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Abstract 

 

Entanglement Generation in Green Fluorescent Proteins 

 

Siyuan Shi 

 

The recent development of quantum biology results in various 

breakthroughs in exploring the role of quantum physics in biological 

systems, as well as in observing and controlling light-matter interactions 

in biological materials on a fundamental quantum level. We seek to 

combine the concept of quantum biology with quantum optics to gain a 

better understanding of the role of quantum physics in biology to enable 

some novel applications in applying quantum tools in biological materials. 

Specifically, we have chosen green fluorescent protein as a medium for 

investigating the quantum effects. In this dissertation, we study the origin 

of the nonlinearity, generate photon pairs inside the green fluorescent 

proteins through the four-wave mixing process, measure and improve the 

purity of the generated photon pairs, and create quantum entanglement 

within the green fluorescent proteins. 
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1. Chapter 1. Introduction 

We have witnessed the development of quantum biology in recent years. Specifically, 

people have been asking and exploring the role of quantum physics in biological 

systems. For example, researchers have found evidences for quantum coherence in 

photosynthesis [1], quantum entanglement in light-harvesting complexes [2], and 

quantum mechanism in magnetoreception [3]. We, as an expert in entangled photon 

sources [4, 5], have been asking ourselves a question: can we combine the concept of 

quantum biology with quantum optics, to gain a better understanding of the role of 

quantum physics in biology, or enable some novel applications in applying quantum 

tools in biological materials. Specifically, we have chosen the green fluorescent 

protein (GFP) as a medium for investigating the quantum effects. GFP is a novel 

material discovered in1962 [6] by Shimomura, who first purified it from Aequorea 

victoria. GFP is ideal for our study since it can be cloned, engineered, and 

recombinantly expressed, which has opened a new gate in cellular and molecular 

biology. Applications of GFP include biological cell lasers [7, 8], high resolution 

optical imaging [9], measurement of single-molecule movement [10], etc. What’s 

more, two-photon excitation of GFP has found many potential applications in 

biomedical imaging [11]. And this could see potential applications in quantum 

spectroscopy [12] for using novel quantum control knobs to explore the light-matter 

interactions and enhancing the precision for certain measurement in biological 

materials [13]. 
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In this study, we utilize the �(�)  nonlinearity of GFP for the generation of 

correlated/entangled photon pairs through a spontaneous four-wave mixing (SpFWM) 

process. This is the first step toward developing a quantum information processing 

platform in a biological environment. Our goal is to explore the quantum nonlinearity 

in biological systems. In this chapter, we first outline the brief history of the study of 

quantum biology, and then introduce some interesting applications such as GFP-based 

biological cell laser for biomedical imaging. 

 

1.1 Quantum Biology 

Before the twentieth century, physics hardly play a role in the study of biology due to 

the complexity of living beings. In the early twentieth century, the invention of more 

powerful microscopes and techniques has enabled the possibility of using physical 

and mathematical methods to describe microscopic biological systems [14]. 

Remarkably, Schrödinger predicted several functional features of DNA in his lecture 

series. Niels Bohr, Pascual Jordan, and Max Delbruck argued that the quantum idea 

of complementarity was fundamental to the life sciences [15]. In 1965, Per-Olov 

Löwdin stated that a new field of study called "quantum biology" [16].  

Quantum biology relies on quantum mechanics and theoretical chemistry to explain 

and apply the effects occurring in biological systems. Many biological processes 

involve the transformation of energy into other forms to be used in chemical reactions 
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and are quantum mechanical in nature. For example, chemical reactions, light 

absorption, transfer of excitation energy, and transfer of electrons and protons are 

typical natural biological processes that involve quantum effects. Specifically, in light 

absorption, consider a photon being absorbed by the system and its energy is taken up 

by the matter, typically in the forms of excited electrons in an atom. Therefore, the 

electromagnetic energy is transformed into the kinetic and potential energies of an 

electron. This energy may be further transformed into chemical energy, 

electromagnetic radiation, or thermal energy via chemical reactions. Quantum biology 

reveals the quantum nature of such biological interactions by modeling them with 

quantum-physics tools. Now that we understand that quantum mechanics can play a 

role in biology, a new question is raised: how important is the role? In other words, 

are there any advantages the quantum effects can bring to the biological systems that 

the classical effects cannot? Are there any tasks that can only be performed using 

quantum mechanics? 

Researchers are still looking for the answer. Although quantum mechanics clearly 

exists in biology, however, in many complex biological systems, the physiological 

impacts of quantum mechanics still requires further study. In the past decades, many 

experiments suggest that quantum mechanics may be harnessed for biological 

advantages in some cases. For example, studies have suggested that certain natural 

processes such as photosynthesis[1] and avian magnetoreception[3] can take 

advantage of quantum coherence in biological systems. Light harvesting complexes 
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(LHC)[2] and avian magnetoreception can exhibit quantum superposition and 

non-locality based on absorption of coherent [17] and incoherent light [18], 

respectively. Upon absorbing the light through the linear (one-photon) or nonlinear 

(two-photon) processes, the entangled biological systems (electron-spin states and 

chromophore sites) act as quantum meters [19] for measuring quantum effects in 

avian bio-compass and excitation energy transfer in photosynthesis. 

 

1.2 Quantum Spectroscopy 

Along with the development of quantum biology is the growth of quantum 

spectroscopy. Quantum spectroscopy is an emerging spectroscopic technique thriving 

from the recent advances in quantum optics [20, 21] where the nonlinear radiation 

field is down to the few-photon level, thus the quantum nature of field is manifested 

and must be considered. Like the conventional nonlinear spectroscopy where classical 

light is used to detect matter properties, quantum spectroscopy also aims at 

light-matter interactions. However, unlike conventional spectroscopy where the 

variation of frequencies and time delays of classical light work as control knobs, 

quantum spectroscopy utilizes the parameters of the quantum state of light as novel 

control knobs [22] to supplement the classical parameters. The distinctive advantages 

of quantum light in spectroscopy stem from improved signal-to-noise ratio owing to 

strong correlation between light and matter, particularly quantum entanglement [23]. 
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Advances in both quantum biology and quantum spectroscopy have driven our 

attention to develop novel quantum spectroscopic techniques in biological materials. 

The generation of entangled photon pairs in the green fluorescent protein (GFP) is the 

most fundamental basis for the development where the entanglement is generated in 

situ. 

 

1.3 Green Fluorescent Protein 

1.3.1 History of Green Fluorescent Protein 

In 1962, Shimomura et al. extracted the GFP from the jellyfish Aequorea Victoria [6]. 

GFP is composed of 238 amino acid residues and exhibits green fluorescence when 

exposed to light in the blue to ultraviolet range [24]. Although GFP exhibits many 

unique and promising features in both biology and optics, utilizing GFP as a tool for 

molecular biologists had not begun until 30 years since the extraction. The revolution 

started in 1992 when Douglas Prasher reported the cloning and nucleotide sequence of 

wtGFP [25]. Remarkably, in biology, the original GFP was expressed in the nematode 

C. Elegans and used as a marker for gene expression[26]. In physics, people have 

studied and utilized the high quantum efficiency (~80%) of the green fluorescence 

[27]. What makes GFP more valuable is that it can be expressed by a wide variety of 

organisms and fused to other proteins while maintaining its unique fluorescence 

capability [10, 24, 28]. Nowadays, there are 20 naturally occurring and artificially 

engineered fluorescent proteins (FPs). These proteins are used for the study of 
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intracellular dynamics[29, 30], reporter gene technology [31], drug discovery [32], 

and super-resolution microscopy [11, 33, 34]. In 2008, Nobel Prize in chemistry was 

awarded to Chalfie, Shimomura, and Tsien for honoring their discovery and 

development of GFP. 

 

1.3.2 Applications of Green Fluorescent Proteins 

Some applications are noteworthy. For example, the development of biological cell 

lasers based on GFP. Lasers have been widely used in many parts of modern society. 

Its applications range from science, optical communication, medicine to entertainment. 

To meet a variety of needs, different types of lasers have been invented, including the 

biological cell laser. Of all these different types of lasers, the most essential part is the 

gain medium, which exist in three aggregate forms—gaseous, liquid, and solid. And 

FP is used as the gain material in developing a microlaser [8, 35]; the laser made of 

the GFP-expressing Escherichia coli bacteria has seen a clear threshold behavior and 

discrete peaks in its emission spectrum. The development keeps moving forward. 

Nowadays, we have seen the novel invention of optofluidic biolasers [7]. They 

incorporate biological molecules into the gain medium and contain optical cavities in 

fluidic environments. The unique property of these lasers is that, during laser 

generation, tiny changes in biological processes in the gain medium are amplified. As 

a result, researchers can use the amplified light to quantify the tiny changes induced 

by some biological processes in the gain medium [8, 35-39]. In more details, the 
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number of gain molecules is increased/reduced due to some biochemical or biological 

processes. These increasing/reducing molecules not only change the gain of the 

resonant cavity but may also change the refractive index of it. Within the resonant 

cavity, light bounces back and forth while interacting with the gain medium. At last, 

when the amplified light eventually leaves the resonant cavity, its output intensity, 

spectrum, threshold and other characteristics are measured and recorded as clues to 

determine the gain medium characteristics. Therefore, the optofluidic biolasers have 

been developed into a highly sensitive way to measure the changes in biological 

molecules. The uniqueness of this detection method is that it utilizes the amplifying 

power of stimulated emission, which is different from conventional 

fluorescence-based detection. 

Another example involves GFP in the optical imaging. In a conventional fluorescence 

microscope, the main limit is its spatial resolution. To see clearer images, the 

numerical aperture of the lens needs to be small. However, as the aperture decreases, 

due to diffraction, light cannot be focused more sharply than λ 2NA⁄ , where NA is 

the numerical aperture of the lens, λ is the wavelength of light. Researchers have 

proposed a method to overcome this problem. That is to force the fluorescence 

features of the object fluoresce sequentially [40]. This method requires a mechanism 

working as a switch. When the switch is turned on, the fluorophores under control are 

able to fluoresce; when the switch is turned off, those fluorophores become 

non-fluorescent. The requirement has been fulfilled by introducing a reversibly 
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switchable enhanced green fluorescent protein (rsEGFP). Thus, microscope based on 

rsEGFP has been invented. Another advantage of rsEGFP based microscope is that 

rsEGFP can work with low levels of light which is favored in many applications 

[41-44]. As a result, researchers have reached imaging resolution of < 40 nm in 

living cells by distributing functional rsEGFP-fusion proteins into those cells. The 

rsEGFP has also shown its application in data storage [45]. 

Another application of fluorescent proteins is to image protein-protein interaction [46]. 

Different methods are proposed. The first method is known as fluorescence 

correlation spectroscopy (FCS) [47]. FCS is a method based on correlation analysis. It 

analyzes the correlation of fluorescence fluctuations in a defined illumination volume 

fixed in space. In details, fluorescently labeled proteins are prepared in a cell where 

light focuses onto. These fluorescently labeled proteins may interact with each other.  

Researchers are able to track the protein-protein interaction by measuring and 

analyzing the differences in fluorescence diffusion times. However, FCS is relatively 

insensitive to changes in molecular mass [48]. The second method known as 

fluorescence cross-correlation spectroscopy (FCCS) appears to be more sensitive than 

FCS [49]. FCCS traces two spectrally distinguishable fluorophores to identify when 

the two molecules coincide. To obtain more details of the molecular interaction, a 

third method called fluorescence resonance energy transfer (FRET) can be applied 

[50]. FRET provides spatial and temporal information of protein-protein interactions 
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The potential application of FPs in quantum technology still awaits exploration. The 

generation of non-classical light, such as squeezed and entangled light, in biologically 

produced FPs would open the potential for quantum spectroscopy and 

quantum-enhanced measurements in biological systems because entanglement can 

provide precision that surpasses the uncertainty principle [51]. Entanglement can be 

generated in FPs owing to the strong optical nonlinearity [52] and the process can be 

quite efficient because of the protective beta-barrel structure surrounding the 

fluorophore in the protein [53]. In addition, since the FPs strongly couple to light, 

even at the single-photon level, it is feasible that quantum-optic techniques for 

creating, manipulating, and characterizing photonic quantum states, developed for use 

in quantum information processing (QIP), could be directly applied to FPs. By 

projecting the entanglement of the quantum fields back to FPs, precise preparation 

and control of higher excited states [54-56] may be feasible. 

The nonlinearity of FPs has been explored in many areas. Their nonlinearities arise 

from transition dipole moment and permanent dipole moment difference between 

ground state and excited state [52, 57]. The properties of two-photon absorption of 

FPs have been studied thoroughly and developed for biomedical imaging. For 

example, two-photon laser scanning microscopy has been developed to image living 

tissues up to a very high depth [58, 59]. In addition, the dispersive optical 

nonlinearities of FPs can be explored for developing biologically engineerable sources 

of quantum light states [60, 61]. In our group, we have measured the �(�) of GFP by 



22 

 

 

 

using a z-scan technique. We obtain two-photon absorption coefficient β = 0.05 ±
0.03 cm GW⁄  and the nonlinear index %& = 10()*  m& W⁄ . Correlated photon pairs 

can be generated in fluorescent protein samples through a phase-matched four-wave 

mixing process [62]. 

Photosynthetic systems have shown high efficiency in energy harvesting and 

transporting [1, 2]. The key to this high efficiency is attributed to the existence of 

long-lived (several hundred femtoseconds) quantum coherence in the energy transfer 

processes [63, 64]. Two-dimensional electronic spectroscopy method based on 

four-wave mixing process has been used to study the quantum coherence of energy 

transfer process. In the method, two phase-locked, ultrashort pump beams interact 

with the system. Then the system is left for evolving for some time duration before 

the third signal beam is sent in. In this four-wave mixing configuration, the generated 

signals are mapped onto a two-dimensional frequency-frequency domain for 

analyzing the quantum beats arising from quantum coherence. In addition, researchers 

are working on building biological models for exploring the quantum nonlinearity of 

the photosynthetic systems [65-68]. Recently, it is proven that a small synthetic 

molecule can reproduce the nonlinear quantum coherence with a remarkable lifetime 

[63]. 
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2 Chapter2. Theory Background 

 

2.1 Overview 

In this chapter, we will discuss the origin of the �(�) nonlinearity of EGFP, where 

we model the electronic system of the molecule as a two-level system with permanent 

dipole moments. We also study the nonlinear processes such as FWM, TPA, and 

Raman scattering that occur during the experiments. Next, we will go through the 

theory of z-scan technique which helps to characterize the �(�) nonlinearity of EGFP, 

and the method of quantum state tomography, which characterize the created 

entangled state, and the way of measuring correlations between the photon pairs. 

 

2.2 Nonlinearity 

2.2.1 Two-level System Approximation 
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Figure 2. 1 

Partial energy-level diagram of EGFP and the two-level system with permanent dipole difference. (a) 

The relevant partial energy-level diagram of EGFP and the spontaneous four-wave mixing process. The 

solid lines represent energy levels including the ground state (|,�-), the first excited state (|,	-), and 

the higher excited states (|,.-). The dotted lines represent vibronic levels. The purple arrow indicates 

the frequency (/) between |,�- and |,	-. The two green arrows with frequencies of 01, the blue 

arrow with a frequency of 02, and the red arrow with a frequency of 03 represent the spontaneous 

four-wave mixing process where two pump photons (01) are converted to a signal photon (02) and an 

idler photon (03). (b) The two-level system with permanent dipole moments. The dashed lines 

represent the two levels (|4-) and (|5-). The green curved arrow represents the external electric field 

with a frequency of n interacting with the system. 

The nonlinearity of EGFP originates from the modulations of certain electronic states 

within external electric fields. Specifically, the �(�) nonlinearity characterizes the 

molecule’s �(�) nonlinear response to an external electric field, which leads to an 

induced polarization that is proportional to the multiplication of three electric field 

amplitudes. The strength of the induced polarization is related to the strength of 

resonance between the electronic states and the electric field; when the field 

frequency matches the energy gap between two electronic states, the probability that 
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the electron transits from one to another is much greater, and always result in a large 

�(�) near that frequency. The scenario is usually the case for �(�) nonlinearity in a 

multi-level system where the fields drive the electronic states from the ground state to 

the highest state via intermediate states. Or it can also describe the �(�) nonlinearity 

within a two-level system where the fields drive the electronic state up and down, and 

then up again. However, in our case, the mechanism is different. According to the 

partial energy-level diagram of EGFP as shown in Fig. 2.1a, the ground state (|67-) 
and the first excited state (|6)-) are involved in the SpFWM process. We see that the 

signal (89) and idler (8:) photons are created by annihilating two pump photons (8;). 

The permanent dipole moments are the key through the SpFWM process since there is 

no intermediate state that serves as a jump pad for pumping the electrons. To study 

the physics of the �(�) nonlinearity in this case, we model the electronic states of the 

EGFP molecule as a two-level system with permanent dipole moments as shown in 

Fig. 2.1b that includes all the core concepts which are relevant to the process. Then, 

we introduce an electric field with a frequency (ν~0.5ω) near the two-photon 

resonance to perturb the system for analyzing the induced nonlinearity. The 

Hamiltonian of the system is given by 

 0

1 01
 ,

0 12
H ω  

=  − 
h  (2.1) 

?:@A = −C DE(t), (2.2) 
0 .intH H H= +   (2.3) 
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Where ?7 is the original Hamiltonian of the system with a resonance frequency of 

ω, and ?:@A is the interaction Hamiltonian induced by the perturbation of the system 

with the electric field (DE(G)). C = eI is the dipole moment operator with −e as the 

charge of an electron. To calculate the �(�) nonlinearity of the system in respond to 

the linearly polarized monochromatic field, we define 

 
νt * νt ,i iE xEe xE e−= +  (2.4) 

where J is the unit vector along the x-axis, and .ikzE Ae=  is the field amplitude 

with A as a constant, k as the wave vector along the z-axis. Therefore,  

?:@A(G) = −KJLMDK(:NA + D∗K:NAQ, (2.5) 

 

where JL is the position operator. 

We introduce the density matrix formalism [69] to study the evolution of the system 

since the precise state is obscure. The density matrix of the electronic state of a 

two-level system is given as 

ρ(t) = TUVV UVWUWV UWWX , (2.6) 

where UVV and UWW represent the probabilities for the system to be found at its 

energy eigenstate |Z- and |[-, respectively, UVW and UWV represent the coherence 

between the two eigenstates. The Liouville equation for the density matrix is given by 
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\AU = (−] ℏ⁄ )_?7 + ?:@A`U − ΓU, (2.7) 

where Γ is the decay tensor. In our system, UVV decays with a rate of c) = 1 d)⁄ , 

where d) is the longitudinal relaxation time, whereas UWW increases with the same 

rate due to the decrease of UVV. Both UVW and UWV decay with a rate of c& = 1 d&⁄ , 

where d& is the transverse relaxation time. By assigning the decay terms to the 

individual elements of the density matrix, we can obtain the Liouville equation for 

each component as 

 ( )( )*

1 ,i t i t
t aa ba ab aa

i
Ee E eν νρ µρ ρ µ γ ρ−∂ =− − + −

h
 (2.8) 

( )( )*

1 ,i t i t
t bb ab ba aa

i
Ee E eν νρ µρ ρ µ γ ρ−∂ =− − + +

h
 (2.9) 

( )( )*

2 ( ) .i t i t
t ab aa ab bb aa ab bb ab

i
Ee E e iν νρ µ ρ µρ ρ µ ρ µ ω γ ρ−∂ =− + − − + − +

h
 (2.10) 

( )( )*

2 ( ) .i t i t
t ba bb ba aa bb ba aa ba

i
Ee E e iν νρ µ ρ µρ ρ µ ρ µ ω γ ρ−∂ =− + − − + + −

h
 (2.11) 

where we have introduced the dipole moments. Specifically, C VV =  −eZ|KJL|Z- and 

C WW =  −e[|KJL|[- are the permanent dipole moments on the two states; C VW =
 −eZ|KJL|[- and C WV =  −e[|KJL|Z- are the transition dipole moments between the 

two states. We have chosen the phases of |Z- and |[- to allow C VW = C WV, so that 

we can use a single notation (C) to represent both transition dipole moments. To 

remove the redundancy in the analysis, we introduce U = UVV − UWW, since UVV +
UWW  = 1. Therefore, we can obtain 
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 ( ) ( )*

1 1 1 2 2 ( 1),i t i t
t ba ab ba abi e i eν νρ ρ ρ ρ ρ γ ρ−∂ =− Ω − − Ω − − +  (2.12) 

* *

1 1 2 2 2( ) .i t i t i t i t
t ab ab ab abi e i e i e i e iν ν ν νρ ρ ρ ρ ρ ω γ ρ− −∂ = Ω + Ω − Ω − Ω − +  (2.13) 

where, f) = gh
ℏ  and f& =  (gii(gjj)h

ℏ  are Rabi frequencies. Since the system is 

driven by the field with a frequency of k, we can expand U and UVW into Fourier 

series with frequencies of integer multiples of k as 

U = U7 + lm U@K:@NA + C. C.o

@p)
q , (2.14) 

UVW = r7 + lm r@K:@NA + C. C.o

@p)
q . (2.15) 

By plugging Eq. 2.14 and Eq. 2.15 into Eq. 2.12 and Eq. 2.13, we will see how each 

Fourier amplitude will evolve over time as 

 ( ) ( )* * *

0 1 1 1 1 1 1 1 02 2 ( ),1t i iρ η η η η γ ρ− −∂ = − Ω − − Ω +− −  (2.16) 
( ) ( ) ( )* * *

1 1 2 2 1 0 0 1 12 2 ,t i i iρ η η η η ν γ ρ−∂ = − Ω − − Ω − − +  (2.17) 
( ) ( ) ( )* * *

2 1 3 3 1 1 1 1 22 2 2 ,t i i iρ η η η η ν γ ρ− −∂ = − Ω − − Ω − − +  (2.18) 
( )* * * *

2 1 1 1 3 2 1 2 3 2 22 ,t i i i i i iη ρ ρ η η ω ν γ η− − − −∂ = Ω + Ω − Ω − Ω + − + −  (2.19) 
( )* * *

1 1 0 1 2 2 0 2 2 2 1,t i i i i i iη ρ ρ η η ω ν γ η− − −∂ = Ω + Ω − Ω − Ω + − + −  (2.20) 
( )* * *

0 1 1 1 1 2 1 2 1 2 0 ,t i i i i iη ρ ρ η η ω γ η−∂ = Ω + Ω − Ω − Ω + − −  (2.21) 
( )* *

1 1 2 1 0 2 2 2 0 2 1,t i i i i i iη ρ ρ η η ω ν γ η∂ = Ω + Ω − Ω − Ω + − − −  (2.22) 
( )* *

2 1 3 1 1 2 3 2 1 2 12 .t i i i i i iη ρ ρ η η ω ν γ η∂ = Ω + Ω − Ω − Ω + − − −  (2.23) 
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The Fourier amplitudes are useful for obtaining the �(�) nonlinearity of the system. 

We first discuss the long-time response of the system to the field, when the interaction 

can lead to a steady-state solution in the given time frame; this reveals the �(�) 
nonlinearity of the system in response to a continuous-wave electric field. We then 

discuss the instantaneous response of the system to the field, when the state has just 

started evolving; this clarifies the nonlinearity of the system in response to a pulsed 

electric field. The following formalisms assume that the impact of higher-order 

nonlinearities to the Fourier amplitudes is negligible when comparing to the impact of 

lower-order nonlinearities; the amplitude of the electric field shouldn’t break its upper 

limit. Therefore, we can group the selected Fourier amplitudes into four buckets, 

based on the order of perturbations as shown in Fig. 2.2 and Fig. 2.3. The 

perturbations of the first-order amplitudes (r±) and their conjugates) originate from 

the interactions between the electric field and the 0th amplitude (U7), as indicated by 

the arrows. Similarly, the perturbations of the second-order (third-order) amplitudes 

arise from the interactions between the field and the first-order (second-order) 

amplitudes. We segment the perturbation processes based on whether they involve the 

permanent dipole moments. By calculating the response of the amplitudes in a proper 

sequence from lower order to higher order, we can obtain the third-order polarization 

of the system that is induced by the electric field, and then find out the �(�) 
nonlinearity. 
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Figure 2. 2 

The perturbation of Fourier amplitudes. Fourier amplitudes that are driven by the electric field on 

different orders, without the contribution of the permanent dipole moments. The arrows indicate where 

the processes occur. The straight arrows represent the processes induced by the transition dipole 

moments, the dashed arrows represent the processes induced by the permanent dipole moments. 

 

Figure 2. 3 

The perturbation of Fourier amplitudes. Fourier amplitudes that are driven by the external field, with 

the contribution of both the transition dipole moments and the permanent dipole moments. 

A. Long-time response 

When the electric field is off, the system is in the ground state, where U7 = 1, and all 

the other Fourier amplitudes are 0. When the field is on, we first focus on solving the 

first-order Fourier amplitudes, which are r±) and their conjugates. If we plug U7 =
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1 into Eq. 20 and Eq. 22, and then neglect the higher order terms, we can solve the 

differential equations for r±) as 

 ( )
( )21

1

2

1 ,
i i ti

e
i

ω ν γη
ω ν γ

− + −
−

− Ω  = − − +
 (2.24) 

( )
( )2

*

1
1

2

1 .
i i ti

e
i

ω ν γη
ω ν γ

− − −− Ω  = − + +
 (2.25) 

which will eventually reach the steady-state solution when t ≫ d& as 

 ( )
1

1

2

2 ,( )
i

t T
i

η
ω ν γ−

− Ω=
− +

?  (2.26) 

( )
1

2

*

1

2

.( )T
i

t
iη

ω ν γ
− Ω=
+ +

?  (2.17) 

Next, we focus on solving the second-order Fourier amplitudes, which include Uu7, U&, 

r(&, r7, and r&, where Uu7 is the perturbation of U7. If we plug Eq. 2.26 and Eq. 

2.27 into Eqs. 2.16, 2.18, 2.19, 2.21, and 2.23, meanwhile neglecting the higher-order 

terms, we can obtain 

Uu7(t ≫ d)) = −2 v]Ω) T 1 2( )t Tη− ? − 21( )t Tη ? X + C. C. x
c) , (2.28) 

U&(t ≫ d)) = −2 v]Ω)∗ T 1 2( )t Tη− ? − 21( )t Tη ? Xx
]2k + c) , (2.29) 

r(&(t ≫ d&) = −]Ω& 1 2( )t Tη− ?

](8 − 2k) + c& , (2.30) 
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r7(t ≫ d&) = −]Ω& 21( )t Tη ? − iΩ&∗ 1 2( )t Tη− ?

]8 + c& , (2.31) 

r&(t ≫ d&) = −]Ω&∗ 21( )t Tη ?

](8 + 2k) + c& , (2.32) 

Finally, we focus on solving the third-order Fourier amplitudes, which include U), 

and ru±), where ru±) are the perturbations of r±). These are the Fourier amplitudes 

that directly contribute to the induced third-order polarization, and therefore the �(�) 
nonlinearity as given in the relation 

 
( ) ( ) ( )*

1 11

0

,
N

E

η η µ
χ ν

ε
− +

=   (2.23) 

( ) ( )
( )* *

1 1 1
3

1111 *

0

1

2
,

3

aa bbN

EEE

ρ µ µ η µ η µ
χ ν ν ν ν

ε

−
 − + +  = + − =

% % %

 (2.34) 

where N is the density of the molecule, and P is the induced polarization by each 

molecule. The detailed solution of �(�) is shown in the Appendix A. 

B. Instantaneous Response 

As the term suggests, the difference between the instantaneous response and the 

long-term response is that the system hasn’t reached a steady state in a short time 

frame. Therefore, we should not use the steady-state solutions of the lower-order 

perturbations for predicting the solutions of the higher-order perturbations. Instead, 

we rely on the time-dependent Fourier amplitudes for calculations starting from the 

first-order perturbations to the third-order perturbations. Therefore, we plug Eq. 2.24 
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and Eq. 2.25 into Eq. 2.16, 2.18, 2.19, 2.21, and 2.23. By neglecting the higher-order 

terms, we obtain 

 ° ( ) ( ) °* * *

0 01 1 1 1 1 1 12 2 ( ),t i iρ η η η η γ ρ− −∂ = − Ω − − Ω − −  (2.35) 
( ) ( )* *

2 1 1 1 1 22 2 ,t i iρ η η ν γ ρ−∂ = − Ω − − +  (2.36) 
( )2 2 1 2 22 ,t i i iη η ω ν γ η− − −∂ = − Ω + − + −  (2.37) 

( )*

0 2 1 2 1 2 0 ,t i i iη η η ω γ η−∂ = − Ω − Ω + − −  (2.38) 
( )*

2 2 1 2 12 .t i i iη η ω ν γ η∂ = − Ω + − − −  (2.39) 

Here, we solve for Eq. 2.35 as an example for demonstrating the method. 

° ( ) ( ) ° °* * *

0 0 01 1 1 1 1 1 1 1 22 2 ( ) ( )t i i C t Cρ η η η η γ ρ ρ− −∂ = − Ω − − Ω − − = +  (2.40) 

where {) is a function of t, and {) is a constant. Assume Uu7 = |(G)K}~A, where F is 

a function of t, then 

|� = {)(G)K(}~A, (2.41) 

Therefore, the integration on F will provide the solution for Uu7, which is given as 

Uu7 = m m −2|Ω)|&K�(7,(��)A
�(�8 + %k, Γ&) × ��_�(�8 + %k, Γ& − Γ))` − �_�(−2k, −Γ))`�

@p±)�p±)
, (2.42) 

where function G(x) is defined as G(x) = − (K(�A − 1) J⁄ , and function D(x, y) is 

defined as D(x, y) = ix + y. The same method can be used to solve for the other 

second-order Fourier amplitudes U&, r(&, r7, and r&. The results are 
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U& = m −2|Ω)|&K�((&N,(��)A
�(�8 + k, Γ&) × ��_�(�8 − k, Γ& − Γ))` − �_�(−2k, −Γ))`�

�p±)
, (2.43) 

r(& = −Ω)Ω&K�((��&N,(�~)A
�(8 − k, Γ&) × ��_�(k, 0)` − �_�(−8 + 2k, −Γ&)`�, (2.44) 

r7 = Ω)∗ Ω&K�((�,(�~)A
�(8 + k, Γ&) × ��_�(k, 0)` − �_�(−8, −Γ&)`� + Ω&∗ Ω)K�((�,(�~)A

�(8 − k, Γ&)
× ��_�(−k, 0)` − �_�(−8, −Γ&)`�,              (2.45) 

r& = −Ω)∗Ω&∗ K�((�(&N,(�~)A
�(8 + k, Γ&) × ��_�(−k, 0)` − �_�(−8 − 2k, −Γ&)`�. (2.46) 

Finally, by plugging the second-order Fourier amplitudes into Eq. 2.17, Eq. 2.20, and 

Eq. 2.22, we obtain 

 ( ) ( ) ( )* * *

1 1 2 2 1 0 0 1 12 2 ,t i i iρ η η η η ν γ ρ−∂ = − Ω − − Ω − − +  (2.47) 
% ° ( )* * *

1 01 1 2 2 0 2 2 2 1,t i i i i i iη ρ ρ η η ω ν γ η− − −∂ = Ω + Ω − Ω − Ω + − + −  (2.48) 
% ° ( )* *

1 01 2 1 2 2 2 0 2 1,t i i i i i iη ρ ρ η η ω ν γ η∂ = Ω + Ω − Ω − Ω + − − −  (2.49) 

The solutions for U) and ru±) are shown in the Appendix. B. As a result, we can 

calculate the instantaneous �(�) nonlinearity of the system in respond to the external 

field by using Eq. 2.34. 

Parameter Symbol Value 

Longitudinal relaxation time d) 1 ns 

Transverse relaxation time d& 10 fs 
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Transition dipole moments C 10 Debye 

Permanent dipole moment ΔC 20 Debye 

Resonant frequency 8 4.2 × 10)� Hz 

Molecule density � 2.1 × 10&& m-3 

Refractive index % 1 

Pulse duration G 200 fs 

Table 2.1 A summary of the parameters used in the estimation of �(�) nonlinearity. 

As shown in the Table. 2.1 are the parameters that we used in the model. We choose 

the value of d) as 1ns because of the nanosecond lifetime of |6)-. We choose the 

value of d& as 10 fs by analyzing the extinction coefficient of EGFP [52]. The values 

of C and ΔC are estimated around 10 Debye, and 20 Debye based on Wan’s work 

[70]. 8 is approximated as 4.2 × 10)� Hz corresponding to a wavelength of 450 

nm regarding to the two-photon absorption spectra of EGFP [52]. N is obtained 

according to the EGFP solution with a molar concentration of 25 mM in phosphate 

buffered saline. n is assumed as 1. t is chosen as 200 fs corresponding to our 

mode-locked regenerative amplifier (Coherent Inc., RegA-9000 seeded by Mira-900 

and pumped by Verdi-10) which generates pulses with a duration of 200 fs. 
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Figure 2. 4 

Spectrum of �(�). (a) Real part of �(�) (b) Imaginary part of �(�). E = 1 × 10� V/m. The red line 

represents the result of long-time response. The blue line represents the result from the instantaneous 

response. The green dot represents the numerical simulation on the instantaneous response. 

We plot the �(�) nonlinearity of the system in two cases, as well as the simulated 

result for the instantaneous response, in Fig. 2.4a and Fig. 2.4b, demonstrating the real 

and imaginary parts, respectively. The results of the long-time and instantaneous 

responses are obtained directly from the analytical solutions, the result of the 

simulation is obtained by numerically integrating the Liouville equations of Fourier 

amplitudes over t. From the figure, we see that two types of processes contribute to 

the �(�) nonlinearity; the processes without involving the permanent dipole moment 

(see Fig. 2.2) form the base line, which is an extension of the �(�) curve near its 

one-photon resonance; the processes involving the permanent dipole moment (see Fig. 

2.3) add the twist on top of the base line, which is the main reason for �(�) 
nonlinearity near two-photon resonance. The difference between the long-time and 

instantaneous responses originates from the fast oscillating term in Eq. 2.24, and Eq. 
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2.25. These oscillations are intrinsic and noticeable in the short-time scale, its 

amplitude is dependent on C and ΔC, and its phase is a function of νt. 
As mentioned before, this formalism is valid when the amplitude of the electric field 

is lower than the upper limit. This condition holds when 1 is much greater than the 

first-order Fourier amplitudes, and meanwhile the first-order Fourier amplitudes are 

much greater than the second-order Fourier amplitudes, which are much greater than 

the third-order Fourier amplitudes. Therefore, with the provided parameters, the 

condition is 

1 ≫ �~�(N  →  D ≪ 3.3 × 10* ��(), (2.50)  

when the choice of frequency is away from the two-photon resonance, and 

1 ≫ Ω&c&  →  D ≪ 1.6 × 10� ��(), (2.51) 

when it’s near the two-photon resonance. The reason for the difference between the 

two upper limits is that as the frequency approaches the two-photon resonance, the 

nonlinearity becomes stronger, therefore the upper limit falls lower. Fig. 2.5a and Fig. 

2.5b show the result with D = 1 × 10� V/m, and Fig. 2.6a and Fig. 2.6b show the 

result with D = 5 × 10� V/m. It’s obvious that as the amplitude of the electric field 

increases, the formalism becomes invalid sequentially from near the two-photon 

resonance to away from it. 
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Figure 2. 5 

Spectrum of �(�). (a) Real part of �(�) (b) Imaginary part of �(�). E = 1 × 10� V/m. The red line 

represents the result of long-time response. The blue line represents the result from the instantaneous 

response. The green dot represents the numerical simulation on the instantaneous response. 

 

Figure 2. 6 

Spectrum of �(�). (a) Real part of �(�) (b) Imaginary part of �(�). E = 5 × 10� V/m. The red line 

represents the result of long-time response. The blue line represents the result from the instantaneous 

response. The green dot represents the numerical simulation on the instantaneous response. 

The above example discusses the case when d& ≪ G ≪ d), while the formalism also 

covers the cases when d&~G or d& ≫ G. This is worth mentioning since d& varies 

from femtoseconds to picoseconds as reported in different works. Fig. 2.7a and Fig. 

2.7b exhibit the �(�) in its real and imaginary components with d& = 100 fs, and 

other parameters unchanged. Comparing them with Fig. 2.4a and Fig. 2.4b, we see 
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that for the long-time response, the curves’ peak amplitudes have increased, and their 

widths have shrunk. The change in the line shape originates from the enhancement of 

two types of resonances; the one-photon resonance sharpens the peak (dip) of the 

curve near 450 nm, which lowers the baseline, and similarly, the two-photon 

resonance sharpens the peak (dip) near 900 nm and lowers the baseline as well. We 

also observe that for the instantaneous response, the blue curves follow the same trend 

as the red curves, due to the resonance enhancements. However, the curves oscillate 

vigorously in the off-resonance region since the decays on the density matrix elements 

are less obvious in a shorter time frame. What’s more, the amplitude of the oscillation 

tends to increase after d& has passed a certain threshold as shown in Fig. 2.7c and Fig. 

2.7d, where we fix the wavelength at 785 nm. This is because the induced nonlinear 

polarization can continuously build up without experiencing too much decay in the 

time frame as d& increases. 
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Figure 2. 7 

Effects of d& on the spectrum of �(�). (a) Real part of �(�) with d& =100 fs. (b) Imaginary part of 

�(�) with d& =100 fs. (c) Real part of �(�) v.s. d&  at 785 nm. (d) Imaginary part of �(�) v.s. d& at 

785 nm. Inset: an enlarged figure for the long-time-response curve. The red line represents the result of 

long-time response. The blue line represents the result from the instantaneous response. The green dot 

represents the numerical simulation on the instantaneous response. 

The presence of such nonlinear dispersion points towards the possibility of using 

naturally occurring fluorescent proteins as a medium for FWM experiments, in 

contrast to the engineered optical devices. What’s more, with a pulsed laser, we can 

target the frequency region with a higher nonlinear response by referencing the 

oscillating pattern of the instantaneous response.  

 

2.2.2 Four-wave Mixing 

We utilize the �(�) nonlinearity of EGFP for generating photon pairs. The essential 

experiments are stimulated and spontaneous FWM processes. In this section, we will 
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gain a thorough understanding of the FWM processes. FWM process is an 

intermodulation phenomenon in nonlinear optics. Within the process, two or three 

wavelengths interact with each other to produce two or one new wavelengths while 

the energy and momentum of the system are conserved. In our case, for the StFWM, 

two pump beams and one signal beam interact in the �(�) medium to enhance the 

intensity of signal beam, create a new idler beam, and reduce the energy of two pump 

beams. We will first investigate the degenerate StFWM, where the two pump beams 

and one signal beam are obtained from the same laser. For the SpFWM, two pump 

beams interact in the �(�) medium to create both the signal and idler beams and 

reduce the intensity of two pump beams. We will investigate the case with 

continuous-wave pump beams, and then the case with pulsed pump beams. Note that 

in the following derivations, since the self- and cross-phase modulation processes are 

not strong enough to change the frequency spectrum of the pump, these two processes 

are ignored. 

 

2.2.2.1 Degenerate stimulated four-wave mixing 

In this section, we investigate the degenerate stimulated four-wave mixing process as 

described in the above section. Pump, signal, and idler fields are assumed to be plane 

waves propagating along axes (zp1, zp2, zs and zi) near the z-axis with the same 

frequency 87, and so that their wave vectors all equal �7 = ��� . Therefore, the two 

pumps, signal and idler fields can be written as 
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( )0 1 0

1 1 ,pi k z t

p pE A e
ω−=  (2.52) 

( )0 2 0

2 2 ,pi k z t

p pE A e
ω−=  (2.53) 

 
( )0 0 ,si k z t

s sE A e ω−=  (2.54) 
( )0 0 ,ii k z t

i iE Ae ω−=  (2.55) 

Where the subscripts denote the four fields, �;), �;&, �9 and �:  are the field 

amplitudes. We can assume the entrance surface of the sample is set at z = 0 and the 

exit surface of the sample is set as z = L. Since the idler field is generated inside the 

sample, in this case, the boundary conditions for the signal and idler fields are given 

as 

 �9(0) = �9 ≠ 0 (2.56) 

 ( )0 0.iA =  (2.57) 

Since the pumps are strong, we can assume their amplitudes (�;), �;&) are constant 

during the whole process. During the FWM process, the variations of signal and idler 

fields are given as 

 
*,s
i

dA
i A

dz
= Γ  (2.58) 

*,i
s

dA
i A

dz
= Γ  (2.59) 

where Γ = ����(�)
& �;)�;&. Therefore, by applying the boundary conditions, Eq. 2.58 

and Eq. 2.59 are solved as 
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 ( ) ( ) ( )0
,

2

s z z
s

A
A z e eΓ −Γ= +  (2.60) 

( ) ( ) ( )0
.

2

s z z
i

A
A z i e eΓ −Γ= −  (2.61) 

As expected, Eq. 2.60 and Eq. 2.61 show that the stimulated four-wave mixing can 

provide gains to both signal and idler fields. At the exit surface of the sample where 

z = L, the amplitudes of signal and idler become 

 ( ) ( ) ( )0
,

2

s L L
s

A
A L e eΓ −Γ= +  (2.62) 

( ) ( ) ( )0
.

2

s L L
i

A
A L i e eΓ −Γ= −  (2.63) 

Since the effective length of the sample ( ) is short, we can approximate the 

amplitudes as 

 ( ) ( )( )2 20 1 ,s sA L A L≈ + Γ  (2.64) 
( ) ( )0 .i sA L iA L≈ Γ  (2.65) 

We can then obtain the four-wave mixing efficiency as 
¡¢£¤¢¥¦£§ ¨© ¦ª«¤¬ ©¦¤«ª

¡¢£¤¢¥¦£§ ¨© ¥¦­¢®« ©¦¤«ª =
|¯°(±)|~
|¯²(±)|~ ≈ ´& &. The FWM efficiency is usually used as a quality factor of how good 

the alignment is. In summary, StFWM is useful for an estimation of the 

�(�)-nonlinearity of the sample. In addition, since the signal and idler fields are strong 

enough for viewing on an IR viewer card, StFWM also provides a convenient way for 

the alignment of the experimental setup of SpFWM where the signal and idler fields 

are on the single photon level. 
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2.2.2.2 Spontaneous four-wave mixing 

SpFWM is essential for the photon-pair generation in this thesis. In this section, we 

will discuss SpFWM process in details. In contrast with StFWM, the signal beam is 

blocked. Instead, two pump beams are used to generate both signal and idler fields 

[71]. Here, we will work in the scheme as shown in Fig. 2.8, note that the entrance 

surface of the sample is now placed at z = −   2⁄  and the exit surface is then   2⁄ . 

Two pump beams propagate in the vertical plane from z = − ±
& to z = ±

& . The 

generated signal and idler beams are detected along µ9¶¶¶· and µ¸¶¶· directions (that satisfy 

the phase matching condition) in the horizontal plane. In the following derivations, 

two scenarios are studied; (i) the pump fields are continuous waves (CW), (ii) the 

pump fields are pulsed wave-packet. 

 

Figure 2. 8 

Forward four-wave mixing geometry. 
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2.2.2.2.1 Continuous-wave approach 

In the CW approach, we start by modeling the pump field (D;) as a spatial Gaussian 

with a beam width of I7. The pump field is propagating along the z-axis with a 

frequency of 87: 

 

( )2 2

2 0
02 ,

x y z
i t

r c
p pE A e e

ω
− +

 − 
 =  (2.66) 

Here, �; is the amplitude of the field. Note that in the real experiment, we can 

measure the pump power but not the amplitude (�;). Since the power and the 

amplitude are related, we can write �; as a function of the pump power. To do this, 

we can consider an arbitrary time of d, during which the energy of the pump field is 

given by 

 
*

0 0

0

,

cT

p pdx dy dzE E nε ω
∞ ∞

−∞ −∞

=∫ ∫ ∫ h  (2.67) 

where ¹ is the speed of light, % is number of photons within the space. On the 

left-hand side of the equation is the energy of the electric field, while on the 

right-hand side of the equation is the same amount of energy but represented by the 

number of photons. Based on the Eq. 2.67, �; is solved as 

 
0

2

0 0

.p

n
A

r cT

ω
ε π

= h
 (2.68) 
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In Eq. 2.68, ºI7&¹d can be viewed as the volume that contains % photons. Note that 

the electric field is calculated in the vacuum instead of in the sample because the 

effect of the refractive index of the sample (% = 1 + 0.5�())~1) can be neglected. 

In the following discussion, we can assume the pump fields are plane waves, and then 

introduce the spatial Gaussian profile as correction terms. 

We can start by writing down the analytical expressions of the four fields. In contrast 

with the example in degenerate StFWM, the generated signal and idler are multicolor 

instead of monochromatic even though the pump fields haven’t changed, because the 

signal is not defined prior to entering the sample. The four fields are 

 ( ) ( )
,s s si k z t

s s s sE d A e ωω ω
∞

−

−∞

= ∫  (2.69) 

( ) ( )
,i i ii k z t

i i i iE d A e ωω ω
∞

−

−∞

= ∫  (2.70) 
( )0 1 0

1 ,pi k z t

p pE A e
ω−=  (2.71) 

( )0 2 0

2 ,pi k z t

p pE A e
ω−=  (2.72) 

where, µ9 = »
¼¨¥ ½², µ: = »

¼¨¥ ½°, and µ; = »
¼¨¥ ½¾ are the principle axes for each beam, 

�9 = �²�  and �: = �°�  are the wave vectors. We now consider the amplitude of each 

electric field as a field operator in Hilbert space [72]. The propagations of these field 

operators along z-axis are governed by Maxwell equations, 
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( ) ( ) ( ) ( ) ( )
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 (2.73) 
( ) ( ) ( ) ( ) ( )
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 (2.74) 
02

.
cos cos cos

i s

p i s

k k k
k

θ θ θ
∆ = − −   (2.75) 

The hats in the Eq. 2.73 and Eq. 2.74 indicate that they are field operators in Hilbert 

space. The evolvements of field operators are induced by two processes; (i) self-phase 

modulation (former term), which is a first-order effect, (ii) four-wave mixing process 

(latter term), which is a third-order effect. The self-phase modulation can be 

eliminated if we use the following transformations, 

 ( ) ( )
( )1

2cos
, , , ,

s

s

ik z

s s s sÂ x y z A e
χ

θω ω= %  (2.76) 

( ) ( )
( )1

2cos
, , , .

i

i

ik z

i i i iÂ x y z A e
χ

θω ω= %  (2.77) 

We define Υ) = �:�²�(�)¼¨¥~½¾& ¼¨¥ ½² , Υ& = �:�°�(�)¼¨¥~½¾& ¼¨¥ ½°  and Υ = �:���(�)
& . Since the angles 

of the beams are small (À; ≈ À9 ≈ À: ≈ 0) and the wavelength of the beams are close 

(�7 ≈ �9 ≈ �:), we can use the constant Υ ≈ Υ) ≈ Υ& to replace Υ) and Υ& in the 

equations. Although �(�)  is wavelength dependent, we can assume that �(�)  is 

constant because we can only detect a selected combination of signal and idler fields 

in the narrow bandwidth regime in the experiment. Applying the phase-matching 

condition 2�7 = �9 + �:, the equations are arranged to become 
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( ) ( )
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ω
ω ω
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∂

%
%  (2.79) 

We see that the equations have become much simpler. Now we can insert the spatial 

Gaussian profile to the three fields as correction terms. Eq. 2.78 and Eq. 2.79 become 
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We need to work on the integral of Eq. 2.80 and Eq. 2.81 along µ-axis inside the 

sample to solve for the generated signal and idler fields at the exit surface of the 

sample. Since the third-order nonlinearity is not strong enough to change the values of 

the operators, we can make the following assumptions (i) when solving for the signal 

operator at the exit surface �Á9 T±
& , 89X, we assume the idler operator �Á:(µ, 8:) =

�Á:(0, 8:), (ii) when solving for the idler operator at the exit surface �Á: T±
& , 8:X, we 

assume the signal operator �Á9(µ, 89) = �Á9(0, 89) . These assumptions require 

Υ�;&   ≪ 1, which implies that the field operators are almost constant. After the 

integrations, the two operators at the exit surface of the sample become 

 ( )† 2

0 1, , , 2 ,
2 2 2

s s s s i s p

L L L
A A A A I Lω ω ω ω     = − + ϒ − −     
     

% % %  (2.82) 

( )† † * 2

0 2, , , 2 ,
2 2 2

i i i i s i p
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A A A A I Lω ω ω ω     = − + ϒ − −     
     

% % %  (2.83) 
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where Â) and Â& are two spatial integrations along z-axis inside the sample that 

depend on the angles of the beams (À:, À9, and À;). 
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( ) ( )2 2 2 2 2

2 2 2
0 0

2
2

2

2

.

i p i s

i

L
z tan tan z sin

r r cos

L

I dze e
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= ×∫  (2.85) 

Note that in this case, Â) and Â& are not equal because the phase matching condition 

requires À9 ≠ À:. 

We calculate the correlation function �(&)(Ã) for studying the temporal correlation 

between signal and idler fields [71]. τ is the temporal delay between the signal and 

idler detectors. Two bandpass filters with a bandwidth of Å8 are inserted in front of 

the detectors for confining the spectra of signal and idler fields. 
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The photon-pair rate is given as 

 ( ) ( ) 2† 4

10 0 .s s pÂ Â It At ω= ϒ ∆  (2.87) 
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Figure 2. 9 

G(2) with respect to temporal delay τ between signal and idler beam. The bandpass filter width △ω=20 

nm. 

 

2.2.2.2.2 Gaussian-pulse approach 

To simulate the real experimental setup, we treat the pump field as a pulse with a 

temporal Gaussian profile in this section. In this case, the field has a Gaussian shaped 

bandwidth in the frequency domain. Therefore, the pump field in the frequency 

domain can be written as [73] 

 ( ) ( ), , , , , , ,
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p
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i t
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p p p pE x y z t d A x y z e

ω
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ω ω
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= ∫  (2.88) 

where 

 ( )
( ) 2 22

0
22

022, , , ,

x y

r
pA x y z I e e

ω ω
σω

+− −−
= ×%  (2.89) 



51 

 

 

 

which is a Gaussian shape centered at frequency 87 with a standard deviation of Ç. 

This expression also contains a spatial Gaussian profile in the x-y plane with a 

standard deviation of I7. The intensity ÂÁ is related to the energy within the pulse, 

therefore it’s also related to the total photon numbers within pulse, 

 †

0 0.p pdx dy dzE E n ω
∞ ∞ ∞

−∞ −∞ −∞

=∫ ∫ ∫ hò  (2.90) 

The integration along space gives the total energy of the pump field within one pulse, 

which is equal to the energy of n photons within the pulse. The intensity is solved as 

 0

2.5 2

0 0

.
2

n
I

r c

ω
π σ

= h%
ò

 (2.91) 

We will also use the peak amplitude of the pump field (√Â = É2ºÂÁÇ&) in the FWM 

process. 

As we have treated the spatial Gaussian profile in the previous section, we use the 

same method in this section. So, in the following discussion, the spatial Gaussian 

profile of the two pump fields are ignored and inserted back as corrections terms later. 

We write the signal idler, and two pump fields in the frequency domain as 
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, ,s s si k z t

s s s sE d A z e ωω ω
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= ∫  (2.92) 
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 ( ) ( )2 2 2
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ωω ω

∞
−

−∞

= ∫  (2.95) 

In the above equations, Ê) and Ê& represent the two pumps, �;) and �;& are the 

shape functions of the two pump fields, �9 and �: are the shape functions of signal 

and idler fields, respectively. Although the pump fields are obtained from the same 

laser, they propagate along slightly different directions. Therefore, the difference 

between �;), �;& should show the difference between the propagating directions of 

two pump beams. Since the pump beams are too strong to be affected by the 

generated signal and idler beams, we assume their amplitudes are constant in the 

process. Therefore, the two pump shape functions are given as 
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which are independent on z-axis. We use field operators instead of amplitudes to 

describe the signal and idler electric fields [72]. In the forward four-wave mixing 

geometry, the propagations of signal and idler field operators along z-axis satisfy the 

Maxwell's wave propagating equations 
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with 
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∆ = + − −  (2.100) 

The equations above indicate that the propagations of signal and idler field operators 

are driven by two processes, self-phase modulation and FWM process. The 

self-modulation process induces a phase change while the FWM induces an amplitude 

change. We separate the two processes by using the following transformations 
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( ) ( )1 1 1 1 ,p p p pÂ Aω ω= %  (2.103) 
( ) ( )2 2 2 2 .p p p pÂ Aω ω= %  (2.104) 

By inserting Eq. 2.101 - Eq. 2.104 into Eq. 2.98, Eq. 2.99 and applying 

phase-matching conditions, we obtain 
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where Υ = �:��&� �(�) is a constant. The above equations contain only the effect of the 

third-order nonlinearity because the self-phase modulation terms are contained inside 

the signal and idler operators. We can apply the spatial Gaussian profile of the fields 

as correction terms into equations Eq. 2.105 and Eq. 2.106. By doing the integral, we 

obtain the signal and idler operators at the exit surface of the sample as 
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with two spatial integrations 
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Note that the two integrations are the same as in the previous section. 

We use the temporal correlation function (�(&)(Ã)) to characterize the correlation 

between signal and idler beams with a temporal difference of Ã [71]. 
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In the Eq. 2.111, Â:(G) destroys (detects) an idler photon at time G, while Â9(G + Ã) 

on the other hand, destroys (detects) a signal photon at time G + Ã. These operators 

act on the vacuum state |0- because no signal/idler photons are introduced in the 

SpFWM process. Since the bandpass filters are inserted to confine the bandwidth of 

the generated photons on each arm, �(&) can be calculated as 
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Where Δω is the bandwidth. The number of the photon-pair per pulse is 
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The temporal correlation function �(&)(Ã) behaves differently in the two cases with 

(i) continuous-wave field and (ii) Gaussian-pulse field. The difference is caused by 

the temporal integration. We calculate the photon-pair per pulse as 0.4353 per pulse.  
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Figure 2. 10 

G(2) with respect to temporal delay τ between signal and idler beam. For pulsed case, we detect photons 

in a limited time interval of 200 fs (FWHM of one pulse), rather than continuously detect photons as in 

CW case. The bandpass filter width △ω=20 nm. 

 

2.2.2.2.3 Single counts in spontaneous four-wave mixing 

In the frequency domain representation, if the pump is Gaussian with a peak intensity 

of D;7 and variance σ = 2 √Í%4 Δ8;Î , where Δ8; is the bandwidth of the pump, 

then the single count of the signal is given as [74] 

�9 = TÏÐ±
& X& T√Ñ

Ò X& ∬ Ô]%¹& TÕ�±
& X& KJÊ T− |Õ�²�Õ�°|~Ò~

& X ÖÕ�²×Ø²
ÖÕ�°×Ø° , (2.114) 

where S = Ú7�(�) h¾�~
Û Ü�²�°ÛÝ²Ý° is the gain parameter, I is a normalized factor, Δ89 

and Δ8:  represent the frequency detuning in the signal and idler channels, ßà9 and 

ßà: are the group velocities, respectively. Note that the �(�) in the nondegenerate 

SpFWM is different from the �(�) in the degenerate StFWM. However, their values 
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are close since the nonlinearity is based on a two-photon resonance in a two-level 

system without other resonances which may occur from an intermediate level. 

Therefore, we assume the value of �(�) in SpFWM is also on the order of 10(&� 

m2V-2, corresponding to that in the degenerate case. In our experiment, 

Ô]%¹& TÕ�±
& X& ≪ 1, the signal is centered at 730 nm with a bandwidth of 20 nm, and 

the idler is centered at 849 nm with a bandwidth of 20 nm. If we assume Ú9 = Ú: = Ú7, 

for estimation purposes, then �9 = 0.05 per pulse when the pump power is 5 mW. It 

corresponds to a rate of 2000 pairs per second, which is much greater than 0.2 pairs 

per second according to the experimental result under similar conditions cite [75]. The 

difference mainly depends on two reasons. First, we targeted a small portion (~0.1%) 

of photon pairs on the phase-matching cone. Second, the low detection efficiencies 

(~50% on each arm) result in even less (~25%) photon-pair rates. 

In conclusion, we have investigated a theoretical model that can explain the 

instantaneous �(�)  nonlinearity of a two-level system with permanent dipole 

moments in response to ultrashort pulses. The results match the numerical simulation 

if the amplitude of the electric field is within the limit. Moreover, the model could 

estimate the strength of the nonlinearity as observed in the experimental discoveries. 
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2.2.3 Two Photon Absorption 

 

Figure 2. 11 

The two-photon absorption in the energy-level diagram of EGFP. The solid lines represent energy 

levels, the dotted lines represent vibronic levels, and the dashed lines represent the virtual states. The 

green arrows represent the pump photons with a frequency of 01, and the purple arrow represents the 

fluorescence. 

Along with the FWM process are some other nonlinear effects that can induce noise 

to the generated photon pairs. The major nonlinear noisy processes are two photon 

absorption (TPA) and Raman scattering. In this section, we study TPA. TPA is the 

process of simultaneously absorbing two photons of same or different frequencies to 

excite a molecule from one electronic state (usually the ground state) to a higher 

electronic state. Accompanying the TPA is the fluorescence. According to 

Vavilov-Kasha’s rule, the fluorescence of polyatomic molecules always occurs from 

the lowest excited state (S1) to the ground state (S0). This is because the higher excited 

electronic state (Sn>1) decays non-radiatively to the S1 on a picosecond time scale, S1 

then decays radiatively to S0 on a nanosecond time scale with an emitted photon 

(fluorescence) as shown in Fig. 2.11. The probability of TPA is characterized by the 
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two-photon absorption cross section (Ç&), which is measured in Goeppert-Mayer units 

with 1 GM = 10−50 cm4s. TPA can occur in a three-level system, or in a two-level 

system with permanent dipole moments. For the three-level model [52], 

Ç&(k) = Ak&|C@)|&|C)7|&á&(k)(k)7 − k)& , (2.115) 

Where A is a constant, ν is the excitation frequency, C@) and C)7 are the dipole 

moments between Sn and S1, and S1 and S0, respectively, á&(k)  is the TPA 

line-shape function, k)7 is the frequency difference between S1 and S0. TPA can be 

very strong in the region if C@) and C)7 are large, and if resonance enhancement 

occurs when the excitation frequency is close to k)7. For the two-level system [52], 

Ç&(k) = A|ΔC)7|&|C)7|&á&â (k), (2.116) 

Where ΔC)7 is the difference permanent dipole moments of S1 and S0, and á&â (k) is 

the TPA line-shape function. In our experiment, the center excitation wavelength is 

785 nm, thus we should use the two-level model for describing TPA. We see that the 

term “|ΔC)7|&|C)7|&” also occurs in our third-order nonlinearity in the “two-level 

system” section, that’s because the imaginary part of the third-order nonlinearity is 

responsible for the TPA. TPA is a major noisy process in our photon-pair generation 

experiment because of two reasons. First, the fluorescence photons may leak into the 

photodetectors that dilute the generated photon pairs. Second, the fluorophores that 

participate in the TPA cannot undergo the SpFWM process. 
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Although TPA can reduce the purity of photon pairs generated in our experiment, it 

has significant applications in imaging living systems. For example, researchers use 

two-photon laser scanning microscopy (2PLSM) [76, 77] of cells and tissues 

expressing fluorescent proteins for biological studies. 2PLSM can help obtain better 

optical recordings of ion concentration and cell signaling with genetically targeted 

sensors [24, 59]. The potential advantages of TPA can also be achieved in the 

genetically targeted deep photodynamic therapy, chromophore-assisted light 

inactivation [59], three-dimensional optical memory [45], and super-resolution 

imaging techniques (such as stimulated emission depletion [78], photoactivated 

localization microscopy and stochastic optical reconstruction microscopy [79]). 

What’s more, people use TPA in microfabrication and lithography because the 

absorption rate of light by a molecule depends on the square of the power of the laser. 

Therefore, if the material is cut with a high-power laser beam, the rate of material 

removal decreases very sharply from the center of the beam to its periphery. Thus, the 

"pit" created with TPA is sharper and better resolved than using normal absorption. 
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2.2.4 Raman Scattering 

 

Figure 2. 12 

Raman scattering and stimulated Raman scattering on the electronic states of EGFP. The green arrow 

represents the pump photon (01), the red arrow represents the Stokes photon (0,), and the blue arrow 

represents the anti-Stokes photon (04). The curved arrow represents the stimulated process. 

In this section, we study the Raman scattering (RS) and Stimulated Raman Scattering 

(SRS) because they can induce noise in the photon pairs generated in the experiment. 

In our system, RS may occur due to one pump photon scatters inelastically by 

annihilating (anti-Stokes process) or creating (Stokes process) a vibrational phonon as 

shown in the left part of Fig. 2.12. Stokes scattering can incur noise in the idler 

channel where the wavelength is longer than the pump photons. In a similar way, 

anti-Stokes scattering can incur noise in the signal channel where the wavelength is 

shorter than the pump photons. Although most pump photons scatter elastically 

(Rayleigh scattering) such that they retain their energy (frequency and wavelength), 
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there’s still a small fraction of the pump photons that scatters inelastically. This can 

be a concern if the number of incident pump photons is huge as is the case in our 

experiment where we use high-energy pump pulses. Of the two processes, stokes 

scattering is much more common than anti-Stokes scattering because of Boltzmann 

distribution of the vibronic states, where the lower energy states are more often 

occupied than the higher ones. Therefore, RS incurs more noise in the idler channel 

than in the signal channel. To reduce the noise incurred by RS in the signal/idler 

channel, we can use polarization filtering. This is because the photon pairs generated 

from SpFWM are co-polarized with the pump photons, while Raman photons are not 

co-polarized with pump photons. The polarization filtering can reduce about half of 

the Raman photons in the signal/idler channel. 

If the previously generated Stokes/anti-Stokes photons participate in the RS, then the 

stimulated Raman scattering (SRS) can occur in the system as shown in the right part 

of Fig 2.12. The Stokes field (anti-Stokes field) at frequency 89 = 8; − 8×  (8V =
8; + 8× ) can beat with the pump field to produce a modulation of the total 

electric-field intensity. The modulated field contains a frequency component of 8×, 

which leads to a stronger molecular vibration. The stronger molecular vibration then 

leads to a stronger Stokes field, which in turn leads to a stronger molecular vibration. 

In this case, more pump photons are converted into Raman photons than in the Raman 

scattering. Therefore, SRS amplifies the Stokes (anti-Stokes) scattering in the 

presence of the pump field, adding more noise photons in the idler (signal) channel. 
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Note that SRS is more effective in the idler channel than in the signal channel due to 

more Stokes photons are created than the anti-Stokes photons in the RS process. 

Unfortunately, the polarization filtering cannot effectively distinguish SRS photons 

from the FWM photons because both processes create photons with the same 

polarization as the pump photons. 

Note that the Raman effect intrinsically differs from the process of fluorescence. In 

fluorescence, the incident light is completely absorbed, and the system is transferred 

to an excited state from which it can go to various lower states only after a certain 

resonance lifetime. However, the Raman effect can take place for any frequency of 

incident light. In contrast to the fluorescence effect, the Raman effect is not a resonant 

effect. Therefore, the fluorescence peak is always anchored at a specific frequency 

depending on the energy difference between the first excited state and the ground 

state, while the Raman peak maintains a constant separation from the excitation 

frequency. Although RS and SRS can reduce the purity of the photon pairs generated 

from SpFWM process in our experiment, Raman spectroscopy can be very useful in 

some applications such as material identification and analysis. SRS is exploited in 

Raman amplifiers and Raman lasers. 

 

2.3 Z-scan technique 

A careful measurement of the third-order nonlinearity, both its real and imaginary 

parts, is required to predict the performance of the photon-pair source in our 
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experiment. The z-scan technique has been widely used for measuring such 

nonlinearities of nonlinear media [80]. 

 

Figure 2. 13 

Z-scan schemes. (a) open-aperture z-scan. (b) closed-aperture z-scan. The laser is split by a beam 

splitter and then focused into a cuvette that is free to move on the z-axis. The transmitted light is sent 

into a detector with/without an aperture. 

In practice, the z-scan technique relies on moving the nonlinear sample along a 

well-defined Gaussian beam on the z-axis for recording the transmitted power in two 

schemes as shown in Fig. 2.13; one with an open aperture in front of the end detector, 

the other with a closed aperture in front of the end detector. In the open-aperture 

scheme, we assume all the transmitted power are captured by the detector. Therefore, 

the change of the transmitted power with respect to the sample position is directly 

related to the nonlinear absorption of the Gaussian beam at different positions. In the 

closed-aperture scheme, only the center part of the power is measured. In other word, 
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the measured intensity is related to the beam radius. Therefore, in the closed aperture 

scheme, measuring the power is equivalent as measuring the beam radius as a 

function of the sample position. Due to the self-focusing effect induced by the �(�) 
nonlinearity, the sample can be viewed as a lens. For example, if the nonlinear 

refractive index is positive, the sample is equivalent as a convex lens; self-focusing 

can increase the beam divergence if the sample is placed in front of the focus and thus 

reduce the measured intensity, self-focusing can reduce beam divergence if the 

sample is placed behind the focus and thus increase the measured intensity. If the 

nonlinear refractive index is negative, the sample can be treated as a concave lens. 

Therefore, it is possible to calculate the value of the nonlinear refractive index by 

measuring the dependence of the intensity on the sample position. Note that the 

open-aperture scheme is also used in conjunction with the closed-aperture scheme to 

correct the calculated value of �(�) because the nonlinear absorption can affect the 

measurement of the nonlinear refractive index. In summary, the z-scan technique can 

provide clues for speculating the nonlinear absorption and the nonlinear refraction of 

light inside the medium to obtain the value of �(�). In this section, we study the 

intricate z-scan theory and discuss the measurement of the third-order nonlinearity of 

EGFP. 

 

2.3.1 Gaussian-beam approach of z-scan technique 

To obtain an expression of the electric field, we can start from the Maxwell equation 
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where D is the electric field, ¹ is the speed of light. In the z-scan technique, the 

paraxial approximation is applied such that the complex field is approximated as 

 ( ) ( ), , , , .ikz i tE x y z A x y z e ω−≈  (2.118) 

where k = &Ñ
ä  is the wave vector and λ is the wavelength. We can apply the slowly 

varying envelope approximation (SVEA) to solve Eq. 2.117. The SVEA is valid when 

the envelope of the electric field �(J, å, µ), varies slowly in time and space compared 

to one period or wavelength, which is the case in our experimental setup. By applying 

the SVEA, we can simplify the Helmholtz equation Eq. 2.117 into 
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 (2.119) 

The above differential equation has an infinite set of solutions. Among the solution set, 

the Gaussian expression is the lowest-order one. In fact, Gaussian expression turns out 

to be a good approximation for most laser beams [81]. Therefore, we consider our 

laser as a well-defined Gaussian beam and thoroughly study its behaviors under the 

third-order nonlinearity in this section. The first order solution (Gaussian expression) 

of the electric field is written as 

 ( ) ( ) ( ) ( ) ( )
( )

2 2
,0

0 2
, , exp ,

2

i z tw r ikr
E z r t E t e

w z w z R z
φ− 
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 

 (2.120) 
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where æ7 is the beam waist; æ(µ) = æ7Ü1 + »~
»�~, is the beam radius at µ, R(µ) =

µ T1 + »�~»~X  is the radius of curvature of the wavefront at z , µ7 = �è�~&  is the 

diffraction length of the beam. D7(G) is the radiation electric field at the focal point 

where z = 0 that contains temporal information of the Gaussian beam. K(:é(»,A) is a 

phase factor that contains all the radially uniform phase variations. 

In the z-scan technique, the beam radius will change due to diffraction or nonlinear 

refraction inside the sample. However, if the sample is thin enough, then the change 

of the beam radius is negligible. The “thin sample” assumption is valid when the 

length of the sample   ≪ µ7. The assumption is also valid when   ≪ »�∆é(7), where 

∆ë(0) is the radial phase variation. Since our experimental setup qualifies the criteria, 

we apply the “Thin sample” assumption in the following discussions. 

The third-order nonlinearity contains real and imaginary parts. The real part 

modulates the phase ë  of the electric field, while the imaginary part induces 

nonlinear absorption. Therefore, the intensity Â and the phase ë of the electric field 

are expressed as a function of µâ as shown below: 

 ( ) ,
d

n I k
dz

φ∆ = ∆
′

 (2.121) 

( ) ,
dI

I I
dz

α= −
′

 (2.122) 

where µâ is the propagation length inside the sample, α(Â) is an absorption term 

which includes both linear and nonlinear absorption terms. The linear absorption term 
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α is a constant. The third-order nonlinear absorption term íÂ is intensity dependent, 

with í  being a constant. If the third-order nonlinear absorption term íÂ  is 

negligible, then α(Â) ≈ α. In this case, Eq. 2.121 and Eq. 2.122 are solved as 

 ( ) ( )0 ,zI z I e α− ′=′   (2.123) 
( ) ( ) ( ) ( )2 2

0

1
0 0 1 ,

z
z zz kn I e dz kn I eα αφ
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′
′− − ′′ ′∆ = = −∫  (2.124) 

where Â(0) is the electric field intensity at the entrance surface of the sample. We 

can solve the intensity and phase of the electric field at the exit surface of the sample 

as a function of space and time by using the Gaussian expression as shown below, 
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where 

 ( )1 .z
eff

L
L e α

α
− ′= −  (2.127) 

Â7(G) is the on-axis irradiance at the focal point (z = 0). The electric field at the exit 

surface of the sample Dî contains both linear absorption term and phase distortion 

term 

 ( ) ( ) ( ), ,2, , , , .
L

i z r t
eE z r t E z r t e e

α
φ− ∆=  (2.128) 
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Eq. 2.128 is no longer a Gaussian beam due to the phase distortion term K:∆ï(»,ð,A). 
This non-Gaussian expression gives trouble on solving the propagation of the electric 

field at the detector end. We can use Taylor expansion to simplify this problem by 

decomposing the electric field into an infinite series of Gaussian beams with 

increasing orders. The Taylor expansion of the phase distortion is expressed as 

  (2.129) 

where 
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As a result, the phase distortion induced by the third-order nonlinearity has 

transformed the fundamental TEM00 mode Gaussian beam into a series of Gaussian 

beams with a beam width of æ�(µ) = è(»)
√&��) . Each Gaussian beam travels 

independently and reconstructs at the detector end. We discuss two cases (a) the beam 

waist æ7 is relatively large and (b) the beam waist æ7 is not relatively large. 

When the beam waist æ7 is relatively large, the mth Gaussian beam at distance µ 

becomes: 
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where the diffraction length of the beam µ� = �èñ~ (7)
& , the curvature of the wave front 

ò�(µ) = µ T1 + »ñ~»~ X , and ó�(µ) = − tan() »
»ñ. 

In the case where æ7 is not relatively large, the electric field at the aperture becomes 
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where d is the distance between the sample and the detector. With the definition of  

( )g 1
d

R z
= + , the remaining parameters in the Eq. 2.133 are: 
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Once the electric field at the detector is obtained, we can immediately calculate the 

power that transmitted to the detector by working out an integral with respect to the 
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aperture area to estimate the nonlinear refractive index and the nonlinear absorption 

coefficient. 

 

2.3.2 The Normalized z-scan transmittance 

In practice, we measure the normalized z-scan transmittance to speculate the 

third-order nonlinearity. The normalized z-scan transmittance is defined as the ratio 

between the transmitted power with and without the sample. However, the two 

transmitted powers cannot be simultaneously obtained. We split the laser beam into 

two parts to solve this problem. One part goes into a detector after passing through the 

sample while the other part goes into another detector without passing through the 

sample. The transmittance d(µ) is given as: 
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where 
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õöM∆Φ7(G)Q is the transmitted power through an aperture with radius IV, õ:(G) is 

the instantaneous input power, and 6 is the aperture linear transmittance. 
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The value of í can be obtained by open aperture z-scan measurement. In open 

aperture z-scan measurement (6 = 1), the normalized transmittance is rewritten as 

 ( ) ( ) ( ) 2
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As a result, we can speculate the nonlinear absorption coefficient í by numerically 

fitting the measured open aperture z-scan transmittance data with the theoretical value 

in Eq. 2.143. When |ø7(µ, 0)| < 1, Eq. 2.143 is further simplified by using Taylor 

expansion with respect to ø7(µ, 0), which has the advantage in numerical evaluation. 

  (2.145) 

In conclusion, the value of nonlinear absorption coefficient í  can be clearly 

determined by fitting the open aperture z-scan transmittance to Eq. 2.143 or Eq. 

2.145. 

On the other hand, we obtain %& with a closed aperture z-scan measurement. We 

divide the closed aperture z-scan transmittance by the open aperture z-scan 

transmittance [82]. The divided result appears to be a z-scan transmittance without 

nonlinear absorption process. In fact, the result agrees to the z-scan transmittance 

( ) ( )
( )

0

1.5

0

,0
, 1 .

1

m

m

q z
T z S

m

∞

=

 − = =
+

∑



73 

 

 

 

from a purely refractive z-scan within 10% error. Finally, we fit the divided result to 

obtain %& by using the well-established formula 

( ) ( )( )
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(2.146) 

In Eq. 2.146, d(J) is the normalized transmittance, x = »
»� is the normalized position 

of the sample, ∆Φ = k%&Â7(G) îùù is the on-axis nonlinear phase shift at the focal 

point. 

In conclusion, we have thoroughly outlined the theory of the z-scan technique. Based 

on that study, we reviewed the method for speculating the third-order nonlinearity of a 

thin sample. In our experiment as discussed in Chapter 3, we apply the z-scan 

technique to obtain the nonlinear refractive index of EGFP. 

 

2.4 Quantum State Tomography 

We generate the polarization-entangled two-photon state M|??- + K:ï |��-Q √2⁄  

through a four-wave mixing process in EGFP. We then use the standard method of 

quantum state tomography (QST) to characterize the state. QST is the process of 

reconstructing the density matrix for a source of quantum systems by measurements 

on the systems coming from the source. The measurements must be tomographically 

complete to uniquely identify the state. In other words, the measured operators must 
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form an operator basis on the Hilbert space of the system, providing all the 

information about the state. 

In our case, to characterize the photonic state, we need 15 unknown parameters that 

determine a 4 × 4 density matrix, and 1 unknown real parameter, which is a constant 

that related to the detector efficiency and light intensity. Therefore, we need a total of 

16 measurements to perform the QST. One possible tomographic analysis states used 

in our experiments is shown in the table below. For each setting of waveplates, we 

measure the coincidence counts (CC) and accidentals (AC).  Using the maximum 

likelihood estimation, we can reconstruct the 4 × 4  density matrix Uúû  in the 

horizontal-vertical (HV) basis. 

number Modes Modei HWPs QWPs HWPi QWPi 

1 |?- |?- 0° 0° 0° 0° 

2 |?- |�- 0° 0° 45° 0° 

3 |�- |�- 45° 0° 45° 0° 

4 |�- |?- 45° 0° 0° 0° 

5 |ò- |?- 22.5° 90° 0° 0° 

6 |ò- |�- 22.5° 90° 45° 0° 

7 |�- |�- 22.5° 45° 45° 0° 
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8 |�- |?- 22.5° 45° 0° 0° 

9 |�- |ò- 22.5° 45° 22.5° 90° 

10 |�- |�- 22.5° 45° 22.5° 45° 

11 |ò- |�- 22.5° 90° 22.5° 45° 

12 |?- |�- 0° 0° 22.5° 45° 

13 |�- |�- 45° 0° 22.5° 45° 

14 |�- | - 45° 0° 22.5° 0° 

15 |?- | - 0° 0° 22.5° 0° 

16 |�- | - 45° 0° 22.5° 0° 

Table 2.2 The tomographic analysis states used in the experiments. QWPs (HWPs): quarter (half) 

waveplate on signal arm, QWPi (HWPi): quarter (half) waveplate on idler arm. |�- = (|?- + |�-) √2⁄ ,  

|ò- = (|?- + ]|�-) √2⁄  and | - = (|?- − ]|�-) √2⁄ . 

 

2.5 Correlations 

In the previous sections, we have studied the generation of photon pairs via SpFWM 

from the EGFP, the noise processes, and the z-scan technique for characterizing the 

�(�)  nonlinearity. Here in this section, we move forward to characterize the 

properties of the photon pairs because of two reasons. First, the photon pairs can 

reflect the quantum mechanical properties within the system. Second, the photon pairs 

may have different applications depending on their properties. For example, if the 
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photon pairs can exhibit quantum correlations, then it not only indicates the 

preservation of quantum superposition and coherence within the EGFP, but also 

potentially develops novel quantum spectroscopic techniques in biological studies. 

For this purpose, our priority is to distinguish the classical information and quantum 

information carried by photon pairs. Specifically, we focus on the correlations within 

a bipartite state. 

So how do we quantify or determine the correlation between two systems? One way 

to view this question is to consider the amount of information contained in each 

system, and the total amount of information contained in the two systems. We can 

look at three examples. In the first case, if the two systems are uncorrelated, meaning 

that they are completely independent with one another, then the total amount of 

information in the two systems should equal the sum of information in each individual 

system. In the second case, if the two systems are completely correlated with each 

other, then the information in one system is totally predictable if the information in 

the other system is measured. This suggests the total amount of information in the two 

systems equals the amount of information in each system. In the last case, if the two 

systems are partially correlated, then the measured information in one system can 

partially dictate the information in the other system, leaving some uncertainties in the 

whole. The total amount of information is less than the sum of information in each 

system. Therefore, in summary, if we can quantify the amount of information in a 

system, then we can define the correlation of two systems based on it. 
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Information entropy is a measure of the average amount of information produced by a 

stochastic source of data. The more unpredictable the system is, the higher its entropy 

is. In the classical information theory, people use Shannon entropy ( H(X) ≡
−∑ Ê: log& Ê:: ) to quantify the information of a source X that produces outcome {Xi} 

with a probability {Ê:}. To understand the rationale behind this definition, we can 

consider the Shannon entropy as the average minimum amount of “yes or no” 

questions to be asked to determine the result of a measurement of X. For example, if 

the probability of getting Xi is Ê:, then we need to ask at least log&( )
;°) = − log& Ê: 

questions to get the answer Xi, and the probability of asking − log& Ê:  questions is 

Ê:. Therefore, if we sum up all the weighed possible outcomes, we can get the 

information entropy as −∑ Ê: log& Ê:: . Now consider we have another system Y that 

produces messages {Yj} with a probability ø�, then the Shannon entropy of Y is 

H(Y), and the Shannon entropy of the combination of the two systems is H(X,Y) =
−∑ Ê:� log& Ê:�: , where Ê:�  is the joint probability of outcomes Xi and Yj both 

occurring. Therefore, in accordance with our qualitative discussion of correlation 

between two systems, we can define the mutual information between the two systems 

as H(X ∶ Y) = H(X) + H(Y) − H(X,Y). This mutual information indicates the amount 

of information shared by the two systems; the higher the value, the more correlated 

the two systems are. If the two systems are independent, then H(X) + H(Y) =
H(X,Y), meaning that the mutual information is 0. 
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Note that the above discussion is based on the classical information theory, where the 

outcomes of a system are deterministic with some probabilities. In the quantum 

regime, however, since the outcome of a measurement may occupy multiple classical 

results simultaneously, people use quantum mechanics to describe the physics. In 

quantum mechanics, a measurement is represented as an operator (�	) on a state, 

which is represented by a density matrix ρ. The result of the measurement is 

represented by eigenvectors of �	ρ  with probabilities of their eigenvalues. To 

quantify the entropy of a quantum system, we can use the Von Neumann entropy 

(S(U)), where S(U) = −Tr(U logU) . In this definition, the density matrix ρ  is 

diagonalized. We can see that if the density matrix represents a classical state, then 

the eigenstates of the density matrix are just the classical outcomes with probabilities 

equaling their eigenvalues, therefore, the Von Neumann entropy equals the Shannon 

entropy. We can also see that if the density matrix represents a pure quantum state, 

then its information entropy based on the classical measurement will be greater than 0 

because the measurement will give multiple outcomes. However, its information 

entropy based on the quantum measurement will be 0 because the state is pure 

(S(U) = 1 log1 = 0); the state is a superposition of different classical states. The 

difference between the classical theory and the quantum theory originates from the 

special correlations between the classical states; the information entropy of the system 

decreases due to the additional special correlations between the classical states. We 

can define this special correlation as quantum correlation. 
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We can use the Von Neumann entropy to study the correlation between two systems 

(A and B). Assuming the density matrix of each individual system is U¯ and U�, 

then the Von Neumann entropy for the two systems are S(U¯) and S(U�). And the 

Von Neumann entropy of the combination of the two systems is S(U¯�), where U¯� 

is the density matrix of the composite system. Then the correlation (mutual 

information) between the two systems is Â(U¯:�) = 6(U¯) + 6(U�) − 6(U¯�) [83]. 

Note that this definition is in accordance with the mutual information in the classical 

case as discussed above. In the quantum case, since the Von Neumann entropy is 

equal or smaller than the Shannon entropy, the mutual information is greater or equal 

than its classical representation due to the possible quantum correlation. Therefore, 

this leads to the subject of characterizing the classical correlation and quantum 

correlation within the mutual information among systems. Also, the characterization 

has significant practical implications as the classical and quantum correlations of 

various systems can lead to the potential applications in different subjects. 

As far as we know, the mutual information (I) contains two and only two parts, 

namely the classical correlation (C) and quantum correlation (Q). We can also 

quantify the mutual information. Therefore, if we can find a way to quantify the 

classical correlation, then we can obtain the quantum correlation based on the simple 

relation � = Â − {. The classical correlation is the intersection of the information in 

subsystems A and B. We know the amount of information in subsystem A is 6(U¯). 

If we measure the subsystem B in an arbitrary basis �: , where �:��:  is a 
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positive-operator valued measure (POVM), then the amount of information in the 

post-measurement state of the subsystem A is ∑ Ê:6MU:̄ Q: , where  U:̄ =
Tr�M�:U¯��:�Q/Tr¯�M�:U¯��:�Q is the post-measurement state of the subsystem A 

after obtaining the outcome i with probability Ê: on the subsystem B. Imagine a 

maximally correlated classical state (|?̄ ?�- + |�̄ ��-)/2  is measured in the 

diagonal-antidiagonal basis, the classical correlation is still contained in the 

post-measurement state of the subsystem A. Therefore, to fully recognize the classical 

correlation, researchers have proposed a measure of classical correlation between two 

systems (A and B) as [83] 

{(U¯�) = max�°��°
l6(U¯) − m Ê:6MU:̄ Q

:
q , (2.147) 

In this definition, the maximum of the set indicates that the classical correlation is 

found by performing the POVM �:��: . Therefore, the quantum information is 

directly obtained by the relation � = Â − {. 

We are extremely interested in a special type of quantum correlation, namely the 

entanglement (D@) because it’s a crucial criterion for realizing quantum information 

protocols in a decohering environment. Entanglement between two subsystems 

quantifies how distinguishable the whole system is from the “nearest” separable state, 

as given by [83] 

D@ = minÒ��∈�_6(U¯�) − Tr(U¯� log Ç̄ �)` , (2.148) 



81 

 

 

 

where D represents the set of all separable or disentangled states. 

Here we will be studying some examples of bipartite systems. First, we characterize 

the correlation of an uncorrelated state 

U7 = (|?̄ ?�-e?̄ ?�| + |?̄ ?�-e�̄ ��| + |�̄ ��-e?̄ ?�| + |�̄ ��-e�̄ ��|) 4⁄ , (2.149) 

where A and B are the two subsystems. Then we study the correlations of classical 

and quantum states, including 

U) = (|?̄ ?�-e?̄ ?�| + |�̄ ��-e�̄ ��|) 2⁄ , (2.150) 

And 

U& = |Φ�-eΦ�|, (2.151) 

where |Φ�- = (|?̄ ?�- + |�̄ ��-) √2⁄ , is a maximally entangled pure state (Bell 

state). 

For U7 , clearly, the mutual information, classical correlation, and quantum 

correlations are 0, because the two subsystems are completely independent with each 

other. For U), I = C = 1,Q = 0. We see that if A gives the outcome |?̄ - (|�̄ -), 
then B must give |?�- (|��-), and that A (B) must be deterministic in one of the state, 

hence no superposition which means the state is classic. For U&, however, I = 2, C =
Q = 1. The difference between U) and U& is that the state can be |?̄ ?�- and 

|�̄ ��- in the same time, which is described by the quantum correlation. 
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3 Chapter3. Experiments and Results 

In this chapter, we will talk about the way we measure the �(�) nonlinearity of EGFP 

through the z-scan measurement, the way we create photon pairs via SpFWM, and the 

way we generate and characterize the entanglement from the created photon pairs. 

Here are some key results; in the z-scan measurement, we obtain the two-photon 

absorption coefficient í = 0.05 ± 0.03 cm GW⁄  and the nonlinear refractive index 

c = 10()*  m& W⁄  at 785 nm. In the SpFWM, we observed high-purity correlated 

photon pairs with a coincidence-to-accidental ratio (CAR) of ~147 from the EGFP, 

which is much greater than that from other laser dyes. We also created high-fidelity 

two-photon polarization-entangled state from the correlated photon pairs. 
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3.1 Z-scan measurement 

 

Figure 3. 1 

The transmittance of the z-scan as a function of ζ=z/2z0 with open aperture at different peak intensities: 

(a) Ip=60 GW/cm2, (b) Ip=120 GW/cm2, (c) Ip=180 GW/cm2 and (d) Ip=240 GW/cm2. Solid red curves 

are least square fit to the data. 

To utilize the �(�) nonlinearity of EGFP through SpFWM for photon-pair generation, 

we need to perform the z-scan measurement for carefully characterizing its 

nonlinearity. As discussed in chapter 2, the z-scan measurement contains both the 

open and closed aperture schemes for estimating the real and imaginary part of �(�). 
The success of z-scan technique relies on focusing a well-defined Gaussian beam onto 

the nonlinear sample. In our experiment, we use a mode-locked regenerative amplifier 
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(Coherent, Model RegA-9000 seeded by Mira-900, and pumped by Verdi-10) that 

emits a Gaussian-shaped pulse centered at 785 nm, with a width of 200 fs and a 

repetition rate of 13 KHz. In both experiments, we use two detectors for detecting the 

transmitted beam and for detecting the reference beam that comes from the beam 

splitter. The reference beam is used for recording the jittering of the incoming beam 

to compensate for the power fluctuation of the transmitted beam. The beam is then 

transmitted through the sample (EGFP) with a molar concentration of 30 μM stored 

in a spectroscopic quartz cuvette (thickness L = 1 mm) mounted on a 

computer-controlled motorized translation stage. At the focal point, the beam waist of 

laser is measured as 87 = 40 ± 2 μm, which correspond to a confocal parameter 

(twice the Rayleigh range) of µ7 = 13.9 mm. Therefore, the thickness of the cuvette, 

relative to the confocal parameter of the laser beam, satisfies the thin sample criterion 

(L ≪ µ7). In each experiment, we translate the sample along the beam through the 

focal point and measure the transmittance. Note that the real experiment may not be 

as ideal as the theory predicts due to various sources of errors. For example, in this 

z-scan measurement, the thermal effect is a major concern. Since we use 

high-intensity laser pulses with peak irradiance of ~200 GW/cm2 to have an 

observable effect, if the EGFP is pumped too frequently, then the protein may be 

photochemically altered and permanently unable to fluoresce. This effect is known as 

photobleaching (sometimes termed fading) and is harmful for photon-pair generation 

as well as the characterization of �(�). Therefore, we need to operate the pumping 



85 

 

 

 

frequency below the threshold of 80 kHz when photobleaching becomes effective [84, 

85]. That’s why we choose to operate the laser at a relatively low repetition rate of 

about 13 kHz. 

For the open-aperture scheme, we vary the laser peak power and record the beam’s 

transmittance with respect to the normalized sample position (ζ = »
&»�) as shown in 

Fig. 3.1. As expected, we can see all four figures show dips around the focal point due 

to the process of two-photon absorption which reduces the transmittance of the pump 

power. We also see an interesting phenomenon when comparing the depth of the 

valleys of the four cases. Ideally, as we increase the laser peak power, we would 

expect a stronger absorption of pump pulses since the rate of TPA is proportional to 

the square of the field intensity, thus the depth of the dip will deepen according to the 

increasing power. However, Fig. 3.1 clearly shows that the depth of dip decreases as 

we increase the pump power. This interesting phenomenon tells us that the absorption 

of the pump displays a saturation behavior, which means that the TPA coefficient β 

is dependent on the pump power as given by 

í(Â) = í(0) É1 + Â& Â9&⁄⁄ , (3.1) 

where Â is the irradiance, Â9 is the saturation intensity, and í(0) is the unsaturated 

TPA coefficient. The origin of this phenomenon is that the fluorophores cannot 

respond to the high pump power effectively because they have already been excited 

via the TPA process. Therefore, we can obtain the saturation intensity Â9 and the 
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TPA coefficient í based on Fig. 3.1. By using the numerical curve fitting, we obtain 

Â9VA = 10 ± 1 GW cm&⁄  and the TPA coefficient í = 0.05 ± 0.03 cm GW⁄ . These 

values are consistent with the measurements reported in [86]. 

 

Figure 3. 2 

The transmittance of the z-scan as a function of ζ=z/2z0 with closed aperture at different peak 

intensities. (a) Ip=60 GW/cm2, (b) Ip=120 GW/cm2, (c) Ip=180 GW/cm2 and (d) Ip=240 GW/cm2. Solid 

red curves are theoretical fits to the data. 

Next, we move on to estimate the real part of the �(�) by comparing the pump 

transmittance in the closed-aperture scheme to that in the open-aperture scheme. Fig. 

3.2 shows the pump transmittance of the z-scan with closed-aperture scheme at 
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different pump peak intensities corresponding to the open-aperture scheme. The 

valley-peak transmittance pattern indicates that the sample works as a convex lens, 

which means the real part of �(�) is positive. In the absence of TPA, the data are 

symmetric with respect to the peak and the valley. However, in the presence of TPA 

the valley becomes deeper and the peak is correspondingly reduced. To estimate the 

pure refractive z-scan transmittance from the experimental results for curve fitting, we 

divide the closed aperture z-scan transmittance by the open aperture z-scan 

transmittance. The divided result appears to be a z-scan transmittance without 

nonlinear absorption process. In fact, the result agrees to the z-scan transmittance 

from a purely refractive z-scan within 10% error. We numerically fit the divided 

result and obtain the nonlinear refractive index %& = 10()*  m& W⁄ . 

 

3.2 Stimulated four-wave mixing 

Our core objective is to generate entanglement from the biological system through 

SpFWM. As a pre-step, we need to study the StFWM for two reasons. First, StFWM 

process is a good test for characterizing the nonlinear responses of the samples 

because a good photon-pair source would require a relatively large χ(�) response. 

Second, the experimental setup of StFWM serves as the foundation of the SpFWM 

experiment since the alignment of optical components for SpFWM depends largely on 

the alignment for the StFWM process. Therefore, before we discuss the generation of 

photon-pair through SpFWM process, we focus on the study of StFWM process. In 
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this section, we first demonstrate the experimental setup, then we characterize the 

efficiency of StFWM for 5 different organic molecules. 

 

3.2.1 Experimental setup 

 

 

Figure 3. 3 

Experiment setup for the stimulated four-wave mixing. Two pump pulses and one signal pulse interact 

in the sample to create an idler pulse that is detected by a free-space PIN detector. 

The experimental setup is shown in Fig. 3.3. The laser system consists of a 

Titanium:Sapphire modelocked oscillator (Mira 900), a Titanium:Sapphire 

regenerative amplifier (RegA 9000), a diode-pumped CW laser (Verdi-V8) that 

pumps the Mira 900, and another diode-pumped CW laser (Verdi-V10) that pumps 

the RegA 9000. The Mira 900 produces the 76 MHz laser pulse train with a typical 

pulse duration of 200 fs at the center wavelength of 785 nm. Then, the 76 MHz 

laser pulse train is sent to RegA 9000 for amplification. In details, the amplification 

process contains three steps. First, the 76 MHz photodiode signal from the Mira 900 
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is used to generate a 38 MHz master clock for the timing of all the RegA 9000 RF 

pulses. The controller box of the RegA 9000 divides this 38 MHz clock so that we 

can operate the amplified laser at the repetition rate of  10 to 300 KHz. Second, an 

acousto-optic modulator, which is part of the Q-switching component, is used to 

prevent lasing in the RegA 9000 cavity until a pulse from the Mira 900 is injected. 

The Q-switch helps store energy for the amplification of the injected pulses. Last, 

another acousto-optic modulator for cavity dumper is used to inject and eject the 

single pulses in the RegA 9000 cavity. Through this amplification process, we operate 

the laser system to emit high-power laser pulses centered at 785  nm  with a 

repetition rate of 40 kHz, and a pulse duration of 200 fs. 
The emitted laser is then split into two pump beams and one probe beam by using 

beam splitters. The two pump beams are of similar power (~50 mW) while the probe 

beam is much weaker (~100 μW). We control the power of the three beams by using 

a half-wave plate (HWP) and a polarizing beam splitter (PBS, not shown in Fig. 3.3). 

The three spatially separated and co-polarized beams are focused inside the sample by 

using a lens of �) = 50 cm. The beam waist for each beam is about 40 µm. Two 

delay-lines, one for probe beam and one for pump beams (not shown in Fig. 3.3), are 

used to compensate the path differences among the three beams so that they arrive at 

the focal point simultaneously to participate in the StFWM. Behind the sample, a lens 

(�& = 2�) = 100 cm) is used to collect and collimate the generated idler photons for 

detection. The probe arm is defined as the signal arm, and the opposite arm is defined 
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as the idler arm. The signal and idler photons must satisfy both the energy and 

momentum conservation laws as pictured in a phase-matching cone in Fig. 3.4. We 

see that the energy conservation law and phase-matching condition require the idler 

beam to be centered at 785 nm and propagate along the same cone with the other three 

beams. Since the two pump beams propagate in a vertical plane and the signal 

propagate in a horizontal plane, the idler beam must propagate in the horizontal plane 

symmetric to the signal beams. 

 

Figure 3. 4 

Phase matching cone of the stimulated four-wave mixing with the degenerate wavelengths i.e. ωp= ωi= 

ωs 

In this experiment, a sample is kept in a 5-mm long cuvette. The cuvette is fixed on a 

motorized translation stage with two degrees of freedom; one is along the z-axis and 

defined as the normal line to the surface of the cuvette, and the other is along the 

y-axis and defined as the vertical direction. Since the three beams are spatially 
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separated in front of the lens, the sample needs to be precisely located in their focal 

region. To locate the sample in the proper place, we characterize the focal region is 

measured in the following way. We scan the translation stage along the z-axis and 

record the power of the idler beam with respect to µ. We expect the power to be 

greater when the sample is nearer to the focal point. Experimentally, we can see the 

power increases and then decreases as we scan the sample, showing a 

Gaussian-shaped curve. By fitting the curve with a Gaussian function, we obtain its 

full width at half maximum (FWHM) of around 14 mm. Since the cuvette is 5 mm 

long, the effective focal region is calculated to be around 9 mm, which is longer than 

the cuvette. With the help of the characterization, we can place the sample at z=0 for 

the experiment. 

The major noise in this experiment originates from the scattering of pump beams into 

the detector since the pump power is too strong, even a little amount of scattering may 

be comparable to the power in the idler beam. To reduce the scattering of pump 

beams into signal/idler arms, we use the spatial filtering (as shown in Fig. 3.3) 

because the spectral filtering will block the idler beam too. In addition, we use the 

experimental techniques for reducing the scattering. That is, we block the signal beam 

while leaving two pump beams passing through the sample. In this scenario, what we 

detect in the idler channel is the pure pump scatterings. Then, if we slightly adjust the 

position of the sample along the x-axis and the y-axis, we could reduce the scattering 

even more. As a result, we can reduce the pump scattering by spatial filtering and 



92 

 

 

 

experimental techniques so that the power of pump scattering is much less than that of 

the generated idler beam. 

 

3.2.2 Result 

 

Figure 3. 5 

The 5 samples used in experiments. They are (from left to right) GFP with a molar concentration of 

25.5 µM in phosphate buffered saline, pyrromethene 546 with a molar concentration of 250 µM in 

methanol, pyrromethene 556 with a molar concentration of 4.3 mM in ethylene glycol (EG), DCM with 

a molar concentration of 0.99 mM in ethanol and DCM with a molar concentration of 1.5 mM in mixed 

solution of benzyl alcohol/ethylene glycol (BzOH/EG) with a ratio of 2/3. 

We characterize the efficiency of five different samples, including (1) EGFP with a 

molar concentration of 25.5 µM in phosphate buffered saline solution, (2) 

pyrromethene 546 with a molar concentration of 250 µM in methanol solution, (3) 

pyrromethene 556 with a molar concentration of 4.3 mM in ethylene glycol (EG) 

solution, (4) DCM with a molar concentration of 0.99 mM in ethanol solution and (5) 
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DCM with a molar concentration of 1.5 mM in mixed solution of benzyl 

alcohol/ethylene glycol (BzOH/EG) solution with a ratio of 2/3. We prepare each 

sample with a concentration according to the vendors. The solvents (phosphate 

buffered saline, ethanol, BzOH/EG, EG and methanol) do not contribute to FWM 

efficiency. The reason that we choose these five samples are two folds. First, their 

fluorescent peaks are different; roughly saying, DCMs emit red light, pyrromethene 

556 emits yellowy green light, while the pyrromethene 546 and EGFP emit green 

light. Second, EGFP has a unique protective β-barrel structure that the other dyes 

don’t have. In details, the EGFP fluorophores are enclosed in the protective shell 

(β-barrel) that consists of eleven beta-sheets. Each beta-barrel sheet is 2.4 nm in 

diameter and 4.2 nm in height as shown in Fig. 3.6. Researches show that at high 

molar concentrations, the fluorophores of synthetic dyes without the structure tend to 

collide/aggregate, leading to self-quenching by unproductive donor-donor transfer 

[87]. The process can be harmful to the efficiency of the FWM process. In contrast, 

biologically produced fluorescent proteins seem to immune the colliding/aggregating 

thanks to the β-barrel structure; they retain their high brightness even at the highest 

molar concentration in solid state. The reason is that the β-barrel structure acts as 

bumpers to prevent close contact between fluorophores; it provides optimal balance 

between high protein molar concentration and low resonance energy transfer 

self-quenching[53]. Specifically, the EGFP is effective for a molar concentration that 

is higher than 1 mM [53]. We can compare this critical molar concentration (1 mM) to 
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our samples. This critical value is much higher than that of EGFP (25.5 μM), and 

higher than that of pyrromethene 546 (250 μM), but close to the 0.99 mM for DCM 

in ethanol, 1.5 mM for DCM in BzOH/EG, and the pyrromethene 556 (4.3 mM). We 

may experience some self-quenching in DCM samples and pyrromethene 556, but not 

in EGFP or pyrromethene 546. In summary, we have learnt that the β-barrel structure 

can prevent the fluorophores from close contact with each other. In the next several 

sections, we will observe that the fluorescent peaks and the β-barrel structure can 

render other properties to the generated photon pairs which we will discuss later. 

 

Figure 3. 6 

The �-barrel structure of the EGFP. 

We contain every sample in the 5-mm long quartz cuvette as shown in Fig. 3.5 for 

comparing their StFWM efficiencies, which is defined as the power of idler over the 

power of signal. We expect the efficiency to be proportional to the square of the pump 

power as StFWM is a �(�) process. We plot the efficiencies of the StFWM process 

of the five samples with respect to the pump power as shown in Fig. 3.7. We observe 
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that each sample possesses a considerable large �(�) nonlinearity at around 785 nm 

which confirm that four-wave mixing process occurs in all these samples. Our 

measured efficiencies of these samples are comparable to the efficiency of dyes in 

thin films [srep25–28] ranging from 0.01% to 1%. Of all the 5 samples, DCM with 

BzOH/EG has the highest efficiency. The rest four samples exhibit similar �(�). Note 

that despite the molecular aggregation, the StFWM efficiency should be proportional 

to the molar concentration of each sample, since every fluorophore can only 

participate once in the StFWM process during one cycle of pulses. This means that 

the higher the concentration, the more fluorophores are involved in the process, and 

the higher the efficiency of the StFWM. Therefore, even if the EGFP sample shows 

the lowest efficiency, it still exhibits the highest efficiency per fluorophore. The 

reason is that the EGFP sample has the lowest molar concentration (25.5 μM), which 

is around one-to-two orders of magnitude less compared to the other four samples 

(250 μM for pyrromethene 546, 0.99 mM for DCM in ethanol, 1.5 mM for DCM 

in BzOH/EG, and 4.3 mM for pyrromethene 556). 
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Figure 3. 7 

Stimulated four-wave mixing efficiencies of 5 samples 

 

3.3 Spontaneous four-wave mixing 

In the previous section, we have observed that the DCM sample shows a higher FWM 

efficiency than that of the EGFP. But how about the quality of the photon pairs 

generated through the SpFWM? Will the DCM sample proven to be better than the 

EGFP sample? In this section, we specifically investigate the SpFWM process to 

answer this question. First, we will introduce the experimental setup. Then, we will 

briefly talk about the alignment procedure. And then, we will describe our detection 



97 

 

 

 

system. Lastly, we will analyze the properties of the photon pairs obtained from each 

sample. 

 

3.3.1 Experimental setup 

 

Figure 3. 8 

The experiment setup for the spontaneous four-wave mixing process 

The experimental setup for the SpFWM process is shown in Fig. 3.8. In contrast with 

the StFWM as shown in Fig. 3.3, we block the probe beam in front of the sample and 

use only two pump beams for generating the signal and idler beams, which are chosen 

on purpose to be non-degenerate so that we can apply the spectral filtering to reduce 

the pump scattering in the signal and idler arms. In the SpFWM process, two pump 

photons are annihilated to create signal and idler photons while conserving their 

momentum (2kp = ks + ki) and energy (2ωp = ωs + ωi). To reduce the chances of 

capturing scattered pump photons in the single-photon detectors (SPCM-AQR-16 
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from PerkinElmer, dark count probability ~ 10(�) in the signal and idler, we select 

the far-detuned signal and idler photons at the center wavelengths of �9 = 730 nm 

and �: = 849 nm ,respectively. Due to the momentum conservation, the signal with 

a shorter wavelength propagates along its path at an angle near the z-axis, while the 

idler with a longer wavelength propagates along its path at an angle far from the 

z-axis as shown in the phase-matching cone in Fig. 3.9. After the sample, a notch 

filter (NF) with a 3dB-bandwidth of 33 nm at center wavelength of 785 nm is inserted 

to block the pump photons scattered into both signal and idler channels. As introduced 

before, a lens of �& = 2�) = 100 cm is used to collect and collimate the signal and 

idler. Doubling the focal length increases the spatial separation between the pump and 

the signal/idler by a factor of two. This enlarged spatial separation can keep the large 

amount of leaked pump photons away from signal and idler paths. More spectral 

isolations from tunable bandpass filters (TBFs) with a 3dB-bandwidth of 20 nm and 

single-pass transmission of 97% on each arm are introduced. The transmission 

wavelength of the TBFs can be tuned by changing the angle of incidence. To 

maximize spectral isolation two cascaded TBFs are placed on a rotation stage in 

signal and idler paths. As a result, the double-passing scheme with a retro-reflector 

provides an isolation > 140 dB from the pump photons. 
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Figure 3. 9 

The phase matching cone. Green dots represent the locations of two pump pulses. Green circles 

represent locations of the signal and idler pulses in the degenerate scenario. Red dot represents the 

location of the idler photon, and the blue dot represents the location of the signal photon. 

 

3.3.2 Optical alignment for signal and idler paths 

The alignment of signal and idler arms requires some tricks and efforts. Since the 

generated signal and idler are at the single photon level with a broad spectrum, we 

cannot use them for alignment, instead, we need to use two continuous wave (CW) 

lasers at 730 nm and 849 nm for the alignment. In addition, we need to tune the 

TBF in the right angles for exactly capturing the 730 nm photon in the signal arm 

and the 849 nm photon in the idler arm. For the signal channel, the TBF is tuned to 

roughly transmitting 730 nm CW laser and then coupling into an optical spectrum 

analyzer (OSA). Then, we precisely setting the angle of the TBF for the 730 nm 

photons by relying on the recorded spectrum while we scan the angle of TBF. In a 

similar way, the angle of the TBF on idler arm can be tuned with the help of the 849 

nm CW laser. 
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Once the TBFs are ready, our objective becomes to send the signal/idler to the 

SPCMs with a high coupling efficiency through the free-space-to-fiber collimator. As 

shown in the phase-matching cone, the signal and idler paths are predictable in the 

horizontal plane. Therefore, by shifting the signal and idler beams along the 

horizontal plane, we can find the proper location for detecting the generated photons 

with high coupling efficiencies. Therefore, we can use the translation stages that hold 

the retro-reflectors to shift the beam paths as desired. As a result, the signal and idler 

paths can be shifted to overlap with their classical counterparts. We summarize the 

brief alignment procedures as three steps. Firstly, we perform the classical StFWM 

experiment and align the classical signal and idler paths into the fiber collimator with 

the coupling efficiencies greater than 90%. Secondly, we block the probe beam and 

run the SpFWM experiment. Note that since the collimators are aligned for the 

classical signal and idler paths, we have extremely low photon counts due to the TBFs. 

Thirdly, we shift the translation stages in the correct directions and observe increasing 

photon counts on each arm. The reason is that, according to the phase matching 

condition, the shift of the translation stage is equivalent to the shift of the spectrum 

that is detectable by the SPCM. When the detectors’ spectrums match the spectrums 

of TBFs, or in other words, the photon counts reach their peak values, the 

experimental setup is aligned properly. After the alignment, we measure the total 

detection efficiencies for the signal and idler photons as 27% and 23%, respectively. 
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3.3.3 Detection system 

 

Figure 3. 10 

a. An illustration of the photon counting system. Photons are coupled into the single photon counting 

module (SPCM) via a free-space fiber coupler with a coupling efficiency of ~60%. The SPCM is 

powered by a 5V DC power supply. 

b. The process of converting a photon to a TTL pulse. The SPCM uses a silicon avalanche 

photodiode with a circular active area for capturing the photon. As each photon is detected, a TTL 

pulse of 2.5V (minimum) high in a 50Ω load and 35ns wide is output at the rear BNC connector. 

The generated photonic state from the SpFWM process is a joint thermal state 

∑ ¹@|%, %-o@p7 , with ¹@ = )
@!�) T @!

@!�)X@
, where %! is the average number of photons. 

The correlation between the photons in signal and idler arms is obvious, meaning that 

they will always come as a pair or multiple pairs. In our experiment, even with an 

average pump power of 50 mW (which is the highest power we used) on each arm, %! 
is on the order of 0.001, suggesting that there is a high probability (~0.999) of not 

generating any photon, a low probability (~0.001) of generating a photon pair, and an 

extremely low probability (~0.000001) of generating multiple photon pairs. As shown 
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in Fig 3.10 a and b, the photon pairs are then coupled into the single photon counting 

modules (SPCM-AQR-FC-16) via the free-space fiber coupler with a coupling 

efficiency of ~60% on each arm. The core part of the SPCM is a reverse-biased P-N 

junction that builds an avalanche photodiode. Within the detector, the absorbed 

photons will create an electron-hole pair that leads to multiple electron-hole pairs, 

which result in a measurable current. The circuit board in the SPCM will then convert 

the current to a TTL pulse train with a rising time ~1ns and a width of 35ns. The 

specifications of the SPCM can be found in the manual. The important parameters for 

our experiment are listed in the following table.  

Photon detection efficiency 65% (at 730 nm), 45% (at 849 nm) 

Dead time 50 ns 

Dark count rate 25 counts/sec 

The dead time of 50 ns means that the SPCM can only report the detection of a single 

photon within 50 ns, regardless of how many photons are within the 50 ns duration. 

This will have negligible effect our result because we have an extremely low 

probability of having multiple photons within one cycle. Also, since the laser operates 

at a repetition rate of 40 kHz, the dead time (50 ns) is much shorter than the temporal 

interval of adjacent photon pairs (25 μs), meaning that the detector is ready to detect 

the next incoming photon. However, the dark count rate could be high enough to 

affect our result because the single-counts rate is expected to be ~200/sec at 
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maximum pump power. Therefore, to reduce the dark counts, we use the following 

AND logic gate to filter the unexpected noise photons between the two SpFWM 

cycles. 

 

Figure 3. 11 

The AND logic gate and the detection system. The AND function with a 40 kHz TTL pulse train as one 

input will block the noise photons when there are no generated photon pairs. The correlator will count 

the coincidence between the photons from the two filtered SPD output ports. 

Here are the details of how to create a cleaner TTL pulse train with the help of the 

AND logic gate. In the experiment, we use the Correlated Photon Detection System 

(CPDS, Nucrypt llc) as shown in Fig. 3.11 for measuring the correlation of photon 

pairs. We generate the photon pairs at a repetition rate of 40 KHz, corresponding to 

the repetition rate of the laser system, which happens one time in every 1000 cycles 

of the master clock at 40 MHz. Although we wanted to trigger the CPDS at 40 KHz, 

the CPDS can only be triggered with MHz signals, therefore we decide to trigger it 

with a 40 MHz master clock. As a result, the detector dark counts and background 

photons are registered at a rate of 40 MHz. However, the photon pairs are generated 
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and registered by the correlator at a rate of 40 KHz. The difference in the repetition 

rates introduces 1000 times more noise photons to the photon pairs. To reduce the 

noise photons, we design the AND logic circuits for both detectors. The AND logic 

circuit has two inputs and one output. One of the inputs is a 40 KHz TTL pulse train 

generated via a delay generator (Stanford Research Inc, Model DG535). The delay 

generator is triggered by 40 KHz signal from the “Repetition Rate Synch Out” 

connector of the RegA 9000, which is synchronized with the laser pulse train. The 

other input is the output TTL pulse from the SPCM. Then the output of the AND 

logic circuit is connected to CPDS. These AND logic circuits isolate noise counts that 

arriving at 40 MHz, thus the noise count level is greatly reduced. The circuit can 

help to block the photons from entering the CPDS when the system is no pump pulses. 

As a result, the “real” counting frequency of the CPDS is reduced to 40 KHz, which 

is in good match with the rate of the photon pairs. 

 

3.3.4 Results and discussions 

3.3.4.1 EGFP 

 

Figure 3. 12 
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Illustration of coincidence counts and accidental coincidence counts. The signal (blue) and idler (red) 

pulses contain generated photon pairs and noise photons in the two detection channels. The solid 

rectangular loop demonstrates the coincidence counts, and the dashed oval loop demonstrates the 

accidental-coincidence counts. 

We characterize the purity of photon pairs by measuring the coincidence-to-accidental 

ratio (CAR). In our detection system, a coincidence count is recorded when both 

SPCMs detect a photon in the same gated time interval, while an accidental 

coincidence count is recorded when both SPCMs detect a photon in the adjacent gated 

time interval as shown in Fig. 3.12. The CAR is plotted as a function of pump power 

(10)&  photons/pulse) in Fig. 3.13. In Fig. 3.13a the CAR without background 

subtraction is shown as circles, the CAR with background subtracted is shown as 

crosses. Here, the background includes the detector dark counts and the 

environmental photons. We can obtain the background photons by blocking the laser. 

The peak of the CAR without background subtraction is 36, with 146 coincidence 

counts and 4  accidental counts. The CAR next to the peak is 31 , with 282 

coincidence counts and 9 accidental counts. After subtracting the background counts, 

we obtain a maximum CAR of about 70 at a photon-pair production rate of 10(�. 

The peak CAR occurs at 0.5 × 10)& pump photon per pulse. The data around the 

peak value is taken with an integration time of 30 min. A CAR of 70 can lead to a 

two-photon interference (TPI) with the visibility of 96%. The signal and idler are 

recorded as shown in Fig. 3.13b The photon detection rates for the signal and idler 

(after background subtraction) are plotted with respect to pump photon per pulse. The 

blue data points represent the signal and the red data points represent the idler, 
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respectively. The photon detection rates for the signal and idler at the maximum CAR 

are 0.8 × 10(Û per pulse and 2 × 10(Û per pulse, respectively. 

 

Figure 3. 13 

a. Coincidence to accidence ratio of GFP b. Photon detection rate of signal arm (blue) and idler arm 

(red) 

With the help of the CAR measurement and the detailed single counts, we can explore 

the quantum nonlinear interaction processes inside the EGFP during the experiment. 

The detected signal and idler photons can be classified by the way they are produced. 

There are background photons, Raman photons, fluorescence photons from 

two-photon absorption, and photon pairs from spontaneous four-wave mixing. The 

rate of background noise photons is constant. The rate of Raman photons is 

proportional to the pump power. The rate of fluorescence photons is quadratically 

dependent on the pump power because it is mainly induced by the TPA. And the rate 
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of spontaneous four-wave mixing photons are quadratically dependent on the pump 

power as well. 

Next, we study how will the photons from different sources affect the CAR. The 

coincidence count is corresponding to the photon pairs generated from the 

spontaneous four-wave mixing, which means that the single counts in both arms are 

quadratically dependent on the pump power and are correlated with each other. 

Therefore, the coincidence counts are quadratically dependent on the pump power. 

The accidental is corresponding to the uncorrelated photons. We evaluate the 

accidental counts in two scenarios; one without the background subtraction, and the 

other with the background subtraction. In the first case where background photons 

play a role, the accidental counts can occur between the same or different sources of 

photons, including the fluorescence photons, background photons, Raman photons, 

and even the SpFWM photons. Therefore, it contains different terms ranging from 0th 

order to 4th order with respect to the pump power. In the second case where 

background is subtracted, the accidental contains less terms, but still contains 

different terms ranging from 2nd order to 4th order with respect to the pump power. 

A proper way to start analyzing the CAR would be to fit the single counts in both 

channels [88]. We fit the measured signal/idler counts with the equation �9(:) =
6)�; + 6&�;&, where �; is the pump photon per pulse, where 6) and 6& are the 

linear and quadratic power-dependent scattering coefficients. By fitting the data 
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points, we can separate the Raman photons from the photons from the TPA and 

SpFWM processes. We then plot the curves of 6&�;& �9(:)Î  and 6)�; �9(:)⁄  for 

comparing the numbers of photons produced by the SpFWM/TPA and Raman 

scattering, as shown in Fig. 3.13b. The solid blue line (6&�;& �9⁄ ) and the dashed blue 

line (6)�; �9⁄ ) are for the signal arm. The solid and dashed red lines are for the 

photons in the idler arm. It is clearly seen that the total strength of the 6& processes is 

stronger than the strength of the 6) process at higher pump powers, especially in the 

signal arm, and that the strength of 6) process is stronger than the strength of 6& 

processes at lower pump powers. This phenomenon is predicted by the difference in 

power dependencies of different processes. What’s more interesting is that the total 

strength of the 6& processes are stronger in the signal channel than in the idler 

channel. This difference tells us that the signal contains more fluorescence and 

SpFWM photons than the idler channel. Because the number of photons generated 

from the SpFWM process is equal in both the signal and idler channels, and the 

detection efficiencies are similar for the two arms, we can safely conclude that more 

fluorescence photons are detected by the signal detector. This is in accordance with 

the emission spectrum of EGFP, which is centering at 510 nm with a FWHM of 

around 40 nm; the fluorescence photons are more easily leaked into the signal channel 

(~730 nm) than the idler channel (~849 nm). Therefore, we see more fluorescence in 

the signal than in the idler. The other interesting observation is that the strength of 6) 

process in the idler channel is stronger than that in the signal channel. This is due to 
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more Raman photons (from Stokes scattering) are produced in idler channel than in 

the signal channel (from anti-Stokes scattering). 

 

Figure 3. 14 

a. Coincidence to accidence ratio of GFP without PBSs. b. Coincidence to accidence ratio of GFP with 

PBSs. c. Photon detection rate of signal arm (blue) and idler arm (red) without PBSs. d. Photon 

detection rate of signal arm (blue) and idler arm (red) with PBSs. 

To increase the CAR, we can utilize the following method to introduce the 

polarization filtering. If both pump beams are set vertically-polarized, then the photon 

pairs from the SpFWM process are also vertically-polarized; however, the 
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fluorescence, Raman photons and background photons are always non-polarized. By 

using a polarizer in front of the detector, the number of noise photons can be reduced, 

thus increasing the CAR. Therefore, we design a new experimental scheme with the 

polarization filtering. Firstly, we use half-wave plates (HWPs) and quarter-wave 

plates (QWPs) to properly adjust both pump beams to be vertically polarized. 

Secondly, we introduce HWPs and QWPs on each arm to compensate the 

birefringence. Lastly, we insert the polarization beam splitters (PBS) in front of both 

SPCMs as a polarization filter to block the horizontally polarized photons which must 

come from the noise sources. The purity of the photon pairs in this scheme can be 

characterized by using the CAR measurement as shown in Fig. 3.14. In contrast with 

the previous result without the polarization filtering, it is clearly seen that the peak of 

the CAR (without background subtraction) jumps from 27 to 55. More astonishingly, 

after the background subtraction, the CAR leaps from 43 to 147, which is more than 3 

times increment. We then break the single counts down into 6&�;& �9(:)Î  and 

6)�; �9(:)⁄  as plotted in Fig. 3.14 for understanding the processes involved in this 

experiment. Clearly, having the PBSs in front of the detectors will reduce the counts 

from fluorescence and Raman photon in the detectors by around half. As a result, 

6&�;& �9⁄  has increased in signal arm because it contains the photons from SpFWM 

process that is unaffected by the polarization filtering. However, for the idler arm, 

6&�;& �:⁄  remains the same with or without the polarization filtering. It implies that 

we may have stimulated Raman photons in the idler arm that are unaffected by the 
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polarization filtering. This stimulated Raman photon cannot be blocked by PBS as 

they are vertically polarized and therefore preventing 6&�;& �:⁄  from increasing in 

the idler arm. The stimulated Raman photon is much less in the signal channel 

because the strength of Raman effect is much stronger in the idler channel than in the 

signal channel. 

3.3.4.2 DCM in BzOH/EG 

 

Figure 3. 15 

a. Coincidence to accidence ratio of DCM in BzOH/EG without PBSs. b. Coincidence to accidence 

ratio of DCM inBzOH/EG with PBSs. c. Photon detection rate of signal arm (blue) and idler arm (red) 

without PBSs. d. Photon detection rate of signal arm (blue) and idler arm (red) with PBSs 
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So far, we have developed a good understanding of the strength of different processes 

in the EGFP sample. To further analyze the mechanics in the EGFP, we characterize 

the purity of photon pairs from the other four samples by applying the same CAR 

measurements with and without using the polarization filtering as comparisons. Here 

we first investigate the DCM in BzOH/EG since it exhibits the best efficiency in the 

StFWM process. The CAR of the photon pairs from the DCM in BzOH/EG is shown 

in Fig. 3.15. We see that although the efficiency of StFWM of DCM in BzOH/EG is 

the highest among the five, the purity of the photon pairs generated from SpFWM 

process is very low. At high pump power, the number of single counts in the signal 

detector is saturated. Therefore, we start recording the data from below 1 × 10)& 

pump photon per pulse. A CAR of around 1 with (Fig. 3.15a) or without (Fig. 3.15b) 

using the polarization filtering are shown. Both the coincident and accidental counts 

per pulse are around 0.003 at 0.8 × 10)& pump photons per pulse. The photon pairs 

generated via the SpFWM process are buried in the large fluctuation of the accidental 

photons. Therefore, we cannot have high purity photon pairs from DCM in BzOH/EG 

using the current setup. To analyze the processes in the sample, we plot Fig. 3.15c and 

Fig. 3.15d showing the single counts corresponding to the results obtained in Fig. 

3.15a and Fig. 3.15b, respectively. The 6&  processes dominate on both arms, 

especially on the signal arm. And of the two 6&  processes, fluorescence is the 

dominating one because the CAR provides no evidence for correlated photon pairs 

generated from the SpFWM process. Then, we insert the polarization filtering to 
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reduce the fluorescence, but it is still not enough filtering for us to distinguish the 

photon pairs from the noise photons. We observe that in Fig. 3.15d, 6&�;& �9(:)Î  is 

almost invariant with or without using the polarization filtering. This invariance adds 

further evidence that the SpFWM process is much more weaker comparing to the 

TPA because the number of correlated photon pairs is negligible when comparing to 

the fluorescence photons. As a result, the numerator and denominator of 6&�;& �9(:)Î  

will both reduce by half when we insert the polarization filtering, leading to an 

invariance to the fraction. The reason that we have observed strong fluorescence is 

that the fluorescence spectrum of DCM in BzOH/EG is centered at 655 nm. It is 

very close to 730 nm where we collect the signal photons. The large amount of 

fluorescence will lower the purity of the photon pairs generated from the SpFWM 

process. In conclusion, the DCM in BzOH/EG does not qualify as a good photon pair 

source due to its fluorescence spectrum. 
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3.3.4.3 DCM in ethanol 

 

Figure 3. 16 

a. Coincidence to accidence ratio of DCM in ethanol without PBSs. b. Coincidence to accidence ratio 

of DCM in ethanol with PBSs. c. Photon detection rate of signal arm (blue) and idler arm (red) without 

PBSs. d. Photon detection rate of signal arm (blue) and idler arm (red) with PBSs. 

The DCM in ethanol has a fluorescent peak centering at 627 nm [89], which is 100 

nm away from signal band. We expect to detect less fluorescence from this sample 

than the previous one. We use same way to characterize the purity of the photon pairs 

generated in this sample, the results are shown in Fig. 3.16. Although we observe less 

photons than the previous example, unfortunately, it’s still too much fluorescence. At 
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high pump power, the signal detector is saturated so that we record data from below 

2 × 10)& pump photon per pulse. The coincident and accidental photon pairs per 

pulse are both around 2 × 10(Û at 0.8 × 10)& pump photon per pulse, which gives 

a CAR of 1. The result with the polarization filtering is used for comparison as shown 

in Fig. 3.16b and Fig. 3.16d. Unfortunately, the filtering is not strong enough to 

reduce the huge fluorescence background. We conclude that although the 

fluorescence has decreased comparing to DCM in BzOH/EG, the amount is still too 

large for us to observe any photon pair from spontaneous four-wave mixing. 
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3.3.4.4 Pyrromethene 546 

 

Figure 3. 17 

a. Coincidence to accidence ratio of pyrromethene 546 without PBSs. b. Coincidence to accidence ratio 

of pyrromethene 546 with PBSs. c. Photon detection rate of signal arm (blue) and idler arm (red) 

without PBSs. d. Photon detection rate of signal arm (blue) and idler arm (red) with PBSs. 

Since the fluorescence is the main obstacle to achieve high purity photon pairs, 

Pyrromethene 546 and pyrromethene 556 with similar fluorescent spectrum as EGFP 

are under investigation. For pyrromethene 546, the fluorescence peak is at 505 

nm[90], 225 nm away from the signal band. We use the same method to characterize 

the purity of the photon pairs. The results are shown in Fig. 3.17. A CAR with a 
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maximum value of 6 without the polarization filtering and 10 with the polarization 

filtering are obtained. This is better than the DCM samples due to a better 

fluorescence spectrum, but worse than the EGFP sample either due to less 

coincidence photons or more accidental photons. Therefore, we compare the 

coincident photons per pulse for pyrromethene 546 and EGFP. For pyrromethene, the 

coincident photons per pulse is 1.7 × 10(� at 3.5 × 10)& pump photon per pulse at 

the peak CAR. For EGFP, we find that the coincident photons per pulse at the same 

pump power is 1.5 × 10(�, which is very close to the value in pyrromethene. So, the 

reason that we see a higher CAR in EGFP must be less accidental photons. We want 

to discover the reason behind it. Comparing Fig. 3.14c (EGFP) with Fig. 3.17c 

(pyrromethene 546), we obtain almost the same single counts in the signal channel for 

both samples, however, more single counts are detected in the idler arm for 

pyrromethene 546. Also, 6&�;& �:⁄  of pyrromethene 546 in the idler arm is much less 

than that of the EGFP. This suggest that the Raman photons contribute more in the 

pyrromethene 546 than in the EGFP. And the invariance of the 6&�;& �:⁄  in the idler 

arm before and after the polarization filtering adds further evidence that the stimulated 

Raman photons contribute most to the accidental counts because the accidental counts 

cannot be blocked by the polarization filtering. So, we can safely conclude that EGFP 

is better than pyrromethene 546 due to less Raman photons. 
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3.3.4.5 Pyrromethene 556 

 

Figure 3. 18 

a. Coincidence to accidence ratio of pyrromethene 556 without PBSs. b. Coincidence to accidence ratio 

of pyrromethene 556 with PBSs. c. Single counts of signal arm (blue) and idler arm (red) without PBSs. 

d. Single counts of signal arm (blue) and idler arm (red) with PBSs. 

Here, we move on to study the last sample. Fig. 3.18 shows the result of the CAR 

measurement of photon pairs generated in pyrromethene 556. The fluorescence 

spectrum of pyrromethene 556 is centered at 535 nm[91], which is longer than the 

EGFP (505 nm), but much shorter than the DCM samples (" 600 nm). However, 

very much like the DCM samples, we are unable to distinguish the photon pairs from 
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the accidental as the CAR fluctuates around 1 with/without the polarization filtering. 

Although the signal detector is not saturated at high pump power as occurred in the 

experiments with DCM samples, the fluorescence might still be the main reason of the 

accidental counts. By comparing Fig. 3.14c (EGFP) with Fig. 3.18c (pyrromethene 

556), clearly, we see that 30 times more single counts are detected in the signal arm 

in the pyrromethene 556 than that in the EGFP. The large amount of single counts 

(contributed by the fluorescence) in the pyrromethene 556 leads to the increment of 

the accidental counts. Therefore, we see that although the fluorescence emission 

spectrum of pyrromethene 546 and 556 are close, the minor difference between the 

two spectra can result in a huge difference in the purity of photon pairs. When 

comparing the components of the single counts with/without the polarization filtering 

as shown in Fig. 3.18c and Fig. 3.18d, we see that fluorescence dominates the signal 

channel and stimulated Raman scattering dominates the idler channel. 

 

3.3.5 Dominant processes in 5 samples 

Sample Maximum CAR Dominant process 

(signal) 

Dominant process 

(idler) 

DCM in BzOH/EG 1 FL, SE, SRS FL, SE, SRS 

DCM in ethanol 1 FL, SE, SRS FL, SE, SRS 

Pyrromethene 556 1 FL, SE, SpRS FL, SE, SRS 
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Pyrromethene 546 15 FWM, SpRS FWM, SRS 

EGFP 145 FWM, SpRS FWM, SRS 

Table 3.1 A summary of the maximum CAR and dominant processes of 5 organic fluorophores. 

Here, we summarize the nonlinear processes occurring in each sample as shown in the 

table. We obtain the maximum CAR values of 145 and 15 for the EGFP and the 

pyrromethene 546 with the polarization filtering scheme, respectively. At the peak 

pump power (~ 2.5 × 10# W), we obtain the photon production rate at around 7 ×
 10(Û per pulse for the signal channel and 1.0 × 10(�  per pulse for the idler 

channel, respectively. However, we cannot observe distinguishable correlated photon 

pairs from the other three samples due to the fluorescence and Raman scattering. Of 

all the organic fluorophores tested, the EGFP sample emits the highest-quality, 

broadband (20 nm) photon pairs, characterized by the correlation measurement (CAR 

~145). This can be attributed to the spectrum of the fluorescence and possibly the 

unique β -barrel structure, which prevent the fluorophores from molecular 

aggregation that can lead to fluorescence quenching, collision quenching, and 

fluorescence polarization between two adjacent fluorescent proteins.  

In conclusion, our results indicate that the generation of photon pairs in EGFP occurs 

in the less noisy environment compared to other fluorophores. The EGFP has proven 

its superiority as a correlated photon-pair source due to its relatively large �(�), green 

fluorescence that is away from the photon pairs, and the less Raman scatterings 
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probably due to its unique β-barrel structure. The CAR of 145 obtained in the EGFP 

is comparable to the results obtained in fibers [92-96] and on chips. 

 

3.4 Two-photon interference 

Polarization-entangled photon pairs are desire for quantum communication 

applications. Being able to produce high purity correlated photon pairs, we can try to 

configure the source to generate the polarization-entangled photon pairs. In this 

section, we will outline an experiment to observe generate the two-photon 

polarization-entangled state |?9?:〉+ K:&é|�9�:〉 and test the quantumness of the 

state via the two-photon interference. We propose two different experimental setups 

for the generation of the state by using (i) narrow filters, and (ii) unbalanced 

polarization interferometers. 
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3.4.1     Narrow-filter scheme 

The experimental setup for generating two-photon polarization entangled state 

|?9?:〉+ K:&é|�9�:〉 in the narrow filter scheme is shown in Fig. 3.19, where |?9?:〉 
and |�9�:〉 represents horizontal and vertical components, and the ë is the pump 

phase.  

 

Figure 3. 19 

Experimental setup for creating and observing the two-photon interference with narrow-bandwidth 

filters 

We made three changes to the previous experimental setup. First, one of the tunable 

bandpass filters is moved from the rotation stage to a fixed position in both the signal 

and idler paths to control the passing bandwidths of the photons. Second, both 

polarization interferometers in the signal and the idler arms are removed because in 

this scheme, we rely on the “stretching” on the temporal shape of the photons to 

create the superposition. Last, a half-wave plate and a polarization beam splitter are 

introduced in front of the fiber coupler in the signal/idler arm.  
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A polarization interferometer in the pump path is used to create the horizontally and 

vertically polarized two-pump beams at two times slots d) and d&, respectively. The 

Horizontally polarized pump beams generate the |?9?:〉 state while the vertically 

polarized pump beams generate the |�9�:〉 state. The generated polarized signal and 

idler photons are temporally separated with the same time interval as the pump pulses. 

The combination of the two tunable bandpass filters forms an equivalent bandpass 

filter with 2 nm bandwidth in the signal and idler. Therefore, the wave packets of the 

signal and idler are temporally stretched to 1000 fs from their original duration of 200 

fs. The “stretching” could help to compensate the time difference between d) and d& 

so that the wave packets with different polarizations can be maximumly partially 

overlapped. Once the wave packets are overlapped, we use the half-wave plates and 

the polarization beam splitters to control the relative polarization angles of the signal 

and idler photons and then record the coincidence counts. We obtain the two-photon 

interference by plotting the coincidences as a function of the relative polarization 

angles of the signal and idler as shown in Fig. 3.20. 
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Figure 3. 20 

Two-photon interference with the visibility of 76% as a function of relative polarization angle of the 

signal and idler. The blue dots represent the coincidence counts while the red dots represent the 

accidental-coincidence counts. The blue curve is the fit for the coincidence counts. The black and red 

triangles represent the single counts in the signal and idler channels, respectively. 

We observe the two-photon interference with a visibility (V) of 76%, which is defined 

as V = TPI visibility = **+,-(**+./**+,-�**+./ , where {{�V�  and {{�:@  represent the 

maximum and minimum of the fitting curve for the coincidence counts in Fig. 3.19. 

The visibility corresponds to a CAR of ~10, which is much lower than the peak CAR 

(43) of the EGFP sample. We can see the imperfection of this experiment; the low 
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visibility is mainly due to the partial temporal overlapping of the horizontal and 

vertical polarized wave packets in the signal and idler channels. 

3.4.2    Unbalanced polarization interferometer 

To improve the visibility of the two-photon interference, we need to solve the above 

problems. A better way to create the entanglement would be to use the unbalanced 

polarization interferometer. Therefore, we will build the experimental setup as shown 

in Fig. 3.21 for perfectly overlapping the horizontally and vertically polarized wave 

packets of the signal and idler. 

 

Figure 3. 21 
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The experiment setup for the two-photon interference by using unbalanced polarization interferometers 

in the signal and idler channels. Polarization analyzers (PAs and PAi) are introduced to manipulate the 

state for detection. 

In this setup, since the narrow filter is not required, we return the tunable bandpass 

filters back on the rotation stages. In addition, we insert the polarization 

interferometers right after the tunable bandpass filter sets. These two polarization 

interferometers will compensate the time difference (d) and d&) of the two wave 

packets in the signal and idler, respectively. Although this scheme in theory could 

perfectly superpose the two states, however, we will be facing two new experimental 

challenges. First, we need to ensure the stability of the newly introduced 

interferometers. Second, it is challenging for spatially overlapping the two generated 

wave packets in the transverse plane. We will address the two challenges one by one. 

To study the stability of the interferometer, we can monitor the stability of the 

interference pattern created by it. Since the power of the generated photons are on the 

single-photon level, we use the pump beams for generating the interference pattern. In 

details, we split the pump beam into two additional parts. One part is guided to the 

path of the generated signal, the other part is guided to the idler, i.e. the dashed blue 

and red lines in Fig. 3.21. After they go through the polarization interferometers, the 

beams are then coupled to the fiber couplers, which is connected to a power meter. 

We attach a PZT in one arm of the polarization interferometer for changing the path 

difference of the polarization interferometer. We observe a clear interference pattern 

by applying the voltage to the PZT. The interference patterns are plotted as a function 
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of the PZT voltage as shown in Fig. 3.22. The data points are recorded every 2 

minutes. We fit the obtained data with a sinusoidal function. The good fitting curves 

indicate that both interferometers are stable in about 20 minutes. 

 

Figure 3. 22 

Classical single beam interference with respect to the PZT voltage 

To adjust the temporal and spatial alignment of the polarization interferometer, we 

perform the single photon interference with the scattered pump photons. In this 

experiment, the signal beam and one of the pump beams are blocked, so that only one 

pump beam can pass through the sample. In this case, the spontaneous four-wave 

mixing processes or two-photon absorption won’t happen. Also, we remove the notch 

filter and tunable bandpass filters as we are detecting the pump beam. Since the power 

of the scattered pump photons are too strong, we insert the neutral density filters for 

attenuating the pump power. Then, we use the single photon detector for measuring 
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the attenuated scattered pump photons and look for the single-photon interference by 

adjusting the voltage of the PZT. We observe the interference pattern as shown in Fig. 

3.22, indicating that the two cross-polarized wave packets in the polarization 

interferometers are overlapped. 

 

Figure 3. 23 

Single photon interference with pump scatterings 

The visibility of the single-photon interference for the signal (idler) is about 55% 

(80 %). With the low visibilities, especially on the signal arm, we are not able to 

achieve a two-photon interference with visibility better than 76% as obtained in the 

narrow-filter scheme. However, the polarization interferometer scheme has the 

potential to achieve a better visibility than 76% if we can improve the alignment, 

which is the afore mentioned second challenge for us. We can optimize the the 

temporal alignment by using the PZT during the photon-pair generation process based 
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on the interference pattern. Therefore, the challenge is to optimize the spatial 

alignment, which we cannot easily optimize during the experiment. 

The most important procedure in the spatial alignment is to improve the overlapping 

of the pump beams with different polarizations since the phase-matching condition 

will automatically align the generated signal and idler beams afterward. We use a 

design as shown in Fig. 3.24 for ensuring the overlapping of the horizontally and 

vertically polarized pump beams. 

 

Figure 3. 24 

Alignment assistance with single mode fiber. 

Before the pump is split to three beams (two pump beams and one probe beam), we 

insert a glass slide right after the polarization interferometer. The glass slide reflects a 

small portion of pump beam into a 785  nm single mode fiber. The coupling 

efficiencies of the horizontally and vertically polarized beams will indicate how close 

they are spatially overlapped. Therefore, by optimizing the coupling efficiencies of 

both polarizations, we can align the spatial overlapping of the horizontally and 
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vertically polarized beams. Using the methods mentioned above, we have optimized 

the interferometric visibility of polarization interferometers in the signal and idler 

arms (both are around 99%). This will set an upper limit on the measurable 

two-photon-interference visibility of 98% in our experiment. 

 

Figure 3. 25 

Two-photon interference with the visibility of 98% as a function of the relative polarization angle 

between the signal and idler. The orange dots represent the coincidence counts with the subtraction of 

accidental-coincidence counts. The solid orange curve is the fit for the orange dots. The blue and red 
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triangles represent the single counts in the signal and idler channels. The error bars are calculated based 

on the standard deviation of photon counts using Poisson statistics. 

We measure the two-photon interference pattern with respect to the relative 

polarization angle between the polarization analyzers on the signal (À9) and idler (À:) 
arms as shown in Fig. 3.25. The obtained interference pattern is a sinusoidal curve of 

the coincidence counts vs. the difference between the polarization angles (À9 − À:). 
With an integration time of 4 min for each data point, where the pump phase (ë;) is 

kept fixed, we obtain a fringe visibility of 98% (85%) with (without) the subtraction 

of the accidental coincidence counts, which agrees with the upper limit of the 

two-photon-interference visibility of 98%, much better than the visibility in the 

narrow-filter scheme (76%). This means that our alignment is very well optimized. 

Therefore, the probability amplitudes of |?9?:〉 and |�9�:〉 are subject to the 

dynamic decoherence environment inside the EGFP because the photon pairs are 

generated in an ensemble of excited fluorophores at two different time slots. 

 

3.5 Quantum state tomography 

To fully characterize the Bell state (0?9?:〉+ K:é¾|�9�:〉)/√2 where we set ë; = 0, 

we employ the standard method of quantum state tomography. We record the 

coincidence counts with 16 measurement settings in different basis by adjusting the 

polarization analyzers in the signal and idler arms. Each measurement will project the 

quantum state to a basis that will reveal a distinct aspect of the quantum state’s reality. 
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For each setting, we collect the coincidence counts and accidental counts with an 

integration time of 2 minutes. 

 

Figure 3. 26 

Measured density matrix of the entangled photonic state. (a) The reconstructed state in the 

horizontal-vertical basis. (b) The reconstructed state in the Bell-state basis. (c) The estimated state in 

the Bell-state basis. Measured density matrix of the entangled photonic state. 

We then use the maximum-likelihood estimation algorithm to reconstruct the 4 ×  4 

density matrix (ρ) of our state. The obtained density matrix has a fidelity (F =
Éeë�|U|ë�-) of 0.94 ± 0.05 in the horizontal–vertical (HV) basis as shown in Fig. 

3.26a. With the help of the measured density matrix, we can understand many aspects 

of the experiment, including both the quality of the experimental setup and the effects 

of decoherence inside the EGFP. For example, the small imaginary components 

indicate that the polarization interferometers are stable; within the duration of the 

experiment (~30 min), they introduce little phase drift between the |?9?:〉 and 

|�9�:〉 amplitudes. The four distinct peaks with a relation of U2222 " U2233 =
U3322 ≈ U3333 suggests that we generate a mixture of the target Bell state and the 
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unwanted |?9?:〉 state. It’s clearer to view the matrix on the Bell-state basis (U4¤««) 
as shown in Fig. 3.26b, where Ué5é54¤«« = 0.941 is the dominating component and 

Ué5é64¤«« = Ué6é54¤«« = Ué6é64¤«« ≈ 0.052. If we neglect the other much smaller components 

in the non-corner locations, we can approximate the density matrix as Uâ(Ê) =
Ê|ë�-eë�| + (1 − Ê)|?9?:〉e?9?:|, which is a mixed state. We fit the measured 

density matrix with a probability Ê = 0.89 using the approximation, where the 

corresponding fidelity of Uâ(0.89) is 0.945, close to the fidelity of the measured 

density matrix (0.941). We plot the approximated state as shown in Fig. 3.26c in 

comparison with the original measured state. In addition to this measurement, we 

perform another two quantum state tomography measurements with integration times 

of 4 and 6 min (for each setting) to reduce the fluctuations in the coincidence counts. 

They also result in similar mixed states. The decoherence effect in our experiment is 

the mixture of the Bell state and the |?9?:〉 state, which may be unavoidable in the 

current experimental setup.  

The above result is achieved by studying the experimental scenario as shown in Fig 

3.27, where the horizontally-polarized pump pulse leads the vertically-polarized pump 

pulse by 1 ps. The quantum superposition and coherence within the ensemble of 

excited fluorophores at the two time slots lasts approximately 1ps [109], therefore, we 

expect to see some decoherence characterized by Ê& and Ê�. 
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Figure 3. 27 

The theoretical and experimental results of the photonic state in our experimental scenario. The 

horizontally-polarized pump pulse (FWHM ~200fs) leads the vertically-polarized pump pulse 

(FWHM ~200fs) by 1 ps. 

In fact, the future experiments could be designed to change the temporal delay 

between the pump pulses to gather more information about the quantum coherence 

and superposition within the ensemble of fluorophores as shown in Fig. 3.28. 

 

Figure 3. 28 

The predicted results of the photonic state in our experimental scenario. a. the vertically-polarized 

pump pulse (FWHM ~200fs) leads the horizontally-polarized pump pulse (FWHM ~200fs) by 1 

ps. b. the vertically-polarized pump pulse (FWHM ~200fs) and the horizontally-polarized pump 

pulse (FWHM ~200fs) overlaps. c. the horizontally-polarized pump pulse (FWHM ~200fs) leads 
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the vertically-polarized pump pulse (FWHM ~200fs) by 10 ps. d. the horizontally-polarized pump 

pulse (FWHM ~200fs) leads the vertically-polarized pump pulse (FWHM ~200fs) by 1 ns. 

The predicted results are based on the current understanding of the lifetime of 

quantum superposition and coherence within the system. In Fig. 3.28a, an additional 

|�9�:〉e�9�:| component is expected to appear as opposed to the case in Fig. 3.27 

where we have measured an additional |?9?:〉e?9?:| component. In Fig. 3.28b, 

obviously, the generated state would be a pure state because of the overlap. In Fig. 

3.29c, Ê& and Ê� are expected to increase with an increasing τ. In Fig. 3.29d, the 

entanglement will disappear because of the delay is much longer than the lifetime of 

the quantum coherence within the system, therefore, Ê& = Ê� = 0.5. Note that the 

above assumptions need to be tested by designing the experiments accordingly. 

 

3.6 Quantumness of the state 

To explore the origin of this decoherence effect, we want to study the quantumness of 

the state. In a decohering environment, we can use the degree of entanglement and the 

degree of purity as crucial criteria for realizing the quantum information protocols of 

a quantum system. We use the entanglement of formation (En) [97] for quantifying 

the degree of entanglement and the linear entropy (SL) [98] for quantifying the degree 

of purity of our two-photon polarization-entangled system. According to the previous 

chapter, the analytical expression for D@ is given as: 

D@ = ? 71 + É1 − c&
2 8 , (3.2) 
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where the function ?(J) = −J log& J − (1 − J) log&(1 − J). The concurrence γ =
max �0, �) − �& − �� − �Û�, where the �:s are the square roots of the eigenvalues of 

the matrix U(Ç: × Ç:)U∗(Ç: × Ç:), in a decreasing order. Ç: is the second Pauli 

matrix, and U∗ is the complex conjugate of U. For the approximated matrix Uâ, c =
1 − 2Ê. 

The analytical expression for 6± is given as: 

6± = 4M1 − tr(U)Q&
3 . (3.3) 

For the approximated matrix, 6± = 8Ê(1 − Ê)/3. 

The entanglement of formation (D@) and the linear entropy (6±) forms a characteristic 

plane for the two-qubit states. We place the measured state U and the approximated 

state Uâ on the plane as shown in Fig. 3.26a. On the plane, the grey region represents 

the physically impossible combinations of D@ and 6± . Therefore, the maximally 

entangled mixed states [97], which exhibit the maximized entanglement for a given 

linear entropy, lie on the boundary between the white and gray regions. Some states 

are worth to mention. For example, a pure unentangled state lies at (0, 0); a pure 

maximally entangled state lies at (0, 1); a maximally mixed and unentangled state lies 

at (1, 0). In our study, Uâ(Ê) (red solid curve) varies along the curve from the pure 

maximally entangled state (0, 1) to the pure unentangled state (0, 0) as Ê decreases 
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from 1 to 0. Our experimentally generated state (black circle) lies on the red curve 

at (0.14, 0.83). 

 

Figure 3. 29 

Entanglement of formation, linear entropy, and correlations of the state. (a) Entanglement of formation 

(En) vs. linear entropy (SL). The solid circle represents the experimentally generated entangled photonic 

state. The solid red curve represents the behavior of ;â(1) on the plane. The gray region represents 

the physically impossible combinations of En and SL. (b) The total correlation, classical correlation, and 

quantum correlation vs. probability p. The solid magenta, cyan, and blue circles represent total 

correlation (I), classical correlation (C), and quantum correlation (Q) of the experimentally generated 

entangled photonic state. The solid magenta, cyan, and blue curves represent the theoretical behaviors 

of I, C, and Q as functions of ;â(1). The curved edge of the light blue region represents the relative 

entropy (Rn) of ;â(1). The error bars are calculated based on the standard deviation of photon counts 

using Poisson statistics. 

Since some quantum tasks may not rely on the entanglement but still exploit quantum 

advantages [99, 100] due to the non-entanglement quantum correlation, it is important 

to first distinguish the quantum correlation from the total correlation, then extract the 

non-entanglement quantum correlation within the quantum system, especially in a 

decoherence environment. Here we demonstrate the characterization of the 
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correlations within our quantum system. Based on the study of the bipartite system in 

the previous chapter, we know the quantum mutual information (I(U<:4)  ≡  S(U<)  +
 S(U4)  −  S(U<4)) [101] measures the total correlation between the two subsystems, 

the classical correlation ( {(U¯�) = max�°��°
=6(U¯) −∑ Ê:6MU:̄ Q: > ) characterizes the 

classically achievable correlation, and the quantum correlation (Q = I − C) quantifies 

the correlation that cannot exist in any classical state. For the approximated density 

matrix Uâ(Ê), 

I = −Ê log& TÊ2X − (2 − Ê) log& T1 − Ê2X + J) log& J) + J& log& J& , (3.4) 

C = − Ê2 log& TÊ2X − T1 − Ê2X log& T1 − Ê2X , (3.5) 

Q = − Ê2 log& TÊ2X − T1 − Ê2X log& T1 − Ê2X + J) log& J) + J& log& J& , (3.6) 

where J),& = 0.5 ± 0.5ÉÊ& + (1 − Ê)&. 

We show the correlations (I, C, Q) for our generated state and for the approximated 

state in Fig. 3.26b. For the approximated state (solid curves), I, C, and Q, all decay 

monotonically to 0  at p =  0  where the state becomes Uâ(0) = |?9?:〉e?9?:| 
when it carries no information. The I and Q of our generated state (solid circles) are 

slightly off the curves because we have neglected the small non-corner components in 

the measured density matrix.  

To quantify the difference between the quantum entanglement and the quantum 

correlation, we can rely on the relative entropy of entanglement (ò@) [102], which 
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measures the distance between the non-entanglement quantum correlation and 

quantum correlation. For Uâ(Ê), 

ò@ = − Ê2 log& TÊ2X − T1 − Ê2X log& T1 − Ê2X + J) log& J) + J& log& J& , (3.7) 

In Fig. 3.25b, we can see that the relative entropy of Uâ(Ê) (the curved edge of the 

light blue region) overlaps with the quantum correlation. It means that the 

entanglement is the only contributing factor to the quantum correlation in Uâ(Ê). 

Therefore, we conclude that the decoherence effect in EGFP can induce an additional 

component |?9?:〉e?9?:|  in the prepared state, which can reduce the classical 

correlation, the quantum correlation, and the total correlation. To understand the 

origin of the decoherence effect, we can investigate the nonlinear optical processes 

occurring inside the EGFP. In our case, the dominating process is TPA [88]. The 

probability that a fluorophore undergoes TPA is ~0.1  within one pump-pulse 

duration. This means that in the experiment, while the horizontally and vertically 

polarized pump pulses can create the polarized photon pairs in an ensemble of EGFP 

molecules through the SpFWM process, simultaneously the pulses can also excite 

some molecules to the first excited state 6) via TPA with a probability of ~0.1. 

Note that the temporal delay of the pump pulses (Δt =  33.3 ps) is two orders of 

magnitudes less than the lifetime of 6) (~3 ns). Therefore, the probability of TPA 

can make a big difference to the purity of the generated state because when the 

vertically polarized pump pulses enter the sample, ~10% of the molecules (which 
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are excited by TPA) are in the excited state and hence cannot participate in the 

generation of photon pairs through SpFWM. What’s more, the molecules that 

contribute to the SpFWM with the horizontally polarized pump pulses may undergo 

TPA with the vertically polarized pump pulses. These molecules become unable to 

produce the quantum amplitude for the vertically polarized photon pairs. Therefore, 

the net outcome is the occurring of an additional component |?9?:〉e?9?:| in the 

prepared two-photon state. This effect certainly reduces the entanglement and the 

quantum correlation of the generated photon pairs. 

Since the entangled photon pair is better preserved than the correlated photon pair in 

multiple scattering media [103], our entangled photon pairs can be used as a heralded 

single-photon source for biomedical imaging. In addition, the TPI visibility of ~85% 

(~98%) for the entangled photon pairs can provide signal-to-noise ratio as high as 10 

dB (20 dB) for sensing and imaging through the coincidence basis. Therefore, we can 

use the CCs of the photon pairs for observing spatiotemporal dynamics of proteins 

with resolution surpassing the diffraction limit [56, 104]. The spectral [105] and 

spatial properties [106] of the polarization-entangled photon pairs can also be used for 

performing bi-photon spectroscopy [107] and coincidence imaging (ghost imaging) 

[108] such as measuring the spectral and spatial properties of the EGFP-expressing 

cells [8] via coincidence basis measurements, respectively. For example, we can 

design the wavelength range for the signal and idler such that the signal photons travel 

through the cells under study experiencing phase change and loss while the idler 
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photons travel through the cells without disturbance. The signal photons are detected 

by using a single-photon detector. As for the idler photons, we insert a tunable filter 

or a lens before a single-photon detector for performing the local spectral or spatial 

analysis, respectively. We can then extract out the spectral and spatial properties of 

the cells under study via coincidence basis measurements. We can choose the 

polarization projection angles of the signal and idler photons to be 45° for the Bell 

state |ë�- as we perform the coincidence imaging or bi-photon spectroscopy. The 

cells under study can be like the transfected mammalian cells (293ETN cells derived 

from the human embryonic kidney cell line HEK293) with a plasmid encoding for 

EGFP [8]. Moreover, the entangled photon pairs can be engineered for manipulating 

the vibronic states in FPs through two-photon excitation. Their superiority originates 

from the simultaneous absorption of the entangled photons [56], thus avoiding the 

decay process in the intermediate states that occur when using classical light. 

Even more intriguing, however, is the possibility of developing an experimental 

heuristic for quantum effects in EGFP. Since EGFP can be expressed in living cells, 

the genetic sequences encoding the residues that define their structures and physical 

characteristics can be altered. There is a major advantage to using a biological system 

for generating the fluorophores of interest: physical characteristics can be rapidly and 

efficiently optimized via random mutagenesis [30], and thus enabling a process by 

which entanglement sources can be genetically engineered. For this reason, our 

FP-based entangled photon source is bio-compatible and comparable to quantum dots 
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as fluorescent labels in medical applications. In addition, our photonic entanglement 

generation scheme in EGFP can be easily extended to high dimensions (d > 2) such as 

for generating a time-bin polarization-entangled state. Also, the observed fidelity and 

quantum correlation of the entangled photon pairs generated in EGFP encourage us to 

apply the quantum illumination technique44 in EGFP-expressing cells in the future. 

In conclusion, we have generated polarization-entangled two-photon states with high 

fidelity through the SFWM process in EGFP. The measured density matrix unveils 

the fidelity-limiting decoherence effect that originates from TPA inside the EGFP. 

Moreover, our prepared state is free from environmental decoherence because of the 

protective β-barrel structure that encapsulates the fluorophore in the protein. Our 

photonic entanglement generation and characterization indicate that the SFWM 

process in EGFP is a promising quantum process for developing quantum 

spectroscopic techniques and quantum-enhanced measurements in biological 

materials. 
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