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ABSTRACT

Protein Folding under an Applied Force

Pengfei Diao

In this thesis we study protein folding with external force. In Part I we simulate the folding
or unfolding procedure based on the two-state model. For constant-velocity experiments, the
simulation results fit the experimental results. For constant-force experiments, we introduce
cooperativity between domains to explain the different behavior between single domain folding
and multi-domain folding. To make the simulation results fit the experimental results, in Part 1
we have to set the folding rates to unreasonable values. In Part IT we solve this problem. In this
part we present a model in which folding is comprised of smaller motions individually acted upon
by the applied force. The model naturally explains how cooperativity arises when an applied
force is present and why observed folding times become less sensitive to the external force as

force increases, while the two-state model predicts the opposite trend.
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6.42 These three plots show how the simulation results in a folding process
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The energy difference between the folded state and the unfolded spate is
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Xy [13]. (B) Folding times as a function of applied force. Assuming
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11.2 IB model geometry. When a bond forms between amino acids ¢ and j:
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Comparison of experimental and simulation results. (A(Inset))

Experimental results digitized from [13]’s Fig. 1, the magenta circles
mark the force versus extension curve for RNase H protein + DNA
handles. The cyan triangles are the force-extension curve for the DNA
handles alone, shifted 37 nm along the extension axis to show that above
approximately 15 pN, as they are changing length at the same rate, the
two curves have nearly identical slopes. Near 15 pN the cuives deviate as
the slope of the RNase H + DNA curve decreases due to RlYase H folding.
Near 5.5 pN, RNase H undergoes a large decrease in length. (A) The
difference in extension between the unshifted curves in the Inset gives the
force-extension curve for RNase H alone. (B) A typical simulation result

11.4

of contour length as a function of force from the IB model. 175
Constant force simulations for the IB model of RNase H. (A) For each

applied force F' =1,2,...,10 pN, as each bond forms, its initial separation
along the protein in terms of its sequence distance is plotted in order of
formation from 1 to 100. (B) At each of the three forces F' = 1,5, 10
pN, the number of occurrences, summed over ten simulations, in which
the contour length changes by a given amount. (Inset) The value |of the

maximum change in contour length as a function of applied force. 177
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CHAPTER 1

Purpose of this work

The folding of proteins is one of the main problems of molecular biology. There are many
possible configurations for any protein. But proteins can normally find the correct native state
among all the possible choices. Misfolded proteins can cause diseases such as Alzheimer’s disease,
BSE (Mad Cow disease) and cancers [10,35,41]. Understanding protein folding can not only
help in biomedical applications, but also in the design of protein-sized machines. Therefore, it
is important to understand how proteins change from one configuration into another. There
are many ways to make proteins change their state: force, temperature, chemical, etc. The
purpose of this work is to formulate models to understand the detailed procedure of protein

conformational change when subject to applied forces.
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CHAPTER 2

Background about protein folding

2.1. Purpose of this section

Here we introduce some background knowledge about protein folding for the following rea-
sons. First, we wish to formulate our model based on the facts already known. And, where
assumptions need to be made, they can be based on observation. Second, we can be informed as
to which aspects of the protein-folding procedure remain unclear; then we can attempt different
guesses and test which one best agrees with experimental results. Sections 2.2 to 2.6 are based

on Branden and Tooze |7].

2.2. General introduction

Proteins are composed of amino acids connected into a linear sequence by peptide bonds. The
amino acid sequence of the protein’s polypeptide chain is called its primary structure. Different
regions of the sequence form local regular secondary structures, such as alpha («) helices or beta
(B) strands. The tertiary structure is formed by packing such structural elements into one or
several compact globular units called domains. The final protein may contain several polypeptide
chains arranged in a quaternary structure.

Different amino acids have different side chains, but they all have the same backbone (-
NH-CH-C=0-). If we ignore the side chains, a protein can be regard as a chain composed of
amino acid backbones, (-NH-CH-C=0-). The amino acid backbone is very rigid. This leads to

the approximation in which each amino acid backbone is regarded as a rigid bar. Therefore, a
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protein can be regarded as a chain of bars. The three-dimensional unfolded structure of a protein
is like a coiled chain.

Some proteins can spontaneously fold into the native state, while others need help, such as
the help of enzymes.

"During the folding procedure, once most of the secondary structures are formed, the protein
has looser tertiary structure, called the molten globular state, than the native state. The protein
can spontaneously compact from the molten globular state into the native state." [7]

A protein, even in its native state, is not static. There are still fluctuations in its configuration.
A native-state protein can also change its state. Some environment changes, such as pH or
temperature, can make proteins in solution change from an active native state into an inactive
denatured (unfolded) state. The energy difference between these two states is generally about
5-15 kcal/mol. As a comparison, the energy of one hydrogen bond is 2-5 kcal /mol.

To describe events in the protein world, it is useful to introduce its typical scales. The energy
unit we used in the previous section is kcal/mol, which is about 7 nm-pN, or 1.7 kgT. kgT is the
other unit frequently used, where kp is Boltzmann constant, and T is temperature in Kelvin. At
room temperature, 1 kg7 ~ 4.1 nm-pN. The average mass (weighted by frequency of occurrence)
of one amino acid is approximately 10722 gram. The range of amino acid mass is from a low
of 57 Da (glycine) to a high of 186 Da (tryptophan), a variation by a factor of over three [15].
The length of an amino acid can be characterized by the maximum distance between from an
atom in one residue to the corresponding atom in the adjacent residue. This length is 0.380 nm
for residues in the trans configuration, which is the most prevalent. Another characterization is
the maximal distance projected along the end-to-end length when the protein is fully extended.
This length is 0.363 nm [15]. (In the calculations of Part I, we use 0.375 nm as the length of one

amino acid. In Part II, we use 0.38 nm. In Part I we use the 0.375 nm because it is an average
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of the amino acids’ lengths 0.37-0.38 nm. In Part II we change it into the more frequently used

value 0.38 nm. The difference is about 2%.)

2.3. Energy difference between two states

The energy difference between native and denatured states comes from two parts. One
is enthalpy, which is the energy stored in the noncovalent bonds: hydrophobic interactions,
hydrogen bonds and ionic bonds. The energy stored in noncovalent bonds is on the order of
5 kcal/mole (1.2 kgT). These bonds are weaker than the covalent bonds, but what we are
interested in is changes in energy. Therefore in the protein folding procedure, these bonds, which
change during folding, contribute a greater net effect than the covalent bonds which, mostly,
remain unchanged.

Some molecules, such as oil molecules, have the tendency to avoid water. This type of
interaction is called a hydrophobic interaction. Some of the amino acid side chains, those that are
nonpolar, behave similarly: their interaction with polar molecules like water are poor. Therefore,
most of the nonpolar residues in globular proteins tend to stay inside of the protein, while the
polar molecules, such as aspartic acid and lysine are on the surface of the protein, make contact
with the solvent. The nonpolar residues tend to pack closely and displace water molecules.

Some proteins have charged groups. Oppositely-charged groups can form ionic bonds. ITonic
interactions are highly sensitive to changes in pH and salt concentration.

Polar molecules, such as water molecules, have two different partially-charged regions. One
is negative partially charged (the oxygen atom in water), the other is positively partially charged
(the hydrogen atoms in water). Thus when water molecules are close together, their positive and

negative regions can interact with nearby molecules. This interaction is called a hydrogen bond.
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The covalent bonds are the same in both unfolded and folded states except for disulfide
bonds formed between cysteine residues for which the native state has lower energy. The energy
difference stored in all the bonds between the two states can reach several hundred kcal/mol.

The other part of the energy difference comes from entropic effects. The native state is
highly ordered, and the denatured state is disordered. Therefore, the denatured state has lower
energy from this part. The energy difference from entropy between these two states can also
reach several hundred kcal/mol.

The total energy difference between the two states is called the free energy. The free energy
difference is about 5-15 kcal /mol: much smaller than the energy difference from bonds or entropy.
The low free energy difference is a severe complicating factor for predictions of possible native
states. But the marginal stability is biologically important in order to degrade and synthesize

proteins easily, and for some proteins to easily undergo allosteric changes.

2.4. Dynamics of folding

A protein can have many possible configurations. A simple guess might say that a protein
searches through its configurations, until it finds the lowest energy state, i.e., native state, and
then that it will remain there. In 1968, Cyrus Levinthal showed by a simple calculation that
this folding procedure is impossible. He assumed that every amino acid has three possible
configurations:« helix configuration, 3 sheet configuration and loop configuration. Also, assume
that an amino acid can change from one configuration into another in a very short time, one
picosecond. A chain with 150 residues would take 10%*® years to go through all the possible
configurations. The actual folding time is in the range of 0.1-1000 seconds. This implies that
the folding process can not be a totally random search. There must exist means which eliminate

some possible configurations from the folding procedure. Say, once a native bond is formed, it
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can not be broken. These formed bonds will greatly decrease the possible configurations for the
next step.

It is difficult to investigate the folding procedure experimentally or theoretically. It is hard
to examine the intermediate states experimentally because they have short lifetimes. Theory
and simulation also meet some trouble, even if we can calculate the free energies of all the
configurations. Because we will find that the one of lowest energy, might not be the native state.
The protein may stay in some deep local minimum and not fold further because it is stopped by
a large energy barrier.

The molten globule state is an intermediate state. For some proteins, the whole folding
procedure can be considered in a few steps. In some proteins the first step is from the unfolded
state to the molten globule state. This change occurs quickly, normally in a few milliseconds.
The next step, which can last up to one second, is from the molten globule state to the final
state. The following schematic, Fig. 2], shows the free energy diagram for this type of folding

procedure.

Transition
state

Unfolded

Molten
globule

/

Folded

Figure 2.1. Free energy diagram for one type of folding procedure. The vertical-
axis is the free energy, and the horizontal-axis shows the different stages during
the folding procedure.
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How the unfolded state collapses to the molten globule state is the main mystery of protein
folding. What is the driving force which makes a protein fold from a random chain into the
neighborhood of its native structure?

There is very little change in free energy by forming the internal hydrogen bonds of a helices
and [ sheets, because in the folding procedure the bonds with water molecules which have similar
energy are broken, and then form the new bonds.

On the other hand, there is a large free energy change by bring hydrophobic side chains out
from water and move into the interior region. This hydrophobic effects might be an important
reason for protein folding, since the energy changes associated with them are large.

In order to fully understand the folding procedure, it is helpful to know all the intermediate
states structurally and energetically. Alan Fersht developed a protein engineering procedure for
this study. He investigated the effects on the energetics of folding of single-site mutations in a
protein of known structure. If the mutation destabilizes some state, say mutation of an « helix
destabilizes the intermediate state, then it means the helix structure has already been formed in
the intermediate state. By this method, he has found that the molten globule state already has
not only most of the native secondary structures but also the native-like relative positions of the

« helix and [ sheet as well as the relative positions of the 3 strands within the sheet.

2.5. Discussion—1

Based on the findings above, we can imagine the following folding procedure. First, stretch
the protein in a random coil configuration, and then release the external force. The protein
should begin to fold freely. In a few milliseconds, it should reach the molten globular state. If
we draw a extension-time curve, the extension should have an abrupt collapse soon after the
release of the force. But since at this stage all the structures are near the native-like position,

the folding from the molten globule state to the native state will not cause a sizeable extension
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change. Therefore the extension-time curve should look like that shown in Fig. At first, the
extension is an almost horizontal line (fixed external stretching force), followed by a collapse (on

release of the force), and then almost another nearly horizontal line.

unfolded state

extension

molten globule state and native state

tirﬁe
Figure 2.2. Simplified extension-time folding curve based on folding into a molten
globule state. On release of the force, the protein rapidly collapses into the
molten globule state. Thereafter, there would be only a small change in length,
approximated here as the final horizontal line.

Fernandez and Li performed experiments to measure the the extension-time curve of ubiquitin
[21]. The ubiquitin molecule was first stretched into an unfolded state. The force applied by the
atomic force microscope (AFM) was then quickly reduced to a small fixed value at which folding
occurred. Fig. 23] shows one of their results. The protein was stretched into a coil state under
the application of a large force, approximately 100 pN. At a time of about 1.5 s, the force was
decreased to approximately 15 pN. The protein begins to fold. There is a collapse just after this
decrease in force. Some small vibrations follow. At a time of about 5 s, there is another collapse.

This experimental result does not seem the same as the idealized molten globule folding shown

in Fig. 22

During folding, in the experiment shown, there is still a low applied force. Is this the reason for
the difference between the experimental results and the idealized picture? Or, perhaps the molten

globule state can not be applied to describe this protein’s folding procedure? In this thesis I try to
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Figure 2.3.  An example of the experimental results from Fernandez and Li [21].

build a model to explain the folding procedure which will help answer this question. We will find
(in Sec. [IT]) that the answer to this question is that for a protein to change directly from unfolded
state into the molten globule state, normally there should be some long-range interactions. This
is because in the molten globule state the protein is already in a similar configuration as the
native state. For this to occur, long-range interactions are normally necessary. We show that
an applied external force can eliminate long-range interactions. Therefore under an external
force, the molten globule state should not appear. In general, applied force changes the folding

sequence.

2.6. Efforts to detect intermediate structures

The structure of intermediate states is useful to understand the folding procedure. One effort
in this direction is by the group of Christopher Dobson. They used pulsed amide hydrogen-
deuterium exchange to follow secondary structure formation. Amide hydrogen atoms are readily
exchanged with the solvent in unfolded proteins, but this exchange is often strongly inhibited in
a folded protein. They can detect the formation of structure during folding by measuring the rate
of amide-hydrogen exchanges as a function of folding time. The protein they used in their initial

experiments was lysozyme. In its native state, it has two lobes separated by a cleft. One lobe has
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five v helices and the other one is mainly three-stranded antiparallel § sheet. At 20 milliseconds,
two major intermediate populations of lysozyme were detected. One in which the « helical lobe
had achieved a high degree of secondary structure while the 3 sheet lobe contained no detectable
structure. In the other population, no stable structure is detected in either of the lobes. A third
less-populated state was also present. These observations suggest that intermediates are present

along the folding pathway.

2.7. Discussion—2

The results of the experiment by Fernadnez and Li, described above, implies that the «
helices formed faster than the 3 sheets. This is reasonable as the formation of « helices needs
only the interaction of amino acids relatively close by, while the formation of  sheets needs
hydrogen bonds to be formed between amino acids which are normally not nearby. How one
pair of amino acids finds each other is still unknown. Do they move just by diffusion? Is there
a driving force making them move toward each other? If so, what is the source of that force? In
spite of all the unknowns, the initial distance of a pair of 3 sheet amino acids is normally longer

than distance between a helix amino acids. It is reasonable that 3 sheets form slower.

2.8. Experimental results

Based on the results of H-D exchange studies of cytochrome ¢ which lacks disulphide, it is
found that on a time scale of approximate 10 milliseconds, a molten globule can form along with
its secondary structure. On a time scale of approximate 100 milliseconds, hydrogen bonds form
throughout the molecule. on a time scale of approximate 10 seconds, the complete hydrogen

bonding pattern forms [37,48,51].
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2.8.1. Numerical simulation

If the interaction forces between different atoms at difference distances can be measured, it
seems that we could simulate the folding procedure numerically. Given an initial condition
(configuration), we could calculate the motion due to the interaction forces. But there are many
difficulties with this simple-sounding plan. First, how can the forces be determined exactly? We
can use some approximate expressions, such as Van der Waals force. Then, how to include the
Brownian force? We can ignore it, or use a random number to simulate the Brownian force.
People set different models to simulate this procedure. But the time scale they can reach is only

about a few milliseconds. Quoting Peter Kollman, [18]

The limitation holding back this critical work has been the tremendous com-
putational demand of the simulations, which must account for interactions
between each atom in a protein and all the other atoms and surrounding water
molecules. To capture protein movement at a useful level of detail, the full set

of these interactions must be recalculated every femtosecond of protein time.

The Kollman group’s simulation results show that a burst of folding in the first 20 nanosec-
onds quickly collapses the unfolded structure, suggesting that initiation of folding for a small
protein can occur within the first 100 nanoseconds. Over the first 200 nanoseconds, the protein
moves back and forth between compact states and more unfolded forms. The folded structures
(molten state) have three-dimensional features, such as partially formed helices loosely packed
together, that bear resemblance to the final folded form. They are only marginally stable, and
unfold again before settling into other folded structures.

The next 800 nanoseconds reveal an intriguing “quiet period” in the folding. From about 250
nanoseconds until 400 nanoseconds the fluctuating movement back and forth between globules

and unfolding virtually ceases. “For this period in the later part of the trajectory,” says Kollman,
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“everything becomes quiet. And that’s where the structure gets closest to the native state. It’s
quite happy there for awhile, then it eventually drifts off again for the rest of the period out to

a microsecond.”

2.8.2. Summary of the events at different time scales

Table 2Tl summarizes folding events and their times scales. The numerical simulation results are
different from the experimental results. When needed, we will use the experimental results as

the typical folding time scales.

2.8.3. Discussion

Here we can see that the forming of the molten globule state should happen on a time scale of
less than 1 millisecond. As a reminder, the molten globule state has similar structure to the
native state. That is, it should have almost the same end-to-end length as the native state. If we
measure the end-to-end length during the folding, it should collapse in less than one millisecond,
and fluctuate for a while, and then keep still. Of course this is only true for free refolding, i.e.,
with no external force. What should the folding procedure be if there is an external force?

An external force increases the energy barrier for the folding procedure. We use the Arrhenius

equation to estimate this effect,

(2.1) k=v-exp(—Ey/kpT)

The prefactor v depends on the energy barrier Ej, even in the absence of an external force. In
a harmonic potential field v is proportional to the square root of Ej. But, the most important
effect of energy change is in the exponential term exp(—FEp/kpT"). For example, if we change Ej,

from 10 kT to 100 kT, v will become three times larger, while the term exp(—Ejp/kpT") will
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become 1073 times smaller. Compared to the change due the exponential term, the change from

v is negligible. Therefore, here we can assume v remains constant while Fj changes.
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Time scale What’s happening Method Protein & [Reference]
10 ms molten globule forms H-D exchange cytochrome c
[37,48,51]
100 ms hydrogen bonds form H-D exchange cytochrome c
[37,48,51]
10 s hydrogen bonding complete | H-D exchange cytochrome c
[37,48,51]
20 ns quick collapse simulation | villin headpiece subdomain [18]
200 ns change between molten simulation | villin headpiece subdomain [18]
globule and unfolded
next 800 at the later part of simulation | villin headpiece subdomain [18]
ns this period, stays “quiet”
in molten globule state
20 ms « helical lobe achieves high | H-D exchange
degree of secondary structure, lysozyme |7]
(G sheet lobe does not
20 ms neither of lobes achieve high | H-D exchange
degree of secondary structure lysozyme [7]

Table 2.1. Some time scales for events during folding as found from experiment
and numerical simulation.
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CHAPTER 3

Models describing the folding procedure

There are three main models [36]. The first is the framework model. Protein folding is
thought to start with the formation of elements of secondary structure independently of tertiary
structure, or at least before tertiary structure is locked in place. These elements then assemble
into the tightly-packed native tertiary structure either by diffusion and collision or by propagation
of structure in a stepwise manner. The second one is the hydrophobic collapse model. The initial
event of the reaction is thought to be a relatively uniform collapse of the protein molecule, mainly
driven by the hydrophobic effect. Stable secondary structure starts to grow only in the collapsed
state. The third one is nucleation-condensation mechanism. Early formation of a diffuse protein-
folding nucleus catalyzes further folding. The nucleus primarily consists of a few adjacent residues
which have some correct secondary structure interactions, but is stable only in the presence of
further approximately correct tertiary structure interactions. Fig. Bl illuminates the three

models.

In this figure we can see that there are three stages in the folding procedure. Initially proteins
are in the unfolded state. Then they are in the middle state, and at last go to the folded state. If
we measure the end-to-end length of the proteins, these three models will give different results.
For the hydrophobic collapse model, the protein’s length collapses from the unfolded state to
the middle state (molten globule state). Then the correct bonds need to be formed to reach the
final state. Since all the amino acids have already congregated together in the first step, from
the middle state to the folded state the protein’s length will not change much. Therefore, if we

only consider end-to-end length, there are only two choices for the protein: folded length and
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Models for protein folding:

(a) Framework model
(b) Hydrophobic collapse model
(c) Nucleation-condensation mechanism

N

Formation of
elements of
secondary
Assembly of
\ stucture secondary
structure
Hydrophobic Growth of
—>» b ——>
collapse secondary structure
Folded
conformation
/ Hierarchical
. Nucleation- assembly
condensation
/ Folding nucleus
Unfolded
state

Figure 3.1. Three models for folding procedure [36].

unfolded length. We call this a two-state model. The third model is also a two-state model if
end-to-end length is the only thing to consider. The first, the framework model, is different.
From unfolded state to the middle state, its length can change. From the middle state to the
folded state, its length can also change. We call this the multi-state model.

Knowledge about the protein folding procedure is increasing as more experimental data is
collected and as better techniques are being developed. Increasingly, there is the data to check
the accuracy of folding models. While it remains nearly impossible to observe directly the
configurations of proteins as they fold, end-to-end length can be measured. There two types of

such experiments. In one, the protein is first stretched and then released with constant velocity,
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measuring the forces at different lengths. This is called a constant-velocity experiment. The other
type of experiment stretches proteins with constant force, measuring the end-to-end lengths at
different times. This is called a constant-force experiment. In this thesis, I will construct a model

to simulate the folding procedure and compare them with the experimental results, as shown in

Sec. @ and [6l



37

CHAPTER 4

Constant-velocity experiments

4.1. Devices and experimental results

The atomic force microscope (AFM) has been used in protein stretching experiments (6,12,

44-46] Fig. 1] demonstrates the principle of operation of the AFM [43].

Polymer |

Nano-
actuator

Figure 4.1. A typical experiment in which a single molecule is stretched by an
AFM tip. The tip is brought into contact with the sample, which is covered by a
layer of polymer molecules. If a molecule has bound to the tip, it can be stretched
and the force measured via the deflection d of the cantilever spring as a function
of the extension. When the maximum binding force is exceeded, the molecule
ruptures from the tip and the tip is free again. On the right is a representative
example of the force-extension curve. From [43, Fig. 1].

Examples of constant velocity experimental results are shown in Fig. (for titin) and
Fig. @3 (for dextran). (Dextran is not protein, but it is a polymer. We will include it in this

discussion.)
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Figure 4.2. Experimental results of stretching titin with the AFM from [34].
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Figure 4.3. Experimental results of stretching dextran with the AFM [34].

4.2. Brief description of the model

Although the experimental results for titin and dextran looks different, it can be shown that
they can be described by the same model. Here is a brief description of this model. Details will
be shown in the following sections.

The polymers in the experiments have several identical domains (for titin) or a few hundred
identical domains (for dextran). Each domain can be regard as a rigid bar. Each domain is
considered to be in one of two possible states: a folded state or an unfolded state. Under the

influence of an external force and thermal fluctuations, the projected length of each bar in the
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force direction can be calculated. All the domains are freely jointed. The total length of the
protein is the sum of all the domains’ lengths.

Therefore, to set up this model, we need to solve three problems. The first is to calculate the
projected length in the force direction. The second is to determine how one domain changes from
one state to the other. The last is to combine the freely-jointed-bars model and the two-state

model together. Details are shown in the following sections.

4.3. Freely-jointed chain

A segment in a freely-orienting chain subject to no external force will usually have no preferred
direction or orientation. When the chain is subjected to a tension f, however, a segment’s
potential energy will depend on its alignment relative to the direction of the applied force.

If the force is assumed to act in the z-direction, then the potential energy can be given by
V =—fIlcosf

where 6 is the angle between the z-axis and I. I is a vector whose direction is the same as the
segment, and whose amplitude is the length I of the segment.
According to the Boltzmann distribution law, the probability that the segment makes an

angle # with the z-axis is proportional to

v
exp T

Hence, the average value of the z-component of I as it undergoes thermal motion will be

Jo (I cos) (2w sin ) exp [fI cosO/kpT) db

(4.1) () = Jo (2msin@)exp [fI cos6/kpT] db
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or

(4.2) (I) = I'lcoth (I1f/kpT) — (kpT/1f)]

The total configuration length is

L =N(L) = NI|coth (If/kgT)— (kgT/If)]

If N =275 1=0.5nm, and T = 273K, we get the force-length relationship shown in Fig. 4l

500
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extention/L

Figure 4.4. Force-length relationship for a freely-jointed chain with 275 bars each
of length 0.5 nm. Temperature is 273 K. The force ranges from 0 pN to 500 pN,
which spans the typical range used in experiments.
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4.4. Two-state model
4.4.1. Two-state model can be regarded as a diffusion problem

The two-state model is introduced in Fig. This model claims that each domain can be in
only one of two states. There is an energy barrier between the two states. If the domain is
in the folded state, its length is Iy. If it is in the unfolded state, its length is I,,. The energy
difference between the folded state and the energy barrier is AG,,, and the distance between the
folded state and the energy barrier is x,,. The energy difference between the folded state and the
unfolded state is AGy, and the distance from energy barrier to unfolded state is xy. The change
in length I, — Iy = x, + xy. Because of thermal fluctuations, one domain can "jump" through
the energy barrier and change state. This procedure is identical to particle diffusion as a random
walk. One particle is initially in the position Iy. Because of thermal fluctuations, it can move as
a random walker. If it can pass through the energy barrier, it will change state. Similarly it can
walk from the unfolded position to the folded position. Therefore, the change-of-state problem

can be regarded as a diffusion problem.

4.4.2. Probability equation for diffusion as a random walk

In this section we will develop the diffusion equation.
If a particle diffuses as a random walk, we hope to calculate the average time for it to pass

some particular point. We start with conservation of mass,

(4.3) 305;; t) _ _an;, t)

and the assumption that flux J(z,t) is linearly proportional to the concentration gradient,

Oc(x,t)
Ox

(4.4) J(z,t) =—-D
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Figure 4.5. Free energy diagram for the two-state model in the reaction coordi-
nate. If the domain is in the folded state, its length is Iy. If it is in the unfolded
state, its length is I,. The energy difference between the folded state and the
energy barrier is AG,, and the distance between the folded state and the energy
barrier is is z,. The energy difference between the folded state and the unfolded
state is AGg, and the distance from energy barrier to unfolded state is x .

where ¢(z,t) is the concentration of mass and D is the diffusion coefficient. Combining (Z3]) and

@) we get

oc(z,t) . 9%c(w,t)
(4:5) ot =D 0z

We can replace c¢(x,t) by p(x,t), the probability of finding it at position x at time ¢. To do this

we need one more equation

(4.6) / Y e t)de = 1

1

where x1 is the left end of the region and x4 is the right end of the region.
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Equations (£3)- (@3] are valid when there is no external force. An external force will cause
an average velocity v(z) = F(z)/v, where v is the drag coefficient of the particle. Therefore, the

probability flux, J(x), becomes

(4.7) J(z,t) = —Dapéi’t) + nyx)p(x,t)

Thus, in the presence of an external force, the probability satisfies

(4.8) ot ox2 oz

Op(x,t 0?p(x,t 0 |F(x

o) _ p¥otet) 0 [0, )
This is the basic equation for diffusion problems. One of the applications of this equation is to
calculate the rate constant (shown in the next section). For example, in the two-state model
there are two stable states separated by a energy barrier. Because of thermal fluctuations, a
domain in one state has a certain chance to switch to the other domain. The rate of changing

states can be calculated from the diffusion equation.

4.4.3. First-passage times and rate constants

We can now solve (£.8)) under certain boundary and initial conditions given an external force.
Then, based on the solution p(x,t), we can calculate the other parameters we are interested in,
such as rate constant, first passage time, and so on. Kramers [29] calculated the first passage
time, i.e., the average time for a particle to pass through a certain position for the first time.
The external force he used was F' = —Kx in the region 0 < x < xg. That is, the energy barrier

fromz=0tor=x9isU = %KacQ. At x = x9, Uy = %Kac% The result is
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T U,
(4.9) b — T\/g, /’%eﬁ%

where 7 = v/K. The meaning of (4£9) is this. If you put a particle at = 0, after an average

time tg it will arrive at xg. The reciprocal of the first-passage time is call the rate constant,
(4.10) kx =1/tx

To understand (AI0]), imagine you put a particle at x = 0 initially. Once it passes through
x = xg, put it back to z = 0 and let it move again. kg is equal to the average number of times

that the particle can pass through = = xg in unit time. Based on Kramers rate theory,

1 4 UO Yy
4.11 o — = 2] et
( ) K T\/; kBTe i

Note that the rate constant depends on the energy barrier in two parts. One is in the exponential
term, which is the dominate term. The other part is the square root. The changes caused by this
part can be ignored compared to the exponential term. Therefore for simplicity we can regard
the second part as constant. In protein folding problems, the energy barrier is normally written
as AG. (G is the Gibbs free energy. This is the measure of energy in a system at constant
temperature and pressure.) From now we will use AG to replace Uy. Back to the two-state
model. The rate constant for one domain to transfer from the folded state to the unfolded state
is ag, and from the unfolded state to the folded state, Gy. The expressions for the rate constants

are:

(4.12) g = we AGu/kpT
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(4.13) Bo = weAGs/kBT
where w is a constant given as
1 /4 [AGy
4.14 = /= ==L
( ) v T\/; k‘BT
When there is an external force [43]

(4.15) a(F) = agel™@u/FsT

(4.16) B(F) = Goe Fes/ksT

If there are Ny domains in the folded state, the average number of folded modules that

become unfolded in a time At is
(4.17) dP, = o(F)N;At
Similarly, the average number of unfolded modules that become folded in a time At is

(4.18) dP; = B(F)N, At

4.4.4. The relationship of probability and rate constant

In the previous section we calculated the average number of changes of state in a short time

based on the rate constant. To describe the change-of-state procedure, we have two tools: one is
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the rate constant, the other is probability, normally of a particle being in a certain state. Since
they are the two aspects of the same thing, we hope to know the relationship between them.

In Rief’s two-state model [43], the two states are the folded state and unfolded state. Since
the following analysis can be applied to any two-state change, we call them state 1 and state 2,
rather than the folded state and unfolded state.

Initially one particle is in state 1 and it can transfer to state 2 with rate constant k. The

probability of observing it in state 1 at time ¢ is p(¢). Then

dp(t
(4.19) AR
With p(0) = 1, we get
(4.20) p(t) =e M
If at t=0 there are NN particles in state 1, during a short time interval At, what is the

probability of transferring to state 27 The answer is,

(4.21) Py = [p(An)]Y

(4.22) Pr = Np(At)[V ™« [1 - p(At)]
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(4.23) Py = Cy[p(A)]Y 'L = p(AD)]!

Where P; is the probability of i particles transferring state during time interval At, and C% =

z'(Nle)' is the number of choices picking ¢ particles from N different ones. The average number

of transfers will be

N
(4.24) AN =) "iP; = N(1 - p(At))
=0

If At is small enough,

(4.25) AN ~ NEAt

In the next section we will describe how to do a computer simulation based on the average

transfer number.

4.4.5. Simulation procedure and comparison with experimental results

Now we can show in detail how we simulate the folding procedure. As already noted, each
domain has two possible states: the folded sate with backbone length Iy and the unfolded state
with backbone length I,,. The total contour length (the longest possible length, i.e., the length
if all the domains are aligned into a straight line) of the protein is L = N¢Iy + N1, where Ny
is the number of domains in the folded state, and IV, is the number of domains in the unfolded

state. When there is no external force, the transition rate from folded state to unfolded state is
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(4.26) ap = weAGu/kBT

Where AG,, is the activation barrier for folding, and w is the reciprocal of a diffusive relaxation

time. w can be calculated using (£I4]). The back reaction rate for the unfolding is

(4.27) Bo = weAGs/kBT

where AGy is the activation barrier for folding.

If there is an external force, the rates become

(4.28) a(F) = agel™@u/ksT

(4.29) B(F) = BoeFrs/ksT

For example, for titin AGy = 13 kT, AG, = 20 kT, x; = 27.7 nm. If the external force is 15
pN, then at room temperature the rate constant for the refolding procedure will become much
smaller compared than the rate constant when there is no external force, 3(F) /8y ~ ¢ 71%. There
is clearly something suspect about the refolding rate. As it is observed that proteins fold on a
time scale from microseconds to hours (and sometimes longer), this calculation would suggest
that under the application of an external force of the order of pico-Newtons, proteins would
never be observed to fold. In Sec. [II] we show that computing the refolding rate based on

is incorrect. In brief, xf is a one-dimensional reaction coordinate formed by concatenating the
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reaction coordinates of the individual parts of the protein. That is, x; sums spatially over all
of the reaction coordinates accounting for the fact that they are indeed spatially sequential. We
show that what is needed to determine folding times, is the fact that motion along the reaction
coordinates of the individual components occurs simultaneously. Consequently, the spatial z
that is needed is only the single most slowly folding component.

In a short time At, the average number of domains transferred from the folded state to the

unfolded state is

(4.30) dP, = o(F)N At

The number transferred back is

(4.31) dP; = B(F)N, At

The simulation procedure proceeds as follows. We begin with x = 0, ' = 0, and all the
domains in folded states, i.e., Ny = N and N, = 0, where N is the total number of domains.
This is the initial condition. Here we show how to get the (i 4+ 1)th step from the ith step. We
use dP,(F;) to determine how many domains transfer from folded to unfolded. Here dP, can
be any value bigger than 0, but the number of domains that unfold dN,, must be an integer. If
dP, < 1, we pick a random number 0 < R < 1: if R < dP,, we set dN, = 1, otherwise we set
dN, = 0. If dP, > 1, we just use the integer part as dN,. Similarly we can get dNy. Then
we get N¢(i + 1) = N¢(i) — dN, + dNy, and Ny (i +1) = Ny(i) — dNy + dN,. We can now
calculate the new contour length of the protein. The new extension length x(i+1) = x(i) + VAt,

where V is the stretching speed. Then based on the new x and L, we get the new force using
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([#2). Repeatedly applying these steps we can simulate the stretching procedure. The refolding
procedure is almost the same; the only difference is the extension length is decreased at each

z(i+1) =x(i) — VAL

The comparison of experimental results and simulation results are shown in Fig. for titin

step,

and Fig. 7 for dextran. Numerical results and experimental results fit well.
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Figure 4.6. Comparison of experimental and simulation results for titin. The
solid line is the experimental results. There are 10 domains. Iy = 4 nm, [, = 32

nm, ag = 3 x 107°/s, Go = 9.2 kgT. Temperature is 300 K. The experimental
data is from [34].

We can see that for titin, the stretching curve looks like a row of sawteeth: the force increases
to a certain value, then decreases dramatically forming a peak. There are 10 peaks. There is a
large length difference between the folded and unfolded state. In the folded state one domain
has length 4 nm, while in the unfolded state one domain has length 32 nm. Therefore, as one
domain unfolds, the protein’s total contour length increases greatly. This causes the force to

decrease markedly, yielding the sharp dropping edge of the sawtooth.
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Figure 4.7. Comparison of experimental and simulation results for dextran. The
dots are the experimental results. There are 310 dextran monomers. Iy = 0.5
nm, I, = 0.565 nm, ag = 2 x 1074 /s, Gy = 13.2 kgT. Temperature is 300 K.
The experimental data is from [34].

One the other hand, for dextran the length difference between the folded and unfolded state
is quite small. In the folded state one domain has length 0.5 nm, while in the unfolded state
one domain has length 0.565 nm. The number of domains for one dextran polymer is about 300.
Therefore one domain that becomes unfolded will not cause a notable change of the total contour
length. Hence, the extension curve for dextran is smooth. The slope of the model is steeper than
the experimental results in the region of 5 x 107 < F < 5.5 x 1072 N, and similar elsewhere.
That is, simulation results seem stiffer than the experimental results. This problem comes from
the FJC model. It regards each amino acid as a rigid bar: that’s realistic. But, these bars are
connected freely, this is not a good approximation at all forces. For example, for the FJC model
in the high-force region, the simulated protein is already almost fully stretched and can hardly

be stretched any more, that is why the force-extension curve is so stiff.
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4.5. Further discussion about dP, and dP;

Note that although we use the notation dP, and dPy, they do not mean the probabilities of
changing state. From (L30), dP, is the average number of domains transferred from the folded
state to the unfolded state. And, from ([431), dPs is the average number of domains transferred
from the unfolded state to the folded state. When used as the number of domains changing state,
these values can be used for any At, large or small, and the expressions yield the correct value
for the number of folded or unfolded domains. However, for the stochastic calculations which we
and [43] carry out, we require the probability of at least one change in an interval of time, not the
mean number of changes within an interval of time. (The difference between the "number" and
the "probability" is that "number" could be larger than one but "probability" is always smaller
than unity. Hence, we could interpret dP, and dP; as above, in terms of change in number, use
an arbitrarily large At, and find the change. If larger than unity, the change implemented is the
integer part plus one (zero) if a uniformly-distributed random number is less (greater) than the
non-integer part.)

From (E20), we can find p(t) = e ", the probability of remaining in the original state
after a time ¢. The probability of N identical domains remaining in their original state is then
pn(t) = (e7*)N. And, so the probability of at least one of the N domains changing state is
1—(e7*)N. When the time interval is small ¢ = At, then we find that 1— (e *)N = NkAt+. ...
In [43] it is only this first term which is used to compute the probabilities of change, where the
rate k is given the appropriate value o or 3, and N is assigned as the number of folded domains.
Is this always true during the simulation?

Figures [A.8H4.10I show the extension-force curves and the corresponding extension-d P, curves.
The three figures use the same parameters and the differences between them arises from the

random numbers used to determine whether one folding or unfolding event could happen. We
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can see that dP, is always much smaller than unity during the simulation. dPy is even smaller
than dP,. Therefore, the approximation (23] used to calculate dP, and dP is valid.

One thing to note is that during the simulation, we chose At = 0.001. In numerical simula-
tion, we can choose At small enough to make the approximation valid. But, for protein folding
does this At have a finite physical limit? Let’s model the protein as a spring and calculate its
vibration frequency. In Fig. 2] we can see that per peak, the extension length increases by
approximately 25 nm, and the force increases by approximately 200 pN. So for one domain, its
spring constant kgpring ~200 pN /25 nm=0.008 N/m. The mass of one domain is about 2 x 102
kg. Therefore, the frequency w ~ \/W = 2 x 10'° /s. So, the physical time limit is
~ 10710 5. The At = 0.001 s used in the simulation is much longer than this limiting value, but

is still small enough so that the approximations underlying dP, and dP; are valid.
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Figure 4.8. Extension-force curve and extension-dP, curve.

Note that in the previous simulations, if there are Ny domains in the folded state, then we
say dP, = a(F)NyAt. And we only generate a random number once and compares it with dP,.

(As shown in (£20)-(#25), This is valid as far as kAt < 1. From Figs. L8410 we can see
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Figure 4.9. Extension-force curve and extension-dP, curve. For the same param-
eters as in Fig. [L.8] additional realizations. These results are different due to the
inherent stochastic nature of the dynamics.
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Figure 4.10. Extension-force curve and extension-dP, curve. For the same pa-
rameters as in Fig. .8 additional realizations. These results are different due to
the inherent stochastic nature of the dynamics.
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that dP, < 1. dP, is greater than kAt. So, as noted, when At is small enough, we can use
the approximation dP, = kAt. We can also do the simulation in some other way. The average
transfer number for one domain is dP, = «(F)At. We can generate one random number for
one domain, compare dP, with that random number to determine whether a transfer will occur.
Since there are Ny domains in the unfolded states, we need to repeat this procedure Ny times
and sum up all the transfer numbers as dN,,. We call this the single-domain method.
Figures L 1THAL.T3lshow the extension-force curves and the corresponding extension-d P, curves.
Again, they all have the same parameters and the difference comes from the random numbers.
Once again, the values for the numbers transferred is small. A detailed comparison of the sta-
tistics of the single-domain method vs. the one-shot method in Figs. E8HLT0 would show the
extent to which the distribution of changes is similar, and whether any noticeable differences

arise from the two methods.
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Figure 4.11. Extension-force curve and extension-dP, curve for the single-domain method.
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Figure 4.12. Extension-force curve and extension-d P, curve for the single-domain
method. For the same parameters as in Fig. .11, additional realizations. These
results are different due to the inherent stochastic nature of the dynamics.

N=7 dt=0.02s speed=1nm/s N=7 dt=0.02s speed=1nm/s

o D=3e—005/s GO:ll.1075kBT GUZZOKBT o o:3e—005/s GO=11.1075kBT GUZZOKBT
350 T T T 0.2 T T T T
0.18 4
300 - B
0.16 4
250 - B
0.14 b
200 - B
0.12 b
=
=
g 150 - b N 0.1 b
2 S
0.08 B
100 - B
0.06 - b
50 B
0.04 B
ok 4
0.02 B
o BB
—100 [0} 100 200 300 [0} 50 100 150 200 250
extension extension

11-May—2005
Figure 4.13. Extension-force curve and extension-d P, curve for the single-domain
method. For the same parameters as in Fig. .11, additional realizations. These
results are different due to the inherent stochastic nature of the dynamics.
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CHAPTER 5

Variance for constant velocity experiments

Since proteins are not static structures, it is necessary to describe variations about their mean
configuration to gain information about their flexibility. This internal variation of flexibility is

an integral part of protein function.

5.1. Fluctuation dissipation theorem

In this section we will calculate the variance of protein length due to the thermally-induced
change in direction of the component monomers.

In Sec. 4.3 we have shown that the average length along the force direction for one freely
rotating bar with a single state is

foﬂ (I cosf) (2msin®)exp [fIcos@/kpT] db
fOTr (2msinf) exp [fIcosO/kpT] db

(IZ> =

The (...) and the top bar (for example, in (5.3])) both mean average.
If the monomer has two possible states with energy difference AG,, the average length along

the force direction is

L) = Jo (I cos 0) (27 sin 0) exp [a cos 0] dO
[ (2msin®)exp [acos 0] dO + [ (27 sin6) exp [—~AG,/kT + bceos 0] df
N Jo (I, cos 0) (2 sin ) exp [~AG, /kT + bcos 6] df
Jo (2msin0) exp [acos 0] df + [ (27 sin 0) exp [-AG,/kT + bcos 0] db

(5.1)
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where a = J;LTf and b = % Then we get
(L) = N(IL)

If(%)2 [a cosh a — sinha] + Iu(%)2 [bcosh b — sinh b exp [~ G, /KT

= N
é sinha + [% sinh b] exp [~ G, /kT]

(5.2)

The variance in length is given by (L — L)?, which depends on the differences between the
measured values of L and the mean value L. However, it can be shown that the variance can be

determined from measurement of the mean force-extension curve alone. In particular, we show

that
— dL
i L —L)2= NkgT - —
(5.3) ( ) kp i
That is
- N - T.
4 N?.(I,—1,)2 = NkgT - z
(5.4) ( ) B i
_ dI.
I,—1,)2 =kgT —=
(5.5) ( ) BT~
dr,
(5.6) (I2) —(I.)* = kT



First we calculate (I2)

Jo (If cos 6)? (2 sin ) exp [a cos 0] df
Jo (2 sin ) exp [a cos 0] df + [ (27 sin 0) exp [~AG,/kT + beos 0] df
N Jo (I, cos ) (27 sin 0) exp [~ AG, /KT + bcos 6] df
Jo (2msin ) exp [acos 0] df + [ (27 sin ) exp [-AG,/kT + beos 0] df
IJ%(%):SX + Ig(%)SY exp [—Go/kT]
L sinha + [ sinhb] exp [~Go/kT]

() =

(5.7)

where X = [a2 sinh @ — 2a cosh a + 2 sinh a] ,and Y = [b2 sinh b — 2b cosh b 4 2sinh b] .

Therefore,

IJ%(%)SX + Ig(%)SY exp [—Go/kT]
é sinha + [% sinhb] exp [—G,/kT]

<I,3> - <Iz>2 =

I(1)?[acosha — sinha] + I,,(§)? [bcosh b — sinh b] exp [~ G, /kT] ?
L sinha + [§sinhb] exp [—Go/kT]

(5.8)

For kpT - %ﬁ, if we write the (I,) in the form

It(1)?[acosha — sinha] + I,,(4)? [bcosh b — sinh b] exp [ G, /kT]
1 sinha + [ sinhb] exp [—G, /KT

A+ B
C+D

1
(5.10) A= If(E)Q [a cosh a — sinh a]

99



(5.11)

(5.12)

(5.13)

then we have

(5.14)

and we also have

(5.15)

(5.16)

and

(5.17)

1
B = u(E)Q [bcosh b — sinh b] exp [-G, /KT
1
C = —~sinha
a

1
D= [5 sinh b} exp [—G,/kT]

dl. oL da o1, b
kT %2 = ppr. 2290 g o O D
T L aa af VY oy af

or. oL
= Ifaa—l-fu%

) <A+B> _ A(C+D)-(A+B)C'

da \C + D (C + D)2

0b

d <A+B> B'(C+ D) - (A+ B)D’

C+D (C + D)?

dA 1
i I;(=)? [a®sinha — 2acosha + 2sinh a]
a a

60
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B 1
(5.18) C;—b = If(g)i% [b? sinh b — 2bcosh b + 2sinh b] exp [~ G, /kT]
dC 1. 1
(5.19) o= sinha + " cosha
dD 1 . 1
(5.20) =R sinh b + Ecoshbexp [—Go/kT]

Plugging these into (5.14]) we get

(5.21) (I2) = (I.)* = kpT -

Therefore, we get variance

dL
.22 = NkpT  —
(5.22) v BT~

Now, we can use the force-extension curves of data to find the right-hand-side of the above
expression, and so determine the variance. We can also use (5.8]) as the theoretical prediction.
Fig. b1 shows the comparison for the dextran experimental results with theoretical results.
We can see that they have similar behavior. Initially the variance is very big. This is because
the dextran is in the coil state, which is a loose structure. Any small perturbation can cause

a large change in length. With increasing force, all the domains begin to align and become
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stiffer. Therefore the variance tends to decrease. There is a peak in the middle. In this region,

dextran domains change from the folded into the unfolded state. This changing-state procedure

introduces larger variance.

20

—— Theory result

| — - Experimental result
18 -

Variance(nm)

o 500 1000 1500
Force(pn)

Figure 5.1. Comparison of experimental results and theoretical results for vari-
ance (dextran).

Equation (5.22) shows that variance is proportional to the inverse of the spring constant:

v = NkgT - % X £ L Where Espring = %% is the spring constant of dextran. Figure
spring

shows the comparison of C'- — and the experimental variance. The conclusion that variance is
proportional to the inverse of the spring constant seems correct. However, why is the coefficient
constant kpT'/5 instead of kgT. My guess is that since the experiments are done in solvent,
viscous forces might reduce the variance. To check this hypothesis we can do the experiments

in different solvents and compare the variance. Another guess is that the stiffness of AFM tip

might also reduce the variance.
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Figure 5.2. Comparison of experimental results and C - kslTng’ where C' = kgT/5.

Based on the expression for the variance (5.8]), for some given force it is easy to calculate
the corresponding variance. But for some given extension, it is difficult to get the variance.
Therefore we show the force-variance curve. But for titin, the same force can corresponding to

several different peaks. So we do not compare the experimental and theoretical results for titin.
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CHAPTER 6

Constant-force experiments

In this section, we made an effort to reproduce the constant-force experimental results by
numerical simulation. We try a set of models, from very simple test model to more complicated
models. In general, parameters are chosen to fit the experimental results the best, not chosen
based on measured values. How force effects the folding procedure is discussed in Sec. [[1], where
a more physically-meaningful model is given. Therefore, this section should be regard as an
“intermediate state” of our study of protein folding.

In this section, the step-like behavior of single domain folding is reproduced (e.g. experi-
mental results: Fig. (.3} simulation results: Fig. [630). We also find that if we introduce some
cooperativity between domains (i.e., if one domain finishes folding it can accelerate the folding
of other domains), then the folding procedure of a multi-domain protein will fold in stages (ex-
perimental results: Fig. 6.1, simulation results: Fig. [6.38]). The reason for this cooperativity
between domain is unknown. Sec. [II] discusses the reason of cooperativity inside one protein

domain.

6.1. Results of constant-force experiments

Fernandez and Li used force-clamp AFM to record time-extension curves for ubiquitin [21].
Nine individual ubiquitin domains were linked together to form a single poly-ubiquitin molecule.
The AFM tip would intercept this molecule at a random location and so pick up an indeterminate

number of domains.
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Figures show some of their experimental results. The two-state model described in
Sec. @ predicts that for the constant-force experiments, the folding procedure should be step like.
In the two-state model, one domain can only have two possible lengths, the folded length or the
unfolded length. When a domain changes from the unfolded state to the folded state, there is a
collapse of the total end-to-end length. If there are several domains in the protein, there should
be several step-like collapses. However, in Fig. and Fig. 620 we do not see this step-like

behavior. It seems that we need to modify the two-state model.
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Figure 6.1. Examples of the experimental results for the constant-force folding
experiments of [21]. Other of their results are shown in Figs. and .31

6.2. Modeling constant-force folding: Introduction

The model in this section divides the ubiquitin folding procedure into five stages, as shown in
Fig. 64l The first stage is the nearly instantaneous transition from the coil-like structure under

high external force to a shorter coil-like structure at the lower quenched force. In the second
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Figure 6.3. Additional results from [21], where it is assumed that there is only
one ubiquitin domain being stretched by the AFM. Note, in comparison with
Fig. for poly-ubiquitin, that Stage 2 is nearly of constant extension, Stage 3
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Stage 4 is an abrupt decrease, it is less sudden than in Fig.
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stage, the o helices form with folding rate £,y and with A as the amplification factor: once one
helix appears, the neighboring amino acids will fold faster. These two parameters determine the
duration of this step. The details will be shown later in this section. At the next stage, 0 sheets
form with parameters k,y and A;. In the last step, o helices and 3 sheets form the tertiary

structure (native state) with parameters ky; and A,.

6.3. Modeling constant-force folding: Simplified model

In this section, we first introduce the domain structure in more detail, and hope to find a
reasonable simulation based on the change of the structure during the unfolding and refolding
procedure. Recall that amino acids are connected by peptide bonds to form the protein chain.
This is called the primary structure. Different regions of the amino acid sequence form local reg-
ular structures, such as « helices and § sheets, held together by hydrogen bonds. The domain is
the tertiary structure, which is formed by the interaction of several secondary structures. Though
it is not certain what is happening during the stretching procedure, a reasonable assumption is
that the entangled secondary structures are first separated, and then the secondary structures
are broken, leaving the amino acid chain. We regard this chain as the unfolded state. The
refolding procedure should be the reverse: first the amino acid sequence forms into secondary
structures—we can call this the coil-helix procedure; then the secondary structures nucleate and
fold to form the tertiary structure, i.e., the folded domain. In the following we will concentrate
on the refolding procedure.

This is a brief description of the folding and refolding procedure. In order to describe the
experiments in [21], we first describe the ubiquitin domain. Since the unfolded length of the
domain is 32 nm and the average length for one amino acid is 0.375 nm, we find N, = 32/0.375 =
85. (The actual value for ubiquitin is 76.) This 32 nm is an estimate from the experimental

single domain folding results shown in Fig. the total length change during folding is about



68

Unfolded state (force=120pN)

W

Stage 1
Unfolded state (force=15pN)

helix formation
Stage 2 kpfl A :

e LAV

Stage 3 kb‘l A 5 3 sheet formation

VRLUSSYS

Stage 4 ksfl A, Nature state formation

Folded state

Figure 6.4. Simulation procedure and the parameters used in each step. The
unfolding rates are set to be zero.

28 nm, and the folded unbiquitin has length 3.8 nm [14]. So, we assume that the total length of
an unfolded ubiquitin is about 32 nm. The estimated value of 85 amino acids is larger than the
actual value. But here we only give a simple model to see how to improve the model, so we use

the value 85. The actual value will be used in the improved model. As for secondary structures,
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for simplicity, here we assume that all of them are « helices (actually there are three « helices
and four g sheets [3]). Two of the « helices are so short that the structure is sometimes classified
as one « helix and four [ sheets [3]. But, we consider seven secondary structures, each an «
helix of 12 amino acids and hence N, = 84.

Now we want to determine how the coil-helix procedure happens. If the protein is in the
coil state, it has more possible configurations and therefore larger entropy. To form the more
regular helix structure, the entropy decreases, so energy is required to make this happen. On
the other hand, once the regular structure is formed, the hydrogen bonds between amino acids
will decrease the energy. This is equivalent to a two-state model: first a energy barrier needs to
be overcome and then the system will go to a lower energy state. This implies that we can still
set some rate constant to determine the probabilities of changing state. And, as in the two-state
model, this rate should depend on the external force.

In the two-state freely-jointed chain model, all the domains are refolding independently. But
for the coil transfer to « helix, once one hydrogen bond is formed, it should make the neighboring
bonds become easier to form. So, we introduce an amplification factor A: once a hydrogen bond
is formed, the neighboring rate constants will become larger by a factor of A. We hope to get
the cooperativity effect by this factor.

We now ask, "When do the secondary structures begin to nucleate?" and, "How do they
nucleate?" We still hope to use the rate constants to describe this procedure. But, the secondary
structures must be formed before they can nucleate to form the tertiary structure. A simple way
to enforce this is not to simulate this nucleation until all the secondary structures are completed.
Therefore, we introduce a parameter to describe the percentage of completion, C'. The rate
constant of the secondary structures’ nucleation depends on C': if C' is zero, the rate constant of

nucleation is zero, when C' increases the rate constant should also increase. A simple scheme to
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implement this is to assume that when C' = 1, the rate constant for the secondary structure is
ks, otherwise it is Cks. Also, we have a amplification factor A for this nucleation.

Finally, we have the simple model, summarized as follows. Initially, there are IV, primary
units, which are the amino acids with length [, = 0.375 nm. We divide those amino acids into
seven regions. In one region, they have some rate constant k¢ to fold to length [y = 0.15 nm.
If one amino acid is in the folded state, the neighboring amino acids will have the rate constant
Akpy. At the same time, they also have some unfolding rate constant k,,. This is the dynamics
for coil-helix folding.

For secondary structure (helix) folding, the length of one secondary structure .S, is equal to
the sum of the lengths of all the amino acids inside if the helix is in the unfolded length. Once
folded, we assume its length becomes Sy = 4/7 nm, since it is observed in [14] that the length of
one folded domain (tertiary structure) is about 4 nm and there are seven secondary structures
in one domain. Of course, this value of Sy is based on the unreasonable view that all of the
structures are aligned linearly in a row. The folding rate constant is C' - kg,, and the unfolding
rate constant is kgy. The amplification factor has the same effect as in the coil-helix folding

procedure.

6.4. Modeling constant-force folding: Including the externally-applied force in the

coil-helix model

We now include the externally applied force in the model. Force can affect the model in two
ways. First, the rate constant depends on force. Second, it tends to align the amino acids along
the same direction. Because of thermally-induced fluctuations, normally the backbone is not
a straight line. And, the actual end-to-end length, i.e., extension, is normally shorter than its
backbone length, i.e., contour length. The difference between them will become smaller as the

force is increased. There are two models to define extension as a function of force. One is the
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worm-like-chain model (WLC) [33]. In this model, at a certain extension length x and contour

length L, the force F' can be calculated as

kT 1 1 =z
(6.1) F= f) (4(1—:):/L)2_1+Z>

where p is the persistence length, which describes the chain stiffness.

The other model is the three-dimensional freely-joint-chain model (FJC). In this model, the
system is composed of NV bars with length {. These bars are connected one-by-one into a chain,
and all the joints can rotate freely. If we stretch the system with a certain force f, then the

average length projected in the force direction is
1

(6.2) x=N-1-—(a-ctanh(a) — 1)
a

where a = fl/(kgT) and ctanh is the hyperbolic cotangent.
Figures[6.5] and [6.6] compare the force extension relationship for WLC and FJC, using a linear

scale and a log-log scale.

Now, we need to consider how to include the WLC or FJC model into our simulation. In the
previous section, we regarded the length of an unfolded secondary structure as the sum of the
lengths of all the amino acids. This is the same as the contour length of one secondary structure.
If we use the WLC model, then for a certain force, (6.1]) can be applied to calculate the extension
length. If we use the FJC model, then the average length can be determined by (6.2). All the
other parts of the simulation remain unchanged. Figures and are the numerical results
for WLC and FJC. In these two plots, the persistence length is p = I. Taylor expansion shows

that if p = I/2, the WLC and the FJC chain models give the same values in the low-force region.
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comparison of 3D—-FJC and WLC, persistencelength:O.375nm, 1=0.375nm, N=76
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Figure 6.5. Force-extension relationship for WLC and FJC models using linear
scales. The persistence length is set equal to the length of an amino acid, p = 1.
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Figure 6.6. As in Fig. [6.5, but plotted on a log-log scale.

Fig. 6.7 shows the results for I = 0.375 nm and p = I/2. We can see that in this case, the WLC

and FJC give the same simulation results as the force goes to zero.
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Figure 6.7. On the left is the force-extension relationship for WLC and FJC
models using linear scales, p=I/2. The right plot uses a log-log scale. As in Figs.
and [6.6], as force goes to zero, the two lines approach one another.

Now, we can combine the coil-helix model and externally-applied force model to get some
simulation results. The effects from each of the parameters are easy to parse out. In Sec.
[6.6, parameter effects are discussed in details. Then, in Sec. 6.8 other modifications can be

considered. Figure shows the simulation results using the model described in Sec. and

6.4l

6.5. Some analysis based on the experimental data

While most of the results shown in [21] are for poly-ubiquitin, two examples of the experi-
mental results appear to be for the folding of a single domain, see Fig. These two results
show step-like behavior. The folding of one domain should be easier to understand than multiple
domains. We now do some analysis for the one-domain experimental results.

The lowest trace in Fig. [6.3] shows the applied force. The upper two traces show the results

from two experiments. After the applied force decreases from 100 pN to about 15 pN, there is an
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Np=84 ns=7 dt=0.01s lu=0.375nm If=0.15nm A=100
kpf=0.053833/s kpu=0.0073768/s ksf=0.053833/s ksu=0.0073768/s
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Figure 6.8. Refolding under constant external force 15 pN. The WLC model is
applied to calculate the length of the secondary structures as described in Sec.
0.4

immediate collapse in length of about 14 nm. Then, the length fluctuates for about 4-6 seconds
during which time the average length does not change too much. Then there is a second quick
collapse of about 20 nm.

The initial total length of the domain should be more than 14 4+ 20 = 34 nm. We know that
the end-to-end length of one amino acid is 0.375 nm, and there are 76 amino acids in one domain.
Even if all of them are aligned in a straight line, the total length is only 76 x 0.375 = 28.5 nm,
still shorter than 34 nm. One of the possible reasons for this is in the experiments they might
pick up not one domain but one plus part of the next domain. And, between two domains there
is a linker, which also has a certain length.

We consider the first collapse to be due to the coil relaxation (coil relaxation is the length
change only due to reorientation, there is no state change) on the release of the high force. There
might also be some coil-helix transition during this short time. The initial total length of the

domain is more than 34 nm, therefore the first collapse is less than 14/34 = 40% of the contour
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length. If we chose the FJC model to describe this procedure with unit length I = 0.375 nm,
using (6.2)) we can get at f = 100 pN, the extension divided by the contour length is /L = 89%,
and at f = 15 pN, /L = 41%. Then, the length change would be 89% — 41% = 48%. This is
bigger than 40%, and if there is coil-helix transfer, then the change should be even bigger. If we
chose the WLC model with persistence length 0.375/2 nm, the prediction is 78% — 34% = 45%,

still bigger than the experimental results. This error comes from the WLC model or FJC model.

Np=84 ns=7 dt=0.01s lu=0.375nm If=0.15nm A=100
kpf=0.053833/s kpu=0.0073768/s ksf=0.053833/s ksu=0.0073768/s
T T T T T T

16

14

12

extextion
[
o

I I I I I I . .
0.5 1 15 2 2.5 3 3.5 4
time(s)

Figure 6.9. Typical results of the combined model described in Sec. [6.3] and
The Stages are labeled here, because it does not looks like the step-like sin-
gle domain experimental results; it looks like the stage-like multi-domain folding.
Further modification (by accounting for the actual ubiquitin structure, as de-
scribed in Secs. onward) makes these stages disappear: single domain folding
shows step-like behavior.

6.6. The effect of the parameters in the model

We have many parameters in the model: kyf, kpu, ksf, ksu, As (amplification factor for

secondary structures to form tertiary structure) and A, (amplification factor for amino acids to
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form helices). To show each one’s effect on folding, we vary them one-by-one while keeping the
others constant.

In Fig. we show the results for different k,; and kf, the folding rate constants for
coil-helix transfer (rates that amino acids change from unfolded state into helix structure.) and
secondary structure folding. All the plots in the same row (column) have the same ky; (ksy)
value. Figure is the percentage of amino acids in helix structure. We include this figure
because we have two state changes: coil-helix transfer and secondary structure folding. This
figure shows how much of the extension change comes from coil-helix transfer and therefore we
can also know how much change comes from the other transfer. Here we can see that k,; and k¢
determine the length of Stages 1 and 3,shown in the previous section. The length of the stage 1
is the waiting time before the first « helix structure appears, therefore it is determined by the
folding rate of the « helix structure k,y. Similarly for Stage 3, which is determined by the (3
sheet structure folding rate. We use the first row in Fig. as an example to show the effect of
ksy. In the left plot, the extension is always above 10 nm, which means the protein never reach
the folded state (4 nm). In the middle plot, the protein folds at time ¢ ~ 3 s. In the right plot,
the protein folds at time ¢ ~ 2 s. It is clear that larger k,; leads to faster folding. All the three

rows show the same tendency. Similarly, larger k,; can also make the folding faster.

Figures and [6.13] are for different A; and A,. A is the amplification factor for secondary
structure folding. A, is the amplification factor for primary structure folding. Here we can see
they determine the slope of Stages 2 and 4. The duration of Stage 2 is the time to finish «
helix formation, which is determined by both k,; and A,. So A, can effect the slope of Stage 2.

Similarly for Stage 4 and [ sheet formation. Larger values correspond to steeper slopes.
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Figures [6.14] and are for different k,, and kg,. They determine how frequently the
structures can become unfolded. We use the first row as an example to show the effect of kg,.
In the left plot, the protein always has the same length once it reaches the folded state at time
t=0.3 s. In the middle plot, there are two peaks, which means there are two unfolding events.
In the right plot, there are many peaks, which means there many unfolding events. So a larger
value implies easier unfolding, and therefore larger oscillations about the mean. All the three

rows show the same tendency. Similarly, larger £, can also make the unfolding easier.

6.7. More information about ubiquitin structure

In the current model we regard the ubiquitin as a amino acid chain with 84 units and every
twelve of them make an « helix. This is not the actual structure of ubiquitin. In this section we
hope to see the actual ubiquitin structure and then in the next subsection develop a model to
better simulate its folding procedure.

One ubiquitin domain has 76 amino acids. Its sequence is

1 MQIFVKTLTG KTITLEVEPS DTIENVKAKI QDKEGIPPDQ QRLIFAGKQL

51 EDGRTLSDYN IQKESTLHLV LRLRGG

This set of words won’t help us too much to tell the ubiquitin structure. Figure of the

secondary structures is more useful. The ubiquitin domain is composed of « helices, § sheets

and loops.

Fragmentation studies, multidimensional NMR experiments, and molecular dynamics simulation
on ubiquitin have indicated that strands b3, b4, and b5 are less conformationally stable (easier

to break) than strands bl and b2 and the helix [14].
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Protein Dossier

Chain
10
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Figure 6.16. The details of ubiquitin structure. The three different types of struc-
tures are from PDB (Protein Data Bank), DSSP (Database of Secondary Struc-
ture in Proteins) and Stride (a software tool for secondary-structure assignment
from atomic resolution protein structures). In the following, we use the structure
from the PDB. The five § strands from the beginning to the end are named from
bl to b5. Also see Fig.

The two ends of proteins are designated as the N-terminal and the C-terminal. The amino

acid at the N-terminal of ubiquitin is Metl, where “Met” is the abbreviation of the name of
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that amino acid and “1” designates the position. It is 1 since this is the conventional beginning
position. The other end, C-terminal (Gly76), is regarded as the end. All amino acids in a protein
can be represented by a name and a number, showing its type and position counted from the
N-terminal.

A polyubiquitin chain can be connected in two ways. One way is the C-terminal of one
ubiquitin connected to the N-terminal of the next ubiquitin. This is called the N-C-linked
polyprotein. The other way is the C-terminal of one ubiquitin connected to Lys48 of the next
ubiquitin. This is called Lys48-C-linked polyprotein.

For different types of connections, constant velocity stretching experiments give out different
results [14]. For N-C-linked polyprotein, the measured change of contour length in one unfolding
is AL, = 24 £ 5 nm. The unfolding force is AF = 203 + 35 pN at an average velocity of
30 nm/s(range 25-41 nm/s). For the Lys48-C-linked polyprotein, AL, = 7.8 + 2.8 nm. The
unfolding force is AF = 85+ 20 pN at an average velocity of 30 nm/s(range 28-31 nm/s). Based
on the change of length, the polyubiquitin used in Fernandez’s experiments should be N-C linked
[21].

Figure [6.17 shows the secondary structures of one ubiquitin domain. All the beta strands
are named as bl, b2, b3, b4 and b5 from the N-terminal to the C-terminal. For N-C-linked
polyprotein, simulations show that the main unfolding barrier comes from the 5 hydrogen bonds
between the two parallel beta strands: bl and b5. For the Lys48-C-linked polyprotein, the
barrier comes from the 5 hydrogen bonds between the two antiparallel beta strands: b3 and b5.

Lys48 is the first amino acid of b4, the smallest beta strand [14].

6.8. More modifications for the model

In the previous section we gave the detailed structure of ubiquitin. There are three different

types of secondary structures: « helix, S-sheet and loops. In this section, we formulate a model
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Figure 6.17. The § strands of ubiquitin. Also see Fig. G616l bl is near the
N-terminal beginning, and b5 is near the C-terminal end. Both of them point
toward the reader, forming a parallel 3 sheet.

of how the secondary structures are formed and how they interact to form tertiary structure.

We will look at all of the three structures one-by-one. We assume that initially (fully stretched),

the ubiquitin is in the coil-like structure.

6.8.1. a helix

When the stretching force decreases, all the amino acids can change their length (as projected
along the force direction) according to the FJC force-extension relationship (6.2)). For example,
the end-to-end length for one amino acid is 0.375 nm. When the external force is 120 pN, the
projected length in force direction is 0.34 nm. When the force decreases to 15 pN, the projected
length becomes 0.15 nm. This length change due to the external force is spontaneous. At the
same time, neighboring amino acids can form helix structures with rate constant k,r. Once one
helix turn appears, all the neighboring amino acids will become Aj, times easier to extend this
helix. During the folding procedure there are two possible structures in one helix region: coil-like
amino acids and helix-like amino acids. The length of the coil-like part is calculated according

to the FJC force-extension relationship with end-to-end length 0.375 nm. The helix-like part
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(sub-helix structure, the helix turns have appeared, but the complete helix structure has not
formed yet) is also calculated with the same relationship, but with a different length. Since the
completed helix-like structure is quite rigid, we should regard all the amino acids in one structure

as one bar. Its length is n x 0.15 nm, where n is the number of amino acids in the helix state.

6.8.2. 3 sheet

Before one [ strand meets some other one, we calculate its length from the FJC force-extension
relationship with unit length 0.375 nm. Once one meets another, they form a § sheet, with
combined length n x 0.375 nm, where n is the number of amino acids in the larger 3 strand. In
the following we describe how to calculate the end-to-end length of a (3 sheet. First, we consider
a 3 sheet composed of two 3 strands. We use an arrow to represent a § strand pointing from
the beginning amino acid to the ending amino acid. Then the directions of the first 3 strand
and the last 3 strand have two possibilities: they are pointing to the same direction (parallel) or
opposite directions (antiparallel).

First consider antiparallel connections. In this case we have three different possibilities. The
two strands may have the same length, and therefore we can guess that when they combine
together, they exactly match. The length from the beginning part of the first strand to the
ending part of the second one is zero, as shown in Fig. [6.I8h. The second possibility is that the
two strands have different lengths, but when they hydrogen bond, the ending amino acid of the
first strand just meets the beginning amino acid of the second one. In this case the net length
after combination should be the length difference, as shown in Fig. [6.18b. The last possibility is
that the two (8 strands do not have the same length, and are not connected as one’s ending to

the other’s beginning. In this case the net length depends on how they are connected, as shown

in Fig. GI%k.



88

Figure 6.18. Three different types of antiparallel connection of 3 strands.

If two 3 strands are connected in parallel, there are two cases. The first one is that one’s
beginning exactly meets the other’s beginning. Then the net length is determined by the second
strand’s length, as shown in Fig. [6.19%. The second case is that the two 3 strands do not meet

beginning to beginning. Then the net length depends on how they are connected, as shown in

Fig. 6.19b.

Figure 6.19. The two different types of parallel connection of 8 strands.

Once two strands hydrogen bond together, they behave like one new strand. Therefore, if
we have a third one with which to combine, we can follow the same analysis procedure.
Figure [6.17 is the structure of the ubiquitin. We can see that first and the last strands

are connected as type parallel b. Therefore the final total end-to-end length of protein in the
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native state is determined by the length of this pair, in particular the last strand, which is the

longest strand.

6.8.3. Loop region

The loop region is always regarded as a coil-like structure. Its length is calculated according to

the FJC force-extension relationship with monomer length 0.375 nm.

6.9. Tertiary structure

In the previous section, we discussed how the secondary structures are formed. Here we hope
to give a reasonable procedure for forming the tertiary structure.

First, we summarize the folding procedure. Initially, all the amino acids are in the coil
state. The length projected in the force direction is calculated using the FJC model. Then, the
secondary structures are formed with certain rate constants. The details of this procedure are
described in the previous section. Then, once the three main parts are formed (two 3 sheets and
one « helix, see Fig. £.20), they begin to form a tertiary structure with rate constant kgy. This
folding is like the forming procedure of a 3 sheet: two secondary structures “merge” into one
whose length is given as the longer one of the two structures. Note that the geometry used for

merging is an expedient simple choice and it neglects three-dimensional effects.

6.10. Simulation procedure

The folding procedure was described before. Here it is reviewed to make clear the details of

the simulation procedure. The Matlab code used to simulate is given in Appendix 13.3]



Figure 6.20. The folded ubiqgintin structure. Here only the 3 strands b1, b2, b3
and b5 are shown. The smallest 3 strand b4 is not shown. The smaller o helix
is not shown neither. We can divide the whole ubiquitin into three main parts:
the first part is composed of bl and b2 (the two horizontal 3 strands), the second
part is the larger « helix, and the last part is composed of b3 and b5 (the two
vertical strands).

90
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6.10.1. Secondary folding

From Fig. we can see that the folded ubiquitin has three main parts: two ( sheets and one
« helix. If we account for the two loops that connect them, there are five parts. We name these
parts as 1 to 5 from the blue end to the red end. Part 1 is the first § sheet region, it includes a
[ strand with 7 amino acids (aa), a loop with 2 aa and a 3 strand with 8 aa. Part 2 is a loop
with 5 aa. Part 3 is a « helix with 12 aa. Part 4 is a loop with 5 aa. Part 5 includes 6 secondary
structures: 3 (3 strands and 3 loops. (The smaller « helix is sometimes regard as loop, here we
regard it as a part of one loop.) The loops, part 2 and 4, are the easy parts, they are regarded
as a freely jointet chain. Their length is calculated as the sum of freely jointed bars.

Part 3, for the « helix, is calculated based on the coil-helix transfer procedure described
in Sec. 6.7.1: coil state amino acids with length 0.375 nm transfer into 0.15 nm long helix
state amino acids with rate constant kj,r. Once any amino acid changes into the helix state, all
the neighboring ones will become A, times easier to transfer into the helix state. At the same
time, amino acids in the helix state still can transfer into the coil state with rate constant k,,.
Unfolding is allowed only during the phase in which primary structure is folding into secondary
structure.

Parts 1 and 5 are similar. In each region there are two main J strands. They have a certain
rate constant kp; to combine. Before one 3 sheet strand meets the other one, it behaves like a
coil structure. Its length is calculated according to FJC force-extension relationship with length
0.375 nm. Once one meets another, they form a 3 sheet, where the combined length is n x 0.375
nm, where n is the number of amino acids in the longer § strand. Once two ( strands combine
together, the end-to-end length is calculated based as in Sec. on the combination of 8

strands.
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6.10.2. Tertiary folding

After we calculate the length of each part, we need to calculate the total length of ubiquitin. For
parts 1, 3 and 5, they have certain rate constants to combine. We call them k13 for part 1 and
3 to combine together, k35 for parts 3 and 5, k15 for parts 1 and 5. If none of them combine,
the total length is the sum of the 5 parts. If any two combine together, the length will become
the longest one among all the parts between these two plus all the length left. For example, if
1 and 3 are combined, the total length will become the longest one among part 1, 2 and 3 plus

the length of part 4 plus the length of part 5.

6.11. Simulation results

First we take a look at a typical folding extension-time cure. The folding procedure can be
separated into several stages. In Stage 1 we see a collapse. This is due to the external force
change from 100 pN to 15 pN. When the external force is 100 pN, for one 0.375 nm long amino
acid, the average length projected in force direction is 0.3336 nm. The total length for 76 amino
acids is about 25.4 nm. When the force decreases to 15 pN, the projected length for one amino

acid becomes 0.152 nm. Then the total length becomes 11.6 nm.

Stage 2 is a mostly flat region with some small wiggles and steps. These wiggles and steps
come from the folding of primary structure into the secondary structures. For example, in the
helix region, amino acids fold from coil-like structure into helix structure; in beta strands regions,
two 3 strands meet and form a ( sheet.

The fast collapse in stage 3 comes from the secondary structures folding to form the tertiary

structure.



93

Np=76 dt=0.01s lu=0.375nm If=0.15nm Ap=100 As=100
kpf=0.1/s kpu=0/s ksf=0.1/s k13=0.1/s k35=0.1/s k15=0.1/s
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Figure 6.21. Simulation result. Described in Sec. [6.11]

6.12. Parameters used and results for different parameters

The initial high force used is 100 pN, and the low force is 15 pN. These come from Fig. (5)
in [21].

The length of one amino acid is not the same for different types of amino acids. Normally
used values can be 0.38 nm |7] or 0.37 nm [22]. The values used in the code is 0.375 nm. The
length of one amino acid in an « helix is 0.15 nm [15]. The structure of ubiquitin comes from
the PDB (Protein Data Bank). All the parameters listed above are kept unchanged during the
simulation.

Here we look at the parameters we can change. The folding rate kys determines how long it
takes for the [ strands to fold. In Fig. [6.22] collapse b (the extension changes from about 10 nm
to 8 nm, which occurs at t=2.) is due to the folding of 3 strands. The left plot is for kys=0.1 /s,
it takes some time ¢ for the collapse to happen. In the right plot kyy=10 /s, and the collapse

occurs in a much shorter time.
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Figure 6.22. Plots for different ky: the left plot ky¢=0.1 /s, the right plot k=10
/s. The arrow “b” points to the the several small collapses in the left plot. In the
right plot, the small collapses shrink into one quick collapse.

Similarly, the folding rate k,; determines how long is needed to wait for the forming of «
helix. k13, k15 and k35 determine how fast the three main parts described in Fig. fold to
form tertiary structure.

Ay, is the parameter used to describe, once one helix structure appears, how many times
larger is the folding rate for subsequent helix turns. In Fig. [6:23] the left plot is for Ap=1, we
can see many small steps for helix folding. For the right plot, A,=100, the helix folding looks

like a single step.
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Figure 6.23. Plots for different Ap: on the left Ap=1, on the right A; = 100.

The time step size used in the code is dt = 0.01 s.
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6.12.1. A table of the parameters used in the simulation

Table lists out the parameters used in the code. A discussion of these parameters will be

given at the end of this section.

6.13. Experimental results

Fernandez and Li [21] used single-molecule atomic force microscopy techniques in the force-
clamp mode to apply a constant force to a single polyprotein composed of nine repeats of the
small protein ubiquitin.

In the experiments, a constant high force is first applied to the polyprotein. The force is
then decreased to a low value. A spontaneous collapse is observed. This is called Stage 1, lasting
~ 10 ms. The second stage is characterized by a noticeable increase in fluctuations and a long
lasting plateau with a slow collapse rate. Then Stage 3 appears with a abrupt increase in the
slope of the collapse. The last stage is a fast and step-like collapse.

For the poly-ubiquitin experiments, they obtained a random sample of single molecules con-
taining anywhere between one and nine repeats. In most cases, they picked up 3-5 ubiqgintins.

In Table 6.3 and [6.4] we list the results gathered from the figures in [21]. The stages are shown
in Fig. 6.1k Stage 1 is a quick collapse, Stage 2 is a flat region, Stage 3 is a steeper decrease and
Stage 4 is a quick collapse. For some figures, stages are missing: these are listed here as "N.A.".
For some others, the stages are not distinguishable: for these the tables show the total change of
the combined stages. For [21]’s Fig. 3B, the protein first folds and then unfolds at the constant
force. The value shown is for the folding procedure. (Fig. 2 in [21] is reproduced here as Fig.

6.1, Fig.3 in in [21] is our Fig. 62])
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The next table shows the time for the different stages.

[21] also measured the constant force folding for a single ubiquitin domain (Fig. [6.24]). The
two results for single domain folding show different behavior compared with the poly-ubiquitin
folding. The first stage looks similar, but in the second stage, the single ubiquitin length remains
almost constant except some small vibrations. And then a fast collapse occurs. Based on the time
the collapse lasts, it should correspond to Stage 4 in the poly-ubiquitin experiments. Therefore,
the flat plateau in the single ubiquitin experiments should correspond to Stages 2 and 3 in the
poly-ubiquitin experiments.

The force they claimed in the paper is 100 pN for high force and 26 pN for low force. But based
on the force-time plot they give, the low force appears to be around 15 pN. They claimed that
under their experimental conditions, the unfolded ubiquitin chain can be considered as a polymer
coil that is placed in a poor solvent. In this condition, the coil-globule phase transition [1,16]

satisfies a well known theory to describe the folding procedure.

6.14. Comparison with experimental results

One result from [21] is that during the folding under the high force of 100~120 pN, the
unfolding extension of one step is about 20 nm. For a fully unfolded ubiquitin chain subject
to these high forces, most or all of the secondary structure of a protein will be unraveled [7].
Therefore, the freely-jointed-chain is a good approximation. For one amino acid with length 0.375
nm, the projected length in the force direction is about 0.334 nm. That is, 0.334/0.375 ~ 89%,
the same as claimed in [21] (extension by 85-90% of its contour length). The total length of 76
amino acids should be 0.334x 76 = 25.4 nm. A folded ubiquitin measures 3.8 nm its termini [14]).
Then unfolding one ubiquitin domain makes the length change 25.4 — 3.8 = 21.6 nm, close to

the experimental results.
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Now we look at the folding procedure. We begin with the single ubiquitin domain folding

experiments, as shown in Fig. [6.24]

p
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Figure 6.24. Single domain results from [21].

In Stage 1, the collapse of experimental results are about 12~14 nm. In the simulation, shown
in Fig. [6.25], a low force of 15 pN is used, based on the corresponding force-time plot shown as the
lower plot in Fig. If we still use the FJC model to calculate this length, the length of one
amino acid becomes 0.152 nm. Then the total length should be 0.152x 75 = 11.6nm. The change
of length is 25.4 — 11.6 = 13.8 nm, which agrees quite well with the experimental results. Figure

6.25] is the simulation result. In the simulation, after the force decreases, there is a collapse

Np=76 dt=0.01s Iu=0.375nm If=0.15nm Ah=100 As=100
kpf=0.1/s kpu=0/s ksf=0.1/s k13=0.1/s k35=0.1/s k15=0.1/s
T T T T
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Figure 6.25. Simulation result. At t=1s, force drops from 100 pN to 15 pN.

similar as experimental results. In the experimental results, Stage 1 is followed by an almost flat
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region with some small fluctuations(Stages 2 and 3). The fluctuations become larger toward the
end of the plateau. In the simulation there are also some small wiggles around t=1.5 s. These
come from the helix structure folding. The only length increase at t=1.6 s also comes from the
helix forming procedure, as explained in Sec. 6.7.1. Helix formation can be the explanation for
the large fluctuations shown in the experiment. The experimental fluctuations seem bigger than
simulation, but this is reasonable since experimental error can enlarge the vibrations. The time
period of the flat plateau in experiments is around 5 s, which is longer than in the simulation.
This difference can be overcame by a change in the parameters k,, k,, and Ay,

There are three fast collapses. One immediately after the force decrease at t=1 s, and the
last two are almost at the same time, t=2.8 s. The last collapse is due to tertiary folding and the
first two come from the forming of two beta sheets. The last three collapses (two final collapses,
plus one at t = 1 8) in simulation should become one big collapse, if we want to get the same
results as experiments. This implies that once two ( strands meet and form a (3 sheet, all the
other g strands will join this § sheet quickly, and the tertiary folding will happen spontaneously.
We can simulate this by making some changes of the simulation procedure. For example, once
two (3 strands meet and form a (3 sheet, all the folding rates for § strands folding and tertiary
fold will become Ay, times larger.

The ending length of 3.75 nm, agrees well with the measured folded length.

In the experimental results, the last collapse is about 16~18 nm. But in the simulation
results, this collapse is approximately 11.8 — 3.8 = 8 nm. The experimental results seem wrong.
In unfolding procedure, the change in length is about 20 nm per ubiquitin, while in folding it
becomes around 30 nm. This seems unreasonable. For a chain with 76 amino acids, the longest
end-to-end length is about 76 x 0.375 = 28 nm. Even if changed from a straight line into a point,

the total length change is only 28 nm.
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6.15. Modification of the model

Based on the discussion in the previous sections, the model is modified as follows. Helix
structure is the first secondary structure to form. This is because in the flat plateau (Stages 2
and 3) of single ubiquitin folding, only fluctuations are observed, which is the character of helix
folding. If beta sheet forming or tertiary structure folding is allowed, one or several collapses
should be observed. To make the time of the flat plateau similar to the experimental results,
values for k,y and Aj, are changed. The unfolding rate ky, is sill not introduced here.

After the single « helix is 100% finished, the beta sheets are allowed to form. Once any
two beta strands meet together and form a beta sheet structure, the folding rate constant ki
will become Ap=1000 times larger than the original value. Because the final collapse in the
experimental results only includes one step, once one collapse happens, all the following ones
should happen in a short time.

After the beta sheets are fully formed, the tertiary structure folding is allowed. The rate
constants for tertiary folding are set to large values to make the collapse happen in a short time.

Figure[6.26]is the simulation result. Compared with the experimental results, the fluctuations

still seem too small.

Np=76 dt=0.01s 1u=0.375nm If=0.15nm Ah=50 AS=100 kbf=0.1/s
Kkhf=0.03/s khu=0/s ksf=100/s k13=100/s k35=100/s k15=100/s
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Figure 6.26. Simulation result. At t—1 s, force drops from 100 pN to 15 pN.
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6.16. Random number determination of the projected length of a freely rotating

bar in external force

In the model we regard the loop region as a freely-jointed-chain, which is composed of many
rigid bars(amino acids) with length 0.375 nm. Each bar can rotate independently. Under a
given external force, we can calculate the average length projected in the force direction. In the
helix region and 3 sheet region, we still apply the FJC model to calculate the projected length
in the force direction, but the length of one bar might be different. So far we only used the
averaged length. Since the system is in a thermal environment, the length of all the bars should
be changing all the time. Therefore, it is necessary to randomize the length of the bars at any

time. This will introduce the variance that we threw out by using the average length.

6.16.1. Distribution function

Let 6 be the angle between one bar’s direction and the force direction. We need to determine
the distribution function P(#). Because of thermal fluctuation, all the bars can jump from one
direction into any other direction. If there is no external force, all the directions are equally
distributed. The probability of observing one bar in the direction between 6 and 6 + A#f is
proportional to the area of the region on the unit sphere: P(6) - A x 27sin€ - A6.

Under the effect of an external force, all the bars tend to align in the force direction. The

weighting factor due to the external force is ef'cos0/ksT

. Now the probability of observing one
bar in the region 6 ~ 6 + Af becomes: P(f) - Af o 2msin felteos0/ksT . AQ where F is the
external force, [ is the length of one bar, kp is the Boltzmann constant and 7' is temperature.

We still need the integration of P(0) to be equal to unity, [;* P(#) = 1. We can now get the

distribution function,
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Fl SineeFlcose/kBT

(6.3) PO) = kgT eFl/ksT _ o—Fi/kpT

6.16.2. Using a random number to determine 6

Note that the random number produced by Matlab is an equally distributed random number in
the region [0,1]. How do we use this equally distributed number R to generate the unequally

distributed number 87 We use Fig. [6.27] to explain the method.

0 PO~ ©) P(e~ ©) P(e~ 93)\
R

Figure 6.27. Using the equally distributed number R to generate the unequally
distributed number 6.

We have a distribution P(#) in the region [0, 7], as shown in the upper plot. We divide [0, 7]
into many small regions: [0,61], [01,02], [f2,05] - --. Based on the distribution function, we can
calculate the probabilities that the system is in each region:P(0 ~ 62), P(6; ~ 03), P(02 ~ 03)
--+. Then we connect all the regions as in the lower plot, the length of each region being equal to
the probability of that region. The total length of all the regions is equal to 1. Then we generate
a random number R in the region of [0,1] and see which region the random number R falls into.
The corresponding 8 will be the angle we hope to find. For example, in the plot R falls into the

third region, so we choose 63 as the angle we want.
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Mathematically, if we generate a random number R, then the corresponding angle 6 should

satisfy the distribution function,

Or
R - /0 P(6)d6

Or .
fO R gip Gkl cos G/kBTde
oFU/ksT _ o~ FI/kT

eFl/kBT _ e—FlCOSGR/k‘BT

(6.4) GFI/kpT _ o—FlfkpT
1.€.

kT Fl/kpT Fl/kgT _ —Fl/kgT
(6.5) cos(Og) = ——log |e""/"BY — R. (e"V/FBT — ¢ BL)

Fl

Once we know the value of cos 8, we can calculate the length projected in the force direction
as [ - cosf. For a system composed of N units, we just repeat this procedure N times and sum

all the lengths to get the total length.

6.16.3. Numerical simulation

Figure[6.28]is a comparison of the analytical expression and the numerical simulation result. The
solid line is for P(f) - df, the bars are the percentage of events in every A6 region. Here A#
of each small region is 7/30, force is 15 pN, and length is 0.375 nm. The numerical simulation

repeats 100,000 times. The numerical results fit well to the analytical expression.
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Figure 6.28. Comparison of the theory result and the numerical simulation result.
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Knowing the distribution function, we can also calculate both the average length and the variance

of one bar. For the average length,

/ [-cosf-P(6)do
0

FlI [yl cos6-sinfeflcos0/ksTqp

kg

b'l/ cos® -sinf - e*°s? gp
0

{
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Where a = kf;—lT, b=a/(eFV/kBT — ¢=FU/ksT) The variance is

Vo= (-0
= ) -

Fl [y 1%+ cos? 6 - sin el cos0/ksT qp
kT eFl/kpT _ o—Fl/kpT

= b'l2/ cos? 0 - sind - e*<°s? 4o
0

For | = 0.375 nm, 7 = 300 K, and f = 15 pN, the calculated variance is 0.0336 nm?.
The numerical simulation results is 0.0339 nm?. The numerical result is based on a data set
of 10,000 elements. The theory and numerical average length are 0.1520 nm and 0.1524 nm,
correspondingly.

Figure is the numerical simulated results for a freely rotating bar with length 0.375 nm
in external force 15 pN. Repeating the simulation 100 times, each time we can get a different

2

projected length. Here the numerical variance is 0.038 nm®. Figure [6.30]is the simulation result
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Figure 6.29. Projected length in force direction at different time.
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of the folding procedure using the random numbers to determine the projected length. We can

see that the variance seems too large this time.

Np=76 dt=0.01s Iu=0.375nm If=0.15nm Ah=50 As=100 kbf=0.1/s
Khf=0.03/s khu=0/s ksf=100/s k13=100/s k35=100/s k15=100/s
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Figure 6.30. Numerical simulation of the folding procedure.

6.16.5. How sensitive are the simulation results to the parameters

The parameters kyr, kys, ksr, An, Ay and A affect the folding time. Larger values can make the
folding procedure faster. Figures show the effects of these parameters. Note that even
for the exact same parameters, the folding times are not the same if we repeat the simulations
several times. Therefore, the folding time shown in the plots are just the value from that
particular realization. We use them to show the trends on varying the parameters.

The folding process have several steps. The total folding time is mainly determined by the
slowest step. For the parameters used, the slowest step is « helices formation with the slowest
rate 0.03/ s. Increasing this rate can decrease the total folding times dramatically, as shown in
Fig. 6311

The folding time is not sensitive to Ay and Ag, because in the simulation these two parameters
are related to the fast steps. Accelerating the steps that are already fast can not much decrease

the time for the whole folding process.
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Figure 6.31. Effects of different %,y values. Larger value can make the folding faster.
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Figure 6.32. Effects of different £,y values. Larger value can make the folding faster.
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6.17. Multi-domain simulation results and comparison with experimental results

Figure[6.37 shows the simulation results for multi-domain folding procedure. More simulation

results are shown in Appendix[I3.5l For multi-domain simulation, we just simulate several single
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Figure 6.33. Effects of different ks values. The plots from left to right
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Figure 6.34. Effects of different Ay, values. Larger value can make the folding faster.
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domains simultaneously and use the sum of lengths of all the domains as the total length. Figures

6.39 and [6.40] are the experimental results. Figure[6.39divides the folding history into four stages.

Stage 1 is a quick collapse just after the decrease of the external force. Stage 2 is a slow decrease
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Figure 6.35. Effects of different A, values. The folding time is not sensitive to
the A, values.
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Figure 6.36. Effects of different As values. The folding time is not sensitive to
the A, values.
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of length at a nearly constant rate. Stage 3 has a steeper decreasing slope. Stage 4 is another

quick collapse. The simulation results reproduce the quick collapse of Stage 1. Then we can

see a slow decrease, with no differentiation into stages. Figure [6.39] is only one of the many
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experimental results. Figure [6.40] shows more results. These results show quite different folding
procedures. These procedures are not regular enough to divide into stages as in Fig. It is
hard to give a quantitative comparison. These experimental results have two characteristics in
common. First, after decreasing the external force, they all have a quick collapse. This shows
that our assumption, that the stretched protein can be described as a coil-like structure, seems
reasonable. The second characteristic is that all the folding happens on a time scale of several
seconds. These two characteristics are the same as our numerical results.

As noted, repeated simulations will yield different results. Figure [6.38] is the simulation
repeated with the same parameters as in Fig. [6370 More results can be seen in Appendix B.
The results from this simulation have an extension history which is divided into the same four
stages as found in the experimental results reproduced in Fig. [6.39. Following the decrease in
force, there is an abrupt decrease in length as in Stage 1. The total decrease during this Stage
is about 70 nm compared with 40-70 nm in the experiment. A relatively flat portion follows in
the simulation similar to Stage 2, but lacking the slight decrease in length. In the experiment,
this stage last 2.5-8 s, in the simulation it lasts about 4 s. The total decrease amounts to
20 nm, while in the simulation, there is 0 nm decrease. There is then a decrease like Stage
3 in which the rate of decrease is about 10 nm/sec compared with a rate of 43 nm/sec in the
experimental results. (“Stage 2 and 3 can vary greatly in their rates of collapse and cannot always
be distinguished.” [21]) This stage lasts 1.5 s in the simulation and 0.5-1 s in the experimental
results. Finally, the simulation shows Stage 4, an abrupt decrease in length of 20-30 nm compared
with 16 nm in the simulation.

In the simulation there is no length change in Stage 2. This is because in this stage, the
length change only comes from « helix formation, which gives almost zero change in extension

length. 3 sheet formation is regarded as a one-step procedure, and immediately followed by the
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tertiary formation. These two formations are in the collapse region. There is no slow length

change in the model. The detailed procedure of 3 sheets formation might help to improve this.
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Figure 6.37. Simulation results for multi-domain folding procedure. k,=0.03/s,
kbf:().l, kpu:()/s, k‘bu:O /S, ksu:() /S, Ah:50,Ab:1000, Aszl()().

Fig. [6.471 shows additional details of the folding procedure for Fig. [638 The top plot
reproduces the folding curve for the five domains. The second to the sixth plot show the folding
procedure for the individual domains, from one to five respectively. The slope of stage 2 comes
from domains three and four. Domain three folds at a time of approximately 6 s, and domain
four folds approximately 5 s, also see Fig. [6.421 We find that adjacent steps plus the noise
induced by small-scale fluctuations takes on the appearance of Stage 3. The sum of them yield
the decrease in length observed during the time from 5 s to 6 s in Fig. [6.38. Domain one and
five fold at almost the same time, at approximately 6.5 s. The nearly simultaneous collapse of

these two domains brings about the collapse.
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Figure 6.38. Simulation results for multi-domain folding procedure. This one
looks like the experimental results of [21]. k,;=0.03/s, kpr=0.1, kp,=0/s, kp,=0
/s, ksu=0 /s, Ap=50,4,=1000, A;=100. This is the only one that happens to
agree with experimental results among over 20 simulations. In Sec. we show
that once we introduce interactions between domains, this pathway will become
typical.
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Figure 6.39. Experimental results for constant force folding procedure. From [21].
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Figure 6.41. Details of the folding procedure for Fig. [6.38. The top plot is the
folding curve for the five domains. The other five plots show the folding procedure
for each of the five domains individually, from 1 (2nd plot) to 5 (6th plot).

Fernandez and Li repeated their multi-domain folding experiments over eighty times. They

report that “most of the folding trajectories are qualitatively similar, following a continuous
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Figure 6.42. These three plots show how the simulation results in a folding pro-
cess which shows an identifiable Stage 3 and Stage 4. The top plot is the average
extension, showing step-like behavior: There is one small collapse at t=5 s, an-
other small collapse at t~5.8 s, and one large collapse at t=6.5 s. The middle
plot shows the thermally-induced variation in length. The bottom plot is the sum
of the first two plots. When the noise is superimposed on the step-like decreases,
the extension is smoothed, as in Stage 3. The final collapse is so abrupt that
there is little time for the fluctuations to do much smoothing , and the decrease
remains quite sharp.
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convex time course marked by abrupt changes in slope” [21]|. But this experimental-like result
appeared only once out of 20 times in my simulations. How can we get the experimental-
like results more frequently? Note that for one single domain, the folding is always step-like.
Increasing the number of domains introduces a continuous decrease. What will happen if we
further increase the number of domains? Fig. [6.43] shows the simulation result for twenty
domains. There is a continuous decrease, but the final collapse disappears. This is because the
twenty domains are independent, they can fold at any time (still in the time scale of several
seconds). Increasing the number of domains makes them folding at different time, therefore the
folding curve looks continuous. But it becomes less likely that many of them fold at the same
time, so the final collapse disappears. For example, if there are four domains, two domains folding
at the same time is enough to appear as a collapse-like folding. If there are twenty domains, two
domains folding at the same time can not be regard as a collapse any more. To observe the same
size of collapse (relative to the total length change of all the domains), now ten domains need to
fold at the same time, which is much less likely.

What kind of change can make simulation results more likely to reproduce the experimental
results? If we look at Fig. again, we can compare the folding of the domains with the four
stages shown in Fig. Stage 1 only comes from coil relaxation. Stage 2 is the waiting time
for any domain to finish the folding procedure. One domain folded at time 5 s, after waiting
for about 4 s. Then the next folding finished after 0.8 s. Then after 0.7 s, two folding finished
at the same time, which brings the final collapse. This implies what kind of folding procedure
can produce the experimental-like behavior. Waiting time for the first folding to finish, gave us
Stage 2. Once one domain finished folding, the next few ones should happen in a short time, to
give the steep slope. Then, the domains remaining should fold at almost the same time, to give

the final collapse. This whole procedure is like a avalanche!
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The multi-domain folding procedure is not the sum of five independent single domains, there
are cooperations between the domains. This seems to give the cause of the multi-domain folding

behavior and why it is different from the step-like single domain folding procedure.

Np=76 dt=0.01s lu=0.375nm If=0.15nm Ah=50 As=100 kbf=0.1/s
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Figure 6.43. Typical simulation folding procedure with twenty domains. We can
see that after the collapse due to coil relaxation, there is one continuous decrease.
The final collapse has disappeared.

6.18. Introducing interactions between domains

In Fernandez and Li’s experimental results, Stages 2-4 show a tendency of folding faster and
faster: Stage 2 is a slow decrease, Stage 3 is a steeper slope, and Stage 4 is a collapse. This
implies the existence of cooperation: once some domains finish folding, the rest of the domains
will fold with a higher rate. To simulate this effect, we introduce a parameter A;: for every
completely folded domain, all of the unfinished folding procedures will speed up A; times. The
effect of Ay is, once any domain finishes its folding, all the folding rates of the other domains will

become A; times faster.
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Figs. [6.4416.49 show the simulation results. The parameters used are: k,;=0.03/s, kyz=0.1,

kpu=0/s, k=0 /s, k=0 /s, Ap=50,4,=1000, and A;=100. The number of domains and A,

are given in the captions.
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Figure 6.44. There are 5 domains. A; = 1.2.
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Figure 6.45. There are 5 domains. A; = 1.5.

We first look at the folding curves of 5 domains. When A; = 1.2, the effects of the interactions

are not clear, the domains still appear as if they are folding independently. When A; = 1.5, we

can see the tendency to accelerate folding, but there is still no clear final collapse. When A; = 2,

the final collapse appears more frequently. When A; = 3, the final collapse always shows up.
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Figure 6.46. There are 5 domains. A; = 2.

Now we look at the folding curves of 9 domains. When A; = 1.2, the tendency for accelerated

folding is already apparent. When A; = 1.5, the final collapse is clear. The interaction factor A,

seems have more effect on 9-domain folding procedure than 5-domain folding procedure. This is

because for the 5-domain folding procedure, the last domain folds with a rate A} times higher.

For the 9-domain folding procedure, the last domain folds with a rate A% times higher. A value
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Figure 6.47. There are 9 domains. A; = 1.2.

of Ay only slightly greater than unity will more greatly accelerate folding when acting on a large
number of domains.

The simulations in this section show that the introduction of an interaction factor A; can
improve the simulation results by making Stages 3 and 4 appear more frequently, as in the

experimental results. But we still do not know the dynamics of the interactions. Why might there
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Figure 6.48. There are 9 domains. A; = 1.5.

be interactions between domains? How do they effect the folding procedure? In the simulation,
I assume the interaction appears when some domains completely fold: Is this necessary? Does
the value of A; depend on the number of total domains? Or does it depend on the number of
folded domains? Or does it depends on the percentage of folded domains? There are still many

puzzles in this interaction.
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Figure 6.49. There are 9 domains. A; = 2.

6.19. Discussion about the folding rates.

Here we want to see how the folding rate should change when there is an external force.
In Fernandez and Li’s paper, the folding time At is fit as a function of force using At ~

0.01 x exp(F x 0.8/kpT) with Az = 0.8 nm. We want to look at this length scale for different
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forces. The folding rate for ubiquitin without any force is about 365/s [27], which means the
folding time is about 0.003s. For Fernandez and Li’s results, the reported folding time in the
range 10-20 pN is about 0.2 s. Using the average of 15 pN, we see that the rate is slowed down
about 70 times under 15pN. This can be fit to the expression above by using Az ~ 1.1 nm.
Increasing the range of forces about 10 pN further (increasing force from 10-20 pN to 20-30 pN)
causes the folding time to become 10 times slower. This corresponds to Ax =~ 0.9 nm. Further
increasing the force from 20-30 pN to 30-40 pN causes the folding time to become 2 times slower.
This corresponds to Az ~ 0.28 nm. It seems that when force increases the characteristic length
Az will decrease. Similar behavior is observed in the persistence length for the worm-like-chain
model [43]: in the low-force region the persistence length is 0.8 nm while in the high-force region
the persistence length decreases to 0.4 nm.

What is the meaning of the Az? As will be shown in the next section, it is not the end-to-end
length of the whole protein. If we consider the folding procedure as many small simultaneous
diffusions, this Az should be the length of one small diffusion procedure. Initially in the folding
process, for small external forces, long range interactions are allowed. Amino acids could diffuse
a long distant to find the correct bonds to form. Therefore Az is large. When force increases,
since long distance interactions are very sensitive to external force, they are eliminated very
quickly. Only short range interactions are left, so Az decreases. One interesting observation is
that for 35 pN, the average projected length on the force direction of one amino acid is about

0.27 nm, which is close to the Az ~ 0.28 nm for this force.
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sequence structure
1-7 0 strand

8-9 loop
10-17 0 strand
18-22 loop
23-34 « helix
35-39 loop
40-45 0 strand
46-47 loop
48-50 0 strand
51-55 loop
56-59 « helix
60-63 loop
64-73 0 strand
74-76 loop

Table 6.1. The secondary structures of ubiquitin.

Parameters Meaning Values
dt time step 0.01 s
monomer length length of one amino acid 0.375 nm
monomer length in monomer length in helix state 0.15 nm
helix state
ky g rate of primary structure form « helices 0.03/s
kpu rate of formed « helices unfold again 0/s
kyy rate of primary structure form ( sheet 0.1/s
Kbu rate of formed « helices unfold again 0/s
ksr rate of secondary structures to form tertiary structure 100/s
Ay once one helix turn appear, the times 50
its neighbours’s folding rate can accelerate
Ay once one 3 sheet pair forms, the 1000
times its neighbours’s folding rate can accelerate
A once one tertiary structure forms, the 1000
times of folding rate of the rest can accelerate

Table 6.2. Parameters used in the simulation.



High Low | Length | Length | Length | Length

Figure force force | change change change change

(unfold) (fold) | (stage 1) | (stage 2) | (stage 3) | (stage 4)
Fig. 1A 122 pN 15 pN | 30 nm 10 nm 15 nm 20 nm
Fig. 2A 120 pN 15 pN | 36 nm 12 nm 18 nm 24 nm
Fig. 2B 120 pN 15pN | 75 nm 19 nm 38 nm 19 nm
Fig. 3A | 100 ~ 120 pN | 50 pN | 20 nm 0
Fig. 3B | 100 ~ 120 pN | 35 pN | 20 nm 115 nm
Fig. 3C | 100 ~ 120 pN | 35 pN | 40 nm 75 nm | 70 nm
Fig. 3D | 100 ~ 120 pN | 23 pN | 60 nm 105 nm

Table 6.3. The results from [21].This table gives out the estimated length changes

for the stages.

Table 6.4. The results from [21|. Continuation of Table [6.3] this table gives out

Figure Time Time Time Time
(stage 1) | (stage 2) | (stage 3) | (stage 4)
Fig. 1A | 0.01s 7s 1.5s N.A.
Fig. 2A | 0.02s 2.58 0.4s 0.04s
Fig. 2B | N.A. 2.8s 0.8s N.A.
Fig. 3A| N.A. 8s
Fig. 3B N.A. 4s
Fig. 3C N.A. 6s | 0.7s
Fig. 3D 0.1s 0.2s

the estimated time for the stages.

Table 6.5. Ax as inferred from folding and unfolding experiments, where the
folding or unfolding time is fit to exp(F x Az/kgT). The values in lines 2, 3
and 4 are found by accounting for the changes that occur in Az as the force is
varied. Note that as force increases, Az decreases. The value in the fifth line is
that given in [21] by assuming that Ax is insensitive to the force. Even under
unfolding conditions, it is found that as force increases Az decreases and that the

| Force (pN) | Az(nm) | Conditions | Source ||

0-10 3.1 simulation [6]
0-20 1.1 folding 21
20 - 30 0.9 folding 21
30 - 40 0.28 folding 21
0-40 0.8 folding 21

<a0 0.8 unfolding 43

=50 0.4 unfolding [43]

value of the Az under folding and unfolding conditions are comparable.
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CHAPTER 7

Conclusions to Part 1

In the first part we simulated the folding procedure for constant velocity and constant force
folding procedure. These simulations are based on the two-state model.

The simulation results of force-extension curve for constant velocity fit the experimental data.
The variance based on two-state model can show the same tendency (shape) as the experimental
results, though with a bigger amplitude. The reason for this discrepancy is still unknown.

For the constant force experiments we solve one puzzle: why the single domain folding is step-
like while the multi-domain folding show stages-like behavior. The answer is the cooperativity
between domains. One domain finishing its folding can help the folding of the others, leading to
the stages-like behavior. But we do not know the mechanism of this cooperativity. In Part II,
we give an explanation of the cooperativity inside of one domain.

In this part, when we set the value of parameters, we choose them such that we can get
the best fits to the experimental results. Following the two-state model [43], when there is no
external force, the folding rate is ag. When there is an external force F', the force will have an
effect of exp(FAx/kpT) on the folding time. Fernendez and Li [21] stretch ubiquitin and then
allow it to refold under a force of approximately 15 pN. Using F' = 15 pN and x; = 20 nm, the
folding time will be exp(15 - 20/4.1) = 6 - 103! times slower. This means, if the folding time is

107° second with no applied force, then under 15 pN the folding time will be 10%*

years. Simply
stated, under 15 pN ubiquitin can never fold. This result is at odds with the experimental finding
of ubiquitin refolding and suggest that there may be something wrong with the two-state model.

Solving this puzzle is the task of the next part.
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7.1. Two-state model can simulate the unfolding procedure for constant velocity

stretching

The two-state model is widely used to describe the folding procedure. For this model, a
protein can stay in one of the two possible states, the native state or the unfolded state. When
there is no external force, the folding (unfolding) rate is cg (3p). When there is an external force,
the force will have an effect exp(FAz/kgT) on the folding (unfolding) time, where Az is the
distance from unfolded (native) state to the transition state. Use this model, we can numerically
simulate the force versus length curve for constant velocity folding for dextran. The simulation

results fit the experimental results quite well, as shown in Fig. [l

Dextran

experiment
—— model

6.0e-09

5.5e-09 -

Force (N)

5.0e-09

4.5e—09 L L L
0.0e+00 5.0e-08 1.0e-07 1.5e-07 2.0e-07

Extension Length (m)

Figure 7.1. Comparison of experimental and simulation results for dextran. The
dots are the experimental results. There are 310 dextran monomers. Iy = 0.5
nm, I, = 0.565 nm, g = 2 x 107*/s, Gy = 13.2 kT, and temperature is 300 K.
The experimental data is from [34].

We can also calculate the variance based on the two-state model. The calculated results

give the same tendency as the experimental results: large variance for low force; when force
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increases, the variance decreases; for moderate forces, there is a peak for the variance as the

states transition from short to long length, see Fig.

20

—— Theory result
Experimental result
18 -

16
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10

Variance(nm)

(0] 500 1000 1500
Force(pn)

Figure 7.2. Comparison of experimental results and theoretical results for the
variance of extension of dextran.

7.2. The disappearance of step-like behavior might come from inter-domain

interaction

We can reproduce step-like behavior for single domain for constant force folding procedure.

Fig. [[3] and [.4] show the experimental and simulation results.

For multi-domain folding procedure (constant force), we find that if we allow an interaction
coefficient between domains, which means once one domain finished the folding it will help the
other domain fold, we can also reproduce the stages of folding shown in Fernandez and Li’s

paper. Shown in Figs. and
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Figure 7.3. Results from [21], where it is assumed that there is only one ubiquitin
domain being stretched by the AFM.
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Kkhf=0.03/s khu=0/s ksf=100/s k13=100/s k35=100/s k15=100/s

30

25 [y

N
o
T

extension(nm)
B
[
T

10

o 2 a 6 8 10 12
time(s)
09-Aug—2005

Figure 7.4. Numerical simulation of the folding procedure for single domain.
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In Part I we mentioned that there is a problem for the two-state model: a small force might
slow down the folding procedure so much that some proteins can never fold under force, which
is not corresponding to experimental observation. In Part II, we try to solve this problem.

In Sec. [§ we present a first attempt to improve the two-state model. Instead of assuming
that the protein can only be in one of two possible states, we assume that the protein can
be in many different configurations. These configurations are simplified as a one-dimension
reaction coordinate. For the stretching experiments, this reaction coordinate is the end-to-end
length of the protein. We assume that for any end-to-end length, there is a corresponding free
energy. Therefore we can get one curve: free energy versus reaction coordinate. We assume
that the folding procedure can be simulated as one-particle diffusion through this energy field.
We simulate with different kinds of potential fields to get a better understanding of the folding
procedure.

In Sec. [@ we show that one particle-diffusion simulation can be replaced by a more realistic
simulation: multi-particle diffusion. In this new simulation all the particles can diffuse simulta-
neously. Then, the slowest procedure determines the overall folding time. Though many particles
diffusion is assumed here, one-particle diffusion is not useless: for any particle, its diffusion is
still a one particle diffusion. The change is that the free energy used for any particle should not
be the free energy of the whole protein, but only part of the whole protein’s free energy. This is
the key of making the whole protein’s folding time becomes less sensitive to the external force.

In Sec. M0 we apply the idea of multi-particle diffusion to an imaginary protein. We make
some reasonable assumptions about how the force affects the formation of bonds. We have some
interesting results, shown in details in the section.

In Sec. [Il we apply the ideas in Sec. [I0 to a real protein, RNase H.
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CHAPTER 8

The change in MFPT with different potential fields

For two-state model, rate constants are the parameters to describe the folding time. In
diffusion problems, we use mean first passage time (MFPT) instead. This is the average time for
the particle to diffuse from its initial position to its ending position, which represents the protein

folding from the unfolded to the folded state.

8.1. Numerical simulation for one intermediate state

We begin with the case where there is only one intermediate state. For simplicity, we choose

a cos function to generate the potential

|lz] < 0.5: G = —depth/2kpT cos(2mx) + depth/2kpT

05 < |z|<1: G = —5kpT cos(2mz)+ 5kpT

as shown in Fig. Bl The potential fields are set so that there are at least two local minimum,
corresponding to the initial unfolded state and the final native state. The energy difference
between the initial energy and the highest energy (transition state) is called the “height”. If there
are some other local minima, we call them intermediate states. The energy difference between the
transition state and the intermediate states is called the “depth”. The spatial distance between
neighboring local minima is call the “width”. This potential, then, can be specified in terms of
its height(amplitude) and width. We first keep the width unchanged, and vary only the depth

of the intermediate states. The MFPT’s are shown in Tab. 1] and Fig. 82l
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[ depth | MFPT |
no intermediate | 1483
0 kpT 2392
2 kT 1313
4 kT 999
6 kpT 882
8 kT 908
10 kT 1481
12 kT 5447

Table 8.1. MFPT for different depths of the intermediate state, as shown in Fig. Rl

The simulation procedure is as follows. We divide the potential field spatially equally into
N points. There is one energy corresponding to each point. We assume the particle can jump
from one point to its neighbors with certain rates. For example, the ¢th point has energy
G, the (i + 1)th point has energy Gii1, and the energy difference is defined as AG; 10 =
Gi+1 — G;. The spatial distance between the two points is Az, the diffusion coefficient is D.

Then the rate that the particle jumps forward from the ith point to the the (i + 1)th point is
F _ _D_. AGiy1/2/kBT
Z+1/2 ALL’Q eXp(AGZJrl/Q/kBT)*l
B. _ D . AGit1/2/ksT
i+1/2 = Ag? 1—exp(=AG;11/2/kBT

. The backward rate from (i + 1)th point to the the ith point is

y- Then we can use a random number to decide the particle’s
behavior. The first time it reaches the ending point (the native state), the folding procedure is

complete. The code is shown in Appendix I3.11

The presence of a intermediate state has two effects. First, it can provide a “rest area” for
diffusion. As a local energy minimum, a particle can stay at the intermediate state, and use it
as a new starting point to finish its travel. In this manner, the intermediate state can help the
diffusion procedure. This is why moderate depths of the intermediate can accelerate the diffusion
procedure. On the other hand, it takes extra time to get out of the intermediate state. In this
manner, the intermediate state slows the diffusion procedure. This is the reason that for larger

depths, the presence of the intermediate state increases the MFPT.
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depth:lOkBT
_ depth=12kBT

Potential(kBT)
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Figure 8.1. Here, the intermediate state is of constant unit width and varying
depth. The solid line is for no intermediate state and is given by a single cos
peak, |z| < 1,G = bkpT cos(mx) — 5kpT. The dashed line (designated 0kpT’)
is for an intermediate state of zero depth, i.e. a plateau, || < 0.5 : G = 0;
0.5 <|z| <1:G = —5kpT cos(2rz) + SkpT.

8.1.1. Analytical calculation for one intermediate state

There is one stable intermediate state between two peaks as shown in Fig. B3l Denote the
MFPT from the initial position A to the transition state B as t; . The MFPT for the backward

transition from intermediate state C to B is to. The MFPT from C to the ending position D is ¢3.

to
to+t3

ts
to+t3

A particle at position C has probability p = to go forward to D, and probability ¢ =
to go backward to A. Note that, & = 1/t, where k is the rate constant. At any position, the
probability of going forward is proportional to the rate of going forward. Therefore we can get

the probability of going forward or backward based on the MFPT. For simplicity, we will use

notation to3 = t9 + t3. For a particle initially in position A, after time ¢; it arrives at position
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Figure 8.2. The MFPT results from Table Bl plotted versus the depth of the
intermediate states shown in Fig.

C. Now it has two choices: go to D after time t3 with probability p, or go back to A after time
to with probability ¢. If it goes back to A, it needs to repeat the procedure again. The MFPT

with this intermediate state is
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Figure 8.3. Energy barrier with intermediate state in the middle.
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The expression for the MFPT can be considered in two parts. The first term, ¢ +t3, accounts
for the fact that no matter what the pathway is, to reach the right-hand end the particle must
go through the entire potential field once, which takes time ¢ +t3. The second term, (t; + tg)i—;’,
accounts for the additional contribution from those particles which traverse part of the path
repeatedly. For, we note that the particle does not always go forward; sometimes it will go
backward. If it goes backward from the intermediate state, it takes time t5 to reach the initial
position, and ¢; to return to the intermediate state. Therefore, to go backwards out of the
intermediate state to the initial state one time takes an extra time (¢; + t2). This time is
multiplied by i—g which is the average number of times that the particle will go backwards out of
the intermediate state. When t3 is small and ¢, is large, the particle tends to proceed directly
from the initial state to the final state. When ¢5 is small and ¢3 is large, the particle’s trip to the
final state will tend to be composed of repeat passes over the transition state at B.

A simple case to consider is t; = t9 = t3, in which the two peaks are identical, and each peak
is symmetric about its maximum. It this case (FPT) = 4¢;. The intermediate state makes the
MFPT four times longer. Note that we will use MFPT or (FPT) interchangeably.

If only #1 = #3, then the MFPT becomes MFPT = 3t; + 4.

If the two peaks are symmetry about the intermediate state, as in the numerical simulations

shown above, then we have to = t3. Then the MFPT becomes
(8.2) MFPT = 2(t1 + t2)

In [52|, the MFPT is calculated using

2 1
MFPTapprox = k_l +k_2
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|| Potential | Numerical results | Wagner [52] | MF PToppron ||

Fig. B4 924.5 920.7 9255 |
Fig. 924.6 4675 9255 ||

Table 8.2. Comparison of the results from [52] and our results.

where the k’s are rate constants. In our notation, this equation can be written as
(8.3) MFPTpprox = 2t1 + 1o

We use numerical simulation to compare Wagner’s results and our results, as shown in Figs. [84]
and B3l These two potentials are both symmetric about the intermediate state. We can split
the potential, at the intermediate state, into two potentials, and simulate the MFPT for each
part separately, see Figs. and 871

For Fig. B4 t; = 458.0 and ty = 4.775. The numerical simulation result is M FPT = 924.5,
Wagner’s method gives the result 920.7 and our method gives 925.55. Both are close to the
numerical results. This is because t; > t9, and the difference between the two methods is not
significant. For Fig. R3] t; = 4.775 and to = 458. For this case, t; < t9, and we can see that

our method is accurate, Table 8.2

8.1.2. One intermediate with flat potential regions

For symmetric step-like regions with one intermediate, Fig. [R.8]), we can calculate the MFPT
analytically [23]. Take the width of the one region to be W, the diffusion coefficient as D, the

height of the first peak as Uy, and the depth of the intermediate as U. Then the MFPT is

W2 [5 Un U Ug—-U
8.4 FPT)=—|=+4+4cosh | — 2cosh [ —— 2cosh (| ———
(8.4) ( ) D [2 + 4 cos (kBT) + 2 cos (kBT) + 2 cos ( Ko )]
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Figure 84. MFPT = 924.5.
The potential is |z| < 0.5 :
G = —25kpgTcos(2rx) +
25kpT05 < |z) < 1: G =
—5kpT cos(2mx) + bkpT.

Figure 8.5. MFPT = 924.6.
The potential is |z| < 0.5 :
G = —5kpTcos(2mzx) +
5kpT05 < |z < 1 : G =

—2.5kpT cos(2mx) + 2.5kpT.

Fig. B9 shows a comparison between the numerical simulation results using (8.I) and the
analytical prediction from (84). The two agree quite well. The small difference is due to
simulation error which can be reduced by further decreasing the simulation time step.

To study the effects of the position and the width of the intermediate, we use a spike-like
potential, as shown in Fig. B0l Table B3] and Fig. BTl give the results for different positions

of the intermediate state.
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Figure 8.6. The M FPT = 458.0
for the left half —1 < z < 0 of
the potential in Fig. R4l This
MFPT is used as t; in ([82)).

Figure 8.7. The M FPT = 4.775
for the right half 0 < z < 1 of
the potential in Fig. R4l This
MFPT is used as ty in (82).
Fig. shows the simulation results for different widths of the intermediate state, while

the position of the intermediate state is fixed at the middle of the interval.

8.1.3. Multiple identical peaks

In this section, we investigate the presence of multiple intermediate states on an otherwise smooth
linearly changing potential. We use the potential G = kT [kx + 1 — cos(2mx)] as a numerical
simulation example. If there are N identical peaks, the region of z is 0 < x < N. When
N increases, the length of the domain also increases. There are two parts in the potential: the

linearly changing part kg7 -kz and the periodic part kg1 [1 — cos(2nz)]. If kK > 0, the underlying
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Figure 8.8. One intermediate with flat potential regions.
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Figure 8.9. Comparison of numerical simulation results and analytical prediction
from (R4) for step-like potentials.

potential increases linearly while if k& < 0, the underlying potential is decreasing. Fig. BI3lshows

the potential field for N = 5.
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Figure 8.10. Spike-like potentials.

| =1 | W [ MFPT |
0.1 0.2] 2.5915
0.2 0.2 3.7378
0.3 0.2 | 4.8842
0.410.2] 6.0304
0.5(0.2]| 7.1763
0.7 10.2] 8.3220
0.710.2] 9.4676
Table 8.3. Numerical simulation results for the MFPT for the potential shown
in Fig. BI0 for different positions of the intermediate state and Uy = 5kpT,
U =25kgT, W =0.2. z; and W are normalized by the the total length of the
whole region. The simulation spatial step was Az = 1/160.

Numerical simulations show that if k is positive, then the MFPT time increases exponentially
as the number of peaks increases. Le., (F/PT) x exp(Nc) where ¢ is some constant, Fig. 814l

When k = 0, the MFPT time increases proportional to N2, i.e., (FPT) oc N2, Fig. BI5l

When k < 0, the MFPT time increases proportional to N, i.e., (FPT) < N, Fig.

Fig. RIT shows the results for fized length of the region length and fixed peak amplitude, but

varying number of peaks in the region. For £ = 0, the MFPT is constant, as expected. Based
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Figure 8.11. The results from Table R3] show that the MFPT increases linearly
with the position x; of the intermediate state.

FPT

35 1 1 1 1 1 1 1
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

width/total length

Figure 8.12. Numerical simulation results for the spike-like potential with differ-
ent widths, Uy = bkgT', U = 2.5kgT, and x1 chosen such that the intermediate
state is in the middle of the interval. The simulation spatial step was Az = 1/320.

on dimension analysis, we know that the folding time for one peak is proportional to X?, where

X is the spatial size of the peak. That is, if we keep the shape of the potential unchanged and
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Figure 8.13. Potential G = kT [kx + 1 — cos(2mx)] for different k£ and the case
of five peaks.
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Figure 8.14. MFPT for different k& on a log scale. For large positive k, we have
a straight line fit. G = kT [kz + 1 — cos(27mz)]. To is the mean FPT for N = 10.

only shrink the spatial distance by half, the folding time will become 4 times shorter. Now we
need two such smaller peaks to keep the total length unchanged. For the identical two symmetry

peaks, the total folding time is 4 time longer than one. These two effects are canceled, the total
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k=1.5
k=1
k=0.5
k=0
k=-1

Do*x+0

1 1 1 1 1 |
1 2 3 4 5 6 7 8 9 10
number of identical peaks

Figure 8.15. The square root of the Mean FPT for different k. For &k = 0, we
have a straight line fit. G = kT [kx + 1 — cos(2mx)]. Ty is the mean FPT for
N =10.

k=1.5
k=1
k=0.5
k=0
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>Po*x+0

L Il 1
1 2 3 4 5 6 7 8 9 10
number of identical peaks

Figure 8.16. Mean FPT for different k in a linear scale. For negative k, we have
a straight line fit. G = kT [kz + 1 — cos(27mz)]. To is the mean FPT for N = 10.

time remains unchanged. This is the reason that in increasing the number of peaks from one

to two, the folding time remains constant. Similarly for increasing the number of peaks to any
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|| Ax | MFPT for N =10 ||

1/40 4125.10
1/30 4160.9
1/160 4169.9

Table 8.4. Numerical simulation results for the MFPT with different precision.
Decrease in Az will cause the results more precise. The difference is about 1%
when changed from Az = 1/40 to Az = 1/160.

value. For both positive k£ and negative k, the increase of the number of peaks first causes some
increase in time, but then the MFPT becomes almost constant while the number of peaks varies.
This means if the length of the region is kept constant, then the MFPT is not sensitive the

number of peaks.

1.8+
1.7
1.6
15-
1.4~ O k=15
— * k=0
=
= A k=-1
13-
1.2
1.1+
14 o * oy % —%
0.9 I I I I I I I I ]
1 2 3 4 5 6 7 8 9 10

number of identical peaks

Figure 8.17. Mean FPT for different k. G = kpTkx — acos(2nzx), where a =
2kpT. T is the mean FPT for N = 1. As shown in Table B4l the decrease in
time with number of peaks for £k = 1.5 seems not to be due to numerical error.
Increasing the the simulation precision by a factor of 4 only makes the results
change about 1%.

Fig. BI8] shows the effects of the amplitude of the peaks. Increasing the amplitude makes

the MFPT longer.
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Figure 8.18. Mean FPT for different amplitude of peaks. G = kpTkx —
acos(2mz), where a = 2kpT and a = 1kpT.
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CHAPTER 9

Can the folding procedure be simulated by the diffusion of a
single particle?

9.1. Simultaneous diffusion simulation of protein folding

The two-state model is widely used in protein folding simulations. For proteins whose length
change in folding is large, the two-state model predicts that the folding time is very sensitive to
the external force. Experimental results, however, find to the contrary, see Sec. [[1l However, if
we use an alternative model, which we call the simultaneous diffusion model, this problem does
not arise. As shown in the section on the constant force refolding simulation, Sec. [l if we choose
the folding rate (the inverse of the mean first passage time for diffusion problem) properly, a
simultaneous diffusion model can also yield step-like behavior for single domain folding, which
is regarded as a characteristic of the two-state model. Even though the simultaneous diffusion
model is closer to the actual folding procedure, it can still be represented as one-particle diffusion,

i.e. as diffusion over G(z), where x is one-dimensional.

9.2. Experimental discrepancy for the two-state model

Fig. shows the free energy diagram, GG versus the reaction coordinate. The two possible
states are separated by the energy barrier of the transition state. A protein moves from one
state to the other with a certain rate. In force-stretching experiments, the end-to-end length is
normally chosen as the reaction coordinate. One simple consequence of the two-state model is
that z, + 2y = AL, where AL is the length change from one state to the other, and x, and x

are defined in the figure.
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Figure 9.1. Free energy diagram in reaction coordinates. If the domain is in
the folded state, its length is Iy. If it is in the unfolded state, its length is I,.
The energy difference between the folded state and the energy barrier is AG,,
and the distance between the folded state and the energy barrier is is z,. The
energy difference between the folded state and the unfolded state is AGy, and
the distance from energy barrier to unfolded state is x¢.

Schlierf [50| shows that z, = 0.17 nm for ubiquitin. It is also shown that the total length
change from the native state to the unfolded state is about 20 nm. Using the two-state model,
we can estimate x; ~ 20 nm. Fernendez and Li [21] stretch ubiquitin and then allow it to refold
under a force of approximately 15 pN. Following the two-state model [43], when there is no
external force, the folding rate is ag. When there is an external force F', the force will have an
effect of exp(F Az /kpT) on the folding time. Using F' = 15 pN and xy = 20 nm, the folding time
will be exp(15 - 20/4.1) = 6 - 103! times slower. This means, if the folding time is 1075 second

024 years. Simply stated, under

with no applied force, then under 15 pN the folding time will be 1
15 pN ubiquitin can never fold. This result is at odds with the experimental finding of ubiquitin

refolding and suggest that there may be something wrong with the two-state model.
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Fernandez and Li [21| measure folding rate as a function force. Fitting this data by assuming
that folding time ~ exp Fwy, they find that xy = 0.8 nm. Therefore, x¢ + x,, = 2.5 nm, instead

of 20 nm. This discrepancy can not be explained by the two-state model.

9.3. Viscosity affects protein folding

Jacob [28| shows that viscosity of the solvent affects the folding rate. This means that
diffusion plays a role in the protein folding procedure. But, what we need here is not a single
particle diffusion simulation, because for one particle diffusion the folding time is still sensitive

to the external force. Instead, we need a simultaneous diffusion model.

9.4. Reducing multi-dimensional folding in (x,¢) to the diffusion of a single particle

along one dimension

Protein folding is a complex process involving many degrees of freedom. The complexity of
describing protein conformational changes is often reduced by considered that the amino acids
are rigid units, so that only rotations about the peptide bond need to be considered. In this
case, for a protein of N amino acids, there are 2(N — 1) degrees of freedom, accounting for the
two angles ¢ and v at each peptide bond.

Even with this simplification, we are left with a large problem involving many degrees of
freedom.

Protein folding is sometimes considered as a problem of a single particle diffusion problem
with the end-to-end length as the reaction coordinate. Then, there is a free energy potential G(x)
which corresponds to that length z. Therefore, we can get a length versus potential curve G(x).
We could then consider using that potential field for the one-particle diffusion problem, in order
to simulate the protein folding procedure. That is, we would use only one degree of freedom, a

one-dimensional reaction coordinate along which the protein folds. But, the folding procedure of
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a one-degree of freedom system is not the same as that for one of 2(N — 1) degrees of freedoms.
But the one-degree of freedom system can be used to approximate the higher-dimensional system
under some conditions, as discussed below.

The change along the reaction coordinate comes from many contributions. For example, we
can consider, as noted above, that the individual amino acids act as rigid components. During the
folding procedure, we can track the configurational changes of each amino acid. Let us consider
that the reaction coordinate is the end-to-end length. From the initial unfolded state to the final
native state, the projected length of the first amino acid has some change Az, also some energy
change AG;. Here the projected length means the length projected to the line between two
ends of the protein. (With this definition, translations and rotations of the protein as a whole,
while remaining static in configuration, do not alter the projected lengths of the component
amino acids.) Similarly we define Axs, Axs, ..., Axy and AGy, AGs, ..., AGy, where N is the
number of amino acids. The N particles, each representing an amino acid are allowed to diffuse.
When all of them finish folding, we can say the whole protein has then finished folding. That is,
the slowest ¢ of the IV amino acids determines the MFPT of the protein.

For the alternative description in terms of the diffusion of a single-particle diffusion problem,
the single particle is required to diffuse through the length Ax = Axy + Azo + --- + Axzy and
through an energy AG = AGy + AGy+ - -+ AG . Now we ask, “Does the N-particle diffusion
model give the same MFPT as the one-particle diffusion model?” If so, then the one-particle
model would be a better model as it is much simpler.

Assume that the energy of each amino acid is only a function of end-to-end length. Then
we have Az; = Azg = -+ = Azy = Az/N and AG; = AGy = --- = AGy = AG/N. For the
first amino acid 4 = 1, we can do the diffusion experiment and get a FPT ¢1;. After repeating

R—o0

the diffusion many times, the MFPT for amino acid ¢ = 1 can be computed, (T}) = Z t1i/R,
i=1
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R—o0
where R is the number of times the experiment is repeated. Similarly, (T5) = Z toi/R, .... If
i=1
all the amino acids were identical, we would have (T1) = (Ty) = --- = (In).
Since the FPT of the protein is determined by the slowest-folding amino acid, the MFPT for

the protein is (FPTN_particte) = max({T1), (T2),...,{In)), where max chooses the maximum

of the N single amino acid MFPT’s.

9.4.1. Mean first-passage times

Now we want to compare the two folding procedures. In one-particle diffusion, the (F PTone—particie)
accounts for diffusion through length Az with energy change AG. The second procedure is to
divide the length into N smaller parts, and to also divide the total energy change into smaller
parts. For simplicity, we assume that the smaller length regions and energies are equally divided.
We use N-particle diffusion to simulate this procedure. Because of the shorter length, the MFPT
for each small region should be shorter.

On the other hand, the completion of the N-particle diffusion requires all the particles to
finish folding. The more regions, the more time we should wait. Can these two effects balance
each other so that the one-particle diffusion has the same MFPT as the N-particle diffusion?

If the potential is constant or changes very little compared to kT, i.e., AG << kg7, then
the effects of the energy change are trivial. In this case, the problem can be regarded as a free
diffusion problem. If the distance x for the diffusion becomes N times smaller, then it occurs N2
times faster. As shown in Sec. .42 the conclusion that the MFPT of diffusion scales with N2
is general and holds for any potential. Even for arbitrarily large energy changes, AG >> kgT,
if only the z scale is compressed N times, the MFPT becomes N? times faster.

Moreover, a reasonable assumption is that the energy barriers encountered by a single par-

ticle would be less than the energy barriers of the whole system. In this case, the MFPT of
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| N [MFPT |
1 ] 0.9992
4 12.0783
9 | 2.8327
16 | 3.3813
25 | 3.8148
100 | 5.1896

Table 9.1. (FPTN_particie) for different N.

each of the N particles should be even shorter. Therefore, we can use the estimate (77) <
(FPTone—particie) /N>

We now need to specify the FPT distribution for one small region. As an approximation, we
choose the exponential decreasing distribution, i.e., the probability that ¢t < 77 < t 4 At is given
by P(t < T} <t+ At) = exp(—t)At. In this case, we find numerically that (FPTN_particie) =
V/N(T}), as shown in Table This square root scaling is only approximate.

But it is clear that (FPTN_particie) 7 N?(T1). Using the approximate square-root scaling,

we have
(91) <FPTOne—pa7‘ticle> > N\/N<FPTN—particle>

The two models give different results. That is to say, let us compare a model which uses a
single-particle diffusing over the potential surface of the folding of the entire protein versus a
model of N particles diffusing independently and simultaneously each over its local potential
surface. The one-particle system must diffuse along the reaction coordinate, the entire distance
from unfolded to native state. Each of the N particles needs to diffuse only its contribution to
the whole-protein distance: in the case considered each particle contributes 1/N of the distance.

We find that the one-particle diffusion is much slower than the N-particle model.
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Fig. shows the comparison of the simulation results with different fits. The square fit is
needed to make the MFPT of N-particle diffusion the same as one-particle diffusion. Compared

to the square fit, the square root fit is closer to the simulation results.

10

10° | 1

MFPT=N"2
— - MFPT=\sqrt(N)
- — simulation results
10° ]
=
10' b I ]
100 | | | | | | | | | |

10 20 30 40 50 60 70 80 90 100 110

Figure 9.2. The comparison of the simulation results with different fits.

Though the square root is a better fit than the square fit, it still can not fit the simulation
results well. A better fit is log(n), as shown Fig. 0.2l The larger n is, the better the log fit,
as shown in Fig. In this figure we choose n = 100 as the reference point: M FPT,, =
M F PTigplog(n)/log(100). Between n = 25 and n = 100, the error between the simulation
results and log fit is less than 5%.

If the distribution of the FPT for the one particle diffusion problem is p(t), then MFPT
is MFPT = fooo tp(t)dt. For any kind of problem, once we know p(x) we can calculate the

corresponding MFPT. We define P(t) = fg p(z)dz, where P(t) is the probability that the MFPT
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| N [MFPT |
1 1.000
4 | 2.0833
9 |2.8290
16 | 3.3807
25 | 3.8160
100 | 5.1874

Table 9.2. (F'PTN_particle) for different N, calculated using the integral in (@21

is less than ¢. For the N-particle diffusion problem, the probability that the largest FPT is less

than ¢ is Py(t) = P(t)N. Then the probability distribution for py(t) is pn(t) = dpgt(t) =

Np(t)P(t)N=1. If we plug p(t) = exp(—t) into the expression, we have:
(9.2) MFPTy = N/ texp(—t)(1 — exp(—t))N at
0

Numerical calculation of this integral, shown in Table gives the same result as the simulation

results shown in Table [@.Il This is another proof to show that the simulation is correct.

It seems that the one particle diffusion formulation, which uses the free energy of the entire
protein versus end-to-end length as the diffusion potential does not well simulate the actual
protein folding procedure. Of course, this conclusion depends upon the assumptions. The first
assumption is that the amino acid components fold independently. Therefore, all of them are
folding simultaneously. At the opposite extreme is the situation in which the components fold
sequentially one-by-one. Even if there are N components, at any time there would be only one
component folding. This would be equivalent to the one-particle diffusion problem. In this case,
the one particle diffusion would well approximate the folding procedure.

We would expect that protein folding falls somewhere between the totally-independent pro-
cedure and the sequential procedure. Perhaps, the whole procedure can be divided into several

phases. In one phase, some of the components fold independently, while the others keep still. In
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Figure 9.3. The log function is a better fit than the square root.
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the next phase, some different components take part in the folding procedure. Then, the actual

folding might lie between the one-particle and N-particle procedures.

The second assumption we made is that all the components are identical. If they are not, then

the slowest independent component in each phase determines the FPT. We can use one particle

diffusion to simulate this component. To simulate the whole folding procedure, the one-particle

diffusion model can still be used, but now the potential field is not the free energy of the entire

protein. Rather, it is made up by connecting all the energy changes of the slowest component

in each phase. In this case, the one-particle diffusion problem is still useful to understand the

protein folding problem.
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9.4.2. MFPT scales as 1/L?

In this section we use dimension analysis to determine the MFPT when only the length of the
potential field changed. There are five variables for this problem: 7' (time), L (length), G
(energy), kpT©O (temperature) and D (diffusion coefficient). There are three basic variables: T,

L and M. Based on dimension analysis theory we have two dimensionless functions:

G
9.3 Fi(——=)=0
93) ()
and
D G
A4 —, =) =
(9 ) 2( L2 ’k‘B@) 0
Eqn. can be rewritten as
L? G
(9.5) T= 5F3(k3—9)

This means, if we keep energy and temperature unchanged and only compress length L into

L/N, the corresponding MFPT will change from T into T//N?2.

9.5. Why protein folding is not sensitive to external force

As discussed above, since the folding should be a combination of many simultaneous foldings,
if we want to use one-particle diffusion to simulate this procedure, we should use the energy of
the slowest part instead of the energy of the whole system. If we apply an external force, for
example, a stretching force, this force should make the folding procedure slower. But how large
an effect will this external force have? We assume the MFPT is proportional to exp(G/kgT) as

an approximation, where G is the energy difference between the initial position and the ending
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position in the diffusion problem. The energy change due to external force for the whole protein is
Forternat AL, where AL is the end-to-end length difference between unfolded and native state. If
AL is large, the folding procedure should be very sensitive to the external force. In experiments,
it is not sensitive [21|. The length change between stretched and native state is about 20 nm,
while the folding takes place against an applied force of in the range 15 — 20 pN. How does this
force change the folding time change? It we use the total protein length change, it should be
about exp(AFAL/kgT) = exp(5 x 20/4.1) = 3 x 10'° times the zero-force time. This means
that if the folding time under a force of 15 pN is 1 second, then under 20 pN, the folding time
should change into about 1000 years. This is not what is seen in the experimental results.

The experimental results are much less sensitive than this, whereby in the range 15 — 20 pN
in external force, the folding times vary only several times. All the experimental results show
that the folding times are of the order of 10 seconds. This is because here we should not use the
length of the whole protein, we should use the length of the slowest part. Therefore instead of
AL, we should use Al, the length change of the slowest part, which in general should be shorter
than AL. For a change in folding time of only several times when force varies by 5 pN, we should
have AFAl/kpT =~ 1, which means the Al should be the order of 1 nm. The length of one amino
acid is 0.38 nm, so this length is about 2-3 amino acids length when aligned in a straight line. If
the amino acids are not aligned, we use the FJC model to calculate the average length projected
in the force direction. For a force of 15-20 pN, the projected length is about 0.15-0.19 nm, that
is 5-6 amino acids in 1 nm. This is about the length between two interacting amino acids in an

« helix.
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CHAPTER 10

The effects of external force on the folding sequence

The simultaneous model can answer one question that the two-state model can not, “Why is
the folding time not sensitive to the external force?” One might think that we need to change
the two-state model only a little: wherever it comes to using Az, we merely decrease Ax, and
all the problems disappear. Is this true?

In section [6.19] it is shown that not only is Az small compared to the total protein length
change, but also it itself is a function of the value of the external force. What do these observations
imply?

The prevalent point of view is that the external force changes the free energy diagram from
G(z) into G(x) + Fx, as shown in Fig. [[(.1] [4,25,43|. That is, the force-free energy landscape
is shifted by a linearly increasing amount. Is this always true?

In this section, an example is formulated to illustrate that the application of an external force
can change not only the height of the energy barrier, but also the folding sequence. Therefore,
when an external force is applied, the free energy diagram is not just slightly perturbed, as shown
in Fig. M0.I Rather, a totally new free energy diagram is required. This radical change also

explains, as we show below, why Ax will vary under different applied forces.

10.1. A simple model to simulate the folding procedure

Here, a simple protein model is formulated. We assume that reaching the native state requires
traversing three transition states and the formation of three bonds, as shown in Fig. [0.21 We

might interpret this model as arising from free energy increases (forming the energy barriers)
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Figure 10.1. The free energy G(z) in the absence of an applied force is different
from that when there is an externally applied force. The usual view of how the
force affects G(x) is shown here. Depending on the sign of the force, the force-
induced shift may be to either speed up or slow down the rate from one state to
another. Here we show a force acting so as to slow the rate of the reaction which
proceeds from left to right. In this section, we show that this view is not always
correct.

due entirely to entropy (i.e. only from the contribution —7'dS to the free energy). The free
energy decreases may be assumed to be due entirely to the formation of bonds (i.e. only from
the contribution dU to the free energy). We also assume that once a bond is formed, it will not
be broken again. The distance between A and a is 3 (nondimensionalized units of length). To
bring A and a together, the entropy change will cause a free energy increase of 3kg7T’; B and b
with distance 2 yields an entropy increase of 2kgT; C and c with distance 1 yields an entropy
increase of 1kgT. Amino acid A forms a 3kgT bond with amino acid a; B forms a 2kgT bond
with b; C forms a 1kgT bond with ¢ (Fig. 10.2).

We further assume that the fastest folding sequence will be chosen as the actual folding

choice. The question becomes, when there is no external force, which folding sequence is fastest?
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Unfolded state

TN

Y i
C bond forms Tirst ‘Q

B bond forms first
A bond forms first

Native state

Figure 10.2. The toy protein used in the simple model. Three pairs of amino acids
form bonds to achieve the native state. Here we show possible folding orders: C-c
forms first, or B-b forms first, or A-a forms first.
First, we list out all the possible choices. A could finish folding first, then B, then C. The
free energy diagram for this procedure will increase 3kpT then decrease 3kpT', and increase

2kpT then decrease 2kpT’, and increase 1kgT then decrease 1kgT. We depict this sequence as

A — B — (C, as shown in Fig. [[0.3] We now choose the cos function with which to formulate
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the folding free energy profile, as was done in Sec. Bl Similarly, we can have the other sequences

C — B — A (shown in Fig. [0.4), A -—C —-B,B—-A—-C,B—(C — A,and C — A — B.

0.5 b

0 1 1 1
0 0.5 1 1.5 2 2.5 3

X

Figure 10.3. Free energy diagram G(x) for the sequence A — B — C.

25F A

0.5 b

0 1 1 1
o 0.5 1 15 2 25 3

X

Figure 10.4. Free energy diagram G(x) for the sequence C' — B — A.
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It is also possible that two bonds form at one time. Say, at the first step, A and B form
together. Then, the free energy diagram will increase by 5kpT" and decrease bkpT', then increase
1kpT and decrease 1kpT'. The free energy diagram is shown in Fig. We call this sequence
AB — (C. Similarly we also have sequences C — AB, AC — B, B — AC, BC — A, and

A — BC.

0 1 1 1 1
o 0.5 1 15 2 25 3

X

Figure 10.5. Free energy diagram G(x) for the sequence AB — C.

The final possibility is that all three pairs are waiting for each other to form bonds simul-

taneously. This is the molten globular model. The free energy diagram is shown in Fig.

10.2. The simulation results without external force

We hope to know which sequence folds fastest. Table I0.Il summarizes the simulation results.

Sequences like B — C' — A (three small steps one-by-one, in any order) yield the fastest folding.

No matter whether A, B or C forms first, all give the same folding time. Long range diffusion
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Table 10.1. MFPT for different folding sequences without external force.

1 15
X

Figure 10.6. Free energy diagram G(zx) for the sequence ABC.

|| Sequence | MFPT ||

A—B—=C| 2735
A—C—B| 273
B—-A—-C]| 2735
B—-C—A| 2735
C —-A—B| 2735
C—-B—A| 2735
AB — C 22.20
C — AB 22.20
AC — B 11.19
B — AC 11.19
BC — A 6.783
A — BC 6.783
ABC 107.22
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(A) yields the same MFPT as the short range interaction C. In next section, we will see how

the presence of an applied force changes this conclusion.

The molten globular state ABC gives the slowest folding pathway. The general rule for this

simulation is: breaking one large peak into small peaks always accelerates the folding procedure.
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For example, A — B — (' is faster than AB — (. This conclusion is not limited to this
particular protein model and the parameters used here. It is a general phenomena. For all
the simulations tried, if one keeps the total diffusion distance unchanged and keeps the sum of
the peaks’ height unchanged, breaking one higher peak into smaller peaks always accelerates
the folding procedure. This implies that the molten globule state should be the last choice as a
folding pathway. The most efficient choice should be to form bonds whenever one has the chance.

To see how force changes the folding sequence, we now consider the folding procedure with

external force.

10.3. Simulation results with external force

First we need to specify how the force affects the magnitude of the free energy changes during
folding. We assume that the effect of force is greater for greater diffusion distances. So, for the
diffusion of A, because it has the longest diffusion length, force causes the energy barrier to be
3kpT higher. And, similarly, 2kpT higher for B and 1kgT higher for C. But, this energy barrier
increase is sequence dependent. If A forms first, B and C will be protected from the external
force and therefore their energy barrier will not change. So for the sequence A — B — C, the
energy barrier will become 6kgT, 2kpT and 1kpT (shown in Fig. [[0.6). If B forms first, the
height of the C energy barrier will not change, but A can still feel the external force. With B
already formed, A does not need to diffuse as far as when it diffuses first. The increase for A will
become 1kpT. If the folding sequence is B — A — C, the energy barriers will become 4kgT,

4kpT and 1kgT (as shown in Fig. [[0.8]). Similarly we can construct the other sequences.

The MFPTs for folding with two or three bonds forming simultaneously, such as AB — C

or ABC' are not listed here. They are always longer than bond formation one-by-one.
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Figure 10.7. Free energy diagram for sequence A — B — C with external force.

0 ! ! ! ! !

(] 0.5 1 1.5 2 2.5 3

Figure 10.8. Free energy diagram for sequence B — A — C with external force.

We can see from Table that folding order matters this time. C' — B — A gives the
fastest folding. This means, when there is external force, short-range diffusion should happen

first, then the middle-range diffusion, then long-range diffusion.
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|| Sequence | MFPT ||
A—B—C| 16.32
A—C—B| 16.32
B—A—(C|6.7076
B—-C— A|6.7076
C—-A— B| 81792
C—B—A| 5391
Table 10.2. MFPT for different folding sequence with external force F'. (To gain
an idea of approximately how large this force might be, if the distance between
C' and c is 1 nm, then the force is approximately 4 pN.)

|| Sequence | MFPT ||
A— B—C| 2215
A—C—B| 221.5
B—A—-C| 2434
B—-C—A| 2434
C—A— B| 3868
C—B—A| 1158
Table 10.3. MFPT for different folding sequence with larger external force 2F.
(To give an idea of approximately how large this force might be, if the distance
between C' and ¢ is 1 nm, then force is approximately 8 pN.)

When we double the force from F' to 2F', the MFPTs for different sequences are shown in

Table [0.3] At the higher force, the advantage of sequence C — B — A is made clearer. For

external force F, the second fastest sequence takes time 24% longer than the fastest sequence.
While for external force 2F, the second fastest sequence takes 110% longer. The larger the
external force is, the greater the advantage for short-range diffusion to occur first.

This gives us a picture of the protein folding procedure under external force. Large force
eliminates long-range diffusion, makes the protein form neighboring bonds first, and then with

the help of these bonds, initially long-range diffusion becomes easier to finish.
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10.4. Discussion

“Why is the folding time not sensitive to the external force?” In section [6.19] it is shown that
not only is Az small compared to the total protein length change, but also it itself is a function
of the value of the external force.

“Why is Az a function of the applied force?” The answer to this question is that Az decreases
when the external force increases because a larger force eliminates long-range diffusion more
efficiently. The MFPT increases exponentially as exp FAz/kgT. So, folding through a length
Az is made much faster by dividing a single change in Az into many smaller changes. Another
point of view, to explain this result, is that diffusion over long distances without the aid of
bonding, becomes exponentially less probable as force is increased. For larger external forces,
shorter-range diffusion becomes more and more important. Therefore, if we use some kind of
“average” Ax to describe the folding procedure, it will become shorter and shorter, until it reaches
a physical limit. This limit might be the length of a single amino acid.

“Does the application of an external force result in only the linear shift of the energy landscape
(as suggested by Fig. [I0.T]).” For this question, the answer is that force does not only change the
height of the energy barrier. It can change the sequence of the folding procedure as is already
apparent from the answer to the previous question.

How much of a change there is in the folding sequence depends on both the magnitude
of the external force and the protein folding sequence when there is no external force. For
example, if naturally (without an external force) in the protein folding sequence, the C-terminus
comes to the N-terminus to form a bond at the first step, then a small force will eliminate this
step. On the other hand, for short range interactions such as the formation of an « helix, the
folding sequence might not be affected by the same force. It can be seen then, that a parameter
which might describe the force-sequence effects quantitatively is exp(SF/kpT). Where 5 is the

average distance between bonded amino acids (excluding peptide bonds) in the native state.
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It is interesting to note that § is equal to the contact order times the contour length of the

protein [27].
10.5. One misunderstanding about two-state model

One widely accepted diagram for the two-state mode is the solid plot shown in Fig. [0} two
local minimum (unfolded state and native state) are separated by an intervening peak. With a
certain rate, the protein can change from one state to the other. There is actually one hidden
assumption for this description: the folding pathway is the reverse of the unfolding path way.
Is this true? In general, no. We can use the three-bonds protein model introduced above as an
example. To unfold the tight and compact native protein, the unfolding should break the three
bonds simultaneously, and then all the amino acids will be free to move. This unfolding diagram
is like that shown in Fig. overcome one high energy barrier, then go to the unfolded
state. For the folding procedure a long loose structure changes into a tight one. As discussed
in the folding simulations, and shown in Fig. [[0.4] folding via multiple peaks is a faster folding
pathway than forming all three bonds simultaneously. Thus the folding and unfolding pathways
are different.

Generally, then, the folding pathway is not the reverse of the unfolding pathway and can not
be described on the same diagram simply by moving in the opposite direction.

Only one case is an exception: the molten globule model. For this model, the folding proce-
dure is that the amino acids do not form bonds until all of them find the correct position. Once
they are positioned near the native state, then bonds form at the same time. This is just the
reverse of the unfolding in which all the bonds break simultaneously, and the amino acids then

go to their unfolded positions.
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CHAPTER 11

Simulation based on real protein: RNase H

The following section is based on a paper submitted for publication. Hence, its style is
somewhat different from the previous sections. In this section we apply the ideas of the simple
ABC model in Sec. [0l to develop a more sophisticated model and apply it to a real protein,
RNase H. We show that by using this Individual Bond (IB) model, we can solve some puzzles:
Why can proteins still fold fast with an applied external force? Why does the characteristic
folding length decrease when force increases? Why are there small accumulated changes in

extension before a large collapse happens?

11.1. Abstract

To become operational, proteins fold from their nascent extended conformation into a com-
pact form. Folding is often described by the two-state model in which the protein is considered
either folded or unfolded. When stretched by an applied force, the two-state model predicts that
the free-energy landscape will be tilted and folding times will depend sensitively on applied force.
We show that under an external force, the two-state model is inconsistent with measurements of
folding times and folding pathway. Using RNase H as an example, we present a model in which
folding is comprised of smaller motions individually acted upon by the applied force. The model
naturally explains how cooperativity arises when an applied force is present and why observed
folding times become less sensitive to the external force as force increases, while the two-state

model predicts the opposite trend.
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11.2. Background

Proteins assembled by the ribosome as linear chains of amino acids subsequently fold into
complex three-dimensional functional forms. To study folding in the laboratory, single protein
molecules are first unfolded by the application of a high force using atomic force microscopy or
laser tweezers [5,8,11,13,21,26,39,43,49]. The force is then reduced in strength allowing
folding to ensue. It has been suggested that folding under a finite applied force can be used to
investigate states which otherwise are too transitory to be accurately observed and to investigate
regions of the folding landscape which might otherwise be inaccessible [24].

It is important to determine if folding under an applied force illustrates the force-free folding
process or if force alters the folding pathway. The two-state model postulates a high-energy
barrier separating the folded and unfolded states in which the protein will be observed, Fig.
[IT.TA. According to two-state dynamics, the effect of an externally applied force F' is to accelerate
the force-free unfolding rate from o to agexp(FX,/kgT), and to slow the zero-force folding

rate from By to By exp(—FX;/kpT) [43].

Protein | AL (nm) | X, (nm) | Xy (nm) | Source
ubiquitin 24 0.25 23.75 12
ankyrin 12.4 1.7 10.7 30
spectrin 31.7 1.5 30.2 47
FN-III 28.5 0.3 28.2 38
titin 25-28 0.3 24.7-27.7 44
projectin | 27 0.17 26.8 9]

Table 11.1. Lengths based on the two-state model. Using the length difference
between folded and unfolded states AL and the distance between folded and
transition states X, it is found that the folding distance Xy = AL — X, between
the transition and unfolded states is typically much larger than the unfolding
distance X, [13]. (If it is not reported, we use the maximum value X, = 1.7 nm
in computing X.)

The folding length scale X is typically much larger than X,, Table [Tl Consequently,

according to the two-state model, an applied force tremendously slows folding. For ubiquitin,
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Figure 11.1. (A) Free energy versus end-to-end length for the two-state model.
X, (Xy) is the distance from the folded (unfolded) state to the transition state.
The free energy for zero applied force, blue line, and for an applied force, red
line. Force tilts the profile by a linear amount F'X and lengthens Xy [13]. (B)
Folding times as a function of applied force. Assuming T'(F') o< exp(F'X;/kpT),
a constant Xy yields a straight-line dependence, such as shown by the black line.
The two-state model predicts that X increases with applied force as shown in
(A), which yields a faster than linear increase, as shown by the red line. (Inset)
However, fitting X through an increasing number of data points (blue dots) for
the folding times of ubiquitin (from [21,27]) from the left-most four through to
all points, shows that X decreases as a function of force.

the zero-force folding time is approximately 0.003 s [27]. Under an applied force of F' = 15 pN,
the folding time would become 0.003 x exp(15 x 23.75/kgT) or approximately 10?2 years. Yet,

that ubiquitin is observed to fold in seconds [21] suggests that folding does not proceed in an
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all-or-nothing two-state jump over a large length scale, but rather is broken down into smaller
steps with Xy << 20 nm [31,49|. In Bullard et al. |9], although they measure X; ~ 26.8 nm
considering a two-state point-of-view for projectin, they find that they must introduce the much
shorter folding length scale of 1.1 nm in order for their Monte-Carlo simulation to correctly
predict folding times. Moreover, though the two-state model predicts that the characteristic
folding length increases with applied force (see Fig. [1.TA), measurements of folding time ( [21]
Fig. 4B) reveal the opposite trend, Fig. TT.1B.

In [21], the atomic force microscope is used to stretch a chain of linked ubiquitin domains.
The observation ( [21] Fig. S4A) that while remaining in the unfolded state the end-to-end
length steadily decreases, does not fit with the two-state model which predicts an all-or-nothing
transition between states. Rather, the steadily decreasing length suggests that there is an accu-
mulation of small-scale transitions. Similarly, and as we will discuss in detail, antecedent to a
large-scale transition, the refolding of RNase H also shows an accumulation of small-scale changes

indicating a deviation from the two-state model [13].

11.3. Individual bond model

We introduce a minimalist Individual Bond (IB) model of folding under applied force, which
is applied to the folding of RNase H, see Sec. 1.7 Using structural data, 100 hydrogen-
bonded pairs of amino acids in the native state are identified. These pairs of amino acids
undergo interactions, where at each time step, the probability to form a bond is proportional to
Ryexp(—Fz,s/(kpT)), where Ry is the zero-force folding rate, and extension z,s is the contour
length between amino acids r and s projected onto the direction of the applied force by using
the worm-like chain model. As each bond forms, the extension of other ongoing, not-yet bonded
interactions may change, Fig. [[T.2l All interactions occur simultaneously [19,40,42,53, 54|,

and the applied force acts on the interactions individually [20]. The effect of force is equivalent



174

Figure 11.2. IB model geometry. When a bond forms between amino acids ¢ and
j: (1) The interacting pairs of amino acids internal to the bond (shown in blue)
which have not yet bonded, such as m and n, are shielded from the applied force
F' and continue their folding subject to F' = 0. (2) The contour length for all
interactions external to the bond (shown in red), such as between r and s, are
shortened by eliminating the extension length of the amino acids now internal to

the bond, see Sec. 1.1
to tilting the energy profile as shown in Fig. IT.TIA, but with the crucial distinction that rather
than being applied to the protein as a whole, as in the two-state model, the tilt is applied to
each interaction individually. The same zero-force folding rate Ry is assumed for all bonds. This
equal-rate assumption may not be realistic, but we use it to emphasize that the IB model is not
biased, by pre-selecting folding rates, toward any particular length scale. Rather, as we will see,

changes in length scale and sequence are due to force-induced cooperativity.

11.4. Results

By running the IB model with an applied force which is decreasing in time, we can mimic
the laser-tweezers experiment of Cecconi et al. [13] who measured changes in length of RNase
H, Fig. II.3A. Both the experimental and simulated results show similar folding behavior, Fig.
Note that the experiments measure extensional length, while our model yields contour
length. Above approximately 15 pN, the length fluctuates about a constant value in the mea-
surements, while in the simulation, the length also is nearly constant. Near 15 pN, both the
experimental and simulated curves change slope as the length begins to gradually decrease. At

a force of approximately 5.5 pN in the experiments and slightly lower in the simulation, there is
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Figure 11.3. Comparison of experimental and simulation results. (A(Inset)) Ex-
perimental results digitized from [13]’s Fig. 1, the magenta circles mark the force
versus extension curve for RNase H protein + DNA handles. The cyan triangles
are the force-extension curve for the DNA handles alone, shifted 37 nm along the
extension axis to show that above approximately 15 pN, as they are changing
length at the same rate, the two curves have nearly identical slopes. Near 15 pN
the curves deviate as the slope of the RNase H + DNA curve decreases due to
RNase H folding. Near 5.5 pN, RNase H undergoes a large decrease in length.
(A) The difference in extension between the unshifted curves in the Inset gives
the force-extension curve for RNase H alone. (B) A typical simulation result of
contour length as a function of force from the IB model.
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a precipitous decrease in length. In the simulation, this large decrease in length can be seen to

come not from the formation of one bond, but from many steps in rapid succession [31].

11.5. Cooperativity and folding sequence

In the IB model, the formation of a bond leads to two forms of cooperativity which tend to

accelerate the formation of other bonds: amino acids internal to a bond are shielded from the

applied force F', and amino acids external to a bond have their interaction distance shortened,

Fig. M1.2] This force-induced cooperativity yields two distinctive types of pathways, sequential

folding at high forces and simultaneous folding at lower forces. Under large constant applied
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forces, long-range interactions can not directly form bonds. Short-range interactions bond most
easily, decreasing the length of moderate length interactions so that they can subsequently bond,
all the while bringing closer together the longer-range interactions until they too can bond. This
is a zipper-type mechanism [53]—mnot operating through the entropic or enthalpic contribution
to the zero-force free energy, but—due to sequential small-scale changes to the work term Fx;;.
Folding under a large applied force can then appear as a steady accumulation of small changes
in length.

Cooperativity can also lead to large abrupt changes in length. Consider, as a toy example,
a protein which has five short-range interactions, each of length 1 nm, and three long-range
interactions with lengths 20 nm, 30 nm, and 40 nm. The short interactions are assumed to lie
internal to the long ones. If the protein is subject to a decreasing force, initially, the force is so
high that even the short interactions have no chance to bond. As force decreases, the five shortest
interactions will form bonds first. Consequently, (assuming for simplicity that the length between
bonded amino acids is zero) the contour length for the three long-range bonds becomes 15 nm,
25 nm, and 35 nm, respectively. Even with the aid of the short-range bonds, the long-range
interactions may still not be sufficiently shortened to bond. The force keeps decreasing until the
shortest remaining interaction, 15 nm, forms a bond, reducing the contour lengths of other two
interactions to 10 nm and 20 nm. Since under this force the 15 nm interaction can bond, the
shorter 10 nm interaction will quickly finish bonding. This bond reduces the remaining unbonded
length to 10 nm, which too, will rapidly bond. So, for the three long-range interactions, once the
shortest one forms, all the others will form in rapid succession. To an observer, this can appear
as one-step behavior.

Both types of cooperative behavior are seen in RNase H, Fig. MTL3A: sequential bonding
beginning near 15 pN leads to a gradual reduction of length, preceding the nearly simultaneous

folding at 5.5 pN. We can more closely follow the cooperative folding by manually pausing the
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Figure 11.4. Constant force simulations for the IB model of RNase H. (A) For
each applied force F' =1,2,...,10 pN, as each bond forms, its initial separation
along the protein in terms of its sequence distance is plotted in order of formation
from 1 to 100. (B) At each of the three forces F = 1,5,10 pN, the number of
occurrences, summed over ten simulations, in which the contour length changes

by a given amount. (Inset) The value of the maximum change in contour length
as a function of applied force.

simulation and querying the output (not shown). We find that by F' = 6 pN, most of the
short-range bonds within the « helices and antiparallel 3 sheets have folded leaving long-range
interactions with lengths from 7 to 39 nm. The shortest of these, the bond between helix 1 and
helix 2, forms first, decreasing the contour length by 7 nm, and setting off the swift decrease in

length seen at about 5 pN in Fig. T1.3B.
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Fig. [T 4 shows results from running the IB model as a constant-force simulation. Fig. TT.4IA
shows that there is a continual change in folding order under applied force. The order of bonding
between amino acids which are close versus far in sequence separation becomes increasingly
graded by size. (The shortest sequence distance, other than one [ sheet interaction of length
three, is equal to four, for interactions within « helices; longer distances (the longest is 129)
are generally due to interactions between different secondary structures.) At the lowest force
F =1 pN, there is no apparent preferred folding order, and the longest sequence distances > 100
disperse throughout the folding order alongside the shortest. As the force is increased, 2 < F' < 4
pN, the longest distances are delayed till later in the folding order >40, while the shortest and
intermediate distances remain interspersed throughout the folding order. For F' > 8 pN, all of
the shortest distances occupy a nearly continuous streak, folding first in order. They are followed
by longer sequence distances graded in distance, from short to long.

Contour length between any particular pair of interacting amino acids continually changes
as other pairs bond, Fig. The final change in contour length between an amino acid pair
comes when it itself forms a bond, Fig. [T4B. At the lowest force, F' = 1 pN, long interactions
> 20 nm can occur. As force increases, interactions through long distances have little chance
to form directly, but rely on shorter interactions to form first in order to incrementally decrease
their contour length. At F' = 5 pN, bonds form directly only between amino acids separated
by less than 20 nm. At F = 10 pN, the distribution of contour lengths which directly bond
is shifted to even shorter lengths, < 10 nm. The decrease, with increasing force, in the value
of the largest contour length change which occurs during folding is accompanied by a shift of
the entire distribution of contour lengths to shorter lengths. This suggests that the length scale
which should be used to characterize folding will decrease as force increases. This is consistent
with measurements from ubiquitin [21] which show that the length scale X; determined from

folding times decreases as force increases, Fig. [T.JB(Inset).
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11.6. Conclusions

Similar to Go models, once a bond is formed in the IB model, it can not break. Fur-
thermore, the IB model is strictly one-dimensional, accounting for changes in length along the
one-dimensional reaction coordinate. As a protein folds, its three-dimensional geometry is con-
structed, yielding an increasing contribution from bending and torsional stiffness. Bond breaking
and three-dimensionality, ignored in the IB model, are undoubtedly needed to describe other as-
pects of folding, such as bistability [13, 32].

The main insight of this paper is that applied force does not act directly on the unfolded
state, but rather acts individually on the many interactions which collectively form the protein’s
instantaneous state. Several consequences ensue: cooperativity, incremental accumulation of
length changes, and large step-like changes in length. Force differentiates states by length scale,
making the folding pathway a function of applied force. Large forces favor shorter interactions
and increasingly eliminate long-range interactions by sequentially pairing down their contour
length.

For zero-force folding, the question of heterogeneity remains, i.e. how different portions of
the protein fold at vastly different rates [2|. Folding under an applied force may be a window
onto that question, in that it introduces heterogeneity along the reaction coordinate, and so can
be directly assayed. Structures of different length scales can be tracked in time to see how and
when they fold, and how they are aided cooperatively by the folding of other portions of the
protein.

In vivo, proteins may be subject to external forces as they are expressed by the ribosome,
in the crowded cellular environment, as they translocate through membranes, interact with
substrates, and are degraded. Understanding proteins under applied force helps understand

proteins’ response to these stresses. The view supported here, that applied force alters the
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folding pathway, offers a new possibility of how misfolded proteins may arise within the cell and

hence lead to diseases potentiated by misfolding [17].

11.7. Methods: Simulation of the Individual Bond model

We use structural data from the Protein Data Bank (PDB) for protein lrch. Amino acids
are numbered sequentially ¢ = 1,..., 155 from the C to NV terminus. Fach amino acid is ascribed
to an « helix, 3 sheet or loop motif according to its native structure. All bonding pairs within
a motif plus bonds < 0.35 nm between motifs are identified. The amino acids forming these
bonds are said to undergo an interaction. There are 100 such interacting pairs. In the unfolded
state, the contour length between amino acid pair ¢ and j is calculated by (j —¢) - 0.38 nm. As
folding proceeds, the contour length changes. The contour length between amino acid ¢ and j is
simply the sum of the contour length contributions from each amino acid. The contour length
contribution of one amino acid is calculated as follows: if it is inside of a formed (3 sheet bond,
its contour length contribution is zero; if it is not inside of a formed 3 sheet bond and it is inside
of a formed « helix bond, its contour length contribution is 0.15 nm; otherwise its contour length
contribution is 0.38 nm. All the bonds that do not form within a 3 sheet or a helix are regarded
as secondary bonds. They are treated as (3 sheet bonds whose contour length contribution is
0.38 nm before bonding and zero after forming a bond. The extension length x;; (contour length
projected along the force direction) is computed from the contour length using a worm-like chain
with persistence length 0.7 nm. Once a bond is formed, it is not permitted to break.

The simulation can now be described according to the following three steps. (i) Independent
rate rule: At each time step At, the probability of folding for any interaction between amino
acids ¢ and j is proportional to its rate Rgexp(—Fw;;/kpT)At, where F is equal to the applied
force unless ¢ and j is an interaction interior to a previously formed bond, in which case F' = 0

according to (iii). Whether or not a particular interaction form a bond is decided by a random
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number. All bonds are given the same zero-force folding rate Ry = 1.4/s. For simulations in
which force is varied, force is decreased at a constant rate over time 7, where Rom = 14. (ii)
Exterior length step: After a bond forms, amino acid pairs exterior to the bonding pair are
brought closer together. For example, the bond which forms between amino acid m = 28 in
B Strand 2 with amino acid n = 31 in § Strand 1 is interior to amino acids i = 27 < 28 and
j = 32 > 31 whose extension xo7_39 is then decreased by ((extension length of x,,,) - (interior
bond length)). When the interior bond is, as in this example, part of a (3 sheet, its bond length
is zero; bonds within an « helix are taken to be 0.15 nm. (iii) Interior force step: Amino acids
inside a previously-formed bond are thereafter shielded from the applied force. That is, if amino
acids ¢ and j > ¢ form a bond, then amino acids ¢ < k < j subsequently will not be subject to

the applied force as they continue to fold, Fig. [1.21



182

CHAPTER 12

Conclusions to Part II
The conclusions from the simultaneous diffusion model are as follows.

(1) For long proteins such as ubiquitin, the two-state model is not valid. The length change
for the folding of a single domain of ubiquitin is approximately 20 nm [21]. Hence,
folding by the two-state model should be very sensitive to the external force. If we use
this length change of 20 nm as the Az, use 15 pN as the external force, the folding
time will be exp(15 - 20/4.1) = 6 - 103! times slower. If we take the zero-force folding

time as 1079 seconds, then under 15 pN the folding time will become 10%*

years. The
experimental results show that this is not true.

If we use the simultaneous diffusion model to describe the folding procedure, then
the sensitive force effects disappear. Instead of using the two-state model to describe the
whole protein, we assume the folding procedure is composed of many small simultaneous
foldings. The slowest one determines the folding time. So the force should be applied
only to a small length. Using this smaller length scale, the folding time is no longer
sensitive to the external force.

As a particular implementation, we further assume that the many small folding
procedures comprise the formation of the secondary structures. Once the secondary
structures are formed, then the tertiary structures begin to form by coalescence of the
secondary structures. By assigning different folding rates for all the folding procedures,

we can generate a similar length versus time cure for the single domain folding as ob-

served by Fernandez and Li [21]. Fig. [21] and 022 show the simulation results and
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experimental results for single domain folding under constant force. The simultaneous
diffusion model can reproduce the step-like behavior, which is regarded as the charac-

teristic of the two-state model.

Np=76 dt=0.01s Iu=0.375nm If=0.15nm Ah=50 As=100 kbf=0.1/s
Khf=0.03/s khu=0/s ksf=100/s k13=100/s k35=100/s k15=100/s
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(2) The simultaneous diffusion model solves the problem of why folding time is not sensitive
to external force. The folding time is due to the slowest folding component. Each such
component (perhaps one of the secondary structures folding into its tertiary position) is
characterized by a displacement which is only a fraction of the total change in extension.
Thus, while the dependence of folding time on force is proportional to exp FAz/kpT,

where Az << (total change in extension).
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Application of an external force may change the folding sequence. The application of
a force discriminates against diffusion through longer distances. The energy change
as a function of distance increases exponentially with distance, as noted in [2] Changes
involving large distances, then, become much less probable.

The length scale which governs the rate of folding under an external force is force
dependent. As force increases, the probability of having a long-range interaction falls
off exponentially. Consequently, as force increases, short-range interactions become
increasingly prominent.

The usual view is that application of an external force simply tilts the zero-force free
energy profile. This would be the case if the potential experienced by the folding protein
were independent of the folding process. The potential felt by any part of the protein is
composed of two parts, one due to the applied force and the other due to the potential
of the rest of the protein. Only the potential due to the applied force is independent of
the folding process. The other part depends on the conformation of the entire protein
which, as noted in Bl changes on the application of a force.

The folding process is not the reverse of the unfolding process. This implies that un-
folding is cooperative: the protein fails catastrophically. Folding, on the other hand, is
rate limited by one of many independent processes. There are many of such processes,
with smaller energies and distances. (These processes may be the diffusion of secondary
structures.)

Unfolding can be seen as breaking parallel bonds [12]. (Observations of unfolding
show that the forces needed are very large—an order of magnitude greater than the
strength of a hydrogen bond.) That is, unfolding occurs by the simultaneous breaking
of bonds. But the formation of those bonds, i.e. their folding, need not happen simul-

taneously. In fact, we have shown in sections [[0.2] and [[(.3], that simultaneity in folding
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is, in general, the slowest folding pathway. Fast folding relies on the simultaneous dif-
fusional processes having different time scales. That is, diffusion begins simultaneously

and ends sequentially.
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CHAPTER 13

Appendices

13.1. Matlab code to compute MFPT

Code to compute MFPT. The code can be run to a short time 7', at which time, the decrease
in probability within the interval can be checked to see if the decrease is exponential. If so, the

simulation can be continued analytically, as described in Sec. B1.11

clear;

%dx=0.0125/2; % size of one region in x

% Check that it divides x into an integer number of sections.
dx = 0.05
aa=100; %record the result every aa steps
T=100; % total simulation time
dt=10"(-4); % time interval for one step. Must have dt<min(1l./(F+B))
steps=ceil(T/dt);

x=-1+dx/2:dx:1-dx/2;
N=max (size(x)) ;%number of regions
kbt=1.38%3;

%%%% The potential field %A%k

% For different potentials only this part needs to change.
barrier1=5; 7 the height of the first barrier (unit kbt)
depth=2.5; % depth of the intermediate(unit kbt)

Nsections = 5 % Nsections = number of different potentials
tempn=N/Nsections;

vtest = O#*x; vtest(tempn+l:2*tempn)=barrierlxkbt;
vtest (2xtempn+1:3*tempn)=(barrierl-depth) *kbt;
vtest (3*xtempn+1:4*tempn)=barrierl*kbt;
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plot (x,vtest/kbt); xlabel(’x’); ylabel(’G(k_BT)’) %break

hhhh The diffusion equation %%k

% Set the absorbing boundary for the right end.
alphax=[x(N)-dx/2, x(N)+dx/2]; energyalpha=0O*alphax;
alpha=(energyalpha(2)-energyalpha(1))/kbt;

%hhth Another example for how to set potential field %hhkk#%

% Since the potential field is the part varies the most, here
% I give another example for G=k_BT*cos(2*pi*x), 0<x<1. The
% following shows how to set the potential field and how to
/i set the absorbing boundary

% x=-1+dx/2:dx:1-dx/2;

% vtest=kbt*cos(2*pix*x);

% alphax=[x(N)-dx/2, x(N)+dx/2];

% energyalpha=kbt*cos(2xpi*alphx);

% alpha=(energyalpha(2)-energyalpha(1l))/kbt;

bkt the end of this example %%hh

D=1;

% Set F (forward rates) and B (backward rates)
dv=vtest(2:N)- vtest(1:N-1); F=D./(dx)~2.*dv/kbt./( exp(dv/kbt)-1 );
B=D./(dx)"~2.*dv/kbt./( -exp(-dv/kbt)+1 );
% Check for those cases for which dv = 0 and reset to the correct
% F and B.
F(find(dv==0))=D./(dx)~2; B(find(dv==0))=D./(dx)"2;
F(find(abs (F)==Inf))=D./(dx)"~2; B(find(abs(B)==Inf))=D./(dx)"2;

jump=zeros(N,N);  %jump is the matrix of F’s and B’s

% Check if dt is small enough. If dt is too large, stop running

% and print time-step size recommendation.

if dt>min(1./(F+B))
sprintf(’\n \n dt is too large, we need dt<min(1l./(F+B)). dt should less than’)
min(1./(F+B))
break

end

% Put F’s and B’s into jump.

for i=2:N-1
jump(i,i-1)=F(i-1);
jump(i,i)=-(F(i)+B(i-1));



jump(i,i+1)=B(i);
end
jump(1,1)=-(F(1)); hreflecting boundary at the left end
jump(1,2)=B(1); jump(2,1)=F(1); jump(N-1,N)=B(N-1);
jump (N,N-1)=F(N-1); if alpha™=0
habsorbing boundary condition at the right end
final=D./(dx) ~2*alpha~2/(exp(alpha)-1-alpha);
else
final=D./(dx)"2;
end

jump(N,N)=-final-B(N-1);

% the initial condition.
% p is the probability distribution
% sump is the sum of the probabilities inside the region.

p=zeros(N,1); p(1)=1/dx; sump=[sum(p*dx)]; savep=[];
jump=sparse (jump) ;

%% Estimate the running time
steps=ceil(T/dt); testp=p; tic for i=1:10000

kl=jump*testp*dt;

k2=jump* (testp+kl/2) *dt;

k3=jump* (testp+k2/2) *dt;

k4=jump* (testp+k3) *dt;

testp=testp+kl/6+k2/3+k3/3+k4/6;
end time_test=toc; time_estimate=steps/10000*time_test;
text=num2str(time_estimate); time_text=[’The estimeate running time
is: ? text ’ seconds’]; disp(time_text); disp(’Press any key if you
want to continue running the code ...’) pause

sump=[sum(p*dx)]; savep=[];
% Simulate from O to T with time step dt.
for i=1l:steps

kl=jump*px*dt ;

k2=jump* (p+k1/2) *dt;

k3=jump* (p+k2/2) *dt;

k4=jump* (p+k3) *dt;

188
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p=p+k1/6+k2/3+k3/3+k4/6;
if mod(i,aa)==0
sump=[sump sum(px*dx)];
i;
sum (p*dx)
if mod(i,aa*100)==0
savep=[savep p;];
end
end
end

hthhh Plot the results.  %hhh

% You can change this part if you are interested in something else.
figure(1);

plot(x,p);

xlabel(’x?);

ylabel (’probabilty distributionat

the end?);

figure(2);

ss=max (size(sump));

dsump=- (sump(2:ss8) -sump(1:ss-1))/dt/aa;

plot (x,vtest/kbt)

xlabel(’x’);

ylabel (’G(k_BT)’);

% average first passage time ues the old method
FPT=dt*aa*dsump*(l:ss-1)’*dt*aa

% Calculate the MFPT using the exponential fit.
% The region between Tl and T2 is the region
% fit to the exponential curve.

T1=T*0.8;

% the region between T1 and T2 is the region chosen to fit the expoentila fit
T2=T; deltat=dt*aa; s2=floor(T2/deltat); numbera=ceil(T1/deltat);
Ta=deltat*dsump(1l:numbera-1)#*(1:numbera-1)’*deltat
fitl=polyfit(deltat*(numbera:s2),log(dsump(numbera:s2)),1);
k1=-fit1(1); c=dsump(numbera)*exp(kl*numbera*deltat); figure(3)
semilogy (deltat*numbera:deltat:T2,dsump(numbera:s2),
deltat*numbera:deltat:T2,cxexp(-klx(deltat*numbera:deltat:T2)),’r:?)
xlabel(’t (This fit should be a straight line, otherwise the results
is wrong)’)

ylabel(’Q(t)?)
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Tb=dsump (numbera) * (T1+1/k1) /k1

FPT1=Ta+Tb 7, average first passage time ues the new method
sumpl=sump;

figure(4)
semilogy(dt*aa:dt*aa:T,dsump) ylabel(’Q(t)’) xlabel(’t’)
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13.2. Some simple test to show the code can work correctly

To test the Matlab code, I ran it for some simple potentials for which the MFPT can be an-
alytical calculated. Both the analytical results and numerical results are plotted. The numerical
results fit the analytical results.

The first case tested is a constant potential. Based on the Einstein Diffusion equation, the
MFPT should be proportional to L?, where L is the diffusion distance. Fig. [3.1] shows that the

numerical results fit the analytical results.
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MFPT

—— Prediction based on Einstein diffusion Eqn
O Numerical simulated MFPT
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Figure 13.1. Mean FPT for constant potential with different L.

The second test is based on Kramers’ harmonic potential.

B ksl G
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where C' is some constant, and G = 1/2K L?. If we keep L unchanged, then G o K. Therefore,
in this case we should have M FPT o« G~3/2 exp(l@%). Fig. shows that numerical results

fit the analytical results.
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Figure 13.2. Mean FPT for harmonic potential with different K.
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13.3. Matlab code: Constant force simulation

The code is used in Sec. [6.10]

%This main code simulates the single-domain folding procedure.

% Define the variables:

% Ah is how many times faster when there is one helix turn formed.

o AD beta sheet.............
hAs o secondary structure.....

% dt is the time interval between two neighbouring steps of the simulation
% time is the total time of the simulation.

% kbt is a constan = k_B*T, where k_T is the Boltzmann constant and T is the
% temperature in Kelvin degree.

% lu is the length of one amino acid in the coild state.

% 1f is the length of one amino acid in the helix state.

% £ is the external force during the folding procedure in unit of pn.

% hf is the initial high stretching force

% a and b are notations to make writing easier.

% kpu is the rate constant for helix unfolding.

% kpf is the rate constant for helix folding.

% ksu is the rate constant for secondary structures unfolding.

% ksf is the rate constant for secondary structures folding.

% kbf is the rate constant for beta sheet folding.

% avelf is the average length of one amino acid in the coil state.

% avelu is the average length of one amino acid in the helix state.

clear; Ah=50; Ab=1000; As=100; dt=0.01; time=10; kbt=300%0.0138;
1u=0.375; 1f=0.15; f=15; hf=100; a=f*1f/kbt; b=f*lu/kbt; kpu=0.0;
kpf=0.03; ksu=0.0; ksf=100; kbf=0.1; kbftext=num2str(kbf);
k12=ksf;k23=ksf ;k13=ksf;
avelf=1f/a~2*(a*cosh(a)-sinh(a))/(sinh(a)/a);

avelu=1lu/b~2* (b*cosh(b)-sinh(b))/(sinh(b)/b);
number_step=floor(time/dt) ;

sumlength=[];

% Sequence includes the structure information of one domain.
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Each row represents one secondary structure of the domain.

The first number of each row represents the number of amino acids in the
secondary structure.

The second number of each row represents the type of the secondary structure:

1 represents beta sheet, 2 represents loop region, 3 represents helix structure.

To simulate the folding procedure for a different kind of protein,
just change this part.
sequence=[
71,
2 2;
8 1;
5 2;
12 3;

10 1;
3 2;

1; parts=[3 1 1 1 8]; nparts=max(size(parts));
partslength=zeros(l,nparts);
nsecondary=max(size(sequence)); % number of secondary structure

ho
ho
h
ho
ho

helix is the matrix to record the states of all the helix amino acids.

ah is the number of helix secondary structure.

nh is a vector to record the number of amino acids of each helix secondary
structure.

The variables sheet, as and ns means similarly for beta sheet structure.

helix=[];ah=0;nh=[]; sheet=[];as=0;ns=[]; loop=[];al=0;nl=[];
helixpointer=[]; allpl=[]; allparts=[];

for i=1:nsecondary

if sequence(i,2)==1
as=as+1;
ns=[ns sequence(i,1)];
end
if sequence(i,2)==2
al=al+i;
nl=[nl sequence(i,1)];
end
if sequence(i,2)==3
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ah=ah+1;
nh=[nh sequence(i,1)];
helixpointer=[helixpointer sequence(i,1)];
end
end
helix=zeros(ah,max(nh));

sheet=zeros(as,max(ns));
loop=zeros(al,max(nl));
betafold1=0;
betafold2=0;

tfold=[0 0 0];
extension=[];
allbfoldi=[];
allbfold2=[];

helixi=[];

% Here we simulate the folding procedure. The details can be seen in the
% section of "Simulation Procedure"
for i=1:number_step
C=sum(sum(helix))/sum(nh) ;
allc=[allc C];
C=floor (sum(helix(1,:))/nh(1));
[helix]=fhelix(helix,Ah,ah,nh,kpu,kpf,dt,f,kbt,f,1lu);
hLength=findls(helix,1f,1lu,f,ah,nh,kbt);

for j=1l:nparts

if j==1&betafoldl==
parstlength(1l)=randomf jc(lu*max(sequence(
1:parts(1),1)),kbt,f,1);

end

if j==b&betafold2==
partslength(5)=randomf jc(lu*max (sequence (
(sum(parts(1:j-1))+1):
sum(parts(1:3)))) ,kbt,f,1);

end

if j==1&betafold1==0
partslength(1)=0;
for k=1:parts(1)
if rand<kbfx*dt*C
betafoldl=1;
kbf=kbf*Ab;



end

[tlength, tfold]l=tertiary(partslength,tfold,kl2*betafoldl*Cxbetafold2,

% parstlength(1)=0.375*max(sequence(l:parts(1),1));
parstlength(1l)=randomf jc(lu*max(sequence(
1:parts(1),1)),kbt,f,1);

elseif betafoldl==0
partslength(1)=partslength(1)+findlength(
sequence(k,:),f,kbt,lu,helix);
end
end
elseif j==b5&betafold2==0
partslength(5)=0;
for k=sum(parts(1:j-1))+1:sum(parts(1:j))
if rand<kbfx*dt*C
betafold2=1;
kbf=kbf*Ab;
hpartslength(5)=0.375*max (sequence (
(sum(parts(1:j-1))+1)
sum(parts(1:j))));
partslength(5)=randomf jc(lu*max (sequence(
(sum(parts(1:j-1))+1):
sum(parts(1:3)))) ,kbt,f,1);
elseif betafold2==0
partslength(j)=partslength(j)+findlength(
sequence (k, :),f,kbt,1u,
helix,helixpointer, hLength);
end
end
elseif j™=1&j7=5
partslength(j)=0;
for k=sum(parts(1:j-1))+1:sum(parts(l:j))
templ=findlength(sequence(k,:),f,kbt,1lu,helix,
helixpointer, hLength);
partslength(j)=partslength(j)+templ;
end
end

k23*betafold2*Cxbetafoldl,k13*betafold2*betafold1*C,As,dt);
%[tlength, tfold]l=tertiary(partslength,tfold,k12,k23,k13,As,dt)
extension=[extension tlength];

allpl=[allpl sum(partslength)] ;

allbfoldi=[allbfoldl betafoldi];

allbfold2=[allbfold2 betafold2];
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allparts=[allparts; partslength];
allhl=[allhl; hLength];
helixl=lhelixl; helix(1,:)];

end

t=dt:dt:time; hf=100; b=hfxlu/kbt;
avelu=1lu/b~2* (b*cosh(b)-sinh(b))/(sinh(b)/b);

initial_time=0:dt:1; initial_length=[]; for
i=1:max(size(initial_time))
% initial_length=[initial_length fjc(lu,kbt,hf,74)];
initial_length=[initial_length avelu*76];
end iex=initial_length; nt=[initial_time t+1]; nextension=[iex
extension]; sumlength=[sumlength;nextension]; size(sumlength)
numberofdomain

%Plot the results.

figure(1)
hsubplot(1,2,2)
plot(nt, (sumlength))

dateaxis=axis;

text (0.9%dateaxis(2)+.1xdateaxis(1),1.1xdateaxis(3)-0.1*xdateaxis(4) ,date)
Nptext=num2str(sum(sequence(:,1))); Aptext=num2str(Ah);
Astext=num2str(As); kpftext=num2str (kpf);

kputext=num2str (kpu) ; ksftext=num2str (ksf); kl2text=num2str(k12);
k23text=num2str(k23); ki13text=num2str(k13);

ksutext=num2str(ksu); lftext=num2str(1f); lutext=num2str(lu);
dttext=num2str(dt); titletext=[’Np=’ Nptext ’> dt=’ dttext ’s’ ?’
lu=’ lutext ’nm’ > 1f=’ 1ftext ’nm’ ’ Ah=’ Aptext ’ As=’
Astext ’ kbf=’ kbftext ’/s’ sprintf(’\n’) > khf=’ kpftext ’/s’
> khu=’ kputext ’/s’ ’ ksf=’ ksftext ’/s’ ’> k13=’ kl2text ’/s’
> k3b=’ k23text ’/s’ ’ k1b5=? ki13text ’/s’ 1; title(titletext)
xlabel([’time(s) ’]) ylabel([’extension(nm) ’> 1)

%» The followings are the functions used in the code
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Function 1.

This code is to simulate the folding of one helix secondary structure.

The inputs are the states of all the amino acids in one secondary structure
After time dt, the amino aicds can change state.

The outputs are the new states of all the amino acids.

function [number_fold ]=primary(number_fold,A,kpu,kpf,Ns,ns,dt);
for i=1:ns

if number_fold(i,1)==0
tempkpf=kpf;
if number_fold(i,2)==1
tempkpf=tempkpf*A;
end
if rand<tempkpf*dt
number_fold(i,1)=1;
end
else
if rand<kpuxdt
number_fold(i,1)=0;
end
end

for n=2:Ns(i)-1
if number_fold(i,n)==0

if number_fold(i,n-1)==
tempkpf=tempkpf*A;
end
if number_fold(i,n+1)==
tempkpf=tempkpf*A;
end
if rand<tempkpf*dt
number_fold(i,n)=1;
end
else
if rand<kpuxdt
number_fold(i,n)=0;
end
end
end

if number_fold(i,Ns(i))==0
tempkpf=kpf;
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if number_fold(i,Ns(i)-1)==
tempkpf=tempkpf*A;
end
if rand<tempkpf*dt
number_fold(i,Ns(i))=1;
end
else
if rand<kpuxdt
number_fold(i,Ns(i))=0;
end
end

end

b
b
b
b
b
b

Function 2.

This code is to simulate the folding of the secondary structures.

The varialbe second_fold represents whether the secondary structure has
interacted with some other one. If it equals one, the secondary structure
has interacted. i.e., it is in the folded state. Otherwise it is in the
unfolded state.

function [second_fold ]=secondary(second_fold,A,ksu,ksf,ns,dt);

if second_fold(1)==0
tempksf=ksf;
if second_fold(2)==
tempksf=tempksf*A;
end
if rand<tempksf*dt
second_fold(1)=1;
end
else
if rand<ksu*dt
second_fold(1)=0;
end
end

for n=2:ns-1
if second_fold(n)==0
tempksf=ksf;
if second_fold(n-1)==
tempksf=tempksf*A;
end
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if second_fold(n+1l)==
tempksf=tempksf*A;
end
if rand<tempksf*dt
second_fold(n)=1;
end
else
if rand<ksu*dt
second_fold(n)=0;
end
end
end

if second_fold(ns)==0
tempksf=ksf;
if second_fold(ns-1)==
tempksf=tempksfx*A;
end
if rand<tempksf*dt
second_fold(ns)=1;
end
else
if rand<ksu*dt
second_fold(ns)=0;
end
end

% Function 3.
% This code calculates the total length of one domain.

function [length,
tfold]=tertiary(partslength,tfold,k12,k23,k13,As,dt)
htfold(1): describe folding between 1 and 2
htfold(2) :2&3
htfold(3):1&3;
if sum(tfold)==2|sum(tfold)==3
length=max(partslength);
tfold=[1 1 11;

elseif sum(tfold)==
if tfold(1)==
length=max(partslength(1:3))+partslength(4)+partslength(5);
if rand<dt*k23*As
tfold(2)=1;
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end
if rand<dtxk13*As
tfold(3)=1;
end
end

if tfold(2)==
length=max(partslength(3:5))+partslength(l)+partslength(2);
if rand<dtxkl12x*As
tfold(1)=1;
end
if rand<dtxk13x*As
tfold(3)=1;
end
end

if tfold(3)==
length=max (partslength(1:5));
if rand<dt*xk23*As
tfold(2)=1;
end
if rand<dtxk12x*As
tfold(1)=1;
end
end
lseif sum(tfold)==0
length=sum(partslength);
if rand<dt*ki13
tfold(3)=1;
end
if rand<dt*k23
tfold(2)=1;
end
if rand<dt*xki12
tfold(1)=1;
end
end

Function 4.

This code is to simulate the folding of all helix secondary structures.
The inputs are the states of all the amino acids in secondary structures.
helix is a matrix, each row represents one secondary structure.

Every element of one row represents one amino acid
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% After time dt, the amino acids can change state.
% The outputs are the new states of all the amino acids.

function [helix]=fhelix(helix,A,ah,nh,kpu,kpf,dt,f,kbt,1f,1u);
tempkpf=0; for i=1:ah
if helix(i,1)==0
tempkpf=kpf;
if helix(i,2)==1
tempkpf=tempkpf*A;
end
if rand<tempkpf*dt
helix(i,1)=1;
end
else
if rand<kpuxdt
helix(i,1)=0;
end
end

for n=2:nh(i)-1
if helix(i,n)==0

if helix(i,n-1)==
tempkpf=tempkpf*A;
end
if helix(i,n+1)==
tempkpf=tempkpf*A;
end
if rand<tempkpf*dt
helix(i,n)=1;
end
else
if rand<kpuxdt
helix(i,n)=0;
end
end
end

if helix(i,nh(i))==0
tempkpf=kpf;
if helix(i,nh(i)-1)==
tempkpf=tempkpf*A;
end



if rand<tempkpf*dt
helix(i,nh(i))=1;
end
else
if rand<kpuxdt
helix(i,nh(i))=0;
end
end

end

% Function 5

% This code calculates the total length of one structure if
% there n amino acids under force f.

% The length of each amino acid is the average length.
function [1]=fjc(1lu)

£=30; kbt=3%1.38; a=fxlu/kbt;
1=1u/a~2*(axcosh(a)-sinh(a))/(sinh(a)/a);

% Function 6.

%» This code calculates the total length of one structure if

% there n amino acids under force f.

%» The length of each amino acid is determined by random number.

% Details can be seen in seciton "Use random number to determine

% the projected length of a freely rotating bar in external force "

function [suml]=randomfjc(l,kbt,f,n) a=f*1l/kbt; suml=0; for i=1:n
costheta=1/axlog(exp(a)-rand*(exp(a)-exp(-a)));
templ=1*costheta;
suml=suml+templ;

end

% Function 7.

% This code is to find the length of one helix strucure.
% The length of one amino acid is the average length.
function [s]=findls(number_fold,1f,lu,f,ns,Ns,kbt)

a=f*xlu/kbt;

avelu=lu/a~2#*(a*cosh(a)-sinh(a))/(sinh(a)/a); for i=1:ns
s(1)=0;
temp=0;
for j=1:Ns(i)
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if number_fold(i,j)==0
s(i)=s(i)+avelu;
if temp==0

else
b=temp*f*1f/kbt;
avelf=1f*temp/b~2* (b*cosh(b)-sinh(b))/(sinh(b)/b);
s(i)=s(i)+avelf;

temp=0;
end
else
temp=temp+1;
end
end
if temp™=0

b=temp*f*1f/kbt;
avelf=1f*temp/b~2*(b*cosh(b)-sinh(b))/(sinh(b)/b);
s(i)=s(i)+avelf;

end

end

% Function 8.
% This code is to find the length of one helix structure.
%» The length of one amino acid is determined by random numbers.

function [s]=findls2(number_fold,1lf,lu,f,ns,Ns,kbt)
a=f*xlu/kbt;

avelu=lu/a~2*(a*cosh(a)-sinh(a))/(sinh(a)/a); for i=1:ns
s(1)=0;
temp=0;
for j=1:Ns(i)
if number_fold(i,j)==0
s(i)=s(i)+randomfjc(lu,kbt,f,1);
if temp==0

else
s(i)=s(i)+randomfjc(1f*temp,kbt,f,1);
temp=0;
end
else
temp=temp+1;
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end
end
if temp™=0
b=temp*f*1f/kbt;
avelf=1f*temp/b~2*(b*cosh(b)-sinh(b))/(sinh(b)/b);
s(i)=s(i)+randomfjc(1f*temp,kbt,f,1);
end

end

% Function 9.
% This code is to find the length of one secondary structure.
% The length of one amino acid is the average length.
function [length]=findlength(sequence,f,kbt,lu,helix,helixpointer,
hLength); if sequence(2)~=3
b=f*1lu/kbt;
avelu=1lu/b~2* (b*cosh(b)-sinh(b))/(sinh(b)/b);
length=sequence (1) *avelu;
else
a=find(helixpointer==sequence(1l));
length= hLength(a);
end

% Function 10.
%» This code is to find the length of one secondary structure.
%» The length of one amino acid is determined by random numbers.
function
[length]=findlength2(sequence,f ,kbt,lu,helix,helixpointer,
hLength); if sequence(2)7=3
b=f*1lu/kbt;
avelu=lu/b~2*(b*cosh(b)-sinh(b))/(sinh(b)/b);
length=randomfjc(lu,kbt,f,sequence(1));
else
a=find(helixpointer==sequence(1));
length= hlLength(a);
end
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13.4. Matlab code: IB model for RNase H

This is the code to simulate the folding procedure of RNase H based on IB model. This code

is used in Sec. [I1l

% Shows the sequence at which bonds forms showing their initial contour
% length expressed in terms of sequence length.
% Modified from simumodel6PLUSJuly29 to have annotation.
% August 2008
clear all; close all;
%» This code is used to show how the folding sequence change
% close;
allT=[];
% Sequence_record stores Lchange_f for all the forces,
% each in its own row.
sequence_record=[];
% All_contact stores the Contact_order for all the forces,
% each in its own row.
all_contact=[];

ft=[1;

for £=1:10
f
allT=[];

% Lchange_f stores the changes in contour length in order of bonding,
% for each force in its own column.
% Note that it stores the Lchanges for all repeats as a long row.
Lchange_f=[];
% Contact_order is a row vector of the Sequence Distance of bonds, in order
% of bonding.
contact_order=[];
for repeats=1:2
repeats
% Lchange stores the changes in contour length in order of bonding.
% Note that it resets at each repeat.
Lchange=[];
N=155;
contact=zeros(N,N);
distance=zeros(N,N);
foldingrates=zeros(N,N);
unfoldingrates=zeros(N,N);
aminoacidL=0.38;



helixL=0.15;

betal=0;

foldrate=1.5;
contour=0.38*ones(1,N);
alphafoldingrate = foldrate;
alphaunfoldingrate = 0.00000001;
halphaunfoldingrate = 0.00000001%0.01;
alphaunfoldingx = 0.1;
betafoldingrate = foldrate;
Jbetaunfoldingrate = 0.00000001;
betaunfoldingrate = 0.00000001%0.01;
betaunfoldingx = 0.1;

dt=0.01;

df=0.03;

highforce=30;

lowforce=df;

kbt=3%1.38;

p=0.7;

% Input the protein structure.
% First column, length of structure.

% Second column, type: O means loop, 1 means alpha helix, 2 means beta sheet.

protein=[3 0;
1

o

O O N, P, OONNWO Ok, N0 N0 N
OFRP ONOFPOPFPOFPFONOFPFONONON

. . E Nv v o v v Ul v e e e
. . -
e we we we we we we we we . we we we we we we we we we

H
DO

-
-

—_
we
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temp=size (protein);

% Define the number of secondary structures.

Nsecond=temp(1);

% Define beta sheet in details

% 1st and 2nd column:

% sequence positions of the first bond of beta sheet:

% If anti-parallel, then 1st column is at base (of arrow) of first strand,
% and 2nd column is at head (of arrow) of second strand.

% If parallel, then both columns are at base of sequence.

% The 3rd column: length of the beta sheet.

% The 4th column: type of beta sheet: -1 means anti parallel, 1 means parallel.
beta=[5, 28, 8, -1;

23,36, 6, -1;
4, 64, 5, 1;
64, 115,5, 1;

1;

% Once we meet a alpha helix structure, we know those bonds need
% to be formed inside the helix.
if “isempty(find(protein(:,2)==1))
pointer=0;
for i=1:Nsecond
tempsize=protein(i,1);
if protein(i,2)== % Find the alpha helices.
for j=l:tempsize-4
contact (pointer+j,pointer+j+4)=-1;
foldingrates(pointer+j,pointer+j+4)=alphafoldingrate;
unfoldingrates(pointer+j,pointer+j+4)=alphaunfoldingrate;
end
end
pointer=pointer+tempsize;
end

end

% Automatically set the bonds between beta sheet
if ~“isempty(beta)
temp=size(beta);
Nbeta=temp (1) ;
for i=1:Nbeta
tempsize=beta(i,3);
direction=beta(i,4);
templ=beta(i,1);
temp2=beta(i,2);
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% The following ’for’ loop has been corrected, July 29, 2008.
for j=l:tempsize

end
end
end

contact (templ+j-1,temp2+(j-1)*direction)=-2;
foldingrates(templ+j-1,temp2+(j-1)*direction)=betafoldingrate;
unfoldingrates(templ+j-1,temp2+(j-1)*direction)=betaunfoldingrate;

secondaryfoldrate=foldrate * 1;

Wbl hhhhhANEW ENTRIESY %A hhhhhhhh

% first column, second column, third column:

% amino acid 1, amino acid 2, bond length between 1 & 2
second_bonds=[7,55,3.3;

7,55,3.3
7,56,3.5

bl

bl

8,133,3.5;
10,134,2.
10,130,3.
10,136,3.
10,137,3.
10,133,3.
11,137,3.
12,137,2.

12,141,3
13,44,3.
21,47,3.
22,47,3.
22,50,3.
22,51,3.
22,54,3.
26,50,3.
26,55,3.
22,48,3.

= =, WOk =0 W

“e

9;
3;
4;
4;
5;
2;
9;
3

bl

we e we we we we we

“e

25,129,3.5;
34,136,3.3;
35,58,3.1;
36,136,3.1;
36,139,3.2;
45,73,2.7;
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46,103,3.2;
49,73,2.8;
49,104,3.
49,107,3.
53,103,3.
53,106,3.
56,107,3.
56,114,3.
57,106,2.
73,104,3.
75,120,3.
75,122,3.
82,104,3.
110,114,3.
112,116,3.
1;

e we we we

.« we

e we we we

GO NN WO - = b

N D v

b

b

bonds_length=3.5;
sbonds_number=max(size(second_bonds));
for i=1:sbonds_number

if second_bonds(i,3)<=3.5
contact(second_bonds(i,1),second_bonds(i,2))=-2;
foldingrates(second_bonds(i,1),second_bonds(i,2))=secondaryfoldrate;
unfoldingrates(second_bonds(i,1),second_bonds(i,2))=betaunfoldingrate;
end

end

b
b
b
b

h
h
h
h
h
h
h
h
f
f
e
L

Contact now holds -1’s and -2’s.
-1 for an amino acid pair which will form an alpha-helix bond.
-2 for an amino acid pair which will form a beta sheet or
secondary structure bond.
Yoo toto oo oo oo To o To o To o To o To T To T o

Now begin to simulate the folding procedure from the high force to
the low force region.

The initial conditions are set for the totally unfolded state.
If want to use this code to simulate the unfolding procedure,
you need to set a different initial condition.

The simulation procedure do not need to change.

(Nothing need to change in the big "for" loop.)
itxL=0.01:0.01:0.99;
itF=kbt/p*(1./4./(1-fitxL).~2-1/4+fitxL);
xtension=[];

c=[1;
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time=0;
% how many bonds we have:
BondCount = max(size(find(contact™=0)));
while max(size(Lchange))<BondCount
time=time+dt;
% Get the x/L at this force using Marko-Siggia
xpercentagel=interpl (fitF,fitxL,f);
for m=1:N-1
for n=m+1:N
if contact(m,n)==-
Ldistance=sum(contour (m+1:n));
tempx=xpercentagelL*Ldistance;
if rand<dt*foldingrates(m,n)*exp(-tempx*f/kbt)
contact (m,n)=1;
Lchange=[Lchange Ldistance];
contact_order=[contact_order n-m];
for i=m:n
if contour(i)~=betal
contour(i)=helixL;
end
end
end
elseif contact(m,n)==1
if rand<dt*unfoldingrates(m,n)*exp(alphaunfoldingx*f/kbt)
disp(’break’)
m
n
contact(m,n)=-1;

for i=m:n
contour(i)=aminoacidL;
end
end
elseif contact(m,n)==-2
Ldistance=sum(contour(m+1:n));
tempx=xpercentagelL*Ldistance;
if rand<dt*foldingrates(m,n)*exp(-tempx*f/kbt)
contact(m,n)=2;
Lchange=[Lchange Ldistance];
contact_order=[contact_order n-m];
for i=m:n
contour (i)=betal;
end
end
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elseif contact(m,n)==2
if rand<dt*unfoldingrates(m,n)*exp(betaunfoldingx*f/kbt)
contact(m,n)=-2;
contour (m:n)=aminoacidL;

disp(’break?’)

disp(’warning!! Dbeta structure break!!!’)
disp(’warning!! Dbeta structure break!!!’)
disp(’warning!! Dbeta structure break!!!’)
m

n

for sl=m:n-1
for s2=sil+1:n
if contact(sl,s2)==1
for s3=s1:82
if contour(s3)==aminoacidL
contour(s3)=helixL;
end
end
elseif contact(sl,s2)==2
contour(sl:s2)=betal;
end
end
end

end
end
end

end

extension=[extension sum(contour)#*xpercentagel];

Le=[Lc sum(contour)];
end
allT=[allT time];
Lchange_f=[Lchange_f Lchange];
end
sequence_record(f, :)=Lchange_f;
ft(£f,:)=allT;
all_contact(f,:)=contact_order;
end
deltal=1;
LN=20;

contact_bar=zeros (f,BondCount) ;

for i=1:f

for j=l:repeats

for k=1:BondCount
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% Corrected August 4, 2008: ’48’ changed to ’BondCount’
contact_bar(i,k)=all_contact(i,BondCount*(j-1)+k)+contact_bar(i,k);
end
end
end
figure(1)
bar3(1:BondCount,contact_bar?)
ylabel (’Folding order’)
zlabel (’Sequence distance’)
xlabel(’Force (pN)?)
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Figure 13.3. The simulation results for one domain. The parameters are given in

Sec. I3.5l These results are for Sec. [6.171

13.5. Simulation results without interactions between domains

The simulation results for different number of domains. The parameters used are the same:

kpp=0.03/s, kps=0.1, kpy=0/s, kp,=0 /s, ke =0 /s, A,=50,A,=1000, and A;=100. These results

are for Sec. [6.17
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Figure 13.4. The simulation results for one domain. For the same parameters
as in Fig. [[33] additional realizations. These results are different due to the
inherent stochastic nature of the dynamics.
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Figure 13.5. The simulation results for two domains. The parameters are given
in Sec. [[3.5l These results are for Sec. [6.17 Different domains fold independently.



217

D
o
D
(=1

£ £
gl cN
c c
9 9
¢ ¢
020 020
X X
0] (0]

o
o

10 15 10 15

0 5 0 5
time(s) time(s)
60 - 60 -
£ £
g4 c40
c c
9 0
¢ ¢
g g2
X X
9] (0]
0 : 0 :
0 5 10 15 0 5 10 15
time(s) time(s)
60 - 60 -
£ £
g4 g4
c c
9 0
2 ¢
020 020
X X
0 (0]
0 : : 0 : :
0 5 10 15 0 5 10 15
time(s) time(s)

Figure 13.6. The simulation results for two domains.For the same parameters
as in Fig. [3.5 additional realizations. These results are different due to the
inherent stochastic nature of the dynamics.
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Figure 13.9. The simulation results for four domains. The parameters are given
in Sec. [[3.5l These results are for Sec. [6.17 Different domains fold independently.
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Figure 13.10. The simulation results for four domains. For the same parameters
as in Fig. 30 additional realizations. These results are different due to the
inherent stochastic nature of the dynamics.
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Figure 13.11. The simulation results for five domains. The parameters are given
in Sec. These results are for Sec. [6.17 Different domains fold independently.
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Figure 13.12. The simulation results for five domains. For the same parameters
as in Fig. [311] additional realizations. These results are different due to the
inherent stochastic nature of the dynamics.
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Figure 13.13. The simulation results for six domains. The parameters are given
in Sec. [[3.5l These results are for Sec. [6.17. Different domains fold independently.
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Figure 13.14. The simulation results for six domains. For the same parameters
as in Fig. [313] additional realizations. These results are different due to the
inherent stochastic nature of the dynamics.
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Figure 13.16. The simulation results for seven domains. For the same parameters
as in Fig. [[315] additional realizations. These results are different due to the
inherent stochastic nature of the dynamics.
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Figure 13.17. The simulation results for eight domains. The parameters are given
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Figure 13.18. The simulation results for eight domains. For the same parameters
as in Fig. [317 additional realizations. These results are different due to the
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Figure 13.19. The simulation results for nine domains. The parameters are given
in Sec. [[3.5l These results are for Sec. [6.17 Different domains fold independently.
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Figure 13.20. The simulation results for nine domains. For the same parameters
as in Fig. [319] additional realizations. These results are different due to the
inherent stochastic nature of the dynamics.
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