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ABSTRACT

Integrating Heterogeneous Traffic Data Sources with High Definition Maps in

Autonomous Driving

Andi Zang

Automated driving has become a very popular topic in the recent years, and is

becoming more and more of a reality. In this new trend, High Definition (HD) maps

play an important role in many ways that will provide a safer and more efficient

driving experience, especially in terms of path planning and vehicle localization.

Challenges and problems in HD maps data extraction, dataset creation, and data

usage prediction are consequent on the developing of HD maps.

One of the greatest challenges in automated driving is the ability to acquire,

access and query the data pertaining to high resolution 3D objects from multiple

heterogeneous sources. Specifically, the information extraction needs to be done by

fusing data from both sensors and databases, and with real-time constraints. Existing

structures and algorithmic approaches designed for regular maps - or even regular

features in High Definition maps - are not capable to handle the various challenges.
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In the first chapter (Chapter 2) of this thesis, we review the importance and roles

of high resolution 3D objects in High Definition maps being used in autonomous

driving applications and summarize the characteristics of 3D objects compared to

other regular map features. We also describe an end-to-end pipeline of a system

targeting such problems and emphasize the challenges and feasible solutions to each

part of the pipeline. Last but not least, we define the quantified evaluation metrics

for each task and introduce the dataset that we built for this objective.

Given an overview of HD maps and core application, the next challenge is HD

maps component extraction. Other than road furniture such as 3D objects, lane

boundary geometry is the most fundimental components of HD map. It is typically

created from ground level LiDAR and imagery data, which have their limitations such

as prohibitive cost, infrequent update, traffic occlusions, and incomplete coverage.

In the next chapter paper (Chapter 3), we propose a novel method to automatically

extract lane information from satellite imagery using pixel-wise segmentation, which

addresses the aforementioned limitations. We also publish a dataset consists of satel-

lite imagery and the corresponding lane boundaries as ground truth to train, test,

and evaluate our method.

Moreover, another challenges in automated driving is the ability to determine the

vehicle’s location in realtime – a process known as self-localization or ego-localization.

An automated driving system must be reliable under harsh conditions and environ-

mental uncertainties (e.g. GPS denial or imprecision), sensor malfunction, road oc-

clusions, poor lighting, and inclement weather. To cope with this myriad of potential
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problems, systems typically consist of a GPS receiver, in-vehicle sensors (e.g. cam-

eras and LiDAR devices), and 3D HD maps. In Chapter 4, we review state-of-the-art

self-localization techniques, and present a benchmark for the task of image-based ve-

hicle self-localization. Our dataset was collected on 10km of the Warren Freeway

in the San Francisco Area under reasonable traffic and weather conditions. As in-

put to the localization process, we provide timestamp-synchronized, consumer-grade

monocular video frames (with camera intrinsic parameters), consumer-grade GPS

trajectory, and production-grade 3D HD Maps. For evaluation, we provide survey-

grade GPS trajectory. The goal of this dataset is to standardize and formalize the

challenge of accurate vehicle self-localization and provide a benchmark to develop

and evaluate algorithms.

Furthermore, as the HD maps are limited to a particular geographic area with

respect to a given point along a trip, different portions need to be downloaded (and

processed) on multiple occasions throughout a given trip, along with the other data

from internal and external sources. To close the scope, in Chapter 5, we take a

first step towards formalizing the problem of Predicting Map Data Consumption

(PMDC) in the future time instants for a given trip, based on a (time) window from

its history, and investigate the use of Long Short-Term Memory (LSTM) networks

– a special type of Recurrent Neural Networks (RNN). Significant efforts were fo-

cused on generating an appropriate dataset for this study, towards which we fused

the information available in multiple heterogeneous data sources. We conducted ex-

perimental observations demonstrating the benefits of the proposed approach. Part
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of our efforts focused on generating an appropriate dataset for this study, towards

which we fused the information available in multiple heterogeneous real data sources.

Our experimental observations demonstrate the benefits of the proposed approach

over the baselines.

Last but not least, we take a further step towards providing an effective learning

approach for the recently introduced problem of Predicting Map Data Consumption

(PDMC) in the future time instants for a given trip. We propose a novel methodology

that integrates multiple sources (road network, traffic, historic trips, HD maps) and,

for a given trip, enables prediction of the map data consumption.
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CHAPTER 1

Introduction and Motivation

Partly and fully autonomous driving systems, as well as other autonomous plat-

forms and systems have been extensively studied throughout the recent years [21].

In addition to sensing environmental and traffic-related values, one of the biggest

challenges in automated driving is the ability to localize the vehicle position with

a high precision, typically within ten-centimeter-level accuracy1. High Definition

(HD) maps play an important role in this task [11, 165, 232], as they can aid as-

sisting/correcting the unreliable and unstable GPS-based self-localization methods.

Such approaches are also known as map-based techniques, in contrast to the sensor-

based techniques. This type of application – real-time vehicle self-localization using

HD maps– consumes significant computational resources, and needs consistently in-

stance responses – also known as “real-time”, bring us a whole new challenge we

propose as “real-time applications in HD maps”.

1.1. Understanding the HD Maps

Typical HD maps mainly consist of lane boundary geometries, road signs and 3D

objects, as illustrated Figure 1.1. Painted lines and physical road boundaries (shown

in green lines in Figure 1.1) offered in a lane model can guide the vehicle where to

1The precision requirements of high level autonomous driving from different companies and insti-
tutions vary from 20-centimeter-level to centimeter-level.
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stay while driving - or, more specifically, localize the vehicle laterally. Lane boundary

geometry related extraction/detection and vehicle self-localization approaches have

been widely discussed in several state-of-the-art papers [143, 234, 137] and the

results presented have demonstrated nice performances. In basic terms, the lane

boundary geometry is composed by points (representation can be either polyline

or spline), attached with other descriptive tags such as lane type (e.g., solid line,

dashed, etc.), ID, color and width. The data size of this type of lane model is

relatively small - for example, as reported for the HD maps dataset in [232], the

number of points per meter is typically less than 102, which makes storing, retrieving

and query processing over such data type relatively easy/efficient. To localize the

vehicle longitudinally, non-repetitive markers along the particular road direction are

needed, so road signs (including both the text information and the signs themselves)

are involved. This lateral and longitudinal localization combination is still under

developing, and a recent demo was presented by NVidia in Consumer Electronics

Show 20193. Additionally, we note that these datasets are sparse, so the data size is

quite compact and well defined in the Navigation Data Standard (NDS) [179].

Being different from lane boundary geometry and road signs, the data size used

to describe 3D objects (shown in yellow voxels in Figure 1.1) is enormously larger,

2The number of points in a lane model depends on the number of lanes (including shoulders) and the
actual polynomial interpolation method. Typically, one only needs three control points to describe
a line/curve in a short distance.
3NVIDIA Teams Up with Leading HD Mapping Companies to Deliver End-to-End Autopilot Sys-
tems for the World’s Major Markets: shorturl.at/bkDOP

shorturl.at/bkDOP
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(a) (b) (c)

Figure 1.1. Illustration of a) a common highway under an overhead
structure scenario, b) visualizations of two major HD maps compo-
nents: lane marking geometry in green polylines and 3D object in yel-
low voxels, and c) the overlay of HD maps components on real world
image.

especially at higher resolution. The current Navigation Data Standard (NDS) spec-

ifies that the data simply uses point representation to store the 3D objects [179].

However, even with the state-of-the-art workflow, the existing solutions are not suf-

ficiently tailored to handle large-scale data storing and efficient query processing, as

well as other operations important for real-time settings (e.g., autonomous passen-

ger vehicles, trucks and drones), when the size of data increases several orders of

magnitude.

Real-time (from observation to decision) is another critical challenge that such ap-

plications need to tackle. Human reaction times in traffic are ranging from 200ms [87]

to the order of 1s [90, 78] and varies between tasks (i.e., from brake reaction times

to much more complicated tasks). A safe autonomous driving system should be no
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slower than human reaction time, and the faster the better. At the same time, a

consistent fast response time is also mandatory.

Typically the applications that need 3D objects are computationally expensive

from both acquisition-end (from sensors) and database-end (from maps). For in-

stance. We postulate that, in order to efficiently use the 3D objects in HD maps for

application with real-time constraints, methodologies and tools are needed that will

simultaneously optimize the transmission, computational and storage costs.

1.2. HD Maps Furniture Extraction

(a) (b) (c)

Figure 1.2. Object occlusion in perspective view (a), a wall caused by
occlusion in LIDAR point cloud (b), and satellite image (c).

Recently, a lot of work has been done to automate lane-level map generation using

vehicle-sensor meta data crowd-sourced from large fleet of vehicles [32] in addition

to ground level data such as imagery [30, 31, 28], LiDAR [236], GPS, and Inertial

Measurement Unit (IMU) collected by mobile mapping vehicles.
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Extracting road/lane information from airborne imagery has its advantage over

terrestrial data due to its comprehensive coverage, low-cost, ease to update. The

history of road extraction from orthogonal imagery (e.g. satellite and aerial) can be

traced back to more than forty years ago; however, limited by image resolution (typi-

cally over 2 meters per pixel), traditional approaches rely on edge detection, color seg-

mentation, linear feature detection, and topological linking [196, 6] to extract road

networks from overhead imagery. In recent years, more machine-learning based ap-

proaches are proposed to detect patch/pixel-wise road region [123, 73, 25, 124, 76].

These road centric approaches still cannot model the lane-level features even though

the common satellite image resolution has improved to 0.5 meter per pixel.

Now, satellite imagery can have a resolution of 0.5 meter per pixel or less, which

allows us to utilize the classic approaches with much detailed imagery to model lane-

level features [119, 120, 168, 143]. There are still two challenges after the lane

boundary line is successfully detected: the representation of the lane model and the

evaluation metric of model accuracy and performance. In paper [143], the road

model is represented as a collection of unstructured lines without attributes; while

in paper [168], the definition of accuracy is based on the percentage of pixel-wise

overlap comparing to their manually drawn line masks in the input images. Hence,

their claimed accuracy is less persuasive.

Autonomous vehicles are becoming more of a reality. The increasing demand

of HD mapping can be predicted, especially for interstate transportation (i.e. au-

tonomous truck [55]. The three largest highway networks in the world, U.S., China,
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and India, are 103, 446, and 79 thousand kilometers [1, 185] long, respectively,

which motivates us to concentrate on highway-level road network in this disser-

tation. We propose a novel, automated lane boundary extraction technique from

satellite imagery. Our approach consists of two stages: pixel-wise line segmentation

and hypotheses-grouping classification linking. The pixel-wise line segmentation ap-

proach contains patch-based lane-marking classification, and for each positive patch,

we segment line pixels to generate line candidates. Hypotheses-linking connects each

line candidate by minimizing the proposed cost function to generate structured lane

model. A formalized road-model-accuracy-metric is designed to evaluate the results

rigorously. We also manually extracted lane boundary ground truth from our dataset.

Along with satellite imagery, it can be used for training, testing, and evaluation for

comparative studies.

1.3. HD Maps Dataset

Vehicle self-localization (ego-localization) is a key component of autonomous

driving and often depends on a combination of sensor-based and HD-Map-based

location data. It demands high precision, real-time, and robust data management

and algorithmic techniques that can handle very harsh conditions such as GPS de-

nial/imprecision, traffic occlusion, and low lighting. Moreover, autonomous vehicles

must operate on roads in the presence of non-automated vehicles with unpredictable

human drivers for the next decade4. Finally, the price that consumers are willing

410 Million Self-Driving Cars Will Hit The Road By 2020 (Forbes: shorturl.at/deC03)
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to pay for an automotive technology module is quite low5 6. All these factors lead

to a conclusion that self-localization solutions must be reasonably priced, easily in-

stalled/integrated, and calibration/maintenance free.

A Global Navigation Satellite System (GNSS) typically localizes receiver rang-

ing from 100-meter level to 10-centimeter level by using low cost GPS or high-end

Differential GPS (DGPS), which is known as active self-localization, in both harsh

or ideal condition. Combining maps (normally standard definition maps) and raw

GPS point/trajectory, several location correction [187] and map matching [13, 147]

approaches have been designed to tackle vehicle self-localization. Such approaches

have generated promising results when the task was to localize the vehicle to a par-

ticular road. However, for lane-level self-localization, there are two factors that limit

the performance of GNSS-based localization: (1) Environment sensitivity and re-

liability – generally speaking, GNSS in urban environments suffers inaccuracy due

to multi-path interference, ionospheric delay, obstructions, and even satellite clock

error/unsynchronization7. Even if the vehicle is equipped with a survey-grade DGPS

device, the localization performance (accuracy and reliability) is insufficient for the

purpose of autonomous driving; (2) The unavoidable misalignment (relative error)

between HDMap coordinates and GNSS coordinates. This is a problem since vehicles

need to compute their locations in map coordinates for self-localization purposes.

5Deloitte Study: Fact, Fiction and Fear Cloud Future of Autonomous Vehicles in the Minds of
Consumers, shorturl.at/gvOT6
6Intel: Autonomous Driving Survey, shorturl.at/nMRU3
7Global Positioning System - Augmentation Systems: http://www.gps.gov/systems/

augmentations/

shorturl.at/gvOT6
shorturl.at/nMRU3
http://www.gps.gov/systems/augmentations/
http://www.gps.gov/systems/augmentations/
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(a) (b)

(c) (d)

Figure 1.3. Illustration of the challenge, given real-time images (a) and
(b), locate vehicle positions in corresponding road models (c) and (d)
(use satellite images as examples). In case (a) and (c), localization is
easy due to the remarkable visual feature, but is opposite in case (b)
and (d).

With commercialization and miniaturization of LiDAR devices, many Simulta-

neous Localization And Mapping (SLAM) systems have been proposed. LiDAR

techniques are known for their high precision as 3D information is captured directly,
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compared to reconstructing 3D information from a 2D stereo camera. These two

approaches are typically used to solve point cloud based localization. SLAM can be

performed either in an unknown environment [147, 40, 88] or a known environment

(i.e. map) [226, 211, 99, 100, 166]. Alternatively, lane-level objects such as lane

markings [157], pole-like objects [19, 159, 178], curbs [52], and even occupancy

grids [118, 42, 209] can be detected and used for self-localization. Using additional

information such as HD Maps, features can be used to estimate vehicle/camera po-

sition using triangulation. While LiDAR-based solutions are superior in terms of

effectiveness, their shortcomings in terms of cost and weather dependency [54] limit

their use in performing point-cloud based self-localization and cannot be ignored.

Compared to point-cloud based localization, image-based localization has been

widely utilized in the self-localization domain for over a decade, due to its ease

of acquisition, installation, and low cost. With stereo cameras, a 2D scene can

be reconstructed to 2.5D, or even 3D information. With monocular cameras (e.g.,

dash cameras and cellphone cameras), the proposed methodology can be divided

into large scale (city level), medium scale (city block level), and small scale (road

level). Perspective images and (omnidirectional/orthogonal) aerial images are two

major data sources that can be used to match and localize a query image. Image-

based localization in large scale using perspective image to perspective image match-

ing [239, 44, 27] and perspective image to aerial image matching [170] are designed
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for characterizing city identity. These techniques have the highest localization er-

ror and limited application. With the increasing demand of Location-based Ser-

vices (LBS), quite a few medium-scale image-based localization approaches which

return rough locations by using perspective image to perspective image match-

ing [97, 141, 114, 199, 200, 53, 92] and perspective image to aerial image [195,

8, 24, 107, 7, 106, 212, 216, 26] have been proposed. Small scale image-based

localization always has a specific purpose that requires relatively high precision like

unmanned vehicle navigation in GPS denied/jammed situations [200], road level

self-localization [213, 130, 198, 142, 117], and even more precise lane-level self-

localization [85, 161, 218, 148, 36, 146, 218, 182] by using detailed local patterns.

Beyond that, numerous papers that utilize image and LiDAR point cloud fusion [211]

have been proposed to tackle the localization problem.

An important aspect of evaluating such techniques is providing a benchmark,

and several datasets have been published for that purpose in the context of self-

localization [180, 193, 194]. However, vehicle self-localization remains an uncharted

domain and, in an attempt to standardize the vehicle self-localization problem, this

work introduces a dataset that contains:

•: manually coded, high precision 3D static map containing lane boundaries

(geometry, color, and function), road signs (text and spatial location), and

occupancy grid voxels;

•: consumer-grade dash camera image sequence and GPS (synchronized with

timestamps);



32

•: high precision GPS locations (with associated timestamps) aligned with the

provided map coordinates;

•: camera configuration file containing camera calibration and distortion pa-

rameters.

The dataset includes realistic scenarios that would be typically encountered by an

autonomous vehicle. This is the first version of the dataset, and we are open to feed-

back and suggestions from the community (for example, additional features/attributes,

extended coverage, etc.). A blinded test dataset is also prepared to persuasively and

fairly evaluate any proposed algorithm for its performance and generalization. Cur-

rently our dataset can be requested by email.

1.3.1. HD Maps Data Usage Prediction

Multiple on-board vehicular sensors, along with external data sources (e.g., traffic,

weather), are generating various data types which, in turn, are enabling multiple

functionalities (efficiency, re-routing), improving the overall trip experience. One

particular source important for the overall navigation in autonomous and assisted

driving settings are the HD maps [111]. While crucial for improving self-localization

and safety [165, 232, 233] – they are also the largest consumers of bandwidth and

processing power. State-of-the-art applications using HD maps are still built on the

old chassis – conventional “Standard Definition” (SD) maps, which consist of road

networks, topology and limited road features/objects attached to links and nodes.
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However, HD maps are much richer in terms of the sets (and types) of objects that

they provide.

3D data with higher resolution and accuracy can be acquired from either multi-

image reconstruction or point cloud along with the improvement of acquisition hard-

ware and algorithms. Multiple objects (“furniture”) are used to help the autonomous

vehicle to make decisions, such as lane boundaries, curbs/guardrails, and pole-like

objects. Combining these two aspects (acquisition-end and application-end) ampli-

fies the impact of (the increase of) the size of the map data, relative to when the

concept of HD maps were first introduced a decade ago. Nowadays, the HD maps

can easily contain over a thousand voxels (highway scenario) or even tens of thou-

sands of voxels (urban scenario) per road meter at a higher resolution, in contrast to

dozens of points per road link in conventional maps [233]. This, in turn, affects the

processing that enables decisions made by the drivers and autonomous vehicles, as

the complexity of many important algorithms (e.g., points registration [153] and seg-

mentation [129]), brings them on the cusp of being computationally over-expensive

for certain application scenarios, given hardware limitations. To tackle the problem

of optimizing the use of ever increasing (demands for) map data in real-time appli-

cations, existing approaches are mainly focusing on improving data structures and

data flow.

Researchers and companies focusing on improving the HD map structures have

proposed their own models to shrink the size of the data. In general, hierarchical

structures are downloading different resolutions on demand by various use cases,
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which could potentially decrease the data throughput from the server to the vehicle.

Due to the characteristics of HD maps and the applications using them, downloading

(or pre-fetching) the data for entire trip at once is practically infeasible under current

hardware constrains. This, in turn, implies that data needs to be downloaded and

processed multiple times during a particular trip – which requires efficient manage-

ment, based on various factors related to a particular vehicle and trip.

Similar problems are encountered in hybrid electric vehicle energy management [57].

If the energy consumption of each trajectory point can be predicted entirely before

the trip, the vehicle itself can have a better energy management plan to improve fuel

economy (the combination between conventional energy and renewable energy) and

to reduce emissions. However, given different fluctuations in traffic, even in this sce-

narios, one needs to re-asses the energy consumption in points throughout the trip.

What further complicates the matters is that multiple external factors (e.g., traffic

fluctuations, weather changes, etc.) may still affect the quality of various predictions

in real time.

In this dissertation we take a fist step towards considering the problem of Map

Data Consumption (MDC) and introduce the Prediction of Map Data Consumption

(PMDC) for a given trip. Since, to our knowledge, the PMDC problem has not been

formally addressed, one of the consequences is that there are no existing datasets

built/collected for this task. To this end, we integrated data obtained from multiple

sources and studies related to maps, trips and traffic data. We created a “synthetic

city” dataset (SCD) to be used in both training and experiments, and checked the
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use of an LSTM-based approach towards the PMDC problem, including additional

(internal and external) data sources.

The primary contributions are summarized as follows:

•: we first define the MDC problem follows a straightforward idea, and then

solve the a sub-PMDC-problem by using a navie LSTM structure to predict

the MDC consumption for next portion/segment of a trip, to proof the

feasibility of the PMDC.

•: we refine the definition of MDC problem. More rigorous expressions are

given to formalize the input and output of this task;

•: we propose a novel neural network structure that takes heterogeneous in-

formation as input (graph/trips and tiles) to solve PMDC problem;

•: the PMDC problem now solved by using GNN-based solution which learns

not only local sequential properties (from a trip), but spatial and temporal

information from adjacent edges;

•: we provide experimental evaluation over a synthetic dataset, demonstrating

that our solution provides significant improvements over baselines.

1.4. Thesis Outline

As the forerunner in this field, in this dissertation, we tackle several challenges at

different HD maps stages, from basic HD maps domain knowledge and structure, HD

maps furniture extraction, HD maps dataset and map data consumption prediction.

The rest of this dissertation is organized in five chapters. In Chapter 2, we present



36

a detailed introduction to HD maps components, applications and challenges. In

Chapter 3, we design a extraction technique of lane marking geometries from over-

head imagery. A HD map dataset – which is the first HD maps dataset in both

industry and academia – is introduced in Chapter 4. As the core contribution of this

dissertation, the groundbreaking HD map data consumption problem is proposed

and solved in Chapter 5. Finally, we summarize the concluding remarks, discussions

and future improvements of each stage of the HD maps creation.
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CHAPTER 2

Introduction to High Definition Maps

2.1. Introduction and Motivation

In this chapter, we provide study the challenges that are faced when designing

a system for real-time applications – specifically, ones that typically need very large

datasets, with a high quality and high resolution 3D objects. The study has three

main objectives:

(1) Provide understanding of the 3D objects and the pipeline that enables their use

in map systems. The concept of using specific kinds of 3D object in specific cases

has been widely studied (e.g., feature-based 3D localization, object recognition and

detection, etc.). However, to our knowledge, there are no systematic studies on

how to seamlessly integrate 3D object in a system - especially for real-time appli-

cations. Towards this, we will discuss the 3D objects in several aspects: from the

representation/coordinates, to their real-world features such as density, quality and

distribution.

(2) Introduce a “template” pipeline to be used by applications that require large scale

and high precision 3D objects. For each step, we will discuss the potential challenges

and solutions. The end-to-end (from data acquisition to application) pipeline using

3D objects is relatively similar to most of feature-based applications, but the critical
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difference is that the data size is much larger and the data structures used can be

complicated. In addition to the aspects and limitations due to the characteristics of

the hardware (i.e., cpu, memory, transmission bandwidth, etc.), the problems related

to efficiently orchestrating different modules bring a specific set of challenges to be

tackled, and more/different trade-offs to be considered.

(3) Define and formalize the evaluation of the different sub-problems arising in dif-

ferent modules constituting a particular system. For the core challenge of the entire

system - which is the system performance - we take steps towards providing defi-

nitions of what is the performance in this type of system. We also render several

real-world cases to make such definitions easier to understand.

2.2. Preliminaries

We now discuss in detail the importance of the 3D objects, and provide separate

discussions related to their representation and storage.

Typically, 3D objects consist of voxels/grids (also known as occupancy grids)

and semantic objects for different purposes/applications such as visualization, self-

localization and route planning. Pole-like objects [205, 207, 19, 125, 164, 18,

159, 155, 98], lane markings [161, 81, 149, 160, 70, 9, 62], curbs [71, 72],

signs [206, 146, 138], surfaces/corns [19, 80, 79] and even voxels/grids [101, 121,

160, 109, 81] are the popular objects being used in these applications.

While being compact and easy to manage, which makes them suitable for real-

time sensing and processing – using painted line as a self-localization attribute has

inevitable limitations.Namely, a painted line is easy to be mis-detected which, in
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turn, can cause serious accidents involving autonomous vehicles. The paint always

wears out over time due to heavy traffic and weather condition (according to surveys,

lane markings (and other painted signs) wear out due to the volume of traffic and

inclement weather, result in a service life ranging from 1 to 5 years due to different

materials being used [132, 173]). Moreover, lane boundaries cannot be repainted

immediately by road maintenance service. From a complementary perspective, an-

other limitation is that they can only be used to localize the vehicle laterally, since

this feature is repetitive along road direction (longitudinal). Road signs are dis-

tinctive markers that can be used to triangulate vehicle location longitudinally –

however, this kind of markers are rather infrequently placed along actual road seg-

ments. By comparison, road boundary (e.g., guardrail and curb) and pole-like (e.g.,

light pole and traffic light) objects stay relatively longer (the lifespan of a pole is

ranging from 30 to 60 years varies between highway and urban, and type of the

pole [126, 186]) and occur more frequently in road network. Last but not least,

objects should also be robust to weather from both pysical and sensor perspectives.

For instance, lane markings may become invisible from a LiDAR sensor in rain due

to low reflectance [134]. Snow can also cover lane markings and other features on a

horizontal plane. All of these components, when utilized for HD maps, aim to build

a safe(r) autonomous driving system – however, the 3D objects can offer a higher

level of precision/robustness.

A specific benefit of using 3D objects is that they can include high definition

terrain model, which can be used in several autonomous driving applications, such
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as high precision path planning [172]. The detailed road surface contour information

ahead of vehicle sensing range gives the vehicle plenty of time to adjust its suspension

and traction systems – not to mention other self-driving benefits, such as better fuel

economy and improved safety.

Last but not least, considering that the autonomous cars and trucks will not be

the only autonomous platform in future, the 3D objects can also be used in airborne

platform (for example, drones) for survey, surveillance and logistics purposes. Sim-

ilarly for other kinds ofmobile platforms like, for example, assisting the navigation

for impaired individual (e.g., path planning, blind navigation, etc).

2.2.1. 3D Object Representation

When designing a system that is to operate with certain types of spatial data, there

are always certain foregoing questions to be asked: how to represent the data, which

coordinate system to use, and what other attributes does the data have. In this

section, we provide a brief introduction of 3D object representation in discrete point,

voxel, and polygon, 3D object coordinates (from 1D to 3D), local to global, and 3D

object attributes.

Representation: There are three basic types to store these 3D objects: discrete points

(non-uniformly sampled points), voxels (uniformly sampled over a grid, i.e., raster

data) and polygons/polylines (i.e., vector data). Figure 2.2 illustrates the transfor-

mations between these three types of objects representation. The raw points can be

“polygonized” in order to generate polygons (meshes) to represent the objects, or
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they can be uniformly sampled to generate gridded voxels. Depending on the poly-

gonization approach, some meshes can be converted to equivalent or lower resolution

voxels, but not the opposite.

On both creation-end of HD maps, as well as (most of) the vehicle-ends, the

inputs are always discrete points acquired by vehicular sensors (e.g., rotating LIDAR,

solid-state LIDAR, depth cameras, etc.). An entry level industrial LIDAR unit (e.g.,

Velodyne VLP-16) can easily produce 105 points per second, even though many of

the points may be missing (either caused by target being out of the sensing range, or

target being too dark and absorbing the laser). Saving and subsequently using the

vast number of such points to localize vehicle directly (on the fly) is infeasible. Most

of the time, the raw points are too dense. As shown in Figure 2.1, nearly 80% of the

points are close to other points – i.e., within 10 centimeters. The nearest point to

point distance distribution depends on many factors such as LIDAR configurations

(e.g., refresh rate, layout and sensor orientation), vehicle speed and scenario itself.

Thus, often times, the raw discrete points need to be simplified and converted to other

representations to satisfy the requirements of the system, especially the space–time-

quality trade-off. Polygons and voxels are the most common representations used in

practice.

In computer graphics, objects are often saved in polygons (triangles) for more

lifelike, faster and smoother rendering. The vector-like represent has many other
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Figure 2.1. Histograms of point to its nearest point distances of sam-
ple partitions from urban street and highway scenarios. Majority of
distances is below 20 centimeters for both urban and highway scenar-
ios, which are 93.08% and 64.84% respectively. Very few points (0.7%
and 6.14%) are further than 50 centimeters from its nearest point in
these two scenarios.

advantages such as scale-invariance, shift-invariance, and anti-aliasing (orientation-

invariant). However, it has uncertainty associated with the compression ratio (un-

compressed size over compressed size). For example, the more regular shaped objects

the particular scenario contains, the higher (better) compression ratio one can obtain.

In certain settings, it may get quite bad (less than 1) compression ratio if the scenario

contains lots of irregular shaped objects such as bushes [60]. The method that con-

verts discrete points to triangles in 3D space is called Tetrahedralization [150, 108].

With points reduction and polygon simplification (e.g., triangle merging, plane ex-

traction, etc.), the points can be converted to an abstracted mesh model, but the cost

is extremely expensive and the result is sometimes unpredictable (i.e., no assurances

in terms of robustness) [144, 34, 50, 181]. Last but not the least, partitioning and
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Figure 2.2. Raw points and two point representation: polygon (top
row) and voxel (bottom row), with decreasing level of details. This
scenario contains two trees (on the left, two circles), a building (one
the right) and some vegetation in front.

merging meshes into/from adjacent containers/portions is also computationally ex-

pensive. These are the main reasons why in majority of the applications vectors are

used to represent simple and sparse objects (e.g., road networks, building footprints,

area contours, etc.).

In robotics, for localization and mapping purposes, voxel-like data – or in general,

raster map – is most frequently used[67, 68, 135, 5]. The conversion is known as

rasterization. Compared to vector maps, raster data has the advantage of simplicity,

robustness and computationally efficiency of the processing algorithms. Almost every

operation (e.g., rasterize, merge, update, etc.) is within a linear complexity bound.
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However, there are disadvantages, including the aliasing problem, less reusability

and less extensibility, mainly because the voxels orientations and resolution are fixed

when the raw points are being rasterized [23]. When it comes to aliasing, reducing

voxel size can “smooth” out the jaggy problem, but it will increase the number of

voxels within a cubic-order. In vector representation, polygons can be converted to

voxels on demand [75], but it is dependent on the required resolution and orientation.

This, however, would alleviate the aliasing problem, as well as the information loss

(from resampling and upsampling) and spatial distortion. But at the same time,

triangulation algorithms are not robust enough, and sometimes those algorithms

can introduce non-existent lines and fill out non-existent holes which yields more

uncertainties to cope with.

Lastly, we note that raster data is potentially compatible with most of cut-

ting edge machine learning techniques, especially deep learning for object classifi-

cation [177, 219] and segmentation [145].

3D Object Coordinate: 1D Road, 2D Mercator Tile, 3D Cartesian Grid : There

are three types of containers that we can use to organize the road objects which

are distinct from the container dimensions: attach objects to one-dimensional road

network , two-dimensional tile and three-dimensional grid. One-dimensional data

structure is rarely used [192, 102], because the objects do not have a global view,

which makes global optimization and alignment harder. Multiple adjacent road links

need to store the objects individually which, in turn, causes data redundancy.
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2D tile structure - more specifically, Mercator projection - is the most widely used

map data structure, in domains that include satellite imagery, elevation models, road

networks, buildings and other geospatial data. Storing 3D objects in tile structure

yields a better compatibility with existing map systems. As all 2D map projections,

tile structure potentially has spatial distortion along with the changes in the latitude.

Figure 2.3 illustrates the distortion cross-tile and in-tile. The in-tile distortion (lower

bound size over upper bound size) is negligible (cf. Figure 2.3 (b)) – however, the

cross-tile distortion is significant (cf. Figure 2.3 (a)). In vector map representation,

this cross-tile distortion only means a tile at equator contains roughly 62 timesmore

objects than a tile at latitude 80°, assuming that the objects on earth’s surface are

uniformly distributed. But if we use raster representation, this causes either the

number of voxels to become 63 times greater, or a voxel is 63 times larger.

When it comes to the 3D grid - which, in most cases is based on a global Cartesian

coordinate, for instance, earth-centered, earth-fixed (ECEF) - one can perceive it as

a 3D version of 2D tile partition without spatial distortion (because no projection is

needed). Using 3D voxel representation in 3D grid then seems be the most obvious

solution. However, there is a drawback of a global Cartesian coordinate that is im-

portant for many practical scenarios: the orientation of voxel looks counter-intuitive.

Because man-made objects are built perpendicular to the surface, a ECEF-like co-

ordinate may cut vertical structures such as buildings and poles into two adjacent

sub-containers.
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(a) (b)

Figure 2.3. Illustrations of tile spatial distortion. a) tile bound size
chart along with latitude from 0° to 80° and b) in-tile spatial distortion
(lower bound size over upper bound size).

Attributes : An occupancy voxel in HD maps is more than a simple 3D spatial rep-

resentation, although presently many implementations rely on using occupancy grid

to localize vehicle position [102, 192]. Similarly to the concepts used in robotics,

depth/distance information from the occupied voxel to vehicle is used to localize the

position in a given map coordinate [67, 68, 135].

However, in most of the practical scenarios using HD maps, the voxels have

other attributes. Following are but a few examples of other attributes, based upon

which the objects can be categorized into: (i) stationary or moving1 (e.g., a parking

vehicle versus a moving vehicle); (ii) durable or ephemeral2 (e.g., curb versus tree

crown); (iii) road facility/component3; (iv) non-road component (e.g., vehicle and

1In this work we assume the object is stationary when the data is collected
2Temporal-related categories in this work relate to the physical construction period.
3The objects compose entire road network, containing: road surface, road boundary (e.g., curb, end
of pavement, guardrail and pole), mark, traffic light, light pole, etc.
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pedestrian). Different objects can be assigned with different attributes for better

localization and occlusion avoidance performance.

Moving and stationary vehicles and pedestrians can also be captured by 3D data

acquisition devices, and the motion is frozen in point cloud. Manually removing the

points belonging to vehicles and pedestrians is extremely labor intensive [61]. On

the other hand, using moving object classification based approaches to remove these

objects is computational expensive, risky and not robust, due to the complexity

of real world street scenario and too many variables involved [46, 89, 152]. A

background extraction from fusing multiple point clouds of a same geo-region seems

like the most robust approach and, at the same time, feasible to deliver an industrial

level product [83, 82]. As a side-effect, though, this may require the system to

contain an attribute for stationary object’s probability. Furthermore, vegetation –

especially tree crowns – changes seasonally, and the change may not be distinguished

from two independent acquisitions – whereas users (vehicles) need the data every

second. Hence, even for those stationary objects, we still need to add an attribute

for localization confidence. In sum, the occupancy grids for the street objects not

only represent the occupancy status (i.e., occupied or not), but also have require a

collection of (attached) attributes.

2.2.2. Characteristics of Occupancy Voxel

Quantity : To design and build a system that stores all objects all around the world,

firstly, we need to estimate the total volume of these objects (i.e., how many voxels
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do we need to handle. There are two straightforward and feasible approaches to

estimate this number. The first approach is based on the length of road segments.

Specifically, one can divide the road network into two categories: highway and city.

Then the total number of voxels can be calculated by using the road length of each

category and voxel density (voxel per road length) of each category. Clearly, errors

will occur due to several reasons, such as intersection (multiple road links overlap),

road with traffic island (which one road is labeled as two separate links in map) and

special structures (e.g., tunnels and overpasses).

Another possible approach is the, so called, area based. According to the survey

data from [133, 22], the total urban road length and urban area of Contiguous

United States4 are 1.95 ∗ 109 meters and 2.74 ∗ 1011 square meters respectively, while

the corresponding voxel densities are 1.26 ∗ 104 voxels per meter and 78.7 voxels per

square meter at 10 centimeters voxel resolution as shown in Figure 2.4.

The above two approaches for estimating the size of voxels in HD maps lead to

the total number of urban voxels of 2.46∗1013 and 2.16∗1013 from road-length-based

and area-based, respectively.

Density and Distribution: We observe that, despite the size of the data, the occu-

pancy voxels are overall sparse in spatial sense, from earth-scale to street-scale. At

earth-scale, urban areas occupy roughly 3% of the earth’s land surface5 (in US, the

4Alaska and Hawaii are excluded.
5The Growing Urbanization of the World, The Earth Institute, Columbia University: shorturl.

at/gjkHY

shorturl.at/gjkHY
shorturl.at/gjkHY


49

(a) (b)

Figure 2.4. Illustrations of (a) grid occupancy ratio with voxel size
(longitudinally along the road), and (b) occupied voxels density (num-
ber of occupied voxels per meter longitudinal to the road) with voxel
size in urban and highway scenarios.

number is 3.06% according to US Bureau of the Census6 for reference). Meanwhile,

the land area only covers 29% of the entire earth. In addition, combining the road

network area in rural area in US - which is approximately 0.4%7, makes the total

area that human build and pave in the US less than 3.5%. It is hard to find this

type of data by individual countries across the world, but we can can conservatively

estimate that the total occupied areas cover around 1% surface area of the earth (via

referencing the ratio in US). At street-scale, the occupancy ratio (total number of

occupied cells over total number of cells) is also extremely low - of course, depending

on the size of the cell. Figure 2.4 (a) shows the occupancy ratio of urban and high-

way scenarios, and their occupancy ratios are below 2% if the cell size (resolution)

is around 20 centimeters.

62010 Census Urban and Rural Classification and Urban Area Criteria, US Bureau of the Cen-
sus:shorturl.at/bzFGH
7Functional System Lane-Length – 2013, US Department of Transportation:shorturl.at/ltyPS

shorturl.at/bzFGH
shorturl.at/ltyPS
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Complementary to the above, while they are spatially sparse overall, the oc-

cupancy voxels are spatially clustered, as illustrated by the heat maps shown in

Figure 2.5. The majority of objects fall on the surface (i.e., pavement road surface,

curb, sidewalk, etc.) or are vertical attached to the surface (i.e., building, pole-like

structure, tree, etc.). The point to nearest point distributions of urban and highway

scenarios are shown in Figure 2.1, which illustrates how clustered the objects are.

(a)

(b)

Figure 2.5. Points/Voxels distribution along lane center line (longitu-
dinal). We add up the voxels along road direction and project the them
to the plane perpendiculars to road direction. a) 200-meter highway
scenario: points distribute majorly on road surface and separator (i.e.,
guardrail and gap in this case), some points hit a vehicle that passes
by and vehicles and road surface on the adjacent road. b) 150-meter
urban scenario: points mainly locate on road surface and building fa-
cades, some points hit vehicles and trees nearby.

2.2.3. Characteristics of Semantic Object: Quantity, Density and Distri-

bution

Estimating the quantity, density and distribution of each semantic object need a

tremendous amount of labeling. Limit references/surveys/datasets with appropriate
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labels and small coverage can be found which can not reflect the true numbers, and

these numbers vary strongly between regions and road function classes (e.g., highway,

urban, highway near ramps, etc.). An example of pole distribution is illustrated in

Figure 2.6. For instance, pole density ranges from ∼ 10 meters (longitudinally)

in average in urban scenario [20], and ∼ 100 to ∼ 300 meters on highway [224,

232]8. Meanwhile, signs are highly clustered near intersections in urban and ramps

on highway.

Figure 2.6. Illustration of the poles near an entrance ramp. Green line
denotes a center line of a line, red dots denote pole-like objects, and
green/red dashed lines denote the placement of poles (right/left) to
the road.

2.2.4. Indexing

Tree structures are often being used to access the objects represented by points (or

the polygons formed by points). In this section, we review several categories of trees

8The pole density range of highway varies between regions.
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that are being widely used in similar applications, and discuss the potential of them

being used in a vehicle localization system.

Octree and Point Region Octree: Octree - a three-dimensional analog developed from

Quadtree [2] – along with the R-tree (for higher dimensions) are known as the most

straightforward hierarchical data structures that provides an efficient access for 3D

points (as well as line segments, polygons and volumes composed by these points).

These two data structures are widely used in geospatial applications, especially

in maps, such as satellite imagery, POIs (e.g., buildings and attached attributes)

and three-dimentional city model (e.g., building footprints and functional area con-

tours). At the same time, they have different characteristics in terms of the basic

operations (creation/indexing, updates (insertion/deletion) and query) because of

their designs [94]. Octrees partition the space into eight congruent disjoint cubes

(also known as octants or subdivisions) and recursively subdivide each octant until

there are no more than a predefined-threshold of points located in each subdivision

(leaf). A leaf can also represent the entire octant (not a certain point located in this

octant), which is an equivalent to a voxel. The trees that maintain voxels only is

known as Point Region (PR) Octree. In comparison, R-trees split multidimensional

“objects” into multiple minimal bounding boxes (MBBs) to efficiently perform the

filter step of a spatial search.

We observe that, on the most fundamental layer, as we mentioned in previous

sections, street objects and the voxels corresponding to each object are sparse (cf.

Figure 2.4) and clustered (cf. Figure 2.5). This could cause a highly unbalanced PR
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Octree to be created when storing the data. By comparison, building a well balanced

R-tree for each object (or for each category of objects) may be quite useful for

localization scenarios (similar to 3D game rendering) – however, how to split points

becomes a challenge and brings us uncertainty. Reliable points/objects segmentation

methods are needed to achieve building a R-tree. Furthermore, R-tree is sensitive

to noise (e.g. outlier points and error points). Single isolated outlier point will

expand the MMB and increase layers of R-tree. We note that the PR Octree is

easier and faster to be modified (insertion and deletion) [94] whereas in an R-tree, a

small change may affect its higher level MBB. Last but not least, as a user-centered

system, indexing and modification are considered as a one-time-cost that could be

amortized over time, whereas query time and data size are more emphasized. In this

comparison, R-trees show distinct advantages over Octrees in basic spatial searches

(e.g., inside, contains, touch, cover, etc.) and index size of storing sparse data [94].

Variants: Modifiable Nested Octree and Potree: Researchers from different areas

have faced very similar challenges: indexing large amount of points, and querying

the datasets efficiently. The most relevant solution can be found mainly in the

fields of online 3D visualization (of points, polygons, 3D maps, etc). This type of

applications is required to render millions, or even billions of points and triangles in

real time, while not causing memory crushes [210].

A well-known solution used in real time rendering problems is the, so called,

Nested Octree and its variants such as Modifiable Nested Octree [156], as well as

the more advanced Potree [162]. These approaches are indexing points and voxels
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in optimized octrees, with specially tuned query mechanism, so that large amount of

objects can be rendered based on their locations (to the camera viewing frustum) with

different level of details (determined by the distance to camera) to have an efficient

and fine 3D object rendering. These octree variants are optimized for specific real

time rendering issues. In our case, some of the problems that they are typically facing

are weakened – while additional requirements needed to be tackled. For example,

in rendering, the number of points of a still rendering is always much more that the

number of occupied voxels. In the systems that are to deal with the vehicle self-

localization problem, in contrast, much higher refresh rate is needed, because vehicle

is moving at high speed.

2.3. Processing Pipeline Challenges

The end-to-end (from data acquisition to application) pipeline using 3D objects is

relatively similar to most of feature-based applications, as shown in Figure 2.7, such

as object detection and recognition, gps-based self-localization and path planning.

In the case of 3D objects, the critical differential that be distinguished it from other

systems is the data size is enormous and the data structure is complicated. The

acquisition hardware/techniques and processing algorithms are well studied, such as

using image sensor to reconstruct 3D information, or collect 3D points directly with

LIDAR and radar sensor.

Applications such as vehicle 3D features/objects based self-localization [209,

232], lane-level/micro motion planing algorithms are being developing/improving
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in industry and academia. One thing that cannot afford be ignored is, all these ap-

plications are computationally expensive, which makes these applications sensitive

to the input data size under limit hardware constrains. In other words, our focus is

on how to efficiently use data from both sensor-end and database-end.

Figure 2.7. Illustration of a general pipeline using 3D object for in-
vehicle real-time applications, from acquisition, through processing,
database, to application layer.

The main challenges we address are the data flow from multiple sensors to cpu,

and the data flow from databases (e.g., internal/local and external/cloud) to cpu.
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And we name the first challenge as Heterogeneous Data Fusion and the second

challenge as 3D Object Query.

Heterogeneous Data Fusion Mobile unit equipped with different types of sensor

to acquire data that needed. Each sensor has its own pros and cons in working en-

vironment, computational cost, memory cost, transmission cost, power consumption

and sensing specifications (e.g., resolution, ranging, failure rate, etc.). Regarding

system requirements of each platform – such as vehicle, mobile phone, and drone –

for variant purposes – such as transportation, entertainment, survey, surveillance and

agriculture – sensor design follows the rule of system redundancy to cover complicated

(or even the most challenging) situations such as inclement weather and hardware

failure, to achieve safety-critical, efficiency-critical, and accuracy-critical function.

When all sensors work fully functional, the performance may overkill in daily driving

scenario. Hence using the optimized combination of sensors with optimized configu-

rations/parameters to satisfy dynamic system requirement is important.

For instance, image-based sensors have higher resolution and sensing range when

acquiring 3D data, but the drawbacks at the same time are also obvious, they are

relatively computational expensive, and easily be affected by poor lighting and in-

clement weather (e.g., rain and snow) [232]. Radar sensors are known as their low

cost, low resolution and low sensing range but high efficiency, while LIDAR sensors

have the advantages in high resolution, long sensing range but extremely manufac-

ture cost. In different scenarios (e.g., urban, downtown, highway, etc.), weather

condition, driving speed and safety index [48], system requirements keep changing
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with these external environments. The combination and configurations of sensors

should be changed as the external environments, to optimize the performance with

limit resource.

3D Object Query: Since the related applications are expensive and sensitive to

input size, the highest priority task of the database should be return the all the

necessary objects without as less redundant objects as possible. In Figure 2.8 (a),

we have a real world example of urban scenario. Given a vehicle in red and it drives

into an intersection, all the voxels/points (objects) locate within a certain distance

near the vehicle are colorized. The color assigned to each pixel represents the distance

to this vehicle. At this moment, the number of actual demand voxels is significant

less than the total number of voxels in a regular spatial query, which means more

objects we query and involve in computation are useless and waste a lot of memory

and cpu usage.

Feasible optimizations can be found follow these state-of-the-art algorithms de-

signed for other techniques:

(1) Using visibility to reduce the number of points. If we consider visibility prob-

lem [215, 33] in solving this task, only load the the visible objects in view frustum,

the number of voxels that return from the server can be significantly reduced, espe-

cially in urban context [231], as shown in Figure 2.8 (b).

(2) Loading object with distance and sensor layout. Similar to the foveated rendering

concept in computer graphics rendering [66] and online render optimization strat-

egy [162], since all sensors have their certain angular resolution, there is no need to
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load object in high resolution beyond a certain distance. An object resolution with

distance visualization is shown in Figure 2.8 (c). If we use tree to store the voxels,

this means the depth of some nodes when retrieving a tree can be reduced.

(3) Out-of-core optimization. When the vehicle drives along a certain path or ran-

domly, we need to arrange the objects that not to waste memory I/O (e.g., from

cloud database or local database). Correct objects need to be prioritised in appro-

priate order and wait to be resolved by cpu when needed (e.g., the vehicle moves to

next location).

Map Update: Keeping the HD maps fresh is another hot topic in industry and

academia. City and street keep changing all the time, from micro to macro. Macro

change, for example, a public road reconstruction project. It is always easy to track

such events, re-acquire data and update the map. The hardest challenge is the micro

changes – for instance, how to detect (and report) small local changes and update

new features (e.g., delete objects, add new object, or move objects) in database.

Once map update is triggered, all the objects locate in updating area need to be

pulled out and compared to newer collected data. This function requires the system

itself is highly compressed.

Trade-offs: Since we need to use limit hardware and software resources to meet the

system retirements and especially real-time criteria, the balancing between cost and

overall performance is particular important.

Heterogeneous Data Fusion and Functional Performance Trade-offs The cost we

spend on collecting and processing the data is a positive correlation between the
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functional “ performance”. For instance, in the self-localization task, the more and

detailed surrounding 3D objects acquired by different sensors and different types of

sensor, the better localization “performance” we get. But beyond a certain num-

ber and level of detail of the objects, the performance will overkill the system re-

quirements, even considering the system redundancy. Finding the sweet spot of

the heterogeneous data inputs and functional performance under dynamic external

environments and requirements is an important trade-off to be studied.

3D Object Query Optimization Trade-offs As we mentioned in previous section, we

may need to design several optimization approaches to reduce the number of objects

that retried from the database, but the optimization also comes with a price. For

example, solving the visibility problem is costly. Then the total performance of

a 3D object query needs to be considered as a summation of the cost spend on

optimization, and the cost on the application that runs on the reduced input.

2.4. Heterogeneous Data Fusion and Functional Performance

To quantify the performance - especially for feature-based (e.g., pole-like object,

tree truck, guardrail, etc.) applications, similarly to Hazardous Misleading Objects

(HMI) [49], a good indicator candidate is the F-score from object-level to voxel-level.

A cost-to-F-score chart can clearly illustrate that the performance increases as the

cost raises. An appropriate cost should meet the system minimum voxel-level or

object level F-score.

3D Object Query: An important criterion to evaluate the performance is the query

efficiency. As we described in previous section, efficiency of a real-time application
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(a) (b)

(c) (d)

Figure 2.8. A vehicle (red) driving into an intersection with: (a) ob-
jects (represented by voxels in HD maps) colorized in their distances
to vehicle, (b) visible objects colorized in distance, (c) objects res-
olution decreased with their distances to vehicle, and (d) a satellite
image for reference. The number of voxels is reduced from (a) to (b)
to (c). Ideally (every object is needed), the Simple Stationary Problem
performances in 3D Object Query challenge are all 100% with 77, 736,
44, 468, and 5, 213 voxels.

using high resolution 3D objects in HD maps is highly correlated to the number of

objects/voxels retrieved from the database, so the objective of 3D Object Query

is to both return the correct objects and try to reduce the “useless” objects, and this

will also reflect in the run-time performance.
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To simplify the problem, we divide the 3D Object Query problem into three

progressive contexts – Stationary Case, Simple Dynamic Case and Dynamic Case –

and define their evaluations:

(1) Stationary Problem. The simplest case of the system faces is, assume the

vehicle is at a certain location, and the vehicle needs to load its surrounding objects

for the related applications, how to load these objects efficiently.

Hence the fundamental problem can be defined as follow: assume the vehicle

acquires points Pv = {pv1, pv2, ...pNv} at each cycle, given vehicle estimated location

L = {llat, llon, lalt}, return the Pm = {pm1, pm2, ...pNm} that surround the vehicle (for

localization purpose), try to optimize the Pv IoU Pm (IoU: Intersection over Union,

in voxel representation) - to be accurate, optimize the pair of Pv∩Pm

Pv
and Pv∩Pm

Pm
.

Theoretically, a Pv∩Pm

Pv
= 1 is sufficient and necessary to safe driving (all needed

objects/voxels are loaded), while a smaller Pv∩Pm

Pm
is better. In reality, moving and

random objects getting involved, a Pv∩Pm

Pv
= 1 condition can not be achieved, but in

the experiment, the baseline is to satisfy Pv∩Pm

Pv
= 1.

A quick example is given in Figure 2.8. Figure 2.8 (a), (b), and (c) illustrate

three different query strategies: all voxels, voxels with visibility model and voxel

with visibility model and angular resolution respectively. The Pv∩Pm

Pv
= 1 for all

three strategies, but the Pv∩Pm

Pm
equals to 1491.1%, 853.0% and 100% respectively.

The obvious conclusion is returning the voxels with visibility model and considering

angular resolution is significant more efficient than a simple spatial query. Also

notice that, every time when a system initializes the application, the first position
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returned by GPS always has the largest error, especially in urban area. Then the

system needs to query objects in a larger range to ensure Pv∩Pm

Pv
= 1 at this moment.

With the system running more iterations, the GPS errors reduces, and a tier range

can be applied.

(2) Simple Dynamic Problem. An advanced case can be described as if the

vehicle moves along a preset route, and the system memory and cpu are not sufficient

to load and process all the objects along the entire route – which equivalents to

they can only load and process a portion of the route – what is the most efficient

strategy to prioritize the order of objects to be loaded, which saves the memory (with

transmission bandwidth, local storage, etc. if needed). and run-time.

Adding the vehicle trajectory (one planned route) composed by continuous loca-

tions S = {s1, s2, ..., sn}, assume we have a limit memory space - for instance, we

can only maintains Nm tiles (assume we use “tile” as the basic container of voxels)

in memory at every moment. Nm tiles are sufficient to handle the surround points

at one location, but not enough for the entire route. Given Tsi denotes the tiles set

at location si, where i ∈ [1, n]. To keep the pipeline running efficiently, ∥Tsi∥ = Nm.

Let T+
si

= Tsi+1
− Tsi and T−

si
= Tsi − Tsi+1

denotes the tiles push into the mem-

ory and pop out of the memory respectively. The evaluation can be formalized as

COST(S) =
∑n

i=1(∥T+
si
∥ + ∥T−

si
∥), while an efficient pipeline should minimize the

COST(S).

(3) Dynamic Problem with Probability. In reality, the scenario is much com-

plicated, the route planning is dynamic because of either driver real-time decision or
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real-time route planing algorithm. Hence a mature query strategy should be able to

handle this uncertainty.

Assume G = (V,E,W ) is a directed acyclic graph that represents the road net-

work, where V = {v}, E = {e}, and W = {w} denotes every moves (e.g., change

lane or at an intersection), links between each adjacent moves, and the vehicle de-

cision probability wi,j = P (vi|vj) on the link from two adjacent moves vi to vj. Let

S = {v1, v2, ..., vn} = Path(v1, vn) denotes a path from location v1 to vn, and the

probability of this vehicle chooses this path is Prob(S) =
∏n−1

i=1 wi,i+1 and the cost

is
∑n

i=1(∥T+
vi
∥ + ∥T−

ci
∥). Since the motion planing is dynamic, we have {S} paths

that can navigate the vehicle goes from v1 to vn, hence the dynamic cost can be

represented as {COST(S)Prob(S)|S ∈ {S}} =
∑n

i=1(∥T+
vi
∥ + ∥T−

vi
∥)wi−1,i, where

vi ∈ Path(v1, vn) and w0,1 = 1.

In some cases such as at an intersection, the query strategy is highly determined

by the selection of next link. If the probably of each link is similar (low variance),

then at this location vintersection, the COST(vintersection) = ∥T+
vintersection

∥ + ∥T−
vintersection

∥

will become larger and cost a lot of memory. Machine learning may get involve here

to reduce the variance of the probabilities of all possible links, that can reduce the

COST(vintersection) to save memory usage.

Notice that no matter which optimization approach is applied, the overall per-

formance of the application is still considered as the end-to-end run-time, which

includes optimization time and application itself, and this part relates to the Op-

timization Trade-off challenge. Only if the optimization we use is significantly
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cheaper than the application algorithm itself – for instance, the application costs n2

while optimization costs n log n – we can use the 3D Object Query performance

to determine the efficiency directly.
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CHAPTER 3

Lane Boundary Geometry Extraction from Satellite Imagery

3.1. Background

Recently, a lot of work has been done to automate lane-level map generation using

vehicle-sensor meta data crowd-sourced from large fleet of vehicles [32] in addition

to ground level data such as imagery [30, 31, 28], LiDAR [236], GPS, and Inertial

Measurement Unit(IMU) collected by mobile mapping vehicles.

Extracting road/lane information from airborne imagery has its advantage over

terrestrial data due to its comprehensive coverage, low-cost, ease to update. The

history of road extraction from orthogonal imagery (e.g. satellite and aerial) can be

traced back to more than forty years ago; however, limited by image resolution (typi-

cally over 2 meters per pixel), traditional approaches rely on edge detection, color seg-

mentation, linear feature detection, and topological linking [196, 6] to extract road

networks from overhead imagery. In recent years, more machine-learning based ap-

proaches are proposed to detect patch/pixel-wise road region [123, 73, 25, 124, 76].

These road centric approaches still cannot model the lane-level features even though

the common satellite image resolution has improved to 0.5 meter per pixel.
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Now, satellite imagery can have a resolution of 0.5 meter per pixel or less, which

allows us to utilize the classic approaches with much detailed imagery to model lane-

level features [119, 120, 168, 143]. There are still two challenges after the lane

boundary line is successfully detected: the representation of the lane model and the

evaluation metric of model accuracy and performance. In paper [143], the road

model is represented as a collection of unstructured lines without attributes; while

in paper [168], the definition of accuracy is based on the percentage of pixel-wise

overlap comparing to their manually drawn line masks in the input images. Hence,

their claimed accuracy is less persuasive.

Autonomous vehicles are becoming more of a reality. The increasing demand

of HD mapping can be predicted, especially for interstate transportation (i.e. au-

tonomous truck [55]. The three largest highway networks in the world, U.S., China,

and India, are 103, 446, and 79 thousand kilometers [1, 185] long, respectively,

which motivates us to concentrate on highway-level road network in this disser-

tation. We propose a novel, automated lane boundary extraction technique from

satellite imagery. Our approach consists of two stages: pixel-wise line segmentation

and hypotheses-grouping classification linking. The pixel-wise line segmentation ap-

proach contains patch-based lane-marking classification, and for each positive patch,

we segment line pixels to generate line candidates. Hypotheses-linking connects each

line candidate by minimizing the proposed cost function to generate structured lane

model. A formalized road-model-accuracy-metric is designed to evaluate the results

rigorously. We also manually extracted lane boundary ground truth from our dataset.
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Along with satellite imagery, it can be used for training, testing, and evaluation for

comparative studies.

3.2. Methodology

Our lane-boundary-geometry extraction approach contains two stages. In train-

ing, similar to [65], we use the ground truth lane boundary geometry and the cor-

responding satellite imagery from Bing Tile Server as input, project lane boundary

lines to imagery, crop image into small patches, and train our patch level classi-

fier. In extraction, our approach uses pre-trained classifier, target route/trajectory,

and corresponding satellite imagery as input, detects patch-level lane marking can-

didates [35], segment the pixel-wise lane marking candidates, and links [168] the

pixel-wise candidates to generate lane boundary geometry.

3.2.1. Patch and Patch Level Classification

The objective of this step is to build a classifier that can determine whether an

image patch contains any lane marking pixel. Even though the ground truth road

model is organized in chunk-wise structure 1, due to the specificity of the tile system,

generating training patches in chunks unnecessarily queries the image server twice

(each tile always contains two to three chunks at high resolution level). Hence, our

solution is designed as tile-wise - for each tile along trajectory, project all control

points of each functional line and connect them. To reduce noise (i.e. lane marking

pixel of adjacent road surfaces), the surface region is bounded by road boundaries

1Divide road along centerline into pieces evenly
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(given in the ground truth dataset). Samples contain lane marking pixels in red and

road surface region in green are illustrated in Figure 3.1.

(a) (b) (c) (d)

Figure 3.1. Satellite tile images fused with ground truth lane
boundary geometry at tile pixel [557869, 363521], [557909, 363513],
[558036, 363507] and [557879, 363518] at level 20 from left to right.
Road region highlighted in green, bounded by road boundaries. Lane
marking highlighted in red.

A sliding window is designed to crop training patches from corresponding satellite

image within the road surface. The label for each patch is determined by whether

there is any lane marking pixel hit in the current patch. To reduce misleading ground

truth patches (the patch contains two independent lines), an appropriate window size

should be thinner than lane width in real scale, which is 3.5 meters 2. In this project,

the ground resolution is approximately 0.15 meter per pixel at tile level 20, which

means the patch size should be less than 24. Examples of positive (contain lane

marking pixel) and negative patches are shown in Figure 3.2.

2New Guidelines for the Geometric Design of Rural Roads in Germany
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(a) (b)

Figure 3.2. 100 sample patches of original orientation lane-marking
patches (a) and non-lane-marking patches (b).

Given a satellite tile image (shown in Figure 3.3 (a)), its corresponding proba-

bility map of patch level lane marking with certain configuration (patch size is 12

pixels, use pixel representation feature and Random Forest classifier) is illustrated

in Figure 3.3 (b).

3.2.2. Pixel-wise Lane Marking Segmentation

Our patch level classification returns a probability map as output, which contains

high probability lane marking regions like the red area shown in Figure 3.3(b). How-

ever, since each region is always several pixels wide (depending on patch size and

step length), this wide range obviously could not meet the requirement considering

the definition of HD Maps [15].
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(a) (b)

Figure 3.3. Original satellite tile image (a) and its patch level lane
marking probability map (b) at location 48.2203°, 11.5126°.

To segment and locate precise lane marking pixels, we consider pixels with the

highest intensity in each slice of lane marking region perpendicular to road trajectory

as lane-marking candidate. Then, we fit a line segment through the lane marking

pixel candidates. For example, in Figure 3.4, assuming the trajectory is up, for each

row of this region, the highest intensity points are 151, 154, and 150, respectively,

which means the lane marking line segment should be the centerline of this region.

Even though the satellite image resolution has already matched the lane marking

width, limited by image compression, hardware constraints(lens, CMOS), and optical

limitations (i.e. angular resolution), tiny/thin object will always be blurred at its

boundaries when captured. Furthermore, to segment more precise lane marking

pixel locations, we introduce sub pixel-wise segmentation. For each slice of the lane

marking region, fit a Gaussian model (green lines in Figure 3.4) and find the peak
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of each model (yellow circles in Figure 3.4). Then, the lane marking pixel location

becomes sub-pixel-wise instead of the naive pixel-wise of each slice of the lane marking

region. Theoretically, line accuracy can be improved by at most half a pixel. The

pixel-wise lane marking segmentation result is illustrated in Figure 3.5.

Figure 3.4. Pixel-wise and sub pixel-wise lane marking segmentation
visualization, each number inside pixel represents its intensity value
converted from the raw RGB image.

3.2.3. Line Candidates Grouping, Classification and Linking

The previous step generates unstructured line segments without relative position

and function label (solid/dashed line). Because of occlusion (i.e. trees, vehicles,

buildings, and their shadows) and poorly painted lane markings(examples shown in

Figure 3.6 (a)), less true lane marking lines will be detected, while more mislead-

ing lines (false positive) will be detected if lane-marking-like objects appear (i.e.

guardrail, curb, wall shown in Figure 3.6 (b)).

The method of of transforming the unstructured lines to structured lines with

function labels contains three steps: grouping line candidates from each chunk, clas-

sify the function of each line group, and link the missing lines.
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(a)

(b)

Figure 3.5. Lane marking region candidates (green regions) and pixel-
wise lane marking pixel candidates (red dots) overview (top) and zoom
view (bottom).

In the grouping step, whether or not to push a line into a group depends on

the relative distance 3 between the current line to all other line candidates in the

current chunk, in the neighboring chunk(s), and their relative distances to road cen-

terline/vehicle trajectory. For example, line candidates (gray) from four continuous

3There is no definition of line segment to line segment distance in a 2-D plane if they are not
parallel, the relative distance here is the average distance between each point from one line segment
to the other.
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(a) (b)

(c) (d)

Figure 3.6. Phenomenons cause mis-detection: bad painting quality
and shadow (a), misleading objects that cause false positive: high
reflective metal guardrail and cement curb (b).

chunks and vehicle trajectory (blue dashed) are illustrated in Figure 3.7 (a). After

the grouping step, five groups are generated and colored in Figure 3.7 (b). On a

certain portion of the road, for each group, the function label is determined by the

ratio of the total length of detected line segments belong to this group, to the total

length of road contains this line group. Typically, consider reasonable mis-detection

and wrong detection, the length ratio of dashed line is below 40% and the ratio of

solid line is above 80%. In the task of modeling highway roads, there is an assump-

tion that each road portion can have at most two solid lines bounding the (drivable)

road surface. Figure 3.7 (c) illustrates the groups after the classification step, solid

lines and dashed lines are colored in dark red and dark green, respectively, lines

out of solid lines (drivable road surface) are colored in gray and will be ignored. In

the final step, if one chunk does not contain a line that belongs to the group which

passes this chunk, a synthetic line will be interpolated (light green lines shown in

Figure 3.7 (d)).
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(a) (b)

(c) (d)

Figure 3.7. Illustrations of Line Candidates grouping, classification
and linking steps.

Notice that in this grouping, classification, and linking procedure, numerous

thresholds and constrains (i.e. distance threshold, search range, etc.) are needed

to control the process. Generally speaking, if we abstract all these variables into

one degree: loose (longer search range, wider distance threshold) and tight (shorter

search range, narrower distance threshold) to reflect the abstract performance of the

model, the tightness-to-performance chart is illustrated in Figure 3.84. As we can

see, it is a trade off between function accuracy and geometry accuracy 5.

Furthermore, if any constraint (additional information) is provided when extract-

ing the lane boundary geometry - for example, if we know the number of lanes for a

certain portion of the road - this process can be fine tuned to generate a much better

result.

4This chart is subject to mis-detection rate and wrong detection rate for the portion of road
5The definitions of function and geometry are described in Section 3.4.1
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Figure 3.8. Constrains tightness to modeling performance chart.

3.3. Lane Boundary Ground Truth Collection

In paper [168], the author uses manually-drew, pixel-based ground truth, repre-

sented in ’mask’ format [167], to evaluate his accuracy. The author does not have

detailed description and statistic of his dataset. The number of ground truth masks

is 50, which also limits its persuasion.

To code our lane boundary geometry dataset, we built an interactive tool which

allows us to manually draw lane boundaries from scratch and present background

image from various sources (i.e. point cloud projection, satellite imagery, etc.). The

user interface is shown in Figure 3.10. An lane boundary geometry extraction from

LiDAR point cloud pipeline will be executed at the very beginning to generate near-

perfect lane boundaries to boost our modeling efficiency from 29.2 meters per minute
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to 12.8 meters per minute6. Then we use our tool to edit (delete, move, insert, etc.)

the control points on lane boundary lines to make align them with the background

imagery perfectly.

In this section, we are going to discuss the road selection, coding rules, lane

boundary geometry representation, and potential system errors. More lane boundary

geometry data of diversified scenarios (luminance condition, country, etc.) will be

published as future work.

3.3.1. Lane Boundary Data Description

We collect lane boundary geometry on Germany Autobahn A99 (Bundesautobahn

99), from location 48.2206°11.5153° to 48.2057°11.4586°, divided into seven portions

(five for training and two for testing) to exclude overpass structures and other unex-

pected scenarios.

This dataset contains training data (approximately 10.14 kilometers) and testing

data (6.07 kilometers), which follows similar coding rules but two key differences

in coding the dashed line and the coordinate system due to the particularity of

this research. In training set (coverage shown in Figure 3.9, highlighted in red),

dashed lines are represented as isolated line segments (two end points), shown in

Figure 3.10(b), and aligned with satellite imagery coordinates. In testing dataset

(coverage shown in Figure 3.9, highlighted in yellow), dashed lane markings belong

to one set of continuous/sequential control points if they are semantically treated as

6Time efficiency is dependent on the number of lanes and the road structure. In our dataset, the
majority of lane number is 3.
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Figure 3.9. Illustration of our ground truth portions highlighted on
aerial imagery, red for training and yellow for testing.

one line and aligned with point cloud, as shown in Figure 3.10(c). All control points

are placed right in the middle of their corresponding lane marking.

Also, in this dataset, we code road boundaries (i.e. guardrail, curb) and use them

to separate road surface from non-road surface (to exclude lane-marking like objects

outside the road surface).
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(a) (b)

(c) (d)

Figure 3.10. Lane boundary line in point cloud view (a), test lane
boundary line (continuous dashed line) in point cloud view (b), test
lane boundary line in satellite imagery mode (misalignment between
two systems can be obtained)(c) and train lane boundary line (isolated
dashed line) in satellite imagery view (d). UUID denotes the line id.

3.3.2. Data Annotation

To represent lane boundary geometry and lane boundary lines for user convenience,

lane boundary lines are evenly divided into 12-meter chunks. Each chunk is wrapped

up in a single JSON file that follows this structure7:

7Map version specifies the map version which ground truth lane boundary lines aligns to, follows
Bing Maps URL http://a0.ortho.tiles.virtualearth.net/tiles/a/[quadkey].jpeg?g=[map version]
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Chunk JSON file

id: INT

map version: INT

lines:

line id: STRING: UUID

type: STRING: [’solid’/’dashed’/’trajectory’]

points: FLOAT: [n by (latitude, longitude)] matrix

3.3.3. Errors in latitude, longitude, and altitude

Aerial imagery and point cloud are stored/represented in two coordinate systems -

Mercator projection coordinate system [14] and Cartesian coordinate system [4, 163]

- because of their acquisition techniques. Aerial image tile system is designed by

demand years ago, but it inevitably has heavy distortion.

To avoid distortion, point cloud processing procedures and our labeling tool are

designed to process data in Cartesian coordinate system. The different coordinate

systems lead to a slight distance error when coded on these two layers - point cloud

representation in a Cartesian local tangent plane: North-East-Up (NEU) and im-

agery represented in Mercator projection. Assume location [ϕ, λ, 0] at zoom level

l, the Euclidean distance dp(ϕ, λ, dx, dy) between the points back-projected through

Mercator projection and Cartesian coordinate transformations of pixel shift dx, dy is

complicated.

After simplification, dp can be represented as the function of latitude ϕ, pixel shift

[dx, dy], and zoom level l, and the illustration of function dp(ϕ, dx, dy, l) at certain
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zoom level l = 20 and certain dy = 0 is shown in Figure 3.11. According to precision

requirements from most ’HD’ definitions [74, 191, 188], the error caused by fusion

of two coordinate systems (less than 5 cm all around the world at tile level 20) does

not have an impact on the final accuracy.

Figure 3.11. Illustration of dp(ϕ, dx, dy, l) when l = 20 and dy = 0.

3.4. Experiments

In the proposed methodology, we test numerous patch configurations (patch fea-

ture, size) and machine learning techniques to find the appropriate classifier and

run our end-to-end program to extract lane boundary geometry using this optimum

classifier. In this section, we are going to present both patch level accuracy and final

extracted model accuracy by using the metrics described in the next sub-section.
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3.4.1. Accuracy Definition

Lane boundaries is a collection of numeric and functional polylines/splines in con-

trol point representation [158], we cannot simply report the accuracy in pixel-wise

representation as [168] proposes.

Considering the features of lane boundary and the misalignment between ground

truth and modeling coordinates, we propose two metrics for a persuasive performance

score: function level and geometry level accuracy. Theoretically, the misalign-

ment between two coordinates causes transformation from one model to another to

shift, scale, rotate, and even skew. In our task, scaling, rotating, and skewness are

unnoticeable so they can be ignored, only shift transformation will be considered.

Given ground truth lines Li = {li,1, li,2, ...., li,n} and predicted lines L′
i = {l′i,1, l′i,2, ...., l′i,m}

from ith chunk, the first step is to match l ∈ Li and l′ ∈ L′
i. Let d(l, l′) denotes

the distance between pair lines l and l′ with sign (for example, left for negative) and

Pair(li, L
′
i) denotes the paired line in L′

i of li. Align two models by using each li and

each l′i, find the

argminall pairs(
∑

li,j∈Li

(d(li,j, Pair(li,j, L
′
i))))(3.1)

Figure 3.12 shows two pairs: green dashed arrow and red dashed arrow. By

comparing the total length of the green and red solid arrows, the best match is

green dashed arrow. Given distance threshold Td from requirement (for example,

HD Maps), a correct detection of l′i and li is counted if their functions are matched
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and d(l′i, li) < Td. Then, the accuracy of the predicted model compared to ground

truth can be represented in

precisionfunction = number of correct detections
(∥L∥)(3.2)

recallfunction = number of correct detections
(∥L′∥)(3.3)

L = {Li},L′ = {L′
i}, i ∈ road(3.4)

To calculate geometry accuracy, for each pair {li,j : Pair(li,j, L
′
i)} in Li, the shift

is defined as AV Gi(d(li : Pair(li,j, L
′
i))), L

′
i and Li ∈ L, and the performancegeometry

is defined as AV Gi(1− σ(d(li:Pair(li,j ,L
′
i)))

σmax(∥Li∥) ), while σmax = σ(Lmax) is used to normalized

precision for each chunk, where Lmax = M ∪N , set M contains floor(∥Li∥)
2

)’s Td and

set N contains ceiling(∥Li∥)
2

)’s −Td (for example, if ∥ Li ∥) equals 4, then σmax(∥ Li ∥

) = σ([Td, Td,−Td,−Td])). With this {perfomance : shift} metric, we can present the

lane boundary geometry reasonably if the alignment between two source coordinates

is unknown. Also, we can tweak the parameters of end-to-end program to generate

expected model depends on the project requirement. For example, if alignment is

not a requirement and we want to address the LiDAR shadow issue from point cloud,

we would need to tweak the configurations with the lowest performance.
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Figure 3.12. Ground truth lane boundary lines (left) and predicted
lane boundary lines (road) pairing.

3.4.2. Patch level accuracy

To find the best patch level classifier, we crop tile image with given ground truth

data as described in Section 3.2.1, with configurable variables such as as patch size

(8, 12, 16, 24), patch feature (pixel representation and gradient based features such

as Histogram of Oriented Gradients (HOG), Local Binary Pattern (LBP)), and nu-

merous machine learning techniques (Random Forest (RF), Support Vector Machine

(SVM), Artificial Neural Network (ANN) and Convolutional Neural Network (CNN))

to evaluate their precision and recall. Figure 3.13 shows the performances of different

training configurations of 10-fold Cross Validation.
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Figure 3.13. Patch level precision and recall of each training configu-
ration.

According to our evaluation result, the change in patch size does not have a big

impact on patch level performance. Considering the computational cost, a patch

size of 12 is used in our final patch level classifier to generate a dense/smooth lane

marking probability map shown in Figure 3.3 (b).

3.4.3. Lane Boundary Geometry Accuracy

With the pre-trained classifier and our end-to-end solution, we tweaked parameters

and thresholds as mentioned in Section 3.2.3 to evaluate the performance of our

approach on the testing set. The function level and geometry performances are

shown in Table 3.1 below.
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Table 3.1. Model level performance with different conditions.

Sample of ground truth lane boundaries and final extracted lane boundaries ren-

dered on satellite imagery is shown in Figure 3.14 (a). Each chunk is bounded by

blue rectangle, yellow stars denote road trajectory, ground truth model is rendered

in red, and the resulting lane boundary geometry is rendered in green.

The shift from experiment result shows the misalignment between ground truth

coordinate (from point cloud) and testing data coordinate (from satellite imagery)

is negligible on testing data, which was also validated by our observation. Bene-

fited from the above-average conditions of the testing road (good painting quality,

light traffic), the extracted lane boundaries achieved impressive results when mea-

sured against the ground truth before and after the linking stage at geometry level.

Function level precision improves 10.83% by the linking stage while geometry level

performance only dropped 1.63% due to the interpolated, synthetic lane boundaries.

Even though the median error of the results is lower than 5 cm, limited by original

satellite imagery resolution, we can claim that our lane boundary geometry accuracy

is 30 cm 8.

8shorturl.at/giwD9

shorturl.at/giwD9
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(a)

(b)

Figure 3.14. Result visualization overview (top) and zoom view of the
green box (bottom).
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CHAPTER 4

Accurate Vehicle Self-Localization in High Definition Map

Dataset

4.1. Challenges

A self-localization system should return an accurate location longitudinally and

laterally in the HD map’s coordinate system, to enable the vehicle to accurately

understand its surroundings and plan its motion. A desirable accurate vehicle self-

localization has to address many challenges, including:

(1) The occurrence of unique objects (e.g. traffic signs, overhead structures,

etc.) is sparse and random, and the occurrence of reference objects (e.g. end

points of dashed line painting, light poles, etc.) is even and repetitive. If we

have one unique object and one reference object like in Figure 1.3(a), we can

easily triangulate/estimate the vehicle’s location as shown in Figure 1.3(c).

If we only have the end of the dashed line paint shown in Figure 1.3(b),

which is the most common scenario on highways, it is hard to localize the

vehicle shown in Figure 1.3(d).

(2) Image-based features, especially for image-to-image matching approaches,

suffer from environmental factors such as varying illumination (i.e. shad-

ows) and random objects such as nearby vehicles that either cause confusion
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or occlude important features. At the same time, non-road objects always

introduce more feature points. Figure 4.1(a) illustrates the average dash

camera image across the entire dataset and Figure 4.1(b) illustrates Scale

Invariant Feature Transform (SIFT) feature probability map of all images.

This also influences Structure from Motion (SFM) based approaches, be-

cause fewer feature points are necessary to reconstruct 3D information.

(3) Computational speed and storage are key requirements for a real-time ve-

hicle self-localization system. Ideally, the processing speed should reach 10

Hz to plan the motion in real time. Image-based data (especially perspec-

tive image data) is extremely large and slow to compute/display – however,

it offers the richest information. On the other hand, abstract data (poly-

points/vertices, text, occupancy grids, etc.) has the smallest size, but creates

the greatest uncertainty and inaccuracy.

(4) Random error of consumer grade GPS is not consistent and they may have

unexpected spikes. For example, around dash images #301 and #655

shown in Figure 4.7, upsurges of GPS error over 50 meters due to com-

plicated terrain and obstruction are obtained, which makes raw GPS data

too unreliable to be referenced “frame by frame”. Considering the first

challenge, it is very difficult to localize a vehicle in real-time in a featureless

scenario with imprecise GPS.

A feasible self-localization solution framework should focus on two primary environ-

ments: “feature-full” scenarios and featureless scenarios. A typical “feature-full”
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(a) (b)

Figure 4.1. a) Average color image of all 3583 dash camera images
and b) SIFT feature probability map. (b) shows more features are
obtained near vanishing point (center of the image) of road and non-
road objects (upper part of the image), while fewer feature points are
obtained on road surface (bottom part of the image).

scenario contains at least one unique object and one reference object, which allows

the vehicle to triangulate its position by using either an image based approach or

a point cloud/SLAM based approach. For featureless scenarios occurring between

“feature-full” scenarios, feature-based tracking approaches like image-based lane/line

tracking [63, 91] and SLAM-based tracking [51] or more traditional probabilistic-

based approach like lane-level map matching [189, 190] are applied to correct the

vehicle’s location on the fly.

4.2. Dataset Description

In this section, we provide the details of the dataset contributed in this work.

4.2.1. Vehicle and Sensor Configuration

A HERE True car (shown in Figure 4.2) was sent to acquire data for this dataset.

The acquisition vehicle was equipped with a well calibrated (intrinsic and extrinsic)
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HERE True platform that includes a Velodyne 32 LiDAR unit, high resolution cam-

eras, and high precision positioning unit1, which captures well-registered point clouds

and street view imagery in world coordinates for high precision mapping purposes.

Additionally, a consumer-grade dash camera was mounted on top of the windshield

(above the roof of the vehicle) and roughly on the vehicle’s major axis. A consumer-

grade GPS receiver, was mounted closely behind the camera (longitudinally), which

leads to a potential longitudinal error and slight negligible altitudinal and lateral

errors. Relative positions of the dash camera and GPS receiver are not given in the

dataset. We believe this configuration simulates a realistic case to let researchers

design a generalized solution to tackle this task.

The vehicle drove and acquired two rounds of data on California State Route

13, the Warren Freeway, from [37.8511°,−122.232°] to [37.7774°,−122.1668°]. The

data was captured under reasonable traffic and weather conditions around 14:00

on January 20th, 2016. We reviewed the acquired data and selected one segment

with the best data quality to build our HD Map, and another random segment was

chosen to be the challenge segment, to make map coordinate and vehicle coordinate

“relatively independent” even though the capture system is well calibrated. Also, the

beginning and end of the test portion, which are transitional sections(i.e. entrance

and exit ramps) from local roads to highway, have been removed to simplify the

problem.

1Here collection vehicle v2.0, Engadget: shorturl.at/ruxFX

shorturl.at/ruxFX
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Figure 4.2. Side view of HERE True vehicle, with HERE True plat-
form, consumer grade dash camera and GPS receiver.

The dash camera, consumer-grade GPS, and ground truth data are clock-synchronized

and their sampling frequencies are 10 HZ, 5 HZ, and 10 HZ, respectively, as illus-

trated in Figure 4.4. Their timestamps are represented in UNIX time format, with

time differences being 0.031, 7e−6, and 0.030 UNIX seconds, respectively. Also note

that the fifth sample of each consumer-grade GPS sampling cycle is missing.
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Figure 4.3. Illustration of our dataset trajectory.

Figure 4.4. Illustration of two sampling periods of GPS ground truth,
image sequence and consumer grade GPS timestamps. The horizontal
axis is aligned with UNIX time.
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4.2.2. High Precision Map Modeling

Navigation Data Standard (NDS)2 is the leading data format for high precision maps

in the industry, but due to its complicated data structure and current support fea-

tures, we believe NDS is not “researcher friendly” enough for experiments with the

self-localization problem. In this dataset, we manually modeled the road, divided

the road into approximately 12-meter chunks along the vehicle’s direction of travel,

and represented each piece in a JSON format. Our road model contains three com-

ponents:

•: Lane Boundary: The term “lane” refers to either a drivable lane or non-

drivable lane (also known as the road shoulder), which means a boundary

can be the physical boundary of the road or it can be a lane marking. Each

lane boundary is represented by its geometry (a set of control points), color,

function, and type. The accuracy of each control point is 1e−8 in degrees

(which is equivalent to millimeter-level3) latitudinal and longitudinal.

•: Occupancy Grid: Similar to the occupancy grid concept in robotics, our

occupancy grid represents a virtual voxel occupied by any stationary object

on or above the current road surface in 3D space. Some examples include

guardrails, light poles, road signs, and overpass bridges, shown in yellow

cubes in Row 2, Figure 4.4. The occupancy grid can be used to generate a

depth map of any given camera position and orientation on the road surface.

2NDS standard: http://www.nds-association.org/thestandard
3This is an estimated correspondence between angular distance in World Geodetic System 1984
(WGS84) to Euclidean distance in Cartesian.

http://www.nds-association.org/thestandard
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•: Road Sign: Road signs (e.g. speed limit, route confirmatory, mile maker)

are considered unique objects that offer the information for self-localization.

The spatial location of a sign is represented as a 4-vertex bounding box; the

text and the background color on the sign are also provided.

The structure of our JSON file can be found in dataset README file. Some

samples of ground truth images, visualization of a road model, overlay of a road

model and ground truth images4, nearest dash camera images, and reference satellite

images overlaid with road model of three scenarios are illustrated in Figure 4.4.

Notice that the road model is not necessarily aligned with the satellite imagery

because it is modeled in LiDAR coordinates.

4.2.2.1. Latitudinal/Longitudinal Editing and Elevation Correction. We

used a custom 2D lane boundary geometry editing tool to create the high precision

map. The acquired LiDAR point cloud is first projected onto a local tangent plane to

generate an orthogonal background for the tool. Then, we manually drew polylines

(an ordered set of points) to represent each lane boundary’s geometry. Line function

and type are obtained from the LiDAR projection and line color is obtained from the

corresponding front-view image. Only latitude and longitude of a point can be en-

coded using this tool. When the collection vehicle goes around a curved road section,

a large bank angle leads to a large shift of lane boundary through the vehicle’s front

view. To solve this elevation misalignment issue, we extract a high precision Digital

Elevation Model from the point cloud [229]. Then, we assign altitude information to

4The ground truth images are only used for validation and visualization purposes, so they are not
included in the dataset.
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each control point by orthogonally projecting the point onto the DEM. An example

of large bank angle at curved road section is illustrated in Figure 4.5. The yellow line

and blue line refer to the camera Y axis and horizon (perpendicular to travel direc-

tion on local tangent plane). The red polyline and green polyline represent the road

model before and after elevation correction. A half-lane-width shift can be observed

in the right-most lane in this example.

Figure 4.5. Illustration of lane model before elevation correction (red)
and corrected elevation(green). Yellow line segment: camera y-axis.
Blue line segment lies on current local tangent plane. An approxi-
mate 1-meter raising of the outer edge of the curved road above the
inner edge can be observed. Note that there potentially exists a slight
misalignment between the ground truth image and road model coor-
dinates.

4.2.2.2. Occupancy Grids and Road Signs. An occupancy grid, with its z-

axis orthogonal to the local tangent plane and y-axis oriented towards the current

direction of travel, is extracted from the LiDAR point cloud and represented as voxels

with 25-centimeter side-length. Compared to the original, unstructured point cloud,

the occupancy grid represents the surrounding objects in less detail and therefore,
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requires less data storage5. The original occupancy grid includes all objects above

the current road surface within the LiDAR range. However, for this dataset, we

manually removed moving objects on both sides of the road and stationary objects

on the adjacent road surface. Objects such as guardrails, light poles, traffic signs,

trees, and overpasses on the current road surface, illustrated in yellow cubes in Row

2, Figure 4.4, were preserved. Road signs were also labeled, represented by four

bounding box vertices, text information, and background color. One example is

shown as the red polygon in Row 2 of Column c in Figure 4.4.

4.2.3. Dataset Statistics and Evaluation Metric

Different from the state-of-the-art self-location error evaluation metrics, which is rep-

resented in latitudinal/longitudinal angular distance or Euclidean distance in global

coordinates, accurate in-map self-localization needs to be represented in ”road/map”

coordinates. Given a ground truth trajectory, which is a set of discrete locations with

time stamps, and consumer-grade GPS points P lla
GPS (lla denotes WGS84 coordi-

nate), find the previous and the next (timestamp-wise) ground truth points P lla
previous

and P lla
next. Since GPS and ground truth sampling cycles are not necessarilly syn-

chronized, a synthetic point P ned
synthetic (ned denotes local Cartesian North-East-Down

(NED) coordinate) is interpolated in-between P ned
previous and P ned

next as the ground truth

5Compression ratio is subject to many factors such as collection vehicle speed, LiDAR sensor den-
sity/angular speed/frequency and contour/shape of surrounding objects. In our case, the compres-
sion ratio is approximately 30:1
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point of P ned
GPS

6. Notice that the projection of P ned
synthetic may not lie on line seg-

ment P ned
previousP

ned
next, due to either large GPS error or curved road section. Thus,

we can define high-precision-map-based self-localization lateral error elongitudinal (me-

ter) and elateral (meter) as the distance from P ned
GPS to P ned

synthetic along and perpen-

dicular to
−−−−−−−−→
P ned
previousP

ned
next, respectively. Altitudinal error ealtitudinal calculated between

P lla
GPS − P lla

synthetic and P ned
GPS − P ned

synthetic have negligible differences due to their tiny

elevation value compared to earth’s axis lengths.

6The transformation from P lla to Pned requires a reference point as local origin. In this case we
use Psynthetic as the origin. Different reference point selections can lead to slightly different elateral
and elongitudinal locally.
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Figure 4.6. Illustration of vehicle self-localization accuracy definition.
Blue point denotes ground truth trajectory pose point, two green
points (ground truth point 1 and 2) denotes timestamp based previ-
ous and next ground truth points Pprevious and Pnext of GPS point, red
point denotes interpolated ground truth point Psynthetic, purple point
denotes consumer grade GPS point PGPS. Red arrow and yellow arrow
denote vehicle self-localization lateral error elateral and longitudinal er-
ror elongitudinal respectively.
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Figure 4.7. Error statistics of each consumer grade GPS location ver-
sus its corresponding ground truth location. Grey, red, green, and blue
shades represent absolute, lateral, longitudinal, and altitudinal errors
respectively. The horizontal axis represents consumer grade GPS se-
quence and the vertical axis represent error in meters. At image #301
and #655 the two largest errors can be observed due to complicated
terrain.

With proposed self-localization evaluation metric, we calculated lateral, longitu-

dinal and altitudinal errors of each GPS point and its corresponding ground truth

point, illustrated in Figure 4.7. The statistics are listed in Table 4.1. Absolute dis-

tance statistics are also given. Notice that all five values are calculated from absolute

value of e.
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elateral elongitudinal ealtitudinal eabsolute

Minimal (m) ≈ 0 ≈ 0 0.03 0.37
Maximal (m) 42.31 35.30 37.55 61.71
Mean (m) 4.74 3.67 6.97 9.88
Median (m) 1.74 1.33 4.70 5.93
Standard deviation (m) 7.5 6.42 7.32 11.75

Table 4.1. Lateral, longitudinal and altitudinal error statistics along
the entire dataset. eabsolute denotes the L2 distance between each GPS
point and its corresponding ground truth point in Cartesian coordi-
nates.
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1)

2)

3)

4)

5)
(a) (b) (c)

Figure 4.4. Row 1) Ground truth imagery, 2) road model visualiza-
tions, 3) overlays of imagery and road model, 4) corresponding aerial
imagery overlaid with road model (note the slight misalignment), and
5) dash camera imagery. In each row, three scenarios are shown: Col-
umn a) a normal scenario, b) a scenario containing an overhead struc-
ture, and c) a scenario containing a road sign. In row 2) and 3), a
green line denotes lane boundary geometry, a yellow cube indicates
one occupancy grid voxel, and a red bounding box indicates road sign
geometry. In Row 4), a green line denotes lane boundary geometry,
a green circle indicates ground truth location, a red circle indicates
consumer-grade GPS location in map coordinates, and a yellow line
segment shows the matched pair.
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CHAPTER 5

Towards Predicting Vehicular Data Consumption

5.1. Background and Motivation

Ensuring driving safety is a paramount in the autonomous driving industry, and

the combining of on-board real-time sensing techniques and (external) knowledge

based “verification” algorithms is a belt-and-braces approach to achieve the objec-

tive [95, 165, 128]. Low-level real-time perception systems involving cameras and

LiDAR, accompanied with machine learning [169], have shown impressive perfor-

mance in well-controlled environments and scenarios. However, with the help of HD

maps [86], more functionalities can be realized, such as a higher level of assisted

driving, improvement of fuel/energy consumption and driving experience/comfort.

Among other applications and systems, HD maps have been used in vehicle self-

localization [232], however, their notable feature is that they are of enormous data

size. They consist of road objects such as lane boundaries, pole-like objects, occu-

pancy grids and other objects, which are also known as road “furniture”. Nowadays,

the HD maps can easily contain over a thousand voxels (highway scenario) or even

tens of thousands of voxels (urban scenario) per road meter at a higher resolution,

in contrast to dozens of points per road link in conventional maps [233]. Com-

plementary to this, the map-based solutions – for example, self-localization [232],
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visualization and micro motion planning/adjustment – are computationally expen-

sive. These two factors (data size and computational complexity) result in HD maps

being the largest consumer of processing power and transmission bandwidth, from

server end, through network, to vehicle/user end.

In recent years, numerous companies start sending out their experimental AVs

(Autonomous Vehicles) on public roads. For example, in California, roughly 650

Avs have completed trips of cumulative length of 2, 855, 739 and 1, 955, 201 miles in

2019 and 2020 respectively [131]. Considering the market size of the “converntional”

(without any assisted driving features) vehicles, increasing investment in [96] and

the continuous growth of AVs [197], in the foreseeable future, vehicles with high level

assisted driving functions are likely to dominate the market and, consequently, the

occupancy of road networks. Currently, experimental/testing vehicles equipped with

high performance on-board hardware can easily handle the load of both storage and

computation – but with an overhead of high cost. When AVs are commercialized

and operated as daily drivers, HD maps (and real-time/live maps) streaming will

cause extremely heavy communication-load to the network, linearly increasing with

the number of on-line vehicles.

Hence, optimizing the use of the HD maps data is of primary importance in many

AV tasks. The most straightforward and widely used solution is to shrink/compress

and improve/optimize the map data and data structure, in order to use the band-

width more efficiently [84, 29]. In general, HD maps objects (i.e., furniture) are

represented as voxels over an underlying grid [179], and are potentially compatible
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with hierarchical structures. Furniture can be downloaded on-demand and at dif-

ferent resolutions depending of the system configurations (e.g., hardware limitation

and safety requirements) of particular use cases.

Brute-force downloading all the data, even with a high compression rate, does

not solve the problem. In most cases, on-board hardware struggles with handling

expensive algorithms which, in addition to delaying the progress of other applications,

may also increase the decision response time. This, however, raises the issue of safety

concern, along with the “side-effects” of bandwidth consumption and processing

power on remote servers too.

If the MDC – in total, or even at each distinct time instants under current

hardware constrains – can be predicted at the beginning of a trip, the system will

have plenty of time to arrange the size of streaming data and, just as importantly,

couple it with other external variables/factors (e.g., incorporating weather, traffic

updates, etc.). This would enable designing a more reasonable/reliable maps data

download strategy.

5.2. Related Works

We now overview the related works and position the dissertation in that context.

We recognize that there are works which have addressed problems related to data

use in mobile settings like, for example, data exchange in VANETS [69] and broad-

cast/indexing in air [77] – but we respectfully note that they are complementary to

the current scope of the dissertation.
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5.2.1. HD Maps

(a)

(b)

Figure 5.1. (a) A city intersection represented in an ocean of voxels at
[41.896°,−87.670°] in Chicago, IL. The visualization is done by raster-
izing millions of LiDAR points acquired for our previous work [232]
into 20 centimeters voxels. (b) illustrates the tile bounding boxes at
tile level 21 overlay on the city voxels heat map. (a) is the 3D view
cropped from the center tiles in (b).
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A quick rewind of HD maps and related applications. HD maps being used in

AVs consist of at least lane boundary geometries, road signs, and other road furni-

ture/objects, composed by points (for lane boundaries) and voxels (for other furni-

ture), attached with other descriptive tags and information. Due to extremely high

level of detail, their data size is much larger than conventional maps. A visualization

of a city intersection composed by voxels is shown in Figure 5.11. For references,

in conventional maps, dozens of control points are sufficient to represent a hundred

even a thousand meters long center line of a lane or road. In contrast, in HD maps,

each urban lane meter can have over 1.2 × 104 and 4 × 103 voxels at resolutions of

10−1 meter and 2 × 10−1 meter respectively [232]. Voxels also have the advantage

of potentially compatible with tree-like (i.e., quadtree and octree) hierarchy struc-

tures. There are mainly two types of containers that we can use to organize the road

furniture which are distinct from the container dimensions: attach objects to one-

dimensional road network and two-dimensional global tile [214]. One-dimensional

data structure is rarely used [192, 102], because the objects do not have a global

view, which may cause data redundancy (same furniture appears/obtained multi-

ple times from different link/edge) and makes global optimization and alignment

harder. Tile-like structure is the ideal container but inherently incompatible with

road network (graph representation).

Similar to the definition of energy/fuel consumption in vehicle energy manage-

ment study (i.e., miles per gallon or watt-hours per mile), MDC is based on the size of

1Tile level, also known as the Bing Maps Tile System, is a quartered Mercator projection. Level
21 is equivalent to a 12.5 meters/tile ground resolution.
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the maps data that a vehicle needs for its semi-autonomous or fully-autonomous driv-

ing function(s) [233]. One possibility to quantify the MDC is by the amount of data

the vehicle needs to load for executing real-time applications. Specifically, the vehicle

needs to load surrounding objects, represented in polygons/vertices or grids/voxels

depending on the object representation. Even though representing objects in vectors

can significantly reduce the size of the data and has invariance advantages such as

scale and shift, raster representation is still more widely used in real-time autonomous

driving applications since (cf. [233]): (1) sensors (e.g., LiDAR, depth/stereo cam-

eras) equipped on vehicles acquire data that is either directly represented in raster

format, or can straightforwardly converted into raster-like information. (2) most al-

gorithms for autonomous (and assisted driving) applications, such as the ones used

in vehicle self-localization, need to be fed with raster data [222].

Real-time vehicle self-localization is the most popular and critical application

using HD maps in autonomous driving industry from the broad perspective of de-

cision/action taking. A safe and reliable autonomous driving system should take

an action (from observation to decision) no slower than human reaction time –

200 milliseconds to 1 second depends on the specifics of a particular task [90].

Increased computational expenses when capturing specific objects (e.g., pole-like

objects, guardrails/curbs, road surface/pavement) or even entire surrounding envi-

ronment have been addressed in [205, 207, 101, 160]. If there are higher safety

requirements (under certain internal and external factors/constraints), the resolution

of retrieved voxels needs to be increased, causing a substantial increase in the size
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(a)

(b)

Figure 5.2. (a) The stacking of four types of data: HD maps, traffic,
trip, and road network from top to bottom; (b) the overlay of tiles
(gray grids), a trip (green trajectory) and road network (red graph).

of the map data to be downloaded. The size of objects information that the vehi-

cle needs is also highly dependent on the sensor configuration, such as refresh rate,
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layout and orientation, angular/spatial resolution, sensing range, and even vehicle’s

motion. On-board acquisition is irrelevant to our work, we only focus on the data

(size) retrieved from server.

5.2.2. Map Data Consumption

Similar to the definition of energy consumption in vehicle energy management study,

MDC is based on the size of the maps data that a vehicle needs for its semi-

autonomous or fully-autonomous driving function(s) at each moment [233]. We note

that energy consumption is a well-studied field, and relevant values (e.g., Joule, the

weight/volume of the petrol/gas) can be measured/quantified by on-vehicle sensors

(and energy density charts) [57].

One possibility to quantify the MDC is by how much map data the vehicle needs

to load for executing real time applications. Specifically, the vehicle needs to load

surrounding objects, represented in polygons and grids/voxels – also known as vector

and raster representations respectively. Even though representing objects in vectors

significantly reduces the size of data and has invariance advantages in scale and shift,

raster representation is still more in real-time autonomous driving applications since

(cf. [233]):

(1) sensors (e.g., LIDAR, depth/stereo cameras) equipped on vehicles acquire

raster-like information directly.

(2) most algorithms for autonomous (and assisted driving) applications, such as

the ones used in vehicle self-localization, need to be fed in raster data.
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If there are higher safety requirements, the data resolution of retrieved voxels per

unit area needs to be increased, causing substantial increase in the size of the map

data to be downloaded [233].

The size of object information the vehicle needs is also highly dependent on the

sensors configuration, such as refresh rate, layout and orientation, angular/spatial

resolution, sensing range, and even vehicle’s motion.

5.2.3. Travel-time Estimation

Trip planning, ETA (Estimated Time of Arrival), as well as some related “derived”

topics such as fuel consumption prediction [208] and electric vehicle energy man-

agement [57] are the closest ideas to our objective. Therein, the travel-time es-

timation – also known as ETA and Origin-Destination (OD) time estimation prob-

lem [204, 41] – is one of the widely used tasks in of high importance in location-based

services/applications in both consumer market and industry. Given a pair of origin

and designation locations (or the entire route), and prerequisite road network and

other information/pattern (such as traffic, weather and accident), an accurate time

predicting result not only benefits consumers’ everyday life, but also the optimization

of entire social system in the aspects such as logistic and ride-sharing [12].

The history of solving ETA problem can be traced back for decades, evolving

from simple statistic model and regression [154] to modern convolutional neural

network (CNN) based solutions [202, 105]. Numerous works using LSTM [47,

140], GNN [203, 103, 104], the hybrid of LSTM and GNN [113], and even image



111

based [56] solutions have achieved impressive results. The concurrent works such as

Curb-GAN [237] and DeepOD [227] integrate/embed external factors and historical

data into the training process and show the strong correlation to prediction results.

5.2.4. Learning Approaches: LSTM and GNN

Linear models, such as Linear Discriminant Analysis (LDA) and Support Vector Ma-

chine (SVM), have been prediction tasks for decades [176]. In the fields of geospatial

and transportation, the trajectories data is not only temporally continuous, but also

spatially continuous. Machine Learning (ML) based approaches, such as Long Short-

Term Memory (LSTM), RNN and their variants, have provided successful improve-

ments in solutions to multiple mobility-related problems and applications: driver’s

behavior prediction [58, 127]; trajectory data mining/prediction [59, 3, 223], and

vehicle speed/energy consumption prediction [110, 57]; and more broadly, Location

Based Services (LBS) [93, 238].

The fast development of LSTM has drawn substantial attention due to its ability

to model the long-term/historical dependencies of time-series data such as speed,

ETA [112], fuel/energy consumption [208, 57] for a single vehicle. Meanwhile, the

lacking of information from adjacent “samples” (such as links/edges in a graph)

limits the LSTM from learning surrounding knowledge.

Complementary, GNN-like architectures are potentially compatible with road

networks and have inherent advantages over LSTM-like solutions. Conventional
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GNNs have disadvantages in handling the changes of the graph, not only the dele-

tion/insertion of nodes, but also the ever-changing features of the nodes. Re-training

the model is needed in order to represent this node [175, 139] once changes are ob-

tained. Fortunately, being different from social network, maps and HD maps are

relatively “stable”/staic on both topological and featurization aspects. Researchers

working on dynamic graph representation learning [151, 220] are trying to eliminate

such issues.

This dissertation takes a first step towards addressing the PMDC problem from

the perspective of broader context awareness. As it has not been studied, one of the

tasks was to generate and HD maps dataset along with trips and traffic datasets, since

the existing HD maps are proprietary and, typically, confined to smaller geographic

areas, and are not integrated with other (e.g., traffic, road-network) data sources.

In this spirit, our solution also investigates the benefits of including additional data

sources. What also separates our work from the related literature is that we combine

data from multiple heterogeneous but spatially correlated sources, as illustrated in

Figure 5.2. More specifically, we embed the HD maps – or, in a broader sense, the

tile/raster based data – as a part of the heterogeneous input of a graph representation

learning architecture, and design a unique framework to train MDC problem with

other important (e.g., traffic) data sources, and use it to solve the PMDC of a trip.

5.3. Problem definition

In this section, we describe the specifics of the data sources, and present formal

definitions of the concepts used in the rest of this chapter.
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Maps and HD maps. We assume that an HD map is represented in a widely

used 2D tile system for geo-regions, accompanied with a resolution value, denoted

by M ⊆ R|P |×|Q|×|R|, where |P | is the number of cells along x-coordinate; |Q| is the

number of cells along the y-coordinate of the suitably selected system; and R is the

set of resolution values used among the cells. Typically, the values of R correspond

to voxel-sizes (i.e., one can have different resolution levels for a given configuration

of 2D tiles). The cell (p, q, r) ∈ M , denoted mp,q,r, contains the voxels corresponding

to single tile at tile coordinate p ∈ P , q ∈ Q and resolution r ∈ R in a respective

grid of the geographical area of interest.

We assume a conventional road network represented as a directed graph G =

<V,E>, where the elements of V (i.e., vertices) correspond to an intersection, and

the elements of E (i.e., the edges) correspond to road segments. Each vi ∈ V has

unique location, specified by its coordinates (vi.x, vi.y). Similarly, each ek ∈ E is

represented as the triplet <uk, vk, wk> where uk, vk ∈ V are the start node and end

node of ek, while wk denotes the “weight”, which could stem from different context,

such as: length, traffic travel index (TTI), or HD maps corresponding to ek.

We further assume that M and G are specified in the same coordinate system.

However, we note that an extra linear projection is still needed to calculate the

conversion from G to M . To simplify the problem, we introduce I(<p,q>,r) to indicate

the quantity of that data with respect to a tile location <p, q> and resolution r,

and fp(<x, y>) = <p, q> to indicate the project from geolocation <x, y> to tile

coordinate <p, q>.
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Given a vehicle at <x, y> with a set of configuration c (a combination of internal

and external factors, such as speed, acceleration, hardware configuration, weather

and traffic), the vehicle needs the surrounding information not only consists of the

current tile fp(<x, y>), but also nearby tiles, at certain resolution(s). We also define

piecewise-defined functions fd(c) = d and fr(c) = r which use c to determine a pair

of tile search size d, d ≤ 0 and resolution r ∈ R. Therefore, the HD maps information

of vehicle at < x, y, c> can be represented by a set B consists of HD maps indices,

where

Bx,y,c = {fp(<x, y>) +<p, q>, r},

p ∈ [−fd(c), fd(c)], q ∈ [−fd(c), fd(c)], r = fr(c)

(5.1)

and then the MDC at single moment < x, y, c > can be formalized as:

MDCx,y,c = f(M,Bx,y,c) =
∑

b∈Bx,y,c

Ib.(5.2)

Trip. A trip, or a trajectory, is a sequence of geospatial points represented as

L = {li}, where li =< xi, yi, ti, ci > or li =< xi, yi, zi, ti, ci >
2 is the ith point of L.

<xi, yi>, ti and ci denote the geo-location, timestamp and configuration respectively.

In this study, a raw trip L needs to be converted into a graph G representation

and then processed with GNN framework. Let Lm = <x′
i, y

′
i, ti, ci> denote the map-

matched L to graph G, and Lg = <uj, τj, ϵj> denote the trip in graph representation,

2In this dissertation we only use 2D points/cells. Z-axis in coordinate system (e.g., altitude) should
be considered in future 3D transportation, such as drone delivery.
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where <x′
i, y

′
i> is the map-matched point of raw point <xi, yi> at ti, and uj ∈ V is a

node between map-matched points <x′
i, y

′
i> and <x′

i+1, y
′
i+1>, τj is the interpolated

timestamp between ti and ti+1, and ϵj is the interpolated configuration of ci and ci+1,

for the cases when <xi, yi> and <xi+1, yi+1> do not match to a same edge.

Define dist(<xi, yi>,<xi+1, yi+1>) is the in-graph distance between <xi, yi> and

<xi+1, yi+1>, in this example:

dist(<xi, yi>,<xi+1, yi+1>)

=dist(<x′
i, y

′
i>,<x′

i+1, y
′
i+1>)

=dist(<xi, yi>, uj) + dist(uj, <xi+1, yi+1>).

(5.3)

Then we can define interpolated τj as

(5.4) τj =
dist(uj, <xi, yi>)

dist(<xi, yi>,<xi+1, yi+1>)
× (ti+1 − ti) + ti.

as well as ϵj (assume c can be interpolated)

(5.5) ϵj =
dist(uj, <xi, yi>)

dist(<xi, yi>,<xi+1, yi+1>)
× (ci+1 − ci) + ci.

Note that if the trajectory sampling rate is sparse or many intersections are

clustered together, multiple nodes may occur between two adjacent <x′
i, y

′
i> and

<x′
i+1, y

′
i+1>.
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MDC. Assume there is a trip Lt = {<x̂k, ŷk, t̂k, ĉk>} converted from a map-matched

trip Lm, has a perfect sampling rate which let there is one and only one trajectory

point locates in each adjacent tile, where fp(x̂k, ŷk) = fp(x̂k+1, ŷk+1)±<{0, 1}, {0, 1}>.

To form such trajectory, if there is no such trajectory point locates in a tile from

the map-matched trip Lm, a new point should be interpolated and the construction

of its ĉ follows Equation 5.4; if multiple trajectory points cluster in tile, the center

trajectory point will be selected. Note that, Lm is unidirectional transferred from L,

Lg and Lt are unidirectional transferred from Lm, and their relationship is shown in

Figure 5.3. |L| = |Lm|, but not necessary equals to |Lg| or |Lt|.

Thus, the total MDC of trip L can be formalized as

MDCL = MDCLt =

MDC<x̂1,ŷ1,ĉ1> ⊎ · · · ⊎MDC<x̂|Lt|,ŷ|Lt|,ĉ|Lt|>
,

(5.6)

where ⊎ denotes a special MDC accumulation operation which unions ∪ of two sets

of HD tiles inside function f . For instance,

MDC<x̂1,ŷ1,ĉ1> ⊎MDC<x̂2,ŷ2,ĉ2> =

f(M,Bx̂1,ŷ1,ĉ1) ⊎ f(M,Bx̂2,ŷ2,ĉ2) =

f(M,Bx̂1,ŷ1,ĉ1 ∪Bx̂2,ŷ2,ĉ2) =
∑

b∈Bx̂1,ŷ1,ĉ1
∪Bx̂2,ŷ2,ĉ2

Ib.

(5.7)
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We note that, whenever there is no ambiguity, we will omit certain subscript(s)

and/or superscripts. Thus, for example, to denote the MDC of a given trajectory L,

we will use MDCL when clear from the context.

Figure 5.3. Illustration of L (green), Lm (blue), Lg (purple) and Lt,
and their spatial correlation/transformation.

Portion MDC. Recall L = {li} and MDCL, the MDC of L can also be represented

as MDCl1,l|L| = MDCL, where l1 and l|L| are L’s first point (start point) and desti-

nation (end point). Similarly, MDCl1,lj , j ∈ (1, |L|) denotes the MDC from l1 to lj.

Hence, the j − 1th-to-jth portion of L can be represented as

(5.8) MDClj−1,lj = MDCl1,lj −MDCl1,lj−1
.

Given the MDC definition of a trip, the portion MDC of two adjacent trajectory

We note that, whenever there is no ambiguity, we will omit certain subscript(s)

and/or superscripts. Thus, for example, to denote the MDC for a specific time instant

ti for a given trajectory l, we will use MDC(l,ti), or even MDCti when clear from the
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Notation Description
L, Lg, Lm, Lt Trip in raw, graph, map-matched and tile

representations
x, y, t, c Raw locations, timestamp and configuration of L
x′, y′ Map-matched locations of Lm

x̂, ŷ Processed locations of Lt

τ , t̂ Processed timestamps of Lg and Lt

ĉ Processed configuration of Lt

d, r HD maps search range and resolution
fp Linear projection function from graph coordinate

to tile coordinat
fc, fr Range and resolution calculation function
f HD maps data consumption calculation function

Table 5.1. A quick reference of easily-confused notations been used in
this dissertation.

context. In addition, when we are dealing with consecutive time-stamps with respect

to a known starting time of a given trajectory, we will simply use MDCj to denote

the jth time unit after the initial time-stamp value of that trajectory. Similarly, we

will use MDC′
tj

to denote the predicted value for time instant tj (or, relative to a

known starting point, simply MDC′
j).

For convenience, the symbols used throughout the chapter (along with their in-

tended meanings) are summarized in Table 5.1.

5.4. Data Preparation: A Synthetic City

Since there is no existing dataset collected or built for this PMDC, we had to

invest some efforts to build a dataset by/for ourselves. In this section, we describe

which datasets we used for integration in creating the “synthetic city” dataset (SCD)

used in the experiments.
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5.4.1. Traces, Traffic and Maps

As we mentioned in the previous sections, HD maps (along with SD maps, which

describe the basic topology and geometry of the road network) and traces/trips are

the fundamental features of our model.

The traces need to have the following properties: dense and consistent sampling

rate, and large number of traces acquired across a wider time window. Some public

datasets, such as government released New York Taxi [183] consists of millions of

trips collected during a decade. However, the sampling rate is extremely sparse –

sometime only start/pick-up and destination time and locations are recorded. These

may be good enough when used in applications focusing on ride sharing and traffic

analysis, however, they are too sparse to be used in autonomous (or assisted) driving.

Other trajectory datasets, such as Roma Taxi [17] and T-drive [228] collect taxi data

during a long time period and consist of plenty of trips. Even though the sampling

rate of these datasets is much higher, it is still at the level of a several minutes

which again, is not high enough to satisfy real-time requirement. DiDi offers several

datasets that meet the demanding requirements of real-time autonomous driving.

The datasets are collected during 2016, in greater Xi’an city area and organized in

months.

However, to enable experimenting with the other features, traffic information is

also important. Open source providers, such OpenStreetMap (OSM), typically have

a pre-allocated attribute called Key:Flow which denotes the traffic flow information

– but does not cover too many cities. Leaders in the mapping industry - such as
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HERE Maps [184], Google Maps [116] and Bing Maps [115] - do have their own

traffic flow datasets, but they are not public accessible. Fortunately, DiDi also offers

traffic information (travel time index, DiDi TTI) collected during certain months of

2017 [39].

Figure 5.4. OSM road map of Xi’an downtown (left) and the heat
map of (synthetic) HD map data size per small tile (12.25 meters
per pixel) of Xi’an (right), within the region (34.207309°, 108.92185°),
(34.279936°, 109.009348°).

5.4.2. Data Processing and Integration

We integrate heterogeneous data from various sources to create a synthetic city,

which includes: road network (in graph representation) from OSM [136], traffic

information (in plain text) from DiDi Open Dataset [39] and HD maps (in tile

system) from previous work [233].
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Figure 5.5. Illustration of the distribution of voxel densities at different
resolutions, from 0.1 meter to 25.6 meters, acquired in Chicago area.

5.4.2.1. Road network. Road network is the skeleton of the dataset. First of

all, a road map of Xi’an metropolitan area is retrieved from OSM (DiDi TTI also

comes with a road network map but with missing too many road links, which let

it unusable). The bounding box of this map is narrowed down to the downtown

area (34.279936°, 108.92185°, 34.207309°, 109.009348°, an 8, 060 meters by 8, 053 me-

ters (lateral) area) to aggregate the density of traces and road network. 1, 814 OSM

links (roads) and 7, 421 OSM nodes (control points) are retrieved in this area, and

its visualization is shown in Figure 5.4. Due to the data security policy, The data
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(both trips and traffic) provided by DiDi is enforced to be encoded in GCJ-02 co-

ordinate [174]. Which, in turn, a consistent (locally) misalignment3 between DiDi’s

coordinate and OSM coordinate is obtained (by manually aligning several intersec-

tions). A graph with 4771 edges and 2140 nodes is generated when converting the

raw OSM data into graph representations.

5.4.2.2. HD Maps. There are not many HD map datasets available in either

academia or industry, and none of them has the ability to cover (larger regions

of) an entire city. Our current work only needs the size of HD maps per unit (tile)

area or road length.

In the context of maps and self-driving related applications, a voxel defines a cube

in 3D Cartesian coordinate system (center and edge length), and its value can either

indicates if this unit space is occupied by a road object (e.g., buildings, trees, pole-

like objects, signs), or contain richer information (object type, color, etc.). There

is a positive correlation between the size of HD maps per tile, and the number of

voxel/occupancy-grids within a tile. Given an object (e.g., a cube), the number of

voxels used to represent it grows cubically as a function of the decreasing of voxel size.

Subject to the acquisition techniques, such as camera and LiDAR, only the exterior of

an object can be recorded. To build an industry level HD maps, normally, acquisition

vehicles mounted with LiDAR sensors are sent to acquire raw point clouds of the

city. In post processing, point clouds (from either the same acquisition or different

acquisitions) will be aligned, filtered (remove unwanted objects such as vehicles and

3The misalignment from OSM’s coordinate to DiDi’s coordinate is [−0.0016°0.0047°] roughly equiv-
alents to a 468.1 meters ground resolution.
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pedestrians), and then converted to voxels. Although we cannot imitate the 3D world

from one real city acquisition to another city, the number of voxels per tile can be

transferred.

Define the voxel density as the number of voxels per surface unit area. The voxel

density distribution can be calculated from spatially partitioning the acquisition

(from a given/reference city) into unit areas. Then, similarly, we partition a new

city (with no HD maps available) into the same size unit area as well and assign the

same voxel density distribution as the reference city.

We learn the voxel density distribution (at different resolutions) relying on previ-

ous work acquired in Chicago area [233], and then apply this distribution to create

a synthetic HD maps for Xi’an. The heat map shown in Figure 5.5 illustrates the

distributions of number of voxels at different resolution, pertaining to a single tile,

where the size of a tile 25.6 × 25.6 meters. We note that the number of voxels can

exceed the ratio of the 2D-based vs. tile area, because voxels can be stacked verti-

cally within a particular area. It turned out that these distributions follow normal

distribution well at multiple levels of details. In our experiment, we choose the high-

est resolution at 0.1 meter, which has a normal distribution with σ2 = 4.78×104 and

µ = 1.57×105, and 6.79×104 and 4.47×105 voxels as the hard-coded minimum and

maximum bounds respectively. With this fitted seed of distribution, an HD map is

generated, which is then attach to the road network. The value of each tile represents

the number of voxels within this tile, to be used as the representation of its data

size. The heat map of the size of the HD map is visualized in Figure 5.4 (right).



124

5.4.2.3. TTI integration. DiDi TTI dataset [39] offers the traffic information

(travel time index (TTI) and speed) collected during a different time window from

the trips dataset (2017 and 2016 respectively), it is impossible to fuse (assign the

traffic information to each trajectory point) them together directly. To solve that,

we select the traces [38] and traffic from the same month (but different years), and

normalize/map/project the traffic information (of each link) during a month to a

“week calendar” – which has a size of 7 days by 6×24 time sections (TTI information

is recorded every 10 minutes for each link) per day, which = 1008 time slots in total,

and it shows consistency across the month. Hence we project this traffic information

to the traces to assume that the historical (even though it is collected after the

trace data) TTI information can be used as the traffic information. We project this

traffic information to the traces and we show the heat map of trip starting times in

Figure 5.7.

Note, 53.20% of edges have traffic information recorded, and accounts 61.82%

of the total length of the road network. If there is no traffic information attached

to an edge, 0s will be assigned. Figure 5.6(a) visualizes the edge’s length-to-MDC

distribution.

5.4.2.4. Trips and Map-matching. The trips we select come from DiDi trips [38]

which were acquired during October, 2016. This dataset has some features and

characteristics such as second-level GPS sampling rate, intensive samples during a

time window (number of vehicles and orders), which let it stands out from other

popular datasets such as Roma Taxi [17] and T-drive [228]. Since DiDi includes
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(a) (b)

(c) (d)

Figure 5.6. Illustration of the distributions of: (a) edge length-to-
MDC, (b) trip length-to-duration, (c) trip duration-to-MDC and (d)
trip length-to-MDC.

all the order/trip records in the dataset, a filtering process is applied to filter out

short trips (both duration-wise and distance-wise), which the thresholds are set at 60

seconds and 1, 000 meters. Also, to reduce the load of map-matching, the trajectory

points are down sampled at a minimum distance of 5 meters to reduce the redundant

points. The heat map of pick-up time is illustrated in Figure 5.7, which shows the

trips in this dataset temporally distribute as our empirical knowledge.
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# of
drivers

# of
trips

Median
duration (s)

Median
distance (s)

# of
edges

Raw 523,881 3,069,317 414 2,052 NA

MM NA 433,119 397 2,035 12

Filtered NA 113,976 610 2,639 14

Table 5.2. Dataset statistics: number of drivers and trips, median trip
duration, distance and MM edges of the raw dataset, map-matched
(MM) set and the final filtered set. Note, driver information is dis-
carded in processing stage.

Aerious map-matching is prerequisite. After testing out several solutions, we se-

lect Fast Map-Matching (FMM) [225, 16] – a hidden Markov model based solution

with pre-computation of an upper bounded origin-destination hash table for acceler-

ation purpose – due to its high accuracy, speed and accessibility. The configurations

of FMM are 8 nearest neighbours (edges), 3 × 10−3° search radius (approximately

300 meters) and a GPS error of 5× 10−4° (approximately 50 meters).

Table 5.2 shows the statistics of the trips at each step.

5.4.2.5. Trip MDC. To generate the simulated MDC for each trip, some configura-

tions need to be “hard-coded” such as search range d and resolution r ∈ R at different

vehicle internal parameters (motion) and external factors combinations at a certain

moment. Ideally, sensors (and hardware) are inclined to keep a high/consistent ac-

quisition rate and quality to ensure driving safety. Unfortunately, due to hardware

limitations, a trade-off between sampling rate (maintaining sampling rate and lower

the data quality/resolution) and data quality (keep data resolution and drop frames)
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Figure 5.7. Illustration of trip starting times heat map. Each row
represents day of the week, while each column represents the 2 hours
time window from 0:00 to 23:59:59 (further split in 10min. intervals
(shaded)).

rises [221, 10]. Most solutions tend to be the first solution to fulfill AV’s reaction

time requirement [43].

In DiDi’s trip dataset [38], the only motion information recorded is the velocity

of each trajectory point. Thus, for each trajectory point’s velocity c, we define two

thresholds Γ1 = 5m/s and Γ2 = 10m/s to determine different d, r combinations into

three segments as searching criteria 4. d1,2,3 = 1, 3, 5 and r1,2,3 = 13, 12, 11 5.Given a

map-matched trip Lt converted from dense enough trip L, the construction algorithm

of trip MDC is shown in Algorithm 1. Figure 5.6(b), (c) and (d) illustrates three

distributions of the trip duration, distance and MDC combinations. Note, due to

4The reason we use these two thresholds is the distribution of vehicle speed (at certain time interval)
learned from the dataset follows normal distribution with µ ≈ 8m/s.
5Tile level 13 equivalents to a ≈ 10−1 meter voxel size, 12 −→ 2× 10−1, and so forth.
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a filtering (to number of trajectory points) process applied, a hard cut-off at the

bottom can be observed in both length-to-duration and length-to-MDC plots.

Algorithm 1: Trip MDC Generation Process

Input:
HD Maps: M ;
Map-Matched Trip in tile representation: Lt = {< x̂k, ŷk, ĉk >}, k ∈ [1, |Lt|];
Threshold: Γ1,Γ2;
Search window size and resolution: d1,2,3, r1,2,3;
Result:
MDC of a trip: MDCL

Initialize a set B to store the HD maps tile IDs;
Initialize MDCL = 0;
for < x̂k, ŷk, ĉk > in Lt do

if ck ≤ Γ1 then
Btemp = {fp(< x, y >)+ < p, q >, r},
p ∈ [−d1, d1], q ∈ [−d1, d1], r = r1;

end
else if Γ1 < ck ≤ Γ2 then

Btemp = {fp(< x, y >)+ < p, q >, r},
p ∈ [−d2, d2], q ∈ [−d2, d2], r = r2;

end
else

Btemp = {fp(< x, y >)+ < p, q >, r},
p ∈ [−d3, d3], q ∈ [−d3, d3], r = r3;

end
for b ∈ Btemp do

if b /∈ B then
MDCL+ = Ib;
B.append b;

end
end

end
Return MDCL
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5.4.3. Naive Feature embedding and variables

Embedding features in graph representation can easily cause the problem of the

curse of dimensionality. Since our task focuses on the PMDC on a certain route,

while the synthetic HD map data is generated and attached to every unit area on

each link, we naturally concatenate the features of following route after local features.

Theoretically, we can concatenate all the information of the rest of trajectory points

to form an extremely long feature vector for each trajectory point. However, only

a certain length of future information will used in our experiment, to ensure that

the information is sufficient for the PMDC purpose (while not being redundant).

In our dataset, the maximum time interval of two adjacent trajectory points is 6

seconds because, as mentioned in Section 5.4.2, this is a criteria of our raw data

filtering process. This leads to the longest distance interval is equivalent to 18 tiles.

For a safety margin, we hard code the number of tiles being used in our PMDC

experiments to 20. Given the time interval tj+1 − tj from current point to its next

point, and vehicle velocities (2D) and headings (2D) in both raw GPS data and MM

data, we have our ∥aj∥ = 20 + 9 = 29. Next, bj consists of the traffic speed, TTI

and link category information of the next 20 tiles, which makes ∥bj∥ = 3× 20 = 60.

We note that this is a naive road category representation: if the road links to an

intersection in this tile, label it as 1; otherwise, label it as 0. Lastly, the trip global

time-wise and distance-wise progress (in percentage) are added to form the gj, where

∥gj∥ = 2. Hence, three features combinations vj = {bj|⟨bj, aj⟩|⟨bj, aj, gj⟩} are used
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in our experiments have the lengths of 29, 29 + 60 = 89, and 29 + 60 + 2 = 91,

respectively.

5.5. Naive LSTM Solution

We now proceed with explaining a simple (preliminary) solution.

Firstly, we note that in our case, the HD maps are represented in higher reso-

lution tiles. When it comes to the auxiliary data, it includes: (a) Vehicle motion

measurements, including vehicle velocity (2-D), accelerations (2-D) and location. (b)

External and real-time information, not directly a factor to MDC size, including traf-

fic speed and traffic indices of each link. (c) Trip global information, which records

the progress (in percentage) of a trip in time-wise and distance-wise.

Figure 5.8. Vehicle features at jth trajectory point (blue dot) and MDC
(blue tiles), combined with previous j − s + 1 historical features and
MDCs are fed into the LSTM, to predict PMDC for the next distance
(yellow tiles).
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Let bj, aj, and gj denote internal, external and global features at jth trajectory

point of trip L. More specifically, bj is a combination of vehicle’s motion and sur-

rounding HD maps (Blj). One may argue that, in theory, using bj only is sufficient

to predict the MDC (i.e., MDC itself is a function of geo-locations and HD maps),

which makes the problem roughly equivalent to a speed prediction or next-location

prediction problem. Furthermore, aj is introduced to describe the external and real-

time features at jth trajectory point, such as traffic indices, speed and link categories

ahead of current geo-location. Last but not least, a trip global information gj indi-

cates the trip status/progress if the trip destination is known. In our experiments (cf.

Section 5.7), three feature combinations will be used: vj = {bj|⟨bj, aj⟩|⟨bj, aj, gj⟩}.

Given its effectiveness in summarizing the contextual information from sequen-

tial data, we utilize LSTM to encode the trajectory knowledge from historical points,

and each trajectory point j ∈ (0, |L|] of a trip L is an LSTM time step. Inspired by

the usage of word embeddings and sliding windows in natural language processing

studies, we generate the trajectory embeddings at each trajectory point using vari-

ous addressed featurization techniques and use the embeddings in a moving sliding

window to forecast the MDC at the future trajectory point continuously.

LSTM cell at step j of one trajectory path, taking trajectory embeddings vj

LSTM(hj−1, cj−1, vj, yj−1)), is defined as follows:
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ej = σ(We[hj−1, cj−1, vj, yj−1] + de)

fj = σ(Wf [hj−1, cj−1, vj, yj−1] + df )

oj = σ(Wo[hj−1, cj−1, vj, yj−1] + do)

c̃j = tanh(Wc[hj−1, cj−1, vj, yj−1] + dc)

cj = fj ∗ cj−1 + ej ∗ c̃j

hj = oj ∗ tanh(cj)

(5.9)

The input, forget, and output gates are ej, fj, and oj respectively; the hidden state

hj indicates the sequential embeddings and cj represents the contextual embeddings.

c̃j denotes the intermediate embeddings carried out from input contexts. Weight

matrices We,Wf ,Wo,Wc and bias vectors de, df , do, dc are shared across different

trajectories {li}.

Suppose that the sliding window is of size s. The hidden state of our vanilla mul-

tivariate LSTM with sliding windows LSTM(j) is obtained by the following recursive

function:

(5.10) hj = LSTM(hn−1, cn−1, vn, yn−1), n ∈ [j − s+ 1, j]

The initial state h0 is a tensor padded with 0s. Similarly, when j < s the feature

embeddings are padded with 0s. We connect hj with a stack of fully connected

layers ϕ(j), for generating the predicted MDC value MDC′
j (noting that the objective
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function is the l2 loss between MDC′
j and MDCj):

(5.11) MDC′
j = ([hj, {MDCn}])

5.6. Methodology

In this section, we elaborate each module of the framework. As shown in Fig-

ure 5.9, our framework mainly consists of three components: HD maps encoder,

which encodes the HD maps information of each edge into a fixed-length (dm) vector;

Road segment encoder converts each road segment into a dr-length vector; MDC

simulator generates MDC for each trip training purpose.

Note a trip will be firstly map-matched and converted into an |Lg|-length vector

in graph representation (cf. Section 5.3). Traffic information, i.e., road conditions

and traffic flow, has already been processed into a graph (for each edge at a specific

timestamp, there is a dt-dimensional vector), hence we do not further encode the

traffic information.

5.6.1. MDC Simulator

Since there is no real MDC data acquired by either experimental or consumer vehicles,

we create an MDC for each trip follow Equation. 5.1, 5.2, 5.6 and 5.7, with using

trip, road network, HD maps and relative hard-coded variables as input. The process

is illustrated in Figure 5.9. To reduce redundant description of this process, we

elaborate the construction in Section 5.4.2.5. The output of this module is a stand-

along MDC value, which is denoted by MDCL for trip L.
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Figure 5.9. The architecture of all modules in our PMDC solution.
The dimension (in cyan) is shown next to each output.

5.6.2. Road Segment Embedding

In general, the city road network consists of a set of interconnected road segments.

Each of the segments denotes a sample of the physical connectivity. As for a specific

trip, its map-matched trajectory can be split into a sequence of road segments sorted

by time, and each segment is unique in the whole road network. Thus, road segment

can be considered as the meta component of the trip and city road network. Since the

explicit knowledge about the underlying interaction has been extracted and saved in

the topological graph structure, implicit representations of road segments are neces-

sary for resolving trips. To enhance and ensure the conciseness, we have established

the city road network according to historical trip trajectories in Section III. In this

section, we introduce an approach for learning the road segment representation and

preserving the similarity of neighboring segments in the embedding space.
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Given the weighted road graph network G =< V,E >, we first use a |V |-

dimensional one-hot vector oi as the initial feature of node vi(vi ∈ V ), which attaches

a unique representation to each of the nodes. However, one-hot representation can

not fully reflect the connectivity of the city road network. For example, the standard

similarity calculation – Euclidean distance between any two one-hot embeddings is

the same. Spatially adjacent nodes, e.g., neighboring nodes, should be given close em-

beddings. Inspired by the similarity-preserving network representation methods [37],

we leverage GraphWave [45], i.e., an unsupervised node embedding method, to ex-

tract the topological road structure and represent nodes’ network neighborhood via

a low-dimensional embedding. The process can be defined as,

(5.12) U = GraphWave(G,X = [o1,o2, . . . ,o|V |]),

where X = [o1,o2, . . . ,o|V |] is the input one-hot embedding matrix, G denotes the

topological structure of the road network and U represents the learned node embed-

ding vectors.

However, in this study, road segments, i.e., edges E of the graph G, are the

key components of each trip that we want to represent. For example, if ek ∈ E and

ek =< uk, vk, wk > is a part of a trip, the car will first pass through uk. Thus, to take

the direction of road segments into consideration, we splice two nodes’ representation

by order with learn node embedding and leverage the concatenation to determine

the spatial feature of edge. Specifically, for a given edge ek, its hidden representation
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can be defined as,

(5.13) ek = uk ⊕ vk,

where the oplus symbol ⊕ refers to the concatenation of embeddings. We note that

the edge weight wk has been considered in the node embedding process, i.e., the road

network G is weighted, thus we omit it here.

5.6.3. HD maps Embedding

(a) (b) (c)

Figure 5.10. Illustration of HDmaps information featurization: (a) one
road segment ek = ux → vx, (b) three sequential tiles red → green →
blue belong to ek, and (c) HD maps information HDek assigned to this
edge.

Recall Section 5.3, at tile < p, q >, with given search window size d (tiles), the

surrounding HD information can be represented as [Mp−d→p+d,q−d→q+d,1→R], which is

a 3-dimensional vector. Assume an edge ek ∈ G with start and end points uk, vk ∈ V

(shown in Figure 5.10 (a)) has a nuk,vk-length sequential footprint {< puk
, quk

>

, . . . , < pvk , qvk >} in HD maps tile coordinate, where < puk
, quk

>= fp(uk.x, uk.y)
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Figure 5.11. Architecture of HD maps encoder.

(illustrated in red → green → blue small boxes in Figure 5.10 (b)). Thus, the HD

maps HDek information of edge ek can be represented as a 4-dimensional vector

HDek =

[[Mpuk−d→puk+d,quk−d→quk+d,1→R], . . . ,

[Mpvk−d→pvk+d,qvk−d→qvk+d,1→R]],

HDek ∈ R(2d+1)×(2d+1)×R×nuk,vk

(5.14)

Where nuk,vk denotes the distance from uk to vk in tile coordinate.

The purpose is to extract a fix-sized feature vector for each edge using the as-

sociated HD maps features and the graph connections. We utilize the nodes and
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edges in all trips to build a graph neural network and apply max-pooling to the last

dimension (across its batches) of the HD maps associated with a node to obtain the

HD maps features for each node HDuk
. To be specific, given a set of edges {ej}

connect to node uk, HDuk
= Maxpool([HDej ]).

Inspired by the word2vec [122] work in natural language processing studies, we

create a sliding window among nodes in our trips and maximize the probabilities

of two connected nodes being on the same trip. We first generate node embeddings

embed(uk) using skipgram and negative samplings in node2vec [64]; we then concate-

nate the node embeddings and the pooled HD maps features u′ = [embed(uk),HDuk
]

via Hadamard transform. Similar to process being used in previous section (cf. Equa-

tion 5.13), the final HD maps embeddings e′k for edge ek can calculated as e′k = u′
k⊕v′

k

with a dimension of dm. The architecture of HD maps encoder is illustrated in Fig-

ure 5.11.

5.6.4. PMDC

Figure 5.12. Architecture of PMDC module.
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Aforementioned, a trip L has an equivalent representation in graph which is

Lg = {<uj, τj, ϵj>}, and this representation can be further converted in to a se-

quential sets of adjacent edges which denoted as P = <<u1, u2>, . . . , <uJ−1, uJ> =

<e1, e2, . . . eJ−1>>, where J = |Lg| − 1. The output of Road Network Encoder

and HD Maps Encoder are denoted as e and e′, and the road network traffic

information directly pulled from the dataset is t. For each ei ∈ P , we construct a

fixed-length vector vi by concatenating each embedding of this edge to get the final

embedding vi = [ei, e
′
i, ti].

Given its effectiveness in summarizing the contextual information from sequential

data, we utilize LSTM to encode the trajectory knowledge into a fixed-length vector

from historical segments, and each road segment ej of a trip Lg is an LSTM time

step LSTM(i) defined by

ej = σ(We[hj−1,vj] + de),

fj = σ(Wf [hj−1,vj] + df ),

oj = σ(Wo[hj−1,vj] + do),

c̃j = tanh(Wc[hj−1,vj] + dc),

cj = fj ⊗ cj−1 + ej ⊗ c̃j,

hj = oj ⊗ tanh(cj).

(5.15)

The input, forget, and output gates are ej, fj, and oj, respectively, which repre-

sent how much information we extract from the current input, save from the previous
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hidden state, and keep in current output. The hidden state hj indicates the sequential

embeddings, and cj represents the contextual embeddings. c̃j denotes the interme-

diate embeddings carried out from input contexts. Weight matrices We,Wf ,Wo,Wc

and bias vectors de, df , do, dc are shared across different trips. The initial hidden

vector h0 is a vector of zeros.

ˆMDC = WfhJ+1 + bf .(5.16)

We utilize the hidden state of the final step hJ+1 to embed one complete trip and

append one multilayer perceptron (MLP) layer to obtain the predicted MDC value

ˆMDC; we use the standard mean squared error (MSE) as the loss function. Equa-

tion 5.16 shows the prediction function, where Wf and bf are trainable weights for

converting dimension |hJ+1| to 1.

5.7. Experimental Results

5.7.1. Portion PMDC with Naive LSTM Solution

We now present the empirical results and discuss the impacts of different step lengths

and features being used, as well as training models (LSTM, and RNN).

Note that, in the sequel we use a 2-character abbreviation to denote experiment

setup combination. The first character is numerical and denotes the number of steps;

the second character denotes the type of features being used: B for basic internal

feature (vj = bj), A for external features (vj = ⟨bj, aj⟩) and T for global features
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added (vj = ⟨bj, aj, gj⟩), where ∥bj∥, ∥aj∥ and ∥gj∥ are 29, 60 and 2 respectively.

For example, 5A stands for the experiment setup with using 5 steps and external

features. The learning models used in our experiments share the same configurations:

the dimentionality and batch size are 256 and 32, respectively; the dropout between

fully connected layers is 0.2 with using ReLU as the activation function; and the

learning rate is 5e−6.

Figure 5.13. Prediction performances of selected training setups. Each
plot is normalized to 100 poses and presenting the median performance
of entire test set of each pose.

5.7.1.1. Empirical Results. In the sequel, we compare the performance among

various features and model combinations, and show plots of results in naive metric

in Figure 5.13. The plots are generated using the entire test set, and all trips are

normalized into a 100-pose trip for a better visualization. We note that in our trip

processing step, we have already filtered out all the trips with fewer than 100 poses.
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LSTM RNN
MAPE MSE MAPE MSE MAPE MSE

1B 1.07 1.53 5B 0.318 0.379 5B 0.326 0.381
1A 0.38 0.43 5A 0.294 0.372 5A 0.331 0.376
1T 0.33 0.399 5T 0.288 0.369 5T 0.335 0.376

Table 5.3. Selected MAPEs and MSEs of different feature, step and
model combinations.

As mentioned in Section 5.4, the MDC generated from our SCD is a function of

vehicle’s location and HD maps (only). Using the most basic features is sufficient

to predict the MDC of each pose. According to Figure 5.13, with adding external

features (aj), the prediction performance is significantly improved. Another obser-

vation is, a huge performance drop appears at the end of a trip, no matter which

combination of vj = bj or vj = ⟨bj, aj⟩, steps and learning model is being used. The

feature (vj = ⟨bj, aj, vj⟩) introduced in previous sections can significantly fix the per-

formance drop. The experiment also shows a longer historical steps leads to a higher

prediction performance.

5.7.1.2. Metrics and Result Analysis. To systematically evaluate the prediction

results of a time series regression problem, assessment criteria such as Mean Absolute

Error (MAE), Percentage Error (PE), Scaled Error (SE) and their variants are widely

used [171]. Compared to MAE (and its variants) – a scale-dependent error metric,

which has advantages in evaluating single time series or multiple time series with

the same units in similar orders of magnitudes, and SE-like evaluation metrics – the

metrics show advantages in comparing accuracy across series with different units,

PE-like evaluations are more suitable in our case [201]. Because the MDCs across
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the series are with same unit, but the orders of magnitudes are significantly affected

by different locations, vehicle motion and configuration – sometime they cover over

three orders of magnitude. Define error of the MDC prediction at jth trajectory

point (of a trip li) as:

(5.17) ej = MDC′
j −MDCj,

where MDC′
j denotes the MDC prediction value at trajectory point j ∈ [1, Li − 1].

We note that, ideally, at the end of a trip, MDC’j = 0, and MDCj+1 does not

exist, so we will ignore this term because we use PE-like measures. Given PE at

pj = 100 × ej/MDCj, and a trip li ∈ T where T is our test set, the Mean Absolute

Percentage Error (MAPE) can be defined as MAPEj = mean(|pj|), j ∈ [1, Li − 1].

A detail result of selected experiment setups is presented in Table 5.3.

5.7.2. PMDC

In this section, we compare our result to several baseline approaches being used in

similar tasks and discuss the impacts/effectiveness of each encoder in our framework.

The full length of embedding is dv = |v| = |[e, e′, t]|, where each component has a

length of dm = 100, dr = 128 and dt = 2.

5.7.2.1. Baseline. Due to the novelty of the PMDC, there are no approaches that

we are aware of that can be categorized as related ones. Hence, for complementary

perspectives, we use the following approaches as baselines:
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LSTM. ( [235]) an LSTM based solution that concatenates all the sequential

HD maps tile information along a given trip, combined with related internal and

external features such as velocity and traffic. This pipeline is extremely expensive

(both computation-wise and storage-wise) when encodes each trip since the HD maps

are represented in their raw format. No neighbor (global) information is encoded.

Linear Regression. ( [217]) a Linear Regression (LR) model is trained to min-

imize the loss (Euclidean distance) between predict MDC and true MDC to solve

the PMDC. The complexity of building such feature vector (and normalized to a

fixed-length vector) is the same as it in the LSTM pipeline. One of the significant

drawbacks of this type of solution is the lack of representing both sequential spatial

and temporal information.

DeepOD. ( [227]) Deep Origin-Destination is a neural network based solution

that learns and encodes both spatial and temporal properties from adjacent edges

and all given trips to represent the current edge. The final travel estimation model is

trained by concatenating each sequential edge from different trips and a Multilayer

perceptron (MLP). Note this work aims to solve the ETA problem and is irrelevant

to our case. Hence, to make a fair comparison, we add the HD maps information

into the training process as a part of the embedding.

5.7.2.2. Evaluation Metrics. To systematically evaluate the performance of PMDC,

popular assessment criteria such as Mean Absolute Error (MAE), Mean Absolute

Percent Error (MAPE) are used in this chapter. Let MDCL and ˆMDCL denote

the ground truth MDC and predicted MDC of a trip L ∈ dataset S, the MAE and
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MAPE of the entire set can be computed as,

MAES =
1

|S|
∑
L∈S

|MDCL − M̂DCL|,

MAPES =
1

|S|
∑
L∈S

|MDCL − M̂DCL|
MDCL

.

(5.18)

To reflect the performances on the entire dataset consisting of the varying length

trips, we also bring in weighted MAPE (wMAPE) in the evaluation, where the weight

is the travel distance of the trip:

(5.19) wMAPES =
∑
L∈S

length of L

total length of S

|MDCL − M̂DCL|
MDCL

5.7.2.3. Comparison with Baselines. Firstly, the MAEs, MAPEs and wMAPEs

of the experiment results are shown in Table 5.4, and the Probability Density Func-

tion (PDF) of MAPEs is illustrated in Figure 5.14.

The first thing to catch our sight is the extremely poor performance of LSTM.

Aforementioned, this LSTM framework is borrowed from our previous work, which

is designed and optimized for the objective of giving a sequence of embeddings from

previous trajectory points within a time window, predicting the MDC for the next

time interval. We modify this work by simply expanding the size of time window to

the entire trip for predicting the MDC.

Secondly, the LR’s performance is impressive. Recall Section 5.4.2.1 and Sec-

tion 5.4.2.5, the HD maps – or to be precise, I, the number of objects of an HD
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map tile – are generated using the normal distribution learned from real-world data

and applied/attached to Xi’an’s road network randomly. In real-world scenario, the

distribution of “objects” is not only spatial-wise, but also graph-wise unique, varies

from districts/blocks functionalities. For instance, central business districts consist

of a higher volume of objects than park districts. Once the voxel distribution is

applied to the entire city, the discrimination of number of voxels is eliminated, which

can be observed in Figure 5.6 (a). At the same time, the generation of trip MDC fol-

lows a straightforward piecewise-defined function with several hard-coded variables,

no regularization applied. This drawback is also indirectly reflected in the shape in

Figure 5.6 (d).

Even though the synthesizing of HD maps and trip MDCs have such drawbacks,

the performance of our proposed model is ahead of LR and the DeepOD. Considering

the low margin of performance difference, a 4.17% improvement of MAPE shows

the effectiveness of the integration of HD maps encoder and road network traffic

information. Once real-world data is used, a dilated performance margin is expected.

The introduction of wMAPE shows whichever module is deployed, the trips with

longer travel distance intending to have a worse prediction result in MDC.

5.7.2.4. Effectiveness of Embeddings. Since there are multiple modules inte-

grated in our framework, we disable different modules to evaluate the effectiveness

of each embedding. As aforementioned, we have three embeddings: road network,

HD maps, and traffic information, which leads to 23 experiments. Note, if ether road

network embedding or HD maps embedding is disabled, we will use one-hot vector
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MAE (“voxels”) MAPE % wMAPE %

LR 7.67e6 21.58 22.81

LSTM 1.82e7 53.66 —-

DeepOD 4.54e6 15.25 15.30

Ours 3.41e6 11.08 11.19

Table 5.4. Experiment results on test set with different models. Note
experiment LSTM has no wMAPE value assigned because in that ex-
periment, all trip lengths are normalized.

Figure 5.14. Probability Density Functions (PDFs) of MAPES on the
test set using different methodologies.

to replace the graph embedding, and the experiments on some embedding combina-

tions are meaningless, which we will ignore. Given the fixed order of “road network,
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HD maps, traffic”, we use a 3-digit abbreviation – {111, 110, 101, 100, 010, 011} –

to denote each experiment combination. The MAPEs of experiments are shown in

Table 5.5 and PDFs are shown in Figure 5.15, from which the following observations

are made:

(1) Comparing all the controlled trials of traffic information (i.e., {111 ↔ 110},

{101 ↔ 100} and {011 ↔ 010}), the integration of such information signifi-

cantly improves the performance with the combination of HD maps encoding

(11.08% = 13.34% − 2.26% and 11.58% = 14.38% − 2.8%). Once the traf-

fic information stands alone, less improvement can be obtained (14.22% =

14.43%− 0.21%);

(2) Both HD maps and road network encoders do not contribute the perfor-

mance as well as the traffic information when being concatenated indepen-

dently (i.e., {110 ↔ 100} and {110 ↔ 010}). The performances only rise by

1.09% and 1.04% respectively;

(3) The higher wMAPEs (over MAPEs) and Figure 5.16 (a) both indicate the

majority of longer (distance-wise) trips have worse prediction results than

shorter trips. The common issue where a certain amount of “outliers” appear

on the shorter-trip-end can also be found in similar trip property estima-

tion problems [235, 110], which is caused by the amplification of features’

volatility in a shorter sampling time. The quantified performance drops are

0.11%, 0.16%, 0.20%, 0.35%, 0.48%,−0.07% for six experiments respectively,

and have positive correlations with their overall performances;
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code MAPE % (change %) code MAPE % (change %))

111 11.08 (0.00) 100 14.43 (3.35)

110 13.34 (2.26) 010 14.38 (3.30)

101 14.22 (3.14) 011 11.58 (0.50)

code wMAPE1 % (change %) code wMAPE1 % (change %))

111 11.19 (0.00) 100 14.78 (3.59)

110 13.50 (2.31) 010 14.86 (3.67)

101 14.42 (3.23) 011 11.51 (0.32)

code wMAPE2 % (change %) code wMAPE2 % (change %))

111 11.35 (0.00) 100 14.35 (3.00)

110 13.76 (2.41) 010 14.56 (3.21)

101 14.18 (2.83) 011 11.81 (0.46)

Table 5.5. MAPE and wMAPEs of effectiveness experiments.
wMAPE1 and wMAPE2 denote the wMAPE use trip distance and
duration as weights.

(4) When switch the weights from trip length to trip duration (i.e., duration of L
total duration of S

),

another observation (from Figure 5.16 (b) and Table 5.5) is the performance

difference of each experiment has a negative correlation to its trip duration.

The performance drops are 0.27%, 0.42%,−0.04%,−0.08%, 0.18%, 0.23% re-

spectively. This result shows a better embedding (with temporal information

integrated) is more effected by extending the trip duration.
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Figure 5.15. Probability Density Functions (PDFs) of MAPEs of ef-
fectiveness experiments.

(a) (b)

Figure 5.16. Distribution of Percentage Error (PE) to trip length (a)
and trip duration (b) of experiments 111 (best performance) and 010
(worst case).
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CHAPTER 6

Summary

This dissertation consists of four comprehensive studies in the domain of HD

maps that covers the most fundamental knowledge to future data usage prediction

problem. We next summarize the findings of each study, and remark on the future

directions. The first study (cf. 2) summarizes the HD maps furniture, data struc-

ture, applications and challenges. As autonomous driving is becoming a reality, the

demand for efficient systems to handle large volumes of complex data on the fly is

a paramount. We reviewed the importance and roles of 3D objects – a type of data

that comes from heterogeneous sources – in HD maps being used in autonomous

driving applications, such as self-localization. We reviewed the state-of-the-art data

structures, representations and coordinates used for storing 3D objects, and their

potential improvements. We described an end-to-end pipeline of the system and

emphasize the challenges and feasible solutions to each part of the pipeline. Lastly,

we defined the evaluation metrics for each task and introduced the dataset we built

for this objective. Further more, this work may help with any future application

that needs to sense and process enormous amount of hierarchical data. Future work

includes:
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• Test state-of-the-art algorithms of the 3D Object Query challenges, inves-

tigate the influence of each potential variable from a single input and cer-

tain vehicle configuration, such as moving speed, vehicle angular resolution,

sensing range, failure tolerance, memory size, cpu speed and transmission

bandwidth. Study the trade-off balancing problem and find the sweet point

of the model.

• Design and implement solution that address different access problems that

affect algorithms execution, along with comparative evaluation of our pro-

posed system with with state-of-the-art solutions and investigate the opti-

mization trade-off.

• With adding more input data, such as imagery, or making up synthetic input

from reverse engineering the 3D objects in HD maps, investigate the problem

of Heterogeneous Data Fusion, and the trade-offs of heterogeneous data

sources on system performance and build a model for our objective.

• Combine Heterogeneous Data Fusion model and 3D Object Query

solution together to test out the overall performance of the system for vehicle

self-localization.

The second study (cf. 3) focuses on high precision lane boundary geometries

extraction technique from very unusual data source – satellite imagery. We demon-

strate that our machine learning and pixel-wise segmentation hybrid prototype can

achieve optimal performance in modeling HD Maps from reasonable high resolution

overhead imagery. With such precise modeling result, our approach can be used as a
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good complementary data source for HD Maps modeling to either validate accuracy

or complement the missing data caused by object occlusion. We designed a persua-

sive road model evaluation metric and published our HD road model dataset that

can aid future research in this topic.

There are still many limitations to our solution. Thus, we are looking to improve

in these areas:

• Unlike HD Map modeling from LiDAR point cloud, image based road mod-

eling, especially from overhead imagery, has an apparent drawback: the

lack of elevation data. This, however, can be solved by the High-Definition

Digital Elevation Model (HD DEM) database [230].

• The second challenge is the fusion between image-based HD maps and point-

cloud-based HD maps. As we mentioned in the introduction, point-cloud-

based HD maps have an edge in accuracy, while the advantage of aerial-

based HD maps is that it can remedy the LiDAR shadow problem. Thus,

the alignment between these two map sources is very useful and important.

Some feature points could identify the transformation, e.g. the end point of

a dashed line and gore point.

• Aside from highways and expressways, there is still a huge number of road

networks that need to be modeled for autonomous driving and other pur-

poses. Most of the principal and minor arterial are not occluded by buildings

and trees, which means our approach can be extended to model road net-

works in these regions.
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In the third study (cf. 4), we build the first full HD maps dataset consists of lane

boundaries, 3D objects and complimentary objects such as signs. The main purpose

of this work is to describe this dataset that was collected and make it available for

future studies. This first version contains a high precision map, consumer-grade GPS

and imagery, and related ground truth data. Some natural extensions of this dataset

include:

• Real-time 3D information. For example, a real-time LiDAR or depth image

sequence can be added for better localization performance and flexibility.

• Change occupancy grid voxel representation to a compressed format such as

the Sparse Voxel OcTree, which is a lossless representation with a significant

reduction in data-size.

• Evaluation: a dataset toolbox which enables convenient data parsing, coor-

dinate transformations, and visualization. A website which allows researcher

download dataset directly, view benchmarks and logs. Finally, a real-time

evaluation server which boosts evaluation cycle and increases the algorithm

persuasion.

• Dataset coverage could be extended for large scale tests.

Our groundbreaking research is introduced in Chpter 5, which proposes a novel

problem (PMDC) for future real-time HD maps application. We proposed a compre-

hensive deep learning approach and neural network architecture, which is able to not

only exploit historical trips, but also encode the HD maps of each edge into a fixed-

length embedding and trained with a graph-based neural network instead of a naive
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one-hot encoding or average pooling. As our experiments have demonstrated, our

model achieved superior performance over the conventional LR, LSTM and modified

GNN based solutions (designed for similar objectives). A detailed study on module

effectiveness not only shows the contribution of each encoder, but also indicates the

robustness/consistency to trip length and duration. A future model can tweak the

embeddings based on its objective (e.g., prediction preferences).

Since, to our knowledge, this is a forerunner work for the MDC problem, we

recognize certain, at this point unavoidable, limitations. One notable limitation

is the lack of real-world data. Both SCD (especially HD maps) and the MDC of

each trip are constructed by following straightforward algorithms. Specifically, to

generate the MDC, vehicle speed is the only input/factor that affects two variables:

search window size and resolution. We believe that numerous other factors (both

internal and external) from multiple software and hardware component, would create

a more sophisticated variant of the MDC problem and enable more realistic settings

to be tackled. One feasible solution in the short run is generating the map data and

acquiring real-time vehicle configurations from 3D AV simulation platforms.

A specific variant of the problem that we want to address in the future is the one

which would enable incorporation of the impact of (partial) HD maps updates. Such

cases occur in the settings in which a new, possibly long-lasting, construction project

has started, affecting larger metropolitan area. We are planning to investigate their

efficient propagation into the corresponding embedding.



156

In summary, we are eager to see more achievements and accomplishments in

domain of HD maps. We will keep our passion in this area to help the academia and

industry to achieve high-level autonomous driving for the foreseeable future, and

extend our knowledge to other related fields such as autonomous agriculture and

drone logistics.
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