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Excessive Long-Time Deflections of Prestressed Box Girders:

I. Record-Span Bridge in Palau and Other Paradigms

Zdeněk P. Bažant1, Hon. M. ASCE, Qiang Yu2 and Guang-Hua Li3

Abstract: The segmental prestressed concrete box girder of Koror-Babeldaob (KB) Bridge in
Palau, which had the record span of 241 m (791 ft.), presents a striking paradigm of serviceability
loss due to excessive multi-decade deflections. The data required for analysis have recently been
released and are here exploited to show how the analysis and design could be improved. Erected
segmentally in 1977, this girder developed after 18 years the mid-span deflection of 1.61 m (5.3 ft.),
compared with the design camber, and collapsed in 1996 in consequence of remedial prestressing,
delayed by 3 months. Compared to three-dimensional analysis, the traditional beam-type analysis of
box girder deflections is found to have errors up to 20% (although greater errors are likely for bridges
with a higher box width-to-span ratios than the KB Bridge). However, even three-dimensional finite
element analysis with step-by-step time integration cannot explain the observed deflections when
the current ACI, JSCE, CEB (or CEB-FIP) and GL prediction models for creep and shrinkage are
used. These models underestimate the 18-year deflection by 50% to 70% and yield an unrealistic
shape of deflection history. They also predict the 18-year prestress loss to be between 22% and 29%,
while the measured mean prestress loss was about 50%. Model B3, which is the only theoretically
based model, underestimates the 18-year deflection by 42% and gives the prestress loss of 40%
when the default parameter values are used. In model B3, however, several input parameters are
adjustable and, if they are adjusted according to the long-time tests of Brooks, a close fit of all
the measurements is obtained. For early deflections and their extrapolation, it is important that
model B3 can capture realistically the differences in the rates of shrinkage and drying creep caused
by the differences in the thickness of the walls of cross section. The differences in temperature and
possible cracking of top slab also need to be taken into account. Other paradigms on which data
have recently been released are four bridges in Japan and one in Czech Republic. Their deflections
can also be explained. The detailed method of analysis and the lessons learned are left for part II
which follows.

Introduction

Clarification of the causes of major disasters and serviceability loss has been, and will always be,
a prime opportunity for progress in structural engineering. A paradigm that presents such an
opportunity for creep and shrinkage analysis and design is offered by the excessive deflections
of Koror-Babeldaob (KB) Bridge, which crossed the Toegel Channel between the islands of
Koror and Babeldaob in the Republic of Palau in the tropical Western Pacific (Fig. 1a).
When completed in 1977, its main span of 241 m (791 ft.) set the world record for segmental
prestressed concrete box girders (Yee 1979). The final deflection, measured as a difference from
the design camber of −0.3 m (or −12 in.), was expected to terminate at 0.76 to 0.88 m (30 to
34.6 in.), as predicted in design (ABAM 1993, Shawwaf 2008) based on the original CEB-FIP
design recommendations (1970-1972). According to the 1971 ACI model (ACI 1971) still in
force today (re-approved in 2008; ACI 2008), the deflection (measured from the design camber)
would have been predicted as 0.71 m (28 in.) according to McDonald et al. (2003) and 0.737
m (29 in.) according to the present analysis.
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After 18 years, the deflection measured since the end of the construction reached 1.39 m
(54.7 in.) and kept growing (ABAM 1993, Berger/ABAM 1995a). The design camber of 0.30
m (12 in.) was not met (Shawwaf 2008) and an additional creep deflection of 0.22 m (9 in.)
was accumulated during the segmental erection, making the actual camber only 0.075 m (3 in.)
when the cantilevers were joined. Thus the total 18-year deflection at mid-span was 1.61 m
(5.3 ft.).

Remedial prestressing was undertaken but caused the bridge to collapse after a 3 month
delay, on September 26, 1996, with two fatalities and many injuries (SSFM 1996, Parker 1996,
Pilz 1997, 1999, McDonald et al. 2003, Burgoyne and Scantlebury 2006); see Fig. 1b.

As a result of legal litigation, the technical data collected on this major disaster by the
investigating agencies have been unavailable to the engineering public for many years. In view
of this fact, the first writer, acting in the name of a worldwide group of 47 experts (see Appendix
I), proposed at the 3rd Structural Engineers World Congress in Bangalore a resolution which
called, on the grounds of engineering ethics, for the release of all the technical data necessary
for analyzing major structural collapses, including the bridge in Palau. The resolution passed
on November 6, 2007 and was circulated widely. In January 2008, the Attorney General of the
Republic of Palau permitted the release of the necessary technical data.

The present two-part study, which updates a 2008 preliminary report (Bažant et al. 2008) and
expands a brief recent article (Bažant et al. 2010), aims to explain the reasons for the excessive
long-term deflections and compare the performance of various existing models. The method of
analysis is presented in detail in part II, which also enunciates the lessons for structural analysis
and design. Hopefully, these lessons would resolve the currently intractable disagreements in
technical committees about the optimal prediction model for a standard guide. These lessons
should also help to interpret the health monitoring of structures. Clarification of the collapse
caused by remedial prestressing will be postponed for a later article.

Bridge Description and Input Data for Analysis

The main span of 241 m (791 ft.) consisted of two symmetric concrete cantilevers connected at
mid-span by a horizontally sliding hinge. Each cantilever consisted of 25 cast-in-place segments
of depths varying from 14.17 m (46.5 ft.) at the main piers to 3.66 m (12 ft.) at the mid-span.
The main span was flanked by 72.2 m (237 ft.) long side spans in which the box girder was
partially filled with rock ballast to balance the moment at the main pier. The total length of
the bridge was 386 m (1266 ft.). The thickness of the top slab ranged from 432 mm (17 in.) at
the main piers to 280 mm (11 in.) at the mid-span. The thickness of the bottom slab varied
from 1153 mm (45.4 in.) at the main piers to 178 mm (7 in.) at the mid-span. Compared to
the depth of girder, the webs had an unusually small thickness of 356 mm (14 in.), constant
through the whole main span. The typical cross sections are shown in Fig. 2.

Type I Portland cement was used for the superstructure (Shawwaf 2008). The mass density
of concrete was ρ = 2325 kg/m3 (145 lb/ft.3). The top slab was covered by concrete pavement
of average thickness 76 mm (3 in.) and density 2233 kg/m3 (139 lb/ft3). The aggregate was
crushed basalt rock of the maximum aggregate size of about 19 mm (3/4 in.), supplied from a
quarry on the island of Malakal. Beach sand from Palau was used as the fine aggregate, and
its washing by mechanical means helped to keep the chloride content within the allowed limit
(Berger/ABAM 1995b).

Although no original measurements of Young’s elastic modulus Ec of concrete are known,
some information was obtained in 1990 by core sample tests (JICA 1990). These tests yielded
Ec = 22.1 GPa (3200 ksi). In 1995, further core sample tests (Berger/ABAM 1995a) made just
before the retrofit revealed the porosity to be high and Ec to be about 21.7 GPa (3150 ksi).
Both investigations showed values about 23% lower than the value estimated from the design
compression strength according to the ACI empirical formula, which is 28.3 GPa (4110 ksi).
In JICA’s on-site investigation, truck load tests were conducted, and matching the deflections
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measured at mid-span by finite element elastic analysis provided, after a correction for concrete
age according to the ACI formula, the average 28-day Ec of about 22.0 GPa, or 3190 ksi (JICA
1990). This is the Ec value adopted for analysis since the load test gives the average elastic
modulus in the box girder.

The prestress was generated by Dywidag threaded alloy bars (tendons) of yield strength 1034
MPa (150 kips) and diameter 31.8 mm (1.25 in.), extended by couplers, anchored by nuts, and
grouted in ducts of diameter of 47.6 mm, or 1.9 in. (ABAM 1993, DRC 1996). Some tendons
were stressed from one end, some from both (Yee 1979, McDonald et al. 2003). The jacking
force of each tendon was 0.60 MN, or 135 kips (DRC 1996). There were 316 tendons above the
main pier, densely packed in 4 layers within the top slab. Their combined initial prestressing
force was about 190 MN, or 42606 kips (Yee 1979, Pilz 1997, McDonald et al. 2003). The same
threaded bars were used to provide vertical prestress in the webs and horizontal transverse
prestress in the top slab. The tendon spacing in the webs ranged from 0.3 to 3 m (1 to 10 ft.);
Shawwaf 2008. The horizontal transverse tendons in the top slab were spaced at 0.56 m or 22
in. (ABAM 1993, McDonald et al. 2003).

The alloy steel of the tendons had yield strength 1034 MPa (150 ksi) and ultimate strength
1054 MPa, or 153 ksi (DRC 1996). Its Young’s elastic modulus was assumed as 200 GPa
(29000 ksi) and Poisson’s ratio as 0.3. There was also unprestressed steel reinforcement (ABAM
1993), which was taken into account in calculations. In post-collapse examination, neither the
prestressed nor the unprestressed steel showed any signs of significant corrosion, despite the
tropical marine environment. Some of the ducts, though, showed mild corrosion.

The construction of each segment took slightly more than 1 week (T.Y.Lin International
1996). When the concrete strength in the segment just cast attained 17.2 MPa (2500 psi), 6 to
12 tendons were stressed to 50% of their final jacking force (T.Y.Lin International 1996), and
when the concrete strength reached 24.1 MPa (3500 psi), all the tendons terminating in this
segment were stressed fully. The segmental erection of the opposite symmetric cantilevers was
almost simultaneous and took 6 to 7 months (Yee 1979).

Although the construction was closely monitored, the camber planned to offset the anticipated
long-time deflections was not met. The creep and shrinkage during the segmental erection
caused an unintended initial sag of 229 mm (9 in.) at mid-span, which could not be corrected
during the erection because it would have required abrupt large changes of slope (Shawwaf
2008). The initial sag before installation of the mid-span hinge is included neither in the
reported deflection measurements nor in the deflection curves in figures.

The initial deflections for the first two years were benign. However, the longer term deflections
came as a surprise. In 1990, the mid-span deflection reached 1.22 m, or 48 in. (JICA 1990),
which caused ride discomfort, vibrations after each vehicle passage, and excessive deterioration
of the road surface. By 1993 (ABAM 1993), the deflection reached 1.32 m (52 in.). In 1995,
just before the removal of roadway pavement (of average thickness of 76 mm, or 3 in.), the
mid-span deflection reached 1.39 m (54.7 in.), and was still growing (Berger/ABAM 1995a).

Creep and Shrinkage Models Considered

As an adequate approximation under service conditions, concrete can be assumed to follow
aging linear viscoelasticity with corrections for tensile cracking, variations of humidity and
temperature, and drying creep (or Pickett effect). The concrete deformation is then fully
characterized by one of the existing prediction models for the shrinkage strain εsh(t) and the
compliance function J(t, t′). The prediction models considered in the analysis were the ACI
model (ACI 1971, 2008), the CEB (or CEB-FIP, fib) model (fib 1999), the JSCE model (JSCE
1991), the GL model of Gardner and Lockman (Gardner 2000, Gardner and Lockman 2001),
and model B3 (Bažant and Baweja 1995, 2000, Bažant and Prasannan 1988, 1989a,b, Jirásek
and Bažant 2002). The same computer program using ABAQUS (SIMULIA, Providence, Rhode
Island), with the same step-by-step time integration based on Kelvin chain, was used for all
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these models (see Part II which follows).
The smallest deviation from the data was obtained with model B3 based on the solidification

theory (Bažant and Prasannan 1989a,b), which was first presented in 1995 (Bažant and Baweja
1995), was slightly updated in 2000 (Bažant and Baweja 2000), and was summarized in Jirásek
and Bažant’s (2002) book. Model B3 represents a refinement of the earlier BP and BP-KX
models (Bažant and Panula 1978, Bažant et al. 1991). The theoretical justification was provided
in several studies (Bažant et al. 1997, Bažant 2000, 2001). The form of the B3 compliance
function for basic creep was theoretically derived and experimentally supported in Bažant
and Prasannan (1988, 1989a,b). In statistically unbiased comparisons with the most complete
database (Bažant and Li 2008a), model B3 came out as clearly superior to other existing models
(Bažant and Li 2008b, Bažant et al. 2008).

The input parameters of the creep and shrinkage prediction models are divided into extrinsic
and intrinsic. For all models, the extrinsic parameters, which include the environmental factors,
are:

(1) the age at the start of drying, taken here as tc = 7 days, which is the mean period of
the segmental erection cycle ranging from 5 to 10 days (Shawwaf 2008, T.Y. Lin International
1996);

(2) the average environmental humidity h = 0.70;
(3) the effective thickness of cross-section D = 2V/S, to which a minor correction ks for body

shape is applied in the case of model B3; ks = 1 for all slabs and webs considered here (V/S =
volume-surface ratio);

(4) for the extended model B3 only, also the temperature.
The intrinsic input parameters, which reflect the composition of concrete, vary from model

to model. Formulation of the ACI, CEB and GL models was driven by simplicity, as desired
by many engineers. Accordingly, the only important intrinsic parameter in these models is the
standard 28-day compression strength f ′c, while other major influencing parameters such as the
cement content and the water-cement and aggregate-cement ratios are not taken into account.

Model B3 is special in that the free intrinsic input parameters are more than one. They
introduce the main aspects of concrete composition. If unknown, they can, of course, be set
equal to their recommended default values. But their advantage is that one can explore the
reasonable ranges of the unknown concrete mix parameters, run the computation of structural
response for various plausible sets of values of these parameters, and thus get a picture of
the possible range of structural responses to expect. Two sets of input parameters have been
considered in computations.

Set 1: For simple prediction on the basis of composition, the following input has been used:
(1) The specified compressive strength at 28 days, which is f ′c = 35.9 MPa (5200 psi.) and is

the only relatively certain input parameter for the KB Bridge (ABAM 1993). Note that f ′c is
not the required mean strength f ′cr of concrete to be documented by tests during construction.
Instead (according to ACI Standard 318, 2008) f ′c ≈ f ′cr − 1.34× standard deviation (Bažant
and Yu 2006). However, in the creep prediction models, f ′c is used as the input parameter (ACI
2008).

(2) The 28-day elastic modulus, which was not specified in design. The Ec value measured
just before the retrofit is appropriate for Set 2 but must not be used for Set 1, which is intended
to check the prediction capability of the model. The only way Ec could be determined at the

time of design was from the approximate ACI formula Ec = (57, 000 psi)
√

f ′c(psi), which gives

Ec = 28.3 GPa (4110 ksi).
(3) Cement content c = 26 lb/ft3, aggregate-cement ratio a/c = 4 and water-cement ratio w/c

= 0.62 (high w/c was mentioned in ABAM 1993, and by Shawwaf, 2008, but a precise value
was not reported). Based on the B3 empirical formulas estimating the intrinsic parameters
from concrete composition (Bažant and Baweja 2000), the result was:

q1 = 0.146, q2 = 1.04, q3 = 0.045, q4 = 0.053, q5 = 1.97 (×10−6/psi) (1)
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εk∞ = 0.0013 and kt = 19.2 (Set 1) (2)

Set 2 (updated): For a better estimate, only the values of q2, q5 and εs∞, governing mainly
the response for the first few years, have been estimated from the composition, and the estimates
of the remaining parameters were improved as follows:

q1 = 0.188, q3 = 0.262, q4 = 0.140 (×10−6/psi) (as changed for Set 2) (3)

where q1 was adjusted according to the elastic modulus obtained in the truck load test; and q3

and q4 were identified by a trial-and-error procedure, conducted with two objectives in mind:
(1) stay close to the values of the available creep tests of duration ≥ 10 years, which are only
three: the 10-year and 30-year tests of Brooks (1984, 2005), the 18-year tests of Russel and
Burg, and the 23-year tests of Troxell (Troxell et al. 1958 ); and (2) obtain the closest possible
fit of the measured deflection of the KB Bridge agreeing with these long-time tests. In Fig. 3, it
can be seen that the selected intrinsic parameters agree with the 10-year creep tests reasonably
well.

It has been noted that compliance function J(t, t′) that agrees with the tests of Brooks,
Russell and Burg, and Troxell et al. (which are the only existing tests with durations > 10
years) gives good agreement with the measured deflections. This fact suggests using these
tests for recalibrating input parameters q3 and q4, which are in model B3 the main controlling
parameters of multi-decade creep and are difficult to estimate from the database since the
database is dominated by test data for load durations < 5 years.

To calculate and compare the predictions of various models, all the properties of concrete and
environmental histories of the KB Bridge concrete would have to be known. But they are not.
So, comparing the predictions of various models either mutually or with the observations is not
fully informative. Nevertheless, what can be compared is whether the observed deflections are
within the realistic range of each model. They are indeed seen to be within the realistic range
for model B3, but not at all for other models, including the ACI, CEB, JSCE and GL models.

For model B3, the predictions are not fixed because there exist input parameters that are
for the KB Bridge unavailable and are thus free to set within their realistic range. But the
predictions of the other models are fixed by the reported value of concrete strength, with no
flexibility of adjustment (a partial exception is the JSCE model, which takes into account the
water content w and cement content c). The data available for the KB Bridge, as presented
here, do not suffice to obtain for this bridge a unique compliance function (unless the default
parameter values are used). But they do suffice to obtain unique compliance functions for the
ACI, CEB, JSCE and GL models, although at the cost of ignoring many important influences.

Some engineers desire the model to predict creep and shrinkage from as few parameters as
possible, particularly from the concrete design strength only (ACI 2008). More convenient
though it might be, realistic it is not. If the additional parameters of model B3 for the given
concrete are known, better prediction can be made. If they are unknown, they can be assigned
their typical, or default, values, and thus predictions can still be made even if only the strength
is known. Furthermore, varying the influencing parameters of model B3 through their realistic
range, one can explore the realistic range of the responses to expect, and design the structure
for the most unfavorable realistic combination. With the other models, one can explore only
the effect of strength variation.

Computed Deflections and Prestress Loss, and Comparisons to Mea-
surements

Because of symmetry, only one half of the bridge is analyzed. A three-dimensional finite element
program, which automatically captures all the stress-redistribution effects due to creep, is used
(see the mesh in Fig. 2). As the first check of the program, a comparison is made with the
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bridge stiffness, which was measured in January 1990 in a load test by Japan International
Cooperation Agency (JICA 1990). An average downward deflection of 30.5 mm (0.10 ft.) was
recorded at mid-span when two 12.5 ton trucks were parked side by side on each side of the
mid-span hinge (one previous paper erroneously assumed that only one truck was parked on
each side). The front wheels of the two trucks on each side were assumed to have been 3 m
away from the mid-span. The rear wheels, 12 m behind the front wheels, were assumed to carry
60% of the truck weight. The finite element code predicted the deflection of 30 mm (0.098 ft.)
that was measured approximately within 2.4 hours (the 2.4 hour creep was based on model B3
Set 2) under the load of 245 kN (55.1 kips). Given the uncertainty about the actual rate of
loading, the difference is small enough.

The results of calculations are shown in Figs. 4–7, both in linear and logarithmic time scales
(t − t1 = time measured from the end of construction, t1 = time when the mid-span hinge is
installed). The data points show the measured values. The circles represent the data reported
by the firm that investigated the excessive deflections (JICA 1990), and the diamonds the data
accepted from a secondary source (Berger/ABAM 1995). For comparison, the figures show the
results obtained with model B3 and the ACI, CEB, JSCE and GL models. All these responses
have been computed with the same finite element program and the same step-by-step time
integration algorithm. For model B3, it was possible to consider the effect of the differences in
thickness of the slabs and webs on their drying rates.

Fig. 4 shows the deflection curves up to the moment of retrofit at about 19 years of age.
Since well designed bridges (such as the Brooklyn Bridge) have lasted much longer, Fig. 5
shows the same curves extended up to 150 years under the assumption that there has been no
retrofit (and thus no collapse).

Fig. 6 presents the mid-span deflection that is obtained (1) if the drying creep is neglected,
(2) if both the shrinkage and drying creep are neglected, and (3) if the shrinkage and the
drying creep compliance are considered to be uniform over the cross section and to be deduced
from the overall effective thickness D = 2V/S of the whole cross section. Note that the use
of uniform creep and shrinkage properties throughout the cross section neglects the curvature
growth due to differential shrinkage and differential drying creep and gives results dominated
by the unusually thin webs. Also note that the effect of mean drying can be very different from
the mean of the effects of drying in the individual slabs (Bažant et al. 1992).

The shear lag effect (with the associated creep-induced stress redistributions within the cross
sections) necessitates three-dimensional simulations. It cannot be realistically captured by the
classical concept of effective width of the top slab (which was actually used in the design of
the KB Bridge). The computations show that the shear lag occurs in four different ways—in
the transmission of vertical shear force due to vertical reaction at the pier, in the transmission
of the concentrated forces from tendon anchors, and for each of these in the horizontal slabs
and in the vertical walls. Only full three-dimensional analysis can capture this behavior. It
always yields larger deflections and larger prestress losses. The beam-type analysis causes, for
the bridge in Palau, an error of −20% in deflections and −10% in the prestress loss (the errors
are larger in the 95% confidence limits, discussed later).

Accuracy in calculating the prestress loss is crucial because the bridge deflection is a small
difference of two large but uncertain numbers—the downward deflection due to self-weight,
and the upward deflection due to prestress. Calculations show that, compared to the classical
theory of bending, all the shear lags combined increase the elastic downward deflection due
to self-weight by 18% and the elastic upward deflection due to initial prestress by 14%, which
jointly produce the aforementioned total shear lag effect of 20%.

The measured deflection at 18 years since span closing, which was 1.39 m, is closely matched
by the deflection calculated from model B3 with set 2 parameters. This measured deflection is
roughly 3-times larger than that calculated for the ACI or CEB model (which is 0.47 m or 0.53
m), and about the double of that calculated for the GL model (which is 0.65 m); see Fig. 4.
Besides, the ACI, CEB, JSCE and GL deflection curves have shapes rather different from those
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of model B3 as well as the observed deflection history. They all give far too much deflection
growth during the first year, and far too little from 3 years on, especially for the ACI, CEB,
and JSCE models.

An important point to note is that the 19-year prestress loss is only 22% and 24% when the
ACI and CEB models are used in the present finite element code, but about 46% when model
B3 is used (Fig. 7).

The correctness of prestress loss predicted by model B3 is confirmed by stress relief tests which
were made by ABAM on 3 tendons just before the retrofit (Berger/ABAM 1995a). Sections
of three tendons were bared, and strain gages were glued at 3 different locations on each of
the three tendons. Each of these tendons was then cut, and the stress was calculated from the
shortening measured by the gage next to the cut; see Table 1. The average stress obtained
from 9 measurements on the tendons was 377 MPa (54.7 ksi). This means that the average
prestress loss over 19 years was about 50%. The coefficient of variation was 12.3%. Model B3
(set 2) calculations give the prestress loss of 46%, which deviates from the measured mean by
only 9%. This is less than the coefficient of variation of these measurements, which was 12.3%.
Similar tests were also conducted by another investigating company (Wiss, Janey and Elstner,
Highland Park, Illinois) and the average measured prestress loss was almost same.

Normally only nondestructive methods are permitted. This makes it next to impossible to
measure the stresses in grouted tendons. But for the KB Bridge the cutting of tendons was
not a big sacrifice because additional tendons were to be installed anyway. Thus the decision
to retrofit furnished a unique opportunity to learn about the actual prestress losses.

In the mid 1970s, the prestress loss used to be calculated not by finite elements but by
simple formulas based on the beam theory (e.g., Nilson 1987). A lump estimate of the final
prestress loss was generally used and, according to Shawwaf 2008, it was used for the KB Bridge.
According to the lump estimate, the prestress loss would have been 22%, which is marked in
Fig. 7 by a horizontal dashed line. Compared to the measurements, the errors of this estimate
are enormous, and so are the errors compared to the present calculation based on model B3.
These errors are one reason why the long-time deflections were so badly underestimated in
design. One must conclude that, for large box girders, the standard textbook formulas for
prestress loss are inadequate and dangerously misleading.

According to the ACI, CEB and the JSCE models, the compliance curves and the deflection
curves terminate with a horizontal asymptote. But according to model B3, the long-time
compliance curves are logarithmic. Thus model B3 predicts the deflection curve to terminate
in the logarithmic time scale with an asymptote that is a straight line of a finite slope, which
agrees very well with the observations (Fig. 4). However, the final slope predicted by model B3
(Set 1) for 18 years is too small. To match the slope in Fig. 4, it would need to be increased
by the factor of 1.52.

For times longer than about 3 years, the deflections are seen to evolve almost linearly in
the logarithmic time scale (which is to be expected for theoretical reasons, Bažant 2000), and
can thus be extrapolated to longer times graphically; see Fig. 5. The graphical straight-line
extrapolation is seen to agree almost exactly with model B3 calculations up to 150 years. It is
virtually certain that if the bridge were left standing without any retrofit, the 150-year deflection
would have reached 2.24 m (7.35 ft.), well beyond the limit of serviceability.

Capturing correctly the initial deflection history is essential for correct extrapolation, to
foresee later troubles. The differential shrinkage and drying creep due to nonuniform drying is
important in this respect (Kř́ıstek et al. 2005, Kř́ıstek et al. 2006, Kř́ıstek et al. 2008 ). Note
in Fig. 4 that, for the early deflection history, too, model B3 gives by far the closest prediction.

Excessive Long-Term Deflections of Other Box Girders

It is deplorable that the data on excessive deflections usually go unpublished. Nevertheless, Y.
Watanabe, the chief engineer of Shimizu Corp., Tokyo, graciously made available the data on
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some large Japanese bridges which epitomize the experience in many other countries. These
deflection data are plotted in Fig. 8, where the data points represent the measured deflections,
and the dashed curves show the prediction based on the design recommendations of Japan
Road Association (JRA). The solid curves give the predictions of model B3 calculated in the
same way as for the KB Bridge, after adjusting the composition parameters similarly to set 2,
as mentioned before.

The foregoing observations document that the deflections of the KB Bridge are not a unique
occurrence. Interestingly, one of these four bridges, Urado, does not show excessive 30-year
deflection; the reasons may be that the creep curve in the JRA code is set about 60% higher
than in the JSCE code. However, the deflection slope at 30 years portends troubles for the
future.

The absence of a mid-span hinge has been known to reduce deflections. However, it is not
a panacea. Even bridges without a mid-span hinge, designed by the code, can suffer excessive
deflections. This is, for example, documented by the data on the Děč́ın Bridge over the Labe
in North Bohemia; see Fig. 9.

Model B3 Improvement and Need for Inverse Analysis Many Bridges

Based on the parameter values obtained for Set 2 and on the comparisons with deflection
measurements, it has been figured out that the multi-decade deflection prediction could be
improved by replacing the B3 formulas (Bažant and Baweja 1995, 2000) for q3 and q4 with the
following:

q3 = (w/c)3q2, q4 = 0.4(a/c)−0.7 (4)

in which w/c, a/c = water-cement and aggregate-cement ratios, by weight.
However, the data on one or several bridges do not suffice to overcome the extreme scarcity of

multi-decade test data. (Bažant and Li 2008a). For optimal recalibration of the B3 prediction
of material parameters from concrete composition and strength, it will be necessary to gather
data on the deflections of many box girder bridges and then conduct inverse finite element creep
analysis with optimization.

Uncertainty of Deflection Predictions and Calculation of Confidence
Limits

Creep and shrinkage are notorious for their relatively high random scatter. For this reason,
it has been argued during the last two decades (Bažant and Kim 1989, 1991) that the design
should be made not for the mean deflections, but for some suitable confidence limits such as
95% (Bažant and Liu 1985, Bažant et al. 2007). Adopting the Latin hypercube sampling of
the input parameters (Bažant and Liu 1985, Bažant and Kim 1989), one can easily obtain
such confidence limits by repeating the deterministic computer analysis of the bridge according
to model B3 8-times, one run for each of 8 different randomly generated samples of 8 input
parameters.

The range of the cumulative distribution of each random input variable (assumed to be Gaus-
sian) is partitioned into N intervals of equal probability. The parameter values corresponding to
the centroids of these intervals are selected according to randomly generated Latin hypercube ta-
bles (these tables can be freely downloaded from the ITI website, http://iti.northwestern.edu/generator,
so that a bridge designer would not need to work with a random number generator at all). The
values from the rows of these tables are then used as the input parameters for N deterministic
computer runs of creep and shrinkage analysis.

By experience, it is sufficient to chose N = n = number of random input parameters (here
N = n = 8). One random input variable is the environmental relative humidity h, whose
mean and coefficient of variation are estimated as 0.70 and 0.2 (or 70% and 20%). The others
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are the material characteristics q1, q2, q3, q4, q5, kt and ε∞, representing the parameters of model
B3. According to model B3, the means of these parameters for the KB Bridge are assumed
as q1 = 0.188, q2 = 1.04, q3 = 0.262, q4 = 0.14, q5 = 1.97, kt = 19.2, and ε∞ = 0.0013. The
estimated coefficient of variation is 23% for creep parameters q1, q2, q5, and 30% for q3, q4 (these
have a higher uncertainty as they relate to long-term creep, for which the data are scarce). For
shrinkage parameters kt and ε∞ (Bažant and Panula 1978, Bažant and Baweja 1995, 2000), it
is 34%.

The responses from each deterministic computer run for model B3 (set 2), particularly the
mid-span deflections at specified times, are collected in one histogram of 8 values, whose mean
w̄ and coefficient of variation ωw are the desired statistics. Knowing these, and assuming the
Gaussian (or normal) distribution, one can get the one-sided 95% confidence limit as w95 =
w̄(1 + 1.645ωw) (i.e., the limit that is exceeded with the probability of 5%; in other words, the
limit would be exceeded by one out of 20 identical bridges, which seems to give optimal balance
between risk and cost).

The curves of the mean, and of the one-sided 95% and 5% confidence limit for the KB Bridge
in Palau, are shown (for model B3, set 2) in Fig. 10. Note that the curves of the present
finite element calculations according to the ACI and CEB models lie way outside the statistical
confidence band obtained with model B3 (and the traditional prediction lies even farther).

Using the database (Bažant and Li 2008a) as the prior information, one could further improve
the statistics of long-term deflection by means of Bayesian statistical analysis (Kř́ıstek and
Bažant 1987).

The probabilistic problem of deflections is fortunately much easier than the problem of struc-
tural safety. For the latter, the extreme value statistical theory must be used since the tolerable
probability of failure is < 10−6, far less than the value of 0.05 that is acceptable for deflections.

Summary of the Main Causes of Underestimation of Deflections and
Prestress Loss

In the order of decreasing importance, the main causes are as follows:

1. Poor material model for creep and shrinkage.
2. Beam-type analysis instead of a full three-dimensional analysis.
3. Differences in the rates of shrinkage and drying creep due to different thicknesses of slabs

in the box cross section.
4. Lack of statistical estimation of the range of possible responses.

Detailed conclusions will be presented in Part II.

Appendix I: Resolution of 3rd Structural Engineers World Congress

1. The structural engineers gathered at their 3rd World Congress deplore the fact the technical
data on the collapses of various large structures, including the Koror-Babeldaob Bridge in
Palau, have been sealed as a result of legal litigation.

2. They believe that the release of all such data would likely lead to progress in structural
engineering and possibly prevent further collapses of large concrete structures.

3. In the name of engineering ethics, they call for the immediate release of all such data.4

4Proposed at the congress by Z.P. Bažant, in the name of the following group of experts whose support
has been obtained in advance: C. Andrade (Madrid), L. Belarbi (Missouri), N. Bićanić (Glasgow), I. Carol
(Barcelona), L. Cedolin (Politecnico di Milano), T.-P. Chang (Taipei), J.-C. Chern (Taipei), W. Dilger (U. of
Calgary), L. Elfgren (Lulea), R. Eligehausen (Stuttgart U.), E. Fairbairn (Rio de Janeiro), D.M. Frangopol
(Lehigh), P. Gambarova (Politecnico di Milano), W. Gerstle (U. of New Mexico), N.M. Hawkins (Seattle), A.

9



References

[1] ABAM Engineers Inc. (1993). Koror-Babeldaob bridge repairs: Basis for design. Report submitted to
Bureau of Public Workds, Koror, Republic of Palau, October, 1993.

[2] ACI Committee 209 (1971) “Prediction of creep, shrinkage and temperature effects in concrete struc-
tures.”. Designing for Effects of Creep, Shrinkage and Temperature in Concrete Structures, ACI-SP27,
Am. Concrete Institute, Detroit, pp. 51–93.

[3] ACI Committee 209 (2008). Guide for Modeling and Calculating Shrinkage and Creep in Hardened Concrete
ACI Report 209.2R-08, Farmington Hills.

[4] ACI Committee 318 (2008). Building code requirements for structural concrete (ACI 318-05) and com-
mentary (ACI 318-05), American Concrete Institute, Farmington Hills.
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Table 1: Summary of strain relief tests of prestressed tendons of KB Bridge in Palau
(Berger/ABAM 1995a)

Tendon Location ∆1 (µε) ∆2 (µε) ∆3 (µε) Mean ∆ (µε) σ (MPa)
1 1640 1640 1630 1637 327.3

1 2 1650 1640 1650 1647 329.3
3 1680 1700 1710 1697 339.3

Average 332.0

4 1810 1820 1790 1807 361.3
2 5 1810 1800 1790 1800 360.0

6 1780 1790 1790 1787 357.3
Average 359.6

7 2250 2230 2220 2233 446.7
3 8 2220 2220 2210 2217 443.3

9 2170 2150 2170 2163 432.7
Average 440.9
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Excessive Long-Time Deflections of Prestressed Box Girders:

II. Numerical Analysis and Lessons Learned

Zdeněk P. Bažant1, Qiang Yu2 and Guang-Hua Li3

Abstract: As a sequel to part I, which clarified the causes of the unexpectedly large deflections
of the Koror-Babeldaob (KB) Bridge in Palau, this part II presents the numerical procedure and
reviews the lessons learned. The box girder represents a thick shell which is discretized by 8-
node three-dimensional finite elements. Except for corrections due to cracking, concrete creep is
assumed to follow aging linear viscoelasticity and is modeled by a rate-type law based on the Kelvin
chain whose properties are adjusted for humidity conditions and temperature. In each time step
and at each integration point, Widder’s formula is used to convert the aging compliance function
to a continuous retardation spectrum for the current age of concrete, and discretization of the
spectrum yields the current elastic moduli of the Kelvin units. The shrinkage strains depend on
the environmental humidity and the thickness of each plate in the cross section. The computations
proceed according to Bažant’s exponential algorithm which is unconditionally stable and reduces
the problem to a sequence of elasticity problems with an orthotropic effective stiffness of material
and non-isotropic inelastic strains, different for each integration point in each time step. These
problems are solved by commercial software ABAQUS. The segmental construction sequence is also
modeled. The computer results reported in Part I explain the excessive deflections and compare
the performance of various material models for creep and shrinkage. Finally, the lessons learned are
formulated and recommendations made.

Introduction

The creep and shrinkage analysis of segmentally built prestressed concrete box girders is in
practice often conducted in a rather simplified way. It usually relies on the material models
recommended by ACI, CEB (‘fib’) and JSCE, which grossly underestimate multi-decade creep,
give unrealistic shapes of creep and shrinkage curves and unrealistic effects of drying, and
assume the creep to terminate at some fixed upper bound, for which no experimental support
exists. In computer programs for long-time creep, the box girder is typically simplified as a
beam with cross sections remaining plane, except that shear lag corrections for the effective
width of top slab are usually made.

The analysis of the bridge in Palau confirms that such simplifications are unrealistic. However,
as demonstrated by the computer results in Part I, a significant improvement is made possible
by the advances in material modeling of creep and shrinkage. The computational approach,
which is usable for all box girder bridges, will now be presented.

Creep Structural Analysis Utilizing ABAQUS

By step-by-step analysis, the structural creep problem gets reduced to a sequence of elastic
finite element analyses for an elastic stress-strain relation with inelastic strain, one analysis for
each time step (which is an approach proposed in Bažant 1967). Each such analysis can be
carried out with a commercial finite element program. So one merely needs to find a suitable

1McCormick Institute Professor and W.P. Murphy Professor of Civil Engineering and Materi-
als Science, Northwestern University, 2145 Sheridan Road, CEE/A135, Evanston, Illinois 60208; z-
bazant@northwestern.edu.

2Post-doctoral Research Associate, Northwestern University.
3Graduate Research Assistant, Northwestern University.
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commercial finite element program which has the requisite geometric and material modeling
features. The software ABAQUS (SIMULIA, Providence, Rhode Island) has been chosen.

The plates (slabs and walls) of the box girder are subdivided into 8-node isoparametric
finite elements (Fig. 1). Except in the top slab, the finite elements are chosen to extend
through the whole thickness since the stresses caused by load do not vary significantly through
the thickness and plate bending is not important. Although, for drying creep and shrinkage,
accurate modeling may generally require the wall thickness to be subdivided into at least six
finite elements, model B3 makes it possible to avoid thickness subdivision because it is based
on an analytical solution of drying according to the diffusion theory. This approach would not
be accurate for cross sections subjected to flexure or highly eccentric compression, because the
creep specimens in the underlying database are loaded centrically and are drying symmetrically.
However, for the box girder, accuracy is good because the resultant of normal stresses across
the wall is everywhere nearly centric, same as is standard creep tests.

In view of symmetry, only one half of the bridge is analyzed. Together with the pier, it is
subdivided into 5036 hexahedral elements. The mesh, automatically generated by ABAQUS,
is shown in Fig. 1. The prestressing tendons and the non-prestressed steel bars are subdivided
into further 6764 bar elements connected rigidly (with no slip) to the nodes of the three-
dimensional mesh (the information on unprestressed steel is found in ABAM 1993). Sufficiency
of mesh fineness has been validated by checking that a finer mesh with 20144 hexahedral
elements would yield only a negligible improvement of the computed elastic deflections.

The differences in the ages of various segments, the sequential prestressing at various times,
and the step-wise load increase in the individual segments during construction (including the
extra weight of 1068 kN, or 240 kips, introduced during the construction by the formwork
carrying traveller) are taken into account according to the actual cantilever erection procedure.
To simulate this segmental erection procedure, the elements are deactivated at first and then
progressively reactivated according to the construction sequence (the ABAQUS keyword that
enables this helpful feature is ‘model change, remove/add’).

The individual prestressing bars, the number of which is 316 above the main pier, were
modeled as 2-node line elements, attached to concrete at the nodes. The individual bars of
unprestressed steel reinforcement were modeled similarly. The introduction of prestress was
handled in ABAQUS automatically by the keyword ‘initial conditions, type=stress, user’ in the
keyword editor. So, it sufficed to specify the prestress values of every tendon in user subroutine
sigini of ABAQUS. Although the tendons were not prestressed fully at one time (T.Y. Lin
International 1996), each tendon was assumed to get fully prestressed 7 days after its anchoring
segment had been cast. Capturing the time schedule accurately matters for the initial deflection
history, but not for multi-year deflections.

Since the tendons are straight, the curvature friction is nil and only the wobble friction
is modeled. To do that, the initial prestress is diminished according to the length of each
individual tendon using the wobble coefficient κ = 0.0003 /ft. or 0.00098/m (e.g., Nilson 1987,
DRC 1996).

The prestress losses caused by creep and shrinkage, by sequential prestressing of tendons and
by relaxation of steel stress σs are automatically reproduced by ABAQUS. For constant strain
ε, the relaxation is assumed to follow the CEB-FIP (1990) formula for prestress loss ratio:
ρ = (σ0 − σs)/σ0 = ρ1000(t/1000 hours)k where σ0 = initial prestress, k ≈ 0.12 and ρ1000 ≈
6.5%. Since ε equals the strain in concrete, which varies with time t, this formula is generalized
as

∆σs = Es∆ε− r(σ0 − σs)
1−1/k∆t (1)

where r = k(σ0ρ1000)
1/k/(1000 hours). This stress-strain relation for tendon steel in time step

∆t is based on the Maxwell model for creep with stress-dependent viscosity and is implemented
in user subroutine uexpan of ABAQUS. Check that, for ∆ε = 0, integration of Eq. (1) yields
the CEB-FIP formula.
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Effects of Slab Thickness, Temperature and Cracking

Model B3 predicts separately the basic creep of the material (i.e., the part of creep unaffected
by moisture content variation) and the additional effects of drying. These effects consist of the
average shrinkage and average drying creep (or stress-induced shrinkage) in the cross section,
and depend on the effective thickness D of the cross section.

The shrinkage is modeled by inelastic strain increments in user subroutine uexpan. In each of
the 25 segments of the central half-span, the plate thicknesses D and concrete ages are different,
resulting in a different shrinkage function and a different compliance function for each plate of
each segment.

Recent research (Kř́ıstek et al. 2006) has revealed extreme sensitivity of box girder deflections
to the differences in the rates of shrinkage and drying creep between the top and bottom slabs.
Thanks to the fact that model B3 is physically based, the differences in its parameters between
top and bottom can be assessed realistically, based on the known drying rates.

These rates are characterized by the shrinkage half-times, for which the diffusion theory gives
the equation τsh = kt(ksD)2 (see Eq. 1.11 in Bažant and Baweja 2000); ks is a shape parameter
(equal to 1 for plates), and kt is a permeability parameter for which a crude empirical estimate
exists; kt = 0.03/C1 (see Eq. 28.12 in Jirásek and Bažant 2002) where C1 = kaP1 = diffusivity,
ka ≈ constant, and P1 = permeability of concrete, which depends on temperature and the
extent of cracking.

The mean temperature of the bottom slab and webs was probably 25 ◦C (77 ◦F), but the top
slab with the roadway layer, exposed on top to intense tropical sunlight, was probably during
the day some 20 ◦C (36 ◦F) warmer. According to the curves for the temperature effect on
permeability in Fig. 10.3 (b,c) of Bažant and Kaplan 1996, this likely caused a 10-fold decrease
of τsh for the top slab. Furthermore, while no cracking could have occurred in the compressed
bottom slab and webs, the top slab must have developed hairline cracks since it was under
tension due to the excessive prestress loss. Based on the experiments reported (Bažant et al.
1987), cracks of width 0.15 mm will increase the drying rate about 3-times. The same may be
assumed for the top slab, and so, according to Eq. 1.20 of Bažant and Baweja 2000, the value of
kt = 19.2 is used for the bottom slab and the webs, and the value of kt = 19.2/30 = 0.64 for the
top slab. In calculations of deflections, the stiffness of the pavement layer is entirely neglected
since it is unreinforced and in tension. However, since the pavement tends to decelerate the
drying rate of top slab, its effective thickness is taken into account in shrinkage modeling.

It used to be commonplace to consider one V/S value as a characteristic of the whole cross
section, i.e., to take D = 2V/S with V = volume and S = surface of cross-section slice of
the whole box. In that case, D was a property of the whole cross section, resulting in a
supposedly uniform shrinkage and supposedly uniform creep properties. Recently, however,
it has been shown (Kř́ıstek et al. 2006) that, to avoid serious errors (which usually lead to
overoptimistic interpretation of small early deflections), differences in the drying rate due to
different thicknesses Di (i = 1, 2, 3) of the top slab, the bottom slab and the webs must be
taken into account.

A simple way to do that, demonstrated in Kř́ıstek et al. (2006), is to apply a model such as
B3 separately to each plate of the cross section. Since the drying half-times are proportional
to slab thickness square, the thickness differences then yield different shrinkage and different
drying creep compliance in different plates.

According to models such as that of ACI, a thickness increase allegedly scales down the
creep and shrinkage through a certain constant multiplicative factor, including the alleged final
value for infinite time. However, in reality (except for a small multiplicative reduction due
to a higher degree of hydration reached in thicker slabs), a thickness increase causes a delay,
properly modeled as deceleration and characterized as an increase of the shrinkage half-time,
which is proportional to the thickness square (e.g., if the ultimate shrinkage for a slab 0.10 m
or 4 in. thick is reached in 10 years, for a slab 1 m or 40 in. thick it is reached in 1000 years,
i.e., virtually never).
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Because of excessive prestress loss, the top slab is found to get into tension after the first year.
Although no large tensile cracks were observed (JICA 1990, ABAM 1993 reported sparse fine
cracks in the first 6 segments from the mid-span). Calculations show that if the tensile strength
limit f ′t is ignored, the tensile stresses in the top slab would in later years reach the stress of

about 2f ′t where f ′t = tensile strength, estimated as 6 psi
√

f ′c/psi = 3.0 MPa = 433 psi. The
most realistic model would be the cohesive crack model with rate-dependent softening, applied
to growing parallel cracks of uniform spacing, with the material between the cracks considered
as viscoelastic (Bažant and Li 1997). However, to implement this model with ABAQUS has
been found to be virtually impossible.

After trying with ABAQUS various simplifications, the computations were eventually run
under the simplifying assumption that the effective incremental modulus E ′′ for the current
time step (which includes the effect of creep and is used in steps 2 and 3 of the Appendix) gets
reduced to E ′′/4 when the tensile stress exceeds 0.7f ′t (Fig. 2). With this simplification, the
maximum computed tensile stress in the top slab is about 3.0 MPa, and the corresponding strain
is 1.83× larger than the actual strain at peak tensile stress. With hardening due to positive
E ′′/4 compensated by the 70% strength reduction, the tensile stress resultant happens to be
about the same as that obtained with a more realistic model consisting of a bilinear softening
stress-strain relation with an unreduced tensile strength limit and the softening modulus of
about −E ′′/3. The error compared to this more realistic model is estimated as < 1% of the
deflection. For comparison, if unlimited tensile strength were assumed, the computed deflections
would have been about 4% smaller.

Combined with the steel stiffness, the softening of concrete would have resulted in overall
tension stiffening, which would have been easy to implement had all the computations been
programmed. But in the algorithm with ABAQUS the tensile softening turned out to be
intractable because it would have interfered with the programming of exponential algorithm
for creep. This is why a positive modulus E ′′/4 had to be adopted.

Creep Analysis and Rate-Type Model Based on Kelvin Chain

The traditional characterization of concrete creep by the creep coefficient, giving the creep-
to-elastic strain ratio, must be avoided (Bažant 1975, 1982, RILEM 1988, Bažant and Baweja
1995,Jirásek and Bažant 2002) because, due to pronounced short-time creep for durations >
0.0001 second, the definition of elastic modulus is ambiguous. Significant errors have often
been caused by combining the creep coefficient with an incompatible value of the conventional
elastic modulus. Thus the analysis must properly be based on the compliance function J(t, t′),
defined as the total strain εxx at age t caused by a sustained uniaxial stress σxx = 1 applied at
age t′.

An individual material constitutive law corresponding to every different creep and shrinkage
prediction model has been developed for the user subroutine umat of ABAQUS. The three-
dimensional generalization is obtained under the assumption of material isotropy and a time-
independent Poisson ratio ν (Bažant 1975, 1982, RILEM 1988 ; ν = 0.21 is used here, based on
core sample tests, Berger/ABAM 1995). Linear viscoelasticity implies the principle of superpo-
sition in time, whose direct application gives the stress-strain relation in the form of a history
integral. However, major deviations from the principle of superposition are caused by tensile
cracking and by time variations of humidity and temperature (and also by triaxial damage in
compression which, however, can be ignored for service states). Therefore, the history integrals
are inapplicable and the corrections for cracking, etc., must be introduced after converting the
compliance function to an equivalent rate-type creep law, which is here based on the Kelvin
chain model. This conversion also greatly improves computational efficiency.

In the case of model B3, conversion of the compliance function of basic creep to a rate-type
creep law is particularly easy. It can be done according to the solidification theory (Bažant
and Prasannan 1988, 1989a,b, Jirásek and Bažant 2002), in which the aging is taken into
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account by means of volume growth of the solidifying component, and by a gradual increase
with age of the flow term viscosity. Thus it is possible to use a non-aging compliance function
for the solidifying component, for which one can uniquely determine a continuous retardation
spectrum. This spectrum can be readily obtained from Widder’s formula (Tschoegl 1989), a
simple explicit formula which is based on the inversion of Laplace transform (Bažant and Xi
1995). The parameters of the Kelvin chain model are in this case constant (i.e., non-aging) and
are simply obtained as a discrete representation of the continuous spectrum.

For empirical models such as those of ACI, CEB, JSCE and GL, such an approach is impos-
sible since a non-aging constituent in the sense of the solidification theory cannot be identified
for these models. Therefore, compliance curves that change with the age at loading must be
used, as defined by J(t, t′). This problem was handled in the 1970s by considering the retarda-
tion (or relaxation) spectrum to be age dependent, which caused that the spectrum of elastic
moduli Eµ(t) (µ = 1, 2, 3, ...) of the Kelvin (or Maxwell) chain model had to be considered as
age-dependent, too (Bažant 1975, 1982, RILEM 1988). Unfortunately, the least-square iden-
tification of these moduli as functions of age appeared to be an ill-conditioned problem (since
different functions Eµ(t) provided almost equally good fits of J(t, t′), even if they were not
increasing monotonically as required by aging).

An age-independent spectrum can nevertheless be used within each sufficiently short time
step, such that the creep properties, including the moduli and viscosities of the Kelvin chain
model, could be considered to be approximately age independent, corresponding to concrete
age tn−1/2 in the middle of the time step. Indeed, for the stress changes within a short enough
time step, the concrete may be considered to behave as a non-aging linearly viscoelastic ma-
terial characterized by the Kelvin chain moduli and viscosities corresponding to age tn−1/2,
which depend only on the compliance curve Jn−1/2(t) = J(t, tn−1/2). This curve corresponds
to one retardation spectrum and is approximated by one Kelvin chain, having constant moduli
Eµ(tn−1/2) (µ = 1, 2, 3, ...), applicable to the current time step only.

For the average age tn−1/2 corresponding to every time step, the compliance curve Jn−1/2(t)
corresponding, e.g., to the ACI, CEB or GL model, one must identify the corresponding retar-
dation spectrum corresponding to age tn−1/2. This can be done according to Widder’s explicit
formula (Bažant and Xi 1995), before starting the step-by-step finite element analysis of the
structure. This continuous retardation spectrum is approximated by a set of discrete spectral
values Eµ, a different set for each time step. These spectral values are then used in the individ-
ual time steps of Bažant’s exponential algorithm based on Kelvin chain (as described in Bažant
1971, 1975, 1982, RILEM 1988, Jirásek and Bažant 2002).

For example, the ACI compliance function (ACI 1971), which reads J(t, t′) = ψ(t′)f(ξ),
where ξ = t− t′ and f(ξ) = ξ0.6/(10 + ξ0.6), can be approximated by a continuous retardation
spectrum (Bažant and Xi 1995) for a fixed value of the given aging function ψ(t′);

Aµ = ψ(t′) L(τµ) ∆(log τµ) ln10, L(τµ) = − lim
k→∞

(−kτµ)k

(k − 1)!
f (k)(kτµ) (2)

where k is a positive integer, and f (k) represents k-th order derivative of function f(ξ) (k = 3
usually suffices for good accuracy).

In Fig. 3 (top), two sets of constant moduli of Kelvin chain obtained by approximating the
continuous spectrum are used to approximate the compliance function J(t, t′) corresponding
to sustained stress applied at age t′ = 7 days (diamond points) or 210 days (circle points).
As seen, the difference from the J(t, t′) curves is negligible, compared to the ACI model. In
advance of the step-by-step finite element analysis, the spectrum and the corresponding set of
Kelvin chain moduli Eµ is identified from the given compliance function for the center of each
time step.

The corresponding spectra Aµ (µ = 1, 2, 3, ...) are also plotted in Fig. 3 (middle). Note that in
each case the spectrum Aµ approaches 0 as the retardation time τµ increases. The reason is that
the creep strain expressed by ACI model is bounded, with the creep rate essentially vanishing
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after 10 years (this is, of course, contradicted by long-term creep test results, e.g., Brooks 1984,
2005). The surface of the continuous spectra Aµ = 1/Eµ that closely approximates the ACI
compliance function for different ages at loading is exemplified in Fig. 3 (bottom) (where the
coordinates are the retardation times τµ, and the ages t′). For the CEB, JSCE and GL, the
procedure is similar.

For model B3, which is based on solidification theory, the moduli of Kelvin chain are constant,
but only for basic creep. As demonstrated in Fig. 4 (top), the creep compliances for ages t′

= 7 days (diamonds) and 210 days (circles) can be closely approximated by same non-aging
spectrum, which is plotted in the middle of Fig. 4. Besides the basic creep, there is in model B3
a separate drying creep term, which captures the Pickett effect. This term applies only to the
in-plane directions, and so different compliance functions had to be obtained for the in-plane
and transverse directions of the plates. The drying creep term of model B3 applies only to the
normal strains and causes no Poisson effect. These distinctions cannot be made for the other
models. Unlike the basic creep, which is unbounded, the drying creep is bounded. Like the
shrinkage, it depends on humidity and cross section thickness.

The microprestress-solidification theory (Bažant et al. 1997), would have been more realistic
for representing both the drying creep and aging. However, it would have required calculating
the distributions of pore relative humidity across the thickness of each slab, which would have
necessitated not one but at least six finite elements over the slab thickness.

In model B3, the drying creep is approximated by the compliance function

Cd(t, t
′, tc) = q5

√
e−8H(t) − e−8H(t′), H(x) = 1− (1− h) tanh

√
x− tc
τsh

(3)

where t = current age of concrete, t′ = age at loading, tc = curing time, h = relative humidity,
and τsh = shrinkage halftime. As seen from Eq. (3), a non-aging spectrum cannot be identified
to approximate the drying creep. Therefore, age-dependent spectrum similar to Eq. (3) is
calculated. The spectrum Aµ, describing the drying creep, is plotted in Fig. 4 (bottom). It can
be seen that the age-dependent spectrum approaches zero as the retardation time τµ increases.
This is because the drying creep is bounded. Contrary to the non-aging spectrum for basic
creep, it reaches a finite value as τµ increases. Therefore, the overall long-time creep predicted
by model B3 will follow a constant slope when plotted in the logarithmic scale.

As it transpired from recent research (Bažant 2000) and current study, the models other than
B3 exhibit some serious deficiencies, theoretical as well as practical. One deficiency, especially
for the ACI and CEB models, is that the long-time creep is strongly underestimated. Another
deficiency of the ACI model, and to a lesser extent the CEB model, is that the drying creep,
which is very sensitive to the cross section thickness, is not separated from the basic creep, and
that the effects of thickness on shrinkage and on drying creep are described by a scaling factor
rather than by a time delay (Bažant 2000).

After the Kelvin chain moduli for the current time step ∆t and current integration point
are obtained, the exponential algorithm (Bažant 1975, 1982; RILEM 1988; Jirásek and Bažant
2002) is implemented. It was derived as the exact solution for stress varying linearly within ∆t
(Bažant 1971). While the standard central or backward difference algorithm becomes numeri-
cally unstable for ∆t exceeding the shortest τµ, this algorithm is unconditionally stable. The
initial time steps ∆t after the hinge installation at midspan were 0.1, 1, 10 and 100 days. After
that, ∆t was kept constant at 100 days up to 19 years. For the deflection prediction up to
150 years, all the subsequent ∆t were 1000 days. Although time steps increasing in geometric
progression would have been computationally more efficient, they would not have matched the
times of deflection measurements.
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Comparison to Bending Theory with Plane Cross Sections

The existing computer programs for creep effects assume the prestressed concrete box girders
to follow the engineering theory of bending, which presume the cross sections of the box to
remain planar and normal to the deflection curve. However this theory is too simplified to
capture the three-dimensional deformation of box girders. The main deficiency is that it misses
significant shear lag effect in the top slab, in the webs and in the bottom plate, each of which
is different for the self weight and for the prestress loads from tendon anchors. See in Fig. 5
the distribution of normal and shear stress in the cross section located at 14.63 m (48 ft.) from
the main pier under self weight, and in the cross section at 60.35 m (198 ft.) from the main
pier under prestress.

A strong sensitivity to errors is caused by the fact that the bridge deflection represents a
small difference between two large numbers—the downward deflection due to the self weight
and the upward deflection due to the prestress. The shear lag plays a relatively more important
role in the former. The error due to neglecting the shear lags is thus magnified.

Fig. 6 shows that the discrepancy between the full three-dimensional analysis and the analysis
based on the engineering theory of bending is significant. The deflections and prestress losses
for both cases are compared using the B3 and ACI models. Compared to the three-dimensional
analysis, the analysis using the classical bending theory is found to underpredict the deflection
by about 20%.

In the KB Bridge design, an approximate correction for the shear lag in the top slab due to self
weight was introduced (Shawwaf 2008) through the classical effective width concept (Reissner
1946, Benscoter 1954, Abdel-Samad et al. 1968, Malcolm and Redwood 1970, Richtlinien 1973).
However, these classical formulas are not very accurate and still miss the shear lags in the webs
and bottom slabs and those due to prestress forces. This causes a significant error.

Cyclic Creep and Its Structural Effect

In the discussions at various conferences it has often been claimed that the cyclic creep caused
by repeated traffic loads may explain the excessive long time deflection. Let us examine these
claims.

As argued in Bažant and Kim (1992), the cyclic creep caused by repeated traffic loads may
best be represented as an acceleration of the basic creep due to sustained load. The acceleration
of creep by a compressive stress cycled between limits σmin and σmax may be represented as
a forward shift, ∆tN , of the time for which the deformations are evaluated. According to
empirical Eq. 3 in Bažant and Kim (1992) (also see Bažant and Panula 1979),

∆tN = 2πNτcF
3(s)(σmax/f

′
0)

2∆2 (4)

where f ′0 = compressive strength at the time of loading (estimated as 25.2 MPa, or 3658 psi for
the KB Bridge); ∆ = (σmax − σmin)/f ′0; τc ≈ 15 days ; F (s) = (1 + 3s5)/(1 − s10); s = σ̄/f ′0;
and σ̄ = time average stress due to all loads.

At the centroid of the bottom slab at the face of the pier, σmin = 7.50 MPa (1088 psi). The
most important traffic loads are heavy trucks, considered to weigh about 20 tons (44092 lb).
The stress caused by each of them is calculated to be about 0.21 MPa (30.5 psi), and so σmax

= 7.71 MPa (1118.5), F (s) = 1.00. It is estimated that only about 1 million such trucks passed
the bridge within 18 years, i.e. N = 106. For the KB Bridge, the intervals between such heavy
trucks were so long that the time average of the cyclic stress component was negligible and
σ̄ ≈ σmin = stress caused by all permanent loads (self-weight, prestress and additional dead
load). Substitution of these numbers into Eq. (4) yields:

∆tN = 2π106 × (15 days)× 13 × (7.71/25.2)2(0.21/25.2)2 = 612 days (5)
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So the effect of cyclic creep due to the heavy trucks is equivalent to extending the duration of
static creep by about 612 days. In this calculation, it was assumed that only one 20 ton truck
would appear at the mid-span at the same time. The number of simultaneous occurrences of
2 or 3 such trucks at the mid-span is estimated to be N = 10000 or 1000, respectively (during
18 years), and similar calculations then show that the cyclic creep produced is equivalent to
extending the static creep duration by 26 days or 6 days, respectively.

Traffic observations further showed that about 200 regular cars, of about 3 tons each, passed
the bridge per hour during daytime. This gives N = 16 million car passages in 18 years. Similar
calculations give the extension of 210 days.

All these extensions together amount to about 854 days of static creep for the cross section
at the face of the pier. From this, one can determine the additional cyclic creep strain in the
bottom plate.

Similar calculations can be repeated for the forward time shifts of cyclic creep strain history
at various points of the web and top plate of the cross section at the face of pier. Since both
σmax and ∆ are smaller, the forward shift of the creep history at these points will be smaller
than 854 days. Hence, 854 days is the upper bound for the forward shift of the curvature
history of the girder at this cross section. Calculations for the quarter-span cross section gives
a slightly longer time shift, but the effect of curvature increase on the midspan deflection is
for the quarter-span cross section much smaller than it is for the cross section at the pier face.
Consequently, the upper bound on the forward time shift of the midspan deflection history
should be roughly the same as the upper bound on the shift of the curvature history in the
cross section at the pier face. Looking at the terminal slope of the deflection curve of the bridge
in Fig. 4 of Part I, which is about 1 m per 15000 days, one concludes that the cyclic creep
increased the midspan deflection by not more than 1 m × 854/15000 = 5.7 cm. Compared to
the total observed deflection of 1.61 m, this is not important.

For bridges of shorter spans, in which the self weight represents a smaller portion of the load,
the cyclic creep effect can be more important. But it can hardly be major. For example, the
Nusle Valley Bridge in Prague (Bažant 1968a, 1968b), which has spans 102 m and carries a
heavier traffic load (subway trains inside the box in addition to cars on top) was analyzed (by a
different method) in 1966. It was concluded that the cyclic creep would increase the deflection
of that bridge by only 4 cm (Bažant 1968b).

The present model of cyclic creep analysis was formulated in Bažant and Panula (1979) and
refined in Bažant and Kim (1992), where the model was also validated by comparisons with
the main existing data (Gaede 1962, Kern and Mehmel 1962, Whaley and Neville 1973, Sutter
and Mickleborough 1975, Hirst and Neville 1977). Note that the present cyclic creep correction
cannot be applied to the ACI, CEB and JSCE models. They would give a zero effect of cyclic
creep because the creep load-deflection curve terminates with a horizontal asymptote.

This analysis also brings about another interesting point. Since (aside from the nonlinear
corrections for drying and cracking), the principle of superposition is the basis of creep anal-
ysis, the time average of traffic loads should be included in the permanent loads. This effect,
neglected so far, might be non-negligible for bridges with many lanes, with both a highway and
a railroad, or with a dense traffic of heavy trucks.

Lessons Learned and Recommendations

1. As a purely predictive tool, none of the available material models for predicting creep and
shrinkage is satisfactory.

2. The 1971 ACI model (reapproved in 2008), and to a somewhat lesser extent the CEB and
JSCE models, severely underestimate multi-decade deflections as well as the prestress
losses, and give an unrealistic shape of deflection histories. The recent GL model gives
better predictions, but not sufficiently better. None of these models has free intrinsic
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input parameters to be updated from experiments or to explore the range of possible
responses, and none can take temperature into account.

3. Model B3, which is to a large extent theoretically based and has been calibrated by
filtering out the database bias for short durations and ages, gives significantly better
multi-decade predictions of deflection history and its shape, and of deflection growth
rate.

4. Even model B3 is unsatisfactory when its input parameters are estimated from the compo-
sition of concrete or taken at their default values. However, thanks to its free parameters,
model B3 can be made to fit the measurements perfectly with input parameters that are
within their realistic range, agreeing with the long-term test data that exist. Thus the
form of model B3 appears to be correct, and the problem is with the empirical formu-
las predicting the input parameters from the composition of concrete. Obviously, these
formulas can, and should, be improved.

5. The box girders are thick-walled shells for which the beam-type analysis is inadequate.
Three-dimensional analysis must be used. Its main purpose is to capture the shear lag
effects, which are rather different for self weight and for the loads from prestressing ten-
dons, and occur not only in the top slab but also in the webs and the bottom slab. At the
piers, the self weight produces large vertical shear forces in the web, while the prestress
does not, while the loads from tendon anchors produce shear lags mainly in the top slab.
The shear lag for the self weight is stronger than it is for the prestress. Since the total
deflection is a small difference of two large numbers, one for the downward deflection due
to self-weight and the other for the upward deflection due to prestress, small percentage
errors in each (typically ± 10% to 15%) will result in a far larger percentage error in the
total deflection.

6. For box girders wider than the KB Bridge (which had only two lanes), the difference
between the beam type analysis of creep and shrinkage and the three-dimensional analysis
which captures the shear lag effects must be expected to be larger.

7. The effect of thickness differences among the webs and the top and bottom slabs on the
drying shrinkage and drying creep must be taken into account. This leads to non-uniform
creep and shrinkage properties throughout the cross section, manifested as differential
drying creep compliances and differential shrinkage.

8. In the creep and shrinkage prediction model, the drying creep should be separated from the
basic creep, because the former is thickness dependent and approaches a finite terminal
value while the latter is thickness independent and unbounded. Only model B3 has
this feature. As evidenced by the KB Bridge, the thickness-induced differences in the
compliance functions for drying creep can be more important than those in shrinkage.

9. The prestress loss in box girders can be 2 to 3 times higher than predicted by simple
textbook formulas or lump estimates. It can also be much higher than that calculated by
the theory of beam bending in which the cross sections are assumed to remain plane. It
should be calculated as part of the three-dimensional finite element analysis of stresses
and deflections.

10. When dealing with large creep-sensitive structures, the creep and shrinkage prediction
model must be updated by means of short-time tests of the creep and shrinkage of the
given concrete. The updating is effective only if the curves of creep and shrinkage growth
have correct shapes for short times, which is the case only for model B3.

11. The shrinkage tests must be accompanied by simultaneous measurements of water loss
due to drying (Bažant and Baweja 1995,2000), or else the extrapolations can have errors
of the order of 100% (the value of such tests has been demonstrated for some recent large
bridges; Navrátil 1998). B3 is a model that has been specifically formulated so as to
allow easy updating by linear regression, while for other models the updating problem is
nonlinear.
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12. Large bridges should be designed not for the mean but for the 95% confidence limit on
the predicted deflection (in other words, having to repair or close only 1 among 20 similar
bridges is acceptable, but 10 is not). The necessary statistical analysis is easy. It suffices to
repeat a deterministic computer run of structural response about 10 times, using random
samples of the input parameters. Since the distribution of structural response can be
assumed to be normal, it suffices to obtain from the structural responses only the mean
and the coefficient of variation.

13. As observed in an earlier study (Kř́ıstek et al. 2006), the deflection evolution of large
box girders is usually counterintuitive. The deflections at first grow slowly or are even
negative, which may lead to unwarranted optimism, but after a few years a rapid and
excessive deflection growth sets in. The early deflections of the KB bridge were not
measured, but according to the present computer simulations with non-symmetric drying,
the deflection growth of this bridge must have been very slow during the first year (Fig.
3, Part I).

14. In design it is prudent to minimize deflections and prestress losses by the following mea-
sures, most of which are well known though often not followed: 1) avoid mid-span hinge;
2) choose a concrete with a low long-time creep; 3) use a tendon layout that minimizes
deflections (Kř́ıstek et al. 2008); 4) give concrete more time to gain strength before pre-
stressing; 5) increase the level of prestress, preferably so high that an upward deflection
be predicted (Fig. 7); 6) use stiffer (deeper) girders (Fig. 7); and 7) install empty ducts
for possible later installation of additional tendons.
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Appendix: Algorithm and Numerical Implementation

Algorithm Utilizing ABAQUS (Applicable to All Creep Models)

1. For each integration point of each finite element, specify effective slab thickness tb, relative
humidity h and temperature T (but, if h and T vary, they must be updated at the start
of each time step). For curing time t = tc, initialize the 6 × 1 vector (column matrix) of
shrinkage strains ε0

s. For t = t0, initialize the internal variables γ(0)
µ = 0 (µ = 1, ...N) and

J(t0, t0) = 1/E0 (E0 = conventional short-time elastic modulus, except that for the B3
model E0 = 1/q1 = asymptotic modulus). Select the discrete retardation times τµ = 10µ−7,
µ = 1, 2, ...N where, for lifespan < 250 years, N = 13 satisfies the condition that 10N−7 ≈
10 × lifespan (see Note I).

2. Loop over time steps (separated by discrete times tn, n = 1, 2, ...).
Set ∆t = tn − tn−1, and tn−1/2 = t0 + [(tn − t0)(tn−1 − t0)]

1/2 for n > 1. For n = 1,
t1/2 = (t0 + t1)/2.

3. Loop over finite elements and their integration points.
4. Calculate the increment of 6 × 1 shrinkage strain vector ∆εs = εs(tn) − εs(tn−1) from tb, h

and T in user subroutine uexpan.
5. Supply current stress σ(n−1) and strain increment ∆ε = ∆εtotal−∆εs calculated by ABAQUS

to the user material subroutine in umat, in which Bažant’s exponential algorithm is imple-
mented.
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6. Use Widder’s formula L(τµ) = − limk→∞(−kτµ)kC(k)(kτµ)[(k − 1)!]−1 to calculate the con-
tinuous retardation spectrum; here C(k) = k-th derivative on t of the creep part C(t, tn−1/2)
of compliance function, C = J − 1/E0 (usually k = 3 suffices for good approximation).
Determine the discretized spectrum A(τµ) = L(τµ) ln 10∆(log τµ) = L(τµ) ln 10.
Calculate: βµ = e−∆t/τµ , λµ = τµ(1−βµ)/∆t, Dµ = [A(τµ)(1−λµ)]−1; incremental modulus
E ′′(tn−1/2) = [E−1

0 +
∑N

µ=1 D−1
µ ]−1.

7. The inelastic (creep) strain increment vector ∆ε′′ =
∑N

µ=1(1− βµ)γ(n−1)
µ .

8. Supply to ABAQUS for this integration point the 6 × 6 incremental quasi-elastic matrix
stress-strain relation ∆σ = E ′′D(∆ε − ∆ε′′) where D is a constant 6 × 6 matrix for
isotropic material with given Poisson ratio ν.

9. Check the tensile strength limit σi ≤ f ′t (σi = principal stresses, i = 1, 2, 3). If exceeded,
reduce the stress according to specified post-peak behavior (although usually unnecessary,
the compressive damage could also be included here).

10. End of loops over finite elements and over their integration points.
11. Run with ABAQUS the elastic finite element analysis, in which each integration point has

generally a different elastic moduli matrix and different inelastic strains.
12. Update the internal variable vectors γ(n)

µ = λµ∆σD−1
µ + βµγ

(n−1)
µ .

13. End of loops over finite elements and their integration points and go to 2 and begin the
next time step.

14. End of loop over time steps.
Note I: Number N of internal variables could actually be reduced to about 5 to 7. But then

the first L(τµ) would have to be computed as the integrated area under the spectrum up to −∞
in the log-time scale (the reason is that Kelvin units with τµ ¿ ∆t behave as springs, whose
compliances can thus be combined into one compliance). Using N = 22 for model B3 and
N = 13 for other models increases the demand on computer time and storage but is simpler to
program. The spectral values L(τµ) for τµ À t can be ignored since the corresponding Kelvin
units behave as perfectly rigid.

Exponential Algorithm Simplifications for Model B3

The foregoing algorithm can be used for model B3 if J(t, t′) is computed for each integration
point. However, for basic creep there exists a simpler exponential algorithm (Bažant and
Prasannan 1989a,b) which needs only the compliance rate J̇(t, t′) and is applied only to the
non-aging viscoelasticity of the nonaging constituent of growing volume. The following steps
are then modified:

In Step 1, µb = 1, 2, ...N b, τ b
µ = 10−15+µb

and µd = 1, 2, ...Nd, τ d
µ = 10−7+µd

. Here N b = 22

and Nd = 15 (τ b, τ d = retardation times for basic creep and drying creep).

In Step 6, for basic creep, replace A(τµ) with Ab(τ b
µ) = (

√
1/tn−1/2 + q3/q2) × A(τ b

µ); where

Ab(τ b
µ) is the discretized spectrum for basic creep.

In Step 7, ∆ε′′ =
∑Nb

µ=1(
√

1/tn−1/2 + q3/q2)× (1− βµ)γ(n−1)
µ +

∑Nd

µ=1(1− βµ)γ(n−1)
µ .

After Step 7, add the strain increment due to the viscous flow: ∆ε′′ = ∆ε′′ + q4σ
(n−1)∆t/tn−1/2.

Implementation Example Using ACI-209 Model

For ACI model, J(t, t′) = (1 + φ(t, t′))/E(t′), φ(t, t′) = 2.35γc(t − t′)0.6/[10 + (t − t′)0.6] where
γc = empirical factor accounting for age t′ at loading, humidity, slab thickness, slump of fresh
concrete, and contents of fine aggregates and of air. In ABAQUS, the exponential algorithm is
used in user material subroutine, as follows:
1. At t = t0, initialize the internal variables; γ(0)

µ = 0, J(t0, t0) = 1/E(t0) where t0 = time

when the first load is applied. Select τµ = 10−7+µ (µ = 1, 2, ...13). Use Widder’s formula
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to calculate the continuous spectrum: d3φ/dξ3 = ψ(ξ) = 2.35γc[0.336ξ−2.4(10 + ξ0.6)−1 +
0.528ξ−1.8(10 + ξ0.6)−2 + 0.432ξ−1.2(10 + ξ0.6)−3 − 1.296ξ−0.6(10 + ξ0.6)−4] where ξ = t− t′;
L(τµ) = 2.35γc(3τµ)3ψ(3τµ)/2 where γc is calculated using tn−1/2

2. Discretized spectrum: A(τµ) = L(τµ) ln 10/E(tn−1/2), and calculate βµ = e−∆t/τµ , λµ =
τµ(1 − βµ)/∆t, Dµ = [A(τµ)(1 − λµ)]−1. The effective modulus then is E ′′−1(tn−1/2) =

E−1(tn−1/2) +
∑N

µ=1 D−1
µ .

3. Creep strain increment: ∆ε′′ =
∑N

µ=1(1 − βµ)γ(n−1)
µ . The stress-strain relation for this

integration point to be supplied to ABAQUS: ∆σ = E ′′(tn−1/2)D(∆ε−∆ε′′)
4. Update the internal variables γ(n)

µ = λµ∆σD−1
µ + βµγ

(n−1)
µ , and go to the next time step

To check programming, the following results should be obtained: For γc = 1.25(t′)−0.118,

Ee = E28

√
t/(4 + 0.85t) where E28 = 30 GPa, and σ = 1 MPa applied at t0 = 7 days, the

results are ε = 4.92× 10−5 for t = 8 days; ε = 9.68× 10−5 for t = 100 days; ε = 0.00012 for t =
1000 days and ε = 0.000129 for t = 10000 days. These are almost the same results as obtained
directly from the ACI formula.
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[7] Bažant, Z.P. (1968b). “On causes of excessive long-time deflections of prestressed concrete bridges.
Creep under repeated live load” (in Czech), Inženýrské Stavby, 16, 317–320.
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[15] Bažant, Z.P. and Kaplan, M.F. (1996). Concrete at High Temperatures: Material Properties and
Mathematical Models, Longman (Addison-Wesley), London (2nd printing Pearson Education,
Edinburgh, 2002).
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[20] Bažant, Z.P. and Prasannan, S. (1989a). “Solidification theory for concrete creep: I. Formulation”
Journal of Engineering Mechanics ASCE, 115(8), pp. 1691–1703.
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(Suppl.) 21, No. 246, 847–850, and 23 (1970), No. 270, pp. 7–13.
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Bažant, J. Wiley, Chichester and New York, 1988, 57–215.

[44] Shawwaf, Khaled (Dir., Dywidag Systems International USA, Bollingbrook, Illinois; former struc-
tural analyst on KB bridge design team), Private communication, September 18, 2008, Chicago.

[45] Sutter, G.T., Mickleborough, N.C. (1975). “Creep of concrete under cyclically loading dynamic
loads.” Cem. Concr. Res. 5 (6), 565–576.

[46] Tschoegl, N.W. (1989). The phenomenological theory of linear viscoelastic behavior: An introduc-
tion. Springer Verlag, Berlin.

[47] T.Y.Lin International (1996). Collapse of the Koror-Babelthuap Bridge, Report, T.Y.Lin Inter-
national, October, 1996 (32 pp.).

[48] Whaley, C.P., and Neville A.M. (1973). “Non-elastic deformation of concrete under cyclic com-
pression.” Mag. Concr. Res. 25 (84), 145–154.

List of Figures

1 Three-dimensionally meshed model of KB Bridge and grouped segments. . . . . . . 15
2 Strain-stress relation if tensile strength is exceeded. . . . . . . . . . . . . . . . . . 15
3 Retardation spectra of ACI model. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4 Retardation spectrum of model B3. . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5 Shear stress distribution in the cross-section at the main pier, and stress-strain rela-

tions for smeared tensile cracking. . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
6 Comparison of deflections obtained by full three-dimensional analysis with deflections

obtained according to the bending theory with cross sections remaining plane. . . . 15
7 Stress profiles for small spans (a) and large spans (b,c), and precautionary design (c). 15

14



Main Pier

Diaphragms

Segments of different cross section

Fig. 1



E''/4

-E''/3

1

1

E''
1ft'

0.7ft'

ε

σ

εp 1.83εp

Fig. 2



t' = 7 d
t' = 210 d

t-t' day

-10

-5

0

5

10

-4

-2

0

2

4

6
0

0.5

1

1.5

2

J M
Pa

-1

µτ

µA

0

0.4

0.8
0

1

2

10910010-6

10910010-6

t' = 7 d

t' = 210 d

6.0

6.0

)'(10
)'()'(
tt

tttJ
−+

−
= φ

Spectrum of compliance function

ACI
(1971, 2008)

µA

log t' (day) log τ µ
Fig. 3



-15
-10

-5
0

5
10

15 1

2

3

4

5

6

0

0.05

0.1

0.15

0.2

0.25

-10

-5
0

5
10 1

1.5

2

2.5

3

3.5

4

0

0.01

0.02

0.03

0.04

0.05

0.06

µτ

µA

0

0.12

0.24

101510010-15

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ −
+=−

n
ttttC

0

'1ln)'(
λ

J M
Pa

-1

0

1

2

10610010-5
t-t' day

'
))'(1ln()',( 4

1.0
321 t

tqttqttQqqJ +−+++=

t' = 7 d
t' = 210 d

µA

lo
g
t' (

da
y)

log τµ

µA
lo

g
t'

(d
ay

)

log τµ

Spectrum of Basic Creep Spectrum of Drying Creep

Fig. 4

Spectrum of nonaging solidification constituent



Self weight, σxx Self weight, τxy

Fig. 5

+

-

+ +

- -

x = 14.63 m
+

-

+

-

+

-

Prestress, σxx Prestress, τxy
x = 60.35 m

-

++
+

- -
-

+ +
+

- -



Deflection (B3) Prestress Loss (B3)

0 2000 4000 6000 8000

0

-0.1

-0.3

-0.5

t, time from construction end, days

Me
an

 D
efl

ec
tio

ns
 (m

)

Plane cross sections
(no shear lags)

0 2000 4000 6000 8000
t, time from construction end, days

600

400

Pr
es

tre
ss

Lo
ss

  (
MP

a) Plane cross sections
(no shear lags)

Deflection (ACI) Prestress Loss (ACI)
800

Me
an

 D
efl

ec
tio

ns
 (m

)

0 2000 4000 6000

800

600

400

200
Pr

es
tre

ss
los

s (
MP

a)

0
8000

Jacking force
After instant loss

B3 (set2)

No shear lag
(plane cross sections)

3 means of 3 tests
Overall mean: 50%

t, days, log scale
0 2000 4000 6000 8000

0

-0.4

-0.8

-1.2

-1.6

t, time from construction end, days

B3 
(set2)

No shear lag
(plane cross sections)

Fig. 6



h

P

M

y/h

σpσp σp

σD σD
σLσL σD

σL margin

St
re

ng
th 

lim
it

ft*ft*fc* ft*- - ++

b) Large span
-- no margin on ft*,

deflection 
downwards

a) Small span
-- creep deflection

upwards

c) Large span
-- margin on ft*,

no deflection

Fig. 7




