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ABSTRACT

Discovering Regulatory Insights from Gene Expression Dynamics

Justin D. Finkle

Cells are complex, autonomous machines that integrate many environmental cues to

execute a desired response. Though this property makes cells versatile, it presents sig-

nificant design challenges when, to treat diseases, we must alter cellular responses. To

understand changes to the complex regulatory pathways that cause diseases, studies of-

ten investigate the differential gene expression between genetically or chemically differing

cell populations. This approach transformed the discovery of genetic drivers of disease

and possible therapies. Current high-throughput technologies also provide a wealth of

time-series data that captures complex regulatory dynamics, yet many current analyses

do not capitalize on this temporal information to provide quantitative predictions of gene

expression in untested conditions. A better understanding of gene expression dynamics

will lead to more detailed and quantitative models of cellular regulation. This improve-

ment can accelerate our understanding of biological systems, guide future experiments,

and enhance our ability to control cellular behavior.

In the following work, I present two distinct approaches that utilize gene expression

dynamics to elucidate systems that regulate transcription. I developed algorithms to
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identify genes that regulate each others’ expression, create dynamical systems models of

expression that accurately predict gene expression in multiple contexts, and gain insight

into the regulators of specific transcriptional responses. I validated my algorithms on in

silico and in vitro data. I demonstrate how these techniques revealed unique insights into

transcriptional regulation by PI3K and Sprouty. My work illustrates how the principled

use of temporal information can improve our understanding of biological systems, and I

hope it encourages others to collect more time-series data in the future.
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CHAPTER 1

Introduction

Tremendous efforts to characterize cellular components and signaling pathways yielded

remarkable biological insights and areas to improve therapies. The impact of these

efforts is evident in cancer biology, where progress in targeted therapies—and now

immunotherapies—significantly improves patient outcomes1,2. However, in many cases,

cellular complexity allows cancers to develop resistance to the treatment, or causes seri-

ous side effects3–8. To overcome these limitations and design effective control strategies,

we first need to characterize the cellular systems we aim to control. High-throughput

technologies quantify properties of DNA, RNA, proteins, and metabolism, and greatly

advance our global understanding of cells9–12.

Though proteins are often the molecule of interest to researchers studying cellular

processes, the ability to measure RNA levels genome-wide has historically out-paced that

of proteins. And, while techniques to measure protein-DNA interactions and chromatin

accessibility yield powerful information about DNA states, it remains challenging to de-

termine downstream effects of those states10,13,14. The measurement of gene expression

provides an easily measured middle ground and therefore remains a key proxy to infer

how cells respond to their environment9,15–17.

To understand the underlying causes of diseases, differential gene expression studies

often compare RNA levels between genetically or chemically differing cell populations.
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This approach identifies global changes in transcription and enables the inference of func-

tional roles of the applied perturbations15,18–20. By testing if the differentially expressed

genes share similar functional annotations or overlapping pathways, the results can be

translated into biological meaning21–24.

However, these qualitative associations provide limited insight into how the system

will respond in a different environmental context or what specific components will mediate

that response. This lack of predictive capability is the motivation behind a large portion

of the work in the following thesis. It surprised me that we could gather so much data,

yet come to conclusions as non-specific as “mRNAs overexpressed...are involved in cell

respiration”25, with no indication of how those genes became overexpressed or how they

would respond in different conditions. Retrospectively, the idea that a single genomics

experiment could supply enough information to infer concrete biological mechanisms from

the near infinite space of complex possibilities is, perhaps, a bit naive. The available data

limits the type of models we can create, and the model subsequently limits the insights

we can gain26,27.

For the remainder of this introductory chapter, I will discuss the trade-offs of different

classes of mathematical models. Chapters 2-4 represent my attempts at using time-series

gene expression data to gain the benefits of multiple types of mathematical models and

thereby produce more quantitative and easily tested biological hypotheses. I validate

the accuracy of each developed algorithm and highlight how each result increases our

understanding of the biological system analyzed.

1.1. Mathematical modeling of biological systems

With the advent of sequencing technologies, a deluge of biological data has become avail-

able on an array of databases28–31. Processing this volume of information alone requires
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mathematical and computational approaches32,33, but mathematical models also provide

a critical role in understanding biological systems. Models help provide a lens through

which disparate data can be integrated and interpreted. In biology, a mathematical

model also describes how we believe a physical process occurs, which we can use to pre-

dict what will happen in an untested situation. When the results of a test do not match

the prediction, the model can be updated34.

There are many types of mathematical models that encompass different levels of de-

tail and complexity27,35–37. At one end of the spectrum, statistical methods—such as

statistical hypothesis tests and linear regression—fit a model to data with minimal prior

assumptions. On the other end, systems of differential equations often specify detailed

kinetic interactions between species in the model26,27. Here I discuss the trade-offs of

using gene expression data with each type of model.

1.1.1. Statistical models are applicable to many situations

Statistical methods are necessary to quantify gene expression19,38,39. They are also in-

strumental for the analysis of expression data, such clustering genes with similar values40,

comparing expression samples41–43, identifying differentially expressed genes44,45, and in-

ferring regulatory networks46–48. To gain biological insight from gene expression, studies

frequently assess whether changes in gene expression are significantly associated with Gene

Ontology (GO) terms21,24—which curate proven biological functions with genes—or with

specific pathways22. Both of these approaches rely on statistical methods49,50, and are

used to interpret gene expression in many studies.

However, a major limitation of these approaches is that it falls on the researcher to

infer the significant biological insight from expression analysis. In my experience, the



16

results from these tests are often vague and abstract. I believe this ambiguity leads to a

“choose your own adventure”, in which researchers focus on the results that best fit their

narrative. Additionally, the acquired biological insights are mostly qualitative, which still

leaves the researcher to hypothesize how gene expression will vary in an untested context.

In contrasts, supervised machine learning approaches build models that map in-

put data to an output; the are widely used to uncover regulation in biological sys-

tems17,26,27,40,46,51,52. These methods are mostly agnostic to the input data, and a model

is trained regardless of the appropriateness or quality of the data. Many of these meth-

ods find linearly independent relationships between input and output variables, and they

can therefore assess the influence of multiple input variables on the output53–55. These

attributes make supervised learning approaches ideal to infer gene regulatory networks

(GRNs) from gene expression data. GRNs describe how genes regulate one another by

representing genes as nodes and their interactions as edges in a network27,47,51.

This feature makes supervised methods easily generalized to many problems, but they

have some disadvantages when applied to gene expression data. The models assume a

relationship between the input and output variables (e.g. linear), and the researcher must

infer the physical mechanism that could result in such a relationship. New input data is

also needed to predict the output response. For example, in the simplest case of linear

regression, if gene y linearly depends on gene x, to predict the expression of gene y, we

must know the expression of gene x. In the case of an inferred GRN, the prediction itself

is likely impossible, due to the inter-connectivity of the inputs and outputs. Thus, the

statistical models are only used to infer the structure of the GRN, leading to the second

problem. Finally, because edges in a GRN are statistically inferred, there is no guarantee

that an edge represents a direct interaction between the two genes47,56.
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In the following chapters of my thesis I demonstrate how analyzing time-series gene

expression data can overcome some of these limitations. In Chapter 2, I present work

that uses time-series data to more accurately infer the structure of GRNs. In Chapter 3, I

develop and validate an algorithm, termed Differential Expression in Python (DiffExPy),

that uses time-series data to identify when the expression of genes is regulated and by

which transcription factors. In both Chapters 3 and 4, I demonstrate how DiffExPy yields

new, testable biological insights into regulation by PI3K and Sprouty, respectively.

1.2. Time-series data provides a bridge between models scales

A limitation of statistical methods is that they are ill-suited to created quantitative pre-

dictions of gene expression in different contexts. Systems of differential equations are

detailed mathematical models that can provide this type of prediction. Differential equa-

tions are often used to relate the quantity of a physical entity with factors that govern its

rate of change. Thus, systems of differential equations are used to describe how biological

species, such as genes, proteins or metabolites, impact each others’ rates of change57–60.

Stochastic variants also exist that capture heterogeneity and noise within gene expression

systems61,62. Because systems of differential equations capture kinetic relationships be-

tween species, they can be used in multiple contexts and updated when their predictions

do not match newly observed data57. These features make differential equation models

helpful for testing strategies to control the response of a chemical/biological system.

Though systems of differential equations are powerful models, creating a system that

predicts genome-wide expression is challenging63. Accurately fitting parameters of dif-

ferential equations for all of the genome requires much more data than can typically be

measured, even with high-throughput technologies. Therefore, differential equation mod-

els only exist for a few, well-studied systems64–67. Using a defined basis set of interaction
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types genetic and sparse regression algorithms can generate differential equation models

directly from data. However, current gene expression technologies cannot produce the

highly sampled, low-noise data these algorithms require68–71.

I developed DiffExPy to bridge this gap. In Chapter 3, I describe how DiffExPy fits

ensembles of stochastic differential equations independently for many genes using time-

series gene expression data. Using previously published RNA-seq data25, I train the

models and validate their predictions. In both Chapters 3 and 4, I demonstrate how

the DiffExPy models provide novel insights into the transcriptional regulation and make

quantitative predictions. Overall, the models generated by DiffExPy represent a first step

in a data-driven approach toward creating differential equation models for hundreds to

thousands of genes. I expect them to provide a basis for developing more detailed models

that improve our understanding and control of biological systems.
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CHAPTER 2

Windowed Granger causal inference strategy improves

discovery of gene regulatory networks

This work was published with Jia J. Wu (co-first author), and Neda Bagheri in the

Proceedings of the National Academy of Sciences of the United States of America, 201848.

2.1. Abstract

Accurate inference of regulatory networks from experimental data facilitates the rapid

characterization and understanding of biological systems. High-throughput technologies

can provide a wealth of time-series data to better interrogate the complex regulatory dy-

namics inherent to organisms, but many network inference strategies do not effectively

use temporal information. We address this limitation by introducing Sliding Window

Inference for Network Generation (SWING), a generalized framework that incorporates

multivariate Granger causality to infer network structure from time-series data. SWING

moves beyond existing Granger methods by generating windowed models that simul-

taneously evaluate multiple upstream regulators at several potential time delays. We

demonstrate that SWING elucidates network structure with greater accuracy in both in

silico and experimentally-validated in vitro systems. We estimate the apparent time de-

lays present in each system and demonstrate that SWING infers time-delayed, gene-gene

interactions that are distinct from baseline methods. By providing a temporal framework

to infer the underlying directed network topology, SWING generates testable hypotheses

for novel gene-gene influences.
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2.2. Introduction

Elucidating gene-gene regulation is a fundamental challenge in molecular biology, and

high-throughput technologies continue to provide insight about the underlying organi-

zation, or topology, of these interactions. Accurate network models representing genes

(nodes) and regulatory interactions (edges) infer information from many observed het-

erogeneous components while minimizing the effects of noise and hidden nodes. Many

methods infer gene regulatory networks (GRNs) from expression profiles27, but each suf-

fers from limitations—assumptions of linearity, univariate comparisons, or computational

complexity—and most ignore temporal information in time-series data. Understanding

the temporal dynamics of gene/protein expression is critical to elucidating responses in-

volved in cell cycle, circadian rhythms, DNA damage, and development72–75.
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Figure 2.1. Overview of the SWING framework. (A) Time-series data is divided into windows
with a user-specified width, w. (B) For each window, inference is performed by iteratively
selecting response and explanatory genes. The subset of available explanatory genes is defined
by the minimum and maximum user-allowed time delays. (C) Edges from each window model are
aggregated into a single network representation of the biological interactions between measured
variables.

Existing methods to infer GRNs from time-series expression profiles include dynam-

ical models, statistical approaches, and hybrids of the two27,76–78. Dynamical systems

models of differential equations can forecast future system behaviors and characterize

formal properties such as stability79, but these models are computationally intractable

for large GRNs due to extensive and explicit parameterization requirements80. Statisti-

cal inference methods—such as regression schemes, mutual information, decision trees,

and Bayesian probability53,55,81—make no explicit mechanistic assumptions and are often

more computationally efficient than dynamical models. However, many implementations

of aforementioned algorithms treat time points as independent observations, disregarding

time delays associated with transcription, translation, and other processes inherent to
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gene regulation47,54. Hybrid methods—such as SINDy and Jump3—use statistical meth-

ods to optimize the search and parameterization of dynamical models, but they remain

computationally expensive and rely on accurate specification of basis functions82,83.

If the experimental sampling interval is less than or equal to the time delay between a

regulator and its downstream target, it is possible to employ Granger causality to incorpo-

rate intrinsic delays that are often hidden from measurement84. Current implementations

of Granger causal network inference methods are limited; the inference (i) is conducted

pairwise, prohibiting simultaneous assessment of multiple upstream regulators, (ii) has a

single user-defined delay, which assumes a uniform delay between all regulators and their

targets, or (iii) requires each explanatory variable, assessed at multiple delays, to be se-

lected as a group85–89. Thus, their implementation has limited broad utility in biological

systems with heterogeneous time delays.

To allow for multiple time delays to affect downstream target nodes, we introduce an

extensible framework to infer GRNs from time-series data, termed Sliding Window Infer-

ence for Network Generation (SWING). SWING embeds existing multivariate methods,

both linear and nonlinear, into a Granger causal framework that concurrently considers

multiple time delays to infer causal regulators for each node. SWING also uses sliding

windows to create many sensitive, but noisy, inference models that are aggregated into a

more stable and accurate network. We validate the efficacy of SWING on several in silico

time-series data sets, and existing in vitro data sets with corresponding gold standard

networks. We show that SWING performs network reconstruction more accurately than

baseline methods, and demonstrate that this performance boost is partly attributed to

inferring edges that involve an identifiable time delay between upstream regulators and

targets. In validation studies analyzing networks derived from E. coli and S. cerevisiae,



23

SWING infers networks with distinct topologies, and can therefore be combined with

other methods to improve consensus models. The SWING framework is available for use

and can be found on GitHub (https://github.com/bagherilab/SWING).

2.3. Results

SWING integrates multivariate Granger causality and ensemble learning to infer interac-

tions from gene expression data. First, SWING subdivides time-series data into several

temporally-spaced windows based on user-specified parameters (Fig. 2.1A). For each

window, edges are inferred from the selected window and previous windows, representing

interactions with specific delays. This inference results in a ranked list of time-delayed,

gene-gene interactions for each window. (Fig. 2.1B). The ensemble of models is aggre-

gated based on edge rank into a static GRN (Fig. 2.1C). In silico and in vitro validation

confirm notable performance improvements.

2.3.1. SWING improves the inference of in silico GRNs

We applied SWING to reconstruct in silico GRNs simulated by GeneNetWeaver (GNW)61.

20 subnetworks with 10 nodes and non-isomorphic topologies were extracted from E. coli

and S. cerevisiae networks included in GNW to use as gold standards. Networks were

inferred from the generated time-series data using existing multivariate methods as a

basis for comparison. We employed RandomForest (RF), Least Absolute Shrinkage and

Selection Operator (LASSO), and Partial Least Squares Regression (PLSR)51,53,55, which

represent the areas of sparse, nonlinear, and PLS-based regression. We implemented the

SWING chassis and compared the performance of each SWING frontline method with

its base method: SWING-RF vs. RF, SWING-LASSO vs. LASSO, SWING-PLSR vs.

PLSR.
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To capture short-term dynamics consistent with simulated perturbations, we set the

window size to roughly half the duration of the time series. The minimum and maximum

lags were set to kmin = 1 and kmax = 3, which correspond to 50 and 100min. We

compared the group of inferred networks by calculating the mean increase in the area

under the precision-recall (AUPR) and area under the receiver operating characteristic

(AUROC) curves of 40 in silico networks. Compared to respective baseline methods,

SWING shows a statistically significant increase in AUROC and AUPR for many of the

10-node networks (Fig. 2.2A and SI Appendix, Table 2.S1) and across all of the 100-

node networks (SI Appendix, Fig. 2.S1, Table 2.S1). In particular, RF receives the

most notable benefit from SWING; SWING-RF outperforms RF in 39 out of 40 in silico

networks and application of SWING-RF results in the highest mean AUROC and AUPR

for in silico networks among tested methods.

2.3.2. SWING infers distinct edges in networks

No single method performs optimally across all data sets, partially due to biases in pre-

dicting different network topologies. For example, E. coli-derived networks predominately

feature fan-out motifs, which RF infers with greater sensitivity. In contrast, S. cerevisiae-

derived networks contain more cascade motifs, which are inferred with greater sensitivity

by linear methods47.

To determine if SWING methods provide distinct information from RF, LASSO, and

PLSR, we ran principal component analysis (PCA) on ranked edge lists predicted by

SWING and the corresponding base methods (Fig. 2.2B). We discarded PC1 because it

largely explains the overall performance of each inference method (58% variance explained;

SI Appendix, Fig. 2.S2). Clustering of results in PC2 and PC3 seems to explain biases
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Figure 2.2. SWING improves inference of
10-node in silico networks. (A) Changes
in AUPR and AUROC in GNW networks.
Score changes to individual networks are
shown in grey. The mean (red) and
median (black) of each score distribution
is shown. AUPR and AUROC increase
when using SWING-RF or SWING-PLSR
compared to their respective base method.
SWING-LASSO outperforms LASSO in the
E. coli-derived networks. The expected
score based on random for each metric is
shown as a dashed line. n=20 networks,
kmin = 1, kmax = 3, and w = 10 for
all networks. p-values were calculated using
the Wilcoxon signed-rank test, ***p<0.001,
**p<0.01, *p<0.05. (B) SWING and non-
SWING methods are grouped according to
similarity of ranked predictions for 40 10-
node in silico networks via PCA. PC1 largely
separates inference methods based on per-
formance (SI Appendix, Fig. 2.S2), while
PC2 separates methods based on underly-
ing base method. Networks inferred by
various SWING parameter selections cluster
together according to inference type, with
SWING methods forming clusters distinct
from corresponding base methods.

toward specific network motifs47. Along PC2, edge rankings appear to separate based

on the internal base method (15% variance explained), while along PC3, SWING edge

rankings appear to separate from those of their base methods (5% variance explained).

These results suggest that SWING recovers connectivities that are distinct from those

recovered from RF, LASSO, and PLSR.

Given that it is difficult to determine a priori which methods perform optimally in

different contexts, deriving a community network is a good strategy for robustly improv-

ing predictions47. We evaluated the performance of SWING-Community, which combines

SWING-RF, SWING-LASSO, and SWING-PLSR predictions by calculating the mean
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rank across all methods for each possible edge. We note that SWING-Community outper-

forms RF, resulting in a 52% and 8% mean increase in AUPR and AUROC, respectively,

suggesting that SWING infers distinct and complementary networks (SI Appendix, Fig.

2.S3).

2.3.3. SWING improves network inference by promoting time-delayed edges

Endogenous reactions, such as protein translation, post-translational modifications,

translocation, or oligomerization are often not accounted for in the inference model. How-

ever, even if underlying network kinetics are linear (or approximately linear), the resulting

dynamics can appear delayed when not all nodes are observed (SI Appendix, Fig. 2.S4A).

Delayed behavior in gene expression and protein translation has been established in sev-

eral studies90,91.

We estimated the apparent time delay of each interaction in a 10-node GNW network

by calculating the pairwise peak cross-correlation between time series of all true regulator

and target combinations. The majority of true interactions within GNW networks have a

time delay between 0 and 150min (SI Appendix, Fig. 2.S4B). We observe that SWING is

more likely to promote edges with an identifiable delay within the range of user-specified

parameters (SI Appendix, Fig. 2.S5A). Across all in silico networks, SWING-RF promotes

65.8% of true edges with a delay versus 55.4% of true edges without a delay (p=0.018),

and SWING-PLSR promotes 67.0% of true edges with a delay versus 47.1% of true edges

without a delay (p=6e-6)(SI Appendix, Fig. 2.S5B).

Many of the promoted edges with an identifiable delay are highly ranked by base

methods RF and PLSR. In general, delayed true edges ranked in the first quartile by the

base method are likely to be promoted, while those ranked lower are no more likely to
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be promoted than nondelayed true edges (SI Appendix, Fig. 2.S5B). While SWING is

more likely to promote true edges with a delay, the magnitude of this promotion is not

consistent across the different base methods or networks. SWING-RF promotes true edges

with an apparent time delay by an average of 7.50 ranks relative to true edges without an

apparent time delay (p=4.75e-3) for S. cerevisiae-derived networks. In contrast, SWING-

PLSR promotes true edges with an apparent delay by an average of 7.78 ranks relative to

true edges without an apparent time delay (p=6.89e-5) for E. coli-derived networks (SI

Appendix, Fig. 2.S5B). In one example, S. cerevisiae Network 12, SWING-RF improves

the AUROC from 0.539 to 0.872, a 61.7% increase relative to the base method. Compared

to RF the edge ranking for SWING-RF promotes many true edges, and all of the true

edges with a delay are promoted by SWING (SI Appendix, Fig. 2.S6A).

To demonstrate how SWING promotes delayed edges, we highlighted the true edge

between Gene 2 (G2) and Gene 1 (G1) in S. cerevisiae Network 12. G2 is the only node

upstream of G1, and the input data includes an experiment where only G2 is perturbed,

thus the delay between G2 stimulation and G1 response is unambiguously isolated (SI

Appendix, Fig. 2.S7A). We estimated the delay between G2 and G1 as two time points,

or 100min. We shifted the G1 time series by two time points to show that the Pearson

correlation of the resulting time series notably increases (SI Appendix, Fig. 2.S6B).

2.3.4. SWING infers apparent time-delayed edges with greater sensitivity in

the E. coli SOS network

We applied SWING to an in vitro 8-node E. coli GRN that activates with DNA dam-

age86,92. The SOS network contains several complex interactions, including multiple cas-

cades and feedback loops generated by a combination of transcriptional activators and
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repressors. We computed the mean of three replicates for each time point following DNA

damage inducing Norfloxacin treatment93.

The sampling strategy for the in vitro SOS data is different from that of the in silico

GNW data. Due to fewer time points, we were restricted to assessing interactions with

shorter possible time delays. Using w = 0.5T = 7, kmin = 0, and kmax = 1, SWING-RF

infers the network more accurately than other reported inference algorithms including RF,

LASSO, TSNI93, and BANJO94. Because RF is a stochastic method, we ran both RF and

SWING-RF 50 times on the SOS network. On average, SWING-RF increases the AUPR

from 0.286 to 0.356 (24.6%, p=1.41e-13) and the AUROC from 0.756 to 0.819 (8.3%,

p=5.28e-34). To assess promotion of time-delayed edges, we calculated the mean edge

ranks across all 50 runs and compared the resulting lists. Though SWING-RF demotes

some true edges, it promotes all three edges that exhibit a time delay (Fig. 2.3A). We
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highlight the edge between lexA and umuDC (SI Appendix, Fig. 2.S7B), which has

an estimated lag of 6min. When the umuDC time series is shifted by this amount the

correlation between lexA and umuDC increases from 0.709 to 0.928 (Fig. 2.3B). These

findings reaffirm that SWING improves network inference, in part, by promoting edges

with identifiable delays.

2.3.5. SWING accurately infers RegulonDB modules with time-delayed edges

We curated microarray data to infer time-delayed edges from experimentally validated

GRNs in E. coli (Fig. 2.4A) and S. cerevisiae (SI Appendix, Fig. 2.S8). This curated

data was aggregated across 18 data sets for E. coli and 8 data sets for S. cerevisiae, where

data was unevenly sampled for time intervals that range from 5 to 120min (SI Appendix,

Table 2.S2). To assess the landscape of apparent time delays present in these gene expres-

sion data, we performed pairwise cross-correlation lag selection between experimentally-

confirmed edges95. We reveal that of 2870 experimentally confirmed edges, only 23.7%

exhibit an apparent time delay of 0 and 13.7% exhibit a time delay of at least 10min. Sur-

prisingly, only 37.4% of confirmed edges exhibited pairwise correlation (R>0.7, p<1e-5;

Fig. 2.4A).

To determine whether lag is associated with modularity and function, we clustered

the E. coli and S. cerevisiae network into smaller modules using MCODE96 and per-

formed gene ontology enrichment analysis. Several modules, such as those associated

with catabolic processes and metal ion binding, are enriched with time-delayed edges of

at least 10min (SI Appendix, Tables 2.S3 and 2.S4). Transcription factors are known to

regulate genes on a global or combinatorial scale tend to exhibit similar time delays (SI

Appendix, Table 2.S5).
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To determine if SWING more accurately infers network structure in diverse contexts,

we performed cubic spline interpolation to generate evenly sampled time-series gene ex-

pression at 10min intervals and benchmarked SWING-Community performance against

an ensemble model of RF, LASSO and PLSR (R/L/P) base for each clustered module us-

ing this dataset. SWING-Community outperformed R/L/P in subnetworks in which more

than 10% of edges are time-delayed (N=12 clusters, 9 clusters with fewer then 10 genes,

or fewer than 3 transcription factors were removed from analysis, p=0.031; Fig. 2.4B).

As an example, we identified time-delayed properties of key regulators of the tdcABC E.

coli operon that are responsible for the transport of threonine and serine during anaer-

obic growth97. In particular, our analysis identifies two global transcription factors that

bind combinatorially to induce activity in the tdcABC operon. Crp and fnr are global

regulators that respond to glucose starvation and anaerobic growth respectively98,99.

Interestingly, lag analysis identifies 10 and 20min time delays between crp and target

genes in the E. coli tdcABC operon. While the precise delay identified by our anal-

ysis is not consistent with that observed in experiments, studies confirm that a delay

exists between crp induction and the induction of several target genes due to post-

translational modification100,101. Of 32 edges in the gold standard, SWING identifies

27 true-positive (TP) edges and 5 false-positive (FP) edges (85% TP) while the en-

semble model predicts 24 true-positive edges and 8 false-positive edges (75% TP). In

this example, SWING-Community infers both time-delayed and non time-delayed edges

more sensitively than the R/L/P ensemble model. The false-positive edges inferred by

SWING-Community are also within the subset of false-positive edges inferred by the base

community method.
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Figure 2.4. Application of SWING on time-delayed gene regulatory network modules in E. coli.
(A) Circular diagram depicts experimentally validated interactions and gene ontologies present
in each module (RegulonDb). Blue edges depict time-delayed interactions inferred using pairwise
cross-correlation from curated microarray data. (B) SWING-Community, with w = 4, kmin = 1,
kmax = 1 applied to RegulonDb subnetworks that are and are not enriched with time-delayed
edges (fraction of delayed edges is greater than 10%, n=12 subnetworks; fraction of delayed
edges is less than 10%, n=14 subnetworks). (C) SWING-Community and RF/LASSO/PLSR
(R/L/P) ensemble method applied to tdcABC regulon, which is the module found to have the
highest enrichment of time-delayed edges (44% edges with a time delay of 10min or greater).

2.3.6. SWING performance is robust across parameters

SWING adds user-defined parameters to baseline methods, which are necessary for win-

dow creation and time-delay inference. The selection of these parameters is both context

and data specific. We conducted parametric sensitivity analysis of SWING as a func-

tion of window size, combinations of kmin and kmax, and experimental sampling interval
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in context of the in silico networks and the E. coli SOS network (SI Appendix, Figs.

2.S9-2.S14). While SWING outperforms baseline methods over a wide range of window

sizes (SI Appendix, Fig. 2.S9), the performance of a single network may differ from

other networks, suggesting that the optimal window size is partially dependent on the

underlying inference method and network structure. Therefore, user-specified SWING

parameters—kmin, kmax, and w—should be chosen based on the data, and are discussed

in detail in Supporting Information: Sensitivity Analysis. Overall SWING outperforms

baseline methods for a wide range of possible parameters (SI Appendix, Figs. 2.S9-2.S13).

2.4. Discussion

Tight regulation of gene expression is critical to maintaining robust responses to per-

turbations and environmental disturbances, and misregulation of intracellular signaling

dynamics can lead to a wide variety of diseases. For this reason, uncovering the topology

of GRNs is of fundamental interest to the scientific community, since the resulting maps

can be used to identify interventions to control cellular phenotypes. Many current meth-

ods disregard temporal information and are limited in their ability to accurately infer

network topology. Indifference to time delays will be the Achilles heel of many systems

biology strategies. We developed a general temporal framework for network inference

that accurately uncovers the regulatory structures governing complex biological systems

by accounting for these fundamental delays. SWING improves upon existing Granger

methods by generating an ensemble of windowed models that simultaneously evaluate

multiple upstream regulators at several potential time delays. We validate its utility and

performance in several in silico (Fig. 2.2A) and in vitro (Figs. 2.3 and 2.4B) systems.
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2.4.1. Consideration of time delays improves SWING performance and should

be integrated in experimental design

Our in silico and in vitro results demonstrate that promoted edges were enriched for those

with apparent time delays (SI Appendix, Fig. 2.S5B), suggesting that network inference

is improved, in part, by accounting for temporal information. We support this finding

by demonstrating that SWING-RF promotes an edge with a distinct and singular delay

(SI Appendix, Fig. 2.S6A). We also used SWING to predict directed edges of several

E. coli sub-networks using cubic spline interpolated microarray datasets. Through cross-

correlation analysis, we estimate time-delayed interactions in in silico, E. coli, and S.

cerevisiae networks, and show that SWING performs better than baseline methods in

modules with more frequent time-delayed edges, such as the tdcABC regulon.

Interestingly, the apparent time delay only partially explains improved performance,

as SWING also promotes edges without apparent time delays in in silico and in vitro

networks. This discrepancy may arise from our conservative approach for identifying

time delays; a more liberal approach could assign time delays to a greater fraction of the

promoted edges. However, it is particularly challenging to estimate time delays for genes

with multiple regulators using cross-correlation. More complex algorithms that incorpo-

rate additional information (i.e., nonlinearity and partial correlation) could improve time

delay estimation between regulators and targets102.

An additional consideration involves interactions that occur faster than the sampling

interval. These interactions will not exhibit a delay in the time series, and will resist

inference and estimation of time delay regardless of methodology. This bottleneck can

be managed by designing experiments with shorter sampling intervals. The choice of
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sampling interval is context specific, and we recommend sampling with sufficient frequency

to capture dynamics of interest.

2.4.2. SWING outperforms common network inference algorithms across

scales

SWING outperforms common network inference algorithms—–RF, LASSO, and PLSR—

–but is limited by computational expense. Since SWING constructs a larger explanatory

matrix and executes multivariate comparisons between multiple time delays, it is more ex-

pensive than the aforementioned methods. Fortunately, SWING is trivially parallelizable

and can be implemented on any multicore processing system. We conducted similarly

derived 100-node in silico networks and found that SWING increased the AUPR and

AUROC for all three methods (SI Appendix, Fig 2.S1), including SWING-LASSO, which

had no significant difference for the 10-node networks (Fig. 2.2A). Remarkably, every

single network was inferred with greater accuracy, indicating that SWING has notable

benefits for larger inference tasks (SI Appendix, Fig 2.S1, Table 2.S1).

2.4.3. SWING is an extensible framework

Compared to other time-delayed inference algorithms, SWING is a flexible and extensible

framework that is not limited to using a single statistical method. The SWING frame-

work was implemented with RF, LASSO, and PLSR; it can be easily expanded to use

other multivariate inference algorithms, including those that utilize prior information and

heterogeneous data types103. Additional improvements can be made by incorporating

complex weighting of methods for consensus analysis that leverage known weaknesses and

biases of inference methods. Methods that involve empirical optimization of combination
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weights, such as those assessed in the DREAM challenge, are expected to substantially

improve SWING performance104.

Although we implemented SWING to infer interactions from gene expression data,

the same Granger causality principles can be applied to a wide variety of contexts with

temporal dynamics. Provided sufficient time-series data, we expect SWING to identify

regulatory relationships in related intracellular signaling pathways, as well as broader

fields such as ecology, social sciences, and economics. As the sensitivity/specificity

of experimental tools increases and the cost of implementation decreases, we expect

longer and higher resolution time-series data to become widely available. We expect

this increase in time resolution to further improve the accuracy of SWING-based net-

work inference, especially as the community continues to build on the SWING chassis.

The SWING framework, with currently implemented methods, is available on GitHub

(https://github.com/bagherilab/SWING).

2.5. Supplementary Information

2.5.1. Materials and Methods

2.5.1.1. Gene regulatory network. SWING addresses the challenge of inferring regu-

latory networks from gene expression data. Gene regulatory networks are directed graphs

with N nodes, where each node represents a gene. An edge from gene gi to gene gj

indicates that gi regulates the expression of gj.

2.5.1.2. Time-series data. The time-series measurement of expression for gene, i, with

T time points, is defined as Gi = [g1i , g
2
i , . . . , g

T
i ]

⊤. Thus, a time-series experiment is

defined as T = [G1, . . . , GN ]. T is a T × N matrix which provides an ordered sequence
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of values for each observed gene (columns) at each time point (rows).

T =


g11 . . . g1N
... . . . ...

gT1 . . . gTN

 (2.1)

For simplicity we describe the case where there are no replicates. However, if there are

multiple time series, P , of the same length for each gene, such as experiments with multiple

biological replicates or experimental perturbations, they are stacked into a (T · P ) × N

matrix such that T = [T1, ...,Tp]
⊤.

2.5.1.3. SWING window creation. SWING employs a fixed-length sliding window to

divide time-series observations into ensembles of training data with the same measured

features within each time series.

Given a time-series data set T , SWING creates Q consecutive windows. Q is defined

as

Q = (T − w + 1)/s, (2.2)

where w is the window width, such that w ≤ T , and s is the step size between windows.

Both w and s are specified by the user. Each window Wq, where q ∈ {1, . . . , Q}, is a

subset of rows from the time-series data T , such that:

Wq =



g
s(q−1)+1
1 . . . g

s(q−1)+1
N

g
s(q−1)+2
1 . . . g

s(q−1)+2
N

... . . . ...

g
s(q−1)+w
1 . . . g

s(q−1)+w
N


(2.3)
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If w = T then there is only one window and SWING performs network inference

equivalent to the base method. Additional parameters for window creation are described

in the SWING parameter selection.

2.5.1.4. Edge inference. Once the temporal windows are delimited, we apply multi-

variate Granger causality to generate training sets for inference algorithms. Traditional

Granger causality models assess pairwise predictions with a set delay between the vari-

ables. Previous methods expanded the Granger models to be multivariate, but do not

simultaneously compare multiple delays between explanatory and response variables. Here

we describe the formulation of a Granger model that is both multivariate and includes

multiple delays.

SWING utilizes a general statistical framework where weights between explanatory

variables and a response variable are calculated using supervised learning algorithms. For

each window, Wq, we sequentially define a response vector for each gene, j, as yj = Wq,j,

which is the jth column of window Wq. The explanatory data is created based on two

user-specified parameters. The maximum lag, kmax, and minimum lag, kmin, define the

number of time points that can exist between the explanatory variables and the response.

They are used to define the user-allowed set of delays, L = {kmin, kmin + 1, . . . , kmax}.

|L| is the cardinality of the set L, and is used to calculate the maximum number

of explanatory variables. For most windows the number of user-allowed delays is |L| =

kmax − kmin + 1, but there will be fewer when q ≤ kmax. The explanatory data matrix

for each response vector is constructed by concatenating data from the delayed windows,
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and is defined as

X =


[Wq−kmin

, . . . ,Wq−kmax ] q > kmax

[Wq−kmin
, . . . ,W1] kmin < q ≤ kmax

(2.4)

To maintain consistency between SWING and existing methods, if kmin = 0, the

response variable is excluded from the explanatory data, prohibiting self-edges within the

same window. X has an augmented number of explanatory variables, corresponding to

an explanatory variable for each gene at each delay. The number of columns in X is

N · |L| if kmin > 0, or N · |L|− 1 if kmin = 0. We did not include any self edges, regardless

of delay, during our testing, because the in silico and in vitro data was collected in a way

that does not account for self-edges.

2.5.1.5. Model aggregation. SWING aggregates the results from several weak, but

sensitive, windowed models to generate a ranked list of edges. Each window generates an

N × (N · |L|) adjacency matrix, A, of edge scores where Ak
i,j is the inferred score for gene

i as the upstream regulator of gene j with delay k.

The time-series data are naturally left censored, as we cannot know measurements

before the experiment occurs. As such, depending on the user specified kmin and kmax,

some windows, particularly the earlier ones, will not infer interactions for larger values of

k (e.g. gq−2
i → gqj cannot be inferred if q < 2). Therefore, each window Wq infers at most

|L| scores, for each gene pair.

In order to combine scores across multiple windows and different delays into a single

score gi → gj, SWING does two aggregations. Confidence values from windowed subsets

are aggregated into a single network by taking the mean rank of the edge at each delay

k, and then taking the mean rank of the edge across all delays. Additionally, community
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networks estimated from multiple classifiers are built by computing the mean rank of edges

outputted from RF, LASSO, and PLSR. We use the edge rank because scores between

window models and methods may not have equivalent distributions. The median of edge

ranks may also be used, but in preliminary testing it did not significantly change the

results.

2.5.1.6. SWING graph generation. A directed SWING graph shows causal relation-

ships between N nodes in a system and can be represented by the adjacency matrix A

in which each element Ai,j is the confidence that an edge exists between parent node gi

and child node gj. Given Q user-defined windows, for each window, Wq, there are at

most N2|L| −N possible edges that exist in the inferred model. Therefore, the adjacency

matrix for each window is

Aq =


Akmin

1,1 . . . Akmax
1,N

... . . . ...

Akmin
N,1 . . . Akmax

N,N

 , (2.5)

where Ak
i,j is the confidence of the interaction whereby the parent node gi is said to be

Granger causal of the child node gj with a delay of k time points. Self edges within the

same window are prohibited, and therefore values A0
i,i are set to 0. In this way, a network

model with N targets and at most N · |L| regulators is created for each window.

For each window, SWING estimates the confidence of each edge and generates a ranked

list of edges based on method-specific criteria. Specifically, RF uses the importance score

calculated with the mean squared error105; LASSO uses a stability selection metric54,

and PLSR uses the variable importance in projection (VIP) score51. The rank of an

edge in each windowed model can be used as the confidence metric to compare across
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methods. We compute a consensus model (SWING-Community) by calculating the mean

rank across methods for each possible edge:

Ai ,j =
RSWING−RF

i,j +RSWING−LASSO
i,j +RSWING−PLSR

i,j

3
, (2.6)

where Ri,j are the ranks of the edge for each of the tested methods, and Ai,j is the average

rank of the edge gi → gj used as the confidence metric in the consensus network.

2.5.1.7. SWING parameter selection. SWING is a generalized framework that can

be used with any multivariate machine learning inference method. In developing and test-

ing SWING, we implemented three different existing methods: RF, LASSO, and PLSR.

Each algorithm requires different tuning parameters. When using RF, we selected the

number of trees, the maximum depth of the tree, and the number of trees based on guide-

lines from the GENIE3 manuscript105. For LASSO, we utilized two methods to select the

regularization parameter54: for in silico studies, we selected the regularization parameter

based on the cross-validation score; for in vitro data sets with comparatively less data,

we selected the regularization parameter based on sensitivity analysis for a single random

subnetwork and evaluated all subnetworks with the subsequent parameter. For PLSR,

we selected the number of principal components to use based on the elbow criterion51.

In addition to the base method’s specific parameters, SWING has user-selected pa-

rameters that require knowledge of the system and data. For optimal performance, we

suggest the window size be selected such that T/2 ≤ w ≤ T , where T is the number of

time points in the time series. If w < T/2, increased noise can lead to inference of more

false-positive edges. In general, the step size can be set to s = 1, unless the user has an

abundance of time points and wishes to train on only a subset of the data.
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The in silico data from GNW is generated such that the perturbation is applied before

the simulation and removed at T/2. We therefore used w = 0.5T ≈ 10, to capture the

change in dynamics based on the perturbation. For consistency, we also used w = 0.5T = 7

for the in vitro E. coli SOS network inference.

The allowed delay range is specified by the user in setting kmax and kmin. We recom-

mend the user set these values based on the range of dynamics expected in the system, or

by prior delay analysis such as cross-correlation. Since kmax and kmin are integer values,

they also depend on the sampling interval of the experimental data. Specifying kmin = 0

allows SWING to infer edges with no delay, as many existing methods do. When testing

the in silico networks we used kmax = 3 and kmin = 1, corresponding to an allowed delay

range of 50 ≤ k ≤ 150 minutes based upon the in silico sampling strategy. This range is

consistent with the delays in the in silico data estimated using cross-correlation. If, how-

ever, the user specifies null SWING parameters—specifically, w = T , kmax = 0, kmin = 0,

and s = 1—there is only a single window with no delays between the explanatory and

response variables. This condition corresponds to running the base methods independent

of SWING.

2.5.1.8. In silico data generation. All in silico networks were created using

GeneNetWeaver61. GNW creates a stochastic differential equation (SDE) model from

which time-series data are sampled. The kinetic models incorporate Hill kinetics and

include both transcriptional and translational components. We generated time-series per-

turbations for 20 non-isomorphic, 10-node and 100-node subnetworks from the curated

E. coli and S. cerevisiae networks. Simulated data includes ten random combinations of

perturbations which are uniformly sampled at 21 time points with a maximum time of

1000 in arbitrary units.
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2.5.1.9. Parameters for GNW subnetwork extraction. GeneNetWeaver (GNW)

is designed to provide synthetic benchmarking data sets for the assessment of network

inference methods. GNW includes the networks used for assessment in the DREAM4

challenge, as well as E. coli-derived and S. cerevisiae-derived gene regulatory networks,

which can be used to extract testable subnetworks106. These features make GNW ideal

for generating in silico gene expression data paired with an unambiguous gold standard.

We extracted subnetworks from curated E. coli-derived and S. cerevisiae-derived net-

works included in GNW. For each model organism we extracted 20 non-isomorphic net-

works with 10 and 100 nodes. All subnetworks were extracted with neighbors chosen

via greedy selection. The S. cerevisiae-derived subnetworks were extracted with 50% of

the nodes chosen from the strongly connected component. The curated E. coli-derived

network does not have one strongly connected component, and therefore E. coli-derived

subnetworks were extracted starting with a randomly selected vertex. To ensure unique-

ness of subnetworks, each sequential network is randomly extracted and preserved only if

it is non-isomorphic to all previously extracted networks.

Time-series perturbation data was generated for each of the extracted subnetworks

using the default DREAM4 challenge parameters included in GNW. Simulated data in-

cludes ten random combinations of perturbations. Simulated experimental perturbations

are applied immediately before the time-series data is sampled, and removed halfway

through the simulation.

2.5.1.10. In silico predictions and scoring. We scored the inferred networks by

calculating the mean increase in the area under the precision-recall (AUPR) curve and

the area under the receiver operator characteristic (AUROC) curve for N networks as
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follows:

S increase =

∑N
n=1 Sn,SWING − Sn,base

N
, (2.7)

where Sn is the AUPR or AUROC for an individual network, n. For a stochastic method,

like RF, Sn, is the mean AUPR/AUROC over several trials, for an individual network.

2.5.1.11. Cross-correlation and lag analysis. Temporal cross-correlation has been

used by multiple studies to describe how well two signals are correlated when one is

shifted in time relative to the other95 90. Let Gi = [g1i , g
2
i , . . . , g

T
i ] represent measurements

of a single gene in a time-series data set. We calculated the pairwise cross-correlation, R,

between a pair of signals, Gi and Gj, for a delay k as:

Rk
Gi,Gj

(t) =
σGiGj

(t)

σGi
σGj

(2.8)

σGi
, σGj

, and σGiGj
(t) refer to the standard deviation of Gi, standard deviation of Gj,

and cross-covariance of Gi and Gj at time t, respectively. The cross-covariance is defined

by:

σGiGj
(t) =

1

N − 1

N∑
t=1

(Gi,t−k − µGi
)(Gj,t − µGj

), (2.9)

where µGi
and µGj

define the mean values of each time series.

We applied several stringent criteria to evaluate time-delayed edges. We calculated the

two-sided p-value using the t-distribution equation and subsequently corrected the p-value

using the Bonferroni correction (the significant p-values were those less than α ≤ 0.05
m

where m is the total number of edges evaluated)107. Since multiple experiments were

evaluated for each pairwise comparison, we filtered noisy lagged edges by removing edges

in which the sign of the lag differed in more than 10% of experimental perturbations. For
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E. coli and S. cerevisiae in vitro data, we also incorporated prior knowledge regarding

the sign of the interaction into the lag selection. If multiple delays were significant,

depending on whether the parent positively or negatively regulated the target in the gold

standard, we selected the lag with the smallest p-value that maximized (0 < R < 1) or

minimized (−1 < R < 0) cross-correlation, respectively. We evaluated cross-correlation

at k = {0, 10, 20, 30, 60, 90} in E. coli and S. cerevisiae data sets.

2.5.1.12. In vitro data aggregation. We extracted in vitro gold standard networks for

E. coli and S. cerevisiae from RegulonDb and DREAM5 Yeast gold standards (Network4)

respectively47. For E. coli, we extracted the known set of TF and gene interactions from

RegulonDb 9.0108. To derive subnetworks from parent gold standards, we performed

MCODE clustering using modularity parameters of 0.25 (E. coli) and 0.5 (S. cerevisiae),

resulting in subnetworks where the number of nodes in each module is between 3 and 145

(Tables 2.S4 and 2.S7). Gene ontology enrichment analysis was performed using a cutoff

for false discovery rate-corrected p < 0.05 and the goatools package109.

Sources of time-series data sets for E. coli and S. cerevisiae are described in Tables

2.S2 and 2.S6. To run SWING, 10 minute time points were generated using cubic spline

interpolation and this data was used to train both SWING and baseline methods110. Data

interpolation was not needed for lag analysis in Figs. 2.4A and 2.S8. Time-series data

sets were mean centered.

2.5.1.13. Computational development. The SWING package was developed in

Python 3.4.5 using the following major packages: NumPy and SciPy 111, pandas112, and

NetworkX 113. The RF, LASSO, and PLSR algorithms use implementations available in

scikit-learn114. Figures were generated using seaborn and matplotlib115. The code for

SWING can be found on GitHub (https://github.com/bagherilab/SWING).
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2.5.2. Sensitivity Analysis

We conducted sensitivity analysis to assess SWING performance (AUPR and AUROC)

as a function of user-specified parameters: window size (w), minimum lag (kmin), and

maximum lag (kmax). We also assessed performance as a function of parameters relating

to experimental design: sampling interval of the time series, as well as mixed interval

time-series samples. In our analysis, we systematically compared frontline SWING meth-

ods to baseline methods (SWING-RF to RF, SWING-LASSO to LASSO, SWING-PLSR

to PLSR) to determine the range of SWING performance for 40 10-node in silico net-

works, and the E. coli SOS network data set analyzed in Figure 2.3. We quantified this

performance for every possible window size that can be specified, and a wide range of

kmin/kmax combinations. The percent change in AUPR or AUROC for an individual

network is calculated as:

S%change = 100 ∗ SSWING − Sbase

Sbase

, (2.10)

where S is the AUPR or AUROC. For a stochastic method, like RF, Sbase and SSWING

are the mean scores over several realizations. We also describe experimental design con-

siderations related to time-series sampling interval.

2.5.2.1. Effect of varying window size. Overall, SWING performance is higher than

corresponding baseline methods for three frontline inference methods over a wide range

of window sizes (Fig. 2.S9), however, the performance of a single network (red line) may

differ between individual networks and SWING methods. For SWING-RF, the mean and

median percent change of AUPR and AUROC for 40 in silico networks is greater than RF

for all possible window sizes, w : w ∈ {2, . . . , 20}. The distribution range indicates that
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the performance for any individual network can be lower than baseline, and may partly

depend on unknown properties, such as underlying network structure.

We highlight an individual network (Fig. 2.S9, red line) for which SWING-RF AUPR

is slightly higher than RF, but SWING-RF AUROC is lower when w = 2. SWING-RF

steadily outperforms RF with larger window sizes until it peaks at w = 17. The ma-

jority of the AUPR/AUROC distributions show SWING-RF outperforming the baseline,

indicating that SWING improves inference of many network topologies. SWING-LASSO

and SWING-PLSR improvements are more modest, and SWING-LASSO performance is

less stable across window sizes. Nevertheless, SWING generally outperforms the baseline

method, and rarely performs worse.

Similarly, in the in vitro E. coli SOS network analyzed in the main text (Fig. 2.3),

we demonstrate that choosing w : w ∈ {5, . . . , 12} increases AUPR compared to baseline

(w = 14), and choosing w : w ∈ {5, . . . , 13} increases AUROC (Fig. 2.S13B). Thus,

the optimal window size partially depends on the underlying inference method and the

individual network structure, but SWING appears to improve overall network inference

capability across a wide range of user-defined parameters.

2.5.2.2. Effect of varying minimum and maximum lag. SWING outperformed

baseline methods for a wide range of kmin/kmax combinations (Fig. 2.S10), but again,

the performance of a single network may differ depending on the inference method used

or underlying network properties. The aggregate mean and median AUPR and AUROC

for SWING methods was greater than that of their respective baselines for almost all

kmin/kmax combinations (Fig. 2.S10). Generally, specifying too small of a kmin/kmax range

may result in overlooking a majority of lagged interactions, while too large of a kmin/kmax

range may result in spurious inference. Trends are distinct between inference methods:
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SWING-LASSO appears to be sensitive to over-specifying kmin/kmax combinations, as

combinations with a smaller range (e.g. kmin = 1 and kmax = 1) tend to outperform

larger ranges, while SWING-RF and SWING-PLSR appear to be more robust to larger

kmin/kmax ranges.

We performed cross-correlation lag analysis to show that the distribution of apparent

delays in the underlying network partly determines the optimal lag parameters. The

apparent time delay of the majority of interactions in the in silico networks (sampling

interval of 50 minutes) is between 0 and 100 minutes which corresponds with kmin/kmax

combination (0, 2). Less than 20% of interactions have apparent delays greater than 100

minutes (Fig. 2.S14). In SWING-PLSR and SWING-RF, optimal mean performance

occurs for kmin/kmax combinations that tend to capture longer delays, while for SWING-

LASSO, optimal performance occurs at kmin/kmax combinations that tend to capture

shorter delays (Fig. 2.S10).

In the E. coli SOS network, cross-correlation lag analysis only identified a few edges

with apparent lag, (Fig. 2.3) all with a delay of one time point. By varying kmin/kmax,

we show that SWING-RF tends to perform well for combinations with kmin of 0 or 1, and

kmax of 0 or 2 (Fig. 2.S13A). Combinations that overspecify a large range of possible lags

(kmin = 0 and kmax = 3 for instance), or stray too far from the underlying lag distribution,

perform poorly.

2.5.2.3. Effect of sampling interval. The sampling interval of the data set strongly

affects whether SWING can be effectively utilized to improve network inference. We

generated 40 finely sampled in silico networks and sampled time points such that resulting

time-series data sets had intervals of 10 (finest), 30, 50, 100, 200, 333, 500 (coarsest)

minutes. We also performed cross-correlation lag analysis on sampled data sets to show
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the underlying apparent lag distribution captured by sampling strategies. To compare

the performance of SWING between different sampling intervals, we utilized the following

parameters: w = 0.66T , kmin = 1, kmax = 3.

Sampling intervals greater than 100 minutes show no apparent time delay (Fig. 2.S14).

Concomitantly, SWING performance compared to baseline tends to be poor for sampling

intervals greater than 100 minutes, though this observation is method-dependent (Fig.

2.S11A). While on average, SWING-LASSO and SWING-PLSR perform poorly with

such long sampling intervals, individual networks do perform well (as indicated by the

large variance). As expected, SWING performance is compromised when the kmin/kmax

are incorrectly specified even with finer sampling. With a sampling interval of 10 min-

utes, a majority of time-delayed interactions show an apparent lag between 10 minutes

and 80 minutes (Fig. 2.S14). SWING methods still tend to have a higher mean and me-

dian AUPR/AUROC than baseline methods with a kmin of 10 minutes and a kmax of 30

minutes, but performance was greatly improved when kmin/kmax were changed to include

a majority of underlying time delays (Fig. 2.S11B). In summary, SWING outperforms

baseline methods over a wide range of sampling intervals. However, as expected, when

the sampling interval decreases, SWING performance also decreases (Fig. 2.S11A). We

attribute this observation to a decrease of the number of true edges for which an apparent

lag can be estimated (Fig. 2.S14).

We also tested the effect of uneven sampling on SWING performance. For an equal

comparison, the same number of time points were selected for both strategies, spanning

roughly the same time frame. In general, both uneven and even sampling strategies

enabled SWING-RF, SWING-LASSO, and SWING-PLSR to outperform than their re-

spective baseline methods (Fig. 2.S12). Additionally, in the event that the user wishes
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to input data from a mixed design, data from different steady state time points (t=0 or

some long time after perturbation) would need to be labeled as such when inputting the

raw data points into the algorithm.

2.5.3. Supplementary Information: Additional Figures
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Figure 2.S1. Changes in AUPR and AUROC curve distributions for 100-node GNW networks.
All networks and methods show a significant improvement in both the AUPR and AUROC when
using SWING. Score changes to individual networks are shown as grey lines. The mean (red)
and median (black) of each score distribution is shown. The expected score based on random
for each metric is shown as a dashed line. n=20 networks, kmin=1, kmax=3, and w=10 for
all networks. p-values are calculated using the Wilcoxon signed-rank test, **** p<0.0001, ***
p<0.001.
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Figure 2.S4. Identification of delays in DREAM 4 in silico networks. (A) Real biological
systems require additional steps, such as translation, whose kinetics determine the delay between
upstream gene expression and downstream nodes. The physical time required for these steps can
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cross-correlation function. τ = 0 minutes was calculated for around 25% of the interactions,
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indicating that the kinetics of the model result in a delay. Larger values of τ may be due to the
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Figure 2.S5. SWING promotes edges with apparent time delays between genes. (A) The
inferred rank using SWING versus the respective control methods. All true edges for the 20
networks are plotted. Edges that present below the diagonal line are promoted by SWING, and
those that present above are demoted. For all methods and networks, SWING is significantly
more likely to promote an edge with apparent lag. (B) Distribution of true edge rank changes
when using SWING for lagged and not lagged edges. The median true edge promotion of
lagged edges is significantly greater for E. coli networks when SWING is run using PLSR,
but significantly greater for S. cerevisiae networks when SWING is run using RF. p-values are
calculated using the Mann-Whitney U test, **** p < 0.0001, ** p <0.01 . n=292 for E. coli
and n=257 for the S. cerevisiae.
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Figure 2.S6. SWING promotes time-delayed edges and increases correlation between genes.
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grey.
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Figure 2.S11. Results of sampling interval analysis on 40 in silico networks using SWING
and baseline methods. (A) Boxplots show the percent change in performance of SWING-RF,
SWING-LASSO, SWING-PLSR compared to baseline methods (RF, LASSO, PLSR respec-
tively) for each sampling interval (white dot = mean, black bar = median). For example, the
sampling interval 333 indicates that samples were taken at t=0, 333, 666, and 999. The percent
change of AUPR and AUROC from non-SWING methods was calculated for each network (100
trials). The red line indicates the AUPR/AUROC for one example network as w changes. For
SWING methods, the following parameters were used: kmin = 1, and kmax = 3 (kmax was
adjusted accordingly to be the largest allowed value when w was 19, 20, and 21), the window
size was selected to be an integer 2

3 of the total window size rounded down. (B) Corresponding
heatmap for parameter scan where data was subsampled at 10 minute intervals for SWING-RF
relative to RF. This data demonstrates that using kmin and kmax values that are inclusive of
underlying lag distribution substantially increases performance.
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silico networks. For the uneven sampling strategy, we selected 8 time points t = 0, 15, 30, 60,
120, 240, 480, 720. For the even sampling strategy, we selected 8 time points t = 0, 100, 200,
300, 400, 500, 600, 700.The percent change of AUPR and AUROC from non-SWING methods
was calculated for each network (100 trials). For SWING methods, the following parameters
were used: kmin = 1, and kmax = 3, w = 4.
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with the indicated parameters while blue denotes that SWING-RF performed worse than the
RF baseline method. Parameter combinations that are not possible are shown in grey. (B)
Boxplots show AUPR and AUROC distributions for 50 trials of SWING-RF at each window
size, w, with kmin = 0, kmin = 1. These plots show an example of the variance AUPR/AUROC
scores for each RF realization, for the row outlined in A (black = baseline distribution using
RF; blue = distributions with a significantly lower score than the baseline; red = distributions
with a significantly higher score than the baseline; grey = distributions with no significant score
difference than the baseline. p-values are calculated with a paired t-test. Values are considered
significant with p < 0.05).
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AUPR AUROC
Dataset Method ∆ ∆ (%) p-value ∆ ∆ (%) p-value
Ecoli10 SWING-RF 0.151 98.1 1.20E-04 0.120 25.5 2.93E-04
Ecoli10 SWING-PLSR 0.072 35.7 3.90E-04 0.028 5.4 1.35E-01
Ecoli10 SWING-LASSO 0.023 13.1 1.37E-02 0.037 7.7 6.42E-03
Scerevisiae10 SWING-RF 0.139 50.4 1.20E-04 0.058 8.3 6.81E-04
Scerevisiae10 SWING-PLSR 0.102 35.1 1.40E-04 0.035 5.1 1.37E-02
Scerevisiae10 SWING-LASSO 0.001 0.6 6.54E-01 -0.002 0.0 7.94E-01
Ecoli100 SWING-RF 0.383 647.9 8.86E-05 0.134 19.1 8.86E-05
Ecoli100 SWING-PLSR 0.086 96.2 1.03E-04 0.028 3.7 8.86E-05
Ecoli100 SWING-LASSO 0.013 37.3 8.86E-05 0.052 9.1 8.86E-05
Scerevisiae100 SWING-RF 0.096 53.3 8.86E-05 0.040 6.1 8.86E-05
Scerevisiae100 SWING-PLSR 0.049 25.7 8.86E-05 0.016 2.4 8.86E-05
Scerevisiae100 SWING-LASSO 0.012 11.6 8.86E-05 0.020 3.6 8.86E-05

Table 2.S1. Summary of SWING performance on in silico networks. The change in mean
AUPR and AUROC for 20 in silico 10 and 100-node networks. p-values are calculated using the
Wilcoxon signed-rank test.
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Strain/Condition Time Points Citation
MG1655 control t=10,20,30,40,50 116

MG1655 cold stress t=10,20,30,40,50 116

MG1655 heat stress t=10,20,30,40,50 116

MG1655 oxidative stress t=10,20,30,40,50 116

EMG2 LB 0pt02percent glucose t=150,180,210,240,270,300,330,360,480 47

EMG2 LB 0pt04percent glucose t=150,180,210,240,270,300,330,360,480 47

MG1655 wt untreated t=0,30,60,90,120 47

MG1655 wt MMC 2pt5ug t=0,30,60,90,120 47

MG1655 wt UV 500en t=0,30,60,90,120 47

BW25113 uninduced t=0,30,60,120,180 47

BW25113 norflaxacin t=0,30,60,120,180 47

BW25113 D recA t=0,30,60,120,180 47

BW25113 U ccdB t=0,30,60,120,180 47

BW25113 D recA norflaxacin t=0,30,60,120,180 47

BW25113 D recA U ccdB t=0,30,60,120,180 47

MG1655 U lacZ t=0,30,60,90 47

MG1655 U ccdB t=0,30,60,90 47

EMG2 LB norf 25ng t=0,12,24,36,48,60 117

Table 2.S2. E. coli data set for RegulonDB lag analysis
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Cluster ID Total # Edges # of Lagged Edges (k ≥ 10m) % Lagged Edges
0 125 8 6%
1 542 138 25%
2 193 14 7%
3 113 24 21%
4 13 4 31%
5 299 87 29%
6 55 5 9%
7 132 11 8%
8 65 8 12%
9 71 2 3%
10 124 29 23%
11 106 8 8%
12 76 6 8%
13 203 17 8%
14 36 3 8%
15 56 2 4%
16 18 8 44%
17 102 8 8%
18 141 15 11%
19 36 3 8%
20 30 1 3%
21 32 7 22%
22 86 10 12%
23 27 12 44%
24 204 25 12%
25 167 20 12%
26 94 14 15%
27 45 3 7%
28 43 3 7%
29 34 2 6%
30 271 33 12%
31 114 19 17%
32 29 8 28%
33 29 1 3%
34 23 0 0%

Table 2.S3. Lagged edge analysis of 35 E. coli subnetworks from RegulonDB. We highlight
lagged edges with apparent time delays of 10 minutes or greater.
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Cluster ID Gene Ontology Significance (Corrected P-Value) # of Genes in GO Size of GO Category
1 putrescine catabolic process 4.86E-05 7 110
2 iron ion homeostasis 9.24E-25 20 74
3 metal ion binding 0.008352298 20 41
3 oxidation-reduction process 0.002072459 18 41
4 rhamnose metabolic process 1.72E-10 5 6
5 ATP-binding cassette (ABC) transporter complex 0.004500043 8 43
5 chemotaxis 4.42E-05 7 43
6 purine nucleotide biosynthetic process 5.01E-20 12 25
7 cellular response to DNA damage stimulus 2.28E-16 30 63
8 organic phosphonate catabolic process 2.20E-12 8 40
9 glycogen metabolic process 0.000432348 4 29
10 tryptophan catabolic process 0.027249226 3 37
11 cellular amino acid biosynthetic process 0.028322085 9 50
13 translation 2.29E-06 12 40
13 intracellular ribonucleoprotein complex 7.77E-08 11 40
14 DNA replication 0.000287344 6 16
15 arginine biosynthetic process 1.17E-18 11 33
16 propionate catabolic process, 2-methylcitrate cycle 3.84E-06 4 10
17 drug transmembrane transport 0.000254503 7 47
18 bacterial-type flagellum organization 1.70E-06 8 53
19 leucine biosynthetic process 1.16E-06 5 16
20 galactose metabolic process 1.20E-09 5 10
21 D-galacturonate catabolic process 0.009971194 3 13
22 carbohydrate transport 5.04E-12 16 37
23 L-threonine catabolic process to propionate 1.47E-12 6 8
25 oxidation-reduction process 1.07E-05 24 54
26 response to copper ion 1.32E-07 6 20
27 sulfate assimilation 8.24E-09 7 29
28 nucleoside transport 0.005095171 3 14
29 fatty acid metabolic process 1.94E-27 16 21
30 oxidation-reduction process 2.21E-11 32 59
32 D-gluconate metabolic process 2.80E-12 7 13
33 cellular amino acid biosynthetic process 1.90E-07 10 19
34 aromatic amino acid family biosynthetic process 8.37E-23 13 20

Table 2.S4. Gene ontological analysis of E. coli subnetworks in RegulonDB
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Transcription Factor Total # Edges # of Lagged Edges (k ≥ 10m) % Lagged Edges
crp 466 129 28%
fnr 286 34 12%
csgd 24 7 29%
fis 166 6 4%
torr 11 6 55%
lexa 52 5 10%
iscr 27 5 19%
arca 155 4 3%
gntr 11 4 36%
narl 120 3 3%
soxs 32 3 9%
fliz 19 3 16%
oxyr 32 2 6%
cysb 28 2 7%
argp 13 2 15%
fur 117 1 1%
cpxr 55 1 2%
narp 50 1 2%
pdhr 35 1 3%
purr 29 1 3%
rcsb 20 1 5%
fadr 18 1 6%
evga 15 1 7%
mraz 15 1 7%
arac 13 1 8%
leuo 12 1 8%
basr 12 1 8%
lrp 69 0 0%
phob 54 0 0%
mode 46 0 0%
phop 39 0 0%
argr 35 0 0%
mara 31 0 0%
nagc 30 0 0%
fhla 29 0 0%
gade 26 0 0%
gadx 26 0 0%
rob 20 0 0%
nac 18 0 0%
metj 15 0 0%
ydeo 15 0 0%
ompr 14 0 0%
gadw 12 0 0%
paax 12 0 0%
cytr 12 0 0%
yedw 12 0 0%
trpr 11 0 0%
cusr 11 0 0%
hyfr 11 0 0%
tyrr 11 0 0%

Table 2.S5. Lagged edge analysis of E. coli transcription factors from RegulonDB. We highlight
lagged edges with apparent time delays of 10 minutes or greater.
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Strain/Condition Time Points Citation
Y262 Wild type cells, oxidative stress t=0,30,60,100,140,180 118

Y262 Wild type cells, DNA damage stress t=0,30,60,100,140,180 118

Y262 Wild type cells, oxidative decay t=0,5,10,15,20,30,40,50,60 118

Y262 Wild type cells, DNA damage decay t=0,5,10,15,20,30, 40, 50, 60 118

IFO0233 Wild type cells, control t = 830,834,838,842,846,850,854,858,862,866,870 119

IFO0233 Wild type cells, phenelzine treatment t = 874,878,882,886,890,894,898,902,906,910,914,918,922,926,930,934,938,942,946,950,954,958,962,966,970,974,978,982,986,990,994,998,1002,1006,1010,1014,1018 119

BF264-15Dau Wild type cells, YEP medium t = 30,38,46,54,62,70,78,86,94, 102,110,118,126,134,142,150,158,166,174,182,190,198,206,214,222,230,238,246,254,262 120

BF264-15Dau D CLB1 cells, YEP medium t = 30,38,46,54,62,70,78,86,94, 102,110,118,126,134,142,150,158,166,174,182,190,198,206,214,222,230,238,246,254,262 120

Table 2.S6. S. cerevisiae data set for DREAM5 lag analysis

Cluster ID Gene Ontology Significance (Corrected P-Value) # of Genes in GO Size of GO Category
0 glycogen metabolic process 0.008232665 4 59
2 oxidation-reduction process 2.07E-22 87 223
3 transcription, DNA-templated 0.032096568 23 93
4 D-gluconate metabolic process 2.80E-12 7 13
5 carbohydrate transport 9.24E-29 53 299
5 carbohydrate metabolic process 3.18E-25 59 299
5 cytoplasm 0.034127985 94 299
6 iron ion homeostasis 8.10E-23 21 111
6 ion transport 4.93E-09 22 111
6 transport 6.25E-06 46 111
7 sulfate assimilation 6.26E-09 7 28
7 sulfur compound metabolic process 2.51E-08 7 28
8 oxidation-reduction process 0.016750762 22 68
9 lipid metabolic process 7.45E-20 16 22
10 cellular amino acid biosynthetic process 3.55E-08 19 95
11 membrane 2.92E-07 20 173
12 cellular response to DNA damage stimulus 6.90E-17 30 61
14 phosphate ion transport 1.32E-10 8 54
16 glyoxylate catabolic process 0.001176962 3 9
17 response to arsenic-containing substance 1.40E-05 3 3
19 biotin biosynthetic process 3.46E-12 6 6
20 cyanate catabolic process 1.40E-05 3 4
21 glycerol metabolic process 0.00127654 3 3
23 aromatic compound catabolic process 1.91E-08 5 6
25 potassium-transporting ATPase activity 1.83E-08 4 5
27 NAD biosynthetic process 1.15E-06 4 5
28 phage shock 0.000280394 3 6
30 thiamine transport 7.01E-05 3 6
31 cellular amino acid biosynthetic process 2.49E-12 13 20
32 nucleobase-containing small molecule metabolic process 0.013445757 2 3
35 zinc II ion transport 0.003916298 3 6

Table 2.S7. Gene ontological analysis of S. cerevisiae subnetworks
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CHAPTER 3

Hybrid analysis of gene dynamics predicts context specific

expression and offers regulatory insights

This work was published with Neda Bagheri in Bioinformatics121

3.1. Abstract

Motivation: To understand the regulatory pathways underlying diseases, studies often

investigate the differential gene expression between genetically or chemically differing cell

populations. Differential expression analysis identifies global changes in transcription and

enables the inference of functional roles of applied perturbations. This approach has trans-

formed the discovery of genetic drivers of disease and possible therapies. However, dif-

ferential expression analysis does not provide quantitative predictions of gene expression

in untested conditions. We present a hybrid approach, termed DiffExPy, that uniquely

combines discrete, differential expression analysis with in silico differential equation sim-

ulations to yield accurate, quantitative predictions of gene expression from time-series

data.

Results: To demonstrate the distinct insight provided by DiffExpy, we applied it to

published, in vitro, time-series RNA-seq data from several genetic PI3K/PTEN variants

of MCF10a cells stimulated with epidermal growth factor (EGF). DiffExPy proposed en-

sembles of several minimal differential equation systems for each differentially expressed

gene. These systems provide quantitative models of expression for several previously

uncharacterized genes and uncover new regulation by the PI3K/PTEN pathways. We
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validated model predictions on expression data from conditions that were not used for

model training. Our discrete, differential expression analysis also identified SUZ12 and

FOXA1 as possible regulators of specific groups of genes that exhibit late changes in ex-

pression. Our work reveals how DiffExPy generates quantitatively predictive models with

testable, biological hypotheses from time-series expression data.

Availability: DiffExPy is available on GitHub (https://github.com/bagherilab/diffexpy).

Contact: n-bagheri@northwestern.edu

Supplementary information: Supplementary data are available at Bioinformatics on-

line.

3.2. Introduction

Aberrant regulation of gene expression is frequently associated with diseases; thus, changes

to gene expression serve as key proxies to infer cell state122. Differential gene expression

analysis quantifies changes in gene expression between cell states. Expression is compared

between genetically different cells, cells exposed to different exogenous treatments—such

as small molecules, proteins, temperatures, or other environmental cues—or a combina-

tion of several treatments. Each gene in the analysis is then categorized as a differentially

expressed gene (DEG) or not. This categorization is often based on the magnitude of

the log fold change (LFC) of its expression between experimental conditions and by an

adjusted p-value. DEGs are often split into groups of genes that are overexpressed or un-

derexpressed123,124. Finding enriched Gene Ontology (GO) terms or pathways associated

with the DEG can elucidate the functional role of the experimental condition22,24.

Measuring and analyzing the dynamics of gene expression are also critical to under-

standing responses involved in DNA repair, development, and circadian rhythms17,125,126.

n-bagheri@northwestern.edu
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Figure 3.1. Overview of DiffExPy analysis. (Left) Genes are categorized as differentially ex-
pressed genes (DEGs), dynamic DEGs (dDEGs), or differentially responding genes (DRGs) from
time-course gene expression data. Discrete responses (in brackets) are determined for each con-
trast. (Center) Stochastic differential equation systems that match the dDEG gene profiles are
selected from a library of possible models and combined into an ensemble model. The ensembles
can predict gene expression behavior in new, untested conditions. (Right) Biological insights
are gained by associating GO terms with gene classifications and associating TFs with groups
of genes that share discrete differential behavior.

A typical time-series, gene expression experiment compares expression between experi-

mental conditions over several time points17,127. Many algorithms that identify DEGs

from time-series data exist, but these algorithms focus on DEG identification for subse-

quent enrichment analyses128. Other algorithms use time-series expression data to infer

the structure of gene regulatory networks48,86,129, or attempt to identify transcription fac-

tors (TFs) that explain changes in time-series gene expression, by pairing the expression

data with ChIP-seq data127,130.

A limitation of existing differential expression analyses—both of static and time-series

data—is that they do not propose quantitative models of a gene’s expression that can be

tested in new experimental conditions. For example, if a gene is overexpressed in cells

treated with a particular drug (compared to untreated cells), existing analyses cannot
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predict if that gene will be overexpressed, underexpressed, or unchanged when a different

drug is applied. Researchers can only infer how the regulation might occur and qualita-

tively predict how expression will differ in untested contexts.

Distinct from statistical enrichment approaches, differential equation models aim to

use mechanistic information to describe how species, such as genes or proteins, interact

and are well-suited to quantitatively predict gene expression in untrained conditions.

However, designing and fitting differential equation parameters requires sufficient data;

therefore, such models only exist for a few well-studied systems64–67. Genetic and sparse

regression algorithms can generate differential equation models directly from data, but

current gene expression technologies cannot produce the highly sampled, low-noise data

these algorithms require69,71.

Data-driven methods to generate models that can quantitatively predict gene expres-

sion are currently limited. Network inference methods generate genome-scale models,

however to predict the expression of any one gene requires knowing the expression of

several others48,55,93. Other methods explicitly fit expression to a time variable, which ig-

nores the molecular contexts driving expression17. To fill this gap, we present Differential

Expression in Python (DiffExPy), a framework that uses time-series expression data to

create dynamical-systems models of gene expression.

DiffExPy first determines a discrete response from the expression of each gene in the

time series based on the sign and significance of the gene’s LFC between conditions at

each time point. Next, DiffExPy simulates time-series expression data from a library

of minimal stochastic differential equation (SDE) systems that mimic the experimental

conditions. Then, the discrete response of a gene is matched to models in the simulation

library to train an ensemble model. This trained model can predict that gene’s expression
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in new conditions. DiffExPy also clusters genes by discrete response, and infers the timing

of regulatory events by associating these gene groups with transcription factors and GO

terms (Fig. 3.1).

We demonstrate the efficacy of DiffExPy on publicly available RNA-seq data from

the GeneExpressionOmnibus(GEO) repository, accession number GSE6982225. Previ-

ous analysis of this data set further elucidated the transcriptional roles of phosphoinosi-

tide 3-kinase (PI3K) and phosphatase and tensin homolog (PTEN), which respectively

phosphorylate and dephosphorylate phosphatidylinositidol-4,5-bisphosphate (PIP2) to

and from phosphatidylinositidol-3,4,5-trisphosphate (PIP3). PIP3 regulates many down-

stream pathways, most notably the AKT pathway25. For our analyses, we use data from

the wildtype (WT), PTEN knockout (PTEN KO), A66 treated cells, and PI3K knockin

(PIK3CA H1047R) conditions. A66 inhibits the p110α PIK3CA and we refer to it as

the inhibited condition (PI3K inh). The histidine-to-arginine substitution makes PIK3CA

constitutively active, and we refer to it as the knockin (PI3K KI) condition. In the

original study, expression was measured from MCF10a cells, a commonly used human

breast epithelial cell line, stimulated with epidermal growth factor (EGF) using RNA-seq

in three replicates at 0, 15, 40, 90, 180, and 300 minutes after EGF stimulation25.

Using the differential-expression data between the PI3K inh and WT conditions, we

train ensemble models for several genes. We validate the expression predictions for each

gene using the PI3K KI time-series data and provide a straightforward approach to rank

the confidence of each trained ensemble. The ensembles vary in size and consist of minimal

SDE systems with different connectivitivies. We highlight results of three genes known

to interact with the PI3K pathway that currently lack quantitative models for their

expression. In doing so, we demonstrate how the trained ensemble models provide simple
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used to train the models. The discrete response of the pairwise contrasts (in brackets) for each
dDEG show when differential expression occurs. (A, middle row) Normalized gene expression for
model predictions, null model predictions, and true PI3K KI expression. Trained and null model
predictions are median values, and the filled regions show the 83% CI of the median. (A, bottom
row) Network diagrams summarize the ensemble models matched to each gene in the training
condition. (B) AUROC curve plot of different methods for sorting gene predictions. Sorting
by mean LFC between the training conditions places more accurate predictions at the top of
the list. A threshold for selecting more accurate predictions (purple, dashed line) is calculated
using the elbow rule of the sorted mean LFC values in the training condition (Fig. 3.S7). (C)
Box plots show the normalized and absolute difference in MSE of the trained models compared
to the paired random models for all genes. The top set of genes (purple) were determined by
the elbow rule and are significantly more likely to generate more accurate predictions. p-values
were calculated using the Wilcoxon signed-rank test. ** p<0.01, **** p<0.0001.

starting models for less-studied genes. We also use the discrete response calculated by

DiffExPy to identify the timing of regulation by suppressor of zeste 12 (SUZ12) and

forkhead box A1 (FOXA1) on their target genes.

DiffExPy is distinct from the status quo in generating dynamical system models de

novo for many genes that were not previously characterized. Currently, DiffExPy is

limited in that it constructs small models based on time-series data from individual
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perturbations. However, DiffExPy is readily extensible and can be adapted to other

differential-expression packages, model assumptions, and genomic data. For example,

future improvements to DiffExPy could be made to incorporate multiple perturbations,

additional omics data types and prior knowledge. Our work provides a foundation on

which more complex models of gene expression can be developed.

3.3. Materials and Methods

Using time-series RNA-seq data, DiffExPy sorts genes according to their discrete, dy-

namic, differential gene expression profiles (Figs. 3.1 and 3.S1). Each gene’s discrete

profile is used to train an ensemble model of minimal stochastic differential equation

(SDE) systems that predict expression in new conditions (Fig. 3.1). DiffExPy also as-

sociates GO terms with resulting groups, which suggest functional roles for the genes in

each distinct cluster. Finally, DiffExPy associates TFs with genes that exhibit similar

responses at specific times (Fig. 3.1). Overall, DiffExPy identifies (i) minimal dynamical

systems models that accurately predict gene expression dynamics in untrained conditions,

(ii) specific GO terms associated with classes of expression dynamics, and (iii) specific TFs

associated with genes with similar expression responses.

3.3.1. DiffExPy assigns discrete differential responses

To match gene expression responses to dynamical systems models, DiffExPy first calcu-

lates discrete responses from LFC contrasts generated by differential expression analysis

(Fig. 3.S1) using the package limma44. A contrast is defined as a comparison of expression

between conditions, time points, or both. The discrete response is derived from the LFC

value for a contrast, which can be positive (+1), negative (-1), or not significant (0). We

assign gene labels based on discretized LFC values (Figs. 3.1 and 3.S1) as differentially
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expressed genes (DEGs), dynamic DEGs (dDEGs), and differentially responding genes

(DRGs).

DEGs are genes that are differentially expressed between conditions at one or more

time points after the treatment, based on an F-test. dDEGs define the subset of DEGs

that exhibit dynamic, or variable, differential expression across time. For instance, an

expression profile need not be differentially expressed at time 0, but it can become differ-

entially expressed at a later time point. DRGs contain at least one time point in which

the LFC is significantly different from the LFC either at the previous time point (i.e.,

LFCt ̸= LFCt−1) or from the time the treatment is applied (i.e., LFCt ̸= LFC0), where

significance is determined using an F-test. Classification of a gene as a dDEG or DRG is

not mutually exclusive, and by definition a dDEG or DRG is also a DEG.

3.3.1.1. Definition of gene expression contrasts. A gene expression contrast com-

pares the distribution of expression values of a gene between samples44. Using time-series

data, the basic set of values used in a contrast for gene i, given condition c, with R

replicates, and at time t is defined as:

g⃗ t
i|c = [g1,ti , g2,ti . . . , gR,t

i ] (3.1)

The LFC is calculated as the ratio of the mean log2 expression value between the

conditions:

lti =
⟨g⃗ t

i|exp⟩
⟨g⃗ t

i|ctrl⟩
(3.2)

where exp is the experimental condition and ctrl is the control condition. By convention,

the control condition is in the denominator, so positive LFC values correspond to over-

expression in the experimental condition. For each contrast, a corresponding p-value is
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calculated. When multiple contrasts are made, an overall significance level is also calcu-

lated using an F -test. Significance levels are corrected for multiple hypothesis testing44.

Differential expression calculations between genes are linearly independent and are easily

extended to matrix form.

DiffExPy departs from the status quo by using time-series data to create more complex

contrasts. Pairwise (PW) contrasts compare expression between experimental conditions

at each time points. Time-series (TS) contrasts compare expression between a time point

and the previous time point. Autoregressive (AR) contrasts compare expression between

a time point and the time point before the treatment was applied. A detailed descrip-

tion of these and other combinations of contrasts (PW-TS and PW-AR) is available in

Supplementary Information (Fig. 3.S1).

3.3.1.2. Discrete expression responses. To facilitate downstream analyses, DiffExPy

calculates a discrete response for each gene based on the p-values and signs of LFC for the

individual contrasts. If the p-value for a contrast is above the user-specified threshold,

the LFC is not considered significant and is set to zero. The discrete response for gene i

is defined as d⃗i,x = [d(l)] ∀ l ∈ l⃗i,x, where x is one of the set {PW , TS, AR, PW-TS, or

PW-AR}. The discrete values are calculated using the signs of the LFC values as follows:

d(l) =



1 sign(l) > 0 and p(l) < pcut

0 p(l) ≥ pcut

−1 sign(l) < 0 and p(l) < pcut

, (3.3)

where p(l) is the adjusted p-value of the LFC for the contrast and pcut is the significance

threshold. For a time series of T time points, each discrete response has 3T−1 possible
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clusters—except for d⃗PW , which has 3T . We did not filter LFC values by magnitude, but

the option is provided in DiffExPy. We used a p-value threshold of 0.05 for all of our

tests. A lower p-value cutoff could result in discrete responses with more zero values.

3.3.2. Training predictive models of gene expression

DiffExPy uses GeneNetWeaver (GNW) to generate minimal differential equation models

for unique, three-node networks and to carry out stochastic simulations. GNW models

include a protein and mRNA component61. Each model is an abstract representation

of the flow of information that might regulate a gene’s expression and should not be

used to identify specific regulation between genes. To mimic the experimental data, we

used DiffExPy to conduct three independent, stochastic runs of each model and sampled

each model at the same time points as the RNA-seq data. Microarray-like measurement

noise was added to the data, and values were normalized between 0 and 1. A complete

description of model generation is available in the Supplementary Information.

Simulations were conducted under three genetic conditions: wildtype, knockout, and

knockin. It is important to note that the identity of the perturbed gene does not need to

be known to gain information from DiffExPy. If a treatment with an unknown target is

applied, DiffExPy can still provide insight into possible motifs of which a gene is a part

that results in the observed expression behavior.

3.3.2.1. Matching models to genes. After simulation, each SDE model had time-

series data mimicking the experimental data. We conducted the same discrete clustering

process on the simulated data. Each gene was matched to all SDE models with the same

discrete response as the gene matchi = {m ∈ M |lti = ltm ∀ t ∈ T}, where M is the set
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of all models in the simulation library and T is the number of time points in the discrete

response.

3.3.3. Model predictions

Each SDE model matched by DiffExPy can then simulate time-series data under different

conditions to generate predicted LFC values at each time point, represented as a T -length

vector l̂k = [l̂1, . . . , l̂T ], where k is the index of the matched SDE system and T is the

number of time points in the predicted time series. The time series of the control condition

provides an internal control for predicting the response.

For our predictions, we applied a simulated knockin of PI3K to each of the trained SDE

models as this matches the PI3K KI perturbation that was applied in the experimental

data. Importantly, predictions to match different treatment strategies can also be made—

such as targeting multiple nodes in the SDE models, inhibiting interactions between SDE

nodes, or changing the forcing function.

We found no feature of the individual models that correlated with their prediction

error. We therefore created an ensemble prediction by using the median predicted LFC.

For each gene i, the predicted LFC is calculated as the median LFC of all matched SDE

predictions for each time t:

l̂ti = median([l̂tm ∀ m ∈ matchi]). (3.4)

The simulated model predictions in log2 expression space are ŷti = bti + l̂ti, where bti is

the log2 expression of the control condition at time t, l̂ti is the model predicted LFC, and

ŷti is the predicted log2 expression of the experimental condition.
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3.3.3.1. Scoring prediction accuracy. We validated the accuracy of the quantitative

predictions by calculating the error between PI3K KI expression of a gene and its cor-

responding model’s prediction. We define accuracy as the mean squared error (MSE)

between a model’s average LFC (of 3 stochastic runs) and the true LFC. MSE values

range from 0 to ∞, where smaller values indicate the prediction is closer to the true LFC

value. We know of no existing, data-driven method that generates models capable of

quantitative, time-series, gene expression prediction to provide an appropriate basis for

comparison. Thus, we used the selection of a random model from our library as the null

model comparison.

3.4. Results

3.4.1. Many previously uncharacterized genes are matched to ensemble mod-

els

We used the discrete response profiles to match each gene to an ensemble of three-node

SDE models that each share similar dynamics upon simulation. Our library consists

of 2,172 uniquely structured SDE models. We trained the models using the PI3K inh

and WT data, and we used the PI3K KI data as test data to validate the predictions.

Simulations for each network model were created to match the PI3K genetic condition

and EGF stimulation. The simulated data is sampled at the same time points used

in the experiments. Details of the library creation are provided in the Supplementary

Information.

As the PI3Kinh does not affect the expression of many genes25, DiffExPy only identifies

223 dDEGs from the differential expression analysis of the PI3Kinh and WT data. There

is a many-to-many match between the dDEGs and the possible three-node SDE systems.
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217 of the dDEGs were matched to at least one network model. Of the 217 matched

genes, few are well-studied; there is sparse information about their functional role. We

identified just 9 genes whose paralogs were likely to exist in current computational models

of well-studied signaling pathways. These included genes in the MAPK, JAK/STAT, and

PI3K/AKT/mTOR pathways64–67.

3.4.2. Ensemble models highlight possible dynamical systems from which to

build more detailed models

Each independent model in the ensemble suggests a possible SDE system whose simula-

tions match the qualitative features of the experimentally measured expression. Specifi-

cally, each SDE system represents how the gene of interest (node y) might interact with

the perturbed gene (node G) and the rest of the genome (node x). In this experiment, G

represents PI3K as it was the knocked-out, knocked-in, or inhibited gene. Summaries of

the models that match each gene and create the quantitative predictions reveal possible

regulatory interactions that result in the observed dynamics (Fig. 3.2A). We highlight

results of trained models for three genes that exhibit different discrete responses and pre-

dictive accuracy: cytoplasmic linker associated protein 1 (CLASP1), regulator of cell cycle

(RGCC), and retinoic acid receptor alpha (RARA). CLASP1 and RARA were previously

shown to interact with components of the PI3K/AKT pathway131,132.

Models for CLASP1 and RGCC primarily contain inhibition by both x and G, whereas

x and G appear as activators of RARA. Furthermore, in almost all models matched to

RARA, both x and G must be present to activate RARA. The RGCC models often

contain activation of G by RGCC. Conversely, models of CLASP1 and RARA often exhibit

feedback on G but are not consistently activating or inhibiting. Overall, these models
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suggest modes of regulation between PI3K and CLASP1, RGCC, and RARA, and predict

gene responses to future conditions and treatments. These models also provide a basis

from which more detailed models can be developed.

3.4.3. DiffExPy ranking sorts models by predictive accuracy

Because every ensemble model is not equally predictive of its respective gene, we searched

for a metric to rank model predictions. We find that the mean absolute LFC between

the PI3K KI and WT conditions correlates with improved model accuracy (Spearman’s

ρ=0.636, p=5.4e-26, Fig. 3.S2). Ordering gene predictions by the mean absolute LFC

places genes with lower MSE at the top of the list. Treating genes with positive ∆MSE

(i.e., lower error than random) as positive classifications, we can assess the area under

the receiver operator characteristic (AUROC) and area under precision recall (AUPR)

curves. The AUROC for this ranking is 0.76 and the AUPR is 0.78, both of which are

significantly greater than expected from a random ordering (Figs. 3.2B and 3.S3).

Since future experiments will not always include validation data, we sought a proxy

for model confidence. We find that the mean absolute LFC between the PI3K inh and

WT correlates with the mean absolute LFC between the PI3K KI and WT (Spearman’s

ρ=0.684, p=2.7e-31, Fig. 3.S4). The mean absolute LFC between the PI3K inh and

WT also correlates with improved model accuracy (Spearman’s ρ=0.418, p=1.4e-10, Fig.

3.S5). This ranking yields an AUROC of 0.66 and an AUPR of 0.73, which are slightly

lower, but still significantly better than random (Fig. 3.2B, Fig. 3.S3).

We believe this sorting is intuitive. A gene with a greater effect size in the tran-

scriptional response provides more information during training, which results in better

matched models. On average, a random model predicts no LFC between WT and another
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condition for a given gene, so a trained model prediction should be more accurate (Fig.

3.S6).

3.4.4. Top-ranked genes offer accurate predictions

Overall the predictions for the dDEGs have a median MSE that is 0.027 (p=0.018) lower

than random (∆MSE). However, after ranking genes by mean PI3K inh-WT LFC, we

applied an elbow rule to select the top 40 genes. Our results indicate that the top-ranked

genes have significantly more accurate predictions than random models. The top genes

have a median ∆MSE of 0.523 (p=1.45e-6) and a %MSE of 33.3% (p=1.74e-5, Fig. 3.2C).

The elbow rule gives an empirical threshold to select the top predictive genes (Fig. 3.S7).

3.4.5. Gene classifications from discrete responses associate with specific GO

terms

To demonstrate the high-level biological insights gained from the discrete responses, we

present results of classifying genes from their discrete responses comparing the PTEN

KO to WT time-series expression data. We identify 8,508 DEGs, of which 3,961 are

classified as dDEGs, 140 as DRGs, and 283 as all three (Fig. 3.3B). We performed GO

term enrichment analysis on each of these non-mutually exclusive gene classifications.

Enriched GO terms were grouped by the exclusive set to which they belonged. Thus,

genes can have multiple labels, but GO terms can only be associated with one group.

For example, a GO term associated with both the sets of DEGs and dDEGs—which have

many overlapping genes—would be assigned to the DEGs∩dDEGs group, whereas a GO

term only associated with the set of dDEGs would be assigned to the dDEG group (Figs.

3.3B and C).
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All terms were called from the same directed acyclic graph (DAG). Term depth quan-

tifies the level in the GO hierarchy, and it is used as proxy for term specificity. Even

though no genes are categorized exclusively as dDEGs or DRGs, there are very specific

terms associated only with these groups (Fig. 3.3C). Results of the gene classifications for

the PI3K KI and PI3K inh compared to WT are provided in the Supplementary Informa-

tion (Figs. 3.S8 and 3.S9). Specific gene clusters with similar discrete responses may also

be used for GO enrichment analysis, but we next focus on using them for TF enrichment.

3.4.6. TF enrichment suggests regulators of gene expression

Similar to GO term enrichment analysis, we calculate TF enrichment for gene clusters.

A group of genes enriched for association with a particular TF may indicate that the TF

is responsible for the observed change in expression. Existing methods, such as weighted

gene co-expression network analysis (WGCNA) and dynamic regulatory events miner

(DREM), perform clustering of gene profiles for subsequent GO and TF enrichment anal-

ysis40,127,133. In contrast, DiffExPy uses the discrete LFC values (0,1,-1) to generate

default clusters. This discretization enables grouping genes in various ways that suggest

different types of coregulation by a shared TF.

For example, the set of all DRGs is enriched for association with 52 TFs (adjusted

p < 0.05). This set includes supressor of zeste 12 (SUZ12) and forkhead box A1 (FOXA1),

which were not identified in the original study25. SUZ12 is a zinc finger protein and a

component of the polycomb repressive complex 2 (PRC2). PRC2 has histone methylation

activity, yet its regulatory role in cell fate is uncertain134,135. FOXA1 is an important TF

in breast and prostate cancers and is known to be a target of both MAPK and AKT136,137.
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Using the temporal information inherent to a time-series data set, we can identify

when, and how, the regulation by these factors occurs. For example, we identify the set of

41 genes that have lower LFC at 300 min than at 0 min, which are enriched for association

with SUZ12 (Fig. 3.4A). 13 of the 41 genes are known to be associated with SUZ12, and

the enrichment suggests that changes in expression for this group are regulated by SUZ12.

Interestingly, there is no identifiable change in SUZ12 expression (Fig. 3.4A), indicating

that downstream gene regulation by SUZ12 might depend on post-trancriptional changes,

such as sumoylation138.

We also find FOXA1 to be associated with genes that show an increase in LFC between

90-180 min. A natural hypothesis is that this group of 79 genes all show the same change in

expression at these later time points because they share a common regulator, FOXA1 (Fig.

3.4B). In contrast to SUZ12, FOXA1 exhibits a distinct differential response beginning

90 min after the EGF stimulus. Several of the genes that have the described behavior

and are associated with FOXA1 show a similar qualitative differential response to EGF as

FOXA1. These results suggest that FOXA1 might regulate the expression of these genes,

as well as others in the set, in response to EGF stimulation. Additionally, each of these

genes, including FOXA1, is classified as a DRG, further supporting the hypothesis that

PTEN is required for proper expression of these genes in response to EGF stimulation.

SUZ12 and FOXA1 are not the only TFs associated with discrete response clusters.

Instead, these examples demonstrate two possible ways the discrete analysis might iden-

tify enriched regulators for groups with different response behaviors. The timing of the

expression behavior creates strong, testable hypotheses for the inferred regulators. Ad-

ditional enrichment results, and a complete discussion of the enrichment methods, is are

provided in the Supplementary Information.
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Figure 3.4. Specific timing of changes in gene expression identifies possible regulators. (A, left)
Sankey plot of discrete FC between PTEN KO and WT compared to FC before the stimulus
is applied shows when DRGs respond to the stimulus. Nodes (dark grey) are scaled by the
number of genes in that state. Edges (light grey) show the fraction of genes moving from one
state to another between time points. The node and edges highlighted in orange show the set of
genes associated with SUZ12. (A, right). LFC values relative to LFC before stimulus for SUZ12
and several genes associated with SUZ12. (B, left) Sankey plot of the cumulative differences
in PTEN KO slope and WT slopes. Segments highlighted in orange show genes whose KO
expression increases more than their WT expression between either 90-180 min or 180-300 min.
These genes are enriched for association with FOXA1. (B, right) LFC values relative to LFC at
the previous time point for FOXA1 and several associated genes.

3.5. Discussion

The characterization of less-studied genes is fundamental to understanding cellular re-

sponses in diverse environmental contexts139. In this study, we presented DiffExPy, an
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analysis framework that calculates discrete differential expression responses and trains

dynamical systems models for many quantitatively uncharacterized genes.

We demonstrated how, for each matched gene, DiffExPy prototypes quantitative mod-

els that offer accurate predictions of gene expression in untrained conditions. We also val-

idated the DiffExPy model predictions of each gene’s expression in the untrained PI3K KI

condition (Fig. 3.2). Our results suggest that PI3K inhibits expression of both CLASP1

and RGCC, often in conjunction with additional factors. These de novo results are sup-

ported by previous experiments. CLASP1 was shown to interact with proteins affected

by PI3K activity131. RGCC was also demonstrated to have several regulatory roles in

the PI3K pathway140. Discrepancies with other data can refine the models and our un-

derstanding of each gene’s regulation. For example, the summary of RARA suggests that

for the observed response, PI3K is a positive regulator of RARA. This result is surprising

because PI3K activates AKT, which was shown to subsequently inhibit RARA132. One

explanation is that an unknown activating path between PI3K and RARA exists.

We also demonstrated how DiffExPy associates groups of similar, discrete gene ex-

pression responses with TFs, such as SUZ12 and FOXA1 (Fig. 3.4). Though SUZ12

expression does not differ between the PI3K inh and WT conditions, several known and

possibly new targets of SUZ12 exhibit a differential response to EGF stimulus. These

observations might suggest that regulation by SUZ12 results from post-translational mod-

ification138. Conversely, FOXA1 and many of its targets exhibit a differential response,

which is consistent with previously studied interactions between FOXA1 and the AKT

pathway136,137. Finally, we show how each gene classification associates with GO terms

that enable a unique understanding of regulatory functions.
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DiffExPy was formulated to create predictive models for many genes with varied dy-

namic expression responses. We limited our model library to three-node gene regulatory

networks without self-edges (Fig. 3.S10). As such, a suitable model match might not

exist in the library for each gene. In our analysis, a small fraction of genes (6 of the 223

dDEGs, or less than 3%) did not match to a suitable model. The absence of matches

might be attributed to the limited scope of SDE models in the library, limiting possible

gene expression dynamics. The library could be expanded to include four-node networks,

which might be capable of simulating more qualitatively-diverse expression dynamics.

Expanding the library might be computationally expensive and require optimizing the

library generation step, simulation, and matching. Additionally, the current SDE mod-

els could be simulated with different kinetic assumptions, though the accuracy of these

assumptions would need to be validated. Finally, because our training and testing pertur-

bation affect the same gene, the ranking of the results might not hold for all predictions.

We also only focused on comparisons between pairs of experimental conditions (i.e., only

one node is perturbed). Integration of multiple experimental conditions simultaneously

might yield more predictive models but training the models more difficult.

A complete understanding of cellular regulation cannot be gained only from tran-

scriptomics. Epigenomic data from ChIP-seq, ATAC-seq, etc, can provide additional

information to increase the mechanistic specificity of the models by identifying direct

regulators and chromatin accessibility. Currently, TF enrichment is calculated using

associations derived from ENCODE127. Direct measurements of TF association or chro-

matin accessibility, during the same time course, could be directly integrated into the

existing framework. Unfortunately, this data was not available for our analysis and might

currently be cost prohibitive.
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Overall, few genes have detailed biochemical models that quantitatively predict their

behavior in diverse conditions. Characterizing how less-studied genes are regulated in

multiple contexts will improve our understanding and treatment of disease. The models

generated by DiffExPy provide systematic, reliable starting points for quantitative models

of regulation based on time-series, differential-expression data.
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Supplementary Materials and Methods

Experimental data set

All code used in the analysis of gene expression, and all in silico data is available on

GitHub (https://github.com/bagherilab/diffexpy). The in vitro data used in this study

was previously published and is available in the Gene Of Expression (GEO) repository,

with accession number GSE6982225.

Gene expression data representation

The measurement of expression for gene i with R replicates is defined by the R-length

vector:

g⃗i = [g1i , g
2
i . . . , g

R
i ]

⊤ (3.5)

When gene expression is measured under different conditions for differential expression

analysis, the measurement of expression for gene i, given condition c, with R replicates is

expanded to the following R-length vector:

g⃗i|c = [g1i , g
2
i . . . , g

R
i ]

⊤ (3.6)

A gene expression experiment that measures N genes is represented as an R×N matrix:

Ec = [⃗g1|c, . . . , g⃗N |c]

=


g11 . . . g1N
... . . . ...

gR1 . . . gRN


(3.7)
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Time-series gene expression data representation

Time-series gene expression data is represented by vertically concatenating gene expres-

sion matrices for T time points into a (T ∗R)×N matrix as follows:

Tc = [E1
c , . . . ,E

T
c ]

⊤

=



g1,11 . . . g1,1N

... . . . ...

gR,1
1 . . . gR,1

N

... . . . ...

gR,T
1 . . . gR,T

N


(3.8)

Here, each gene is sampled consistently. While the sampled time points do not need to

be evenly spaced, each gene must be measured at the same time points.

Differential expression analysis

Computational tools and data normalization. The core differential expression anal-

ysis was conducted using the rpy2 Python package to interface with the R packages edgeR

and limma38,44. Genes with low counts were removed using DGElist from edgeR. Counts

were then prepared for differential expression analysis using voom 123. limma expects log2

transformed data, and data that does not conform to this expectation may yield unex-

pected results. DiffExPy is tailored to analyze time-series data, but the interface with R

also enables users to conduct differential expression analysis with static data.
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Definition of DiffExPy contrasts. DiffExPy makes contrasts along two dimensions,

between conditions and between time points (SI Fig. 3.S1). DiffExPy defines the following

classes of contrasts:

(1) Pairwise (PW) - calculate LFC at each time point between conditions:

l⃗i,PW = [log2
g⃗ 1

i|exp

g⃗ 1
i|ctrl

, . . . , log2
g⃗ T

i|exp

g⃗ T
i|ctrl

] (3.9)

(2) Timeseries (TS) - calculate LFC between each time point and the previous

time point for one condition, c:

l⃗i,TS = [log2
g⃗ 2

i|c

g⃗ 1
i|c
, . . . , log2

g⃗ T
i|c

g⃗ T−1
i|c

] (3.10)

(3) Autoregressive (AR) - calculate LFC between each time point and the time

point before the treatment is applied for one condition, c:

l⃗i,AR = [log2
g⃗ 2

i|c

g⃗ 1
i|c
, . . . , log2

g⃗ T
i|c

g⃗ 1
i|c
] (3.11)

Here we assume the treatment is applied at time t=1. The first contrast is

equivalent to that of the TS.

(4) Combinations - The TS and AR contrasts can also be combined with the PW

contrasts to assess if the LFC is significantly different between both the time

points and the conditions.

• PW-TS - calculate the LFC between conditions and the previous time point:

l⃗i,PW-TS = [(log2
g⃗ 2

i|exp

g⃗ 2
i|ctrl

− log2
g⃗ 1

i|exp

g⃗ 1
i|ctrl

), . . . , (log2
g⃗ T

i|exp

g⃗ T
i|ctrl

− log2
g⃗ T−1

i|exp

g⃗ T−1
i|ctrl

)] (3.12)
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• PW-AR - calculate the LFC between conditions and the time point before

the treatment is applied:

l⃗i,PW-AR = [(log2
g⃗ 2

i|exp

g⃗ 2
i|ctrl

− log2
g⃗ 1

i|exp

g⃗ 1
i|ctrl

), . . . , (log2
g⃗ T

i|exp

g⃗ T
i|ctrl

− log2
g⃗ 1

i|exp

g⃗ 1
i|ctrl

)] (3.13)

Because the comparison is to the previous time point, for all comparisons except PW, there

are T -1 contrasts. The combination contrasts, PW-TS and PW-AR, provide the most

information about when a differential response to a treatment occurs between conditions.

However, fewer significant differences are identified because the pooled variances decrease

statistical power.

Gene classification

DiffExPy classifies each gene as a differentially expressed gene (DEG), dynamically dif-

ferentially expressed gene (dDEG), or a differentially responding gene (DRG). Genes

are considered DEGs if they pass an F -test described in the limma documentation44. We

enforce that all genes classified as dDEGs and DRGs must also be DEGs. A gene is consid-

ered a dDEG if all of its contrasts do not have the same LFC sign, i.e. |{d ∀ d ∈ d⃗x}| > 1.

This filter removes genes that are differentially expressed due to the genetic change but

that are not affected by the stimulus. The classification of a DRG is more stringent. A

gene is classified as a DRG if the adjusted p-value of the F -test was significant for one of

d⃗PW-TS or d⃗PW-AR.

There are many ways to assign genes to a cluster depending on the number of time

points, treatments, and conditions over which gene expression is measured. Different
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methods of clustering test different hypotheses, and we leave flexibility for the user to

decide what method is appropriate for their specific application.

Discrete response cluster scores. DiffExPy empirically ranks genes within a discrete

cluster (Fig. 3.S11). The cluster score for gene i is computed by calculating the fraction

of the sum of the LFC values for each contrast that matches the discrete LFC sign values

as follows:

CSi =

∑
l∈l⃗x

f(l, p, d)∑
l∈l⃗x

|l|
, (3.14)

where l⃗x is the vector of LFC values for contrast class x, p is the p-value corresponding

to each l, and d is the corresponding discrete value of the assigned cluster. The function

f weights the calculated LFC by the apparent p value as follows:

f(l, p, d) =


|l(1− p)| − |l − l(1− p)| sgn(l) = d

|l − l(1− p)| − |l(l − p)| sgn(l) ̸= d

(3.15)

Essentially, if a contrast is assigned a nonzero discrete value and the LFC value of the

contrast is highly significant (low p-value), most of the LFC value is retained.

CS values are bounded between -1 and 1. Empirically, the cluster score sorts genes by

how well they match the discrete path defined by the discrete cluster. It performs poorly

for some edge cases, such as when all values in d⃗ are 0, but these were previously filtered

out by the gene classification step.

Model library creation

We generated a library of minimal dynamical systems that was used to simulate time-

series expression data that mimics experimental conditions.
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Model connectivity. Each model is a directed network with three nodes. Node y rep-

resents the output that is matched to measured gene expression. Node G represents the

gene that is perturbed, as with a knockout or knockin. Node x is an abstract node that

serves two purposes. It summarizes the interactions between G and y with the rest of

the genome, allowing for more complex regulatory motifs. Node x is also the target of

the externally applied treatment (Fig. 3.S10A). Edges between nodes either activate or

inhibit the target node (Fig. 3.S10B).

To limit the regulatory combinations, we prohibited self edges, which yielded 704

unique, weakly-connected networks. We added an input node u to each model to create

a controlled forcing function, which represents the external treatment, on node x. The

input u was linearly combined with regulation of x by the other nodes.

Model parameterization. We used GeneNetWeaver (GNW) to generate minimal dif-

ferential equation models for each of the networks and carry out stochastic simulations.

GNW models include a protein and mRNA component. Full details are available in the

original paper61. Systems Biology Markup Language (SBML) style models were generated

for each network structure with parameters assigned random values by GNW.

Model parameters were not optimized to improve the fit. It is unclear what objective

function—such as minimizing error to LFC or matching expression distributions at each

time—would be optimal to fit the parameters. While the parameter space is technically

infinite, we relied on GNW to select biologically relevant parameters.

Multiple regulator logic. If a node has two coincident edges, the regulatory logic can

be either AND or OR between them (Fig. 3.S10D). However, GNW randomly assigns

logic to the regulation of the target mRNA. For each of the 704 network structures, we

generated SBML models for each combination of logic, resulting in a library of 2,172
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network structure and logic combinations. This library represents a highly constrained

structural search space. If the search space were increased to allow self edges, and all

combinations of regulatory logic with two or three coincident edges were explored, there

would be 102,356 unique models. If the search space included four node networks, an no

self edges, there would be 4,870,752 unique networks. We did not simulate these large

libraries.

Gene perturbation. For each base model, which we consider the WT model, we created

corresponding KO and KI models (Fig. 3.S10C). The modified models have the same

parameters as the WT model with minor changes to the mRNA synthesis parameters

for node G. In the KO model, the maximum transcription of G was set very low (1e-

7), because a value of zero causes integration errors. In the KI model, all upstream

regulation of G was removed, and the transcription rate was set to a constant value equal

to its maximum rate in the WT model, representing constitutive expression.

Time-series simulations

Stochastic time-series simulations were carried out for each SBML file using GNW. Each

stochastic differential equation system was sampled every minute for 1000 minutes. The

stimulus was applied to node u at the start and removed halfway through the time series.

DiffExPy then sampled the time series at intervals that matched the experimental data.

Three independent, stochastic runs of each model were created to represent biological

replicates. Microarray-like measurement noise was added to the data, and values were

normalized between 0 and 161.
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Gene Ontology and transcription factor enrichment

An ontology is contructed as a directed acyclic graph (DAG), where the root node has

the smallest term depth21. In general, more specific GO terms are further down the tree

and therefore have higher term depths. Enriched GO terms were called for each class of

genes—DEG, dDEG, and DRG—using the same GO DAG, which preserves the depth of

the term relationships. We then calculated the term overlap between each combination of

exclusive groups. For example the GO terms in the group DEG ∩ dDEG are associated

with DEGs and dDEGs, but not associated with the DRGs. We calculated p-values to

compare the distributions of term depths between groupings using a discrete KS test141.

To calculate enrichment for associated TFs, gene lists were encoded as TFs using

a dictionary of genes associated with each TF. We used a TF association dictionary

derived from ENCODE data127. TF enrichment was calculated using Fisher’s Exact

test49, implemented in scipy, comparing the TFs associated with a gene list to the TFs

associated with a background gene list. We used different lists of genes as the background

depending on the hypothesis being tested. To identify enriched TFs in the set of DRGs,

we used the set of all genes as the background. To identify the specific timing of TF

enrichment of SUZ12 and FOXA1 we used the set of DRGs as the background.

The number of distinct discrete responses increases exponentially with the number

of measured time points. For most current experiments, there are few time points and

this will not be an issue. However, if more time points were available, specific qualitative

behaviors could still be interogated. For example, one could ask ”which transcription

factors are associated with the set of genes that is initially not differentially expressed

before treatment but becomes differentially expressed after X minutes?”. The discrete
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clusters could easily be used to group genes with this behavior together. Genes A and B

may have discrete responses [0, 0, 0, 1, 1, 1] and [0, 0, 0, 0, 1, 1], but would be grouped

together for enrichment analysis.

Computational development

DiffExPy was developed in Python 3.5.2 using the following major packages: NumPy and

SciPy 111, pandas142, and rpy2. Gene Ontology (GO) enrichment was calculated using the

python library goatools143. The discrete KS test was conducted using the dgof package141.

Figures were generated using seaborn and matplotlib115. The code for DiffExPy can be

found on GitHub (https://github.com/bagherilab/diffexpy).
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Figure 3.S1. Comparison of strategies to identify and cluster DEGs, dDEGs, and DRGs. (A)
Overview of statistical contrasts. Normalized gene expression values, measured for each gene at
several time points, were used to calculate the log fold change (LFC) between the experimental
(dashed) and control (solid) condition. The lines show the mean expression or LFC, and the
shaded area is the error (e.g. 95% confidence interval). Pairwise comparisons independently
assess if LFC values are nonzero. Timeseries (TS) comparisons assess if the LFC changed
significantly from the previous time point (lt ̸= lt−1). Autoregressive (AR) comparisons check
if the LFC is different than the initial LFC due to the experimental condition (lt ̸= l0). The
discrete responses corresponding to the type of contrast are displayed on the plots. (B) The
LFC for example genes measured over time. (C) Sets of DEGs identified by comparing data
only at individual time points. DRGs are only identifiable as those whose differential expression
at t0 is statistically different from tn, which misses many genes. (D) Set of DEGs clustered
into groups with similar mean LFC trajectories. DEGs are calculated using an F -test on all
pairwise comparisons. Genes can subsequently be clustered by mean LFC using many available
clustering methods, such as k-means. (E) Set of DRGs calculated by DiffExPy which includes
genes with transient regulation (blue and magenta) that is not captured with only endpoint
measurements. Genes that are consistently differentially expressed but show no differential
response (e.g. purple) are not considered DRGs. DRGs can be clustered in many ways to find
genes that have statistically different expression at later time points (i), have the same response
trajectory (ii), or respond similarly at a specific time (iii and iv).
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Figure 3.S2. Correlation between the mean LFC between the
PI3K KI and WT conditions for each gene and the ∆MSE of
its trained ensemble model from the null model. Spearman’s
ρ=0.636, p=5.4e-26
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methods for sorting gene predictions. Sorting by mean LFC be-
tween the training conditions places more accurate predictions
at the top of the list. The threshold for selecting more accurate
predictions (purple, dashed line) was calculated using the elbow
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Figure 3.S5. Correlation between the mean LFC between the
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its trained ensemble model from the null model. Spearman’s
ρ=0.418, p=1.4e-10
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Figure 3.S6. Distributions of predicted LFC values between
KI and WT conditions at each time by the simulation library.
On average, the library predicts near zero LFC values at each
time. However, there is large variation within the library, so
the set of models DiffExPy matches to each gene outperform a
randomly selected model.
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Figure 3.S7. The 217 trained gene models were ranked by the
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and WT conditions. The purple, dashed line shows the cutoff
for the top set of genes using the elbow rule.
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(H1047R) to WT. (A) Heatmap of row normalized LFC for all DEGs.
Genes that were classified as dDEG or DRG are also labeled. (B) Over-
lap of genes that were classified as DEG, dDEG, DRG, or some combi-
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Comparison of distributions of GO term depths uniquely associated with
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test. * p< 0.05, ** p< 0.01, *** p< 0.001.
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or DRG are also labeled. (B) Overlap of genes that were classified as
DEG, dDEG, DRG, or some combination. By definition, all dDEGs and
DRGs must also be DEGs. (C) Comparison of distributions of GO term
depths uniquely associated with intersections of gene sets.
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CHAPTER 4

Gene expression dynamics reveal Sprouty mediated cross-talk of

Wnt pathway genes

This work is in preparation to be submitted with Behnam Nabet, Jon Licht, and Neda

Bagheri to PLOS Computational biology. A modified version of it may be published after

peer review.

Abstract

Sprouty genes (Spry) are feedback regulators of receptor tyrosine kinase signaling, and are

genes with known tumor suppressing activity. The impact of Spry induction is ligand spe-

cific, but it is well-understood to be a negative feedback regulator of the mitogen-activated

protein kinase pathway in response to fibroblast growth factor (FGF). However, the pre-

cise impact Spry has on transcription resulting in tumor suppression remains unknown.

We use DiffExPy to analyze time-series gene expression data in Spry124fl/fl and Spry124-/-

murine embryonic fibroblasts (MEFs). We show that the expression dynamics of Spry in

response to FGF encode transcriptional regulation that spans RNA production, metab-

olism, and apoptotic processes. We also present results that suggest Spry regulates the

angio- and oncogenic gene connective tissue growth factor (Ctgf ) via the Wnt signaling

pathway. Our results clarify the transcriptional role of Spry, and provide quantitative,

testable models of gene expression that can be applied and validated in different experi-

mental contexts.
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Author summary

A major goal of systems and computational biology is to disentangle the complex signaling

pathways that govern cellular behavior. In each cell, a few core pathways are responsible

for integrating multiple external stimuli and determining the cell’s response. Sprouty pro-

teins provide feedback regulation of the central mitogen activated protein kinase (MAPK)

pathway. Prior work demonstrated that Sprouty loss is not synonymous with mutations

to MAPK components that are associated with cancer. To understand how Sprouty reg-

ulates expression we measured gene expression in mouse embryonic fibroblasts at several

time points after treatment with fibroblast growth factor. We use a top-down analysis of

the gene expression dynamics to propose Sprouty mediated crosstalk between the MAPK

and Wnt pathways that regulates the expression of angiogenic factors. Our results provide

a new regulatory role for Sprouty in determining cellular fate in response to stimuli. More

generally our work demonstrates how time series data can be used to decode regulatory

processes.

Introduction

Sprouty (Spry) was originally discovered in D. melanogaster as a common antagonist

of the FGF signaling pathway144,145. Four mammalian homologs were since identified

and shown to play a critical role in development146,147. Spry genes are feedback regu-

lators of receptor tyrosine kinase (RTK) signaling that have been shown to modulate

the activity of Ras proteins and the rest of the downstream mitogen-activated protein

kinase (MAPK) pathway147. The exact mechanism of Spry regulation remains unknown,

but data suggest that Spry proteins sequester targets to plasma membranes by binding

phosphatidylinositol-4,5-bisphosphate147,148.
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The role of Spry genes during development has been extensively studied, and they

were shown to regulate angiogenesis in mammalian endothelial cells145,147,149,150. Down-

regulation of Spry is observed in many cancers, and and Spry proteins exhibit tumor

suppressing activity via negative feedback control of Ras targets151–153. Previous work

also revealed that Spry loss uniquely alters the gene expression and enhancer landscape

of murine embryonic fibroblasts (MEFs) compared to HRas mutation, suggesting a more

complex role for Spry in transcriptional regulation154. Understanding the transcriptional

role of Spry is complicated by interactions with other pathways such as Wnt and NF-

κB153,155,156, however with time-resolved gene expression data, it is easier to decode the

effect of Spry on the transcriptional landscape and ultimately tumorigenesis.

We collected time-series gene expression data from genetically matched Spry124fl/fl

(WT) and Spry124-/- (KO) MEFs after treatment with fibroblast growth factor (FGF).

We used DiffExPy this time-series gene expression data121. Our analysis yields insights

into transcriptional regulation at several genomic scales. By applying DiffExPy to time-

series gene expression data, we identify both global and gene-specific differential responses

to FGF caused by Spry loss. We then train quantitative models that match measure gene

expression dynamics and generate testable hypotheses of transcription regulation. Our

work provides a framework for future studies to develop integrated experimental and

computational pipelines that create quantitative models of gene regulation that can be

readily adapted to other systems.

Results

We measured gene expression in WT and KO MEFs at 0, 15, 60, 120, and 240 minutes

after FGF treatment (Fig. 4.1A). To gain global understanding of Spry regulation in

response to FGF, we analyze the time-series data with DiffExPy. Our analysis provides
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three key insights into Spry regulation. First, we use the time-series data to decouple the

genetic effect of Spry knockout on gene expression from the role Spry plays in the tran-

scriptional response to FGF. Second, we associate the discrete response clusters generated

by DiffExPy with enriched Gene Ontology (GO) terms and transcription factors (TFs),

revealing differential responses that might RNA production, metabolic, and apoptotic

processes. Lastly, we demonstrate how the gene expression dynamics suggest that Spry

regulates the expression of the oncogene connective tissue growth factor (Ctgf ) via the

Wnt pathway, in addition to the canonical MAPK pathway.

Time-series measurements reveal varied differential expression responses to

FGF treatment

To demonstrate the importance of time-series measurements of gene expression for un-

derstanding cellular regulation, we highlight results from five categories of genes (Fig.

4.1B). The reference genes Fos and early growth response 1 (Egr1) behave as expected in

response to FGF; their expression peaks 60min after FGF treatment, and is unaffected

by Spry KO. Previously identified responders to epidermal growth factor—such as the

dual-specificity phosphatases (Dusps) that act as feedback attenuators, and zinc finger

protein 36 (Zpf36) and kruppel-like factor 2 (Klf2) that act as early expression regula-

tors157—also respond to FGF treatment, but are differently impacted by Spry KO. As

expected, the Spry target genes semaphorin 7A (Sema7a) and serpin family B member 2

(Serpinb2) exhibit strong differential responses to FGF treatment between the WT and

KO conditions154.

Lastly, to emphasize the importance of properly analyzing time-series measurements

of gene expression, we show responses for pleiotrophin (Ptn) and Wnt family member 7B
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Figure 4.1. Overview of experiments and reference genes. (A) Experimental procedure of RNA
quantification in MEFs. Spry124 WT and genetically matched KO cells were plated in growth
media on day 1. MEFs were then serum starved for 24hrs. On day 3 MEFs were treated with
FGF for 0, 15, 60, 120, and 240 minutes before total RNA extraction was performed. Four
biologically independent samples were measured for each condition at 0 minutes, and three
for each other time point.(B) Example genes from five categories highlight the importance of
time-series gene expression data. Gene expression values were normalized to their maximum
expression value for display. The shaded region shows the 95% confidence interval of the mean
expression value for easier comparison of significant differences.

(Wnt7b) (Fig. 4.1B). A typical differential expression analysis would likely rank both of

these genes as significantly differentially expressed. However, the time-series profiles of

these genes illustrate that their differential expression is primarily driven by the Spry KO,

and they are unaffected by FGF treatment.
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Gene expression captures variation in condition and time

We conducted principal component analysis (PCA) on the normalized gene expression

data to identify natural variation in the data. Principal component 1 (PC1) separates

samples by genetic condition and PC2 separates samples mostly by the time the sample

was take after FGF treatment (Fig. 4.S1A). Combined, PC1 and PC2 capture almost

50% of the variance (Fig. 4.S2). These PCA results indicate that there is an observable

difference in gene expression along the two dimensions that were tested, Spry condition

and time after FGF treatment. They also confirm that there is no systematic bias in the

data samples that needs to be corrected.

Sprouty knockout enriches GO terms and TFs

Differential gene expression analysis of the data at baseline, prior to FGF treatment

indicates that the Spry knockout significantly alters the baseline expression of many genes

(Fig. 4.S1B). To deconvolute the changes in gene expression caused by the Spry KO

from those caused by FGF treatment we used DiffExPy to classify genes as differentially

expressed genes (DEGs), dynamic DEGs (dDEGs), and differentially responding genes

(DRGs) based on their discrete responses121. Overall, we classify 6,835 genes as DEGs. Of

these, we identify 3,631 dDEGs, 612 DRGs, and 445 genes that are classified as both (Fig.

4.2A). Each gene class is enriched for association with many GO terms (Fig. 4.2B). The

terms associated with DEGs, dDEGs, and DRGs generally have lower fold enrichment, but

more significant p-values, in corresponding order. This result is likely due to the number

of genes in each category. The GO terms with the highest fold enrichment associated with

DEGs, dDEGs, and DRGs are generally related to RNA processing, cell growth, and cell

differentiation, respectively.
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We also find that TFs are significantly over represented in the set of genes classified

as DEGs, dDEGs, DRGs and the intersection of dDEGs and DRGs (Fig. 4.2C). These

results suggest the transcriptional response to FGF treatment is significantly altered when

Spry is knocked out. The set of DRGs has nearly double the fraction of TFs as the set of

all genes. This result highlights how dynamic changes in transcription factor expression

is critical to the cellular response to a stimulus. We next analyze these genes in depth to

better understand Spry’s role in transcription.
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We also created a correlation network of the DRGs that are TFs to further understand

their regulatory roles in response to FGF Fig 4.S5. The network contains submodules of

highly correlated TFs that recapitulate known connections. The Mapk genes Egr2, Junb,

and Klf2, and members of the minichromosome complex Mcm4, Mcm5, and Mcm6 are

connected in separate modules. Other oncogenes, such as homeobox A2 (Hoxa2), A5

(Hoxa5) and twist family member 2 (Twist2) are represented in the network and were

previously shown to respond to Spry KO154.

Gene expression dynamics reveal regulatory programs

Applying DiffExPy to time-series data we can learn about the precise timing of regulatory

events governing transcription. Using the discrete pairwise clusters for the set of all

dDEGs and DRGs we performed a search of the enriched GO terms and TFs associated

with each growing cluster (Fig. 4.S3). At each time point, the discrete LFC can be

positive, negative, or zero. As more time points, T , are added, the number of theoretical

clusters is therefore 3T .

Overall, the function of the enriched GO terms can be categorized by the initial

effect of the Spry knockout. Genes that are initially overexpressed are associated with

protein modification and cell survival terms, which is in line with Spry’s known function.

Put differently, Spry is known to inhibit the MAPK pathway, which in turn governs

key cell growth and survival genes; thus, when Spry is not expressed, genes related to

cell growth and survival are expected to become overexpressed. Genes that are initially

underexpressed are primarily associated with terms related to RNA processing, while

genes that are not significantly differentially expressed are associated with terms related

to mitochondria and metabolism (Fig. 4.S3).
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The GO enrichment trends also align with the TF enrichment trends. For exam-

ple, the TFs associated with initially overexpressed genes include ELK proteins, and

CCAAT/enhancer-binding proteins (CEBPs), which are known regulators within the

MAPK pathway158. Additionally, TFs associated with genes that are not differentially

expressed before FGF treatment include forkhead box proteins O1 and O4 (Foxo1 and

Foxo4). These TFs are known to be in the glugacon signaling and insulin resistance

pathways, suggesting a possible connection to metabolism158.

Differentially responding genes impact angiogenesis

The tumor suppressing activity of Spry is typically associated with its function as a

negative regulator of FGF and other RTK signaling147. Our results confirm that Spry loss

is associated with overactive Ras mutations, and the observed trends in GO enrichment

(Fig. 4.S3) also support of those phenotypic changes159. However, analyzing the set

of DRGs provides unique insight into Spry regulation, which suggests that Spry may

mediate cross-talk between several central pathways. By definition, the set of DRGs are

the genes with the most statistically significant changes in the time-series data. These

genes are associated with many GO terms, including 11 associated with regulation of

sprouting angiogenesis and 32 associated blood vessel morphogenesis (Fig. 4.2). The

DRGs associated with these enriched terms include Angpt1, Vegfa, Vegfb, Junb, Pik3r2,

and Elk3. This result is consistent with previous literature. Sprouty proteins are known to

impact branching events, including angiogenisis, likely through their regulation of vascular

endothelial growth factor (VEGF)147,160.
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Spry cross-talk with the Wnt pathway regulates angiogenic factors

Included in the DRGs associated with angiogenesis are Hes1, Ctgf, and Tead2 and several

other genes in the Wnt pathway158. Previous research demonstrated important cross-talk
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between Spry and the Wnt pathway during development155,161,162. Here we use the ad-

ditional temporal information encoded in the gene expression dynamics of Wnt pathway

genes to identify specific changes in proto-oncogenes typically associated with angiogen-

esis. We propose Spry mediates cross-talk between the MAPK and Wnt pathways in an

oncogenic context.

Ctgf is a secreted protein involved in angiogenesis, and a known oncogene163,164. It

is also known to be regulated by the MAPK pathway158,163. We observed that Ctgf

expression was not initially differentially expressed between the WT and KO conditions,

but showed a significant differential response to the FGF treatment (Fig. 4.3A), indicating

that Ctgf ’s expression is regulated in part by Spry. However, we find that Spry2 wild-

type expression is positively correlated with Ctgf (ρ=0.59, p=0.017, Fig. 4.3B). This

correlation is opposite of what we would expect if Ctgf is regulated by the MAPK pathway

(Fig. 4.3C)165.

We sought to explain this discrepancy by analyzing the other angiogenic DRGs. We

find correlations between several angiogenic DRGs in the Wnt pathway and Ctgf (Figs.

4.4A and 4.S4). Based on these results, we suggest a model with an inhibitory cascade

between Spry and Ctgf (Fig. 4.4C). Our model proposes three novel interactions within

the known Wnt pathway (Fig. 4.4C). First, Spry acts as an activator of Wnt by preventing

the inhibition of Wnt by FGF, which was previously shown to occur in a developmental

process161. Second, we observe a strong negative correlation between Hes1 and Tle1 (Fig.

4.S4), which are known to interact30. Finally, we propose negative regulation of Ctgf by

Tle1, which are also negatively correlated (Fig. 4.S4). This model is consistent with our

observations and the current understanding of Wnt signaling, but must still be validated

experimentally30,158,166.
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DiffExpy suggests models in which Spry regulates Tead2 expression

Using DiffExPy we trained ensemble models to the discrete expression profiles of all the

dDEGS. We highlight the models matched to Tead2 because it is a known regulator of Ctgf

and is one of the DRGs associated with angiogenesis167. Our previous work also revealed

that Tead2 is overrepresented in Spry WT superenhancer regions154. The models matched

to Tead2 reveal possible modes of regulation of these genes by Spry (Fig. 4.4B). 12 of the

25 networks include direct activation between Spry and Tead2. All 11 of the networks

with an indirect connection from Spry to Tead2 through node x have activating logic.

This large fraction of trained models with positive regulation from Spry to Tead2

suggests that the observed gene expression dynamics of Tead2 are most likely explained
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by activation via Spry. The activation of Tead2 could in turn contribute to the observed

activation of Ctgf. Previous research suggests cross-talk between the Wnt and Hippo

pathways168,169, which could also mediate the observed change in Ctgf expression (Fig.

4.4C).

Interestingly, Tead2 also has several interesting properties within the transcription

factor network (Fig. 4.S5). It is more connected than many of the TFs in the network

with a degree of 6 as compared to the median of 3. The path lengths between Tead2

and the Wnt genes Tle6, Hes1, and Tcf3 are just 2, while the average path length in

the network is 4.7. These properties suggest that Tead2 provides an important bridge

between regulatory modules that govern the response to FGF.

Discussion

While Ras is frequently mutated in cancer, it is a challenging target to directly inhibit7,170.

If Spry facilitates tumor suppression by regulating other pathways, it may provide an

easier route for therapeutic development.

Ras mutations are common in a variety of cancers, but the complexity of the MAPK

pathway and difficulty targeting Ras hampers the development of effective therapies170.

Sprouty proteins exert negative feedback regulation of Ras and other RTK signaling

molecules, but their precise role in the transcriptional landscape is unknown147. Pre-

vious work demonstrated that Sprouty loss produces transcriptional effects distinct from

Ras mutations, suggesting a more complex role for Sprouty154. Identifying Sprouty’s

dynamic regulatory role of transcription in tumorigenesis will reveal therapeutic targets.

We used time-series gene expression data from Spry124fl/fl and Spry124-/- MEF popu-

lations stimulated with FGF to identify Spry’s role in regulating transcription. We applied
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DiffExPy to analyze the gene expression dynamics and uncover regulatory insight at sev-

eral genomic scales. On the global scale, we identified key biological processes changed

by the Sprouty knockout. As an example, we demonstrate a specific analysis of angio-

genic factors that suggest regulation of Ctgf inconsistent with its known regulation. We

proposed regulation of Wnt pathway genes, including Ctgf , by Spry (Fig. 4.4). Previous

studies suggest interactions between FGF and Wnt in a developmental context, but we

highlight relevant cross-talk between the two pathways in an oncogenic context155,162,171.

We also used the discrete response clusters generated by DiffExPy to identify trends

in GO term and transcription factor enrichment over time (Fig. 4.S3). These results sug-

gest three distinct programs that differentially respond to FGF treatment after Spry is

knocked out. Initially overexpressed genes are primarily enriched for GO terms related to

cell survival and TFs in the central MAPK pathway, even as they exhibit varied responses

to FGF. This pattern is consistent with Spry’s role as a negative regulator of the MAPK

pathway. We also observed enriched terms related to RNA regulation and metabolism for

genes that were initially underexpressed and those that were not differentially expressed,

respectively. These differences may be necessary to support the phenotypic changes in-

duced by FGF treatment or may indicate additional misregulation in the absences of

Spry.

The results from our analysis using DiffExPy suggest regulation of many genes by Spry

in response to FGF. Many of the dDEGs were matched to ensemble models of minimal

SDE systems. We highlight the regulatory insights proposed by these models using Tead2

as an example. Our results provide testable hypotheses that must be experimentally

validated. However, unlike typical gene expression analyses, the models trained by Diff-

ExPy offer clear, quantitative predictions that can be corroborated. Much of the initial
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regulation in the MAPK and Wnt pathways may not be driven by changes in expression.

Therefore, integration and validation with proteomic and other genomics tools may clarify

any discrepancies. Additionally, quantifying the phenotypic effects of Spry knockout and

FGF treatment would help anchor the desired output of future mathematical models51.

In this study, we manually interrogated the genes related to angiogenesis. However,

there are many clusters of genes that are enriched for different GO terms and TFs. Dif-

fExPy could be extended to conduct gene set enrichment analysis22 on these clusters to

identify pathways that are also enriched. It could also be integrated with other services

such as KEGG158, Biogrid28,30, and StringDB31 to programmatically find plausible paths

of regulation from prior knowledge, and provide new hypothetical interactions.

Overall, we used time-series data to provide insight at several genomic scales. We

propose predictive models for many genes that could not be generated using traditional

differential expression analyses without many, diverse treatments. There are many more

pathways that could be explored in this dataset by automating prior knowledge pathway

searches. Our approach can be readily applied to gain insight in other systems for which

time-series data exists, or is gathered.

Materials and Methods

Cell lines and microarray profiling

Spry124fl/fl and Spry124-/- murine embryonic fibroblasts (MEFs) were cultured in DMEM

containing 10% FBS, 100 U/mL penicillin, and 100 µg/mL streptomycin at 37 ºC and 5%

CO2, as previously described154. For microarray profiling studies, biologically indepen-

dent cultures of MEFs were plated in 10 cm plates and allowed to adhere overnight. MEFs

were serum starved in starvation media (DMEM containing 0.2% bovine serum albumin,
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100 U/mL penicillin, and 100 µg/mL streptomycin) for 24 hours. Prior to treatments,

starvation media was removed, and fresh starvation media was added to all plates. After

equilibration, MEFs were treated with fibroblast growth factor (FGF, Thermo Fisher Sci-

entific) as indicated, lysed, homogenized using Qiashredder columns (Qiagen), and RNA

was extracted using the RNeasy Plus Mini Kit (Qiagen), according to manufacturer’s

instructions. Samples were collected 0, 15, 60, 120, and 240 minutes after FGF treat-

ment (Fig. 4.1A). Biologically independent samples were collected for for each treatment

and condition (n=4 for 0 minute samples and n=3 for all other time points). RNA was

hybridized to MouseRef-8 v2.0 Expression BeadChip (Illumina, BD-202-0202) by the Ge-

nomics Core at the Cleveland Clinic Foundation Lerner Research Institute. Gene level

expression values were calculated as the mean of all probe values corresponding to each

gene.

RNA quantification and normalization

Microarray intensity values were quantified by the Genomics Core at the Cleveland Clinic

Foundation Lerner Research institute using Genome Studio (v. 1.9.0). Probe level read-

ings were corrected by background subtraction. Gene level quantification was calculated

as the mean of all probe level values for each gene.

Additional normalization was conducted using the default functionality provided by

DiffExPy. Gene expression intensity values were log2 transformed. Log fold change (LFC)

values were calculated from the transformed intensity values using linear modeling and

subsequent empirical bayes estimation by limma44.
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DiffExPy parameters

DiffExPy was run with default parameters. All p-value thresholds used, including ad-

justed p-values for GO and TF enrichment, were 0.05. Ensemble models matched to

discrete responses of experimental gene expression were required to have a cluster score

and mean correlation greater than zero. A complete description of the DiffExPy param-

eters is available in the original manuscript. DiffExPy defines three categories of discrete

gene response behaviors. The categories are differentially expressed genes (DEGs), dy-

namic DEGs (dDEGs), and differentially responding genes (DRGs). Gene Ontology (GO)

enrichment for these categories was conducted using PANTHER23.

Computational development

All analysis was conducted using Python 3.5.2 using the following major packages: NumPy

and SciPy 111, pandas112, and scikit-learn114. Figures were generated using seaborn and

matplotlib115. The GO term enrichment search of the gene clusters was conducted using

goatools143. Other enrichment tests used Fisher’s exact test49 implemented in SciPy.
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4.1. Supplementary Information

Principal component analysis. Principal component analysis (PCA) was conducted

using sklearn. The log2 expression values were mean-centered and scaled using the zscore

for each gene.

Transcription factor network inference. A transcription factor regulatory network

was inferred using the set of 85 genes that are both DRGs and identified as mouse tran-

scription factors (DRG-TFs) in the Riken Transcription Factor Database172. There were

too few time points to make use of network inference algorithms tailored to using time-

series data48. Therefore, to identify DRG-TFs with similar expression profiles over time

and across conditions we first created feature vectors for each DRG-TF. Each vector is a

concatenation of the independently z-scored limma coefficients from the default DiffExPy

contrasts. Overall, the feature vectors capture how the DRG-TFs respond to the FGF

treatment in each condition, between conditions, and across time.

Spearman’s rank correlation was calculated between all pairwise combinations of DRG-

TF vectors. Adjusted p-values were calculated using the Benjamini-Hochberg procedure

with a false discovery rate (FDR) of 0.0005173. A network of 76 nodes and 128 edges was

created at this FDR (Fig. 4.S5). The network was visualized with Gephi 0.9.2174. The

modules were computed using the default community detection algorithm in Gephi with

a resolution of 1175.
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Figure 4.S3. GO and TF enrichment by discrete cluster. (top) Enriched GO terms associated
with each discrete cluster possible at that time point. The discrete cluster is shown in square
brackets along with the number of genes in the cluster. Clusters are colored by the sign of their
LFC due to the Spry knock out. (middle) Heatmap of LFC values for the LFC between the Spry
KO and WT. Values are normalized based on the maximum absolute LFC in each column. The
columns are sorted by the discrete response cluster to which the genes belong. (top) Enriched
TFs associated with each discrete cluster possible at that time point. The discrete cluster is
shown in square brackets along with the number of genes in the cluster. Clusters are colored by
the sign of their LFC due to the Spry knock out.
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values between the WT and KO conditions
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CHAPTER 5

Concluding remarks

In this work, I uncovered novel insights into several different biological systems by mak-

ing principled use of time-series gene expression data. In Chapter 2, I showed how the

SWING framework uses temporal information to better infer gene regulatory networks.

These networks describe the structure, or connections, of gene regulation and are a critical

step in understanding how information propagates throughout cells to actuate a response.

In Chapter 3, I expanded the use of time-series expression data to create ensembles of dif-

ferential equation models that produce quantitative predictions of expression in untested

contexts. Training differential equation models typically requires more data than is gener-

ated by gene expression studies, but with DiffExPy I again capitalize on time-series data

to bring the predictive ability of differential equation systems to many different genes. I

validated the accuracy of DiffExPy and demonstrated how it uncovers biological insights

using published time-series gene expression data. Lastly, in Chapter 4, I presented a

top-down analysis of time-series gene expression data to understand the transcriptional

role of Sprouty in response to fibroblast growth factor.

Heuristically, many current studies focus on measuring gene expression under different

genetic, chemical, and environmental conditions. This experimental strategy produced

significant biological findings46,176,177. Fewer studies exist that measure time-series gene

expression. However, with careful analysis, we can use gene expression dynamics to
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both qualitatively and quantitatively characterize regulatory systems. As more time-

series measurements become available, I expect tools that rely on these measurements to

further our understanding of biological phenomena.

5.1. Computational improvements

Were I to continue working on these projects, there are several avenues that warrant

further exploration and technical improvements, . In Chapters 3 and 4, I used time-

series data to gain insights at different levels of abstraction by finding enriched GO terms,

transcription factors, and training ensemble models. Yet, with a genomic data set the

tension always exists between identifying global trends and contextualizing the results of

a specific gene or protein of interest. I discuss two strategies that could help bridge this

gap of genomic scales.

5.1.1. Integration with prior knowledge databases

One challenge high-throughput data presents is contextualizing the myriad observations

in a meaningful biological framework. This problem could be partially solved by in-

tegrating the output with prior knowledge databases such as KEGG, BioGRID, and

StringDB30,31,158. Here I describe how integrating prior knowledge into the algorithms

of both SWING and DiffExPy could benefit the interpretation of their results.

When developing SWING, we simplified the representation of interactions by com-

piling inferred edges with the same parent and child nodes but different delays into a

single edge48. This approach fits nicely into the existing field of network inference, but it

discards information about delays. I believe future work could deconvolute this tempo-

ral information to create networks that discriminate between direct and indirect edges56.

One approach to achieve this is by merging the inferred network with prior knowledge
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networks to identify directed paths between nodes. By setting assumptions about regula-

tory delays, an expected delay for each route between nodes in a prior knowledge network

could be calculated and mapped to the observed delays. For example, if the inferred delay

is short it may indicate that in the experimental context a path with fewer intermediates

was activated. I suspect finding data and validating this approach would not be trivial,

but could improve our understanding of context-specific pathway activation.

Computationally searching prior knowledge could also improve the interpretability of

DiffExPy results. The results I presented using DiffExPy are manually selected examples

that highlight use cases of the models. I spent significant time searching papers and

databases to identify when my results fit with known knowledge and when they did

not. Due to this constraint, I chose to focus on the angiogenesis results in Chapter 4. An

automated approach would identify sets of similarly responding genes that are enriched for

association with specific pathways using known gene sets22, find the known connectivity of

these pathway genes from prior knowledge, and compare the known regulatory logic with

the observed gene dynamics. In fact, the cluster score used by DiffExPy was originally

designed to facilitate gene rankings for gene set enrichment analysis22.

Currently, DiffExPy is only designed to compare expression between two genetic or

treatment conditions and generate models with three nodes. If three genetic conditions

existed—such as the wild-type, gene A knockout, and gene B knockout—the conditions

would need to be tested in pairs, with no clear way to integrate the results, and the

exhaustive scan of four node networks would be computationally expensive, or prohibitive.

It may instead be possible to develop a strategy to merge the trained three node ensemble

models using prior knowledge networks.
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5.1.2. Understanding breadth and depth with visualizations

Another strategy to bridge the understanding between genomic scales is to enable re-

searchers to view their data in meaningful ways. How we choose to visualize data and

results greatly impacts the conclusions we draw from them178,179. Heatmaps are popular

plots used to visualize global genomic information, but they occlude information about

individual samples or genes40,176,180,181. Conversely, scatter, line, and box plots present

detailed information between variables, but only a few genes can be simultaneously com-

pared before the plots become too confusing. Juxtaposing these plots, and creating new

ones to support viewing mesoscale results of tens or hundreds of genes, could greatly help

researchers interpret their results. Some genome viewers exist, but their capabilities and

functionality vary greatly in quality176,177,182.

An integrated, interactive viewer would enhance our interpretation of biological data.

I envision software that enables users to visualize global trends, select genes of inter-

est, and place the measured data in biological context. Scores of insight hides within

large data sets that were only analyzed once and then left to gather dust on the Ge-

neExpressionOmnibus28,29. Easy-to-use visualizations would be powerful tools to reveal

information in biological data sets young and old.

5.2. Common threads

Several of the discussion points that follow were addressed in the preceding chapters.

However, they are worth revisiting at a higher level in the context of time-series gene

expression data.
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5.2.1. Data integration

My research focused on time-series gene expression data, but there is much that can

be learned using other omics technologies separately and in combination with gene ex-

pression. Gathering time-series data of both gene and protein expression could vastly

improve our understanding of the link between the two183,184. Many of my results re-

lied on GeneNetWeaver models that include an RNA and protein component. In each

case, the protein component was ignored, as there was no experimental data with which

to compare it. Simultaneously measured gene and protein time-series expression data

could greatly improve the DiffExPy generated models by training models using the both

components.

ChIP-seq measures the interactions between proteins and DNA, and it is a natural

complement to gene expression data185. Identifying where a transcription factor binds

relative to a gene locus and the transcription factor’s subsequent impact on that gene’s

expression seems straightforward. However, enhancer regions have been identified up to

100 megabase pairs away from transcriptional start sites153, so correlating peaks in ChIP-

seq data with their effect on expression is difficult185. In practice it is challenging and

expensive to collect matching omics data, and studies often end up with too few samples

to statistically match ChIP- and RNA-seq data17. Nevertheless, as technology improves

and costs decrease, I believe pairing time-series data of differential peaks from ChIP-seq186

with differential gene expression will help clarify the role of DNA-binding events on gene

expression.
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5.2.2. Closing the experimental loop

There is one important omission from this work: external experimental validation. When

developing the SWING and DiffExPy methods, we incorporated strong internal validation

of each method’s prediction accuracy. However, the biological insights derived from both

methods are ultimately only hypotheses. Without additional experimental data it is

impossible to prove or disprove these new hypotheses. My collaborators on these projects

are fantastic, but they moved in different directions after completing their experiments.

It therefore falls on the community at large to validate my findings. In an academic

environment that increasingly requires experimental and computational collaboration, it

is important to create a process in which experimental data is collected, computational

models are generated, and then the loop is closed by validating the results. Too often

the last step is not completed within the collaboration, and it is difficult for the larger

research community to reproduce and use the published results.

5.2.3. Code quality in academia

I would be remiss if I did not petition for placing increased value on the quality of code

that is produced during research. It is my estimation that the incentives of academic

research currently do not encourage computational biologists to build, and importantly

maintain, code that elicits complete trust in the results. This problem is not exclusive

to computational research—experimental protocols are often difficult to reproduce—but

the software community provides abundant tools to solve this problem. While the drive

for novel, impactful results is strong, I believe we should encourage better code. What

good are novel results if we cannot be confident they are true187? Documentation, version

control, unit testing, and narrative science platforms are tools in a programmer’s arsenal
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to help researchers produce usable code with reproducible results188. New computational

researchers should be taught to use these tools from the start, not apply them to code

post-hoc, if ever. This approach may seem tedious, but I think it will help science march

forward with more confidence.

5.3. Parting words

Biologists have set themselves the challenging task of studying living systems, which

are orders of magnitude more complex than the most complicated of systems designed

by humans189. We therefore need biologists of all persuasions to fully characterize and

better understand biological systems. As former IBiS student Adam Hockenberry put it:

Interpreting results and asking how they fit into, and/or disrupt our

existing knowledge of molecules, pathways, cells, organisms, populations,

and ecosystems is what makes a researcher a biologist, no matter the

methods190.

As biologists, we can and should continue to deeply interrogate individual genes and

proteins. But to fully understand such complex systems we must also decipher how the

parts work together to form complexes, pathways, cells, and more. I hope the work I

presented here will also help biologists work together to advance our understanding of

biology.
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