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ABSTRACT 
 

 

A Biorobotic Study of the Rat Whisker System 

 

 

Joseph Hai Solomon 

 

 

 

 The rat whisker (vibrissal) system provides rats with an exquisitely acute tactile sense that 

has helped allow them to thrive all over the world. By actively rotating their whiskers back-and-

forth (“whisking”) against objects, rats can extract a rich variety of information including 

position, size, shape, orientation and texture. Today, however, we have an incomplete 

understanding of how the mechanical interactions between whiskers and environment can carry 

sufficient information to allow sensation of these features. The research presented here offers 

new insights to help answer these questions, and concurrently develops novel tactile sensing 

concepts that apply to the realm of robotics. 

The methodology employed here can be conveniently divided into two parts. The first part 

involves the construction of analytical and numerical models to describe how whiskers bend and 

transmit forces and moments in response to mechanical deflections. Also, a functional model is 

derived to explain how three-dimensional (3-D) object feature extraction is possible with rat 

whiskers. The second part involves the construction and testing of a robotic array of whiskers to 

validate the effectiveness of the model, and to also reveal additional aspects of the sensory task 



 

4 

that are difficult to identify through other methods of study such as computer simulation or high-

speed video analysis. The results of this thesis should be of interest both to those involved in the 

study of the rat whisker system, and those interested in the field of robotic tactile sensing. 
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Chapter 1  

Introduction 

 

Rats are one of the most widespread mammals on Earth due to their extraordinary ability to 

adapt to a diversity of environments. The Norwegian rat (rattus norvegius) in particular has 

populated nearly every area on the planet that humans have [1]. Because rats live much of their 

lives underground in burrows and have low acuity vision [2], tactile sensation plays a pivotal role 

in allowing them to navigate and find food. The rat whisker system provides tactile information 

through a behavior known as “whisking,” wherein all the whiskers on each cheek are actively 

rotated back-and-forth against objects at about 5-12 Hz in a relatively stereotyped, rhythmic 

pattern [3]. Whisking provides rats with a highly acute and robust tactile window to their 

environment, providing detailed information about objects‟ position, size, shape, orientation and 

texture [4-7]. This remarkable ability has caught the attention of a large number of 

neuroscientists interested in understanding the fundamental principles involved in the process of 

active sensing. I personally am not a neuroscientist (although my interest in the field has grown 

faster than my understanding). However, as a mechanical engineer, my educational background 
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has given me a different perspective from which I have attempted to shed new light on the rat 

whisker system. The approach I have taken draws heavily on the engineering disciplines of 

Euler-Bernoulli beam theory and robotics, making the results of interest to a particularly diverse 

audience. The remainder of this chapter will explain and motivate the approach taken in this 

research, and give an overview of this thesis. 

 

1.1 Motivation 

The fundamental relationships between movement and sensing that guide the behavior of 

all animals have proven very difficult to understand due to the highly complex interaction 

between nervous system, body and external environment. At the same time as incoming sensory 

stimuli are interpreted in the context of outgoing motor commands, the resulting sensations 

determine the subsequent sequence of movements, forming a highly dynamic feedback loop. The 

rat whisker system possesses many unique properties that may help unravel the computational 

principles underlying this process. In terms of movement, whisking is largely rhythmic and 

stereotyped, and hence can be comprehensively described with few parameters. Having very 

little mass, whiskers are also negligibly affected by inertial forces and do not disturb the 

environment. In terms of sensing, whiskers gather discrete bundles of information, which can be 

described through units of force, moment and their derivatives. Nearly every stage of neural 

processing then architecturally preserves the neat, grid-like arrangement of whiskers on each 

whisker pad [8], allowing neuroscientists to study sensory acquisition in a highly structured 

context. 
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Despite these favorable properties, a cohesive, explicit framework to explain the 

remarkable acuity of the whisker system has remained elusive. Part of the reason is the 

incompleteness of the traditional investigative toolset, broad though it may be. This includes 

electrodes to measure the spiking of neurons, computer programs to test hypotheses about neural 

processing models, high-speed video to track the movement of the whiskers, and behavioral 

experiments to reveal underlying functional principles. What‟s lacking here is an accurate model 

of the complex physical interactions that take place between whiskers and environment. This is 

not a profound idea; models are one of the basic pillars of scientific inquiry and understanding 

[9, 10]. However, it is not entirely uncommon for this basic component of problem solving to be 

underused, and I believe the study of rat whisker system has suffered from this. This thesis 

serves to help fill that gap. 

 

1.2 Approach 
 

Central to the modeling approach that I have undertaken during the course of my research 

has been the incorporation of analytical, numerical and robotic techniques. The interaction 

between the three, shown in Figure 1.1, effectively induced a synergistic effect, wherein new 

ideas were motivated, formalized, validated and implemented in such a way that would not be 

possible if any one component were missing. This will be further reflected upon in the 

Conclusion. 
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Figure 1.1: The synergistic interactions between analytical, numerical and robotic modeling 
techniques led to new insights about the rat whisker system. 

 

This overall approach clearly falls under the domain of biorobotics [11]. Along with the 

growing appreciation for how the complex yet subtle interactions and feedback loops between 

animal and environment lead to the emergence of behavior, the multidisciplinary field of 

biorobotics has developed. Given the enormous difficulty in accurately modeling the physical 

world in simulation, many scientists have turned to robots to help answer specific questions 

regarding the operation of animal motor systems. Likewise, due to the amazing agility and 

adaptability displayed by animals, engineers have incorporated aspects of neural control and 

biomechanics (neuromechanics) [12] into robots. More often than not these two motivations 

overlap, making the biorobotic approach especially productive. 
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Beer et al. [13] recommend the following sequence of steps to maximize the utility of the 

biorobotic approach: 

1. Identify a biological hypothesis that is difficult to address experimentally. 

2. Design a biorobot that captures the essential physical properties required to address 

the biological question of interest. 

3. Test the feasibility of the original biological hypothesis on the biorobot. 

The research I have carried out has iterated through these steps several times, but without the 

need to reconstruct the robot. In other words, several different hypotheses were developed, but 

the robotic platform was built to be scalable and adaptable to address the specific experimental 

requirements. 

In keeping with the multifaceted nature of biorobotics, several equations, algorithms and 

technologies were developed that have relevance to the field of robotic tactile sensing, which is 

rapidly growing [14]. Rats are nature‟s testament to the effectiveness of whiskers as robust 

tactile sensors in unstructured environments, and bear credence to the potential for robotic 

counterparts [15], [16]. The work presented here is thus highly relevant to mobile robots, in 

addition to several other specific robotic applications (see Chapter 4). 

This section now concludes with the important remark that this research has focused on 

object feature extraction primarily from a functional point of view. The term “rat whisker 

system” not only refers to a collection of whiskers, but also the remarkably complex and 

interconnected web of neural structures that control their movement and process the resulting 

mechanoreceptor activity. No such neuronal activity was modeled here. Instead, the results serve 

more as basis to identify important sensory variables and formalize the fundamental mechanical 
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principles involved in the rat‟s sensations of shape. It is my hope that these ideas will lead to new 

testable hypotheses that will ultimately increase our understanding of the process of active 

sensing. 

 

1.3 Thesis Outline 

This thesis is organized in such a way that the ideas and models are developed in a smooth, 

cohesive manner; it does not reflect the order in which the research was carried out. The basic 

outline is as follows: 

 Chapter 2 presents a brief overview of the rat whisker array. 

 Chapter 3 develops and tests the analytical models for whisker deflection and the 

extraction of radial distance to an object. 

 Chapter 4 addresses the issue of lateral whisker slip during object contact, and shows 

how it can be accounted for by sensing two components of moment. 

 Chapter 5 implements the technique derived in Chapter 4 to perform detailed 3-D feature 

extraction on a complex object. 

 Chapter 6 develops a technique for object profile extraction, wherein a continuous 

segment of an object can be sensed by a whisker during a single whisk. 

 Chapter 7 discusses the overall results of this research. 

 Appendix A outlines a technique for fitting the shapes of whiskers. 

 Appendix B derives an analytical model of whisker deformation. 

 Appendix C discusses the effects of taper on whisker mechanics. 
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 Appendix D derives the numerical model used throughout this research. 

 Appendix E derives a model for lateral slip of a whisker against a flat surface. 

 Appendix F derives a model for lateral slip of a whisker against a curved surface. 
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Chapter 2  

The Rat Whisker Array 

 

This chapter contains material that has been altered from the following publication: 

V. Gopal, J. H. Solomon, N. Naik, and M. J. Z. Hartmann, "Two and three dimensional 

morphology of the rat vibrissal array," Annals of Biomedical Engineering, accepted with 

revisions. 

 

2.1 Array Morphology 
 

Rat whiskers are composed of keratin, and are structurally similar to fur or hair but with 

important differences. Whiskers are generally thicker and have a distinctly tapered shape, 

measuring between 50 and 20 m thick at the base and about 5 m at the tip [17]. They also 

gently curve along their lengths, but primarily lie flat within a plane. Rats have both large 

(macrovibrissae) and small (microvibrissae) whiskers on each side of the face. The 

microvibrissae exist around the lip region and are not actively whisked, but still play important 

roles in the sensing process [7]. They are generally under ~7 mm. The macrovibrissae are 

arranged in a grid-like pattern along the mystacial pad, which is consistent from animal to animal 
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(and interestingly, to a slightly lesser degree, is also evolutionarily conserved amongst mammals, 

including cats and pinnipeds) [4, 18]. The lengths of the macrovibrissae are fairly consistent in a 

given column, but smoothly vary from about 10 to up to 70 mm in the caudal (rearward) 

direction. Brecht et al. describes the lengths as exponentially increasing across rows [4]. 

However, the exponentiality was found to be mild, and newer research indicates that the trend 

may be accurately described as linear [19]. A cartoon schematic of the whisker layout is shown 

in Figure 2.1(a), and an actual array is shown in Figure 2.1(b). 

 

 

Figure 2.1: The rat whisker array. (a) This cartoon schematic shows the grid-like arrangement 

of the macrovibrissae (solid dots) along the mystacial pad, and the scattered distribution of the 

microvibrissae (small circles) around the lips. The varying sizes of the black dots corresponds 

the lengths of the associated whiskers. (b) A picture of an actual whisker array. 

 

It can be seen in Figure 2.1(b) that the whiskers protrude from the mystacial pads in a 

smoothly-varying but elaborate 3-D configuration. Only recently has the array morphology been 

quantitatively described through research in my laboratory (the SeNSE lab – SEnsory and Neural 

Systems Engineering) [19]. The general pattern can be summarized as follows: 
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 In a given row, the rostrocaudal angle of emergence increases in the rostral direction, as 

shown by the dotted lines in Figure 2.2(a). In other words, whiskers in the front (rear) 

tend to emerge pointing more forwards (rearwards). 

 In a given column, the dorsoventral angle of emergence increases in the dorsal direction, 

as shown by the dotted lines in Figure 2.2(b). In other words, whiskers higher (lower) on 

the mystacial pad tend to emerge pointing more vertically (downward). 

 In a given column, the angle of planar orientation increases in the dorsal direction, as 

shown by the whisker shapes in Figure 2.2(b). In other words, the whiskers higher 

(lower) on the mystacial pad tend to have their tips point more vertically (downward). 

 

 

Figure 2.2: Emergence patterns of the macrovibrissae. (a) From the top view, the rostrocaudal 

trend of emergence within a given row is clear. (b) From the front view, both the dorsoventral 

trend of emergence and the pattern of planar orientation within a given column are clear. 

Dashed lines are tangent to the whisker bases. 
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2.2 Whisker Shape 

Although rat whiskers are clearly curved in shape, there has been little if any systematic 

investigation of how they curve along their lengths. With the goal of gaining some deeper insight 

into their shape, I analyzed a collection of 231 whiskers (macrovibrissae) obtained from four 

adult female Sprague-Dawley rats. The whiskers were plucked, scanned, and processed into 2-D 

vector data in MATLAB using the procedure outlined in Appendix A. 

Because most of the whiskers appeared to be planar, it was a natural choice to describe 

vibrissal shape as a plane curve. However, there are an infinite number of functional forms that 

can be used for this purpose. My aim was to use a characterization that was “simple” in an 

intuitive sense, while still accurately capturing all the essential features of the data. Initial 

attempts at fitting involved traditional Cartesian parameterizations such as polynomials, but it 

became clear that these techniques fail to reveal any intuitive meaning about the whisker shapes. 

To describe whisker shape without reference to Cartesian coordinates, I used a coordinate-

free representation, wherein the shape of the curve is specified by the curvature (s) at each point 

as a function of the arc length s. Thus, the set of values {s,(s)}, completely specifies the curve 

intrinsically with respect to s, without reference to an external coordinate system [20]. 

In the absence of any a priori model for (s), excellent fits to the data were obtained by 

using a linear parameterization, such that  

 ( )s as b    (2.1) 

where s is normalized by the whisker length and hence goes from 0 to 1. The fitting process 

involved dividing the whisker data into 20 nodes, and finding values for a and b that minimized 

the mean sum of squared Euclidean distances between the nodes of the normalized real whiskers 
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and those of the fit curves. Excellent fits were obtained using this approach with only a few 

exceptions, which were clearly atypically shaped whiskers. Some examples are shown in Figure 

2.3. 

 

Figure 2.3: Examples of whisker fits. Solid lines are data from original whisker scans, and small 

dots represent nodes of the fitted curves. 

 

Inspecting Figure 2.3, it is clear that (2.1) is able to fit a diversity of shapes. How is this possible 

with only two parameters? Figure 2.4 explains how the shape of a whisker can be inferred based 

on the coefficients of its fit, and thus helps to answer this question. 

 

Figure 2.4: The general shape of any given whisker can be inferred from the coefficients of its 

fit to (2.1). Abbreviations in red refer to how the curvature changes from base to tip along the 

length of a whisker based on its coefficients. Abbreviations are explained in the text. 
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The abbreviations in Figure 2.4 have the following meanings: 

 „n2p‟ = negative to positive, i.e. the curvature starts out negative at the base and linearly 

increases along the whisker to become positive before the tip. The shape is similar to part 

of a sigmoid curve. Whiskers with b < 0 and a > -b lie in this region. 

 „p2n‟ = positive to negative, i.e. the curvature starts out positive at the base and linearly 

decreases along the whisker to become negative before the tip. The shape is similar to 

part of a sigmoid curve. Whiskers with b > 0 and a < ‒b lie in this region. 

 „z2p‟ = zero to positive, i.e. the curvature is zero (straight) at the base and linearly 

increases towards the tip. This is the line along b = 0 for a > 0. 

 „p2z‟ = positive to zero, i.e. the curvature starts out positive at the base and linearly 

decreases along the whisker to become zero (straight) at the zip. This is the line along a = 

-b for b > 0. 

 „ip‟ = increasingly positive, i.e. the whisker curvature is positive at the base and linearly 

increases towards the tip. Whiskers with b > 0 and a > 0 lie in this region. 

 „dp‟ = decreasingly positive, i.e. the whisker curvature is positive at the base and linearly 

decreases towards the tip, but remains positive. Whiskers with a > ‒b and a < 0 lie in this 

region. 

 „cir‟ = circular, i.e. the curvature is constant and hence the whisker shape is a segment of 

a circle. This is the line a = 0 for b > 0. 

 „str‟ = straight, i.e. the curvature is zero along the entire whisker and hence the whisker is 

a straight line segment. This is the origin (0, 0). 
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Clearly a rich variety of shapes are possible using (2.1) – shapes which accurately describe rat 

whiskers. Now equipped with an intuitive understanding of the fit parameters, Figure 2.5 plots a 

vs. b for all the whiskers, revealing that they are closely correlated. 

 

 

Figure 2.5: Fits from 231 whiskers shows that the fit coefficients are highly correlated. The gray 

line is a linear fit, and the dashed line is a = ‒b. 

 

Interestingly, Figure 2.5 shows that not only are all basic types of whisker shapes outlined 

in Figure 2.4 embodied by actual whiskers, but also that there is a clear linear trend which 

describes the distribution of the coefficients. The reason for this trend is currently the subject of 

further investigation. 
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Chapter 3  

Radial Distance Extraction 

 

This chapter contains material that has been slightly altered from the following publication: 

J. A. Birdwell, J. H. Solomon, M. Thajchayapong, M. A. Taylor, M. Cheely, R. B. Towal, J. 

Conradt, and M. J. Z. Hartmann, “Biomechanical models for radial distance determination by the 

rat vibrissal system,” Journal of Neurophysiology, vol. 98, pp. 2439-2455, 2007. 

 

3.1 Introduction 
 

Rats use their mystacial vibrissae during navigation and exploratory behaviors to 3-D 

object features, including size, shape, orientation, location, and texture [4, 5, 21-24]. To extract 

these complex 3-D features, the rat must at least implicitly estimate the distance from the base of 

the whisker to the point of object contact. However, the mechanism for radial distance encoding 

by a single whisker seems problematic, because mechanoreceptors are located only at the base of 

the whisker, within the follicle [25-27]. This means that object position cannot be directly 

measured by the location of contact on the whisker. Instead, the whisker‟s interaction with the 

environment must be transduced into parameters that can be measured at the whisker base.  
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It is well known that the length of the rat‟s whiskers varies from long to short along the 

caudal-rostral dimension [4, 28, 29]. Thus one plausible mechanism for radial distance encoding 

is for the rat to compare the identity of whiskers that contacted an object with those that did not. 

If a whisker of length L touched an object, but a whisker of length L ‒ L did not, the rat could 

infer that the object was located at a distance between those two values (after accounting for 

different whisker base locations). Behavioral studies have shown, however, that rats can 

determine aperture width with only one whisker remaining on each side of the face [30]. This 

suggests that cross-whisker comparisons cannot fully explain the rat‟s distance discrimination 

capabilities. 

A preliminary analysis of the whisker as a cantilever beam suggested that the stiffness 

properties of the whisker might provide a mechanical explanation for the rat‟s ability to perform 

accurate radial distance discriminations. We specifically hypothesized that information about 

moment at the whisker base is critical for determining radial object distance. To test this 

hypothesis, we developed two closely-related biomechanical models of the whisker. Both models 

were deliberately developed in analytic form, so that researchers could easily calculate moment 

at the whisker base during experiments. The analytical models were tested against numerical 

simulations to quantify limits on their application, and together with experimental results 

confirmed our hypothesis: by correlating movement to changes in moment at the whisker base 

the rat could determine the radial distance of an object. 

This work continues our characterization of vibrissa dynamics [29], and suggests some 

useful ways to represent the mechanical information encoded in the primary sensory neurons of 

the trigeminal ganglion (Vg). We interpret these results in the context of our evolving hypothesis 
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that neural responses in Vg can be comprehensively represented using a state-encoding scheme 

that includes combinations of four and only four mechanical variables at the whisker base: 

angular position, angular velocity, moment, and rate of change of moment. 

 

3.2 Methods 
 

3.2.1 Whisker Preparation for Static and Dynamic Experiments 
 

The present analysis is based on a total of seven vibrissae obtained from three female 

Sprague Dawley rats that had been sacrificed in unrelated experiments. All procedures were 

approved in advance by Northwestern University‟s Animal Care and Use Committee. Each 

whisker was grasped firmly at the base and plucked out of the follicle for testing. Examination of 

the whisker by eye revealed that there was a qualitative difference in appearance between 

approximately the first mm of the whisker and the remainder of the whisker. Closer examination 

under the microscope additionally suggested that this first mm is approximately the portion of 

the whisker that would reside in the follicle, and we therefore used this portion to rigidly attach 

the whisker to the test stand or load cell during experiments.  

 

3.2.2 Static Experiments to Determine Whisker Flexural Characteristics 

A micromechanical force tester (Mach-1, BioSyntech, Montreal, Canada), was used to 

impose small vertical displacements on the whisker at known horizontal distances from the base 

and to measure the associated force. The Mach 1 has a positional accuracy of 1.5 m, and we 

used a 50-gram load cell to achieve a load resolution of 0.0025 grams. This allowed us to 
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characterize force-bending relationships for all but the smallest whiskers. Images of the whiskers 

as they were bent during the experiment were acquired with a high-resolution (3088 by 2056 

pixels) digital camera (Digital EOS Rebel, Canon, Inc.).  

Figure 3.1(a) shows the experimental set up used to perform the static force measurements. 

Whiskers were rigidly fixed at their base to a cylindrical metal test stand using cyanoacrylate 

(superglue). All whiskers were mounted concave down. A shallow groove one mm in length was 

etched in the top face of the stand. The whisker was placed directly in the groove to ensure that 

exactly the first mm of the whisker was rigidly attached to the stand. As described above, this 

first mm is likely to correspond to the portion of the whisker which would normally reside inside 

the follicle. Miniature scales (Minitool, Los Gatos, CA) with 100 m tick-marks were attached 

both vertically and horizontally to the side of the cylindrical stand. These scales provided an 

independent measure of displacement that could be compared with the positions given by the 

Mach-1 micromechanical tester. The inset of Figure 3.1(a) shows a close up view of the 

stimulator used to deflect the whisker. The stimulator was custom-machined to a fine taper so 

that the width that ultimately contacted the whisker was ~500 m. 
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Figure 3.1: Experimental measurement of static and dynamic forces. (a) In static experiments 

the first 1 mm of each plucked whisker was glued rigidly to a cylindrical post with horizontal and 

vertical scales fixed to the left side. A tapered stimulator (inset shows side view) attached to a 

load cell was gradually lowered into the whisker at different distances from the whisker base. 

The load cell thus directly measured the force necessary to displace the whisker a known 

vertical distance (y), at a particular radial distance (x). (b) In dynamic experiments the base of 

the whisker was mounted directly to the load cell, and then translated into the tapered 

stimulator. Note that the y-axis is reversed for directional consistency. The tapered stimulator 

was held fixed and positioned at different radial distances from the whisker base. Under these 

conditions, the load cell directly measured the force at the whisker base as the whisker was 

increasingly deflected over time, at a particular radial distance. In both static and dynamic 

experiments the contact width of the stimulator on the whisker was approximately 500 m. Also 

note that because the load cell in the Mach-1 tester measured only vertical force, the measured 

force was divided by the cosine of the whisker angle at the contact point to obtain the actual 

force applied. 

 

At the beginning of each static experiment, the stimulator was rigidly attached to the Mach-

1 load cell and carefully positioned in both x- and y-directions. In the x-direction, the stimulator 

was positioned at the right-most edge of the test stand, and this position was defined as x = 0. In 

the y-direction, the stimulator was positioned just above the surface of the base of the whisker, 

and this position was defined as y = 0. The stimulator was then lowered in small (100 m) 

intervals in the y-direction (computer-controlled via the Mach-1 micromechanical tester) to 
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precisely displace the stationary whisker. The stimulator was lowered until the whisker had been 

deflected 1,500 m (1.5 mm). Forces from the load cell were recorded at every step for every 

whisker, and digital pictures of the whisker‟s bending were taken at every step for all seven 

whiskers. Note that in these static experiments, the load cell measured the vertical force 

necessary to displace the whisker a known vertical distance, at a particular distance from the 

whisker base. It did not measure the force at the base of the whisker.  

After the whisker had been deflected through a full 1,500 m, the stimulator was moved 

back to y = 0 so that it no longer contacted the whisker. The stimulator was then moved in the 

positive x-direction, to a different horizontal distance from the base of the whisker. We typically 

moved the stimulator in 2,000 m increments in the x-direction, but for some whiskers we 

moved in 1,000 m intervals. The stimulator was again positioned carefully just barely above the 

surface of the whisker, this position was defined as a new y = 0, and the stimulator was then 

lowered to displace the whisker at this new x-location. We continued moving the stimulator 

further out horizontally from the base of the whisker until we reached the resolution of the force 

measurement capabilities of the Mach 1 tester. 

 

3.2.3 Dynamic Experiments to Determine Whisker Flexural Characteristics 

In dynamic experiments, the whisker base was mounted directly to the load cell and moved 

using the Mach-1 tester to hit the tapered stimulator, which was held fixed in position. This 

experimental setup is shown in Figure 3.1(b) and allowed us to continuously monitor the force at 

the base of the whisker as it deflected into the stimulator. We lowered each whisker into the 
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stimulator at two different velocities (50 m/sec, and 500 m/sec), and at five different 

horizontal locations away from the whisker base (3, 5, 7, 9, and 11 mm). Note that the y-

direction is opposite that in Figure 3.1(a) for directional consistency with respect to the whisker.  

 

3.2.4 Analysis of Experimental Data 

Force and displacement data (from the Mach-1 tester), along with the digital images of the 

whiskers, were imported into MATLAB (v 7.0, 2004, The Mathworks, Nattick, MA). As is the 

convention for load cells, the load measurements from the Mach-1 were provided in grams. 

These measurements were multiplied by a factor of 9.8 meters/second
2
 to account for the 

acceleration due to gravity and obtain the force in micronewtons (N). Whisker-stimulator 

contact forces were always assumed to be normal to the whisker because the contribution of 

force from friction was negligible. The load cell in the Mach-1 tester measured only vertical 

force, and we therefore divided the measured force by the cosine of the whisker angle at the 

contact point to obtain the actual force applied.  

To extract the geometrical shapes of the whiskers from the high-resolution photographs, the 

upper and lower outlines of the whisker were located using semi-automated image processing 

techniques in MATLAB. The shape of the whisker was then defined as the average of the upper 

and lower outlines. For each extraction the averaged points were overlaid on top of the 

photographed whisker to visually confirm that the averaging technique yielded data points that 

fell within the upper and lower outlines of the whisker, thus giving an excellent match to the 

overall shape.  
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3.2.5 Fundamentals of Elasticity: Cantilever Beam Theory 

Our goal in this research was to develop an accurate but simple biomechanical model of the 

rat whisker as a cantilevered beam. Cantilever beam models are derived from elasticity theory 

[31-34], which relates the curvature,  of a cantilever beam to the moment,at each point 

along its length, x:  
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In (3.1), y(x) is the displacement of the beam at each x location along the length, E is Young‟s 

modulus (also called the elastic modulus), and I is the area moment of inertia. In general, 

Equation (3.1) can only be solved numerically, but for small angle deflections (< ~14 degrees), 

the term 
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in the denominator is negligible and (3.1) can be linearized as  
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In (3.2), F is the force exerted normal to the beam at a distance along the whisker, a, from the 

base of the beam. The linearization assumes that the beam is initially straight and that it deflects 

only through small angles. This means that the arc length distance a, is essentially the same as a 

horizontal distance.  

If we now assume that the beam is cylindrical with a radius of r at the base, then the area 

moment of inertia 4π / 4I r  and (3.2) can be solved analytically for y(x):  
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Note that y(x) is linear with horizontal position x for values of x greater than a. We adapted this 

model of the cylindrical beam into a model for the tapered beam (see the Results section and 

Appendix B), to more accurately represent the morphology of real rat whiskers.  

It is important to note that elasticity theory itself is very general, simply relating curvature 

to moment. However, for biological materials Young‟s modulus (E) is an approximation at best, 

because these materials are typically anisotropic, heterogeneous, and nonuniform. For a material 

whose value of E is roughly 5 GPa, the best one might expect is to obtain a value correct to 

within a few gigapascals.  

 

3.2.6 Comparing Results of Model 1 With Experimental Results 

Our analysis required a comparison of the shape of the whisker as predicted by our tapered 

beam model (Model 1) with the shape of the real whisker obtained experimentally with high 

resolution photography. However, real rat whiskers have an inherent curvature. We therefore 

made the approximation that the deflection of the real whisker (under a force F at a particular arc 

length location, a) could be expressed as the deflection of a straight tapered cantilever beam 

(under that same force F, imposed at the same location a), summed with the inherent curved 

shape of the undeflected whisker (under conditions of zero force). This approximation is 

schematized in Figure 3.2. This analysis is valid as long as the assumptions of the linearized 
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beam model are not violated, namely that the deflections and inherent whisker curvature are 

sufficiently small. The first part of the Results section identifies the conditions in which these 

assumptions are valid. 

 

 

Figure 3.2: Geometrical method used to predict the final shape that a whisker will assume 

under an imposed force. The predicted whisker shape was found by summing the inherent 

curvature of the whisker (from a photo) with the curvature resulting from an imposed force as 

predicted by the tapered beam model. The top row shows deflections of the entire whisker, 

while the bottom row shows enlarged versions of the region near the base for visual clarity. In 

each figure, the upside-down triangle indicates the position of the applied force. (a, top) Under 

conditions of zero force, the (undeflected) shape of the whisker was extracted from a 

photograph and partitioned with nodes spaced at equal arc lengths. This quantified the inherent 

curvature of the whisker. (a, bottom) The inward pointing unit normal was found for all nodes 

between the base of the whisker and the stimulator contact point. (b, top) Model 1 was used to 

predict the deflection of a linearly-tapered cantilever beam with the same dimensions as the real 

whisker (base diameter and length). The modeled beam was partitioned with equally-spaced 

nodes as in (a). (b, bottom) The vertical distance that each node traveled from the undeflected 

to the deflected case was found. (c, top and bottom) The magnitude of the vertical deflection 

for each node in (b) was added to its corresponding node in (a), in the associated unit normal 

direction shown in (a, bottom). It is clear from (c, top) that even a very small deflection imposed 

near the whisker base can have a large effect on the position of the tip of the whisker.  

 

Summing the deflection of the tapered cantilever beam (from analytical equations) with the 

inherent curvature of the undeflected whisker (from photography), required some careful 
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geometrical analysis. The summation process involved three steps, and is schematized in Figure 

3.2. First, thousands of nodes along the (real, undeflected) whisker were placed at constant arc 

length (Figure 3.2(a)). Second, the arc lengths from the base of the whisker to each of the nodes 

were used as the x-values in the deflection equation to analytically solve for the small-angle 

deflection of a tapered cantilever beam ((3.5) in the Results section). Figure 3.2(b) shows the 

magnitude of the vertical deflection for each node. For small angles, the path of deflection can be 

assumed to follow a vertical translation instead of an arc [34]. Third, the resulting deflection 

values were added to each node along the undeflected whisker in an inward-pointing normal 

direction to the whisker at each node (Figure 3.2(c)). This three-step procedure has a very 

intuitive underpinning: it simply ensured that equivalent deflections were summed between the 

theoretical model and the experimentally-obtained photographs.  

Note that for this model, nodes beyond the point of whisker-stimulator contact deflect 

linearly, as can be seen mathematically in (3.3). In the model, we could therefore assume that the 

portion of the whisker past the stimulator contact point was translated in the same direction as 

the last node before the stimulator contact. This portion of the whisker was thus aligned to match 

the tangent of the deflected whisker at the point of contact.  

 

3.2.7 Numerical Simulations 

Numerical simulations of whisker bending were performed in order to identify the 

limitations on and validate the results of the two analytical models. These numerical simulations 

also accounted for large angle deflections and inherent whisker curvature. All simulations were 

performed in MATLAB, and were based on the following principle: if a force F  acts at an arc 
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length a from the base of a beam, the resulting beam shape can be found by dividing the beam 

into many nodes and repeatedly applying d ( ) /i i ir F EI   , where id  is the change in 

curvature at node i, ir  is the vector connecting node i to a, and iI  is the area moment of inertia at 

node i. F  always acts normal to the whisker as long as there is no friction. This procedure is 

further explained in Appendix D. 

 

3.3 Results 

We began by considering how best to realistically model a rat whisker. We noted three 

inadequacies of the analytical model of the cylindrical cantilever beam presented in (3.2) and 

(3.3): 

1) The model assumes a cylinder, but the real whisker is tapered, as a cone. 

2) The model assumes a straight beam, but the real whisker has inherent curvature. 

3) The model is linearized, assuming only small angle deflections (no more than ~ 14°), but 

the real whisker can bend through very large angles during object contact. 

The results below account for each of these three complexities, and are divided into three 

parts. In Part 1, we develop an analytical model (Model 1) to describe the bending of a rat 

whisker. The model uses the magnitude and location of the imposed force to determine the 

resultant shape of the whisker after deflection. The model accounts for both whisker taper and 

inherent whisker curvature, and limits on its applicability are tested using numerical simulations. 

 In Part 2, we validate Model 1 against experimental data obtained from real rat whiskers, 

demonstrating an excellent match between theory and experiment. Finally, in Part 3, we develop 
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a second analytical model (Model 2) that describes the relationship between the rate of change of 

moment at the whisker base and radial object distance. Numerical simulations are used to show 

that the inherent curvature of the whisker has a negligible effect on this relationship. We 

demonstrate that measuring changes in moment at the whisker base would permit the rat to 

extract radial object distance, and analyze the consequences of this result for coding in the 

trigeminal ganglion.  

 

3.3.1 Part One: Developing an Analytical Model of a Tapered Rat Whisker 
With Inherent Curvature 

 

3.3.1.1 An Analytical Expression for the Deformation of a Tapered Whisker 
With No Inherent Curvature 

 

Expressions for the deflection of a straight cylindrical cantilever beam under a load are 

readily available in the literature [34]. However, the diameter of a rat whisker decreases 

approximately linearly with length [28, 29]. We therefore extended the cylindrical model to 

account for the taper of the whiskers. The basic derivation for tapered deflections is the same as 

for the cylindrical case, and can be found in Appendix B. The analytic solution for the small-

angle deflections of a tapered beam was found to be:  
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Comparison of (3.4) with (3.3) shows clearly that a whisker‟s taper has a substantial effect on its 

deformation characteristics; these effects are quantified in detail in Appendix C.  

 

3.3.1.2 Effects of Taper on the Small Angle Approximation 

The small angle assumption implicit in the linearization of (3.1) means that the 

deformations expressed in (3.4) will become inaccurate after a certain bending angle. We used 

numerical simulations (see Appendix D) to explore how linearization impacts the accuracy of the 

analytical model under large angle deflections and inherent whisker curvature.  

Figure 3.3(a) illustrates the difference between the small-angle approximation and the 

large-angle numerical result for a 200 N force applied at distances of 10, 20, and 30 mm out 

along a 60 mm tapered whisker. For the first two locations of applied force, the difference 

between the small angle approximation (dotted line) and the numerical result (solid line) is 

negligible. When the force is applied at 30 mm the small angle approximation clearly diverges 

from the numerical result as the deflection angle becomes sufficiently large. The effect of taper 

increases for deflections applied further from the base. 
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Figure 3.3: Effects of taper and inherent curvature on the small angle approximation. (a) The 

effect of the small-angle approximation is exemplified by imposing a 200 μN force at 10, 20, and 

30 mm from the base of a straight, tapered 60 mm whisker and comparing the small-angle 

(linearized, analytic) and large-angle (numerical) results. Results using the small angle 

approximation are shown as dotted lines and results for the full numerical solution are shown as 

solid lines. Because the deflections increase as the force is exerted further from the base, the 

small angle assumption begins to break down and the curves accordingly diverge. (b) 

Comparison of analytical and numerical results after including the effects of inherent whisker 

curvature. The thin lines represent an undeflected straight whisker (black; overlaps with the x-

axis) and an undeflected curved whisker (grey). Normalized curvature of the curved whisker is 

1. In simulation, an increasingly large force was applied at a = 30 mm until the magnitude of the 

predicted deflection y(a) differed by 10% between analytic and numerical results. Thicker black 

(initially straight) and grey (initially curved) lines represent the results of the analytic (dashed) 

and numerical (solid) solutions. The analytical model does an excellent job of predicting the 

shape of the whisker up to a, but is less accurate beyond the point of contact. (c) Accuracy of 

the analytical model depends on the location of imposed force. An increasingly large force was 

applied at several points along a tapered, straight whisker (black) and a tapered, curved whisker 

with unity normalized curvature (gray) until the predicted deflection y(a) disagreed by 10% 

between analytic and numerical results. Values on the y-axis represent the angle θ that is 

achieved when the 10% threshold is reached. Analytical model clearly performs best when force 

is applied close to the base. It is also apparent that taper has a moderate affect on the accuracy 

of the analytic model. 
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3.3.1.3 Model 1: Deformation of a Tapered Whisker With Inherent Curvature  

The simplest way to incorporate curvature into the analytical expression for a straight, 

tapered whisker (3.4) is to sum the inherently-curved shape of the real undeflected whisker with 

the deflection of a straight, tapered cantilever beam. Our first model performed this summation 

according the method depicted in Figure 3.2.  

To validate the assumptions implicit in the summation, we used numerical simulations to 

calculate the deflections of an inherently curved whisker through large angles (see Appendix D). 

Before we could compare the analytical results of Model 1 and the results of the numerical 

simulations, however, we noted one additional complexity, as follows: if the whisker is initially 

straight and deforms only through small angles, the arc length a (the distance as measured along 

the length of the whisker) differs negligibly from the straight distance from whisker base to point 

a out along the whisker. This was discussed previously in the Methods section. If the whisker is 

not straight, but instead has an inherent curvature, these two values are different. Thus for the 

remainder of this paper, it is important to remember that a is always defined as the arc length 

distance, not the straight distance from base to point of contact distance.  

Figure 3.3(b) illustrates the error between deflection profiles found using Model 1 and 

using numerical simulations. The thin solid lines represent straight (black) and inherently curved 

(gray) whiskers. The inherently-curved whisker was chosen to have a constant normalized 

curvature (ratio between the total arc length and the radius of curvature) of 1. This normalized 

curvature value is similar to the values found for the whiskers used in this study (data not 

shown). An increasingly large force was applied at a = 30 mm for both whiskers until the 

magnitude of deflection at a, y(a), differed by 10% between the two models. The thick solid and 
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dashed lines give the deflected shape of the initially straight (black) and curved (grey) whiskers, 

as found by using Model 1 (dashed) and numerical simulation (solid). It is clear that Model 1 

yields an accurate description of the deflected whisker up to the force location a, but is less 

accurate further out.  

Figure 3.3(c) quantifies the amount of angular deflection that results in 10% error between 

the two models, for a force imposed at any point along the whisker. The inherently-curved 

whisker again had normalized initial curvature of 1, as described for Figure 3.3(b). The same 

procedure described for Figure 3.3(b) was repeated for several a values and the resultant 

deflection angle, θ, at which 10% error was reached for each a value was recorded. Figure 3.3(c) 

shows the amount of angular deflection plotted against normalized location of the imposed force, 

a/L, for an inherently straight (black) and curved (gray) whisker. It is apparent from this figure 

that imposed force location affects the amount of deflection possible before significant error 

results between Model 1 and the numerical simulations. As the location of imposed force 

increases, the amount of deflection before the 10% threshold is reached decreases for both the 

straight and pre-curved whiskers. This relationship is steeper for the inherently-curved whisker, 

but both cases show that Model 1 is most accurate when forces are applied close to the whisker 

base. 

This analysis has shown that by summing the inherently-curved shape of the real whisker 

with the deformations calculated from (3.4), experimenters can obtain an approximation of the 

deflected whisker shape up to point a with  10% error, provided the force is imposed at a/L < 

70%. 
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3.3.2 Part Two: Validating Model 1 Against Experimental Data Obtained 
From Real Rat Vibrissae 

 

Model 1 incorporates the effects of taper and inherent curvature, and we have shown it to 

be particularly accurate for forces applied close to the base. We used two different methods to 

determine how well Model 1 captured the bending characteristics of a real rat whisker. First, we 

compared force-displacement curves between model and experiment. Second, we used the model 

to predict the entire shape of deflected whiskers, and compared this prediction with 

experimentally-obtained shapes of deflected whiskers. 

 

3.3.2.1 Force Displacement Curves: Analytical Equations and Experiment 
 

We experimentally quantified bending for a real rat whisker in response to a force imposed 

at different distances from the base. Figure 3.4(a) shows three overlaid images of the E2 whisker 

bending under the same force (121.8 ± 24.5 N) imposed at a distance of 7, 8, and 11 mm 

horizontally from the base. Note that although during experiments the stimulator was positioned 

at horizontal distances, during all analysis the horizontal distance was converted to arc length. 
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Figure 3.4: Matching force-displacement curves between theory and experiment. (a) 

Superimposed images of the E2 whisker, bending as a force F = 121.8 ± 24.5 N is imposed at 

three different locations (arrows). (b) Relation between deflection and the force needed to cause 

that deflection is approximately linear for any given point where force is imposed. Solid red lines 

represent the expected force-deflection relationship derived from Model 1 using a Young’s 

modulus of 2.6 GPa, whereas black dotted lines represent experimental data where deflections 

were imposed at evenly spaced horizontal distances from the base (4-9 mm). (c) Shorter 

whiskers deflect more than longer whiskers when the same load is applied. Bending of whiskers 

C3 (short whisker) and Beta (long whisker) is shown here. (d) Whiskers have unique 

geometrical dimensions, which result in different force-deflection relationships. Each whisker 

was tested with the force imposed 6 mm horizontally from the base. 
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Figure 3.4(a) clearly shows that when a force is imposed further away from the base, the 

whisker deflects more. This effect is quantified in Figure 3.4(b), in which forces are imposed at 

different distances (4, 5, 6, 7, 8, and 9 mm horizontally from the base of the E2 whisker). The 

solid red lines are the theoretical force-deflection relationship predicted from (3.4). The black 

lines indicate experimental data. In (3.4) we used the measured diameter (232 m) to calculate I 

= 1.42 x 10
-16

 m
4
. The measured length of the whisker was 48.0 mm, and a good fit for E was 

found to be 2.6 GPa. For these values of E and I, an excellent match was found between (3.4) 

and experiment. 

Figure 3.4(c) shows superimposed images of the C3 and  whiskers as they were deflected 

by approximately the same force (840.3 ± 94 N) imposed at a horizontal distance of 8 mm. It is 

clear that the force has a larger effect on the C3 whisker (Dbase= 119 m, L = 21.50 mm) than on 

the  whisker (Dbase = 225 m, L = 66.20 mm). Figure 3.4(d) quantifies this effect for seven 

different whiskers of varying size. In this experiment, whiskers  and  are the longest whiskers, 

with lengths of 66.2 and 60.3 mm, respectively, while E2 and  are the thickest at the base, with 

base diameters of 232 and 225 m, respectively. The last four whiskers are all shorter and 

thinner at the base than , or E2, and therefore require less force to deflect the same amount. 

Notably, Figure 3.4(b,d) illustrates that at a given horizontal distance away from the base (6 

mm in this case) the force-displacement curve follows a linear relationship for each whisker. 

This relationship can be seen explicitly in (3.4). Importantly, this does not mean that for a given 

force F the whisker will bend linearly along its length, because the proportionality constant 

between F and y(x) is different at each point x. 
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3.3.2.2 Capturing the Complete Shape of a Whisker: Model 1 Compared to 
Experiment 

 

The force-displacement curves in Figure 3.4 demonstrated a good match between (3.4) and 

experiment for discrete values of force and displacement. They also serve to quantify the effects 

of whisker size (base diameter and length) and force location on whisker deflection. However, 

the curves of Figure 3.4 only quantify the relation between force and displacement at point a, 

where the force is applied. How well can Model 1 as described in Part 1 characterize the entire 

shape of the whisker when it contacts an object, purely as a function of whisker length, diameter, 

and object distance a? To answer this question, Model 1 was used to predict the deflection of the 

whisker everywhere along its length (i.e., at all values of x). These modeling results were then 

compared with the photographed shape of the whisker (Figure 3.1(a)). Because Figure 3.3(c) 

shows that the model should remain accurate for relatively large deflections close to the base, it 

would be surprising if model and experiment were not in good agreement. 

We used Model 1 to calculate the full shape of the whisker as a function of x analytically 

while leaving Young‟s modulus (E) as a free parameter. Experimentally, we took digital 

photographs to obtain the entire shape of each whisker as it was increasingly deflected by the 

stimulator. We imported the photographed shape into MATLAB and superimposed the modeling 

result. The value of E was varied in the model until the best match was found between model and 

experiment. If E was too large, the model did not deflect enough compared to the 

experimentally-deflected whisker, and if E was too small, the model whisker deflected too much. 

The inset of Figure 3.5 illustrates the quantities used to find the best match between model 

and experiment. The error between the model and the experimental data was found by taking the 

ratio of the areas between the model and the deflected whisker (area 2) and the area between the 
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deflected whisker and the undeflected whisker (area 1 + area 2). All areas were calculated from 

the whisker base to the point of contact, a. Normalization to the area between the undeflected 

whisker and the deflected whisker accounted for any error induced by apparent changes in length 

due to the small angle approximation, and permitted comparisons of error estimates across 

whiskers of different lengths. This ratio is referred to as the percent area error, plotted on the y-

axis of Figure 3.5. 
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Figure 3.5: Model 1 accurately captures the shape of the entire whisker during deformation. 

The inset depicts how the error between model and experiment was calculated. The top solid 

line represents the undeflected whisker, the center dotted line is the model of the deflected 

whisker, and the bottom solid line is the shape deflected whisker as measured experimentally. 

Area 1 represents the difference between the modeled deflected whisker and the undeflected 

whisker. Area 2 represents the difference between the modeled deflected whisker and the 

experimental data. The “percent area error” was defined as the ratio of area 2 to the sum of 

areas 1 and 2. This measure normalized the error over different whisker lengths and stimulator 

placements. The plot shows the percent area error between model and experiment for changing 

values of Young’s Modulus for the A1 whisker. Each trace represents the average of the percent 

error over 15 vertical displacements at a single horizontal distance from the whisker base as 

indicated in the legend. Best fits were obtained with values of Young’s modulus that ranged 

between 1.5 and 4.25 GPa, with an average E = 2.75 GPa. For visual clarity, standard 

deviations are shown on only 2 traces (blue and red) displaying the largest and smallest error 

ranges. 
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Seven whiskers (A1, B2, , C3, E2, E3, ) were used in the analysis of the complete 

whisker shape. For each whisker, we averaged over all vertical deflections at each horizontal 

distance from the base. This amounted to ~110 comparisons between experiment and model, >20 

values of Young‟s modulus, for a total of ~ 2200 comparisons per whisker.  

Figure 3.5 illustrates the results for the A1 whisker. Plotting error as a function of Young‟s 

modulus (E) illustrates that: 

1) The smallest error (2.72% for the A1 whisker) is found when the object is closest to the 

base of the whisker. 

2) Estimated E for the A1 whisker has a range of ~1.5 to 4.3 GPa, with an average of 2.75 

GPa, consistent with the value found for Figure 3.4(b) and with previous estimates [28, 

29]. 

3) The value of the “best” E decreases as the object moves further from the base. These 

results were representative of those for all of the whiskers. A1 does not represent a “best 

case.”  

The ranges for E of the other whiskers were mostly similar to that of A1. Table 3.1 shows 

geometrical dimensions and average values of E for all seven whiskers. Results for the C3 

whisker lay outside the range of results for the other whiskers. For C3, Young‟s modulus ranged 

from 4 to 9.5 GPa and had an average value of 6.25 GPa. The C3 whisker was by far the shortest 

and thinnest of the whiskers and deflections were imposed up to ~50% along the whisker length. 

Most other whiskers only had deflections imposed up to ~35% along the length of the whisker. 

This could help explain the large value of Young‟s modulus found for the C3 whisker. 
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Table 3.1: Geometrical whisker dimensions and calculated values for average Young’s 

modulus. 

 

 

3.3.3 Part Three: A Biomechanical Model for Extracting Radial Object 
Distance Using Information About Moment 

 

3.3.3.1 Model 2: An Analytical Expression for Radial Object Distance as a 
Function of Moment at the Whisker Base. 

 

Equation (3.4) describes a relationship between the deflection, y(x), at each point, x, along a 

tapered whisker and the arc length, a. The value of y(x) is related to a through the force F 

imposed at point a, the bending stiffness represented by the product EIbase, and the total arc 

length, L, of the whisker. We asked whether the rat could use the relationship expressed in (3.4) 

to infer information about radial object distance, d, from the whisker base to the point. Note that 

radial distance, d, is shorter than arc length distance, a. However, assuming a straight whisker 

and evaluating (3.4) at d yields: 
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Using M = d  F and  = y(d)/d (assuming small angle deflections) yields  
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C E EI   and LBT is the linear base-to-tip length of the whisker. Note that L 

was replaced with LBT to enforce the boundary condition that M = 0 when d = LBT. Solving for 

the variable d, and taking time derivatives yields 
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Equation (3.7) represents our second analytical model (Model 2). It relates radial object distance 

to change in moment at the whisker base.  

Note that (3.7) is expressed in terms of time derivatives. These time derivatives are 

included primarily for biological plausibility. Recall that  represents the angle that the whisker 

has rotated since the time of initial contact with the object. M is the moment experienced at the 

base, which increases as the whisker rotates against the object. In an engineered system, it is easy 

to set  = 0 at the angle of initial contact, and then to keep track of its increasing value. In 

principle, just like the engineered system, the rat could use the absolute position of the whisker 

() combined with an absolute measurement of moment to determine object distance. However, 

given the well-known inability of the nervous system to accurately measure absolute quantities, 

but its exquisite sensitivity to rates of change, we think it most probable that the rat would use 

the time derivatives as represented in (3.7).  
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If the whisker moves at constant velocity, then derivatives of moment with respect to  and 

with respect to time are proportional. If, in contrast, the whisker moves at non-constant velocity, 

then the rat could keep track of how moment is changing relative to . Thus most generally, 

radial distance can be computed as: 

 
BT

BT(d / d )

CL
d

C M L



 (3.8) 

The fact that the computation can be performed at every instant in time – and for varying 

whisking velocities – is a key advantage of the proposed mechanism for determining object 

distance. It seems likely that a particularly good time for the rat to choose would be immediately 

following contact up until the point in time when the linearization breaks down. For example, a 

constant protraction velocity of 400°/second would allow ~2º degrees of rotation in the 5 ms 

after object contact, well within the linear range. It should be noted that the rat will have much 

less time to compute object distance if contact occurs close to the tip, as the whisker will quickly 

fold in on itself and/or flick past the object for small  and M  will change accordingly.  

Equations (3.7) and (3.8) demonstrate that if the rat can keep track of the rate of change of 

moment and the velocity with which it is “pushing” its whisker against the object, then enough 

information will be present to infer object distance. Taken with the results of previous studies 

that have described mechanisms for encoding horizontal and vertical position [35-37], these 

equations effectively demonstrate that only three mechanical variables are required to extract all 

3-D spatial information about objects. Those variables are: angular position, angular velocity, 

and rate of change of moment (or curvature). In addition to these three variables, we posit that 
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the rat is sensitive to a fourth variable – moment – so as to remain sensitive to static deflections 

of its whiskers. 

 

3.3.3.2 Predicted Changes in Moment at the Whisker Base as the Whisker 
Rotates Against an Object  

 

We now use Model 2 (3.7) to compute the predicted changes in moment at the whisker 

base as the whisker is rotated against an object. Figure 3.6(a) plots the rate of change of moment 

at the base of the whisker as a function of contact distance for two different whisking velocities. 

To highlight the effects of taper (see Appendix C), results for the cylindrical whisker are also 

shown (gray traces). For both tapered and cylindrical whiskers, the steepest change of M  is for 

/  0.3BTd L  , when the imposed force is closer to the vibrissal base. It is clear that M  goes to 

infinity for positions very close to the base. In addition, M  goes to zero at the tip of the tapered 

whisker, meaning that almost no moment is transmitted back to the base when contact is made 

very near the tip. Instead, the whisker tip might locally deflect and subsequently drag along the 

object. This suggests that the region near the whisker tip may be more sensitive to low-

amplitude, high-frequency signals, because these small signals can be amplified by resonance 

[22], while the remainder of the whisker may be more sensitive to high-amplitude, low-

frequency signals. This in turn implies that the tip of the whisker may transmit more vibration 

and texture information while the middle region and base could simultaneously be used to extract 

shape and position information. 
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Figure 3.6: Model 2 provides relationships between rate of change of moment, M , moment, M, 

deflection angle, θ, and radial object distance, d. All simulations modeled whiskers with a 

Young’s modulus of 3.5 GPa, a base radius of 60 μm and a length of 6 cm. (a) Rate of change 

of moment versus normalized contact distance for conical and cylindrical whiskers rotating at 

different velocities. Black curves represent the relationship for a tapered whisker, while the gray 

curves are for a cylindrical whisker. Solid lines: velocity = 1 rad/s; Dashed lines: velocity = 4 

rad/s. Rates of moment change for both whisker shapes rapidly approach infinity for 

BT/  0.3d L . (b) Moment as a function of whisker angle since contact with the object. Solid 

curves are for an object distance of 0.3 LBT, the dashed curves for an object distance of 0.6 LBT, 

and the dash-dotted curves for an object distance of 0.9 LBT. The black curve models a tapered 

whisker, and the gray curve models a cylindrical whisker. (c) Whisker deflection as a function of 

normalized contact distance with an imposed 0.1 μN-m moment (the whisker rotated against the 

object until 0.1 μN-m was reached). (d) Inherent whisker curvature has a negligible effect on 

rate of change of moment M . This graph plots M  at the whisker base as the whisker is rotated 

against a point-object placed at different radial distances, d, out along the whisker. Solid black 

line indicates the initial rate of moment change for a tapered, straight whisker (Model 2). Dashed 

gray line indicates initial rate of moment change for a tapered whisker with an inherent curvature 

equal to that of a semi-circle (inset) found from numerical simulation. The two curves are 

virtually indistinguishable. Semi-circle inherent curvature is an extreme case and is much larger 

than that of any real rat whisker. 
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Figure 3.6(a) also shows that the magnitude of M  is larger when the angular velocity   is 

larger. This is an intuitive result, but the figure makes clear that the rat can obtain the same value 

of M  at the whisker base either by increase whisking speed or by moving its snout closer to the 

object. This may suggest the existence of a “sweet spot” or “sweet combination” of object 

distance and whisking velocity. This location on the whisker would be constrained by the 

following criteria:  

 If the snout is too close to the object, moment may become so large that receptors in the 

follicle may saturate, or the “motor” (i.e. the sling muscles) could max out and the 

whisker may barely even bend. 

 If the snout is too far away from the object, the moment transmitted to the base may be 

below the rat‟s detection threshold, or differences in moment may be difficult to resolve. 

Also, if contact occurs very close to the tip, the whisker will quickly fold in on itself and 

subsequently either flick past the object or drag along it. 

 Different velocities will scale the curve in Figure 3.6(a). Faster velocities mean that better 

resolution will be obtained for objects further away.  

Figure 3.6(b) plots the moment at the base of the whisker as a function of whisker angle, θ. 

As mentioned earlier,  is the angle subtended since initial contact with the object, and is 

interchangeable with time on the x-axis as long as   is constant. Each curve in Figure 3.6(b) 

represents a different object distance (0.3LBT, 0.6LBT, and 0.9LBT). It is critical to understand that 

the linear relationship between M and  does not mean that the whisker will bend linearly along 

its length. The proportionality constant between M(x) and y(x) is different at each point x along 
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the whisker. In addition, imposing a force at position 2x does not make the whisker bend twice as 

much as if the force were imposed at position x. This can be seen in the uneven spacing of the 

lines for 0.3LBT, 0.6LBT, and 0.9LBT in Figure 3.6(b).  

 

3.3.3.3 Predicted Changes in Curvature at the Whisker Base as the Whisker 
Rotates Against an Object 

 

It is clear from (3.1) that curvature and moment are directly proportional. The change in 

curvature at any point along a beam is equal to moment divided by the whisker bending stiffness, 

EI. Figure 3.6(c) plots the angular position of the whisker, , as a function of normalized contact 

distance 
BT/d L , for an imposed 0.1 μN-m moment. Simply put, this plot predicts how much the 

whisker will bend if the whisker is being actuated by a maximum moment of 0.1 μN-m. For a 

cylindrical beam, the relationship is purely linear. For a tapered beam, much less moment is 

required for the whisker to deflect past a distal object compared to a more proximal one. 

 

3.3.3.4 Effects of Inherent Whisker Curvature on Moment Sensed at the 
Base 

 

Finally, we now show that Model 2 holds for all realistic values of whisker curvature (and 

even much larger curvatures). A mechanical rule of thumb states that if the radius of curvature of 

a beam is ≥10 times its maximum cross-sectional height, many fundamental principles of 

deformation analysis remain valid [34]. Geometrical analysis showed that the real rat whiskers 

used in this study exhibited a maximum curvature of 1.7 (units normalized to whisker arc length) 

along their length. A typical ratio of the radius of curvature to depth was ~250. The minimum 
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ratio found along any whisker was ~100. Since the minimum value is 10, fundamental 

elasticity equations apply.  

Numerical simulations were used to compare changes in M  profiles for a straight whisker 

and for a whisker with a large inherent curvature. To be conservative, we modeled the 

deformation of a whisker bent into the extreme shape of a semi-circle, which has a constant 

normalized curvature of π ≈ 3.14. This is roughly twice the maximal curvature found for any of 

the real whiskers. Base-to-tip length for both models was 60 mm. Figure 3.6(d) illustrates the 

results of the simulation: the M  profiles for the straight and inherently curved whiskers overlap 

almost exactly. The inherent curvature has negligible effect on the moment that will be sensed at 

the whisker base.  

 

3.3.3.5 The Effects of Whisker or Head Translations Compared to Whisker 
Rotations 

 

As established by earlier studies [36, 38], and as schematized in Figure 3.7(a), cylindrical 

coordinates are the most natural system to describe whisking movements of the rat.  describes 

the rostral-caudal angle, z is the height of the whisker row, and r is the radial distance out along 

the whisker. This coordinate system is particularly suited to describe the rotational movements 

that most typically characterize whisking behavior. 
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Figure 3.7: Neural encoding of primary mechanical variables during translation and rotation. (a) 

Cylindrical coordinates are the most natural system in which to describe whisking movements of 

the rat. (b) The whisker deflection model presented in this paper can be used to describe 

deflections due to translation as well as rotation. A straight, undeflected whisker is represented 

by the solid horizontal and slanted lines. The whisker either rotates θ degrees, or translates a 

distance h. Deflection by an object (black dot) at a radial distance, d, will eventually result in 

identical deflection profiles (black trace). (c) Proposed representation for three of the four 

mechanical variables found to be important in the current study. The axes of the graph are 

angular position, angular velocity, and moment at the base of the whisker. Neural responses of 

Vg cells could be quantified by placing them within the state-space defined by these axes. In 

this schematic, each symbol represents the spike of a ganglion neuron responsive to a 

particular combination of parameters. The magnitude of the neural response is represented by 

the number of data points (spike count), and the variability in the response is represented by the 

3-dimensional breadth of the distribution. The triangles, for example, depict a cell sensitive to a 

particular combination of angular position (near 40º) and velocity (between -800 and 250º/sec), 

but not responsive to moment. The square symbols lie in the velocity-moment plane, and 

represent a cell that responds roughly independent of position, but only to a particular 

combination of velocity and moment. 
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Sometimes, however, rats‟ exploratory behaviors involve translational movements of the 

head instead of rotations of the whiskers. For example, a recent study demonstrated that rats 

were able to discriminate the width of an aperture to within millimeter resolution using a 

translational “nose poke” through the aperture [30]. Rats were able to perform this task at above 

chance levels even when only one whisker remained on each side of the face. The authors did not 

propose an encoding mechanism for distance detection, but noted that whiskers were “deflected 

rearward” as the rats entered the aperture.  

Figure 3.7(b) illustrates that the model presented in the current paper holds equally well for 

translation and rotation, and can explain the results of the earlier study by [30]. The model thus 

applies to earlier studies that involve small-angle passive displacements of the whiskers in 

anesthetized rats (e.g., [39-42]). With knowledge of whisker length and base diameter, 

approximate Young‟s modulus (3-4 GPa), the location of the imposed stimulus and its magnitude 

(which could take the form of a force, rotation or linear deflection), experimenters can now 

calculate approximately how much moment is experienced at the base of the whisker during 

passive displacement experiments. As will be shown in the Discussion section, however, this 

may not be a very useful calculation to perform for passive displacement experiments.  

The variables that the present study has found to be important for shape extraction are 

angular position, angular velocity, moment (or equivalently, curvature), and rate of change of 

moment. This mechanical analysis suggests that a state-encoding scheme [43-45] is a 

parsimonious and quantitatively rigorous way to represent the responses of Vg neurons. Figure 

3.7(c) illustrates an example of a state-encoding scheme using three of the four mechanical 

variables. Neurons have a certain probability of firing a spike when the whisker is in a particular 
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“state.” A state is uniquely defined by whisker position, velocity, moment, and moment-dot; in 

the example of Figure 3.7(c) only three of the four variables are included. If necessary, velocity 

could be defined to have two dimensions (rostral-caudal and dorsal-ventral) to account for the 

directional sensitivity of the cells of velocity information [46]. This would result in a higher 

dimensional space but would otherwise leave the state-encoding representation unchanged. 

 

3.4 Discussion 
 

3.4.1 Technical Considerations 
 

3.4.1.1 Why Develop an Analytical Model? 
 

The present study has developed a simple, analytical model of a rat vibrissa that accounts 

for vibrissal curvature as well as taper. The model is well matched by experimental results 

(Figures 3.4 and 3.5). The advantage of an analytical model over the numerical method also 

presented in this paper is that it can be solved quickly and exactly, without use of a computer, to 

obtain a very close approximation to how a real whisker will bend. This is potentially useful to 

all investigators performing experiments in which the whiskers are deflected by an amount 

within the confines defined by Figure 3.3(c). Analytic models also make explicit the dependence 

of whisker bending properties on mechanical variables. Numerical simulations are required to 

precisely quantify bending of the whiskers in other cases. It is important to note that the change 

in curvature and the change in moment at every point along the whisker length are directly 

proportional, related through the whisker bending stiffness EI. 
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3.4.1.2 Young’s Modulus and Whisker Stiffness 
 

Young‟s modulus (E) for biological materials is an approximation at best. The present 

study finds E approximately equal to 3-6 GPa, in line with previous estimates [28, 29, 47]. A 

puzzling result of the present experiments is that the value for E seemed to decrease as forces 

were imposed further from the whisker base (Figure 3.5). There are at least four possible 

explanations for this result. First, the result could be taken at face value. The whisker material 

may vary with length in such a way as to result in lower E values further from the whisker base. 

Second, it is possible that the equivalent stiffness of the whisker decreases with whisker length. 

For example, if the whisker tapered parabolically instead of linearly, then the smaller cross 

sectional area as a function of length would result in an apparently lower E value. Third, Figure 

3.3(c) demonstrates that the accuracy of the tapered-beam model decreases as the force is 

imposed further from the base. It is therefore possible that the decreased accuracy of Model 1 is 

directly responsible for the apparent change in Young‟s modulus. This is consistent with the 

increase in error associated with the “best fit” Young‟s modulus as deflections were imposed at 

increasing radial distances. Fourth, friction would have the largest effect on the most curved 

(shortest) whisker, thereby increasing the apparent value for E. 

 

3.4.1.3 The Importance of Moment 
 

Almost all previous studies of the vibrissae have focused exclusively on kinematic 

variables, that is, angular position and its time derivatives. These variables are termed kinematic 

because they describe the motion of a body without consideration to the forces or moments that 

affect the motion. During active whisking, however, kinematic variables alone cannot provide a 
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complete representation of all the information transmitted to the rat through its whiskers. Under 

active whisking conditions, the whisker could well be at the same angular position and yet 

experience very different moments at the base. Figure 3.8 illustrates some of the differences 

between active and passive whisker displacements. The models presented in the current study 

begin to consider the potentially important role that moment may play in conveying meaningful 

information to the rat. 

 

 

Figure 3.8: Passive displacement experiments (top row) force a direct relationship between 
angular position and moment. In active whisking experiments (bottom two rows) the moment 
changes at the base as the whisker deflects into an object placed at different angular positions. 
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For completeness, we note that both of the present models would be considered “quasi-

static,” because they assume that the movement of the whisker can be approximated so that at 

every point in time it is essentially at equilibrium. Assumptions for a quasi-static model require 

that all forces and moments are conservative and that the whisker has two physical constraints: 

the rigid connection at its base and at the contact point with the object. A fully dynamic (not 

quasi-static) treatment of the whisker would have to incorporate mass and inertial quantities and 

collision forces that may result in “whip.” 

 

3.4.1.4 The Relative Importance of Whisker Diameter, Length, Curvature, 
and Taper 

 

All equations in the current paper indicate that moment at the whisker base will depend on 

the base diameter of the whisker raised to the fourth power. Thus whisker diameter will have the 

largest influence of any single variable on the moment experienced at the whisker base. There is 

more tolerance for small deviations in whisker length. The inherent curvature of the whisker 

plays a relatively small role in determining how the deflected whisker will change shape, while 

in contrast, the taper of the whisker greatly affects how the whisker will bend and the moment 

transmitted to the base.  

 

3.4.2 The Models are Highly Applicable to Natural Whisking Behaviors  
 

Throughout the Methods and Results sections, we have been careful to emphasize the 

assumptions embedded in the models, and the limitations that these assumptions impose. This 

careful exposition of modeling constraints may leave the impression that the models apply only 



 

65 

under very limited conditions. It is therefore important to emphasize that our analysis is in fact 

very general, and that versions of the models will hold even for very complex behaviors. 

 

3.4.2.1 The Models Can Apply to a Wide Range of Boundary Conditions: 
The Importance of Instantaneous Measurement  

 

Moment at the whisker base will vary depending on how stiffly or loosely the whisker is 

held in the follicle, that is, on the boundary conditions in and near the follicle. The rat could 

presumably change follicular boundary conditions through muscular activation as well as by 

modulating blood flow to the follicular sinus [48]. The models of the current paper are based on 

clamped boundary conditions at the whisker base, but more realistic, tissue-like conditions might 

be modeled with a spring-mounted or a torsional-spring-mounted whisker. It is critical to note, 

however, that the fundamental results of the present paper will not change, even if boundary 

conditions are very different from the clamped condition modeled here. This is because the 

relationship between moment at the base and radial object distance will remain monotonic 

regardless of boundary conditions. As long as the rat can learn the monotonic function that 

relates these variables (M and d), the method proposed here will work for radial distance 

extraction.  

What happens if the rat changes the boundary conditions at the whisker base during the 

course of a whisk? Equations (3.7) and (3.8) demonstrate that the rat can determine radial object 

distance based on the instantaneous rate of change of moment. This means that the rat need only 

sense distance at a single instant during the whisk, and it does not matter if boundary conditions 

change before or after that instant. Recent behavioral data from Prescott and colleagues ([49]) 
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have shown that rats often use an exploratory strategy of “minimum impingement,” in which 

they tap, rather than sweep, their whiskers over objects. This suggests that the rat gains a sense of 

radial object distance in the first few milliseconds immediately following object contact. This 

strategy is consistent with the one determined to be most effective for radial distance extraction 

in a hardware model of the whiskers [47], and also helps avoid measurement complications due 

to whisker slip along the object. Finally, we note that regardless of boundary conditions, the 

amount that the moment will change in a given time interval is directly related to the whisking 

velocity. We therefore suggest that variations in velocity over the trajectory of the whisk may be 

of particular behavioral importance to the rat during tasks that require estimates of object 

distance. 

 

3.4.2.2 The Models Can Apply to a Wide Range of Angular Displacements, 
Velocities, and Distances to Object Contact 

 

Numerous papers have demonstrated that naturalistic rat behaviors employ a large range of 

angular positions, velocities, and distances to object contact [4, 5, 21-24]. It might therefore be 

asked how the values for these variables presented here fit into these ranges. For example, over 

what range of angles, whisking amplitudes, and velocities, do the proposed models apply? The 

short answer is that the fundamental results of the models hold over virtually all distances to 

contact except very near the tip, all angular velocities, and all angular displacements. Figure 3.8 

illustrates the broad applicability of the models and the differences between passive 

displacements and active whisking.  
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The rat-centered coordinate system for Figure 3.8 is defined by  in the top left corner. A 

value of  = 0 means that the whisker is completely retracted, pointed directly backwards 

towards the tail of the rat. A value of  = 180° means that the whisker is completely protracted, 

pointed directly forward towards the snout of the rat. The first row of Figure 3.8 illustrates 

passive deflection assuming that the whisker behaves as a flexible beam. In this case, pushing a 

point on the whisker backwards or forwards causes the whisker to bend, and generates a moment 

at the whisker base. Consistent with the models presented in the Results section, this figure 

assumes that the whisker is held rigidly at the base. Assume that the point on the whisker in 

contact with the stimulator is pushed to some value of , different from the whisker‟s rest 

position. Then the amount of whisker bending, and hence the moment generated at the base, 

depends directly on  – rest, that is, on the position to which the whisker is pushed. This means 

that there is no way to “decouple” the absolute angular position of the whisker (as measured at 

the point of stimulator contact) from the moment generated at the base.  

The second and third rows of Figure 3.8 illustrate that active whisking permits decoupling 

of the values of absolute whisker position  and the moment generated at the base. In the second 

row, the whisker is actively protracted forwards, and behaves as a rigid body until it encounters 

the object at  ≈ 90°. As the whisker is increasingly protracted into the object, the whisker begins 

to bend, and the moment at the whisker base increases with increased bending. In the third row, 

the whisker does not encounter an object until  ≈ 120°. Just as before, the whisker bends as it is 

protracted into the object, and the moment at the whisker base increases with increased bending. 

The only difference is that the bending is now occurring near  ≈ 120° instead of  ≈ 90°.  
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Examination of Figure 3.8 rows two and three clearly shows that the models apply to the 

whisker encountering an object at any angular position. The models also apply regardless of the 

whisker‟s angular velocity. The rate of moment change at the whisker base depends directly on 

the angular velocity with which the whisker is protracted. By learning the relationship between 

moment change and angular velocity, the rat can extract radial object distance d. The second and 

third rows of Figure 3.8 also demonstrate that the small angle approximation applies in all cases 

of initial object contact. When the whisker first makes contact with an object, the initial bending 

angle is zero. As the whisker presses by the object, the bending angle increases, and the angular 

deflection to which the model holds up depends on the object‟s radial distance, as depicted in 

Figure 3.3(c). As discussed above, we suggest that the rat gains a sense of radial object distance 

in the first few milliseconds immediately following object contact, exactly when the small angle 

approximation applies. Importantly, however, the fundamental result of this paper does not 

depend on small angles. Large bending angles will change the function that relates moment M 

and the radial distance d, but it will not change the fact that M and d are monotonically related 

for a given value of  Thus as long as the rat can learn this relationship, a variation of the model 

will apply. 

 

3.4.2.3 The Models can be Adapted to Apply to Multi-Point Contact 
 

The models, experiments, and analysis presented in the present paper have assumed 

frictionless point contact. This means that forces are assumed to be applied only normal to the 

vibrissa at the point of contact. But recent studies from several laboratories have shown that rats 

engage objects and surfaces in complex ways, some of which have a large fraction of the whisker 
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in contact with an object as it sweeps by. How do the models presented in this paper hold up 

under conditions of multipoint contact? The answer to this question has four components.  

First, the initial contact of a whisker with an object will almost certainly be single-point, 

before the rest of the whisker has a chance to make contact with the object. As discussed above, 

we suggest that it is only the first few milliseconds after object contact that the rat needs in order 

to estimate object distance. Second, any force applied to the whisker can be divided into normal 

and tangential components. It seems likely that the rat is able to sense these components 

independently [50], which would then permit not only extraction of radial distance, but also 

horizontal angle [51]. Third, the principle of superposition states that any load distributed along a 

beam can be modeled as a resultant force FR acting at a single point at the beam. This means that 

moment at the base can be calculated even for multipoint contact, provided that the appropriate 

location and magnitude FR can be determined. Determining the magnitude and the location of the 

resultant force for multipoint contact during natural behaviors will be an interesting future 

adaptation to the model. Finally, point-contact is standard in passive-stimulation experiments in 

the anesthetized animal.  

 

3.4.3 Behavioral Implications and Relevance 
 

3.4.3.1 Why do Rats Need to Extract Radial Distance With a Single Whisker 
at All? 

 

It could be argued that during natural exploratory behavior the rat has use of multiple 

vibrissae, and thus might not need to figure out radial distance along each whisker. Instead, the 

rat could compare contact points between whiskers. We can imagine two ways that this 
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comparison could occur: 1) the rat could either have a sense for the relative lengths of each of its 

whiskers and compare contact between them, or 2) the rat could “mold” its entire whisker array 

around an object, and determine object features by the relative moments felt at the base of each 

whisker. The rat could also combine the two methods. 

Let us suppose that the rat has a sense for, or “knows” the relative length of each of its 

whiskers. If a whisker of length L touched an object, but a whisker of length L ‒ L did not, the 

rat could infer that the object was located at a distance between those two values, after 

accounting for different whisker base locations. There are at least three problems with this 

technique. First, a recent paper has shown that rats have tactile “hyperacuity;” they can 

distinguish between differences less than L [52]. Second, it has been shown that rats can make 

accurate distance judgments with a single whisker remaining on each side of the face [30]. Third, 

during complex natural behaviors whiskers are very likely to contact objects anywhere along 

their length, not just at their tips. How can the rat know where this contact has taken place, given 

that there are no receptors on the whisker itself? The present paper provides a good explanation 

for how the rat could obtain this information.  

Now let us suppose that the rat shapes or “molds” its whisker array around an object. What 

would it mean, mechanically, for this to occur? It would mean that the whiskers are pushed 

against the object until the rat is able to sense that the whiskers have touched the object. The only 

possible mechanical cues that could provide this information are moment and force. No other 

variable can describe the “push” on the receptors in the follicle. As the whiskers are molded 

around the object, the rat must then determine where along each whisker‟s length it has touched 

the object. This is one key point of the present paper. Finally, we emphasize that we think it 
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highly unlikely that the rat explicitly determines the absolute radial distance of points on an 

object. Instead, what the present paper shows is that there is a mechanical variable (moment) that 

the rat could directly sense that in turn directly correlates with object distance. An ability to 

accurately measure moment would be greatly useful for sensing 3-dimensional object shape, as 

rats are known to do. 

 

3.4.3.2 Behavioral Consequences of Curvature and Taper 
 

An intriguing result of the present study is that the inherent curvature of the whisker plays a 

relatively small role in determining deflected whisker shape for a given force and force location 

(Figure 3.3(c)). Furthermore, the initial rate of change of moment sensed at the base is not 

affected by inherent whisker curvature, regardless of where along its length the whisker hits an 

object. This suggests that the curvature of the whisker may serve some other behavioral function, 

such as maximizing the sensory volume searched during whisking. In contrast, the taper of the 

whisker plays a substantial role in determining the way the whisker will bend and the moment 

that will ultimately be transmitted to the whisker base (see Appendix C). For a particular force 

imposed at a given distance out along the whisker, the tapered whisker will bend substantially 

further, yet transmit the same moment to the base as a cylindrical whisker of the same base 

diameter. The biomechanics thus ensure that large deflection amplitudes of the distal parts of the 

whisker are required in order to transmit a moment to the base. This makes sense behaviorally, as 

the most distal parts of the whiskers are often deflected through very large amplitudes as they 

brush past an object. 
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3.4.3.3 Complementarity of Vibrations and Bending 
 

Does whisker taper make the whisker “more sensitive” or “less sensitive” near the tip? The 

answer depends on the definition of “sensitive.” The taper makes the whisker bend more for the 

same imposed force (more sensitive), but it reduces the moment ultimately transmitted to the 

base (less sensitive). This suggests that object contact near the tip will tend to cause the whisker 

to abruptly bend in on itself (or otherwise flick past), and therefore implies that the tip would be 

useful if vibrations were amplified during resonance [22, 28, 29]. This in turn suggests that 

differential extraction of texture and shape may occur at different locations along the whisker as 

well as within two different frequency regimes. The two types of information could be 

simultaneously extracted in the same whisking motion: vibrations can be superimposed on the 

overall deflection of the whisker. 

 

3.4.3.4 Do Rats “Tap” or “Sweep” Their Whiskers? 
 

The present study has shown that radial object distance can be determined by examining 

how moment at the whisker base changes with angular position as the whisker is increasingly 

deflected into an object. Although outside the scope of the current paper, it is also possible to 

show that local object curvature can be determined by looking at the second derivative of 

moment with respect to time as the whisker is increasingly deflected into an object. If rats “tap” 

their whiskers against an object, they would be able to build up a representation of the object 

point by point. If rats “sweep” their whiskers against an object, they would be able to make use 

of local curvature information in determining object shape as well as texture. Combining these 

two strategies might help maximize the sensory information acquired. Behavioral studies to 
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investigate these two potential exploratory strategies are currently underway. Data from 

Mitchinson et al. (2007) suggest that tapping tends to be the preferred strategy [49].  

 

3.4.4 Physiological Correlates and Implications for Higher-Order Neural 
Processing 

 

3.4.4.1 Responses of Trigeminal Ganglion Neurons 
 

In a recent study, Szwed et al. (2006) recorded from Vg neurons while stimulating the 

facial motor nerve to rotate whiskers into objects placed at varying radial distances [36]. Their 

results showed that a subset of Vg neurons (called “touch” cells) encode radial distance primarily 

by increases in firing rate. The present study offers a clear biomechanical explanation for these 

recent physiological results.  

For example, Figure 2(c,d) in Szwed et al. (2006) illustrates that touch cells increase their 

firing rate as the object is placed closer to the whisker base. This is exactly what would be 

expected from Figure 3.6(a) of the present study, if the Vg neurons were responding to rate of 

change of moment (Szwed et al., Figure 2(c)), and to moment (Szwed et al., Figure 2(d)). Figure 

4 of Szwed et al. illustrates that higher velocities at the instant of object contact also increase the 

firing rate of Vg neurons. This result is also predicted by the data in Figure 3.6(a) of the present 

study. Faster velocities scale the relationship between moment and radial object distance 

(compare solid and dashed lines). This makes good intuitive sense, as the rate of change of 

moment will be larger if the whisker is pushed faster past the object. Thus the present study 

strongly suggests that the touch-sensitive Vg neurons found by Szwed et al. are responding to the 

moment and rate of change of moment at the whisker base.  
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3.4.4.2 State Encoding 
 

Responses of Vg neurons have been classified according to two schemes. The first method 

divides Vg neurons into rapidly-adapting (RA) and slowly-adapting (SA) cells [39, 40, 42]. It 

has recently been shown that the RA and SA properties of Vg cells are modulated by the 

direction of movement [46]. The second method classifies Vg responses by their activity during 

active touch. Neurons are described as “whisking,” “touch,” and “whisking-touch” cells [36, 38].  

The present study has shown that whisker angular position, angular velocity, moment, and 

the time derivative of moment provide all information to completely describe the 3-D 

coordinates of any object, as well as static deflection information. This mechanical 

representation most naturally lends itself to a state-encoding scheme in which these variables 

form the axes of a state-space. The activity of a neuron can be represented by placing a data 

point at the correct place in the state space every time that neuron fires. The responses of RA and 

SA cells, as well as “whisking,” “touch,” and “whisking-touch” cells would then form 

trajectories through the space. In no way do we intend to suggest that Vg neurons cleanly encode 

any mechanical parameters, or that the Vg is in any way “imposing” state-encoding on the 

incoming data. Vg neurons merely respond to highly nonlinear signals from mechanoreceptors in 

the follicle. The state-encoding scheme illustrated in Figure 3.7(c) is intended as a conceptual 

tool for grappling with the real-world complexity of Vg neuron responses.  

We suggest that the scheme proposed in Figure 3.7(c) will be particularly useful for 

precisely quantifying the spatiotemporal patterns of activity across the whisker array resulting 

from different behaviors. State encoding inherently permits a spectrum of response types, and 



 

75 

allows us to examine how the Vg neurons “cover” the relevant behavioral space of the rat. This 

may ultimately allow us to make strong predictions for coding strategies in the trigeminal nuclei. 

 

3.4.4.3 Computations of Gradients of Distance and Curvature at Higher 
Stages of the Nervous System 

 

It is well known that the rat often combines whisking behavior with small, periodic head 

movements that tend to be temporally synchronized with whisking [3, 4, 7]. These head 

movements seem to allow the rat to obtain multiple, overlapping samples of the object. If, as we 

suggest, information about moment is encoded in trigeminal ganglion responses, then how might 

it be subsequently processed in the trigeminal nuclei? We propose that during object exploration, 

the trigeminal nuclei are used to compute gradients of object distance and gradients of object 

curvature, as follows: 1) Within a single whisk, ganglion neurons provide information about the 

radial distance at which each whisker has contacted an object. The trigeminal nuclei could then 

compute the local curvature of the object by calculating gradients of these distances. 2) Across 

whisks, head movements permit the rat to compare overlapping whisked samples of the object. 

The trigeminal nuclei could then compute gradients of local object curvatures to reconstruct the 

entire object shape. A very similar strategy may be used by humans as they perform exploratory 

hand movements that enclose objects and follow object contours [53]. 
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3.4.4.4 What Type of Learning is Required of the Rat, Were it to Calculate 
Radial Distance According to the Model Proposed Here? 

 

Equation (3.8) relates moment at the whisker base to object distance through the 

parameters C and LBT. This in turn suggests that the rat would need some "knowledge" of these 

parameters, which implicitly include parameters such as Young's modulus and whisker radius. 

We do not suggest, however, that the rat “knows” C or LBT as numbers. Instead, we suggest that, 

through interactions with the environment, the rat gains implicit knowledge of the mechanical 

properties of its body. The most general result of the present paper is that the rate of change of 

moment at the base is a curve that monotonically decreases with object radial distance, and this 

curve scales linearly with whisking velocity. This means that object distance d can always be 

uniquely inferred from measurement of M for any given whisking velocity . The rat must learn 

the shape of the function that relates M, d, and  through interaction with the environment. As 

the whiskers get damaged, fall out, grow back, age, we expect that it will feel “odd” to the rat at 

first, just as when you put on gloves, the movements of your hands feel different. You have to 

“learn” the curves that relate a commanded exploratory movement to a particular sensory input. 

This is all that our models require of the rat.  

 

3.4.5 “Take Home” Messages for Investigators of the Vibrissal System 
 

This paper is by necessity replete with technical details. We want to ensure that the 

following points are clear: 

1) Change in curvature of the whisker and moment (due to whisker deflection) are always 

proportional. They are related through the quantity EI, representing the whisker bending 
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stiffness. Both curvature and moment vary as a function of arc length for a deflected 

whisker, up until the point of contact. A whisker cannot be said to have a single 

curvature, and it cannot be said to have a single moment. One can only talk about 

curvature at a point on the whisker and moment at a point on the whisker. A useful point 

to talk about is often the whisker base, where the rat would actually sense these variables. 

2) If an experimenter is performing passive displacement experiments, in which a whisker is 

grabbed and shaken, it will not be particularly useful to calculate the moment at the base 

of the whisker. In passive experiments, the moment at the whisker base is linearly related 

to angular position of the whisker. (Figure 3.8, row 1 and (3.6)). This is very different 

from situations that can arise during active whisking (Figure 3.8 rows 2 and 3). 

3) If an experimenter performing passive displacement experiments for some reason did 

wish to compute the moment at the whisker base, it can be calculated from (3.6). The 

experimenter would need to measure the base-to-tip length and base diameter of the 

whisker, the angular position of the whisker, and the radial distance from the whisker 

base to the contact location. Both Models 1 and 2 will apply to almost all passive 

deflection experiments to date, but limitations on their use are shown in Figure 3.3(c).  

4) Kinematic descriptions of whisker trajectories are not sufficient to describe the 

information available to the rat during active behaviors. During active whisking, the 

whisker can experience very different moments while its base is at the same angular 

position (Figure 3.8, rows 2 and 3). A complete description of the information available 

to the rat during active behaviors must include moment, or its geometrical analog, 

curvature. To ensure the utility of our equations to experimentalists, we have expressed 
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them both in terms of moment and curvature. If one knows the curvature at the whisker 

base (say from high-speed video), one can estimate the moment at the base. Conversely, 

if one knows the moment at a point along the whisker (say from contact with a load cell), 

one can estimate the curvature near the whisker base. 

5) The inherent curvature of the whisker negligibly affects the dependence of the rate of 

change of moment on radial distance. In contrast, the whisker taper has a large influence 

on this property. 

6) Vibrations of the whisker generated by object contact near the tip are a natural 

complement to the low-frequency moments that can be generated anywhere along the 

whisker length. This is likely to permit the simultaneous extraction of texture and shape.  

7) The rat could extract radial object distance by keeping track of the rate of change of 

moment at the whisker base along with whisker angular velocity. This proposed 

computation for radial distance works for both translation and rotation, and works even if 

the rat only keeps track of instantaneous rates of change in these variables. In theory, this 

allows the computation to be performed at every instant in time. 

8) The mechanism for computing radial distance proposed in the present study can account 

for many of the recently-discovered physiological response properties of Vg neurons 

during active touch [36]. 

9) The mechanical description of whisking variables presented here has shown that angular 

position, angular velocity, moment, and the time derivative of moment, can completely 

describe the dynamic-state of the whisker. This result naturally lends itself to a state 

encoding scheme, describing the dynamic states of an oscillating cantilever beam. This 
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representation is likely to be particularly useful when quantifying responses of Vg 

neurons during active behaviors, and responses at subsequent stages of processing (e.g., 

the trigeminal nuclei). 

10) We propose that the shape of an object can be reconstructed by finding gradients of 

distance (r, , z) over the sensor array, and then gradients of curvature across different 

positions of the entire array.  
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Chapter 4  

Accounting for Lateral Slip 

 

This chapter contains material that has been slightly altered from the following publication: 

J. H. Solomon and M. J. Z. Hartmann, “Artificial whiskers suitable for array implementation: 

Accounting for lateral slip and surface friction,” IEEE Transactions on Robotics, to appear.  

 

The biomechanical analysis performed in Chapter 3 revealed that the radial distance to an 

object can be uniquely inferred by the rate of change of moment sensed at the base of the 

whisker for a given whisking velocity. However, robotic experiments performed in the early 

stages of this research revealed that a significant complication called lateral slip can occur when 

the orientation of the object causes the whisker to bend outside its plane of rotation. This section 

derives and validates a method for accounting for lateral slip by incorporating the lateral 

component of moment into the distance extraction equation. It applies to both cylindrically 

shaped whiskers, as focused upon here, and tapered whiskers, as in the rat. 
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4.1 Introduction 
 

The growing research into the biological function of whiskers has been paralleled by an 

increasing interest in constructing their robotic counterparts. The simplest types of artificial 

whiskers are used as binary contact detection sensors [54-57], which can be used in tasks such as 

obstacle avoidance [58]. These types of whiskers have been used successfully on several toys 

(e.g., the BioBug from Wowwee toys). Other researchers have explored the use of artificial 

whiskers for wall-following [16], for terrain mapping [59], to characterize surface texture [56, 

57, 59-61] and surface defects [62], to sense fluid flow profiles [47] and to investigate questions 

in neuroscience [47, 56, 57]. Most recently, a whisker sensor was designed for precise three-

dimensional measurement of heart position in robot assisted beating heart surgery [63]. 

An important feature of biological whiskers is their ability to extract three-dimensional (3-

D) features, either of solid objects or of fluid flows. Several studies have investigated how this 

capability might be replicated in an artificial whisker array. Tsujimura and Yabuta [64] showed 

that a stiff, insensitive probe attached to a six-axis force/torque sensor can be used to measure 

probe-object contact positions along 3-D objects. Russell [65] attached a curved, binary whisker 

to a Puma robot to sweep along and estimate object contours. Wilson and Chen [66] used a 

pneumatic bellow tube actuation system to sweep a flexible spring steel wire whisker 

instrumented with strain gages at the base along objects and estimate their profiles. Ueno et al. 

[67] measured the vibration frequencies of a flexible beam with a payload at the tip to estimate 

contact point position with an object. Kaneko et al. [68] actuate a flexible beam while measuring 

bending moment at the base to determine contact distance based on the rotational compliance. 

Russell and Wijaya [69] develop a geometric approach to feature extraction using an array of 
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eight rigid rods with angle sensors. Scholz and Rahn [70] actuate a Nitinol whisker attached to a 

mini load cell that measures both force and torque to achieve continuous estimation of 2-D 

whisker shape, and thus the surface profile as it sweeps along objects. Clements and Rahn [71] 

used a similar setup along with a two-axis robot to gather discrete contact points while sweeping 

a whisker along unknown objects. Kim and Möller [72] explore the advantages of using multiple 

whiskers with the ability to measure both horizontal and vertical deflections for shape 

recognition. Table 4.1 summarizes several of the whisker sensor technologies that have been 

successfully implemented and the way in which they were used. In all cases, the actual sensing 

device resides at or near the base of an insensitive beam (the “whisker”), and a motor is typically 

used for actuation. 
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Table 4.1: Whisker sensor technologies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Despite the significant number of studies suggesting the possibility of 3-D feature 

extraction with whiskers, there are two interrelated problems that have as yet prevented artificial 

whiskers from being used in large, highly parallel, actuated arrays to sense object features. The 

first problem is lateral slip, in which the whisker slides out of its plane of rotation, thus 

preventing an accurate measurement of object distance. The second problem, which follows from 

the first, is that the extent of lateral slip depends on the coefficient of friction, which in general is 

not known and can vary greatly from object to object.  

Sensor Description 

Binary An electrode housing at the base detects the presence (ON) or 

lack (OFF) of contact with the whisker. Binary whiskers are 

usually used for contact detection [16, 55], but have also been 

used to sense contours [65]. 

Capacitor 

microphone 

Forces and moments transmitted to the whisker base lead to 

deformation of a microphone membrane, which has been used to 

measure surface texture [57, 60] and avoid obstacles [58]. 

Strain gage Strain gages are mounted either on a block or on thin plates to 

measure bending moment at the base of the whisker. They have 

been used to measure both contact points [47, 59, 63, 66] and 

texture [56, 59]. 

Six-axis 

force/torque 

load cell 

Load cells can measure all three components of both force and 

moment and have been used to estimate contact points [64, 71] 

and continuous object profiles [70]. They provide the most 

information, but tend to be bulky and expensive. 

Piezoelectric Piezoelectric sensors produce signals directly proportional to 

rate of change of moment at the whisker base [72]. 

Hall effect Hall effect sensors measure magnetic flux caused by deflection 

of the whisker near the base (i.e. moment), and have been used 

to estimate both contact points [72] and texture [61]. 

Photo-

interrupter 

Deflection of the whisker near the base is measured by analog 

occlusion of a light beam, effectively giving a measurement of 

bending moment [55]. 

Vision-

based 

A CCD camera records deformation of the whisker as it contacts 

an object, allowing estimation of both contact location and 

object stiffness [73]. 
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Both Kaneko et al. and Clements and Rahn [68, 71] independently addressed the problem 

of lateral slip by sensing it, and then actively reorienting the plane of rotation until lateral slip is 

eliminated. However, this method has serious drawbacks: it requires adjustment of actuator 

orientation to keep the whisker oriented perpendicular to the object [68] and also generally 

requires multiple rotations for each measurement of contact point location. This is awkward in 

practice, and infeasible when arrays of multiple whiskers are employed to contact the object.  

We demonstrate the ability to quantify and passively accommodate for lateral slip of a 

rotating whisker in the presence of friction. This permits us to accurately determine the contact 

location with the object without having to reorient the rotation plane of the whisker. These new 

results directly enable large-scale implementation on an artificial whisker array actuated with a 

single motor that may begin to mimic the ability of biological systems. 

 

4.2 Motivation: The Problem of Lateral Slip 

One method for obtaining an estimate of 3-D object shape is to determine where in 3-D 

space each whisker makes initial contact with the object during the course of object exploration, 

and then interpolate between the resulting collection of contact points to approximate object 

shape [47]. If we define a cylindrical coordinate system at the base of each whisker, the goal is to 

estimate the value of each coordinate upon contact: (rc, θc, zc). We first make the assumption that 

the plane of rotation for each whisker is fixed at a given height zc. The variable θc can easily be 

found by denoting the angle at which the moment or rate of moment change measured at the base 

becomes nonzero or crosses a threshold (assuming that any inertial effects will be negligible or 
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filtered out). Finally, we are left with the task of estimating rc – a process we will refer to as 

radial distance extraction.  

As noted by Kaneko et al., the rotational compliance of a flexible rod rotated against an 

“edged” or “point” object increases as the distance to the object increases; in fact, if the rod is 

cylindrical in shape, compliance is directly proportional to object distance [68]. Longitudinal slip 

occurs when the point of contact moves along the length of the whisker, e.g. when the object is 

not a sharp edge, but instead has a finite curvature in the plane of rotation (longitudinal 

curvature), as depicted in Figure 4.1(a). The result is a decrease in the resulting rotational 

compliance and underestimation of contact distance. However, Kaneko et al. also showed that 

(in the absence of lateral slip; discussed next) the decreased compliance will be negligibly small 

unless the surface has extremely low curvature or contact occurred very close to the whisker base 

[68].  

 

Figure 4.1: There are two types of whisker slip: (a) longitudinal slip and (b) lateral slip. Note that 

although here they are depicted independently, they can in general occur simultaneously. 

 

A more significant complication arises when the object surface is slanted relative to the 

plane of whisker rotation, as shown in Figure 4.1(b). In such cases, a phenomenon called lateral 
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slip occurs, in which the point of contact slides along the periphery of the object, the whisker 

bends outside the plane of rotation and the resulting compliance is greater than would have 

occurred without slip, thus leading to an overestimation of contact distance. Techniques 

developed independently by Kaneko et al. [68] and Clements & Rahn [71] involve sensing the 

lateral slip and actively reorienting the plane of rotation until the lateral slip is eliminated, thus 

permitting straightforward calculation of contact point location. The problem with this approach 

when implemented on an array of robotic whiskers is that each whisker requires an individual 

motor to tilt its plane of rotation. The additional size, cost and complexity requirements make 

such a solution infeasible, and encourages an alternative approach. 

In the present chapter, we develop a model for radial distance extraction that senses lateral 

slip, but then passively account for its presence through a 2-D modification of the compliance 

rule found by Kaneko et al. [68] to extract radial object distance. The need to adjust the plane of 

rotation is effectively eliminated as long as a reasonable estimate can be made for the friction 

coefficient between the whisker and the surface. We quantify analytically how the accuracy of 

the model degrades for differing friction conditions and object lateral curvatures, and suggest 

movement strategies to mitigate these inaccuracies. The model is experimentally validated, 

substantiating the reliability of the analytical results. Finally, we suggest a simple array design 

capable of actuating an arbitrary number of robotic whiskers with a single motor. In summary, 

the model demonstrates that distance extraction can be performed even in the presence of lateral 

slip and friction, to permit reliable and efficient overall shape extraction with a robotic whisker 

array. 
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4.3 Distance Extraction in the Presence of Lateral Slip 

4.3.1 Object Contact Along the Whisker Without Lateral Slip 

The whisker is modeled as a straight, flexible beam rotating with a fixed center of rotation 

and at a constant velocity. At some point, the whisker comes into contact with an object, at 

which time the task of finding the distance from the whisker base to contact point arises. We 

assume the object is rigid and that the point of contact is fixed, discrete, and exists somewhere 

along the length of the whisker (as opposed to the tip, a condition which will be discussed later). 

In the case that slip is negligible, the configuration of the whisker can be described in two 

dimensions as shown in Figure 4.2.  

 

 

Figure 4.2: Geometry of whisker deflection under no slip. 

 

Because only a small deflection is needed to sense the rotational compliance, classical 

linear beam theory can be used. The whisker rotates by a small pushing angle θ against an object 

at radial distance dx, imposing a deflection dy. The resulting bending moment mz at the base of 

the whisker is measured by a torque sensor. Under these conditions, Kaneko et al. showed that 
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the rotational compliance kθ is directly proportional to object distance [68], and can be expressed 

as:  

 xd Ck  (4.1) 

where C = 3EI, E is the elastic modulus and I is the area moment of inertia. Rotational 

compliance is defined as the ratio of angular displacement to bending moment at the base, 

allowing us to write: 

 x

z

d C
m


  (4.2) 

 

4.3.2 Factors that Influence the Magnitude of Lateral Slip 

When orientation of the object is not perpendicular to the plane of rotation at the contact 

point, lateral slip may occur, in which case the contact point will drag along the periphery of the 

object, as shown in Figure 4.1(b). The resulting rotational compliance will be greater than when 

lateral slip does not occur, causing (4.2) to overestimate dx. 

Quantifying lateral slip is aided by analysis of the sensing plane [68], illustrated in Figure 

4.3. The sensing plane is an imaginary 2-D projection of the region where the whisker is 

touching the object, parallel to the y-z plane and intersecting the contact point. In Figure 4.3, the 

dashed line indicates the initial contact point, the dotted line indicates the current contact point, 

and the dash-dotted line indicates where the whisker would intersect the sensing plane were it 

not obstructed by the surface – the so-called „virtual point‟ [68]. A basic geometrical analysis of 

the relationships between variables in the sensing plane is sufficient to derive a modified form of 

(4.2) that accounts for the lateral slip. We will derive this modified equation in the next section.  



 

89 

 

Figure 4.3: A 3-D perspective view of the sensing plane. 

 

There are specific parameters at the region of contact that affect if and how lateral slip 

occurs. Those parameters are: 

1) the slope of the object surface at the contact point within the sensing plane.  

2) the curvature of the object surface at the contact point within the sensing plane. In 

analogy to the term lateral slip, we refer to this quantity as lateral curvature. 

3) the frictional properties between the whisker and the object. 

In the results that follow, we will develop an equation for distance extraction that directly takes 

into account the slope of the surface at the contact point in the sensing plane. It will be shown 

that the lateral curvature has only a mildly detrimental impact on distance extraction in most 

cases as long as θ is sufficiently small. Friction can present some difficulties, although there are 

ways to address them, which will be discussed.  
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4.3.3 Accounting for Lateral Slip 

In the derivation that follows, we assume that lateral slip occurs in the absence of 

significant concurrent longitudinal slip (as depicted in Figure 4.3), the implications of which are 

addressed in the Discussion section. We also assume that both lateral and longitudinal curvatures 

are zero (i.e. the surface is locally flat), and that traditional Coulomb friction exists between the 

whisker and the surface. Because this is a quasi-static analysis, any possible discrepancies 

between static and kinetic friction coefficients are assumed to be negligible.  

Figure 4.4 defines the relevant variables projected on the sensing plane. It geometrically 

predicts the lateral slip  of the whisker along the object, depending on the local surface slope β 

in the sensing plane and the friction cone angle α. Slip will not occur when α ≥ β because in this 

case no movement of the contact point is required to keep the contact force f within or on the 

boundary of the friction cone, and the resulting slip angle  will be zero. Conversely, when α < 

β, the contact point will slip just enough to enable static equilibrium, resulting in a contact force 

angle of β – α.  

 

Figure 4.4: A geometrical description of the sensing plane 
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Summarizing, we have 

 
,    0      

if 
,    

  

    

 


  
 (4.3) 

which can be expressed more compactly as 

 max(0, )     (4.4) 

Notice that the overall linear deflection d is now split into two components: dz and dy. This 

means that to sense lateral slip, the torque sensor at the base of the whisker must be equipped to 

measure out-of-plane bending of the whisker, that is, bending moment my. For small angles, the 

distance between the virtual point and the initial contact point is simply the contact distance dx 

multiplied by . Following the geometry of Figure 4.4, it can be shown that the slip distance  

along the object is: 

 
sin cos cot

xd 


  



 (4.5) 

Using this model of lateral slip, we seek an equation analogous to (4.2) that will allow 

determination of the distance dx based on known and measurable variables: E, I, θ, mz and my. 

Analysis of Figure 4.4 along with application of some basic cantilever beam analysis (see 

Appendix E) yields the following result: 

 
tan

x

z y

d C
m m







 (4.6) 

Unfortunately, there‟s no way to reliably estimate the surface slope β in the presence of unknown 

friction. The most straightforward concession that can be made to arrive at a solution is to 

assume or estimate some nominal friction coefficient μest. First, we note that 



 

92 

 est = tan
-1

(μest) (4.7) 

and that  can be directly measured as  

 
1tan ( / )y zm m   (4.8) 

If we now assume est ≤ est, est can easily be computed using (4.3): 

 est est     (4.9) 

Replacing the unknown surface slope β from (4.6) with βest yields 

 
tan

x

z y est

d C
m m







 (4.10) 

Note that (4.10) is reliable even when est > est (contrary to the assumption made in (4.9)) 

because in this case my = 0 and the term my tan βest becomes zero as well.  

One obvious situation to consider is that of frictionless contact, resulting in βest = and thus 

 2 /
x

z y z

d C
m m m





 (4.11) 

which can alternatively be written as  

 cosxd C
m


  (4.12) 

where 2 2

z ym m m   as in [47]. 

In the following section, the two most significant potential sources of distance extraction 

error are addressed analytically, namely discrepancy between est and the true  and lateral 

curvature of the object surface.  
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4.4 Potential Sources of Distance Extraction Error 

4.4.1 Unknown Friction Coefficient 

Distance extraction using (4.10) requires an estimate of the friction coefficient between the 

whisker and the surface. In order to characterize how discrepancy between est and the true  

results in distance extraction error, we return to the lateral slip model of Figure 4.4 to obtain (see 

Appendix E): 

 
1

tan tan 1
z

x

C
m

d



 

 
  

 
 (4.13) 

 
1

tan cot
y

x

C
m

d



 

 
  

 
 (4.14) 

Equations (4.13) and (4.14) along with (4.4) define how mz and my will increase as the whisker 

rotates against a slanted surface as a function of  and β. Thus, assuming some estimate of 

friction cone angle est, we can numerically compute the surface slope βthresh at which at a given 

percentage of distance extraction error (an “error threshold”) is incurred for a range of actual 

friction cone angles . βthresh can in principle range between 0 (vertical) and 90 (horizontal). 

The larger βthresh is, the more reliable the distance extraction is in the presence of a complex 

and/or arbitrarily oriented object. 

Figure 4.5(a,b,c) shows the relation between βthresh and  for est = 0º, 10º and 20º, 

respectively. The surface slope at 1%, 5% and 10% error thresholds for distance extraction using 

(4.2) and (4.10) are represented by dashed lines and the solid lines, respectively. Naturally, as the 

error threshold increases, so does βthresh for both distance extraction equations. However, Figure 

4.5(a) shows that (4.10) is always equally or more accurate than (4.2) when est = 0º, with the 
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relative advantage becoming progressively more significant with increasing error threshold level. 

The advantage of (4.10) over (4.2) is even more pronounced when a reasonable guess can be 

offered for est. So long as est falls within a moderate range of , distance extraction will be 

accurate even for steep surface slopes. For example, Figure 4.5(b) tells us that if est = 10º, 

distance extraction will be accurate to within 5% so long as  ranges between 8.2º and 11.7º and 

β ≤ 60º, or to within 10% so long as  ranges between 7.8º and 12.3º and β ≤ 70º. 
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Figure 4.5: Error threshold analysis for maximum allowable surface slope given particular 

deviations between  and est with (a) est = 0º, (b) est = 10º, (c) est = 20º. βthresh is the surface 

slope at which at a given percentage of distance extraction error is incurred for a range of actual 

friction cone angles . Dashed lines represent βthresh calculated using (4.2). Solid lines represent 

βthresh calculated using (4.10). 
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4.4.2 Lateral Curvature of the Object Surface 

Equation (4.10) assumes that the surface being contacted has a lateral curvature of zero. 

Although this at first may seem to be a restrictive assumption, one must consider the effect of 

curvature within the scale of the contact distance. The radius of curvature r scaled relative to the 

contact distance dx, defines the normalized lateral curvature as 

 /n xd r   (4.15) 

and thus the normalized radius of curvature as rn = 1/n. The smaller n is, the flatter the surface 

effectively is. Note, however, that the effect of curvature on distance extraction must be 

considered in the context of three additional variables:  and , as defined above, and also 0 – 

the surface slope in the sensing plane at the initial contact point. To understand the interplay 

between these variables, we may refer to error threshold plots similar to those in Figure 4.5, but 

now with rn as the independent variable (see Appendix F for derivation). 

Figure 4.6(a), (b) and (c) plot the maximum allowable 0 (thresh) as a function of rn that 

keeps distance extraction error under 1%, 5% and 10% respectively. Each plot shows these 

relationships for three different pushing angles:  = 1°, 3°, and 5°. As expected, thresh always 

increases with increased error threshold and with increased rn (surface flatness).  
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Figure 4.6: Error threshold analysis for maximum allowable surface slope given particular 

normalized lateral radii of curvature and (a) 1% error, (b) 5% error, (c) 10% error. Dashed lines 

are for frictionless contact (and est = 0°), and solid lines are for contact with  = 20º (and est = 

20°). 
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Interestingly, Figure 4.6 illustrates that friction has an overall negligible impact, while in 

contrast, increasing  has a significantly detrimental impact. The reason for this goes back to the 

issue of scale – a larger  will result in a larger slip relative to any given rn, and thus more 

deviation from the assumption of a flat surface. As a practical issue, the benefit of using a small 

 to guard against lateral curvature must be balanced against the decreased reaction torque at the 

whisker base that will result. Generally speaking,  should be chosen to be as small as possible 

while still ensuring a sufficient reaction torque to allow accurate distance extraction when 

contact occurs near the whisker tip. 

Overall, Figure 4.6 shows that the consequence of lateral curvature is relatively mild. For 

example, given a significantly curved surface with rn = 1 and a realistic pushing angle of  = 3º, 

a 0 of 63º will result in 5% distance extraction error and a 0 of 74º will result in 10% error. 

Increasing  to 5º would decrease the maximum 0 to 52º and 65º, respectively. 

 

4.5 Model Validation 

Experimental validation of the lateral slip model was performed. The artificial whisker 

used for these experiments had two components: a flexible beam (the “vibrissa”) and a two-axis 

torque sensor (the “follicle”) (see Figure 4.7(a)).  
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Figure 4.7: The experimental setup: (a) the whisker follicle, and (b) the object surface (a 

protractor). 

 

The vibrissa is a straight superelastic Nitinol wire, 1 mm in diameter and 10 cm in length, 

with a small setscrew attached at the base. The relatively thick wire diameter was chosen to 

ensure a strong torque signal to sense small lateral deflections; generally, much thinner whiskers 

can be used. The setscrew allows different size and shape vibrissa to be easily interchanged 

within the follicle. The follicle is a small aluminum block (448 mm) with the center tapped to 

match the setscrew at the base of the vibrissa. Each of the four faces of the follicle is fitted with a 

strain gauge, allowing independent measurement of mz and my, and the follicle itself is attached 

to a larger setscrew to allow easy connection to an array. For these experiments, the array was 

simply a vertically oriented aluminum bar with a series of threaded holes, which allowed 

whiskers to be configured in a single column (see Section 4.6). The array was attached to an AC 

servomotor at the base for actuation. The most important – but not essential – feature of the 

present design is that it positions the base of the vibrissae (and the tips of their follicles) at the 

center of rotation, thus conforming to the model as expressed in (4.13) and (4.14). Equations 
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(4.13) and (4.14) could be modified to account for non-center rotation (similar to [72]), but that 

was not tested in the present experiments. 

The experiment involved rotating the whisker against a slender stainless steel bar (see 

Figure 4.7(b)) at a variety of surface slopes: from  = 0º (vertical) to 75º (nearly horizontal) in 5º 

increments (similar to [72]), and at two different speeds:   = 10 deg/s and 90 deg/s. Signals 

from the follicle strain gages were first calibrated from voltage to moment. The my component 

was calibrated by rotating the whisker against the bar with  = 0º at a radial distance of dx = 5 

cm. Ten whisks were performed at both   = 10 deg/s and 90 deg/s. The location at which the 

whisker gently touched the bar was defined as  = 0º. Whisker trajectories were chosen to ensure 

a smooth acceleration to the maximum velocity. For   = 10 deg/s the whisker was rotated 

through a range of –3º to 12º, while for   = 90 deg/s, an expanded range of –15º to 20º was 

used. All data were filtered at 800 Hz, sampled at 2000 Hz and passed through a zero-phase 

digital filter with a cutoff frequency of either 5 Hz (for   = 10 deg/s) or 45 Hz (for   = 45 

deg/s). Using (4.2) along with a pushing angle  = 3º, we arrive at a calibration factor between 

voltage and moment my. The follicle was then rotated 90º and the calibration process repeated for 

mz. 

Experimental data were gathered in the same way as the calibration process, but for varying 

. For each , the plane of the bar was perpendicular to the orientation of the whisker at  = 0º. 

Figure 8(a,b) plots m and  vs. , for the two different whisking velocities. Units for m  are 

EI/meters, that is, equivalent to EI∙ since  = m/EI. Figure 4.8(c,d) is the same as Figure 

4.8(a,b), except that a rough surface was obtained by covering the object surface with 180 grit 
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(fine) sandpaper. The sandpaper was replaced for each  to prevent wear from affecting the 

results. Least-mean-square (LMS) fits were performed on the experimental data sets. 

Specifically, LMS fits were performed on the sum of the squares of (4.13) and (4.14) with est  as 

the free parameter. Absolute value of the moment was then calculated as 2 2

z ym m m  , and  

was calculated from (4.8).  

Figure 4.8(a) demonstrates that an excellent fit between model and experiment was 

obtained for whisking against the steel rod at 10 deg/s, for an estimated value of friction cone 

angle est = 10.5º. At 90 deg/s (Figure 4.8(b)) the data again conforms well to the model, the fit 

yielding est = 12.3º, but the measurement variability is significantly higher. The increased 

variability is likely due to dynamic effects, namely vibrations, starting to become significant, 

though this was not confirmed.  

Figure 4.8(c,d) illustrates the phenomenon of stick-slip friction, in which the whisker 

irregularly switches between periods of no slip, smooth slip and sudden, abrupt slip. This led to a 

high level of variability in the data obtained at   = 10 deg/s, but had a smaller effect at   = 90 

deg/s. The difference is likely due to the well-known sensitivity of stick-slip behavior to velocity. 

The fits to   = 10 and 90 deg/s yielded 23.3º and 18.7º, respectively for est. 
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Figure 4.8: Experimental results for stainless steel surface with (a)   = 10 deg/s, (b)   = 90 

deg/s, and for sandpaper surface with (c)   = 10 deg/s, (d)   = 90 deg/s. Error bars are 

standard deviations. Solid lines are LMS fits, calculated as described in the text. 
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4.6 Array Design 

Although the results presented here have specifically addressed radial distance extraction 

with a single whisker, they are particularly relevant to implementation on an array of robotic 

whiskers. Because the proposed method allows radial distance extraction to be performed in the 

presence of lateral slip, multiple whiskers can be configured into arrays wherein their relative 

base-positions and planes of rotation are fixed. Hence, the method enables the synchronous 

movement of multiple whiskers against an arbitrarily shaped and oriented object to efficiently 

collect multiple contact points, which can be processed in parallel to extract complex surface 

features [47]. 

Because whisking often involves the rotation of multiple whiskers in close synchrony, a 

desirable property of a whisker array is the need for only a single motor for actuation. In [60], a 

servomotor is used to move a flexible membrane, through which the base region of multiple 

whiskers is threaded, thus allowing a 40° whisking amplitude. In [72], a DC motor connects to a 

support plate, upon which multiple whiskers are attached at varying angles. As mentioned in 

Section 4.5, the present model requires that each whisker rotate about its cantilevered base – 

where the moment sensor resides – requiring a different design than [60] and [72]. Our solution 

was to mill an aluminum cylinder down to a slender plank except for the region at the base, 

where a hole is drilled for attachment to an AC servomotor. Several holes were then drilled 

through the plank and threaded for attachment of the whiskers. Figure 4.9 shows the entire array 

along with four whiskers, similar to the one used in the above experiments (see Figure 4.7(a)). 
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Figure 4.9: Array design for a single column of whiskers. 

 

In order to actuate multiple columns of whiskers, a simple solution is to use a classic multi-

bar linkage system, such as the one used in [59], thus allowing for the actuation of an arbitrarily-

sized grid of whiskers, still using only a single motor. 

 

4.7 Discussion 

This chapter has demonstrated that reorientation of the whisking plane is not necessary for 

reliable measurement of contact point location, thus opening the possibility for whisker arrays of 

simple mechanical design capable of detailed 3-D feature extraction. In order to perform accurate 
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feature extraction with objects of arbitrary shape and orientation, a reasonable estimate of the 

friction coefficient between the whisker and the object is beneficial. In many cases, it may be 

reasonable to assume the environment is composed of mostly smooth surfaces, in which case an 

estimate of est = 0.18 (est = 10º) should be reasonable, as indicated in by the fits in Figure 

4.8(a,b). If that assumption is inaccurate and the surface is rough, say with  = 20º, then Figure 

4.5(b) tells us that distance extraction will remain accurate to within 10% error as long as the 

surface slope  is less than about 45º (also depending on the normalized lateral curvature n and 

pushing angle , as shown in Figure 4.6).  

If a more reliable estimate is desired, there are a few possible solutions, as follows: 

1) If the orientation of the entire whisker array can be tilted along the x-axis of any 

particular whisker, whisks would be performed against the object at a variety of 

orientations, effectively adjusting the relative surface slope. The range of slopes for 

which  = 0º would be equal to 2∙ (the accuracy depending on how gradually the 

orientation was adjusted). This essentially amounts to an in-field test of the object to 

determine the friction coefficient. Note that this change in orientation occurs for the 

entire array (not for each individual whisker) and only needs to be done when a new 

estimate of friction is desired.  

2) Have the array explore the object, and repeat the feature extraction algorithm (the 

transformation of contact points into 3-D object shape, e.g. splining [47]) using a range of 

friction coefficients. The one that leads to the most consistent contact point positions and 

thus the smoothest surface is kept. 
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3) Have the array whisk against the object at a variety of array orientations. All the contact 

points sampled are given a confidence measure related to , such that points with large  

are ignored or have less influence on the feature extraction algorithm. 

Methods 1 and 2 assume the friction coefficient is constant over the entire object, while method 

3 does not. 

Another problem involves the occurrence of stick-slip, in which the coefficient of static 

friction is significantly greater than that of kinetic friction (which the model assumes are the 

same). However, we have shown experimentally that stick-slip is reduced by whisking quickly 

(e.g., 90 deg/s), a behavior that is also desirable for the sake of sensing an object quickly, as rats 

are able to do. 

Other potential sources of distance extraction error include:  

 simultaneous longitudinal and lateral slip – The analysis performed in this paper assumes 

that no longitudinal slip occurs along with the lateral slip. However, this assumption is 

not always valid. Consider the case in which the object shown in Figure 4.3 is tilted by an 

angle  either towards or away from the motor instead of oriented vertically. This could 

cause simultaneous lateral and longitudinal slip, depending on the friction conditions and 

particular values of  and  Additional analyses are required to quantify the effect on 

distance extraction, but it should be small unless both  and are large. 

 object compliance – A solution is offered in [68] in which two whisks are performed on 

the object from two different distances, and the difference in whisker compliance reveals 

both the contact distance and a measure of the object compliance. 
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 multi-point contact – This should be rare even for complex objects because it would 

require two distinct point along the object‟s surface to closely line up along the initial 

contact orientation of the whisker. As the pushing angle  becomes smaller, this situation 

becomes increasingly unlikely. 

 moving objects – Most environments are static on the temporal scale over which 

exploration is likely to occur. Also, if the environment is moving, its velocity is often 

negligible relative to the whisking speed  . Because the whiskers have very little mass, 

they can move very rapidly (in rats, up to 1500 degrees/second [23]).  

One final issue involves contact occurring at the whisker tip. Such cases may result in 

decreased rotational compliance, causing (4.6) to estimate dx to be greater than the whisker 

length. The solution is to simply give dx a threshold equal to the whisker length [47]. It is also 

worth noting that regions of an object that are concave with respect to the plane of whisker 

rotation can only be sampled through tip contact if the whisker is straight. Tip contact is thus 

actually desirable for two reasons: it potentially helps provide a very precise measurement of 

contact distance (since the whisker length is exactly known), and allows concave regions of an 

object to be sampled. 

We point out that the method presented here is not limited to the case of a cylindrical 

whisker. In general, moment can be related to pushing angle by a monotonically decreasing 

stiffness function that depends on the shape and elastic modulus of the whisker [47]. This allows 

us to write (4.12) in the more general form: 

 ( , )cosxd M    (4.16) 
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where ( , )M   is the distance extraction equation for the whisker in the case of no lateral slip 

((4.2) for a cylindrical whisker). For the case of a conical beam, which is a good approximation 

for a rat whisker (see Chapter 3 and [47]), we have: 

 cosx

C L
d

C M L








 (4.17) 

 

4.8 Conclusion 

We have demonstrated the effectiveness of a method to measure contact point location with 

an artificial whisker in the presence of significant lateral slip and surface friction. The method 

requires only that the whisker be equipped with a two-axis torque sensor at the base, and works 

best when a reasonable estimation for the object‟s friction coefficient is available. The biggest 

advantage of this method is that it does not require that each whisker can independently adjust its 

plane of rotation, and is thus very amenable to implementation on an array of whiskers to extract 

complex object features, as is done in the next chapter. 
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Chapter 5  

Object Feature Extraction 

 

This chapter contains material that has been slightly altered from the following publication: 

J. H. Solomon and M. J. Hartmann, “Robotic whiskers used to sense features,” Nature, vol. 443, 

p. 525, Oct. 5 2006. 

 

5.1 Introduction 
 

Chapters 3 and 4 addressed the problem of radial distance extraction with a whisker in 

great detail. Combined with the angular position of contact and the height of the whisker (which 

can be considered fixed), the 3-D location of contact can be defined in terms of cylindrical 

coordinates. Importantly, behavioral and electrophysiological experiments have thoroughly 

established that rats possess the ability to extract both the radial [30, 36, 38, 74] and angular [38, 

52, 74, 75] position of an object with a single whisker, and that whisking movements are 

generally constrained to within a plane [23, 76, 77]. One might argue that extraction of a discrete 

contact point cannot account for the rat‟s ability to sense the shape of objects, but one must 

consider that a rat typically whisks at about 8 Hz and possesses 30 macrovibrissae on each side 
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of the face, thus accounting for the extraction of about 500 contact points in a single second! 

Clearly the inference of shape is possible from such a spatially dense sampling, but to do so with 

precision requires the adherence of several critical assumptions (see Chapter 4). Here I show 

experimentally that detailed feature extraction is possible with a robotic whisker array using the 

method outlined in Chapter 4, combined with the use of a spline to fit a smooth surface to the 

contact points. 

 

5.2 Methods and Results 
 

The array discussed in Section 4.6 was implemented with 4 robotic whiskers of length 5, 4, 

3 and 2 cm (top to bottom), each 0.5 mm in diameter and spaced vertically by 1 cm. A small 

sculpted head was used as the subject for feature extraction due to its intricate concavities and 

convexities. These items are shown in Figure 5.1, with their relative scale preserved. 
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Figure 5.1: The whisker array and sculpted head. 

 

Calibration between voltage and moment for the artificial whisker array was performed by 

sweeping each whisker five times against a peg placed at a single distance of 2 cm. A low 

whisking velocity (10 deg/s) minimized inertial effects and maximized the resolution of contact 

angle detection. This same procedure was then done with the whisker follicles rotated 90˚ to 

calibrate in the vertical plane (necessary to sense whisker movements out of the plane of primary 

motion). 

To gather experimental data, the sculpted head was fixed at the center of a cylindrical 

coordinate system (r, , z) while the array whisked at several different positions. Note that  of 

this general coordinate system is not the same as the angle  through which the whisker deflects. 
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The array was positioned at regular intervals of height z and angle . The choice of r was 

necessarily dictated by the requirement that the whiskers make contact with all regions of the left 

side of the head (Table 5.1). 

 

Table 5.1: The array was positioned in regular intervals of height z and angle θ, while distance r 

was manually chosen to ensure whisker contact with all regions of the face. 

z (cm) θ (degrees) r  (cm) 

0.000 – 2.000, 0.125 cm increments 0 – 60˚, 10˚ increments 5.00 

2.125 – 3.250, 0.125 cm increments “ 4.75 

3.375 – 4.250, 0.125 cm increments “ 5.50 

4.375 – 6.000, 0.125 cm increments “ 5.25 

 

 

A single whisk was performed at each position. Analog signals from each whisker base 

were filtered at 160 Hz, sampled at 500 Hz and then passed through a zero phase forward digital 

filter (period = 1/2 second). The location of each contact point was then computed relative to the 

array. The angular component  was taken to be the angle at which the whisker first made 

contact with the object (when M  crossed a threshold), and the radial d component was found 

using (4.12) (i.e., the surface friction was assumed to be zero).  

A total of 343 whisks were performed. In cases where a whisker did not make contact, or 

the data analysis showed that the whisker hit on the right side of the face, the data were 

automatically removed. All other contact points were mirror-imaged to the right side of the head. 

The longer whiskers captured the broad convex features, while the shorter whiskers explored the 

finer concave regions. Equation (4.12) was also used to determine when contact occurred at a 
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whisker tip. Tip contact always resulted in an estimate of d very close to or greater than the 

whisker length. In the case that estimated d was greater than the whisker length, d was 

automatically set equal to the length. Thus, (4.12) provided the critical information that contact 

did indeed occur at the whisker tip and not mid-length. This would not have been possible had 

the sensing mechanism been, for example, a simple binary contact-switch.  

Note that regions of the sculpture that are concave in the horizontal plane (for any given 

height) are only reachable through tip contact, which accounts for 25% of the splined surface. A 

total of 1036 contact points on the left side were collected, with 438 points determined through 

(4.12) to occur at or near the tip (42% of all points). The points were converted to head-centered 

Cartesian coordinates to simplify splining, mirror-imaged to the right side, and plotted along 

with the spline to create Figure 5.2. 
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Figure 5.2: The process of feature extraction. The sculpture was “scanned” from top to bottom, 

hence the gradual extraction of features in the vertical dimension. 
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Chapter 6  

Object Profile Extraction 

 

This chapter contains material that has been slightly altered from the following publication: 

J. H. Solomon and M. J. Z. Hartmann, “Object profile sensing with a robotic whisker using only 

torque information,” in preparation. 

 

6.1 Introduction 
 

Chapter 4 reviewed the current literature with regards to robotic whiskers. Here, we 

subdivide those approaches related to the subject of feature extraction into two categories. The 

first, more straightforward approach was the subject of Chapters 3-5, wherein the whisker rotates 

(or translates) against the object by a small angle to accomplish radial distance extraction. Using 

this information, along with the angle of initial contact and location of the whisker base, allows 

estimation of the contact point location in 3-D space for each whisker during each whisk. The 

second approach incorporates moving the whisker along or against the object by a significant 

amount past initial contact in order to estimate a collection of contact point locations as the 
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whisker slips along the surface. The former approach will henceforth be referred to as tapping, 

and the latter as sweeping. For the sake of completeness, we again review the relevant literature. 

Several studies have addressed whisker tapping. Tsujimura and Yabuta derived and 

demonstrated a general method of estimating contact point location of a stiff probe (e.g., a beam) 

pressing against an object using a six-axis force/torque sensor [64]. Ueno et al. measured 

vibration frequencies at the base of a flexible beam using a torque sensor to estimate contact 

point position [67]. Kaneko et al. used a two-axis actuator, two-axis torque sensor and a flexible 

beam to determine contact positions along an object based on the rotational compliance [68]. 

Clements and Rahn applied a large-angle elastica model as the basis for determining contact 

point location with a two-axis actuator, flexible beam and six-axis force/torque sensor [71]. Kim 

and Möller attached multiple flexible beams with two-axis torque sensors to an actuated support 

plate, showing that whisker arrays can provide basic object shape information in a single whisk 

[72]. My own research, outlined in Chapters 4 and 5, has shown that highly detailed shape 

information can be extracted by using a whisker array and combining data from several whisks, 

while accounting for lateral slip of the whiskers along the object. 

Whisker sweeping, the approach undertaken in this chapter, has received somewhat less 

attention in the literature than tapping. Russell swept the tip of a flexible curved beam with a 

binary (touch or no-touch) sensor along objects with a Puma robot to measure their profile [65]. 

Wilson and Chen used a pneumatic bellow tube actuation system and closed-loop control to 

sweep the tip of a flexible beam with a 2-D torque sensor along objects and estimate their 

profiles [66]. Scholz & Rahn rotated a flexible beam equipped with a six-axis force/torque load 
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cell against objects and used a large-angle elastica model to repeatedly compute the entire 

whisker shape, providing an accurate 2-D object profile measurement with a single whisk [70]. 

The approach outlined in this chapter was inspired by the ultimate goal of constructing a 

whisker array that mimics the structure of that found in the rat. This places two fundamental 

constraints on the system: 1) each whisker much rotate about its base, where the bending 

moment (torque) is measured, and 2) all whiskers must rotate in unison, thus reasonably 

approximating a natural whisking motion and also allowing for a simple array design that 

requires only a single motor for actuation (see Section 4.6 and [59]). Chapter 4 has established a 

method for performing initial contact point measurement under these conditions. A natural 

extension to these results is to develop a sweeping technique that will allow continued estimation 

of contact point beyond initial contact, thus providing the maximum amount of available shape 

information per whisk, and is the topic of this chapter. Although this capability was impressively 

achieved by Scholz and Rahn [70], their method is incompatible with our envisioned array 

design, as the requisite force/torque sensor is too bulky and expensive to be considered for array 

implementation. Their method also lacks biological plausibility. Hence, the method presented 

here accomplishes a similar result, but does so using only measurement of moment to iteratively 

infer successive contact point locations. 

 

6.2 Longitudinal Slip 

As explained in Chapter 4, there are two distinct ways whiskers can slip along an object in 

the context of whisking behavior. Lateral slip occurs when the object surface at the contact point 

is slanted relative to the plane of rotation and the angle of the friction cone is not large enough to 
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prevent out-of-plane movement, as depicted in Figure 4.1(a). Lateral slip can be detrimental to 

the process of radial distance extraction, and Chapter 4 developed a method to passively account 

for it to enable radial distance extraction. Longitudinal slip occurs when the contact point moves 

along the length of the whisker. In the absence of lateral slip, longitudinal slip ensues 

immediately following contact if the curvature of the object within the plane of rotation at the 

contact point is finite (not an edge or a point), as depicted in Figure 4.1(b). It also occurs during 

contact with point-objects for larger whisks. Kaneko et al. showed that (in the absence of lateral 

slip) longitudinal slip has a small effect on distance extraction unless the object curvature is low 

or the contact point is close to the base [68]. Conveniently, longitudinal slip affords the 

opportunity to sense additional contact points as the whisker slips along the object periphery, 

providing further information about object shape over a single whisk. The algorithm presented 

here accomplishes this task. 

 

6.3 Approach 
 

6.3.1 Determining the Initial Contact Point 
 

We assume the environment contains only static, rigid objects (rigid relative to the 

whisker), and that the whisker bends only within its plane of rotation. Note that the latter 

assumption prohibits this method from working when surface contact conditions cause lateral 

slip to occur [68] (see Discussion section). 
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The sensing process begins with the whisker freely whisking in the air. When a small 

moment threshold Mthresh is exceeded, the first step is to estimate the radial distance to the first 

contact point r0, using: 

 
0

0

0

3r EI
M


  (6.1) 

where E is the elastic modulus, I is the area moment of inertia, 0 is a small pushing angle 

(typically about 3°) beyond initial contact (where Mthresh is reached), and M0 is the moment 

sensed at the whisker base. Calculation of the contact point location in Cartesian coordinates 

with respect to the base is useful: 
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Figure 6.1 shows the state of the whisker after measurement of the first contact point. As the 

whisker continues to rotate against the object and 0 increases, the contact point will slip along 

the length of the whisker in a way that depends on the local shape of the object. The sweeping 

algorithm is designed to infer that local shape based on the continued measurement of moment, 

as outlined in the following section. 
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Figure 6.1: Geometry of whisker after rotation by 0. The x-axis of the coordinate system is 

coincident with the line tangent to the whisker base. The magnitude of 0 is exaggerated here, 

as 3° is typically sufficient. 

 

6.3.2 Determining Additional Contact Points 
 

The basic premise of the algorithm is that given the current (iteration i, i ≥ 1) estimated 

contact point location relative to the base ( , )
i ix yd d , its new position after a small incremental 

rotation d can be inferred based on the new measured moment Mi+1. The derivation begins by 

decomposing the translation of the contact point during d into two components: a nominal 

deflection 
i  concentric with the whisker base (angle i), and a component ids  parallel to the 

longitudinal axis at the contact point (angle i) and towards the base, as depicted in Figure 6.2. 

Hence, we have 
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Figure 6.2: Illustration of a single iteration of the sweeping algorithm. The magnitude of d is 

exaggerated here, as ~1° is typically used. 

 

The result of the 
i  component is immediately evident, shifting the contact point by 

magnitude ri·d concentric with the base, allowing us to write: 
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Determination of ids , however, involves greater effort in finding both its direction and 

magnitude. These two problems will now be treated independently. 

As stated earlier, ids  is oriented parallel to the longitudinal axis of the whisker at the 

contact point, at angle i. For small , it is straightforward to show using Euler-Bernoulli beam 

theory applied to the classical model of a cantilever beam with concentrated end load, that  

  2
3  (6.5) 
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for small deflections. However, assumptions of linearity become violated for angles larger than 

about ~14°, and hence we turn to a numerical elastica model to compute the relation between  

and  for larger deflections. 

The model considers a static cantilever beam divided into n nodes, with a concentrated load 

F at arc length s = 1 along the beam. Friction is assumed to be zero, and hence the force acts 

perpendicular to the longitudinal axis at the force location. Starting at node 1 where the force is 

applied, the shape of the beam is iteratively computed node-by-node towards node n at the base 

using a version of the Euler-Bernoulli equation. Repeating this procedure for a range of forces 

provides a continuum of beam shapes for increasingly large deflections, with units automatically 

normalized to E, I and s. The resulting table can be efficiently interpolated to generate the beam 

shape for various methods of query, including (dx, dy), (r, ), and (s, F, EI). Details can be found 

in Appendix D. 

Using the results of the numerical model, Figure 6.3(a) plots  vs.  for up to  = 60°. 

Perhaps surprisingly, (6.5) continues to hold with very high accuracy well past the regime where 

small angle assumptions are valid. Figure 6.3(b) shows that use of (6.5) results in only 0.35% 

error at  = 30°, and 1.63% error at  = 60°. Since sweeps of less than 60° are likely to be used in 

practice, (6.5) is a very good approximation even for large angles and thus is used to estimate the 

orientation of ids . 
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Figure 6.3: (a) Relationship between deflection angle  and tip angle  for a cantilever beam 

with concentrated end load. The solid line is the numerical result, and the dashed line is from 

(6.5). (b) Error incurred using (6.5) as a function of . 

 

The only remaining task is to formulate a method of estimating ids  – the magnitude of 

ids  – which (neglecting friction) depends entirely on the curvature of the object surface at the 

current contact point. If the curvature is infinite (i.e., the contact point is an edge or a point-

object), then ids  = 0; otherwise, ids  > 0. Defining 
i

M
as the moment and sM

i
d/d 

 as the rate 

of change of moment with respect to ids  (following along the beam towards the base) after 

deflection i, we can write 
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And, solving for ids , we have 
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Consolidating (6.5) and (6.7), 
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Finally, combining (6.3), (6.4) and (6.8), we have 
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Since Mi+1 is measured by the torque sensor, there are only two remaining unknown variables 

needed to find the new contact point: 
i

M  
and sM

i
d/d 

. Again, the numerical model provided 

in the Appendix is utilized, and the results are shown in Figure 6.4. 

 

 

Figure 6.4: The numerical elastica model (see Appendix D) provides the relationship between  

and (a) M and (b) dM/ds, required by the sweeping algorithm. The solid lines are the 

numerical data, and the dashed lines are the results of cubic polynomial fits. 

 

The curves are normalized using r as a scaling parameter, so that 
i

M
has units of [ /EI r ], and 

d / d
i

M s
 has units of [ 2/EI r ]. Also shown are the results of cubic polynomial fits to both 

curves (dashed lines), which serve as convenient methods of implementing these relations. The 
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polynomials contain no constant term since the underlying function passes through zero, and 

were fit by minimizing the sum of squared errors. The resulting equations are as follows: 
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where  is in units of radians and 22

ii yxi ddr  . Note that (6.10) and (6.11) have the relevant 

normalization factors included, but also that bending stiffness EI may not be obtainable with 

high precision. In practice, it is not necessary to know EI, as the torque sensor is calibrated to 

units of curvature at the whisker base (e.g., from voltage), in which case EI effectively becomes 

1. This is addressed further in the Results section. 

 

6.4 Results 
 

The algorithm was tested using aluminum bars with circular-, hexagonal- and square-

shaped cross-sections. The robotic whisker used in these experiments was described in Chapter 4 

(0.5 mm in diameter, 5 cm in length, and composed of superelastic Nitinol). Although the follicle 

is capable of sensing both orthogonal components of moment, no lateral slip occurred in these 

experiments and hence only two of the four strain gages were utilized. The centers of the test 

objects were placed 4 cm in front of the whisker base, as shown in Figure 6.5. 
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Figure 6.5: The experimental setup. The whisker was rotated against aluminum bars with 

circular-, hexagonal- and square-shaped cross-sections (hexagonal shown here). The vertical 

arrow indicates the axis of rotation. The protractor shown underneath the object was used to 

manually set its orientation. 

 

Calibration of the whisker signal was undertaken before the actual experiments. 

Throughout this paper, the moment at the whisker base has been referred to as the variable 

measured by the torque sensor. The Euler-Bernoulli equation (D.1) reveals that curvature is 

proportional to moment for an inherently straight beam, related by the bending stiffness EI. In 

practice, it is more convenient to calibrate the follicle to curvature instead of moment, because 

this requires no knowledge of EI. We generally refer to the moment at the base instead of 

curvature because it is somewhat more intuitive, but these units of measure are effectively 

equivalent in this particular context. 

The follicle was calibrated by rotating the whisker at a speed of 10 deg/s through an 

amplitude of 60° against a slender peg at a radial distance of 4 cm (starting out barely touching). 

The data were low-pass filtered at 800 Hz, sampled at 2000 Hz, and passed through a zero-phase 
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digital filter with a cutoff frequency of 10 Hz. Using (6.10) with EI set to 1 allows the true 

curvature to be inferred for all values of . Plotting curvature vs. voltage generates a calibration 

curve, which was stored as a spline, to be used to convert the experimental data from voltage to 

curvature. The curve starts out linear, but levels off slightly as the curvature becomes large. 

Each experimental trial occurred as follows. The whisker starts at rest, oriented −30° 

relative to the object‟s center. At a speed of 10 deg/s, it whisks against the object with an 

amplitude of 60°, immediately retracting back to −30°, and then rests for 5 seconds while the 

object is rotated about its center by 30°. This procedure occurred a total of 12 times, resulting in 

all or almost all of the objects‟ perimeters to be contacted by the whisker. Although in actuality 

we are keeping the location of the whisker base fixed in space and rotating the object between 

whisks, this is functionally equivalent to having the whisker base move around the fixed object 

between whisks, in a circular matter. 

After filtering the data, (6.1) and (6.2) were used to compute the initial contact point using 

0 = 3°. Subsequent points were generated by iteratively applying (6.9), (6.10) and (6.11), with 

d = 1°. This procedure gives the contact points within the local whisker reference frame (see 

Figure 6.2); hence conversion to a global frame was necessary before plotting. The results, 

shown in Figure 6.6(a-c), show that the sweeping algorithm accurately estimates successive 

contact points as the whisker slips along the perimeters of all three shapes. 

The most noteworthy assumption implicit in the sweeping algorithm is that of no friction 

between the whisker and the object, which influences (6.5), (6.10) and (6.11). These equations 

were derived under the assumption that the direction of the contact force is normal to the whisker 

at the contact point, which is increasingly inaccurate for a rough object as  becomes large. To 
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test the effect of friction, the experiments were repeated with 120 grit (moderately rough) 

adhesive-backed sandpaper stuck to the objects. Figure 6.6(d-f) shows that although some 

precision is lost, the general object profile shapes are again faithfully reproduced. 

 

 

Figure 6.6: Results of implementing the sweeping algorithm on smooth (a) circular, (b) 

hexagonal, and (c) square objects, and rough (d) circular, (e) hexagonal, and (f) square objects. 

A total of 12 whisks were performed at evenly-spaced (30°) intervals around the objects. Initial 

contact points are indicated by small white circles, and subsequent points computed by the 

sweeping algorithm are smaller black dots. Thin lines indicate the actual underlying shape 

profile. For the first whisk, the orientation of the whisker upon object contact is indicated by the 

dashed line, and subsequent whisker shapes are indicated in 10° increments by solid lines. 

These shapes were generated using the numerical model in Appendix D. This was done for 

illustrative proposes, and is not required by the sweeping algorithm. 

 

6.5 Discussion 
 

The sweeping algorithm presented here has been shown to be highly accurate for three 

distinct 2-D shapes. In all three cases, the entire profile shape was reliably extracted with only 12 
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whisks, clearly providing significant additional shape information beyond that provided by the 

initial contact point alone, as shown in Figure 6.6. In addition, visual observation showed that the 

sequence of extracted points seemed to closely match the actual movement of the whisker along 

the object. In several cases, the whisker remained in discrete contact with an edge during the 

whisk. As expected, the estimated contact points would remain in the same region, usually 

within a range of 2 mm from the first contact point for the smooth objects. In other cases, 

significant slip along the object occurred, whereupon the estimated contact points would 

accurately align with the side of the object. 

When using the algorithm, the user must choose reasonable values for Mthresh, 0 and d. 

Mthresh should be as close to zero as possible while ensuring it won‟t be exceeded due to the 

combination of dynamic effects and sensor noise. A good rule-of-thumb is to make 0 as small as 

possible, while still ensuring a strong enough torque signal to allow accurate distance extraction 

when contact occurs near the whisker tip. The choice of d is predicated on a tradeoff between 

accuracy and computational efficiency, as well as the desired number of extracted points. 

Decreasing d below 1° has an insignificant effect on the accuracy of the algorithm. In fact, good 

accuracy can be obtained for d as large as ~5°. 

Another important issue involves the whisking speed. The experiments undertaken here 

used a very slow speed (10 deg/s) to minimize dynamic effects, but much faster speeds may be 

implemented in practice. The above experiments were repeated using a whisking speed of 90 

deg/s with nearly equally accurate results for both the smooth and rough surfaces (data not 

shown). The only significant difference involved a greater dispersion of contact points at the 

edges of the smooth objects. 
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The assumptions inherent in the sweeping algorithm deserve careful consideration: 

 friction – Although the assumption of zero friction is not technically valid if the surface is 

rough, we have shown that the sweeping algorithm produces good results even in the 

relatively extreme case of 120 grit sandpaper. Hence, the model has proven to work in the 

presence of friction, but with somewhat reduced accuracy. 

 tip contact – For distance extraction (6.1), tip contact is easily handled by setting an 

upper threshold on r0 equal to the length of the whisker (see Chapter 5). However, the 

assumption that the contact force acts normal to the whisker at the contact point can be 

inaccurate in the case where the whisker touches the object at the tip, and also the tip can 

slide along the object, invalidating (6.4). We implemented a modified version of the 

sweeping algorithm for the case of tip contact, setting ids  to zero (since tip contact 

generally persists during a whisk), and using a numerical technique to estimate 
i  based 

on the moment Mi+1. Unsatisfactory results were achieved, likely due to the non-

perpendicular inclination of the contact force. Therefore, in practice, the sweeping 

algorithm should be halted for whisks in which r0 is equal to the whisker length. 

 lateral slip – The model explicitly assumes that no lateral slip occurs; any significant 

amount is likely to be highly detrimental. Note that this does not necessitate that the 

surface is oriented exactly perpendicular to the plane of rotation, as friction can prevent 

lateral slip in some cases (see Chapter 4). When lateral slip does occur, it can easily be 

sensed through measurement of the orthogonal (y) component of moment, in which case 

either the sweeping algorithm could be halted until the next whisk, or the plane of 

rotation could be actively adjusted to prevent lateral slip from occurring [68, 71]. 
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 single-point contact – Two distinct cases are possible. 

1. If the whisker contacts the object at two discrete points during its initial rotation 

0, distance extraction using (6.1) can be affected. However, this situation is 

unlikely to occur because it would require the precise alignment of two points 

along the object to coincide with the orientation of the whisker upon contact. 

Moreover, we found that the sweeping algorithm is able to quickly dampen-out 

error associated with the use of (6.1). To show this, we processed the 

experimental data, except set r0 to an arbitrary value instead of using (6.1). After 

an additional rotation of about 5°, subsequent extracted points aligned accurately 

along the objects. 

2. During a whisker sweep, the whisker may come in contact with the object along a 

continuous segment of its length, inconsistent with the discrete contact model. 

This situation clearly occurred in the experiments for both the hexagon and square 

objects, yet it did not seem to adversely affect the results. 

 object compliance – If the object is not rigid relative to the stiffness of the robotic 

whisker(s), computation of r0 using (6.1) and the 
i  components using (6.4) during a 

sweep may be inaccurate. A method for finding r0 is offered by [68] which involves 

whisking at two different distances. Although further research would be required to 

accommodate the sweeping algorithm, the most straightforward solution is to use thin, 

flexible robotic whiskers. 

It is worth drawing some comparisons between the sweeping algorithm developed here, 

and that implemented by Scholz and Rahn [70]. The latter method uses a hub load cell and a 
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nonlinear elastica model to numerically integrate the shape of the whisker each time step. There 

are two drawbacks to this method. First, it requires a sensor that can measure two components 

force in addition to moment, which is prohibitively bulky and expensive for use in an array of 

whiskers. Second, it requires the entire shape of the whisker to be numerically computed each 

time step, which can require significant computational resources, especially for multiple 

whiskers. In contrast, the algorithm presented here computes contact points by iteratively 

inferring position changes based on small successive increments in whisker angle  and sensed 

moment M. This makes it extremely efficient, involving only the evaluation of a simple algebraic 

expression and two polynomials per time step. Also, because the follicle needs to only measure 

moment, it can be based on a single strain gage or other basic technology. The principal 

limitation of this method at the moment is that it loses significant accuracy when contact occurs 

at the tip, unlike [70]. 

Although the sweeping algorithm has been derived for cylindrically-shaped whiskers, it is 

not limited to this case. Since real rat whiskers are more accurately described as cone-shaped 

(linearly tapering from base to tip; see Chapter 3), it is interesting to ask whether this method 

could work for a conical whisker. Theoretically, the answer is yes. Equation (6.1) would simply 

be replaced with the distance extraction equation for a conical whisker ((3.7)). However, , M  

and d / dM s  
would now also depend on the normalized contact distance ( BT/r L , where BTL  is 

the linear base-to-tip length of the whisker) in addition to , due to the varying whisker diameter 

along the length. As a result, (6.5), (6.10) and (6.11) would have to be replaced with functions of 

two variables –  and BT/r L  – which could be generated using the numerical method in 
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Appendix D and stored using any convenient function approximator, e.g. two-variable 

polynomial, look-up table, radial basis function network, or multilayer perceptron. 

Future research is warranted to develop a strategy for dealing with tip contact. Another 

interesting possibility is to expand the algorithm to allow continued estimation of contact point 

location during lateral slip. Chapter 4 presented a method for distance extraction during lateral 

slip, so much of the puzzle has already been addressed. Development of such a 3-D version of 

the sweeping algorithm described here that incorporates a 2-D moment sensor would be of great 

benefit to the ultimate goal of quick and precise object feature extraction with a robotic whisker 

array. 

 

6.6 Conclusion 
 

This chapter has derived and demonstrated an effective, efficient and easy-to-implement 

method for obtaining object profile shape information over a single whisk with a robotic 

whisker. The fact that only moment needs to be measured allows it to be implemented with 

small, inexpensive torque sensors (e.g. strain gages), making it highly amenable to 

implementation on an array of robotic whiskers. The algorithm was shown to be robust with 

regard to sensor noise and object friction. 

The extraction of a continuous segment of an object‟s profile with a single whisker/whisk 

is also somewhat biologically plausible, in that the shape could be inferable through torque 

information gathered with a tapered rat whisker during a sweep. In fact, the taper of the whisker 

would serve to increase the length of the segment swept over, as the whisker would increasingly 
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tend to bend in on itself for contact near the tip. Although “sensor noise” would be a significant 

limiting factor in the rat, it is conceivable that basic curvature information could be extracted.  
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Chapter 7  
 

Discussion and Conclusion 

 

This chapter contains material that has been slightly altered from the following publication: 

J. H. Solomon and M. J. Hartmann, “Robotic whiskers used to sense features,” Nature, vol. 443, 

p. 525, Oct. 5 2006. 

 

7.1 Summary of Results 
 

The goal of this thesis has been to gain insight into the functional principles that underlie 

tactile sensing in the rat whisker system. The approach centered around the development of 

mechanical models – analytical, numerical and robotic – to understand how the fundamental 

coupling of movement (whisking) and sensing (moment) can allow extraction of object shape. 

Referring back to Figure 1.1, we may now reflect upon how this multifaceted approach has 

facilitated the both the development and validation of ideas. 
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Figure 1.1: The synergistic interactions between analytical, numerical and robotic modeling 

techniques led to new insights about the rat whisker system. 

 

Following the arrows in Figure 1.1, the analytical models were used to:  

1. explicate how external forces and imposed deflections cause a rat whisker to bend and 

mechanically react at the base where the bending moment (and/or its derivative) can be 

sensed by mechanoreceptors surrounding the follicle, yielding a functional theory for 

how the rat might be extracting object features. (Chapter 3) 

2. explicate how external forces and imposed deflections cause a robotic whisker to bend 

and mechanically react at the base where the bending moment can be sensed by an 

artificial follicle, yielding a method for distance extraction analogous to 1 that is tailored 

to a robotic platform. (Chapters 4, 5 and 6) 



 

137 

3. validate the numerical models for small deflections. (Chapters 3 and 6) 

The numerical models were used to: 

1. compute how rat whiskers bend and transmit moment in instances where assumptions the 

analytical models are invalid. (Chapter 3) 

2. develop a novel “sweeping” algorithm for feature extraction with a robotic platform. 

(Chapter 6) 

3. elucidate the effects of inherent whisker curvature on the analytical models. (Chapter 3) 

The robotic models were used to: 

1. test and validate theoretical methods for object feature extraction by the rat whisker 

system in the real world where sensor noise and unmodeled dynamics exist, and 

important assumptions may be violated. (Chapters 4, 5, 6) 

2. validate assumptions of the analytical models. (Chapters 4, 5 and 6) 

3. validate assumptions of the numerical models. (Chapter 6) 

 

7.2 Alternative Methods for the Estimation of Radial Contact Distance 

There are at least five alternative methods to those presented here for computing radial 

contact distance using sensors only at the whisker base. 

1. Measure force and moment simultaneously [70] and then calculate the distance d using

/d M F . In practice, however, the simultaneous, independent measurement of force 

and moment is extremely difficult. Multi-axis sensors that can provide independent 

measurements of moment and force are prohibitively bulky and expensive for small-scale 
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whisker arrays, and it is highly unlikely that biological sensors in the follicle can measure 

the two quantities independently. 

2. Measure the normal component of force on the whisker, and use it to estimate the 

distance to the object using: 

  24

2

C C FL C
d

FL

   


  

  (7.1) 

where the time derivatives are included for biological plausibility. This equation is 

analogous to (3.7), and can be derived by plugging M d F    into (3.7). 

For a cylindrical (robotic) whisker, this equation becomes 

 d C
F






  (7.2) 

which is analogous to (6.1). Again, since measurement of moment is more plausible in 

the rat and straightforward in a robot, this method is not of much practical significance. 

3. If the whisker is tapered (i.e., a rat whisker), then the longitudinal component of force 

after a small rotation  against the object monotonically depends on radial distance [78], 

and hence could be used to estimate the radial distance. Note that the inherent whisker 

curvature would help to accentuate this relationship. 

4. Measure the vibrations associated with collision and correlate them with object distance 

[67]. However, vibrations alone are unlikely to permit the rat to determine radial distance 

for two reasons: 1) Previous work has shown that whiskers are quite damped, limiting the 

amplitude and duration of any signals transmitted to the base. This means that if there is 

any noise in the signal, it will be difficult to obtain an accurate estimate of object 
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distance. In contrast, if whisking velocity is constant (a good approximation for the real 

rat), M  will be constant for a fraction of the whisk. This means the rat has a 

comparatively long time to take an average measurement of M  and  , and thus obtain a 

robust estimate for object distance. 2) Vibrations due to object contact would likely 

overlap with those caused by object texture [79], thus generating a signal that contains 

ambiguous information about texture and distance. 

5. Movement of the entire follicle-whisker complex could be obstructed in a distance-

dependent manner, or sling-muscle force could likewise vary with radial contact distance. 

Cells responsive to these phenomena could thus encode contact distance [74]. 

Given all these possible alternative methods for radial distance extraction, why single out 

the one focused upon here in this thesis as the one used by the rat? Recent studies have 

confirmed that some primary sensory neurons in the trigeminal ganglion spike as would be 

expected if they were primarily responding to the rate of change in bending moment at the 

whisker base [36, 38]. Moreover, these results are not surprising. Torque (moment) is much 

easier to measure in engineered systems because it directly corresponds to mechanical states, 

such as the bending of a strain gage on a surface or the current running through an electric motor. 

In an analogous way, it is reasonable to suggest that the bending of mechanoreceptors or the 

tension within intrinsic muscles are used to measure moment. On the other hand, as nervous 

systems are renowned for exploiting all available information, vibrations, force and moment may 

all play roles in distance extraction. 

It should be mentioned that this thesis does not postulate that rats explicitly attempt to 

estimate the positions of contact points with the object for every whisker during every whisk. 
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Instead, the goal has been to identify the relevant variables involved in tactile sensation with the 

rat whisker system, to systematically elucidate how these variables relate to the movement and 

deflection of the whiskers against the object being sensed, and to show how measurement of 

these variables provides the information necessary to infer shape. It is expected that neural 

correlates to these concepts will continue to be found as neuroscientists continue to study the 

whisker system, perhaps with the aid of this research. 

 

7.3 Conclusion 
 

The rat whisker system is an amazing sensory modality. Although the whiskers are few in 

number and whisking movements are rhythmic and stereotyped, the acute sensitivity of this 

system rivals that of the human fingertip [24]. This unique juxtaposition of simplicity and 

complexity has proven difficult for scientists to understand, but great progress is being made. 

This thesis approached the problem using engineering-oriented techniques, including the 

synergistic use of analytical, numerical and robotic models. The equations and concepts that 

have been developed may help researchers to understand the relationships between the ways 

whiskers deform during whisking, and the corresponding responses of sensory neurons. The use 

of robots as research tools is continuing to gain traction within the scientific community [13, 15, 

56, 61]. This biorobotic approach is not only useful for testing hypotheses that are difficult or 

impossible to address through other means, but also can produce innovative new technologies 

that borrow from the intricate and elegant principles of movement and sensing in animals. 
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Appendix A  

Fitting of Whisker Shape 

 

This appendix contains material from the following publication 

V. Gopal, J. H. Solomon, N. Naik, and M. J. Z. Hartmann, "Two and three dimensional 

morphology of the rat vibrissal array," Annals of Biomedical Engineering, accepted with 

revisions. 

 

 

Whiskers from the A, B, C, D and E whisker rows, along with the "straddler" whiskers 

and  were obtained from both the right and left whisker pads of four adult female 

Sprague-Dawley rats. All rats had between four and seven whiskers in each of the A-E rows. 

Each whisker was grasped firmly at the base with tweezers, and plucked from the follicle with a 

single swift motion. Isolated whiskers were then scanned and digitized at a spatial resolution of 

~5 or 13 m in the x-direction and ~5 or 25 m in the y-direction, using either an Epson 

Perfection 4180 or a UMAX Powerlook 2100 XL scanner (these scanners have different 

resolutions). These scans were converted to black and white binary images, using either 

Photoshop version 7.0 or the MATLAB Image Processing Toolbox version 4.2, and all further 
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analysis was performed with these binary images. A total of 231 whiskers were digitized in this 

manner. 

Figure A.1 shows the outline of a representative binary image of a whisker. At each 

horizontal (x) position, the midpoint of the upper and lower edges of the whisker was found. 

These midpoints were connected to obtain a “middle” curve that closely matched the whisker 

shape. The middle curve is shown in the inset to Figure A.1 as a light gray line, and it can be 

seen that it is an excellent match to the overall shape of the whisker. For each whisker, the 

middle curve was used for the analysis of whisker shape. 

 

 

Figure A.1: A typical 2-D scan of a whisker. Each whisker was scanned with its concave side 

oriented in the positive y-direction. The inset shows a magnified portion of the whisker. The light 

gray line is the “middle whisker,” generated by averaging the y-values of the upper and lower 

edges of the whisker at each x-position. 

 

To describe whisker shape without reference to Cartesian coordinates, a coordinate-free 

representation was used. In a coordinate-free representation of a plane curve, one end of the 

curve is specified as the origin, and the position of any point on the curve is specified by the arc-
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length s traveled along the curve from the origin to reach that point [20]. The shape of the curve 

is then specified by the curvature (s) at each point as a function of the arc length s, where 

 
d

ds


   (A.1) 

and  represents the angle of the line tangent to the curve. The curve {s,(s)} can be represented 

in either a discrete of continuous manner, and transformed to Cartesian coordinates using the 

following procedure. 

First, if (s) is represented in a continuous form, it is discretized into n nodes. The 

procedure then begins by placing the first node (x1, y1) at the origin of the Cartesian coordinate 

system and defining the initial tangent line to point along the positive x-axis: 1 = 0. This node 

represents the base of the whisker. Successive node coordinates are then computed by iteratively 

applying the following equations, starting at i = 2 and stopping at i = n‒1: 

 1 1i i i ds      (A.2) 

 1 cosi i ix x ds     (A.3) 

 1 sini i iy y ds     (A.4) 

As explained in Chapter 2, excellent fits were obtained using a linear parameterization: 

 ( )s as b    (2.1) 

The first step of the fitting process was to divide the whisker into n = 20 nodes (n > 20 did not 

significantly affect the fit, but slowed computations). The resulting segments ds were then scaled 

by the total whisker length L, thus normalizing the total whisker length to unity, and the length of 

each segment to 1/ ( 1)ds n  . Using (A.1), values of  for each node except the first and last 

were computed. Initial values for a and b in (2.1) were then found by performing a linear fit to 
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the digitized values of {s,(s)} for the whisker using MATLAB‟s „polyfit‟ function. While this 

minimizes the sum of squared error between the nodes in terms of the curvature at each node, we 

seek coefficients that lead to an optimal fit in Cartesian space. Therefore, we define our error 

function as the mean sum of squared Euclidean distances between the nodes on the fit curve and 

their corresponding nodes on the normalized real whisker. The MATLAB routine „fminsearch,‟ 

which minimizes a function of several variables using the Nelder-Mead simplex algorithm, was 

used to find the values of a and b that minimized the error function. Initial guesses for the 

coefficients were based on the values obtained from the curvature-based fits. 
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Appendix B  

Analytical Solution for Deflection of a Conical 
Beam 

 

This appendix consists of material from the following publication: 

J. A. Birdwell, J. H. Solomon, M. Thajchayapong, M. A. Taylor, M. Cheely, R. B. Towal, J. 

Conradt, and M. J. Z. Hartmann, "Biomechanical models for radial distance determination by rat 

vibrissae," Journal of Neurophysiology, vol. 98, pp. 2439-2455, 2007. 

 

 

Elasticity equations ([31-34]) relate the curvature  of a cantilever beam to the moment M 

at its base: 

 
2

2

d y M

dx EI
    (B.1) 

where 

( ) 0

0

F a x x a
M

a x L

  
 

 
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In (B.1), F is the force exerted at a distance a from the base of the beam, y(x) is the vertical 

displacement of the beam at each x (horizontal) location, E is Young‟s modulus (also called the 

elastic modulus) and I is the second areal moment of inertia. For a cylinder, 

 
4π

4

r
I   (B.2) 

For a cone, however, r varies with length as 

 ( ) 1base

x
r x r

L

 
  

 
 (B.3) 

Substituting (B.3) into (B.2) yields 

 4
xLI    

where  is a constant defined as 

 

4

4


















L

rbase
  (B.4) 

Inserting expressions for I and M into (B.1) for x ≤ a gives 

    4

2

2










 xLxa

E

F

dx

yd


 (B.5) 

Integrating once with respect to x yields 

 12 3

1 ( )

2( ) 3( )

dy F L a
C

dx E L x L x

  
    

   
 (B.6) 

And integrating again with respect to x yields 
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)(6
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)( CxC
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La
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
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
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


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
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
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
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
 (B.7) 
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To find the constant of integration C1 we note that 
d

d

y

x
 at x = 0 must equal zero, so that (B.6) 

becomes 

 132 )(3

)(

)(2

1
0 C

xL

aL

xLE

F





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 (B.8) 

Solving for C1 gives 

 




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 


31
6

)2(

LE

aLF
C


 (B.9) 

To find the constant of integration C2 we note that y at x = 0 must equal zero, so that (B.7) 

becomes 
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Solving for C2 gives 

 




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 


22
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)2(

LE

aLF
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
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Substituting our expressions for C1, C2 and  back into (B.7) we find 

 

4

4 2 3 2

base

2 ( ) 3 ( 2 ) ( 2 )
( )

3 π ( ) ( )

FL a L L a x a L
y x

E r L x L x L L

   
    

  
,  x ≤ a. (B.12) 

which simplifies to the top half of (3.4). To solve for the deflection at values of x greater than or 

equal to a, we note that the moment is zero. This means we can write 

 )()()( ax
dx

dy
ayxy

ax




 (B.13) 

Substituting in (3.6) evaluated at x = a gives the bottom half of (3.4). 
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Appendix C  

Effects of Taper on Whisker Deformation 

This appendix consists of material from the following publication: 

J. A. Birdwell, J. H. Solomon, M. Thajchayapong, M. A. Taylor, M. Cheely, R. B. Towal, J. 

Conradt, and M. J. Z. Hartmann, "Biomechanical models for radial distance determination by rat 

vibrissae," Journal of Neurophysiology, vol. 98, pp. 2439-2455, 2007. 

 

 

We used Model 1 as expressed in (3.4) to explore two important consequences of the 

tapered geometry on whisker deformation, as would occur when a real whisker contacted an 

object. First, whisker taper ensures that the ratio between the displacement at some distance, a, 

and the force applied at a increases faster with a for the tapered whisker than for the cylindrical 

whisker. Intuitively, this makes sense: as a given force is exerted at increasing distances from the 

base, a tapered whisker will bend more than a cylindrical whisker. Figure C.1(a) illustrates this 

effect for a 50 Newton force exerted at 10, 20, and 30 mm along the length of a 60 mm whisker 

with a base radius of 100 microns. For the force applied closest to the whisker base (a = 10 mm), 

the equations describing cylindrical and tapered whiskers yield almost the same deflected 
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whisker shape. As the value of a increases, however, the two results diverge, with the tapered 

whisker deflecting far more than its cylindrical counterpart. 

 

 

Figure C.1: Cylindrical (blue) versus tapered (red) 

beam models. For all graphs, Young’s modulus 

was assumed to be 3.5 GPa. (a) Deformations of 

ideal cylindrical and tapered cantilever beams 

under a vertical force F imposed a distance a from 

the base, for three different horizontal values of a. 

Both whiskers have a length L = 60 mm 

and a base radius rbase= 100 µm. (b) 

Theoretical force-displacement curves 

for cylindrical and tapered beams for the 

same values of horizontal distance a as 

in part (a). (c) Deflections resulting from 

an imposed vertical force, F, in the case 

that the tapered and cylindrical beams 

have matching radii at a, for a = 10, 20, 

and 30 mm. Arrows represent the 

locations of the imposed forces. (d) 

Force-deflection curves for cylindrical 

and tapered beams with matching radii at 

a, for a = 10, 20, and 30 mm. (e) 

Deflection of two cylindrical beams (base 

radii of 50 and 100 µm) and one conical 

beam (base radius of 100 µm) for a 50 

μN force, showing the effect of whisker 

taper. (f) Deflections of the same cases 

as (e) on a log-log scale. (g) When a 

force is imposed 30 mm from the base, 

the length of the whisker does not affect 

how a cylindrical whisker will bend: the 

single blue trace shows results for both a 

60 mm and a 40 mm whisker. In 

contrast, the shorter (40 mm) conical 

whisker bends much more than the 

longer (60 mm) whisker (red traces), 

when the same force is applied at the 

same position. (h) Relationship between 

deflection and whisker length, for a force 

applied at 10 mm. Deflections of the 

cylindrical whisker are unaffected by total 

whisker length (blue trace is a constant 

value). In contrast, deflections of the 

conical whisker fall off sharply with 

whisker length (red trace).  



Figure C.1(b) shows displacement-force curves for models of cylindrical and tapered 

whiskers for forces applied at the same values distance a as in Figure C.1(a). In Figure C1(b), 

each value on the y-axis indicates the vertical deflection at point a along the whisker for the 

corresponding force F on the x-axis. In other words, Figure C.1(b) indicates how much a given 

whisker will deflect when a force is applied at point a, for both the tapered and cylindrical 

beams. In both cases, the force F increases linearly with the deflection y(a) (as can be seen 

directly in (3.4)), but the displacement associated with a given force is considerably larger for the 

tapered whisker than for the cylindrical whisker. 

The above analysis has indicated that (for a given force imposed at a given distance) a 

cylindrical whisker will deflect less than a tapered whisker of the same base radius. This result is 

not surprising because the radius (and hence the stiffness) of the tapered whisker at every point 

between the base and the contact point is smaller than the radius of the cylindrical whisker. We 

next asked: what happens when we apply the same force to cylindrical and tapered whiskers, but 

choose the radius of the cylindrical whisker to match the radius of the tapered whisker at the 

point where the force is imposed? The answer is illustrated in Figure C.1(c,d). The cylindrical 

whisker now deflects more than the tapered whisker. Again, this result should be somewhat 

intuitive, because of the difference in radius profiles from whisker base to contact-point.  

Thus one consequence of whisker taper is to ensure a steeper relationship between 

displacement and force closer to the tip of the whisker. This result is summarized in Figure 

C.1(e) which plots the deflection y(a) as a function of a, for a 50 N force imposed at a. The 

curve for the tapered whisker (base radius 100 m) falls between the curves for cylindrical 
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whiskers of base radii 50 and 100 m. The effect is easier to observe in Figure C.1(f), which 

plots the identical data as Figure C.1(e), but on a log-log scale. Here it can be seen that the 

deflection of the tapered whisker initially matches the deflection of the cylindrical whisker with 

the larger radius, but as a increases the trace curves upwards towards the curve representing 

deflections of the smaller cylindrical whisker. The tapered geometry thus specifically accentuates 

the magnitude of deflection that will occur further out along the length of the whisker.  

A second difference between the equations for tapered and cylindrical whiskers is that 

deflections in the tapered case depend strongly on the whisker length, L, whereas the deflections 

of the cylindrical case are indifferent of whisker length. In other words, how a whisker will react 

to a given imposed force depends on its total length. This effect is illustrated in Figure C.1(g), 

which compares the deflections of cylindrical and tapered whiskers of two different lengths (40 

and 60 mm), but with the same base radius (100 m). In all cases the same magnitude force is 

applied 30 mm from the base. The cylindrical whisker bends the same amount regardless of 

length, and so only one curve is seen (blue line). In contrast, the short tapered whisker bends 

considerably more than the longer tapered one (red lines).  

The effect of whisker length is further characterized in Figure C.1(h). We simulated a 50 

N force acting 10 mm from the base of a whisker whose length varied from 11 to 60 mm, but 

whose radius was held constant. The vertical deflection at the location of the imposed force (10 

mm from the base) was then plotted as a function of whisker length, for both cylindrical and 

tapered whiskers. As described for Figure C.1(g), the deflection of a cylindrical whisker does not 

vary with overall whisker length, and so there is only one curve (blue line). In contrast, shorter 
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tapered whiskers deflect far more than longer ones (red lines). As whisker length increases, the 

tapered result asymptotes to the cylindrical result. The implication for real rat whiskers is that for 

a force imposed at a particular distance (say 10 mm), longer whiskers will deflect much less than 

shorter ones. This result would hold true even if the base radii of all whiskers were the same. 

This result would not hold true if the whiskers were cylindrical. 
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Appendix D  

Numerical Modeling of a Cantilever Beam 
 

This appendix contains material from the following publications: 

J. H. Solomon and M. J. Hartmann, “Robotic whiskers used to sense features,” Nature, vol. 443, 

p. 525, Oct. 5 2006. 

 

J. H. Solomon and M. J. Z. Hartmann, “Object profile sensing with a robotic whisker using only 

torque information,” in preparation. 

 

 

The problem of determining the shape of a cantilever beam subjected to a point load at the 

end is one of the oldest in the study of bending beams, having been investigated by Bernoulli and 

Euler in the 1700‟s. Precise solutions can be obtained through the use of elliptic functions [80], 

and recent methods allow the determination of all equilibrium shapes for given material and 

geometric properties and end load [81, 82]. Here, we are only interested in determining a small 

subset of possible equilibrium shapes, namely those that can be expected to arise during a 

whisker rotation of reasonable amplitude against on object. It is assumed that dynamic effects are 

negligible, allowing use of a standard elastica model of beam bending. 
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The Euler-Bernoulli beam equation can be written as: 

 d
M

EI
   (D.1) 

where d refers to change in curvature, and can vary with M, E and I along the length of the 

beam. Computation of the shape of a cantilever beam for an arbitrary end load can be 

accomplished by dividing the beam into n nodes and writing (D.1) in the following form: 

 
d

d
d

i i
i

i i

r F

s E I





   (D.2) 

where  is the tangent angle of the beam, s is the arc length coordinate, r is a moment arm, and 

F  is the end load. Subscript i refers to the node number, which we define as 1 at the location of 

F  and n at the beam base. By starting a node 1 and repeatedly calculating the location of the 

next node up until n, (D.2) provides an accurate, efficient, compact and easy-to-implement way 

of computing the shape of a beam due to an end load. Note that the generality of this method 

allows arbitrary inclination  of the force, arbitrary variation of E and I along the length, and 

arbitrary inherent curvature of the beam (so long as the radius of curvature is at least 10 times the 

beam depth at all nodes [34]).  

Equation (D.2) can be used in at least two interesting ways to compute the shape of the 

beam and the moment at its base: 

1) Have the “user” specify the arc length location S of the force, its magnitude F, and its 

inclination . 



 

162 

2) Have the “user” specify the coordinates of the desired deflection point (this case only 

applies to zero friction, such that the force inclination is zero). 

The first method involves straightforward iterative application of (D.2), while the second method 

is somewhat more involved. It can be solved by a numerical optimization technique which 

searches amongst possible combinations of F and S to achieve intersection of the beam with the 

desired deflection point at S. Friction must be assumed to be zero in order to find a unique 

solution. This technique was used in Chapter 3 ([83]) as well as [47].  

In the case of the sweeping algorithm (Chapter 6), we are dealing with a straight beam of 

constant E and I, making (D.2) particularly straightforward to implement. We assume that the 

friction between object and beam is negligible, making the force perpendicular to the beam‟s 

longitudinal axis at the contact point ( = 0). Figure D.1 depicts the process of computing the 

beam shape for a force F. 
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Figure D.1: The deflected shape of an inherently straight cantilever beam with a concentrated 

end load F acting perpendicular to the beam’s longitudinal axis can be found using a simple 

iterative procedure depicted here. Only 30 beam nodes are shown for clarity, but a much larger 

number should be used for accurate results. 

 

The procedure starts by placing node 1 at (0, 0) and node 2 at (−ds, 0), where 1/ ( 1)ds n   

such that F acts at s = 1. The initial slope 1 = 0. Successive node locations are then found by 

and iteratively applying the following equations, starting at i = 2 and ending at 1i n  : 

 1i ix F     (D.3) 

 1 1i i i ds       (D.4) 

 1 cosi i ix x ds      (D.5) 

 1 sini i iy y ds      (D.6) 
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Once the beam shape is computed, its base point is translated to the origin, and it is rotated about 

its base by angle –n‒1 to orient it as shown in Figure 6.2. Note that EI has been assumed to be 1, 

meaning that F is effectively normalized by s
2
/EI. 

Repeating the above process for a succession of forces ranging from 0 to Fmax and storing 

the resulting beam shapes in a 2-D matrix amounts to pre-solving for all equilibrium shapes up to 

some maximum value of max (which depends on Fmax). Figure D.2 shows these results for 

Fmax = 2.5, which leads to max ≈ 45°. A total of 10,000 nodes were used for high accuracy in 

computing the shapes, but only a subset of these points need to be stored in the look-up table due 

to the smoothness of the resulting curves. Similarly, the beam changes in a very continuous 

manner as F is increases, necessitating that only relatively small number of shapes be stored. A 

table of size 100×100 provides excellent accuracy. 
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Figure D.2: A continuum of beam shapes up to max = 45°, computed by using the method 

depicted in Figure D.1. Each beam length was normalized such that dx = 1. 

 

In general, one may wish to obtain the equilibrium shape based on various methods of 

query. In particular, (dx, dy), (r, ), and (s, F, EI) all independently provide sufficient information 

to reconstruct the entire shape of the beam by interpolating the look-up table and scaling the 

units to match those provided in the query.  
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Appendix E  

A Model of Lateral Slip 

 

This appendix consists of material from the following publication: 

J. H. Solomon and M. J. Z. Hartmann, “Artificial whiskers suitable for array implementation: 

Accounting for lateral slip and surface friction,” IEEE Transactions on Robotics, to appear. 

 

 

Equation (4.2) provides a relation between bending moment at the whisker base mz, the 

radial distance dx, and the pushing angle :  

 x

z

d C
m


  (4.2) 

Now, referring to Figure 4.2, it is clear that  = tan(dy/dx). For small angles,  = dy/dx, which we 

plug into (4.2) to obtain: 

 2

y

z

x

d
m C

d
  (E.1) 
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Note that this equation holds when lateral slip occurs (Figure 4.4) because it simply relates 

moment in the z-direction to radial distance dx and deflection in the y-direction, none of which 

are affected by independent deflection of the whisker in the z-direction (dz). By symmetry, the 

same linear scaling between mz and dy also holds for my and dz: 

 2

z
y

x

d
m C

d
  (E.2) 

Furthermore, from Figure 4.4, it is clear that 

 tan
x y

z

d d

d





  (E.3) 

Combining (E.1), (E.2) and (E.3) and solving for dx yields: 
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x

z y

d C
m m







 (4.6) 

Further inspection of Figure 4.4 reveals: 

 tan z

y

d

d
   (E.4) 

Combining (E.1), (E.3) and (E.4) and solving for mz yields: 
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Combining (E.2), (E.3) and (E.4) and solving for my yields: 
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Appendix F  

Slip Behavior in the Presence of Lateral 
Curvature 

 

 

This appendix consists of material from the following publication: 

J. H. Solomon and M. J. Z. Hartmann, “Artificial whiskers suitable for array implementation: 

Accounting for lateral slip and surface friction,” IEEE Transactions on Robotics, to appear. 

 

 

 

 

Figure F.1 is a sensing plane diagram for the whisker rotating against a circle with initial 

contact point (yc, zc) relative to the center. Of course, the object need not literally be a circle; 

what matters is that any point along a (2-D) surface can be uniquely characterized by a single 

radius of curvature. Throughout this derivation, all distance units are normalized by contact 

distance dx. 
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Figure F.1: A geometrical description of the sensing plane with lateral object curvature 

 

We seek to characterize the performance of (4.6) as a function of four independent 

variables: rn, ,  and 0. That is, we need to find expressions for mz and my as functions of these 

variables. The first step is to observe the conspicuous relations: 

 
cos

sin

z

y

m d

m d










 (F.1) 

This immediately shifts our task to finding expressions for d and . As before, the whisker will 

laterally slip only if the initial contact angle is less than the friction cone angle, in which case the 

contact force will remain at the edge of the friction cone. Because the surface curvature now 

allows the contact angle to change, we modify (4.3) by replacing  with the angle  (defined in 
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Figure F.1) and noting that the constraint on slipping now depends on 0, the surface slope in the 

sensing plane at the initial contact point: 

 
0

0

,    0      
if 
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  
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
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 (F.2) 

Equation (F.2) can be reduced to 

 max(0,  )     (F.3) 

because  for any finite pushing angle .  

To solve for  requires that we express  in terms of the independent variables, so again 

examining Figure F.1, we find:  

 
1tan c
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y

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  
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 
 (F.4) 

The denominator of (F.4) may seem puzzling unless it is recalled that that each term has been 

normalized by contact distance dx, so that yc and  are both unitless. To find expressions for yc, 

and zc, we again refer to Figure F.1 to find 

 
2 2 2

n c cr y z   (F.5) 

and 

 0tan c

c

z

y
   (F.6) 

Equations (F.5) and (F.6) are combined to yield: 
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Inserting (F.7) into (F.4), we obtain 
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 (F.8) 

which can be inserted into (F.3) to find . 

Now seeking an expression for d, we apply the Pythagorean Theorem to Figure F.1: 

    
2 22 cos cos sin sinnr p d p d        (F.9) 

Solving (F.9) for d, 

      
2

2 1 cos 2 cos
2

n

p
d r p          (F.10) 

where p can be found using the Pythagorean Theorem: 

  
2 2

c cp y z    (F.11) 

Finally, (F.7), (F.8), (F.10) and (F.11) can be combined to express d as a function of the 

independent variables, though we were unable to obtain a compact expression. 
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