benefits may not be fully understood by users until they have been 

trialed extensively (Sochor et al., 2016).  

These challenges, again, highlight the need for greater community engagement at many 

levels to understand how best MaaS can be implemented to develop an equitable, economically 

feasible, and environmentally conscious transit system. Lung-Amam et al. (2019) find that 

cooperation among several interest groups addresses the unique issues faced at the local and 

regional level. Indeed, given the cross-jurisdictional nature of many transit systems, where buses 

and rail lines cross several city borders, MaaS implementation may be best handled as a regional 

question, in the context of the United States, at the Metropolitan Planning Organization level. 

7.6 Research Limitations 

 Several implications are taken from the results of my research, however, there also exists 

limitations.  Firstly, the K-Prototype analysis highly depends on the data provided. Because the 

purpose of the unsupervised learning technique is to cluster similar trips together, it is limited to 

the input features to calculate trip observation similarities. I remedy this by utilizing data whose 

affects are seen in the research literature. Namely, features that reveal poor weather avoidance, 

transit accessibility, and the competition between taxis and ridehailing. There may very well be 

other clusters of trips that can be identified as the number of features included in the analysis 

increases. Another limitation to that study is the aggregation of the data to the Census tract level 

for the ridehailing origin and destinations. The main purpose of employing K-Prototype is to 

handle categorical data which was a necessity to handle the origin-destination data. Rather, other 

studies relied on more computationally efficient K-Means because the GPS coordinates are 

included in that data (Ma et al., 2019; Xiong et al., 2021).  
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 Another limitation to the research again involves the Chicago ridehailing dataset. Just as 

the origin-destination pairs of ridehailing trips were spatially censored, the trip dataset cannot be 

linked back to the riders themselves nor to the other publicly available datasets provided by the 

City of Chicago. In fact, a Freedom of Information Act request sent to the city did not yield any 

new information to connect the Chicago ridehailing trips, vehicle, and driver datasets. With this 

data, the clustering and spatial analysis could have benefitted greatly by analyzing the general 

trajectory of drivers and a more specific understanding of the efficiency of the trips based on the 

vehicles used.   

 Regarding the survey-based studies, several biases can affect the results. Namely, the two 

biases that may greatly affect the results are response bias and optimism bias. For example, 

response bias can cause inaccurate choice modeling in the microtransit study. Because they 

believe it is the more responsible choice or the choice that researchers would like for them to 

make, respondents could be choosing microtransit in the experiment even when they have no 

intention to use. Therefore, forecasting demand could provide misinterpreted results (Fujii & 

Gärling, 2003). Additionally, optimism bias may be present in the COVID-19 lapsed ridership 

analysis. Specifically, the responses modeled in Chapter 6 are about the intent to return to transit 

and use transit more with fare integration. Several assumptions about the future, such as having 

all health concerns alleviated, are very strong. Therefore, respondents may be thinking too 

optimistically about a decision far into to the future (Næss et al., 2015). While the purpose of 

these studies was not to forecast demand, future research should consider the affects these biases 

may have and use this information to examine strategies that address them. 
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7.7 Future Research 

 This dissertation covered several aspects of shared mobility. Figure 27 shows areas 

where future research can shed more light on shared mobility, especially to understand how 

shared mobility can be used to increase transportation accessibility. I identify topics that can 

expand the literature on shared mobility. First, ridehailing trip data can be supplemented with 

other data to understand more about individual-level mode choice such as in Chapters 5 and 6. 

The Chicago ridehailing trip dataset does not contain information about the riders or the purpose 

of the trip. In Chapters 3 and 4, I could only infer these characteristics at the community-level. 

Second, shared mobility and MaaS should be investigated at the scale of the Chicago ridehailing 

trips data. While the survey data informs individual decision-making, observing overall shared 

mobility trends can reveal the scenarios when MaaS is an attractive choice. One such data 

collection method that can be utilized for both research avenues is mobile trace data used in 

conjunction with questionnaires (Anagnostopoulou et al., 2020; Calabrese et al., 2013).  

 The K-Prototype and Spatial Durbin analysis of the ridehailing trips was limited by the 

data being censored spatially, temporally, and any information about the riders or trip purpose. 

Mobile trace data used with questionnaires about trip purpose can be used to expand the 

ridehailing research literature. People opting in to a panel study can provide sociodemographic 

information such as race, income, employment characteristics, what stage they may be in life. 

While collecting the mobile trace data, questionnaires can be used to collect information about 

trip purpose and other data pertinent to mode choice.  
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Figure 27 The range of completed research and areas for future research 

 With this wealth of data, the data can be segmented in several ways and contain rich 

information on who is making the trip and why. One way the data can be segmented is by trip 

purpose. Evidence from this thesis points towards ridehailing being used for irregular trips, but 

whether these trips are to access healthcare, recreational, or shopping activities is unknown. By 

segmenting trips by their purpose, researchers can disentangle the cost, travel time, and privacy 

tradeoffs under different contexts. Values of time differs by trip purpose (Lavieri & Bhat, 2019b; 

Small, 2012), and these values can be used to inform policies such as congestion charging. 

Another piece of data that can be collected using questionnaires are the travelers’ mode choice 

sets. Multi-modality is a growing body of literature (Kuhnimhof et al., 2012; McLaren, 2016; 

Scheiner et al., 2016). Heinen and Mattioli (2019) find that multi-modality in England decreased 

despite overall private auto use also decreasing, revealing a complex relationship between modes 

and their utilization given that non-autos were not necessarily replacing auto trips. With the 

availability of new shared mobility services, the following research question can possibly be 

answered with comprehensive data. What are the effects of ridehailing on multi-modality? By 

utilizing mobile trace data and pairing it with supplementary data on trip purpose and alternatives 
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that were considered, researchers can better understand when ridehailing has the highest utility 

and what it is being compared against. Similarly, the general attractiveness of MaaS can be 

researched. 

 A major benefit of MaaS is the bundling of several services together, but whether the 

bundling of services is attractive is not readily known. Transfers in transport systems cause 

disutility (Garcia-Martinez et al., 2018; Guo & Wilson, 2011; Schakenbos et al., 2016). 

Additionally, Ton et al. (2020) finds that the mode choice set is often smaller than what 

researchers assume. Simplicity of travel, using familiar modes with the fewest transfers, could be 

more attractive than bundling trips together even when it is faster and cheaper. The microtransit 

and RTA data are survey-based and are subject to several biases. Revealed preferences collected 

by mobile tracing methods is a solution to avoiding biases in surveys. Collecting big data and 

understanding shared mobility as a whole may uncover how it can be used to achieve better 

transportation accessibility. If MaaS is implemented, when does using it make sense? 

 Encapsulating these future research topics are the long-term effects of the pandemic. 

While mobility providers have control over their services, they respond to the derived demand 

for travel which they have little control over. The pandemic forced several companies to institute 

teleworking, and this has accelerated the normalization of working from home rather than at the 

office such that it is more a choice rather than a necessity (Parker et al., 2022). During the 

pandemic, people used teleworking as a means to live in areas without having to worry about 

physically commuting (Scigliano, 2021). Preliminary research is finding that teleworking is 

allowing for workers to re-optimize their residential and mode choices (Delventhal et al., 2022).  

However, Denham (2021) argues that this could inadvertently lead to greater urban sprawl. For 
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shared mobility research to have meaning, it must account for the context in which those services 

are being utilized and the effects of its availability on current trends in residential choice.
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