
NORTHWESTERN UNIVERSITY

Variants of MaxRS Queries for Trajectories, Shapes and Spatial Data

Streams

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Muhammed Mas-ud Hussain

EVANSTON, ILLINOIS

December 2018

2

© Copyright by Muhammed Mas-ud Hussain 2018

All Rights Reserved

3

ABSTRACT

Variants of MaxRS Queries for Trajectories, Shapes and Spatial Data Streams

Muhammed Mas-ud Hussain

We address the problem of efficient maintenance of the answer to a new type of query:

Continuous Maximizing Range-Sum (Co-MaxRS) for moving objects trajectories. The

traditional static/spatial MaxRS problem finds a location for placing the centroid of a

given (axes-parallel) rectangle R so that the sum of the weights of the point-objects

from a given set O inside the interior of R is maximized. However, moving objects

continuously change their locations over time, so the MaxRS solution for a particular

time instant need not be a solution at another time instant. In this dissertation work,

we devise the conditions under which a particular MaxRS solution may cease to be valid

and a new optimal location for the query-rectangle R is needed. More specifically, we

solve the problem of maintaining the trajectory of the centroid of R. In addition, we

propose efficient pruning strategies (and corresponding data structures) to speed-up the

process of maintaining the accuracy of the Co-MaxRS solution. As in many real-world

applications, trajectories data sets need to reside on a secondary storage or even on cloud,

a sequential access to the whole trajectories is inefficient. To resolve this, we devise a

4

hierarchical grid-based index structure which can be built on-the-fly and maintained via

KDS. Moreover, there are many scenarios where a fast response to the query is necessary,

and an approximate solution that is closer to the current MaxRS solution is preferred.

Thus, we present a novel approximation algorithm (with a bound on the approximation

ratio) for the Co-MaxRS problem using the grid-based partitioning system. We prove

the correctness of our approach and present experimental evaluations over both real and

synthetic datasets, demonstrating the benefits of the proposed methods.

Moreover, we also address the problem of maintaining the correct answer-sets to the

Conditional Maximizing Range-Sum (C-MaxRS) query in spatial data streams. In many

practical settings, the objects from a particular set – e.g., restaurants – can be of different

types – e.g., fast-food, Asian, etc. The C-MaxRS problem deals with maximizing the

overall sum – however, it also incorporates class-based constraints, i.e., placement of r

such that a lower bound on the count/weighted-sum of objects of interests from particular

classes is ensured. We first propose an efficient algorithm to handle the static C-MaxRS

query and then extend the solution in an event-based manner to handle dynamic (data

streams) settings. Subsequently, we turn our attention to the case of bursty streaming

inputs, which is common in many applications, – e.g., thousands of users go online (or,

offline) at (or, nearly) the same time in large social networks such as Facebook. We

show that dealing with events one by one is not efficient when processing bursty inputs

and present a novel technique to cater to such scenarios, by creating an index over the

bursty data on-the-fly and processing the collection of events in an aggregate manner.

Our experiments over datasets of up to 100,000 objects show that the proposed solutions

provide significant efficiency benefits over the näıve approaches.

5

Finally, we investigate another novel variant of the well-known MaxRS (Maximizing

Range Sum) problem – namely, the MAxRS3 (Maximizing Area-Range Sum for Spatial

Shapes). As we’ve already mentioned, the MaxRS problem amounts to detecting a loca-

tion where a fixed-size rectangle R should be placed, so that it covers a maximum number

of points – or sum of weights, if the points are weighted – from a given input set of 2D

points. While variants have tackled the settings in which the input set to MaxRS problem

consists of polygons instead of points – the solution is still based on (weighted) count.

We postulate that in many practical applications it is of interest to determine where to

place the input rectangle so that the total area-coverage in its interior is maximized. In

this work, we formalize the MAxRS3 problem and propose (to our knowledge) the first

solution to this new problem.

6

Acknowledgements

I take this opportunity to extend my sincere gratitude and appreciation to all those

who made this Ph.D. thesis possible.

Foremost, I would like to express my heartfelt appreciation to my advisor Prof. Goce

Trajcevski for the continuous support of my Ph.D study and research, for his patience,

motivation, enthusiasm, and immense knowledge. Since my first day at Northwestern,

prof. Trajcevski believed in me like nobody else and gave me endless support during

the tough times. Whenever I lost my way, he was always there to put me right back on

track. On the academic level, Prof. Trajcevski taught me fundamentals of conducting

scientific research, how to work through a problem, and the art of academic writing. I

am indebted to him for all my accomplishments during my graduate studies, and could

not have imagined having a better advisor and mentor for my Ph.D study.

I would like to express my deepest gratitude to my family and friends, for their warm

love, continued patience, and unconditional support. I am grateful to my ever-supporting

mother and father, who have provided me through moral and emotional support in my

life. I cannot stress enough the support my wife Bony provided during the difficult times

we had to endure together to make all this possible. This dissertation would not have been

possible without her love, and sacrifices. I should specially thank my eternal cheerleaders

– niece Ayaat and elder brother Zico. I am also thankful to my mother-in-law and father-

in-law, eldest brother Pele, sister-in-laws (Nafi and Mita), kids (Ayaan and Arnaaz), and

7

friends (special shoutout to Ragib Ahsan and Dipendra Jha) who have supported me

along the way.

Besides my advisor, I would like to thank the rest of my dissertation committee mem-

bers (Prof. Peter Scheuermann, Prof. Aleksandar Kuzmanovic, and Dr. Bo Xu) for their

great support and invaluable advice. I am thankful to Prof. Scheuermann and Prof. Kuz-

manovic, experts of Computer Systems research, for their crucial remarks that shaped my

final dissertation. I am also grateful to Bo, for his insightful comments and for sharing

with me his tremendous experience in the spatial data management field – both during

my internship at HERE and later, in exam presentations.

I would like to thank my lab mates and other academic collaborators for their continued

support in various research projects. I’d specially mention my ex-labmates Besim Avci,

Panitan Wongse-ammat (Top), and Bing Zhang – with whom I had worked on a number of

successful projects.I would like to thank my undergrad thesis supervisor Prof. Mohammed

Eunus Ali and his students (Ashik, Farabi, Naved, etc.) for their continued contribution

and help. I spent several quarters as a research intern at three great companies – IBM

Research, HERE, and Facebook, where I had the opportunity to work with fantastic

researchers and mentors (Bo Xu, Matthew Davis, Linbin Yu, Matei Stroila, Eytan Bakshy

– to name a few), and would like to thank them for their significant impact in my growth

as a Computer Scientist.

Thanks are also due to the National Science Foundation (NSF) (Grants III 1213038,

CNS 1646107, and CNS-0910952), Office of Naval Research (ONR) (grant N00014-14-

10215), HERE (grant 30046005) and Northwestern University for their financial support

that I otherwise would not have been able to undertake my research endeavors.

8

Dedication

This dissertation is dedicated to my wife, Bony Anjabeen, for her continued sacrifices

and remarkable perseverance to make all of this possible.

9

Table of Contents

ABSTRACT 3

Acknowledgements 6

Dedication 8

List of Figures 11

List of Tables 15

Chapter 1. Introduction 16

1.1. Co-MaxRS 16

1.2. Condtional-MaxRS 22

1.3. MAxRS3 28

1.4. Preliminaries 30

1.5. Outline 33

Chapter 2. Related Literature 34

2.1. Related Works 34

2.2. Our Previous Contributions 38

Chapter 3. Processing Continuous MaxRS for Trajectories 45

3.1. Basic Co-MaxRS 45

10

3.2. Pruning in Co-MaxRS 51

3.3. Space Partitioning and Indexing 64

3.4. Approximate Co-MaxRS Solution 78

3.5. Experimental Observations 88

3.6. Demonstration: System Design and Demo Details 103

Chapter 4. Processing Conditional MaxRS in Spatial Data Streams 108

4.1. Problem Definition 108

4.2. Basic C-MaxRS 112

4.3. C-MaxRS in Data Streams 120

4.4. Weighted C-MaxRS 134

4.5. C-MaxRS in Bursty Updates 139

4.6. Experimental Study 147

Chapter 5. MAxRS3 for Spatial Shapes 159

5.1. Background: Sweepline Algorithms, P-MaxRS 159

5.2. Problem Definition: MAxRS3 162

5.3. Processing MAxRS3 163

5.4. Algorithmic Details 167

Chapter 6. Conclusion, Remaining Work and Future Direction 170

6.1. Traffic Prediction at Anomalous Events 170

6.2. Conclusion and Contribution 175

6.3. Possible Future Works and Proposed Schedule 178

References 182

11

Vita 190

12

List of Figures

1.1 MaxRS vs. Co-MaxRS. 16

1.2 An example of C-MaxRS problem in spatial data streams at time (i) t1

(ii) t2. 25

1.3 MAxRS3 – Louisiana votes and Texas floods. 28

1.4 MaxRS vs. P-MaxRS vs. MAxRS3. 29

1.5 MaxRS → rectangle intersection. 31

1.6 Kinetic Data Structures paradigm. 32

2.1 (a) System Design (b) Graphical User Interface. 39

2.2 An example of (a) MaxRS and (b) k-MaxRS problem in WSN. 41

3.1 MaxRS location changes from t1 to t2, although the objects in the

solution are the same. 46

3.2 Co-MaxRS answer can only change when two rectangles’ relationship

changes from overlap to disjoint (or, vice-versa). Object locations at:

(a) t1 (b) t2 (c) t3. 47

3.3 Data structures used. 52

13

3.4 An example showing the objects pruning scheme: (a) Objects’ locations

and WN(oi) values at t (b) Grey objects can be pruned using Lemma 3

in a ~DO event (c) Remaining objects after pruning at a ~DO event. 53

3.5 Application of Lemma 4 in ~DO events. 57

3.6 An example of grid partitioning: (a) R and a snapshot of moving objects

(b) Count of objects for each grid cell at the given snapshot. 65

3.7 Computing U -Bound of a grid. 67

3.8 (a) Computing U -Bound of all the grids for example of Fig. 3.6 and

Fig. 3.7 (b) Pruning grids and objects based on Lem. 7. 68

3.9 Examples of hierarchical grid partitioning of space: (a) 0-level (b)

1-level. 69

3.10 Rarb consumed by the grid size and maintaining the similar properties. 69

3.11 (a) Count of objects for level 1 grids (b) Computing U -Bound using

level 1 grids. 71

3.12 Hierarchical grid data structures. 73

3.13 An example of grid-change event at time t. 74

3.14 Approximation ratio for l = 0. 79

3.15 Approximation algorithm for GL-1 grid partitioning. 80

3.16 Proof of Lemma 9. 85

3.17 Lower bound of approximation ratio for l = m+ 1 is 4. 87

3.18 (a) Events Pruning (b) Objects Pruning. 88

14

3.19 Impact of cardinality on the pruning schemes: (a) Different events

pruning (BIKE-dataset) (b) Objects pruning (BIKE-dataset) (c) Overall

objects and events pruning (all datasets). 89

3.20 (a) Events pruning strategy; (b) Objects pruning strategy against

varying range sizes. 92

3.21 Running-time in different datasets. 92

3.22 Impact of δ on (a) Error (b) Running Time of periodic-MaxRS. 93

3.23 (a) Running Time (b) Accuracy (of approximate answers). 94

3.24 Impact of l on (a) Running Time (b) Error of Approx-Co-MaxRS. 95

3.25 Impact of cardinality on: (a) Running Time (MS and BIKE-dataset)

(b) Running Time (MNTG-dataset) (c) Error (all datasets) of

Approx-Co-MaxRS. 96

3.26 Impact of range size on: (a) Running Time (MS and BIKE-dataset)

(b) Running Time (MNTG-dataset) (c) Error (all datasets) of

Approx-Co-MaxRS. 97

3.27 Pruning (avoiding full recomputation) in grid-change events. 98

3.28 Running time comparison between Co-MaxRS, Co-MaxRS-TPR, and

Co-MaxRS-HGrid. 99

3.29 Impact of l on (a) Running Time (b) Pruning of Co-MaxRS-HGrid. 100

3.30 Impact of cardinality on (a) Running Time (b) Pruning of Co-MaxRS-

HGrid. 101

15

3.31 Impact of range-size on (a) Running Time (b) Pruning of Co-MaxRS-

HGrid. 101

3.32 Runing time and pruning comparison for using exact R and arbitrayr R.102

3.33 Software architecture. 104

3.34 (a) The main GUI with map and time slider; (b) Answer-set 3D view

over T . 106

4.1 C-MaxRS → dual problem. 113

4.2 (i) Disjoint & (ii) Maximal regions 118

4.3 (i) Maximal Slabs & (ii) Slices 119

4.4 (i) Quadtree division & (ii) QTree 122

4.5 SliceUpperBoundBST at time (i) t1 & (ii) t2 123

4.6 Slice indexing over new data. 141

4.7 Regions within a slice. 143

4.8 Varying N (i) Gaussian (ii) Uniform. 149

4.9 Varying θ (i) Gaussian (ii) Uniform. 150

4.10 Varying λ (i) Gaussian (ii) Uniform. 150

4.11 Varying β (i) Gaussian (ii) Uniform. 151

4.12 Varying µ (i) Gaussian (ii) Uniform. 151

4.13 Varying b : a (i) Gaussian (ii) Uniform. 152

4.14 Comparing pruning rules (Unweighted Objects)(i) Gaussian (ii)

Uniform. 153

16

4.15 Comparing pruning rules (Weighted Objects) (i) Gaussian (ii) Uniform. 153

4.16 Comparing C-MaxRS-DU and C-MaxRS-Bursty for default settings. 154

4.17 Varying γ (i) Gaussian (ii) Uniform. 155

4.18 Varying N (i) Gaussian (ii) Uniform. 155

4.19 γ in larger scale (i) Gaussian (ii) Uniform. 156

5.1 P-MaxRS processing scheme. 161

5.2 Covered area and vertices of a given si. 164

5.3 Leader and follower sweep-lines for MAxRS3. 165

6.1 Traffic speed of 11th Ave. on Jan 1st, 2016. 172

6.2 Overview of Prediction Framework. 175

17

List of Tables

4.1 Parameters 148

18

CHAPTER 1

Introduction

In this chapter, we first present the motivation and applications for Continuous MaxRS

in moving objects databases, and then proceed with laying out the motivation for Con-

ditional MaxRS for spatial data streams. Subsequently, we introduce another MaxRS

variant, namely, Maximizing Area-Range Sum for Spatial Shapes (MAxRS3). Finally, the

basic technical background is laid out in Section 1.4.

1.1. Co-MaxRS

Recent technological advances in miniaturization of position-aware devices equipped

with various sensors, along with the advances in networking and communications, have

enabled a generation of large quantities of (location, time) data – O(Exabyte) [50]. This,

in turn, promoted various geo-social applications where the (location, time) information

is enriched with (sensed) values from multiple contexts [76, 80]. At the core of many such

Figure 1.1. MaxRS vs. Co-MaxRS.

19

applications of high societal relevance – e.g., tracking in ecology and environmental moni-

toring, traffic management, online/targeted marketing, etc. – is the efficient management

of mobility data [62].

Researchers in the Spatio-temporal [47] and Moving Objects Databases (MOD) [27]

communities have developed a plethora of methods for efficient storage and retrieval of

the whereabouts-in-time data, and efficient processing of various queries of interest. Many

of those queries – e.g., range, (k) nearest neighbor, reverse nearest-neighbor, skyline, etc.

– have had their “predecessors” in traditional relational database settings, as well as in

spatial databases [70]. However, due to the motion, their spatio-temporal variants be-

came continuous (i.e., the answer-sets change over time) and even persistent (i.e., answers

change over time, but also depend on the history of the motion) [54, 84].

1.1.1. Motivation and Challenges

In a similar spirit, this work explores the spatio-temporal extension of a particular type

of a spatial query – the, so called, Maximizing Range-Sum query (MaxRS), which can be

described as follows:

Q: “Given a collection of weighted spatial point-objects O and a rectangle R with fixed

dimensions, finds the location(s) of R that maximizes the sum of the weights of the objects

in R’s interior”.

Various aspects of MaxRS (e.g., scalability, approximate solutions, insertion/removal

of points) have been addressed in spatial settings [17, 24, 38, 58, 64, 73] – however, our

main motivation is based on the observation that there are many application scenarios

20

for which efficient processing of the continuous variant of MaxRS is essential. Consider

the following query:

Q1: “What should be the trajectory of a drone which ensures that the number of mobile

objects in the Field-of-View of its camera is always maximal?”.

It is not hard to adapt Q1 to other application settings: – environmental tracking

(e.g., optimizing a range-bounded continuous monitoring of a herd of animals with highest

density inside the region); – traffic monitoring (e.g., detecting ranges with densest traffic

between noon and 6PM); – video-games (e.g., determining a position of maximal coverage

in dynamic scenarios involving change of locations of players/tanks in World of Tanks

game). Pretty much any domain involving continuous detection of “most interesting”

regions involving mobile entities is likely to benefit from the efficient processing of variants

of Q1 (e.g., mining popular trajectories patterns [87], sports analytics [67], etc.).

Contrary to the traditional range query which detects the number of points, or higher

dimensionality objects such as (poly)lines and shapes, related to a given fixed region, the

MaxRS determines the location for placing a given region so that the sum of the weights

(i.e., some objective function related to location) is maximized. Originally, the MaxRS

problem was tackled by the researchers in computational geometry [38, 58] – however,

motivated by its importance in LBS-applications – e.g., best location for a new franchise

store with a limited delivery range, most attractive place for a tourist with a restricted

reachability bound – recent works have proposed scalable efficient solution for MaxRS

in spatial databases [17], including approximate solutions [73] and scenarios where the

weights may change and points may be added/deleted [24].

21

However, the existing solutions to MaxRS queries can only be applied to a specific

time instant – whereas Q1 is a Continuous MaxRS (Co-MaxRS) variant. Its weighted-

version would correspond to prioritizing certain kinds of mobile objects (e.g., areas with

most trucks – by assigning higher weights to trucks) to be tracked by the drone, or certain

kinds of tanks in the World of Tanks game. The fundamental difference between MaxRS

and Co-MaxRS is illustrated in Figure 1.1. Assuming that the 8 objects are static at time

t0 and the weights of all the objects are uniform, the placement of the rectangleR indicated

in solid line is the solution, i.e., count for optimal R is 3. Other suboptimal placements

are possible too at t0, e.g., covering only o2 and o3 with count being 2. However, when

objects are mobile, the placement of R at different time instants may need to be changed

– as shown in Figure 1.1 for t0, t and tmax.

1.1.2. Contributions

A few recent works have tackled the dynamic variants of the MaxRS problem [7, 57].

These works consider objects that may appear or disappear (i.e., insert/delete); however,

the locations of the objects do not change over time. To the best of our knowledge, the Co-

MaxRS problem has not been addressed in the literature so far. To solve the Co-MaxRS

problem, we first identify the critical times at which the Co-MaxRS solution may change

and a new solution appears. We show that there is only a certain finite number of such

events possible, which enables us to propose a base algorithmic solution to the problem.

Given the relatively expensive computational time (and worst-case time complexity) for

the base algorithm, we devise several effective pruning strategies to minimize redundant

22

computations and improve the overall processing time. We present a compact data struc-

ture to facilitate the pruning schemes, and use the concept of Kinetic Data Structures

(KDS) to manage the critical events. Experiments over both real and synthetic datasets

show an order of magnitude improvement in the processing time compared to the base

algorithm and other possible approaches.

In many real-world applications, trajectories data sets need to reside on a secondary

storage or even on cloud [21]. Even when stored in-memory, a sequential access to the

whole trajectories is inefficient. To deal with these cases, we present a hierarchical grid-

based index structure which can be built on-the-fly and maintained via KDS. The pro-

posed grid-based indexing scheme can be utilized both as an in-memory and external

memory structure. Moreover, we investigate the trade-offs between processing time vs.

approximate answer to Co-MaxRS (similar to [17]). There are many scenarios where a

fast response to the query is necessary, e.g., real-time data analysis via GUI (see [37]).

For example, in case of Q1 presented above, an approximate solution that is closer to

the current MaxRS solution can be preferred more than an exact solution due to the

logistics (time, battery, etc. needed) for the drone to move between locations. A fast

approximate solution with a theoretical bound on the errors is desirable in this case. We

present a novel approximation algorithm for the Co-MaxRS problem using the grid-based

partitioning system. We prove that the approximation ratio for the algorithm is a small

constant, i.e., 4, while the computational cost is an order of magnitude faster than the

exact solution. Experimental analysis on various datasets demonstrate the benefits of our

proposed approximation technique and index structure.

The main contribution of our work can be summarized as follows:

23

• We formally define the Co-MaxRS problem and identify criteria (i.e., critical times)

under which a particular MaxRS solution may no longer be valid, or a new MaxRS solution

emerges. These, in turn, enable algorithmic solution to Co-MaxRS using procedures

executing at discrete time instants.

• Given the worst-case complexity of the problem (consequently, the algorithmic solution),

we propose efficient pruning strategies to reduce the cost of recomputing the Co-MaxRS

solutions at certain critical times. We present an in-memory data structure and identify

properties that enable two such strategies: (1) eliminating the recomputation altogether at

corresponding critical time; (2) reducing the number of objects that need to be considered

when recomputing the Co-MaxRS solution at given critical times.

• We present a hierarchical grid-based indexing structure, specific to the Co-MaxRS

problem, to improve objects retrieval time. The proposed index can be implemented both

as an in-memory or external memory structure.

• Given that in some cases, an approximate solution to the Co-MaxRS problem is suit-

able – we devise a grid-based approximation algorithm. We show that the processing

time of the offered solution is faster than the exact algorithm, while it has a constant

approximation ratio of 4.

•We evaluate our proposed approaches using both real and synthetic datasets, and demon-

strate that the pruning strategies yield much better performance than the worst-case

theoretical bounds of the Co-MaxRS algorithm – e.g., we can eliminate 80-90% of the

critical time events and prune ∼70% objects (on average) when recomputing Co-MaxRS.

Additionally, we show that the approximation technique produces near-accurate results

(e.g., ∼90% Avg. Accuracy) in very quick time (more than 100 times faster than the

24

exact solution in some cases), while the indexing structure filters-out a good portion of

the data before the pruning stage.

1.2. Condtional-MaxRS

Rapid advances in accuracy and miniaturization of location-aware devices, such as

GPS-enabled smartphones, and increased use of social networks services (e.g., check-in

updates) have enabled a generation of large volumes of spatial data [50]. In addition to

the (location, time) values, that data is often associated with other contextual attributes.

Numerous methods for effective processing of various queries of interest in such settings

– e.g., range, (k) nearest neighbor, reverse nearest-neighbor, skyline, etc. – have been

proposed in the literature [39, 85, 92].

One particular spatial query that has received recent attention is the, so called, Maxi-

mizing Range-Sum (MaxRS) [17], which can be specified as follows: given a set of weighted

spatial-point objects O and a rectangle r with fixed dimensions (i.e., a × b), MaxRS re-

trieves a location of r that maximizes the sum of the weights of the objects in its interior.

Due to diverse applications of interest, variants of MaxRS [7, 63, 79, 36, 24, 37] have

been recently addressed by the spatial database and sensor network communities.

1.2.1. Motivation and Challenges

What motivates this work is the observation that in many practical scenarios, the members

of the given set O of objects can be of different types, e.g., if O is a set of restaurants, then

a given oi ∈ O can belong to a different class from among fast-food, Asian, French, etc.

Similarly, a vehicle can be a car, a truck, a motorcycle, and so on. In the settings where

25

data can be classified in different (sub)categories, there might be class-based participation

constraints when querying for the optimum region – i.e., a desired/minimum number of

objects from particular classes inside r. However, due to updates in spatial databases –

i.e., objects appearing and disappearing at different times – one needs to accommodate

such dynamics too. Following two examples illustrate the problem:

Example 1: Consider a campaign scenario where a mobile headquarters has limited

amount of staff and needs to be positioned for a period of time in a particular area.

The US Census Bureau has multiple surveys on geographic distributions of income cate-

gories1 and, for effective outreach purposes, the campaign managers would like to ensure

that within the limited reachability from the headquarters, the staff has covered a max-

imum amount of voters – with the constraint that a minimum amount of representative

from different categories are included. This would correspond to the following query:

Q1: “What should be the position of the headquarters at time t so that at least κi resi-

dents from each income Categoryi can be reached, while maximizing the number of voters

reached, during that campaign date.”

Example 2: Consider the scenario of X’s Loon Project2, where there are different types

of users – premium (class A), regular (class B), and free (class C), and users can disconnect

or reconnect anytime. In this context, consider the following query:

Q2: “What should be the position of an Internet-providing balloon at time t to ensure

that there are at least Θi users from each Classi inside the balloon-coverage and the

1cf. https://www.census.gov/topics/income-poverty/income.html
2The Loon project (formerly Google X [4]) aims at providing internet access to remote/rural areas via a
collection of high-altitude balloons providing wireless networks with up to 4G LTE speeds.

26

number of users in its coverage is maximized?”.

It is not hard to adapt Q1 and Q2 to many other applications settings: – environmen-

tal tracking (e.g., optimizing a range-bounded continuous monitoring of different herds

of animals with both highest density and diversity inside the region); – traffic monitoring

(e.g., detecting ranges with densest trucks); – video-games (e.g., determining a position

of maximal coverage in dynamic scenarios involving change of locations of players and

different constraints).

We call such queries Conditional Maximizing Range-Sum (C-MaxRS) queries, a vari-

ant of the traditional MaxRS problem. For dynamic settings, where the objects can be

inserted and/or deleted, we have Conditional Maximizing Range-Sum with Data Updates

(C-MaxRS-DU) query.

An illustration for C-MaxRS query in a setting of 7 users grouped into 3 classes

(i.e., A, B, and C), and with a query rectangle size a × b (i.e., height a and width b)

is shown in Figure 1.2. Assume that the participation constraint is that the positioning

of r must be such that at least 1 user is included from each of the classes A, B, and C,

respectively. There are two rectangles r1 and r2, with dimension a×b, that are candidates

for the solution. However, upon closer inspection it turns out that although r2 contains

most users (corresponding to the traditional MaxRS solution), it is r1 that is the sought-

for solution for the C-MaxRS problem. Namely, r2 does not satisfy the participation

constraints (see Figure 1.2(i)).

Now, suppose that at time t2, user o6 disconnects and a new user o8 joins the system.

Then the C-MaxRS solution will need to be changed to r2 from r1 (see Figure 1.2(ii)).

27

(i) (ii)

Figure 1.2. An example of C-MaxRS problem in spatial data streams at
time (i) t1 (ii) t2.

1.2.2. Contributions

Our key idea for efficient C-MaxRS processing is to partition the space and apply effec-

tive pruning rules for each partition to quickly update the result(s). The basic processing

scheme follows the technique of spatial subdivision from [24], dividing the space into a

certain number of slices, whose local maximum points construct the candidate solution

point set. In each slice, the subspace was divided into slabs which helps in reducing the

solution space. To handle dynamic data stream scenarios, i.e., appearances and disap-

pearances of objects, we propose two algorithms, C-MaxRS+ and C-MaxRS− respectively,

which works as a backbone for solving the constrained maximum range sum queries in

the dynamic insertions/deletions settings (C-MaxRS-DU). Our novelty is in incorporating

heuristics to reduce redundant calculations for the newly appeared or disappeared points,

relying on two trees: a quadtree and a balanced binary search tree. Experiments over a

wide range of parameters show that our approach outperforms the baseline algorithm by

a factor of three to four, for both Gaussian and Uniform distribution of datasets.

28

The above idea for the C-MaxRS-DU algorithm takes an event-based approach, in

the sense that C-MaxRS is evaluated (maintained) every time an event occurs, i.e., new

point appears (e+) or an old point disappears (e−). This approach works efficiently when

events are distributed fairly uniformly in the temporal domain and occur at different

time instants that are enough apart for reevaluation to complete. However, the recent

technological advancements and the availability of hand-held devices have enabled a large

increase (or decrease) of the number of active/mobile users in multitude of location-aware

applications in relatively short time-spans. In the context of Examples 1 and 2, this would

correspond to the following scenarios:

Example 1’ : If the area involves businesses, then one would want to exploit the fact that

many individuals may: (a) come (or leave) their place of work in the morning (or evening);

(b) enter (or leave) restaurants during lunch-time; etc.

Example 2’ : In the settings of X’s Loon Project, there can be multiple users disconnecting

from the service simultaneously (within a short time span), or new users may request

connections.

There are many other scenarios from different domains – e.g., Facebook has on average

2 billion daily active users – approximately 23,000 users per second. These Facebook

users can be divided into many groups (classes), and C-MaxRS can be used to retrieve

the most interesting regions (with respect to particular requirements) among the active

daily users. In this scenario, a large number of users can become online (e+), or go offline

(e−) at almost-same time instant. Similarly, flocks of different kinds of animals may be

approaching the water/food source; the containment of the diseases across the population

and regions may vary; etc.

29

To address the efficiency of processing in such settings, we propose a novel technique,

namely C-MaxRS-Bursty. The key idea of our approach is as follows: instead of process-

ing every single update, we assume that the update streams are gathered for a period of

time. Then, we create a modified slice-based index for the entire batch of the new events,

and then snap the new data over the existing slice structure in a single pass. Finally, we

perform the pruning conditions for each slice only once in an aggregated manner. Ex-

perimental results show that C-MaxRS-Bursty outperforms our one-at-a-time approach,

C-MaxRS-DU, by a speed-up factor of 5-10.

The main contributions of this work can be summarized as follows:

• We formally define the C-MaxRS and C-MaxRS-DU problems (for both weighted and

non-weighted versions) and provide a baseline solution using spatial subdivision (slices).

• We extend the solution to deal with spatial data streams (appearing and disappearing

objects) for which we utilize effective pruning schemes for both appearing and disappearing

events, capitalizing on a self-balancing binary search tree (e.g., AVL-tree) and a quad-tree.

•We propose an efficient methodology to handle bulk updates of data (i.e., updates with

large data-volumes) along with the appropriate extensions of the data structures to cater

to such settings.

• We demonstrate the benefits of our proposed method via experiments over a large

dataset. Experiments over a wide range of parameters show that our approaches outper-

form the baseline algorithms by a factor of three to four. Moreover, experiments with

bulk updates demonstrate the effectiveness and scalability of C-MaxRS-Bursty over other

techniques (e.g., C-MaxRS-DU).

30

1.3. MAxRS3

Figure 1.3. MAxRS3 – Louisiana votes and Texas floods.

The Maximizing Range Sum query (MaxRS) takes a collection of weighted spatial

point-objects O and a rectangle R with fixed dimensions as inputs, and generates a

location(s) for placing the centroid of R that maximizes the sum of the (weights of the

objects) in R′s interior. Initially, the MaxRS problem was identified and solved by the

researchers in computational geometry (CG) community [58]. Some years later, motivated

by its importance in location-aware queries, such as: what is the best location for a new

franchise store with a limited delivery range, or what is the hotel location so that a tourist

with spatially constrained mobility can see most attractions – researchers have tackled

various new aspects. Efficient solution for MaxRS in large (secondary storage) spatial

databases has been presented in [17]; more recently, a continuous variant of MaxRS for

mobile objects and query-rectangle has been addressed in [32], and dynamic settings

where objects may be inserted/deleted along with changing their weights have also been

considered (cf. [7, 56]).

We note that [58] considered a variation of the MaxRS problem where the input

collection consists of polygons instead of points. For brevity, we call that variant a P-

MaxRS (Polygons MaxRS), and a solution was presented so that the (weighted) sum of

the polygons inside R is maximized.

31

1.3.1. Motivation and Contribution

Figure 1.4. MaxRS vs. P-MaxRS vs. MAxRS3.

What motivates our work is the observation that in many practical settings, in addition

to the datasets consisting of polygons – it is more important to find a placement for the

centroid of query-rectangle R in a manner that will ensure maximal area coverage. As

specific examples, consider the following scenarios:

S1: A campaign manager with a limited reachability for his staff would like to know

where to place the mobile headquarters to improve the votes in a given region.

S2: Emergency crews are interested in location for placing the sump-pumps with limited

reachability of multiple hose, so that the drainage impact is maximized.

Both scenarios are illustrated in Fig. 1.3 (left portion is illustrating S1 and the right

portion illustrates S2). In each case, we show two positions of R: (1) covering maximal

number of regions (i.e., P-MaxRS); and (2) covering maximal area. Clearly, the place-

ment(s) based on the solution to P-MaxRS are not the desired output for S1 and S2.

To address such problems, in this paper we propose the MAxRS3 (Maximal Area-Range

Sum for Spatial Shapes) problem. More formally, the fundamental differences between

MaxRS, Polygon Containment (a.k.a. P-MaxRS) and MAxRS3 problem are illustrated

32

in Figure 1.4. Assuming that 8 point objects are given (o1, o2, . . . , o8 in Figure 1.4) and

the weights of all the objects are uniform, the placement of the rectangle R indicated

in dotted blue line is the MaxRS solution (i.e., count=3). When objects have a spatial

extent represented by a polygon, e.g., triangle, rectangle, pentagon, etc. (cf. s1, s2, . . . , s8

centered at the point objects o1, o2, . . . , o8 in Figure 1.4), the solution to the P-MaxRS

problem [58]) is given by the dotted green line, where the placement of R completely en-

capsulates polygons s1, s2, and s3 (i.e., count=3). The MAxRS3 problem – addressing the

more practical goal of maximizing the area of the coverage of R, will return the placement

represented by the dotted orange line, overlapping s6 and s7.

1.4. Preliminaries

We now review the approaches for solving static MaxRS problem and introduce the

concept of kinetic data structures that we subsequently use for solving Co-MaxRS.

1.4.1. MaxRS for Static Objects

Let C(p,R) denote the region covered by an isothetic rectangle R, placed at a particular

point p. Formally:

Definition 1. (MaxRS) Given a set O of n spatial points O = {o1, o2, . . . , on}, where

each oi associated with3 a weight wi , the answer to MaxRS query (AMaxRS(O,R)) retrieves

a position p for placing the center of R, such that
∑
{oi∈(O ∩ C(p,R))}wi is maximal.

∑
{oi∈(O ∩ C(p,R))}wi is called the score of R located at p. If ∀oi ∈ O : wi = 1, we have

the count variant, instances of which at different times are shown in Figure 1.1. Note

3One may also assume that the points in O are bounded within a rectangular area F.

33

that there may be multiple solutions to the MaxRS problem, and in the case of ties – one

can be chosen randomly, unless other ranking/preference criteria exist.

Figure 1.5. MaxRS → rectangle intersection.

Consider the example shown in Figure 1.5 – the count variant of MaxRS, with a

rectangle R of size d1×d2 and five objects (black-filled circles). An in-memory solution to

MaxRS (cf. [58]) transforms it into a “dual” rectangle intersection problem by replacing

each object in oi ∈ O by a d1×d2 rectangle ri, centered at oi. R covers oi if and only if its

center is placed within ri. Thus, the rectangle covering the maximum number of objects

can be centered anywhere within the area containing a maximal number of intersecting

dual rectangles (e.g., r3 ∩ r4 ∩ r5 – gray-filled area in Figure 1.5).

Using this transformation, an in-memory algorithm to solve the MaxRS problem in

O(n log n) time and O(n) space was devised in [58]. Viewing the top and the bottom

edges of each rectangle as horizontal intervals, an interval tree – i.e., a binary tree on the

intervals – is constructed, and then a horizontal line is swept vertically, updating the tree

at each event. The algorithm maintains the count for each interval currently residing in

the tree, where the count of an interval represents the number of overlapping rectangles

within that interval. When the sweep-line meets the bottom (top) edge of a rectangle, the

34

corresponding interval is inserted to (deleted from) the interval tree and the count of each

interval is updated accordingly. Considering the scenario in Figure 1.5 and using [xil, xir]

to denote the left and right boundaries of ri, when the horizontal sweep-line is at position

l, there are 9 intervals: [−∞, x1l], [x1l, x2l], [x2l, x1r], [x1r, x2r], [x2r, x4l], [x4l, x5l], [x5l,

x4r], [x4r, x5r], and [x5r, +∞]—with counts of 0, 1, 2, 1, 0, 1, 2, 1, and 0 respectively.

An interval with the maximum count during the entire sweeping process is returned as

the final solution and, since there can be at most 2n events (top or bottom horizontal

edge of all ri’s) and each event takes O(log n) processing time, the whole algorithm takes

O(n log n) time to complete.

We note that one may construct a graph RG (rectangle graph) where vertices corre-

spond to points/objects in O (i.e., the centers of the dual rectangles) and an edge exists

between two vertices oi and oj if and only if the corresponding dual rectangles overlap

(i.e., ri ∩ rj 6= ∅). As illustrated with dotted edges in Figure 1.5, an area of maximum

overlap of dual rectangles corresponds to a maximum clique in RG.

1.4.2. Kinetic Data Structures

Figure 1.6. Kinetic Data Structures paradigm.

Kinetic data structures (KDS) [11] are used to track attributes of interest in a geo-

metric system, where there is a set of values (e.g., location – x and y coordinates) that

are changing as a function of time in a known manner. To process queries at a (virtual)

35

current time t, an instance of the data structure at initial time t0 is stored (i.e., values of

the attributes of interest), which is augmented with a set of certificates proving its cor-

rectness at t0. The next step is to compute the failure times of each certificates – called

events – indicating that the data structure may no longer be an accurate representation

of the state of the system. The events are stored in a priority queue sorted by their failure

times. To advance to a time t (= t0 + δ), we have to pop all the events having failure

times tfail ≤ t0+δ from the queue in-order, and perform two operations at each event: (1)

modify the data structure so that it is accurate at tfail (attribute update), and (2) update

the related certificates accordingly (see Figure 1.6). Throughout the dissertation paper,

we utilize KDS in various ways, such as: (1) to maintain the Co-MaxRS answer-set over

time and only perform certain tasks at the critical times (events) when a current MaxRS

solution may change; and (2) to maintain the correct count for each grid of hierarchical

grid-based partitioning.

1.5. Outline

In the rest of this paper, Chapter 2 positions the works with respect to the related

literature, and offers brief description of some of our previous/related works. Chap-

ter 3 describes our proposed algorithms to deal with the Co-MaxRS problem. Subse-

quently, Chapter 4 presents our solutions to the Conditional MaxRS problem in spatial

data streams. In Chapter 5, we introduce the problem of MAxRS3, and offer a novel

and efficient algorithm to process it. Finally, Chapter 6 lays out current/ongoing works,

future directions, proposed schedule, and overall contribution of the Ph.D. thesis.

36

CHAPTER 2

Related Literature

There are several bodies of research results that are closely related, and were used as

foundation throughout this paper.

2.1. Related Works

Continuous MaxRS for Trajectories

The problem of MaxRS was first studied in the Computational Geometry community,

with [38] proposing an in-memory algorithm to find a maximum clique of intersection

graphs of rectangles in the plane. Subsequently, [58] used interval tree data structure

to locate both (i) the maximum- and (ii) the minimum-point enclosing rectangle of a

given dimension over a set of points. Although both works provide theoretically optimal

bound, they are not suitable for large spatial databases, and a scalable external-memory

algorithm – optimal in terms of the I/O complexity – was proposed in [17] (also addressing

(1 − ε)-approximate MaxRS and All-MaxRS problems). More recently, the problem of

indexing spatial objects for efficient MaxRS processing was addressed in [91]. In this

work, we used the method of [58] to recompute MaxRS only at certain KDS events,

however, we proposed pruning strategies to reduce the number of such invocations. We

note that an indexing scheme based on a static sub-division of the 2D plane (cf. [17, 91])

need not to be a good approach for spatio-temporal data because the densities in the

37

spatial partitions will vary over time, and we plan to investigate the problem of efficient

indexing techniques for Co-MaxRS as part of our future work.

In [63], an algorithm to process MaxRS queries when the locations of the objects are

bounded by an underlying road network is presented. Complementary to this, in [15]

the solution is proposed for the rotating-MaxRS problem, i.e., allowing non axis-parallel

rectangles. Recently, [7] proposed methods to monitor MaxRS queries in spatial data

streams – objects appear or disappear dynamically, but do not change their locations. A

system implementing in-network solution to (a single, k = 1) MaxRS queries in WSN was

presented in [33]. Although [7], [15], [33], and [63] deal with interesting variants of the

traditional MaxRS problem, they do not consider the settings of mobile objects.

In this work, we relied on the KDS framework, introduced and practically evaluated

in [11]. The KDS-like data structure was used to process critical events at which the

current MaxRS solution may change. To estimate the quality of a KDS, [11] considered

performance measures such as the time-complexity of processing KDS events and com-

puting certificate failure times, the size of KDS, and bounds on the maximum number of

events associated with an object. We used the same measures to evaluate the quality of

our approach.

Circular (Co-)MaxRS: A special note is in order for the, so called, circular MaxRS [14]

– which is, the region R is a disk instead of a rectangle. Arguably, this problem is Θ(n2)

and one of the main reasons is that the combinatorial complexity of the boundary of the

intersection of a set of disks is not constant (unlike axes-parallel rectangles). This, in turn,

would increase the n log n factor in our algorithms to n2 – and the continuous variant of the

circular MaxRS implies maintaining intersections of sheared cylinders instead of sheared

38

boxes. We also note that this case (counting variant) bears resemblance to works that

have tackled problems in trajectory clustering [41]. More specifically, [25] introduced the

concept of flocks as a group of trajectories who are moving together within a given disk and

for a given time, and [40] introduced the (less constrained) concept of trajectory convoys.

These works, while similar in spirit to a continuous variant of the circular MaxRS –

have not explicitly addressed the problem of detecting (and maintaining) the disk which

contains the maximum number of moving objects, nor have considered weights of the

objects. We re-iterate that the results in [25] show that some of the proposed algorithms

have complexities similar in magnitude to the worst-case complexity of the Co-MaxRS.

An approximate solution to the static variant of the circular MaxRS was presented in [17]

(approximating the disk with the minimum bounding square) and our current Co-MaxRS

solution can be readily applied towards the approximated variant.

MaxRS in Spatial Data Streams and Constrained Settings

Monitoring MaxRS for dynamic settings, where objects can be inserted and/or deleted

was first addressed in [7]. To efficiently detect the new locations for placing the query

rectangle, [7] exploited the aggregate graph aG2 in a grid index and devised a branch-

and-bound algorithm [59] over that aG2 graph for efficient approximation. We note that

our work is complementary to [7], in the sense that we addressed the settings of having

different classes of objects and participation constraints based on them – whereas [7]

solves the basic MaxRS problem. Moreover, [7] considered a sliding-window based model

in the problem settings (i.e., if m new objects appear, then m old objects disappear in

a time-window T), which is completely different to our event-based model. Additionally,

39

we used contrasting approaches (and different data structures) in this work – dividing the

2D space into slices and slabs.

An interesting variant of MaxRS is addressed in [24] – the, so called, Best Region

Search problem, which generalizes the MaxRS problem in the sense that the goal of

placing the query rectangle is to maximize a broader class of aggregate functions1. Our

work adapts the concepts from [24] (slices and pruning) – however, we tackle a different

context: class-based participation constraints and dynamic/streaming data updates and,

towards that, we also incorporated additional data structures (see Section 4.3). As a

summary, our methodology (as well as the actual implementation) is based on the idea

of event driven approach for monitoring appearing and disappearing cases of objects, and

we included a self-balancing binary tree (i.e., AVL-tree) to reduce the processing time

that is needed for computing the MaxRS as per the event queue needs.

Finally, a preliminary version of this work has been presented in [55]. However, we

note that the techniques for processing continuous monitoring queries over data streams

must be adaptive, as data streams are often bursty and input characteristics may vary

over time. Many prior works have demonstrated the tendency of bursty streams in var-

ious applications, and proposed general solutions [46, 9, 12]. For example, [9] utilized

”load shedding” technique for aggregation queries over data streams, i.e., gracefully de-

grading performance when load is unmanageable; while [12] offered distributed stream

processing systems to handle unpredictable changes in streaming rates. In this work,

we address specifically the ”algorithmic” part of the problem, i.e., presenting an opti-

mal processing technique for C-MaxRS during bursty inputs. Our proposed technique is

1More specifically, [24] was considering submodular monotonic functions as aggregates.

40

implementation-independent, and can be augmented by existing distributed and parallel

schemes seamlessly (cf. Section 4.5).

We conclude this section with a note that few works [20], [77], and [92] studied the

problem of maximizing reverse nearest neighbor, and [82] applied the optimal location

query problem for road networks. However, we note that these problems are different from

MaxRS as they do not consider maximum number of objects with interesting properties

and instead consider the amount of influence only.

2.2. Our Previous Contributions

In the following, we describe a few of our previous contributions in more details that

are related to the problem(s) solved in this thesis paper.

2.2.1. Distributed MaxRS in Wireless Sensor Networks

As we know, Wireless Sensor Networks (WSN) represent a paradigm with broad range

of practical applications [6]. As sensor nodes are usually powered by batteries and often

severely limited for recharging or replacing them, reducing the energy consumption is

an ever-important topic in WSN, enabling an extension of overall network’s operational

lifetime [8]. Various works have also tackled routing issues, as well as epoch-based syn-

chronization for query processing, aggregation, and in-network algorithms to minimize

communication overheads (compared to centralized processing) [49]. Our goal in [33]

was to provide efficient mechanisms for: (1) Processing MaxRS query in WSN; and (2)

Reducing energy consumption while maintaining its answer under dynamically changing

values of the monitored phenomena.

41

This work presented a distributed implementation for processing Maximizing Range

Sum (MaxRS) query in Wireless Sensor Networks (WSN). As discussed in Chapter 1,

MaxRS query is useful in many spatially-distributed event monitoring and target tracking

applications. Given the location and current readings of the nodes, and a rectangle R,

MaxRS finds a location of R that maximizes the sum of the readings of all the nodes

covered by R. Our system performs MaxRS query in a user-specified time-interval γ and

using the result obtained, attempts to maintain a certain degree of energy conservation

in the WSN, based on a user-defined threshold δ. Since centralized processing of the raw

readings and subsequently determining the MaxRS may incur significant communication

overheads, we developed a distributed algorithm to compute MaxRS. We implemented our

system in a heterogeneous WSN consisting of TelosB and SunSPOT motes, and illustrate

the end-user tools: GUI for specifying required parameters, and real-time visualization of

MaxRS solutions and estimated network energy consumption (cf. Figure 2.1b).

(a) (b)

Figure 2.1. (a) System Design (b) Graphical User Interface.

The distributed solution for the MaxRS problem in spatial databases in [17] is the

foundation of our in-network algorithm. Instead of dividing the space into m vertical

slabs, we divide the space into a hierarchy of m × n grid-shaped clusters, each of which

42

has a selected cluster-head. The system architecture shown in Figure 2.1a consists of the

following main components:

(1) At the highest declarative level, we have the GUI that serves two main purposes: (a)

Enables the users to select desired values for the required parameters; and (b) Provides a

display for visualizing the boundaries of the current MaxRS solution, showing the nodes

that are currently awake; the status of the monitored event (e.g., mote readings); and

energy consumption in the network.

(2) The sink, connected through the serial port of the laptop: (a) Disseminates the

parameters to the cluster-heads; and (b) Collects the data from the cluster-heads and

performs the slab-file merging procedure described in [17].

(3) The cluster-heads form a tree-based hierarchy towards the sink. Each cluster-head

calculates the slab-file information for the local cluster and coordinates the information

with one of the neighboring cluster-heads to perform in-network aggregation.

(4) At the lowest level, the individual motes in each cluster conduct two simple tasks: (a)

They receive related parameters from the local cluster-head; and (b) When awake, they

report their readings to the local cluster-head.

2.2.2. k-MaxRS in Wireless Sensor Networks

Wireless Sensor Networks (WSN) consist of hundreds, or even thousands of nodes ca-

pable of sensing particular set of phenomena, performing basic computations and, most

importantly, communicating with each other [6]. They are the empowering technology

for a wide range of applications including environmental monitoring, smart buildings

43

(a) (b)

Figure 2.2. An example of (a) MaxRS and (b) k-MaxRS problem in WSN.

and cities, safety and hazard detection, agriculture, medicine, military, traffic monitor-

ing, etc. Due to the types of sensors used and/or various deployment constraints (e.g.,

harsh and inaccessible environments), re-charging nodes’ batteries is not always feasible.

Consequently, reducing the energy consumption is an ever-important topic in WSN, facil-

itating an extension of overall network’s operational lifetime [8]. While periodic sampling

and transmission to a dedicated base-station may be applicable for certain applications,

they may incur significant overhead in others – especially in event-based monitoring and

tracking. To minimize communication overheads, various works have tackled coupling of

routing schemes with aggregation and in-network query processing [23, 48, 75, 49].

In [78], we take a first step towards providing a distributed, energy-efficient solution in

WSN settings, to the problem known as (k-)MaxRS – which can be described as follows.

Given a collection of weighted objects O and a rectangle R with fixed dimensions (i.e.,

d1× d2), the Maximizing Range Sum (MaxRS) query retrieves the location at which (the

centroid of) R should be placed, so that the sum of the weights of the objects in its

interior is maximized. In the context of WSNs, we can think of the set of sensor nodes

as the set of weighted objects, where the “weights” are application dependent, e.g., mote

readings (event monitoring), information gain (tracking an object), uniform (counting),

44

etc. We note that MaxRS is rather different from the traditional range query in the sense

that when processing a range query, the region is typically fixed and one is interested in

properties that hold in its interior. Contrary to this, MaxRS determines where should a

rectangle with given dimensions be placed, so that some “interesting” properties in its

interior are maximized (modulo all the other possible placements). An instance of the

MaxRS in WSN is shown in Figure 2.2(a), assuming that the weights of all the sensor

nodes are uniform – i.e., the “counting” variant.

Consider the following query:

Q1: “Where should we place k surveillance devices (e.g., cameras, checkpoints, etc.) with

a fixed-size coverage region in a forest such that their cumulative monitoring of forest-fire

vulnerable regions (i.e., regions where temperature and light sensor readings are higher)

is maximized?”.

It is not hard to adapt Q1 to other applications in which a simultaneous detection of

top-k “popular” regions (k ≥ 2) may be of interest. Such examples are: discerning

k herds of tracked animals (e.g., gazelles) with largest density; aiding transportation

system management by identifying k regions of the city with heaviest traffic; detecting

congestions/hotspots in WSN by setting a node’s current incoming/outgoing network

traffic as its weight. One can also readily extrapolate to various collaborative scenarios –

e.g., guiding drones towards regions where certain phenomenon has the largest weighted

sum. To the best of our knowledge, the existing solutions [34] to MaxRS queries in WSN

can only be applied to retrieve an optimal location for a single rectangle R, whereas Q1

is an instance of the k-MaxRS variant – which we tackle in [78].

45

The respective k-MaxRS query finds the placement-locations for k rectangles such

that the weighted sums of all the objects in the (union of the) interiors of each of R

placed at those locations are optimal. An example-solution of the k-MaxRS query in

WSN for uniformly weighted nodes is illustrated in Figure 2.2(b) (k=3). Although the

MaxRS problem has been addressed by both computational geometry and spatial data-

bases communities [16, 17, 38, 58], to the best of our knowledge, there has been no

solution considering k optimal placements in WSN settings. As mentioned, in WSNs it is

paramount to have energy-efficient query processing, for which in-network aggregation of

partial results is often the approach of choice [23, 48]. Another challenge in this scenario

is that the weights (i.e., sensor readings, information gain, etc.) of the sensor nodes may

change with time, although their locations are fixed.

The main contribution of [78] can be summarized as follows:

• We provide an efficient in-network distributed algorithm to compute k-MaxRS via a

hierarchy of clusters.

• We provide effective data-sharing schemes among the cluster-heads (also called princi-

pals).

•We provide experimental observations quantifying the benefits of the proposed approach.

2.2.3. Location and Weather Context in Place Recommendation Systems

In this work [35], we implemented a system for augmenting the functionality of Yelp-like

recommendation sites by enabling users to search for places bounded by travel-time when

using public transportation, and modifying recommendations based on updated weather

conditions. Using public transport, although is cheaper and efficient, entails that only

46

fixed places of boarding/exiting may be used which, in turn, implies walking to (from)

a particular location from (to) a given station. Given the impact of the weather on the

mood and activities, preferences for a certain type of services may need to be dynamically

adjusted based on the current weather or the near-future forecast, modulo travel-routes to

preferred locations. We developed a model to predict a user’s preferred mode of transport

(car, or public transit) from their old check-ins and incorporate the weather context

into the recommendation process. We used event-based modeling to control the extent of

walking depending on user-defined tolerance information and live weather conditions, and

implemented a web application (both desktop and mobile platforms), utilizing existing

tools such as Google Maps Direction API [1] and OpenWeatherMap API [2] for retrieving

real-time information.

An efficient solution for Co-MaxRS provides several benefits, in different aspects of [35]

as following:

• Using solutions from Co-MaxRS, we can retrieve hotspots for moving objects, e.g.,

cars, users, etc. Based on that, clever pre-computation and cache schemes can be utilized

to improve the performance of online route information queries to Google Maps Direction

API.

• We leveraged upon clustering schemes to develop a model to estimate how far each

user is willing to travel. We apply Bayesian Information Criterion (BIC) to acquire the

optimal number of clusters (i.e., k), and then employed k-means [43] method to obtain

the desired clustering. As MaxRS retrieves the densest clusters for a given set of objects,

related effective solutions can be utilized in this setting.

47

CHAPTER 3

Processing Continuous MaxRS for Trajectories

In this chapter, we first present a formal definition for the Co-MaxRS problem, and

then provide a basic solution of O(n3 log n). We then proceed to offer clever pruning

schemes and refinement strategies to improve processing time. Subsequently, we present

two extensions to our proposed solution to the Co-MaxRS problem: (1) Firstly, we de-

vise an efficient indexing technique (can be used both as an in-memory and/or external

memory solution) based on hierarchical grid-based partitioning to improve the processing

time; (2) Secondly, using the similar indexing structure, we offer an approximate solution

to the Co-MaxRS problem with a bounded approximation ratio of 4. Then, the details of

our experiments and obtained results are described. Finally, we briefly present the details

of a demonstration system for solving Co-MaxRS problem.

3.1. Basic Co-MaxRS

Interval tree was used as in-memory data structure of the planesweep algorithm in

both [58] and the subsequent work addressing scalability [17]. However, these techniques

cannot be straightforwardly extended to maintain MaxRS solutions continuously – i.e.,

one cannot expect to have an uncountably-infinite amount of interval trees (at each instant

of objects’ motion). As it turns out, the answer to Co-MaxRS can change only at discrete

time-instants, which we address in the sequel.

48

Throughout this section, without loss of generality, we assume that each object moves

along a single straight line-segment and all the objects start and finish their motion in the

same time instant. We will lift this assumption and discuss its impact in Section 3.2.3.

Continuous MaxRS (Co-MaxRS) is defined as follows:

Definition 2. (Co-MaxRS) Given a set Om of n 2D moving points Om =

{o1, o2, . . . , on}, where each is associated with a trajectory1 oi = [(xi1, yi1, ti1),

. . . , (xi(k+1), yi(k+1), ti(k+1))] and a weight wi; and a time-interval T = [t0, tmax],

the answer to Co-MaxRS (ACo-MaxRS(Om, R, T)) is a (time-ordered) sequence of pairs

[(l1obj, [t0, t1)), (l
2
obj, [t1, t2)), . . . , (l

c
obj, [tc−1, tmax))], where (liobj, [ti−1, ti)) denotes the set of

objects that determine the possible location(s) for R that is a MaxRS at any time instant

tj ∈ [ti−1, ti)(⊆ T).

Figure 3.1. MaxRS location changes from t1 to t2, although the objects in
the solution are the same.

Note that, instead of maintaining a centroid-location (equivalently, a region) as a Co-

MaxRS solution, we maintain a list of objects that are located in the interior of the optimal

1Again, the trajectories may be bounded within a rectangular area F.

49

(a) (b) (c)

Figure 3.2. Co-MaxRS answer can only change when two rectangles’ rela-
tionship changes from overlap to disjoint (or, vice-versa). Object locations
at: (a) t1 (b) t2 (c) t3.

rectangle placement. The rationale is two-fold: (1) Even for small object movements, the

optimal location of the query rectangle can change while objects participating in the

MaxRS solution stay the same; and (2) We can easily determine the trajectory (one of

the uncountably-many) of the centroid of R throughout the time-interval during which

the same set of objects constitutes the solution. An example is shown in Figure 3.1. At

time t1, objects o1, o2, and o3 fall in the interior of the MaxRS solution. At t2, although

the same objects constitute the MaxRS solution, the optimal location itself has shifted

due to the movement of the objects. Suppose there are s objects in the list ljobj at a

particular time instant ts ∈ [tj−1, tj). Given ljobj, one can find the intersection of the s

dual rectangles to retrieve the (boundaries of the possible) location for R at ts in O(s)

time.

We can readily consider an alternative way of representing the Co-MaxRS solution –

namely, as a trajectory of the (placement of the) centroid of R. Consider any time interval

during which the same set of objects constitutes the solution – e.g., again (ljobj, [tj−1, tj)).

Let {oj1, . . . , ojs} denote the actual objects from Om defining ljobj. Their respective dual

rectangles, {rj1, . . . , rjs} have a common intersecting region at t = tj−1 – which, by as-

sumption, is an axes-parallel rectangle. Every point in ∩i=si=1r
j
i can be a centroid of R

50

covering ljobj at tj−1. Similarly for t = tj – once again we have an intersection of the

s objects yielding an axes-parallel rectangle, except that both its size and location are

changed with respect to the one at t = tj−1. The key observations are:

(1) Each rji dual rectangle, when moving along a straight line-segment (to follow the oji)

between tj−1 and tj, “swipes” a volume corresponding to a sheared box/parallelopiped.

(2) At each t ∈ [tj−1, tj) the intersection of the dual rectangles is non-empty (otherwise,

it would contradict the fact that the objects in ljobj define the solution) and is a rectangle,

thereby ensuring that the intersection of the parallelopipeds is continuously non-empty

and, again, convex.

Thus, given the AMaxRS(O,R) at t = tj−1 and t = tj, we can simply pick a point in

the interior of each of the two (horizontal) rectangles in the (X, Y,Time) space, and the

line-segment connecting them is one of the possible trajectories of the centroid of R as

the solution/answer-set ACo-MaxRS(O,R, T) (of course, for T = [tj−1, tj)).

We now describe how to identify when a recomputation of the MaxRS may (not)

be needed due to the possibility of a change in the solution. Consider the example in

Figure 3.2 with 6 objects: {o1, o2, . . . , o6}. Let ri denote the dual rectangle for an object

oi. For simplicity of visualization, assume that only o2, o5 and o6 are moving: o2 in west,

o5 in north direction (orange rectangles and arrows), and o6 in the northwest direction.

Figure 3.2a, shows the locations of objects at t1 and the current MaxRS solution, lobj =

{o1, o2, o3, o4} (blue colored objects in Figure 3.2a). In this setting, r2 and r5 do not

overlap. Figure 3.2b shows the objects’ locations and their corresponding rectangles at

t2 (> t1). Due to the movement of o2 and o5, the maximum overlapped area changed

at t2 (blue-shaded region). But, as r2 and r5 still do not overlap, the objects comprising

51

the MaxRS solution are still the same as t1. Finally, Figure 3.2c represents the objects’

locations at a later time t3, where r2 and r5 are overlapping. This causes a change in the

list of objects making up the MaxRS solution, and o5 is added to the current solution.

We note that the solution changed only when two disjoint rectangles began to overlap. If

we consider the example in reverse temporal order, i.e., assuming t3 < t2 < t1, then the

MaxRS solution changed when two overlapping rectangles became disjoint.

Observation: The solution of Co-MaxRS changes only when two rectangles change their

topological relationship from disjoint to overlapping (~DO), or from overlapping to disjoint

(~OD). We consider the objects along the boundary of the query rectangle R as being in

its interior, i.e., rectangles having partially overlapping sides and/or overlapping vertices

are considered to be overlapping. In the rest of this section, if we need to indicate an

occurrence of ~DO or ~OD at a specific time instant t and pertaining to two specific objects

oi and oj, we will extend the signature of the notation by adding time as a parameter and

index the objects in the subscript (e.g., ~DOi,j(t) or ~ODi,j(t)).

Thus, as the objects (resp. dual rectangles) move, there are two kinds of changes:

(1) Continuous Deformation: As the locations of the rectangles change, the overlapping

rectangular regions may change, but the set of objects determining any overlapping rect-

angular region remains the same.

(2) Topological Change: Due to the movement of the rectangles, a ~DO or ~OD transition

occurs for a pair of rectangles.

We note that, while the change of the topological relationship is necessary for a

change in the answer set in the continuous variant of AMaxRS(Om, R) – it need not be

sufficient. As shown in Figure 3.2, the relationship between r5 and r6 transitioned from

52

disjoint, to overlap, and to disjoint again. However, none of those changes affected the

ACo-MaxRS(Om, R, T) between t1 and t3.

In Section 3.2 we will use this observation when investigating the options of pruning

certain events corresponding to changes in topological relationships. At the time being, we

summarize the steps for a brute-force algorithm for calculating the answer to Co-MaxRS:

Algorithm 1 Basic Co-MaxRS

Input: (Om, R, T = [t0, tmax])

1: Calculate all the time instants for all the pairwise topological changes for the objects
in Om

2: Sort the times of topological changes
3: For each such time ttci , execute AMaxRS(O,R)
4: if Objects defining the answer set are the same then
5: Extend the time-interval of the validity of the most recent entry in ACo-MaxRS

(Om, R, T = [t0, tmax])
6: else
7: Close the time-interval of validity of the prior most-recent entry
8: Add a new element into ACo-MaxRS (Om, R, T = [t0, tmax]) consisting of the objects

defining the AMaxRS(O,R) at ttci , with the interval [ttci , t
tc
i+1)

9: end if
10: return ACo-MaxRS(Om, R, T)

Clearly, the complexity of Algorithm 1 is O(n3 log n) – which can be broken into: –

O(n2) for determining the (pairwise) times of topological changes; – O(n2 log n2) for sort-

ing those times; – executing O(n2) times the instantaneous AMaxRS(O,R) (at O(n log n)).

We note that O(n3 log n) is actually a tight worst-case upper-bound, since the solutions in

AMaxRS(O,R) can be “jumping” from one R-region into another that is located elsewhere

in the area of interest between any two successive intervals – which are O(n2).

53

3.2. Pruning in Co-MaxRS

Given the complexity of the näıve solution – which, again, captures the worst-case

possible behavior of moving objects – we now focus on strategies that could reduce certain

computational overheads, based on (possible) “localities”. We discuss two such strategies

aiming to: (1) Reduce the number of recomputations of MaxRS; and (2) Reduce the total

number of objects considered when recomputing the MaxRS solution2, and then present

the algorithms that exploit those strategies.

Before proceeding with the details of the pruning, we describe the data structures

used.

Figure 3.3 depicts the data structures used to maintain the Co-MaxRS answer-set

based on the KDS framework. Strictly speaking, it consists of:

Object List (OL): A list for storing each object oi ∈ O, with its current trajectory Troi

(i.e., snapshots of location at t0 and tmax), weight wi, sum of weights of its neighbors in

the rectangle graph WN(oi), and whether or not the object is part of the current MaxRS

solution. Note that, oj is neighbor of oi if ri and rj overlap.

Kinetic Data Structure (KDS): Figure 3.3 illustrates the underlying KDS (event

queue), and its relation with the OL. Each event Etk
i,j is associated with a time tk, where

t0 < tk < tmax. KDS maintains an event queue, where the events are sorted according

to the time-value. Each event entry Etk
i,j has pointers to its related objects – two object

identifiers, and the type of the event – (~DO or ~OD).

Adjacency Matrix (AdjMatrix): Represents the time-dependent rectangle graph RG,

with its rows and columns corresponding to the vertices of RG (i.e., the objects from

2Due to a lack of space, we do not present the proofs of the Lemmas in this work, however, they are
available at [51].

54

Om). For each pair of objects oi and oj, and a particular (critical) time instant, the

AdjMatrix[i][j] and AdjMatrix[j][i] – set to 1 or 0 – indicate whether the two objects are

directly connected with an edge in RG (i.e., their dual rectangles overlap).

3.2.1. Pruning KDS Events

Recall that the solution to MaxRS problem is equivalent to retrieving the maximum clique

in the rectangle graph RG (cf. Section 1.4). For our first kind of pruning methodology,

we leverage on the fact that a KDS event involving two objects oi and oj – which can be

either ~DOij or ~ODij – is equivalent to adding or deleting an edge only between ri and rj,

and no other objects/rectangles are involved. The properties that allow us to filter out

~DO and/or ~OD types of events without recomputing the MaxRS are discussed next.

~DO: Let WN(oi)(t) denote the current sum of the weights of the neighbors of an object oi

at time t, and let scoremax(t) = score((AMaxRS(O,R)), t) denote the score of the current

MaxRS solution at t. During a ~DO event, the lower bound of a MaxRS solution is

Figure 3.3. Data structures used.

55

(a) (b) (c)

Figure 3.4. An example showing the objects pruning scheme: (a) Objects’
locations and WN(oi) values at t (b) Grey objects can be pruned using

Lemma 3 in a ~DO event (c) Remaining objects after pruning at a ~DO event.

scoremax(t), and upper bound of the score (i.e., maximum possible score) of an overlapping

region including an object oi is (WN(oi) + wi).

Lemma 1. Consider the event ~DOi,j for two objects oi and oj, occurring at time

ti,j. Let l
(ti,j−δ)
obj (for some small δ) denote the Co-MaxRS solution just before ti,j. After

updating WN(oi) and WN(oj) at ti,j (i.e., because of ~DOi,j), l
(ti,j−δ)
obj remains a MaxRS if

one of the following two inequalities holds:

(1) WN(oi)(ti,j) + wi ≤ scoremax(ti,j − δ)

(2) WN(oj)(ti,j) + wj ≤ scoremax(ti,j − δ)

~OD: In this case the intuition is much simpler – the score/count of an instantaneous

MaxRS solution can only decrease (or, remain same) during an ~OD event, and if it

decreases (i.e., changes), both of the objects involved in the event must have been in lobj.

Thus, we have:

Lemma 2. Consider the event ~ODij for two objects oi and oj occurring at time ti,j.

Let l
(ti,j−δ)
obj (for some small δ) be the current MaxRS solution before ti,j. If one of the

following two conditions holds:

56

(1) oi /∈ l
(ti,j−δ)
obj

(2) oj /∈ l
(ti,j−δ)
obj

then l
(ti,j−δ)
obj remains a MaxRS solution after ~ODij (i.e, after ti,j).

To utilize Lemma 1 and 2, we maintain for each oi ∈ Om the value of WN(oi), and

whether or not the object is part of the current MaxRS solution. In Figure 3.3, two

variables inSolution and WN(oi) are used for this purpose, updated accordingly during

the processing of ~DO and ~OD events.

3.2.2. Objects Pruning

After filtering out many of the recomputations (Lemma 1 and Lemma 2), it is desirable

to reduce the number of objects required in the recomputation. Towards that, we the

following observations: (1) WN(oi) + wi is an upper bound on possible MaxRS scores

containing an object oi; (2) scoremax, the current MaxRS score, is a lower bound on

possible MaxRS scores after a ~DO event; and (3) scoremax − min{wi, wj} is a lower

bound on possible MaxRS scores after a qualifying ~ODij event. Let Ei,j denote any event

involving two objects oi and oj (be it ~DOij or ~ODij). We have:

Lemma 3. After updating WN(oi) and WN(oj) at Eij, an object ok can be pruned

before recomputing MaxRS if one of the following two conditions holds:

(1) Ei,j is a ~DO event and WN(ok) + wk ≤ scoremax

(2) Ei,j is an ~OD event and WN(ok) + wk ≤ scoremax −min{wi, wj}

Example 1. Figure 3.4a demonstrates an example scenario with 46 objects. For the

sake of simplicity, we only consider the counting variant (i.e., ∀oi ∈ O : wi = 1) in this

57

example. The count of neighbors (i.e., WN(oi)) for each object is shown as a label, and the

current MaxRS solution is illustrated by a solid rectangle where scoremax (or, countmax)

= 6. Members of lobj are colored purple in Figure 3.4. Some of the objects are marked

with an id (e.g., o1, o2, o3, and o4), so that they can be identified clearly in the text.

In this scenario, to process any event, we will first update the appropriate WN(oi) and

inSolution values. Then, suppose a new ~DO event is processed for one of the objects for

which WN(oi) ≤ 5, e.g., between o3 and o4. Then that event will be pruned and MaxRS

answer-set will remain the same as the maximum possible count of a MaxRS including

that object will be (5 + 1)=6. Similarly, any ~OD event involving an object other than

the purple ones would be filtered out. Figure 3.4b illustrates the application of Lemma 3,

based on which all the objects in grey can be pruned during a ~DO event before recomputing

MaxRS. Thus, after applying Lemma 3, we can prune 26 objects in linear time, i.e., going

through the set of objects once and verifying the respective conditions. After pruning, 20

objects will remain (cf. Figure 3.4b) – only 43% of the total objects.

According to Lemma 1, a ~DOij event is not pruned when both WN(oi) + wi > scoremax

and WN(oj) + wj > scoremax hold. Let us use N(oi) to denote the list of neighbors of

any object oi. Additionally, we employ CN(oi, oj) to represent common neighbors of two

objects oi and oj, i.e., N(oi) ∩N(oj) . In this setting, there are two possible cases:

Case 1: Both oi, oj /∈ lobj. The observation here is that if there exists a new MaxRS

solution at a ~DOij event, then both oi and oj must be present in the new solution as only

they are affected by the new ~DO event – all other objects (and their related attributes)

remain the same. Additionally, for any MaxRS solution including both oi and oj, only

the members of CN(oi, oj) can be in lobj.

58

Case 2: Either oi ∈ lobj or oj ∈ lobj. Let us assume oi ∈ lobj. Then, if oj overlaps with

all objects ok ∈ lobj (an O(|lobj|) check), then we can directly have a new MaxRS solution

including oj, i.e., lobj = lobj ∪ oj. If this check fails, we can follow the similar procedure

as case 1. Note that, the case of both oi, oj ∈ lobj is not possible as it contradicts the

concept of ~DOij event, i.e., oi and oj are mutually disjoint before ~DOij. Based on the

above observations, we have the following two lemmas:

Lemma 4. For an event ~DOij involving two objects oi and oj, we can prune all the

objects except oi, oj, and CN(oi, oj) before recomputing MaxRS.

Lemma 5. For an event ~DOij involving two objects oi and oj where oi ∈ lobj, we can

set lobj ∪ oj as the new MaxRS solution if oj overlaps with all objects ok ∈ lobj.

To take advantage of Lemma 4, we need to keep track of neighbors of all the ob-

jects in addition to WN(oi), which is the purpose of the adjacency matrix (AdjMatrix in

Figure 3.3). We note that one could also maintain a list N(oi) for each object – how-

ever, although each approach would incur O(n2) space overhead in the worst case, the

adjacency matrix has certain advantages:

• Updating of the matrix information can be done in O(1) time. For example, at

a ~DOi,j event we can directly set AdjMatrix[i][j]=1 and AdjMatrix[j][i]=1. Similarly,

AdjMatrix[i][j] and AdjMatrix[j][i] can be set to 0 at an ~ODi,j event.

•We can compute CN(oi, oj) for two objects oi and oj efficiently by doing a bit-wise AND

operation over AdjMatrix[i] and AdjMatrix[j].

Example 2. Suppose there is a new ~DO event between objects o1 and o3 in the example

in Figure 3.4. The event will not be pruned because both WN(o1) and WN(o3) ¿ 5. As

59

Figure 3.5. Application of Lemma 4 in ~DO events.

o1 ∈ lobj, we will first check if o3 overlaps with all other members of lobj (purple colored

objects). As it does overlap with all the members of lobj, we can directly output lobj ∪ o3 as

the new solution using Lemma 5. On the other hand, suppose the new ~DO occurs between

o2 and o3. Using Lemma 4, we can prune all the objects except o2, o3, and N(o2)∩N(o3).

This leaves us with only 4 remaining objects (cf. Figure 3.5) – 91.3% objects are pruned

from the calculation. Obviously, score of the recomputed MaxRS will be less than the

scoremax we already have (i.e., 6), and thus no change to the solution of Co-MaxRS will

be made. We can see, Lemma 4 and Lemma 5 greatly optimizes processing of ~DO events.

3.2.3. KDS Properties and Algorithmic Details

Instead of a single line-segment, moving objects trajectories in practice are often polylines

with vertices corresponding to actual location-samples. To cater to this, we introduce

another kind of event, pertaining to an individual object – line-change event at a given

time instant, denoted as Elc(oi, tli). Suppose, for a given object oi, we have k + 1

time-samples during the period T as ti1, ti2, . . . , ti(k+1), forming k line-segments. Note

that the frequency of location updates may vary for different objects; even for a single

object, the consecutive time-samples may have different time-gap. Initially, we insert

60

the second time-samples for all the objects into the KDS as line-change events (cf.

Figure 3.3). When processing Elc(oi, tli) we need to compute: (a) Next ~OD events with

the neighbors; and (b) Next ~DO events with other non-neighboring objects. We also

need to insert a new line-change event at tl(i+1)
for oi into the KDS. Thus, processing a

line-change event takes O(n) time. Note that a particular trajectory may start (appear)

and/or finish its trip (disappear) at any time t, where t0 < t < tmax and we can use

similar ideas to handle these special cases in O(n) time.

KDS Properties: We proceed with briefly analyzing the properties of our proposed

KDS-based structure (in the spirit of [11]), which shows that our adaption of KDS is

responsive, efficient, local, and practically responsive.

(1) Number of certificates altered during an event (Responsiveness): Recall

that we have two kinds of core events:

~DO Event: At such an event we need to compute the time of the next ~OD event between

the two objects and insert that to KDS if it falls within the given time-period T . Thus,

only one new event (certificate) is added.

~OD Event: For these events, we just need to process them, and no new event is inserted

into KDS.

In both cases, the number is a small constant – conforming with the desideratum.

(2) The size of KDS (Compactness): In case of our adaptation of the KDS, we can

have at most O(n2) ~DO and ~OD events at once. If we consider the additional line-change

events for the polyline moving objects trajectories, there can be one such event for each

object at any particular time, i.e., O(n) such events. Thus, the size of KDS at a particular

61

time is at most O(n2). However, as we will see in Section 3.5, in practice the size (total

events) can be significantly smaller than this upper-bound – meeting the desideratum,

i.e., O(nε) for some arbitrarily small ε > 0 .

(3) The ratio of internal and external events (Efficiency): In our KDS, the ~DO and

~OD events are external events (i.e., possibly causing changes to the Co-MaxRS answer-

set), and the line-change events are internal. Thus, the ratio between total number

of events and external events is O(n2)+O(n)
O(n2)

, which is relatively small. This is a desired

property of an efficient KDS [11].

(4) Number of certificates associated with an object (Locality): An object can

have n − 1 ~DO and ~OD events with the other objects, and 1 line-change event at a

particular time instant, i.e., the number of events associated with an object is O(n),

which is an acceptable bound.

Subsequently, our adaption of KDS is responsive, efficient, local and, in practice,

compact too.

Algorithmic Details: In Algorithm 2, we present the detailed method for maintaining

Co-MaxRS for a given time period [t0, tmax]. As mentioned, for each object, in addition

to WN and inSolution variables, we also keep track of the active neighbors in RG via

AdjMatrix. After initialization (line 1 and 2), the KDS is populated with all the initial

events that fall within the given time-period (line 3) – a step taking O(n2) time. Then, we

retrieve the current solution, i.e., the list of objects, and create a new time-interval of its

validity, starting at tnewstart in lines 4-6. We update the inSolution values of related objects

whenever we compute a new MaxRS solution, and discard an old one (lines 7, 15, and 16).

62

Algorithm 2 Co-MaxRS (OL, R, t0, tmax)

1: KDS ← An empty priority queue of events
2: ACo-MaxRS ← An empty list of answers
3: Compute next event Enext, ∀oi ∈ OL and push to KDS
4: current ← Snapshot of object locations at t0
5: (locopt, scoremax, lobj)←R Location MaxRS (current)
6: tnewstart ← t0
7: Update inSolution variable for each oi in lobj
8: while KDS not EMPTY do
9: Ei,j ←KDS.Pop()

10: (l′obj, scoremax) ← EventProcess (Ei,j, KDS, lobj,
scoremax)

11: if lobj 6= l′obj then
12: tnewend ← ti
13: ACo-MaxRS.Add(lobj, [t

new
start, t

new
end))

14: tnewstart ← ti
15: Update inSolution variable for each oi in lobj
16: Update inSolution variable for each oi in l′obj
17: lobj ← l′obj
18: end if
19: end while
20: tnewend ← tmax
21: ACo-MaxRS.Add(lobj, [t

new
start, t

new
end))

22: return ACo-MaxRS

Lines 8–19 process all the events in the KDS in order of their time-value, and maintain the

Co-MaxRS answer-set throughout. The top event from the KDS is selected and processed

using the function EventProcess (elaborated in Algorithm 3). After checking whether a

new solution has been returned from EventProcess, the answer-set is adjusted in the

sense of closing its interval of validity (tnewend) which, along with the corresponding lobj are

appended to ACo-MaxRS(Om, R, T) (for brevity, the “.Add()” notation is used). A modified

version of the MaxRS algorithm from [58] is used where, in addition to the score, the list

lobj is also returned – cf. R Location MaxRS in line 5. Note that, the condition check

63

at line 11 in implementation actually takes constant time, which we detect via setting a

boolean variable during MaxRS computation.

The processing of a given KDS event Ei,j is shown in Algorithm 3. In line 1, the WN

of the relevant objects and AdjMatrix are updated. In lines 2–7, we compute new ~OD

events and update the KDS. Lines 8–13 implement the ideas of Lemma 1 and Lemma 2,

which takes O(1) time. Lines 14–19 implement the idea of Lemma 5 to process a special

kind of ~DO events. Line 20 introduces a new list OL′, which will eventually retain only

the unpruned objects. Lines 21-24 employ the idea of Lemma 4 for ~DO events. Lines 25–

29 implement the ideas of objects pruning (Lemma 3), which takes O(n) time. Finally,

MaxRS is recomputed in lines 30–31 based on the current snapshot of the remaining

moving objects in O(n log n) time (for brevity, we omitted handling line-change events

in Algorithm 3). Lines 32–34 ensure that only valid computed values are returned, i.e.,

when score′max > scoremax for ~DO events.

KDS Overhead Analysis: We ignored the cost of maintaining KDS in the above anal-

ysis, as it is subsumed by the time-complexity of Algorithm 3. The maintenance cost of

KDS is related to the associated event queue – which is a priority queue of events. A

priority queue can be implemented via heap, resulting in O(log n) insert (push) and delete

minimum (pop) operations. In the worst case scenario, there can be O(n2) insertions and

deletions in the KDS. The cost of {1, 2, 3, . . . , n, . . . , n2}-th operation in the KDS would be

{O(log 1), O(log 2), O(log 3), . . . , O(log n), . . . , O(log n2)} – respectively. Thus, the total

64

Algorithm 3 EventProcess (Ei,j, KDS, lobj, scoremax)

1: Update WN(oi), WN(oj), and AdjMatrix accordingly

2: if Ei,j.T ype = ~DO then
3: Compute Enext for objects oi and oj
4: if Enext 6= NULL and Enext.t ∈ [t0, tmax] then
5: KDS.Push(Enext)
6: end if
7: end if
8: if Ei,j.T ype = ~DO and (WN(oi) +wi ≤ scoremax or WN(oj) +wj ≤ scoremax) then
9: return (lobj, scoremax)

10: end if
11: if Ei,j.T ype = ~OD and (oi.inSolution = false or oj.inSolution = false) then
12: return (lobj, scoremax)
13: end if
14: if Ei,j.T ype = ~DO and Either oi/oj ∈ lobj then
15: ok ← oj/oi
16: if ok and lobj are mutually overlapping then
17: return (lobj ∪ ok, scoremax + wk)
18: end if
19: end if
20: OL′ ← OL
21: if Ei,j.T ype = ~DO then
22: CN(oi, oj)← Compute-CN (AdjMatrix, oi, oj)
23: OL′ ← CN(oi, oj) ∪ {oi, oj}
24: end if
25: for all ok in OL′ do
26: if (Ei,j.T ype = ~DO and WN(ok) + wk ≤ scoremax) or (Ei,j.T ype = ~OD and

WN(ok) + wk ≤ scoremax −min(wi, wj)) then
27: Prune ok
28: end if
29: end for
30: current ← Snapshot of objects in OL′ at ti
31: (loc′opt, score

′
max, l

′
obj)←R Location MaxRS(current)

32: if (Ei,j.T ype = ~OD) or (Ei,j.T ype = ~DO and score′max > scoremax) then
33: return (l′obj, score

′
max)

34: end if
35: return (lobj, scoremax)

65

cost of maintaining the event queue would be:

O(log 1 + log 2 + log 3 + . . .+ log n2)

⇒ O(log(1.2.3. . . . n2))

⇒ O(log(n2!))

We know that, O(log(n2!)) is asymptotically equivalent to O(n2 log n2) (using Stirling’s

Approximation of n!, [65]). Thus, the total cost of maintenance of Co-MaxRS queries for

single-line trajectories is O(n3 log n) +O(n2 log n2) in the worst case.

Discussion: In the worst-case, Co-MaxRS for n trajectories with k segments throughout

the query time-interval, has O(kn2) events. In KDS, O(n2) events are added at the begin-

ning, then at each of the O(kn) line change events, O(n) new events may be created, result-

ing in O(kn2) events in total. Observe that between two consecutive event-times ts−1 and

ts, there is a Co-MaxRS path of constant complexity (i.e., the centroid of R moves along

a straight line-segment). As mentioned in Section 3.1, this follows from the fact that the

Co-MaxRS solution covering a particular list lsobj in the sequence (ACo-MaxRS(Om, R, T))

for the interval [ts−1, ts], is the (maximum) intersection of sheared-boxes generated by the

motion of the dual rectangles of the objects in lsobj. Thus, the worst-case combinatorial

complexity of the path of the centroid of the Co-MaxRS solutions is O(kn2) – with a note

that there may be discontinuities between consecutive locations of the centroids (i.e., the

solution “jumps” from one location to another). The overall worst-case complexity when

considering trajectories with multiple segments (i.e., polyline routes) is O(kn3 log n).

We close this section with two notes:

66

(1) While the worst-case complexity of processing Co-MaxRS is high, such orders of mag-

nitude are not uncommon for similar types of problems – i.e., detecting and maintaining

flocks of trajectories [25]. However, as our experiments will demonstrate, the pruning

strategies that we proposed can significantly reduce the running time.

(2) A typical query processing approach would involve filtering prior to applying pruning

– for which an appropriate index is needed, especially when data resides on a secondary

storage. Spatio-temporal indexing techniques abound since the late 1990s (extensions

of R-tree or Quadtree variants, combined subdivisions in spatial and temporal domains,

etc. [44, 53]). Throughout this work we focused on efficient in-memory pruning strate-

gies, however, in Section 3.5 as part of our experimental observations, we provide a brief

illustration about the benefits of using an existing index (TPR∗ tree [74]) for further

improving the effects of the pruning. This, admittedly, is not a novel research or a contri-

bution of this work, but it serves a two-fold purpose: (a) to demonstrate that our proposed

approaches could further benefit by employing indexing; (b) to motivate further research

for appropriate index structure.

3.3. Space Partitioning and Indexing

From the discussion of Section 3.2, and later observed in the experiments of Section 3.5,

a significantly higher portion of ~OD events are pruned compared to ~DO events using our

events pruning strategy. This is because an ~ODij event is only processed when both oi and

oj is in the current MaxRS solution. On the other hand, a considerably larger number of

objects are pruned while processing a ~DO event, with respect to processing an ~OD event.

This occurs because the objects pruning in ~DOij only depends on oi, oj, and CN(oi, oj).

67

Based on these observations, there are still room for improvements in: (1) Pruning more

~DO events; and (2) Objects pruning for ~OD events. In this section, we discuss additional

indexing techniques that address both these issues. For the sake of simplicity, we’ll discuss

the examples for the counting version of the problem in the following discussions.

3.3.1. Intuition and Basic Idea

(a) (b)

Figure 3.6. An example of grid partitioning: (a) R and a snapshot of moving
objects (b) Count of objects for each grid cell at the given snapshot.

At first, let us consider the scenario when we are dealing with a snapshot (i.e., static

version) of the moving objects databases – e.g., at a ~DO or ~OD event. Let us assume

that (for now) the dimensions (i.e., d1 and d2) of the query rectangle R do not change, or

change rarely. This is also quite common in practical scenarios, for example, suppose we

have a camera with a given rectangular range, and we want to position the camera such

that its coverage over a given set of moving objects (e.g., people walking around within

a big hall, traffic moving along a road, etc.) is maximized. Then, the given rectangular

range will not change unless a new camera model is used. In this setting, we propose an

indexing scheme using grids of size R. We divide the whole space into a× b grids of size

68

R as shown in Figure 3.6. For each grid cell, we maintain the current count of objects

(or, sum of the weights of the objects) within that grid. For an object, we also store

the id/pointer of the current grid it is in. Given this information, we can compute the

upper-bound of the possible maximum score of a rectangle R placed within that grid as

follows:

Computing U-Bound. For any grid Gl,k, as size of each grid is equals to R itself, a

rectangle R placed within the grid can intersect with at most 3 other neighboring grids

simultaneously. In Fig. 3.7, we can see that at most 4 such overlapping cases (Q1, Q2,

Q3, Q4) are possible. For each case, the maximum possible value of the overlapping R is

equals to the sum of the current count of all the intersected neighboring grids (including

the grid Gl,k). E.g., for the grid G0,4 in Fig. 3.7:

MaxQ1 = Count(G0,0) + Count(G0,1) + Count(G0,3) + Count(G0,4)

We can similarly compute MaxQ2, MaxQ3, and MaxQ4 by summing up counts of all the

intersecting grids. Then, the U -Bound for any grid Gl,k will be the maximum of these

values. Thus, we can compute U -Bound for any grid Gl,k as follows:

U -Bound(Gl,k) = max{MaxQ1,MaxQ2,MaxQ3,MaxQ4}

In Fig. 3.7, for grid G0,4—MaxQ1 = 7, MaxQ2 = 5, MaxQ3 = 12, and MaxQ4 = 6. Thus,

U -Bound(G0,4) = max{7, 5, 12, 6} = 12.

Pruning. Using the techniques mentioned above, we can always compute U -Bound of a

grid in O(1) time after employing the proposed R-based grid partitioning, i.e., count of

69

Figure 3.7. Computing U -Bound of a grid.

operations needed is constant – does not depend on the number of total grids or number

of objects. First, to ensure more ~DO events are pruned, we derive the following lemma:

Lemma 6. Consider the event ~DOi,j for two objects oi and oj, occurring at time ti,j.

Let l
(ti,j−δ)
obj (for some small δ) denote the Co-MaxRS solution just before ti,j. Suppose,

oi and oj belong to grids Gli,ki and Glj ,kj respectively. In this setting, l
(ti,j−δ)
obj remains a

MaxRS if one of the following two inequalities holds:

(1) U-Bound(Gli,ki) ≤ scoremax(ti,j − δ)

(2) U-Bound(Glj ,kj) ≤ scoremax(ti,j − δ)

Subsequently, we propose the following lemma to improve the objects pruning strategy

for ~OD events:

Lemma 7. Consider the event ~ODi,j for two objects oi and oj. Then, we can di-

rectly prune all objects of any grid Gl,k from further computations, if U-Bound(Gl,k)

≤ scoremax −min{wi, wj}.

Let us go back to the previous example of Fig. 3.6 and Fig. 3.7. In Fig. 3.8a, the

count and U -Bound of all grids are shown. We can see that, countmax = 9 (see Fig. 3.6).

70

(a) (b)

Figure 3.8. (a) Computing U -Bound of all the grids for example of Fig. 3.6
and Fig. 3.7 (b) Pruning grids and objects based on Lem. 7.

Thus, during an ~OD event, we can prune all the grids (and their objects) that have

U -Bound ≤ 8 using Lem. 7. Fig. 3.8b shows the state of the grids after using the pruning

scheme. All the gray-colored grids are pruned. In this example, half of the space and

nearly 37% objects are pruned. This pruning would preclude the already in-place ~OD

pruning strategies and make it even more effective.

3.3.2. Hierarchical Grid Indexing

Instead of restricting the effectiveness of the proposed partitioning to a particular size, we

can employ a Hierarchical Grid-Based Partitioning over the bounding space F which will

enable a larger set of R to be accommodated. Additionally, a hierarchical grid indexing

will ensure more effective U -Bound computation and pruning method.

The hierarchical grid system to partition the space can be of any level l, where l ≥ 0.

An l-level hierarchical grid partitioning has l+1 levels in total, denoted as level 0, 1, . . . , l

respectively. The grid-size of level i is equals to the 1
4
-th of the grid of level (i− 1). Thus,

a grid of level (i − 1) is composed of four level i grids. If the grid size for the level-0

71

(a) (b)

Figure 3.9. Examples of hierarchical grid partitioning of space: (a) 0-level
(b) 1-level.

is 1
4
F, then it is equivalent to a quad-tree. Examples of 0-level and 1-level hierarchical

grid partitioning are shown in Fig. 3.9. In a hierarchical grid partitioning, we need to

maintain count values only for the level l grids (i.e., smallest one), as count values of all

other grid sizes of lower level (i.e., higher size) can be obtained from level l grid values.

Additionally, we use Gl,k to denote the k-th grid (starting from top-left corner) at level l

(see Figure 3.10).

Figure 3.10. Rarb consumed by the grid size and maintaining the similar properties.

Enabling Arbitrary R. For any given query rectangle Rarb, we need to find the lowest

numerical level for which the grid size is greater than Rarb. All of the findings and lemmas

of Section 3.3.1 will still work for that level’s grid size for the given Rarb. This is shown

in Fig. 3.10. When using an l-level hierarchical grid indexing scheme, Lemma 6 and

72

Lemma 7 can be applied even for different values of Rarb, as long as Rl ≤ Rarb ≤ R0,

where Rl and R0 are the size of the grids at level l and 0 respectively.

Effective Pruning. With hierarchical grid indexing, we can compute U -Bound with

higher granularity, as more level/depth of information is available, i.e., we can obtain

lower U -Bound for grids. This, in turn, allows for higher number of grids and objects to

be pruned in the indexing stage. Suppose, we apply a 1-level indexing for the example

in Figure 3.6, where size of level 0 grids is equals to R. Then, the count of objects for

each level 1 grid is shown in Figure 3.11a. Now, for any level 0 grid G0,k, a rectangle R

placed within the grid can intersect with at most 9 level 1 grid, e.g., Q1,0 and Q1,21 for

G0,4 in Figure 3.11b. We can uniquely identify each such possible set of 3× 3 = 9 level 1

grids by the top-left grid of the set. For example, Q1,0 represents the 3 × 3 level 1 grids

starting from G1,0. We can observe that at most 16 such overlapping cases are possible in

Figure 3.11b, i.e., the grey colored G1,k grids, which represent the top-left grids for each

of these 16 cases for G0,4.

For each such case, the maximum possible value of the overlapping R equals to the

sum of the current count of all the 9 level 1 grids. E.g., for the grid G0,4 in Fig. 3.11b:

MaxQ1,0 = Count(G1,0) + Count(G1,1) + Count(G1,2) + Count(G1,6) + Count(G1,7)

+ Count(G1,8) + Count(G1,12) + Count(G1,13) + Count(G1,14)

We can similarly compute the maximum possible value for all other cases. Then, the

U -Bound for any level 0 grid G0,k will be the maximum of these 16 values. In Fig. 3.11b,

for grid G0,4, this value is 9 which occurs for Q1,21 (the red rectangle). Thus, the U -Bound

73

(a) (b)

Figure 3.11. (a) Count of objects for level 1 grids (b) Computing U -Bound
using level 1 grids.

for G0,4 is 9, instead of 12 that we computed using only 0-level indexing in Section 3.3.1,

i.e., reduced by 25%. Note that, the time-complexity of computing U -Bound for level 0

grids is still O(1), although the constant value for the number of operations increases (i.e.,

now we have to consider 16 cases). Thus, although we can have better U -Bound values

as we consider more level of grids, the computation time will increase as well, i.e., there

is a trade-off between effectiveness of U -Bound values vs computation time.

3.3.3. Data Structures and Implementation Details

So far, we have discussed how the hierarchical grid partitioning will work over a snapshot

of moving objects databases, e.g., at a ~DO or ~OD event. But, as the objects move, the

count of objects within the grids change as well. We discuss the necessary data structures,

algorithms, and implementation details to maintain the hierarchical grid partitioning for

moving objects in the following.

74

Data Structures. Fig. 3.12 depicts the underlying data structures used to maintain

hierarchical grid partitioning. A brief description of all the components are given below:

Object List (OL): We introduce an additional attribute for the list introduced in

Section 3.2. For each object Oi ∈ O, we store a pointer to the current grid cell at level l.

As an example (Fig. 3.12), O2 is currently in grid Gl,2, meaning 2nd grid (starting from

top-left) of level l. Note that, for brevity, we removed all the attributes we previously

discussed about, and only show the new attribute in Fig. 3.12.

Hierarchical Grid List (GL): As illustrated in Fig. 3.12, we have a separate list for

each grid-level. We denote GL-i as the list of grids at level i. Each element of a grid

list stores relevant information about the grid, e.g., id, boundaries/edges, pointer to

neighbors, and a current count of objects within the grid. Also, each grid element has a

pointer to its parent grid at the immediately lower level, and four pointers to the children

grids at the immediately upper level. Finally, only for grids at level l, we also store a list

of pointers to the objects currently estimated to be inside the grid (cf. Fig. 3.12).

Kinetic Data Structures (KDS): We have already introduced the concept of KDS in

Section 3.1 and Section 3.2. As the objects are moving, the count for each grid is changing

as well. Note that, we just need to track changes for the grids at level l (i.e., the smallest

grids), as the changes then can be propagated to the other levels via the parent pointers.

There are two types of changes as before:

75

Figure 3.12. Hierarchical grid data structures.

• Continuous Deformation: The location of a moving object changes, but it still

stays within the level l grid it was in.

• Topological Change: Due to the movement, an object moves into a new level l

grid cell leaving the current one. This will result in changing the count of at least

two level l grids.

Thus, the proper count of objects within the grid cells can be dynamically maintained

by tracking only the topological changes (or, events) using the KDS framework. The event

that is causing a topological change is the grid-change event. At each grid-change event

of an object oi at grid-level l, the appropriate counts for the old and new level l grids

are updated at first. Subsequently, a new grid-change event is computed for oi and the

new grid. The updates of any level l grids can be propagated to lower level grids through

parent pointers. An example is illustrated in Fig. 3.13. The locations of the object at time

76

t1, t, and t2 is shown in Fig. 3.13. Suppose, we are using 1-level grid partitioning, i.e.,

a grid-change event for the given object will occur when the object changes its current

grid at level 1. The next grid-change event time can be computed by determining the

intersection point(s) between the boundary of the grid and the linear movement function

(time t in Fig. 3.13).

Figure 3.13. An example of grid-change event at time t.

Algorithm 4 HierarchicalEventProcess (oi, Gl,k)

1: cgrid ← oi.current grid
2: cgrid.count ← cgrid.count− 1
3: cgrid.current objects.Remove(oi)
4: while cgrid = cgrid.parent is not NULL do
5: cgrid.count ← cgrid.count− 1
6: end while
7: Gl,k.count ← Gl,k.count+ 1
8: Gl,k.current objects.Add(oi)
9: while Gl,k = Gl,k.parent is not NULL do

10: Gl,k.count ← Gl,k.count+ 1
11: end while
12: Compute new event Enew for oi and Gl,k

13: KDS.Push(Enew)
14: oi.current grid← Gl,k

15: return

77

Algorithmic Details. In Algorithm 4, we present the grid-change event processing

scheme for a given object oi and its new grid Gl,k. At first, count and current objects list

of the old grid cell is adjusted accordingly (lines 1-3). Then, this change is propagated

to the lower levels via the parent pointer (lines 4-6). Similar updates are performed for

the new grid Gl,k from lines 7-11. Finally, the next grid change event is computed for the

pair oi and Gl,k, and pushed into KDS event queue in lines 12-13. Additionally, current

grid cell of oi is updated in line 14. Let us go back to the example of Fig. 3.13. At time

t, count of G1,12 is decreased by 1. This change is propagated to its parent G0,2. Then,

the count for G1,8 is increased by 1 and this change is also propagated to its parent G0,2.

Thus, the count of G0,2 remains unchanged. Finally, the next grid change event for G1,2

is computed.

~OD and ~DO Events Processing: We described the process of handling ~OD and ~DO

events in Algorithm 3. We propose minor modifications to take advantage of the hier-

archical grid partitioning in Algorithm 3. In lines 8-9, when pruning the ~DO events, we

also check whether U -Bound(oi.current grid) ≤ scoremax, or U -Bound(oj.current grid)

≤ scoremax – we can prune the ~DO event if either of the two statement is satisfied. Note

that, this will be only be beneficial if we use an external database indexing scheme, i.e.,

no direct access to object list OL. Thus, it will be efficient to access the grid index first

and do pruning there if possible. In line 20, we select the list of eligible objects OL′ for

an ~OD event – which is set to the list of all objects OL. Instead of selecting all the

objects, now we need to first iterate through all the level 0 grids (i.e., size equals to R),

and compute U -Bound for each one of them and check if Lemma 7 can be applied for

78

pruning. Eventually, the objects of the grids that are not pruned would be assigned to

OL′.

Time-Complexity Analysis: The time-complexity of Algorithm 4 is O(l). We will

see later that (for both indexing and approximate solution), l is most of the times a

small constant value. Thus, the time-complexity is practically O(1). At any time, each

object has exactly one grid-change event. Thus, size of KDS (considering only grid-change

events) at any time instance is O(n). Suppose, there are in total a× b level l grids. Then,

for single-line trajectories, the maximum number of grid-change events is (
√
a2 + b2 − 1)

– i.e., a diagonal straight line. Then, the total number of grid-change events in worst

case scenario for the whole time duration [t0, tmax] is n× (
√
a2 + b2− 1). Finally, the first

modification proposed in Algorithm 3 (i.e., lines 8-9) is O(1) operation, while the second

modification O(|0-level|), where |0-level| denotes the number of level 0 grids.

Discussion on Implementation. We presented a hierarchical grid-based partitioning

of space in this section. To devise approximate solutions for Co-MaxRS problem, we

will subsequently use the similar grid-based ideas as the base in the next section. We

now discuss various possible methods of implementing the hierarchical grid-based index-

ing, and how we can incorporate it in our scheme – persistent or on-the-fly based on

incoming queries. Grid-indexing [61], or similarly hierarchical grid-partitioning, can be

implemented both as main-memory or external-memory based variants. We implemented

the proposed hierarchical grid structure in main memory for our experiments. The reason

is two-fold. (1) Many recent works have shown that main-memory indexes are usually

necessary to provide high update and build performance [72] – which is paramount in

79

dealing with moving objects databases; and (2) In our experiments, the maximum value

of total number of objects is 50,000 — which can be stored in-memory.

On the other hand, as the time-interval of the Co-MaxRS query [t0, tmax] is usually

large (e.g., some hours or days in our experiments), we build the hierarchical grid par-

titioning structure on-the-fly based on the given R for each query (i.e., level 0 grid size

= R), and maintain the initially built structure throughout the query procedure via Al-

gorithm 4. This is very reasonable as the hierarchical grid indexing build procedure is

quite fast, and is subsumed by the overall query processing time. The cost of building an

l-level grid partitioning is O(l × n), and as l is usually a small constant, the initial cost

of building an l-level grid partitioning is practically O(n). We can build the l-level grid

partitioning on-the-fly in-between line 7 and 8 in Algorithm 2. In any case, if we have to

process a bunch of queries for which time-interval is small (e.g., 10-15 minutes), we can

always build an l-level grid partitioning once (with relatively large l value), and employ

ideas of Section 3.3.2 to use the same data structure for different queries having different

R values.

We note that, in extreme scenarios (e.g., millions of moving objects), the number of to-

tal objects may exceed the main memory storage capacity of servers – thus, external mem-

ory implementations and parallel processing of indexes would be necessary. Many works

such as [42, 45] presented parallel processing techniques for R-trees and range queries. In

a similar spirit [90] proposed a novel architecture named VegaGiStore, to enable efficient

spatial query processing over big spatial data and concurrent access, via distributed in-

dexing and map-reduce [19] technique. More recently, the SpatialHadoop [22] framework

80

provided a library to perform map-reduce based parallel processing for many spatial op-

erations, including grid indexing. We can use multiple grid indexing from SpatialHadoop

simultaneously (each corresponding to a level of grids), and create an abstraction over

them to implement a parallel hierarchical grid-indexing in a straightforward manner. We

note, however, that Hadoop [71] as well as map reduce procedures may incur certain

overheads – i.e., SpatialHadoop grid indexing will only be useful if there are an extremely

large number of moving objects, and provided that there are a lot of resources (Hadoop

nodes) readily available.

3.4. Approximate Co-MaxRS Solution

So far, we have proposed methods that compute the exact solution to the Co-MaxRS

problem. The worst-case time-complexity of our exact solution for single-line trajectories

is O(n3 log n). We devised clever pruning strategies, and novel data structures to reduce

this complexity significantly. On the other hand, in many practical scenarios, an exact

solution is not necessary, rather than a fast but approximate solution with tight bounds of

approximation ratio is desired. In this section, using the ideas established in Section 3.3,

we introduce a fast approximate solution to the Co-MaxRS problem, and prove the tight

upper-bound of the approximation ratio of our solution.

3.4.1. Basic Intuition

From the discussion of Section 3.3.3, for a Co-MaxRS query (F, O,R, [t0, tmax]), we can

build an l-level hierarchical grid partitioning over F and O on-the-fly, and maintain the

structure efficiently via Algorithm 4. Let GL-l represent the list of all level l grids, where

81

size of level l grid is R
(2l)2

(see Figure 3.12), e.g., for GL-0 and GL − 1, the grid size is

R and R
4

respectively. Note that, GL-l does not represent hierarchical grids, rather it is

just a one-level grid structure of particular unit grid-size R
(2l)2

. As before, we use Gl,k

to denote the k-th grid of GL-l. At first, let us consider a basic GL-0 grid partitioning.

As discussed in Section 3.3, we maintain the objects count for each grid cell via KDS.

Additionally, for an approximation solution, we also keep track of the grid G0,max, having

the maximum count max0 among all the grids. The intuition is: we can get a reasonable

solution of countmax = max0 to the Co-MaxRS problem, if we return the center of the

G0,max (or, the objects within G0,max) as our approximate Co-MaxRS solution at any

time-instance. Note that, the approximate Co-MaxRS answer (i.e., the set of objects lobj)

can only change at a grid-change event, on two conditions: (1) Whenever a new G0,max is

found with higher count value than the current solution; (2) The grid-change event occurs

with respect to the current G0,max. Note that, we do not need to track or process ~DO or

~OD events when computing approximate solution.

Approximation Ratio: We propose the following lemma regarding the approximation

ratio for a GL-0 grid partitioning:

Figure 3.14. Approximation ratio for l = 0.

82

Lemma 8. Using a GL-0 grid partitioning, the approximation ratio of the proposed

approximation algorithm is 4.

Proof. Suppose, max0 is the maximum count among all the level 0 grids. Then,

countapprox = max0, where countapprox is the computed approximate solution. On the

other hand, we can place R within F such that it overlaps with 4 adjacent level 0 grids as

shown in Fig. 3.14. In the worst case, all of the overlapped grids may have count value

equals to max0. Then the maximum possible value for exact MaxRS solution, countmax

= 4 × max0 (cf. Fig. 3.14). Thus, the approximation ratio for GL-0 is = countmax

countapprox
=

4×max0
max0

⇒ 4. �

An example solution of this approach is shown in Figure 3.6 and Figure 3.7. Using

this approach, the approximate solution would be the center of G0,8 having count = 7.

The exact MaxRS solution for this example, as shown in Figure 3.6a, is 9.

3.4.2. GL-l Based Solution

Figure 3.15. Approximation algorithm for GL-1 grid partitioning.

83

Using a GL-l grid-based partitioning (where l ≥ 0), we can employ similar approxima-

tion algorithm inspired from GL-0 grid indexing. The advantage in this case is we have

higher granularity information available. On the other hand, computing and maintaining

the approximate solution will be costlier. The intuition is to work with the count values

of the highest level grids, i.e., level l grids. For each grid Gl,k, we can place a rectangle R

from its top-left corner point, encompassing 2l+1 level l grids. Such a rectangle placement

is termed as an incident rectangle of any grid Gl,k, and we denote them as Rl,k. Then,

the approximate solution will be the incident rectangle for which summed-up count value

is maximum:

countapprox = max{Rl,k.count}∀Gl,k

Continuing with the example of Figure 3.6, suppose we apply GL-1 grid partitioning

as shown in Figure 3.15. R1,0, R1,19, R1,28 is shown in Figure 3.15, for level 1 grids

G1,0, G1,19, G1,28 respectively (i.e., yellow, blue, red). We can see that R1,0.count = 3,

and similarly, R1,19.count = 2. Although, R1,28 has the maximum count values among

all incident rectangle placements, where R1,28.count = 7. Thus, the center-point and ob-

jects of R1,28 will be returned as the approximate solution. Although in this setting, the

approximate solution is same as using a GL-0 grid-partitioning, in many cases a higher

granularity (i.e., 4 times more incident rectangles) of information will lead to a better

solution (see Section 3.5).

3.4.3. Algorithmic Details

In Algorithm 5, we present the detailed process for computing approximate Co-MaxRS

for a given time period [t0, tmax] and query rectangle R. After initialization (lines 1-2),

84

the GL-l grid partitioning is built on the fly in line 3. Let us assume that there are

a × b level l grids in total for the given F and R, i.e., |GL-l| = a × b. Note that, we

only create a single grid partitioning (not hierarchical), and the time-complexity of this

operation is O(n), assuming |GL-l| << n. In line 4, we populate the KDS with the

next grid-change events (or, line-change events – details omitted for brevity) for all the

objects. This takes O(n) time. Then we compute the approximate solution over the

initial snapshot in line 5, by computing the count for all possible Rl,k and keeping track

of the maximum one throughout (i.e., O(|GL-l|) time). Here, we track Gopt – the list of

all the level l grids forming the approximate solution, i.e., |Gopt| = (2l)2. Lines 6-20 is

similar to the Algorithm 2 – all the events in the KDS are processed in order of their time-

value, and we maintain the approximate Co-MaxRS answer-set throughout. The main

difference is in line 9, where the top event from the KDS is processed using the function

ApproxEventProcess (elaborated in Algorithm 6). After checking whether a new solution

has been returned by ApproxEventProcess, the answer-set (i.e., the time-interval and lobj)

is adjusted accordingly. We also update Gopt whenever a new solution is computed (cf.

line 15). Note that, the condition check at line 10 in implementation actually takes

constant time, which we detect via setting a boolean variable during approximate MaxRS

computation.

The processing of a given grid-change event Ecur is shown in Algorithm 6. Initially,

the object related to Ecur is retrieved, and then the count and objects list of the current

grid cell is adjusted accordingly (lines 1-4). Subsequently, the new grid related to Ecur is

set in line 5. Note that, Ecur is representing the critical time at which oi is moving from

Gl,cur into the new grid Gl,new. Also, unlike algorithm 4, we are dealing with only a single

85

Algorithm 5 Approx-CoMaxRS (OL, R, t0, tmax, l)

1: KDS ← An empty priority queue of events (managed via DKDS)
2: ACo-MaxRS ← An empty list of approximate answers
3: GL-l← BuildGridIndex (OL, R, l)
4: Compute next grid-change event Enext, ∀oi ∈ OL and push to KDS
5: (locopt, countapprox, lobj, Gopt)← R Approx MaxRS (GL-l)
6: tnewstart ← t0
7: while KDS not EMPTY do
8: Ecur ←KDS.Pop()
9: (l′obj, countapprox, G

′
opt) ← ApproxEventProcess (Ecur, KDS, lobj, countapprox, Gopt)

10: if lobj 6= l′obj then
11: tnewend ← ti
12: ACo-MaxRS.Add(lobj, [t

new
start, t

new
end))

13: tnewstart ← ti
14: lobj ← l′obj
15: Gopt ← G′opt
16: end if
17: end while
18: tnewend ← tmax
19: ACo-MaxRS.Add(lobj, [t

new
start, t

new
end))

20: return ACo-MaxRS

level grid partitioning, and thus there is no need to propagate updates to parent or child

grids. In lines 6-7, the count and objects list of the new grid cell is adjusted accordingly.

Current grid cell of oi is updated in line 8. From lines 9-12, we check if Gl,cur is in

Gopt – which means current countmax is decreased and a new solution may be possible.

Only in this case, we recompute the approximate solution by going over all the level l

grids (i.e., Rl,k). Otherwise, we only need to consider the rectangle placements which

overlap Gl,new. This is done in lines 13-21. At first, the list of all Rl,k overlapping Gl,new

(i.e., Rlistnew) is computed in line 13. Here, |Rlistnew| = (2l)2. For all such rectangle

placements, their cumulative count is computed and checked if its larger than the current

approximate solution – in which case, a new solution is found and related variables are

86

updated accordingly (cf. lines 15-19). The cost-sensitive operations for Algorithm 6 is

line 10, and lines 13-21. Line 10 takes O(|GL-l|) time in worst-case, while lines 13-21 take

O((2l)2) time. As |GL-l| > (2l)2 (for small values of l), the worst-case time complexity

for Algorithm 6 is O(|GL-l|).

Algorithm 6 ApproxEventProcess (Ecur, KDS, lobj, countapprox, Gopt)

1: oi ← Ecur.object
2: Gl,cur ← oi.current grid
3: Gl,cur.count ← Gl,cur.count− 1
4: Gl,cur.current objects.Remove(oi)
5: Gl,new ← Ecur.grid
6: Gl,new.count ← Gl,k.count+ 1
7: Gl,new.current objects.Add(oi)
8: oi.current grid← Gl,new

9: if Gl,cur ∈ Gopt then
10: (loc′opt, count

′
approx, l

′
obj, G

′
opt)← R Approx MaxRS (GL-l)

11: return (l′obj, count
′
approx, G

′
opt)

12: end if

13: Rlistnew ←
a×b⋃
k=1

Rl,k, if Gl,new ∩Rl,k 6= ∅

14: for all Rl,k in Rlistnew do
15: Compute Rl,k.count
16: if Rl,k.count > countapprox then
17: countapprox ← Rl,k.count

18: Gopt ←
⋃
i

Gl,i, if Rl,k ∩Gl,i 6= ∅

19: Compute lobj from Gopt

20: end if
21: end for
22: return (lobj, countmax, Gopt)

Approx-CoMaxRS Processing Time: The time-complexity to maintain this ap-

proximate solution is very fast compared to the exact solution. In KDS, we will only have

grid-change events and line-change events, i.e., we do not have to consider the ~DO and

~OD events. For a single-line trajectory, the maximum number of grid-change events is

87

(
√
a2 + b2 − 1) – i.e., a diagonal straight line. Secondly, during each grid-change event,

the processing time is O(|GL-l|), or O(a× b) in worst-case. Thus, in addition to the O(n)

initialization cost (i.e., lines 3 and 4), the additional time-complexity for Algorithm 5 is

O(a× b× (
√
a2 + b2− 1)). As we increase the value of l, the value of a and b increases as

well. Thus, there is a trade-off between quality of approximation vs computational cost.

3.4.4. Approximation Ratio

Let us denote maxl as the approximate solution obtained by using Algorithm 5 (Approx-

Co-MaxRS) over a GL-l grid partitioning. Then, we propose the following lemma:

Figure 3.16. Proof of Lemma 9.

Lemma 9. For any GL-m grid partitioning, maxm+1 ≥ maxm, where m ≥ 0.

Proof. We know that, each level m grid is composed of exactly 4 level m + 1 grids.

For example, Gm,0 consists of Gm+1,0, Gm+1,1, and two other level m + 1 grids (cf. Fig-

ure 3.16). Thus, total number of grids in GL-m+1 = 4 × total number of grids in GL-m.

Subsequently, there will be 4 times more incident rectangle placements (i.e., Rl,k) to select

88

from. Also, for each Rm,k in GL-(m), there is a similar rectangle placement Rm+1,k′ in

GL-(m + 1). Suppose, Rm,k has the maximum count among all the incident rectangles

in GL-m, i.e., maxm. In Figure 3.16, Rm,k is the red-stroked rectangle. For simplicity,

let us follow the grid numbering scheme of Figure 3.16 for any level grid-partitioning –

top-left cell is 0, and then count is increased horizontally. Then, Rm,k = Rm+1,k′ , where

k′ = (4×β×b k
β
c)+((k mod β)×2). Here, β is the total number of level m grids necessary

to horizontally cover F. This is shown in Figure 3.16 (β=5, k = 12, k′ = 44). Thus, count

of Rm+1,k′ will be maxm as well. As given any maximal incident rectangle placement Rm,k,

there will always be another incident rectangle Rm+1,k with same count value maxm, the

approximate solution for GL-m+ 1 will be at least maxm. Thus, maxm+1 ≥ maxm. �

Using Lemma 8 and 9, we propose the following theorem regarding the approximation

ratio for a GL-l grid partitioning:

Theorem 1. For a given GL-l grid partitioning, where l ≥ 0, the approximation ratio

of Approx-CoMaxRS algorithm is 4.

Proof. We will prove this claim by induction.

Step 1: Let, l = 0. Then, we will have a GL-0 grid partitioning. From Lemma 8, the

approximation ratio for GL-0 grids is 4.

Step 2: Suppose, for l = m, Theorem 1 is satisfied, i.e., in the worst case scenario,

countmax = 4 ∗maxm, where maxm is the approximate solution returned via the GL-m

grid partitioning.

Step 3: Now, using Step 2, we have to show that Theorem 1 holds for l = m + 1 as

well. From Lemma 9, we know that maxm+1 ≥ maxm. Thus, from Step 2, approximation

89

ratio for l = m + 1 is : countmax

countapprox
= 4×maxm

maxm+1
≤ 4. As the approximation ratio cannot be

higher than 4 for GL-m + 1, to prove our theorem it is sufficient to show that there is a

configuration for which the approximation ratio for l = m+ 1 is 4. In case of GL-(m+ 1)

grids, a rectangle R is composed of (2m+1)2 level m + 1 grids, and we can place R such

that it overlaps with (2m+1 + 1)2 level m + 1 grids. An example of such configuration is

shown Figure 3.17, where a placement of R overlaps with (2m+1 + 1)2 level m + 1 grids.

In the worst-case scenario, suppose count of all Gm+1,k is 0, except for the corner cells,

e.g., Gm+1,k1 , Gm+1,k2 , Gm+1,k3 , and Gm+1,k4 in Figure 3.17. Suppose, count of the corner

cells are maxm. Then, countapprox computed via GL-(m + 1) will be maxm – i.e., any of

Rm+1,k1 , Rm+1,k2 , Rm+1,k3 , and Rm+1,k4 can be the solution. Note that, such placing also

does not increase the approximate solution returned by GL-m (see the purple level m

grids in Figure 3.16). From Step 2, we already have, countmax = 4∗maxm. Subsequently,

the approximation ratio via GL-(m+ 1) is, countmax

countapprox
= 4×maxm

maxm
⇒ 4.

Thus, Theorem 1 is proved by induction.

Figure 3.17. Lower bound of approximation ratio for l = m+ 1 is 4.

�

90

We note that, the ratio between the exact and approximate Co-MaxRS solution in

practice is significantly less than the theoretical approximation ratio proved here (details

in Section 3.5).

3.5. Experimental Observations

3.5.1. Setup

labelexpsetup Datasets: We used two real-world datasets and another synthetic one

during our experiments. The first real-world dataset we used is the bicycle GPS (BIKE-

dataset) collected by the researchers from University of Minnesota [29], containing 819

trajectories from 49 different participant bikers, and 128,083 GPS points. The second

one is obtained from [88] (MS-dataset), which contains GPS-tracks from 182 users in a

period of over five years collected by researchers at Microsoft with 17,621 trajectories in

total, covering 1,292,951 km and over 50,176 hours (with GPS samples every 1-5 seconds).

To demonstrate the scalability of our approach, we also used a large synthetic dataset

(a) (b)

Figure 3.18. (a) Events Pruning (b) Objects Pruning.

91

(a) (b) (c)

Figure 3.19. Impact of cardinality on the pruning schemes: (a) Different
events pruning (BIKE-dataset) (b) Objects pruning (BIKE-dataset) (c)
Overall objects and events pruning (all datasets).

(MNTG-dataset) generated using Minnesota Web-based Traffic Generator [52]. The gen-

erated MNTG-dataset consists of 5000 objects, and 50000 trajectories with 400 points

each, where we set the option that objects are not constrained by the underlying network.

For every object in the synthetic dataset, we generated its weight uniformly in the range

from 1 to 50, while weights in Bike-dataset and MS-dataset (real-world datasets) were set

to 1.

For each of the dataset used in the experiments, we considered one trajectory per

object during a run and we averaged over all the runs to get representative-observations.

The default values of the number of objects for BIKE, MS, and MNTG dataset are 49,

169, and 5000 respectively. The query time is set to the whole time-period (lifetime of

trajectories) during a particular run for each respective dataset, and the base value of

range area (R) for each of the BIKE, MS, and MNTG dataset is 4000000, 1000000, and

4000000 m2 respectively.

Implementations: We implemented all the algorithms in Python 2.7, aided by powerful

libraries, e.g., Scipy, Matplotlib, Numpy, Rtree, etc. We conducted all the experiments

92

on a machine running OS X High Sierra, and equipped with Intel Core i7 Quad-Core 3.7

GHz CPU and 16GB memory. As no prior works exist that directly deal with the Co-

MaxRS problem, we use Algorithm 1 as our baseline for comparison. In addition to the

Algorithms 1, 2 and 3, we have two additional implementations3. Couple of things to note

here: (1) To demonstrate the benefits of our pruning schemes, we tested them against

a trivial approximate-solution to Co-MaxRS: one that would periodically re-evaluate the

query throughout its time-interval of interest. In other words, MaxRS is re-computed at

each t+δ, i.e., δ is a fixed time-period (default δ=5s); (2) We also did an experiment using

TPR-tree – a popular index structure for moving objects trajecotries [53], to evaluate the

performance of our proposed hierarchical grid indexing scheme.

Results: We present our observed experimental results and analysis as following: (1)

First, we demonstrate the effectiveness of our proposed pruning techniques and the exact

Co-MaxRS algorithm; (2) Subsequently, we focus on the performance vs accuracy trade-

off for the Approx-Co-MaxRS algorithm; and (3) Finally, we show the speed-up obtained

by using our offered hierarchical grid index structure. We vary the values of a set of

related parameters, i.e., grid size R, grid-level l, time-period δ, and number of objects

|O| to obtain a thorough evaluation. We use the experiments on the MNTG-dataset to

demonstrate scalability of our solutions.

3.5.2. Co-MaxRS

Experimental results related to the Co-MaxRS algorithm are as follows.

Performance of Pruning Strategies: Our first observations are shown in Figure 3.18a

3 We note that all the datasets and the source code of the implementation are publicly available at
http://www.eecs.northwestern.edu/∼mmh683.

93

and they demonstrate the effectiveness of our events pruning strategy over both the real

and synthetic datasets. The most amount of pruning is obtained in MS-dataset, while

the other two datasets also show more than 80% pruning. Note that, the number of

actual recomputation-events are well below the worst-case theoretical upper-bound, e.g.,

only 103 events are processed for 49 objects (trajectories) running for an hour in Bike-

dataset. Similar results are obtained for the objects pruning scheme, as demonstrated

in Figure 3.18b – indicating that the pruning schemes perform nearly equally well in all

three datasets.

Impact of Cardinality: Figure 3.19 illustrates the impact of the cardinality on the

effectiveness of our pruning methods. In Figure 3.19a, from the experiment done on the

BIKE-dataset, we can deduce an interesting relation: as the datasize increases, more ~OD

kind of events are pruned, whereas (cf. Figure 3.19b), objects pruning slightly decreases

for ~OD as the datasize increases. On the other hand, ~DO events exhibit completely

opposite behavior. This, in a sense, neutralizes the overall impact of the increase in

cardinality for our pruning scheme. Figure 3.19c demonstrates the effect of increasing the

cardinality of objects on the pruning schemes for all the dataset – hence, the label on the

X-axis indicates the percentage of all the objects for the respective datasets.

Influence of Range Size: This experiment was designed to observe the effect of different

range sizes, i.e., the area of R – d1 × d2 over the pruning strategies. As shown in Fig-

ure 3.20a, increasing range area (the values on X-axis indicate multiples of the base-size

for each dataset) results in fewer portion of events pruned. This occurs because as the

area of R grows, there are more overlapping dual rectangles among the moving objects.

Similarly, the growing rectangle size had adverse effects on the objects pruning scheme

94

(a) (b)

Figure 3.20. (a) Events pruning strategy; (b) Objects pruning strategy
against varying range sizes.

as well (cf. Figure 3.20b). We note, though, that even with quite large values of R (e.g.,

500000 m2) we have more than 60% of pruning through our proposed methods.

Figure 3.21. Running-time in different datasets.

Running Time Comparison: We ran the algorithms over the three datasets and the

result is shown in Figure 3.21. This is the first experiment in which we also report

observations regarding the periodical processing of the MaxRS – and it serves the purpose

to provide a complementary illustration of the benefits of our methodologies. Namely, even

if one is willing to accept an error in the result and perform only periodic snapshot MaxRS,

95

our pruning techniques are still more efficient, while ensuring correct/complete answer set.

The Base, (Base+O), (Base+E), (Base+E+O), and Periodic in Figure 3.21 denote the

base Co-MaxRS, base + objects pruning, base + events pruning, base + both events

and objects pruning, and periodical processing of MaxRS (δ=5s), respectively. In case of

MNTG-dataset, the average running time (for a set of trajectories) is shown in minutes,

while for the other two datasets the unit it is shown in seconds. We omitted the average

running time for the base algorithm over MNTG-dataset in Figure 3.21 which is more

than 10 hours (to avoid skewing the graph). The base Co-MaxRS is the slowest among

these algorithms, as it recomputes MaxRS at each event. The effect of both events and

objects pruning schemes on running time is prominent, although events pruning exhibits a

bigger impact individually (preventing unnecessary recomputations). When both pruning

strategies are applied together, the algorithm speeds-up significantly – almost 6-15 times

faster than the base algorithm over all the datasets – making it the fastest among all the

evaluated algorithms.

(a) (b)

Figure 3.22. Impact of δ on (a) Error (b) Running Time of periodic-MaxRS.

96

Periodical Processing: The last observations illustrate the errors induced by periodical

processing of MaxRS (periodic-MaxRS) to approximate Co-MaxRS. Note that we exclude

performing periodic-MaxRS related experiments on the large synthetic dataset (MNTG-

dataset) as the correctness, rather than scalability, is a concern. In Figure 3.22, the impact

of (δ) is illustrated both on running time and correctness. As δ increases the error in the

approximation increases as well. Even for a small δ (e.g., 1s), the respective error is still

around 8-14% (cf. Figure 3.22a). Complementary to this, in Figure 3.22b, we see that as

δ decreases, the running time increases too. For both Bike-dataset and MS-dataset, for

small δ values (≤ 5s), average processing time is much longer than our proposed algorithm

(Base+E+O) and yet it contains errors.

3.5.3. Approx-Co-MaxRS

Experimental results related to the approximate solution of Co-MaxRS are analyzed in

this section. The default value of grid-level l is set to 1, i.e., if not mentioned otherwise,

(a) (b)

Figure 3.23. (a) Running Time (b) Accuracy (of approximate answers).

97

GL-1 grid partitioning is employed to compute approximate answers.

Performance – Running Time vs Accuracy: Our first observations are shown in

Figure 3.23a and they demonstrate the running time of Approx-Co-MaxRS compared to

the exact algorithm. Approx-Co-MaxRS is significantly faster over both the real and

synthetic datasets. The difference in processing time is most skewed in MNTG-dataset,

where Approx-Co-MaxRS takes only 18.9 seconds to complete, compared to 38.7 minutes

to obtain the exact solution. On the other hand, even with this fast running time, the

Approx-Co-MaxRS generates answers with relatively low error as shown in Figure 3.23b.

For both MS and MNTG-dataset, the approximate solutions achieve more than 90% avg.

accuracy – which amounts to an avg. approximation ratio of 1.1, significantly lower than

the theoretical bound of 4. The results in Figure 3.23 show that Approx-Co-MaxRS

maintains relatively accurate answers with remarkably faster response time.

(a) (b)

Figure 3.24. Impact of l on (a) Running Time (b) Error of Approx-Co-MaxRS.

Varying Grid Level l: Figure 3.24 illustrates the impact of the grid-level l on the per-

formance of our approximate solution. An increased value of l results in higher processing

98

time (cf. Figure 3.24a) and lower average error (cf. Figure 3.24b). So, this direct trade-off

between performance and accuracy has to be considered when choosing an appropriate

value of l for the Approx-Co-MaxRS algorithm. The phenomena of higher processing time

is particularly evident for l = 3 and 4 (processing time worse than exact Co-MaxRS for

BIKE and MS dataset), while the accuracy gets a hit when l=0. Based on the experiments

over the three datasets, an l value of 1 and 2 comes across as reasonable choices.

(a) (b) (c)

Figure 3.25. Impact of cardinality on: (a) Running Time (MS and BIKE-
dataset) (b) Running Time (MNTG-dataset) (c) Error (all datasets) of
Approx-Co-MaxRS.

Impact of Cardinality: This experiment was designed to scrutinize the effect of car-

dinality on the running time and accuracy (i.e., avg. error) of the Approx-Co-MaxRS

algorithm. We observe results from various datasets in Figure 3.25 – hence, the label

on the X-axis indicates the percentage of all the objects for the respective datasets. As

the datasize increases, processing time increases as well for both Approx-Co-MaxRS and

Co-MaxRS algorithms (see Figure 3.25a and 3.25b). Moreover, an interesting observation

is that the difference between the processing time of Approx-Co-MaxRS and Co-MaxRS

also increases with the datasize – i.e., the advantage of using Approx-Co-MaxRS for a

99

quicker response is more prominent for larger datasets (cf. see Figure 3.25b). The avg. er-

ror of obtained approximate answers over all datasets do not fluctuate much with varying

datasize as shown in Figure 3.25c.

(a) (b) (c)

Figure 3.26. Impact of range size on: (a) Running Time (MS and BIKE-
dataset) (b) Running Time (MNTG-dataset) (c) Error (all datasets) of
Approx-Co-MaxRS.

Influence of Range Size: Figure 3.26 demonstrates the influence of range size R on the

performance of Approx-Co-MaxRS. In contrast to the Co-MaxRS algorithm (i.e., pruning

performance gets worse with larger R), the running-time of Approx-Co-MaxRS decreases

as we increase the values of R over all three datasets (cf. Figure 3.26a and Figure 3.26b).

This is due to the fact the total number of grids is fewer for larger R, which in turn

results in fewer grid-change event occurrences and lower maintenance overhead for the

algorithm. Note that, the values on X-axis indicate multiples of the base-size for each

dataset in Figure 3.26. On the other hand, Figure 3.26c shows that avg. error is not that

affected by the change in R. From the experimental results, we can conclude that the

avg. accuracy of Approx-Co-MaxRS depends mostly on the grid-level l.

Avoiding Full Recomputations: In Algorithm 6, for a grid-change event Ecur where

an object is moving from Gl,cur to a new grid Gl,new, we only perform full recomputation

100

Figure 3.27. Pruning (avoiding full recomputation) in grid-change events.

of apparox-maxrs if Gl,cur is part of the current solution (line 9-12 in Algorithm 6). In

all other cases, we avoid this relatively expensive full-recomputation (O(n∗ 22l)) and only

check Rl,k’s involving the new grid Gl,new. The benefits of using this idea in Algorithm 6

is revealed in Figure 3.27. For BIKE and MS dataset, full recomputation is necessary for

only around 6% of the grid-change events, whereas this number goes down to only 0.3%

for the MNTG-dataset.

3.5.4. Hierarchical Grid-Based Indexing

Experimental results related to the hierarchical grid-based indexing scheme (denoted as

Co-MaxRS-HGrid) are presented below. We implement in-memory index structures for

our experiments. As indexing is effective mostly for large dataset, we conduct experiments

only over MNTG-dataset for this part. Similar to Approx-Co-MaxRS experiments, the

default value of grid-level l is set to 1.

Performance Comparison: Our first observations are shown in Figure 3.28, where we

compare the running time between Co-MaxRS implementation: (1) without any indexing;

101

Figure 3.28. Running time comparison between Co-MaxRS, Co-MaxRS-
TPR, and Co-MaxRS-HGrid.

(2) with TPR-tree indexing; and(3) with our proposed hierarchical grid-indexing. The

results demonstrate that both indexing schemes reduce the processing time significantly,

by speeding-up various range queries involved in the Co-MaxRS algorithm (e.g., find the

set of overlapping rectangles for a given rectangle at each line-change event). Although,

the performance of Co-MaxRS-HGrid is 3 times faster than the TPR-tree version (cf.

Figure 3.28), attributed to following reasons: (1) The efficient ~DO events and ~OD objects

pruning obtained via Co-MaxRS-HGrid; (2) The relatively low build and maintenance cost

of Co-MaxRS-HGrid – e.g., the time-complexity of Algorithm 4 is O(l), or O(1) for the

experiments; and (3) The comparatively high index building cost for TPR-tree.

Varying Grid Level l: The impact of grid-level l on the related pruning benefits of

Co-MaxRS-HGrid is illustrated in Figure 3.29b. With increased granularity (i.e., higher

l), the amount of pruning also increases. Even for l = 1, around 80% ~DO events are

pruned in the index level, and 83.25% ~OD objects are pruned during a recomputation.

Note that, these values are subsumed by the pruning achieved by our proposed Lemmas

in Section 3.2 – the refinement step. But, filtering out significant amount of objects and

102

(a) (b)

Figure 3.29. Impact of l on (a) Running Time (b) Pruning of Co-MaxRS-HGrid.

events even before accessing the OL data structure improves the processing time – the

effect will be more prominent when objects are stored in external storage and/or clouds.

In Figure 3.29a, the effect of l on the running-time is shown. Initially, the running-time

decreases as l increases (until l=2). The benefits of efficient range queries and pruning

obtained by higher level grids overcomes the increased maintenance overhead for l ≤ 2.

Afterwards, the running-time shoots up again for l= 3 and 4 – as the maintenance overhead

(i.e., number of grid-change events and cost of partial/full recomputations) for these levels

overpowers the minimal benefits gained compared to other lower levels.

Impact of Cardinality: Figure 3.30a presents the effects of cardinality over the running

time of Co-MaxRS-HGrid. Processing time is higher for larger datasize as the total

number of ~DO and ~OD events increases too. Although, Co-MaxRS-HGrid is always

faster compared to Co-MaxRS (without indexing), and slower than Approx-Co-MaxRS for

varying datasize (cf. Figure 3.30a and Figure 3.25b). ~DO events pruning slightly reduces,

and ~OD objects pruning slightly increases for higher number of objects as illustrated in

Figure 3.30b.

103

(a) (b)

Figure 3.30. Impact of cardinality on (a) Running Time (b) Pruning of
Co-MaxRS-HGrid.

(a) (b)

Figure 3.31. Impact of range-size on (a) Running Time (b) Pruning of Co-
MaxRS-HGrid.

Influence of Range Size: This experiment was designed to observe the impact of range-

size on the running time and pruning of Co-MaxRS-HGrid. The effect of pruning for Co-

MaxRS-HGrid over different R is similar to the non-indexed Co-MaxRS algorithm (cf.

Figure 3.31b and Figure 3.20), i.e., increasing range area (the values on X-axis indicate

multiples of the base-size for each dataset) results in fewer portion of events and objects

pruned. This also has an adverse effect on the running time of the algorithm. Thus, even

104

Figure 3.32. Runing time and pruning comparison for using exact R and
arbitrayr R.

though increasing range area means fewer grid maintenance overhead, it results in higher

processing time for Co-MaxRS-HGrid (see Figure 3.31a).

Performance for Arbitrary R Method: As discussed in Section 3.3.2, if we have a

level-l hierarchical grid structure, then the pruning and range query benefits of the index

structure is applicable for any Rarb, for which Rl ≤ Rarb ≤ R0, where R0 and Rl represent

the size of R for grid-level 0 and l respectively. The idea is to find the lowest numerical

level for which the grid size is greater than Rarb. This is very useful when building an

index on-the-fly based on the given R is not possible. In this experiment, we set R0 to

be 2600 × 2600m2 and Rarb to be 2000 × 2000m2. We evaluate the performance (i.e.,

run-time and pruning) in this setting, compared to the default scheme (i.e., building an

index on the fly based on the given R) in Figure 3.32. The running time is 1.6 times more,

and around 20-25% fewer objects and events are pruned for HGrid-Arbitrary setting. As

expected, performance is poorer than building an R-based index on the fly – although,

we note that, the achieved pruning and speed-up in run-time (compared to Co-MaxRS

without indexing) is still significant.

105

3.6. Demonstration: System Design and Demo Details

We implemented a demonstration system, based on the proposed solutions in this

chapter to process the Co-MaxRS queries. We now describe the main components of the

implemented system architecture and how they interact with each other, and proceed

with details of the demo.

Software Architecture: Our final system is a web-based application with interactive

and user-friendly interface for both PC and mobile devices, which is implemented using

HTML, CSS, and JavaScript (Node.js was used for the server-side programming). We

employ Responsive Web Design principles in building the website by using CSS media

queries, @media rules, and fluid grids—thus, making it suitable to work on every device

and screen size. The core Co-MaxRS algorithm is implemented using C++. The software

architecture of our system, illustrated in Fig. 3.33, is organized in the following main

categories:

• Query Interface: The users can select each of the required parameters using the in-

terface by specifying: (1) F – the query area (depends on the underlying dataset), set

dynamically via the zoom-in (+) or out (-) tool; (2) R – specifying d1 and d2 values; and

(3) T – the time period, specifying t0 and tmax. Users can browse through solutions for

each T by sliding the time bar. Additionally, a user will also be able to upload their own

dataset, as long as it follows a pre-fixed format – plain file containing tuples of (object-id,

trajectory-id, latitude, longitude, time, weight (optional, default=1)).

• Visualization Components: We used Google Maps JavaScript API [1] to display a map

with respective pins for each object at a particular time instant and the current MaxRS

solution. These pins and results will change accordingly as the user drags the time bar.

106

Figure 3.33. Software architecture.

Also, we used various JavaScript visualization tools (such as [3]) to enable a different view

of the result – trajectories of the Co-MaxRS solutions in 3D spatio-temporal settings.

• Co-MaxRS Algorithm: Even for small object movements, the optimal location of the

query rectangle can change while objects participating in the MaxRS solution stay the

same. Instead of maintaining a centroid-location (equivalently, a region) as a Co-MaxRS

solution, we maintain a list of objects that are located in the interior of the optimal rec-

tangle placement – the Co-MaxRS answer-set becoming a sequence (list-of-objects, time-

period). For the example in Fig. 1.1, Co-MaxRS answer-set is: {((o6, o7, o8), [t0, t1)), ((o1,

o2, o3), [t, tmax)), ((o1, o3, o7, o8), [tmax, tmax))}. We identified criteria (i.e., critical times)

when a particular MaxRS solution is no longer valid, or a new MaxRS solution emerges.

The basic algorithm uses KDS (Kinetic Data Structures) – maintaining a priority queue

of the critical events and their occurrence time, and recomputing MaxRS solutions at each

event in order. Recomputing MaxRS is costly, so we devised efficient pruning schemes

to: (1) Eliminate the recomputation altogether at certain qualifying critical events; and

107

(2) Reduce the number of objects that need to be considered when recomputation is un-

avoidable.

• Data Structures and Indexing: We maintain a list for storing each object oi ∈ O, with

its current trajectory, weight, and other necessary information. KDS maintains an event

queue, where the events are sorted according to the time-value. Each critical event con-

sists of the related objects, and the occurrence time. Additionally, we also maintained an

adjacency matrix to track locality of objects – which is important for smooth processing

of our pruning schemes. Moreover, to ensure faster processing over large datasets, we used

an existing spatio-temporal data indexing scheme, TPR*-tree (via a C++ library) [74].

• Datasets: To demonstrate the benefits of our system in different domains, we use several

datasets: (1) GPS traces from 500 taxis collected over 30 days in San Francisco Bay area

(http://crawdad.org/epfl/mobility/); (2) (location, time) information for 370 taxis within

Rome for 1 month with sample-period of 7s (http://crawdad.org/roma/taxi/); (3) Hu-

man mobility data, in [88], where researchers at Microsoft collected data from 182 users

in a period of over five years, with 17,621 trajectories; and (4) A small animal movement

dataset from (http://crawdad.org/princeton/zebranet/). While the first two datasets are

great for demonstrating scalability and traffic-monitoring aspect of our system, the latter

two can be used to show applications in human mobility tracing and animal tracking pro-

cesses. Although all of these datasets had different formats, we converted them into the

same format – tuples of (object-id, trajectory-id, latitude, longitude, time, weight) values.

This enabled our system to handle similarly formatted user-provided data as well.

Demo Specifications: The setup of our demo will consist of a laptop running the web-

based application via a web browser. The application is hosted on our server operating

108

(a) (b)

Figure 3.34. (a) The main GUI with map and time slider; (b) Answer-set
3D view over T .

at Northwestern University, and will be accessed via a public URL. The demonstration

will have three main parts with the following steps:

P1: The first part will have following three main phases:

Phase 1: Specification of the required parameters in the GUI (cf. Fig. 3.34). This phase

will show: (a) Selection of appropriate R, F, and T ; and (b) Relation between R and F,

i.e., how our system dynamically changes R proportionally to F given an initial value. F

can be dynamically set by the user (+/- tool).

Phase 2: Visualization of the Co-MaxRS result at a certain point of time t using the user-

provided parameters over a map (constrained to F). The locations (linearly interpolated

at t) of the objects will be displayed via pins on the map, and the solution, i.e., an optimal

placement of R and the objects in its interior will be distinctly marked (see Fig. 3.34a).

Phase 3: Visualization of the whole answer-set for the time-period T in spatio-temporal

(3D) settings (cf. Fig. 3.34b). Users will be able to analyze how the trajectories of the

optimal clusters are evolving over space and time (parallelopipeds).

P2: In the second and most important part of the demo, we will exhibit the benefits of

109

using this tool in analyzing large trajectories data. This part will show: (a) Selection of

the area of focus (F) by zooming-in or out; (b) Change the value of t by sliding through

per unit time (depends on the data set) within T . We will demonstrate how a user can

start from a large F and relatively larger R, and then continuously refine their region of

interest.

P3: The last part of the demo will quickly show steps of P1 and P2 for different datasets,

emphasizing how the tool can be useful in different domains. Additionally, the steps of

uploading a custom dataset will be demonstrated.

110

CHAPTER 4

Processing Conditional MaxRS in Spatial Data Streams

In this chapter, at first we formulate the problem of C-MaxRS and provide a basic

solution (which we use as baseline in later experiments). Subsequently, we extend the

basic solution to handle the streaming scenarios. We also devise the changes needed to

deal with Weighted C-MaxRS problem. Finally, we propose methods to deal with bursty

updates, and present our experimental results.

4.1. Problem Definition

We now introduce the C-MaxRS problem and extend the definition to include the

possibility of appearance of new objects, and disappearance of existing ones. In addition,

we discuss the concept of submodular monotone functions.

C-MaxRS & C-MaxRS-DU: Let us define a set of POIClass K = {k1, k2, . . . , km},

where each ki ∈ K refers to a class (alternatively, tag and/or type) of the objects,

a.k.a. points of interest (POI) . In this setting, each object oi ∈ O is represented as

a (location, class) tuple at any time instant t. We denote a set X= {x1, x2, . . . , xm} as

MinConditionSet, where |X| =|K| and each xi ∈ Z+ denotes the desired lower bound of

the count of objects of class ki in the interior of the query rectangle r – i.e., the opti-

mal region must have at least xi number of objects of class ki. Let us assume li as the

111

number of objects of type ki in the interior of r centered at a point p. A utility func-

tion f(O) : P(O)→ N0, mapping a subset of spatial objects to a non-negative integer is

defined as below,

f(O) =


(
∑|K|

i=1 li), if ∀i ∈ {1, 2, 3, ..., |K|}, li> = xi

0, if ∃i ∈ {1, 2, 3, ..., |K|}, li < xi

Additionally, we mark Orp as the set of spatial objects in the interior of rectangle r

centered at any point p. Formally, we define:

Definition 3. Conditional-MaxRS (C-MaxRS). Given a rectangular spatial field

F, a set of objects of interest O (bounded by F), a query rectangle r (of size a× b), a set

of POIClass K = {k1, k2, . . . , km} and a MinConditionSet X = {x1, x2, . . . , xm}, the C-

MaxRS query returns an optimal location (point) p∗ for r such that:

p∗ = argmaxp∈Ff(Orp)

where Orp ⊆ O.

Note that, in the case that there is no placement p for which all the conditions of

MinConditionSet is met, the query will return an empty answer – indicating to the user

to either increase the size of R or decrease the lower bounds for some classes. We now

proceed to define C-MaxRS in dynamic scenario – Conditional-MaxRS for Data Updates

(C-MaxRS-DU). In a spatial data stream environment, old points of interest may disap-

pear and new ones may appear at any time instant. We can deal with this in two-ways:

• Time-based: C-MaxRS is computed on a regular time-interval δ.

112

• Event-based: C-MaxRS is computed on an event, where C-MaxRS is maintained (eval-

uated) every time a new point appears or an old point disappears – both regarded as an

event.

Although faster algorithms can be developed in time-based settings, the solutions pro-

vided would be inherently erroneous for time between t and t + δ. On the other hand,

event-based processing ensures that a correct answer-set is maintained all the time. Thus,

we deal with the streaming data in event-based manner, for which we denote e+ as the

new point appearance and e− as the old point disappearance event. We note that, most of

the settings for basic C-MaxRS remains same, except that the set of objects O is altered

at each event. We define the set of points of interest in this data stream for any event e

as:

Oe =


O ∪ {oe}, if e.type = e+

O \ {oe}, if e.type = e−

Formally,

Definition 4. Conditional-MaxRS for Data Stream/Updates (C-MaxRS-

DU). Given a rectangular spatial field F, a set of objects of interests O (bounded

by F), a query rectangle r (of size a × b), a set of POIClass K = {k1, k2, . . . , km},

a MinConditionSet X = {x1, x2, . . . , xm}, and a sequence of events E={e1, e2, e3, . . .}

(where each ei denotes the appearance or disappearance of a point of interest), the C-

MaxRS-DU query maintains the optimal location (point) p∗ for r such that:

p∗ = argmaxp∈Ff(Orp)

113

where Orp ⊆ Oe for every event e in E of the data stream.

Submodular Monotone Function: [24] devised solutions to a variant of the MaxRS

problem (best region search) where the utility function for the given POIs is a submodular

monotone function – which is defined as:

Definition 5 (Submodular Monotone Function). If Ω is a finite set, a submodular

function is a set function f : P(Ω)→ R if ∀X,Y ∈ Ω, with X ⊆ Y and x ∈ Ω \ Y we have

(1) f(X ∪ {x})− f(X) ≥ f(Y ∪ {x})− f(Y) and (2) f(X) ≤ f(Y).

In the above definition, (1) represents the condition of submodularity, while (2)

presents the condition of monotonicity of the function. In Section 4.2, we will discuss

these properties of our introduced utility function f(O) : P(O)→ N0.

Discussion: Note that, for the sake of simplicity, initially we have considered only the

counts of POIs when defining the utility function or conditions in X. In Section 4.4, we

show that they can be extended to incorporate different non-negative weights for objects

– i.e., most of the techniques (including pruning) devised in the work are still applicable

with minor modifications. Similarly, although in our provided examples, for brevity, we’ve

only depicted one class per object, the techniques proposed in this work extends to the

objects of multiple classes (or tags), e.g., objects can be considered as (location, classes)

tuple.

114

4.2. Basic C-MaxRS

In this section, we first convert the C-MaxRS problem to its dual variant and then

discuss important properties of the conditional weight function f(.), showing how we can

utilize them to devise an efficient solution to process C-MaxRS.

4.2.1. C-MaxRS → Dual Problem

A naive approach to solve C-MaxRS is to choose each discrete point p iteratively from the

rectangular spatial field F and compute the value of f(Orp) for the set of spatial objects

covered by the query rectangle r. As there can be infinite number of points in F, this

approach is too costly to be practical. Existing works (see [58, 24, 36]) have demonstrated

that feasible solutions can be derived for MaxRS (and related problems) by transforming

it into its dual problem – rectangle intersection problem. A similar conversion is possible

for C-MaxRS as well, enabling efficient solutions. In this regards, let R={r1, r2, . . . , rn}

be a set of rectangles of user-defined size a× b. Each rectangle ri ∈ R is centered at each

point of interest oi ∈ O, i.e., |R|=|O|. We define ri as the dual rectangle of oi. Let us

consider a function g : P(R) → N0 that maps a set of dual rectangles to a non-negative

integer. For a set of rectangles Rk = {r1, r2, . . . , rk}, let g(Rk) = f({o1, o2, . . . , ok}). Note

that, a rectangle is affected by a point p if it is in the interior of that rectangle. Let A(p)

be the sets of rectangle affected by p ∈ F. Now, we can redefine C-MaxRS as the following

equivalent problem:

Given a rectangular spatial field F, a set of rectangles R={r1, r2, . . . , rn} (with centers

bounded by F) where each ri is of a given size a×b, a set of POIClass K={k1, k2, . . . , km}

and a MinConditionSet X={x1, x2, . . . , xm}, retrieve an optimal location (point) p∗ such

115

that:

p∗ = argmaxp∈Pg(A(p)),

where A(p) ⊆ R.

The bijection is illustrated with the help of Figure 4.1 using the same example (and

conditions) of Figure 1.2. Suppose, rectangles {r1, r2, r3, . . . , r7} are the dual rectangles of

given objects {o1, o2, o3, . . . , o7} in Figure 4.1, and p1 and p2 are two points within the given

space. p1 affects rectangles r1, r2, r3 and p2 affects r4, r5, r6, r7, i.e., A(p1) = {r1, r2, r3}

and A(p2) = {r4, r5, r6, r7}. Thus, g(A(p1))=f({o1, o2, o3}) = 3 as the points conform to

the constraints mentioned in Chapter 1, while g(A(p2))=f({o4, o5, o6, o7}) = 0 as they do

not.

Figure 4.1. C-MaxRS → dual problem.

Similarly, C-MaxRS-DU can be redefined as follows:

Given a rectangular spatial field F, a set of rectangles R={r1, r2, . . . , rn} (with centers

bounded by F) where each ri is of a given size a×b, a set of POIClass K={k1, k2, . . . , km},

a MinConditionSet X={x1, x2, . . . , xm}, and an event e (appearance/disappearance of a

116

rectangle re), update the optimal location (point) p∗ such that:

p∗ = argmaxp∈Pg(A(p)),

where

A(p) ⊆


R ∪ {re}, if e.type = e+

R \ {re}, if e.type = e−

4.2.2. Properties of f and g

A method to solve an instance of Best Region Search (BRS) problem was devised in [24],

where the weight function f : P(O)→ R is a submodular monotone function (cf. Defini-

tion 5). In [24], the problem is first converted to the dual Submodular Weighted Rectangle

Intersection (SIRI) problem, and then optimization techniques are applied based on these

properties of f(.). We now proceed to discuss submodularity and monotonicity of func-

tions f(O) : P(O) → N0 and g(R) : P(R) → N0 in our problem settings. We establish

two important results for f and g as follows:

Lemma 1. Both f and g are monotone functions.

Proof. For a set of spatial objects O,

f(O) =


(
∑|K|

i=1 li), if ∀i ∈ {1, 2, 3, ..., |K|}, li> = xi

0, if ∃i ∈ {1, 2, 3, ..., |K|}, li < xi

117

For any of the classes, if the given lower-bound condition is not met, i.e. ∃i ∈

{1, 2, 3, ..., |K|}, li < xi, then f(O)=0 for the spatial object set O. However, if all of

the conditions are satisfied – i.e., ∀i ∈ {1, 2, 3, ..., |K|}, li < xi, then the utility value is

equal to the count of spatial objects in O.

Let Oi ⊆ Oj. If Oi = Oj, f(Oi) = f(Oj), otherwise if Oi ⊂ Oj, there are three possible

cases:

Case (a): Both Oi and Oj fail to conform to the MinConditionSet X – then f(Oi) =

f(Oj) = 0.

Case (b): Oj conforms to X, but Oi does not – then f(Oi) = 0 and f(Oj) = |Oj|. Thus,

f(Oi) < f(Oj).

Case (c): Both Oi and Oj conform to X, then f(Oi) = |Oi| and f(Oj) = |Oj|. As

Oi ⊂ Oj, |Oi| < |Oj|, implying, f(Oi) < f(Oj).

We note that there are no possible cases where Oi conforms to X, but Oj does not. Thus,

f is a monotone function.

Let Ri and Rj be two sets of dual rectangles generated from the aforementioned two sets

of spatial objects – Oi and Oj respectively. Here, Oi ⊆ Oj → Ri ⊆ Rj. According to the

definition of g, g(Ri) = f(Oi) and g(Rj) = f(Oj). As f(Oi) ≤ f(Oj), then g(Ri) ≤ g(Rj).

Thus, g is a monotone function too.

�

Lemma 2. None of f and g is a submodular function.

Proof. Let us consider the settings of the preceding proof, i.e., two sets of spatial

objects Oi and Oj (where Oi ⊆ Oj), and corresponding sets of dual rectangles Ri and

118

Rj. Suppose, O and R are the set of all objects and dual rectangles respectively. Let

us consider a spatial object ok ∈ O \ Oj and its associated dual rectangle rk ∈ R \ Rj.

Then there is a possible case where Oj conforms to X, but neither Oi nor Oi ∪ {ok}

conform to X. As Oj conforms to X, Oj ∪ {ok} will conform too. Thus, f(Oi) = 0,

f(Oj) = |Oj|, f(Oi ∪ {ok}) = 0, f(Oj ∪ {ok}) = |Oj ∪ {ok}| = |Oj|+ 1. Interestingly, we

obtain: f(Oi ∪{ok})− f(Oi) = 0− 0 = 0 and f(Oj ∪{ok})− f(Oj) = |Oj|+ 1− |Oj| = 1;

that means f(Oi ∪ {ok}) − f(Oi) < f(Oj ∪ {ok}) − f(Oj) violating the condition of

submodularity. Hence, f is not submodular.

On the other hand, g(Ri ∪ {rk}) − g(Ri) = f(Oi ∪ {ok}) − f(Oi) = 0 − 0 = 0 and

g(Rj ∪ {rk}) − g(Rj) = f(Oj ∪ {ok}) − f(Oj) = |Oj| + 1 − |Oj| = 1; which means

g(Ri ∪ {rk})− g(Ri) < g(Rj ∪ {r})− g(Rj). Thus, g is not submodular too. �

Let us consider the example of Figure 4.1 – suppose Oi={o4, o5, o6, o7} and two new

POIs o8 and o9 arrive from class A and C respectively. let Oj=Oi ∪ {o8} (i.e., Oi ⊆ Oj).

Now, f(Oi)=(0+2+2)(0)(1)(1)=0 and f(Oj)=(1+2+2)(1)(1)(1)=5, i.e., f(Oi) ≤ f(Oj),

proving monotonicity of f . But f(Oi∪{o9})=(0+3+2)(0)(1)(1)=0 and f(Oj∪{o9})=(1+

3 + 2)(1)(1)(1)=6. Thus, (f(Oi ∪ {o9})− f(Oi) = 0− 0 = 0) < (f(Oj ∪ {o9})− f(Oj) =

6− 5 = 1), proving non-submodularity of f . Similar examples can be shown for g too.

4.2.3. Processing of C-MaxRS

Although f and g are not submodular functions, we show that their monotonicity property

can be utilized to derive efficient processing and optimization strategies, similar to the

ideas presented in [24].

119

4.2.3.1. Disjoint and Maximal Regions. The edges of the dual rectangles divide the

given spatial field into disjoint regions where each disjoint region Fdi is an intersection of a

set of rectangles. Consider the examples shown in Figure 4.2(i). Rectangles {r1, r2, ..., r7}

divided the space into distinct regions numbered 0−19, e.g., region 0 is the region outside

all rectangles, and region 14 is the intersection of rectangles {r4, r5, r6, r7}. Intuitively,

all points in a single disjoint region Fdi affects the same set of rectangles, i.e., A(p) is

same for all p ∈ Fdi . There could be at most O(n2) disjoint regions (shown in [24]).

To compute C-MaxRS, a straightforward approach can be to iterate over all the O(n2)

disjoint regions (one point from each region) and choose the optimal one – thus reducing

the search space into a finite point set. For example, we only need to evaluate 20 points

for the settings of Figure 4.2(i).

A disjoint region Fdi is termed as a maximal region Fmi
if: (1) it is rectangular, and

(2) its left, right, bottom, top edges are (respectively) the parts of the left, right, bottom

and top edges of some dual rectangles of R. In Figure 4.2(ii), region 5 and 14 are maximal

regions. For example, the left, right, bottom, and top edges of region 5 is a part of the

corresponding edges r2, r1, r1, r3 respectively. [24] showed that for each distinct region

Fdi , there exists a maximal region Fmi
such that A(Fdi) ⊆ A(Fmi

). Using this idea, and

the fact that g(.) is monotonic, we can shrink the possible search space to only the set

of all maximal regions. As an example (see Figure 4.2), region 4 and 5 are affected by

R1 = {r1, r3} and R2 = {r1, r2, r3} respectively. As R1 ⊂ R2, so by the monotonicity

of g, g(R1) ≤ g(R2). So, only evaluating g(R2) is sufficient instead of evaluating both

g(R1) and g(R2). Though there could still be O(n2) maximal regions in the worst case,

the actual number in practice is much lower (compared to disjoint regions).

120

(i) (ii)

Figure 4.2. (i) Disjoint & (ii) Maximal regions

4.2.3.2. Maximal Slabs and Slices. A maximal slab is the area between two horizontal

lines in the space where the top line passes along the top edge of a dual rectangle and

bottom one passes along the bottom edge of a dual rectangle, and the area between

two horizontal lines contains no top or bottom edge of any other dual rectangles. In

Figure 4.3(i), there are three maximal slabs, enclosed by the top and bottom edges of

rectangles {r3, r1}, {r4, r3} and {r6, r5} (top edges are solid line, and bottom edges are

dotted lines). According to [24], each maximal region intersects at least one maximal

slab – i.e., the solution space can be reduced to the interior of all the maximal slabs only.

As maximal slabs are defined based on one top and one bottom edge of dual rectangles,

there could be at most O(n) maximal slabs.

All the maximal slabs can be retrieved using a horizontal sweep line algorithm in a

bottom-up manner. A set is maintained to keep track of the rectangles intersecting the

current slab, and a flag to indicate the type of the last horizontal edge processed. When

the sweep line is at the bottom (top) edge of a rectangle, it is inserted into (deleted from)

121

the set and flag is set to bottom (top). Additionally, when processing a top edge of a

rectangle, the algorithm checks whether a maximal slab is encountered (i.e., currently

flag=bottom). We can compute the upper bound for a slab by applying g(.) on the

rectangles intersecting that slab, i.e., if Rsi is the set of rectangles that intersects slab

Fsi , then the upper bound of g(p) for any point p ∈ Fsi is g(Rsi). For example, in

Figure 4.3(i), {r4, r5, r6, r7} intersect the bottommost slab. So, the upper bound for that

slab is g({r4, r5, r6, r7}) = 0 (as no members of class A present – not conforming to the

introduced constraints in Chapter 1).

(i) (ii)

Figure 4.3. (i) Maximal Slabs & (ii) Slices

Finally, the monotonicity of g allows us to adapt another optimization technique

introduced in [24] – slices (see Figure 4.3(ii)). The idea is to divide the whole space into

vertical slices (along x-axis). The width of the slices is query-dependent, i.e., θ× b, where

θ is a real positive constant value (θ > 1 and optimal value can be tuned empirically) and

b is the width of the query rectangle r. After dividing the space into slices, we retrieve

the slabs within each slice using the horizontal sweep-line algorithm described above and

122

obtain upper-bound of a slice by computing the maximum upper-bound among all the

slabs within that slice. We can then process the slices in a greedy manner – sort them in

order of their upper-bounds and process one by one until the currently obtained result is

greater than the upper-bounds of the remaining slices. Similar greedy approach can be

adopted to process the maximal slabs within each slice. As an example, suppose there are

four slices {s1, s2, s3, s4} with upper bounds {8, 3, 5, 2} respectively. The order in which

the slices will be processed is: {s1, s3, s2, s4}. Assume that after processing s1, current

optimal g value is 3. So there is a possibility the optimal solution within s3 might exceed

the current overall optimal solution of 3. After processing s3, if the result is 4, then

processing s2 and s4 is unnecessary. Slices allow more pruning than slabs, and also still

O(n) maximal slabs is processed in all the slices (see [24]).

4.3. C-MaxRS in Data Streams

Given an efficient solution based on the dual variant of the problem and the properties

of the utility function, we now proceed with introducing novel techniques to deal with more

realistic scenarios, i.e., data arriving in streams with the possibility of objects appearing

and disappearing at different time instants. Using the approach of the basic C-MaxRS

problem presented in previous section as a foundation, we augment the solution with

compact data-structures and pruning strategies that enable effective handling of data

streams environment.

123

4.3.1. Data Structures

Before proceeding with the details of the algorithms and pruning schemes, we describe

the data structures used. We introduce two necessary data structures: quadtree (denoted

QTree) and a self-balanced binary search tree (denoted SliceUpperBoundBST), and

describe the details of our representation of slices. We re-iterate that while [24] tackled

the problem of best-placement with respect to an aggregate function, we are considering

different constraints – class membership. In addition, we do not confine to a limited time-

window. This is why, in addition to the quadtree used in [24], we needed self-balancing

binary tree to be invoked as dictated by the dynamics of the modifications.

4.3.1.1. QTree. We need to process a large number of (variants of) range queries when

computing f for any point, i.e., finding intersecting rectangles for a given rectangle. To

ensure this is processed efficiently, we use quadtree ([66]) – a tree-based structure en-

suring fast (O(log n)) insertion, deletion, retrieval and aggregate operations in 2D space.

QTree recursively partitions F into four equal sized rectangular regions until each leaf only

contains one POI. The QTree for our running example settings is shown in Figure 4.4.

4.3.1.2. SliceUpperBoundBST . Recall that the algorithm proposed in Section 4.2.3 it-

erates through the slices in decreasing order of their maximum possible utility values

(upper-bounds). To achieve this for basic C-MaxRS, sorting the slices in order is suf-

ficient (O(n log n) operation). However, given the possibility of appearance (e+) and

disappearance (e−) events in dynamic streaming scenarios, the upper-bounds of slices

(and their respective order) may change frequently with time. To deal with these effi-

ciently, we introduce a balanced binary search tree (SliceUpperBoundBST , see [60]) in

124

(i) (ii)

Figure 4.4. (i) Quadtree division & (ii) QTree

our data structures instead of maintaining a sorted list whenever an event occurs. Dif-

ferent kinds of self-balancing binary search tree (e.g., AVL tree, Red-black tree, Splay

tree, etc.) can be used for this purpose. We used AVL tree in our implementation.

If there are ε number of dynamic events and n number of slices, sorting them on each

event would incur a total of O((ε + 1)n log n) time-complexity. Whereas we can build

a balanced BST SliceUpperBoundBST initially in O(n log n), and update the tree at

each event in O(log n) time. Thus the total cost of maintaining the sorted slices via

SliceUpperBoundBST is O(n log n + ε log n) time. As in real-world applications run-

ning for a long time, we would incur large values of both ε and n, in which case, using

SliceUpperBoundBST is much more efficient.

To traverse the slices in decreasing order via SliceUpperBoundBST , an in-order tra-

versal from left to right order is needed (assuming, higher values are stored on the left

children), and vice versa. SliceUpperBoundBST arranges the slices based on their upper

bounds of g. In Figure 4.5, a sample slice structure (of 7 slices) and their respective max-

imum utility upper bounds (dummy values) are shown for two events at different times

125

(i) (ii)

Figure 4.5. SliceUpperBoundBST at time (i) t1 & (ii) t2

t1 and t2. The corresponding SliceUpperBoundBST structure for both cases is shown

as well. The process of accessing the slices in decreasing order (an in-order traversal) is

demonstrated in Figure 4.5(ii).

4.3.1.3. List of Slices. We use a list Sslice to maintain the slices and their

related information. Each slice si ∈ Sslice is represented as a 6−tuple

(id, R, Sslabs, pc, lazy,maxregsearched). These fields are described as follows:

• id: A numeric identification number for the slice.

• R: The set of rectangles currently intersecting with the corresponding slice.

• Sslabs: The set of maximal slabs in the interior of the slice.

• pc: The local optimum point within the slice.

• lazy: This field is used to reduce computational overhead in certain scenarios. While

processing streaming data, there are cases when an e+ or e− event may alter the local so-

lution (optimal point) for a particular slice, but overall, the global solution is guaranteed

to remain unchanged. In those cases, we will not re-evaluate the local processing of that

slice (i.e., pruning) – rather will set the lazy field to true. Later, when the possibility

126

of a global solution change arises – local optimal points are re-processed for all the lazy

marked slices to sync with the up-to-date state. Initially, lazy fields for all slices are set

to false.

• maxregsearched: This field is used to indicate whether the slice’s local solution is up-

to-date or not. maxregsearched is set to true when the corresponding slice is evaluated

and its local maximal point is stored in pc. Initially, maxregsearched is set to false for

all the slices. While processing C-MaxRS by iterating through the slices, all the slices

with this field set to true are not re-evaluated (skipped).

4.3.2. Base Method

In this section, we start by introducing two related functions (sub-methods), and then

proceed with describing the details of the base method to process C-MaxRS using the

ideas discussed so far.

4.3.2.1. PrepareSlices(Sslice). Function 7 takes Sslice as input and sets up different

fields of each slice accordingly. For each slice si ∈ Sslice, their respective R and Sslabs

are computed (lines 2-3), and other variables are properly initialized (lines 4-6). In line

3, the maximum upper bounds of g (denoted gmaxub) among all the slices is retrieved as

well, while ScanSlab is the horizontal sweep-line procedure discussed in Section 4.2.3.2.

SliceUpperBoundBST is also build via line 7.

Time-Complexity. : While analyzing time-complexities, we will denote number of

slices |Sslice| as s and number of rectangles (and objects too) as n. Suppose all of the

slices in Sslice is passed to Function 7 for processing. In worst case scenario, line 2 takes

O(n) time. [24] shows Scanslab() (i.e., line 3) aggregately takes at most O(n) time for

127

all the slices together. Any SliceUpperBoundBST operations (cf., line 4) need O(log s)

time. Thus, the overall time-complexity of Function 7 is O(s(n+ log s) + n) – or, O(sn)

(as typically, n > s).

Algorithm 7 PrepareSlices(Sslice)

Require: A set of slices Sslice
1: for each si in Sslice do
2: si.R← the set of rectangles currently intersecting with s.i
3: (si.Sslabs, gmaxub)← ScanSlab(si.R)
4: SliceUpperBoundBST.update(si.id, gmaxub)
5: si.pc ← null
6: si.lazy ← false
7: si.maxregsearched← false
8: end for

4.3.2.2. SliceSearchMR(p∗c). Function 8 takes the current global maximal point p∗c as

input and returns the updated solution. The function iterates through all the slices via

in-order traversal of SliceUpperBoundBST from the root (lines 1-2). The process is

terminated if gmaxub of the current slice is ≤ of current maximum utility value g(A(p∗c))

(lines 3-4), or when all the slices are evaluated. At each iteration, we check whether there

exists an already computed solution (unchanged) for the slice. If so, we avoid recomputing

it (lines 6-7), otherwise we retrieve the current optimal solution for the slice and update

related variables accordingly (lines 9-11). Finally, we update the global optimal point by

comparing it with the local solution (lines 12-13).

Time-Complexity. : In the worst case scenario, all the nodes in SliceUpperBoundBST

are traversed in Function 8. A stack based implementation of in-order traversal takes O(s)

time, and computing the g() function can take up to O(n) time. Thus, the overall worst-

case complexity for Function 8 is O(sn).

128

Algorithm 8 SliceSearchMR(p∗c)

Require: Global maximal point p∗c
Ensure: Updated global maximal point p∗c

1: cnode ← SliceUpperBoundBST.root
2: while inorder traversal of SliceUpperBoundBST from cnode is not done do
3: if cnode.gmaxub ≤ g(A(p∗c)) then
4: break
5: else
6: if Sslice[cnode.sliceid].maxregsearched = true then
7: p∗local ← Sslice[cnode.sliceid].pc
8: else
9: p∗local ← Compute local optimal point

10: Sslice[cnode.sliceid].pc ← p∗local
11: Sslice[cnode.sliceid].maxregsearched← true
12: end if
13: if g(A(p∗local)) > g(A(p∗c)) then
14: p∗c ← p∗local
15: end if
16: end if
17: end while
18: return p∗c

4.3.2.3. SolveCMaxRS. Algorithm 9 presents the base method SolveCMaxRS that

retrieves the optimal point p∗c from a snapshot of the database. p∗c , QTree and

SliceUpperBoundBST are initialized, and the dual rectangles of the given POIs O is

computed in lines 1-4. In lines 5-6, we update the QTree by inserting all the dual rectan-

gles in the structure. Line 7 retrieves the list of slices using the given width θb. Finally,

the method uses Function 7 to initialize the fields of slices properly in line 8, and computes

the C-MaxRS solution using Function 8 in line 9.

Time-Complexity. : Initializing and inserting all the rectangles in the quadtree takes

O(n log n) time along with a random initialization of SliceUpperBoundBST inO(s). List-

ing all the slices (line 7) also takes O(s) time. Using the complexities of PrepareSlices()

129

and SliceSearchMR() from previous discussion, we can conclude that worst-case time

complexity of Algorithm 9 is O(n log n+ sn).

Algorithm 9 SolveCMaxRS(O, a, b)

Require: A set of objects O, query size a× b
Ensure: An optimal point p∗c

1: p∗c ← null
2: QTree.init()
3: SliceUpperBoundBST.init()
4: R← the set of a× b rectangles centered at each o ∈ O
5: for each r ∈ R do
6: QTree.insert(new Noder)
7: end for
8: Sslice ← list of slices of width θb
9: PrepareSlices(Sslice)

10: p∗c ← SliceSearchMR(p∗c)
11: return p∗c

4.3.3. Event-based Pruning

Recall that, to cope with the challenges of real-time dynamic updates of the point space

via data streams, we opted for the event-driven approach rather than the time-driven

approach. Our goal is to maintain correct solution by performing instant updates during

an event. In case of spatial data streams, a straightforward approach is to use Algorithm 9

whenever an event occurs. We now proceed to identify specific properties/states of events

(both e+ and e+) that allow us to prune unnecessary computations while processing them.

Note that, in this settings, a bunch of e+ and e− events can occur at the same time.

4.3.3.1. Pruning in e−. To derive an optimization technique for e− events, let us first

establish few related important results.

130

Lemma 3. Removal of a rectangle re (object oe) from the point space F never increases

the value of g(A(p)) (correspondingly f(A(p))), ∀p ∈ P .

Proof. Denote the removed rectangle as re. We consider two cases: • re ∈ A(p):

After the removal of re, the set of rectangles affected by p becomes A(p) \ {re}. Now,

A(p)\{re} ⊂ A(p). Hence, from Theorem 1, g(A(p)\{re}) ≤ g(A(p)). Thus, the removal

in this case does not increase g(A(p)).

• re /∈ A(p)): After removal of re, the set of rectangles affected by p is still A(p). Hence,

g(A(p)) remains unchanged. In this case as well, the removal does not increase g(A(p)).

Similarly, we can show a proof for removing an object – i.e., oe from F. �

Lemma 3 paves the way for the pruning of slices from being considered a solution at

e− events.

Lemma 4. The maximum utility point (global solution) p∗c is unchanged after the

removal of a rectangle re from the space F if re /∈ A(p∗c).

Proof. Here, re /∈ A(p∗c). Suppose, after removing re, A
′(p∗c) rectangles are affected by

p∗c . Note that, A′(p∗c)=A(p∗c) (as re /∈ A(p∗c)), implying g(A′(p∗c)) = g(A(p∗c)). Thus, the

utility values of p∗c remains the same. By Lemma 3, the removal of re does not increase

the utility value of p,∀p ∈ P . Suppose, the utility value of a point p, (p ∈ P and p 6= pc),

are g(A(p)) and g′(A(p)) respectively before and after the removal of re, then g′(A(p)) ≤

g(A(p)). Again, p∗c being the maximal point, g(A(p)) ≤ g(A(p∗c)), ∀p ∈ P, p 6= p∗c . Above

mentioned inequalities imply that g′(A(p)) ≤ g(A′(p∗c)), ∀p ∈ P, p 6= p∗c , meaning p∗c

remains unchanged. �

131

Using Lemma 4, we can prune local slice processing at an e− event, if re /∈ A(p∗c), i.e.,

we need to only update QTree in this case.

Lemma 5. The utility value of the maximal point p∗c is changed after the removal of

a rectangle re if re ∈ A(p∗c).

Proof. If p∗c is returned as the maximal point, then g(A(p∗c)) > 0 (i.e., we have a

solution). After the removal of re, the set of rectangles affected by p∗c becomes A(p∗c)−{re}.

There are two possible cases:

• A(p∗c) − {re} conforms to X: In this scenario, g(A(p∗c)) − g(A(p∗c) − {re}) = |A(p∗c)| −

(|A(p∗c)| − 1) = 1.

• A(p∗c)−{re} does not conform to X: Here, g(A(p∗c))− g(A(p∗c))−{re}) = |A(p∗c)| − 0 =

|A(p∗c)|

In both cases, g(A(p∗c)) is changed. �

Lemma 5 implies that, if a rectangle removed at an e− event is in A(p∗c), we need to

re-evaluate local solutions for the respective slice(s), and update global maximal point if

necessary.

Lemma 6. Suppose a point space P is divided into a set of slices Sslice, and the slice

containing the maximum utility point p∗c is smax. Let, Ss be another set of slices, where

Ss ⊂ Sslice and smax /∈ Ss. Subsequently, the removal of a rectangle re spanning through

only the slices in Ss, i.e., affecting only the local maximum utility values of si, ∀si ∈ Ss,

does not have any effect on the global maximum utility point p∗c.

Proof. Let p∗local be the maximum utility point of a slice si ∈ Ss. ∀p ∈ si where

si ∈ Ss , g(A(p∗c)) ≥ g(A(p∗local)) and g(A(p∗local)) ≥ g(A(p)). According to Lemma 3,

132

after the removal of re, for any si ∈ Ss, g(A(p− {re})) ≤ g(A(p)). From the above three

inequalities, we can deduce: ∀p ∈ si where si ∈ Ss, g(A(p)−{re}) ≤ g(A(p∗c)). This holds

true ∀si ∈ Ss. Thus, p∗c still remains the maximum utility point (as smax is not altered),

and smax is still the slice containing p∗c . �

Lemma 6 implies that, if the slice containing global maximal point p∗c is unchanged

while some other slices are altered, then following the update of QTree, we can delay the

processing of altered slices at that time instance as it is not going to affect the global

maximal answer anyway. For this reason, we incorporated the lazy field in each slice. In

this case, we set lazy to true for each of these altered slices, indicating that they should

be re-evaluated later only when the slice containing global maximal point is altered.

4.3.3.2. Pruning in e+. During an e+ event, a rectangle (object) appears in the given

space F. We now present two lemmas, based on which we derive pruning strategies at e+

events.

Lemma 7. Addition of a rectangle re (object oe) in the given space F never decreases

the value of g(A(p)) (correspondingly f(A(p))), ∀p ∈ P .

Proof. Let the added rectangle be re. We consider two cases: • re ∈ A(p): After

the addition of re, the set of rectangles affected by p becomes A(p) ∪ {re}. Now, A(p) ⊂

A(p) ∪ {re}. Hence, from Theorem 1, g(A(p) ∪ {re}) ≥ g(A(p)). So, in this case g(A(p))

does not decrease.

• re /∈ A(p)): After addition of re, the set of rectangles affected by p still remains A(p).

Hence, g(A(p)) does not change as well. Thus, g(A(p)) does not decrease in this scenario

133

as well.

Similarly, we can show a proof for adding an object – i.e., oe to F. �

For e− events, we leveraged on ideas like Lemma 3 – i.e., removal of a rectangle never

increases utility value of a point, to devise clever pruning schemes depending on the fact

that local or global maximal points are guaranteed to be unchanged in certain scenarios.

But, for e+ events, those are not applicable as addition of a rectangle may increase utility

of affected points. Interestingly, though, there are scenarios when the utility values are

unchanged, e.g., when A(p) does not conform to X. Also, as shown in the 2nd case of the

proof of Lemma 7 – we only process a slice if its affected by the addition of re.

Lemma 8. Suppose, we have a set of classes K = {k1, k2, . . . , km}, and are given

corresponding MinConditionSet X = {x1, x2, . . . , xm}. Let R be the set of rectangles

overlapping with a slice si ∈ Sslice, and let li be the count of rectangles of class ki in R.

Then, addition of a rectangle re of class ki has no effect on the local maximal solution of

si if:

(1) xi − li ≥ 2, or

(2) (∃lj 6= li) xj − lj ≥ 1

Proof. (1) In this settings, the maximum possible utility value of si before addition

of re is 0. Because, even if for a point p ∈ si, A(p) = R, then g(A(p))=0 as li < xi and R

does not conform to X. After the addition of re, suppose the count of class ki objects in

R is l′i, i.e., l′i=li + 1. As given xi − li ≥ 2, then l′i < xi. Thus, R still does not conform

to X, and maximum possible utility value of si remains 0.

(2) Similarly, the maximum possible utility value of si before addition of re is 0. Because,

134

even if for a point p ∈ si, A(p) = R, then g(A(p))=0 as lj < xi for ∃lj 6= li, and R does

not conform to X. After the addition of re of class ki, lj remains unchanged. Thus, R

still does not conform to X, and maximum possible utility value of si remains 0. �

Lemma 8 lays out the process of pruning during an e+ event. For each slice, we main-

tain an integer value diff (i.e., xi− li) per class in K denoting whether the corresponding

upper-bound for that class has been met or not. When adding a rectangle of class ki,

for each affected slices, we first check whether diffi ≥ 2, and if so – we just update diffi

and skip processing that slice. Similarly, if diffi ≤ 1, but for ∃diffj ≥ 1, we can skip the

slice. For example, suppose we have a setting of three classes A, B, C where X={2, 3, 5}.

Suppose a slice contains {2, 1, 4} members of respective classes. In this case, arrival of a

rectangle of class B or C has no effect on that slice. We incorporate these ideas in our

Algorithm 11 (although, for brevity, we skip details of implementing and maintaining diff

in algorithms).

4.3.4. Algorithmic Details

We now proceed to augment the ideas from the previous section in our base solu-

tion. In this regard, we provide the details of two algorithms SolveCMaxRS− and

SolveCMaxRS+, implementing the ideas of pruning in e− and e+ events respectively.

4.3.4.1. SolveCMaxRS−. In Algorithm 10, we present the detailed method for main-

taining C-MaxRS result during an e− event using the ideas introduced in Section 4.3.3.1.

Firstly, re is retrieved (from oe) and then deleted from then QTree is updated accordingly

(cf. lines 1-2). Subsequently, in lines 3-4, all the slices intersecting with re is retrieved

and the set of slices marked lazy (Slazy) is initialized. Lines 5-8 iterate through all the

135

Algorithm 10 SolveCMaxRS− (e−(oe), a, b, p
∗
c)

Require: An e−(oe) event, query size a× b, and current maximal point p∗c
Ensure: Updated maximal point p∗c

1: re ← the a× b rectangle centered at oe
2: QTree.delete(re)
3: Se ← set of slices intersecting re
4: Slazy ← set of slices marked lazy
5: for each si ∈ Se do
6: if before the removal re ∈ A(si.p

∗
c) then

7: si.lazy ← true
8: Slazy ← Slazy ∪ {si};
9: end if

10: end for
11: smax ←slice containg global p∗c
12: if before the removal re ∈ A(si.p

∗
c) then

13: PrepareSlices(Slazy)
14: p∗c ← SliceSearchMR(p∗c)
15: end if
16: return p∗c

affected slices one by one and check for each of them to see if the local maximal point

si.p
∗
c is affected by re – if so, it marks them as lazy for future update and also adds them

to Slazy. If the slice containing global maximal point i(i.e., smax) is not affected, then the

processing of slices in Slazyi skipped (pruning) in lines 9-12. Otherwise, if pruning is not

possible, necessary computations are carried out in lines 11-12.

Time-Complexity. : Deleting from a quadtree takes O(log n) time (line 2). Listing

all the intersecting and lazy slices in worst cases will generate O(s) computations (lines

3-4). Iterating over all the overlapped slices and computing g() takes up O(sn) times in

worst case (lines 5 - 8). If pruning is not possible, the complexities of PrepareSlices()

and SliceSearchMR() adds up too (lines 10-12). The overall worst-case time complexity

of Algorithm 10 is O(sn+ s+ log n+ sn+ sn) – or, in short, O(sn).

136

4.3.4.2. SolveCMaxRS+. In Algorithm 11, we initially retrieve the dual rectangle re

associated with the event and update QTree by inserting re as a new node in lines 1-

2. Then, the set of slices affected by re is computed and Slazy is initialized in lines

3-4. We introduce a Boolean variable isPrunable in line 5 to track whether Lemma 8

can be applied or not. Lines 6-10 iterate through all the affected slices one by one, an

checks: if si.R now conforms to X and makes change accordingly (modifies isPrunable),

and sets up si.lazy and list Slazy properly. Lines 11-12 prunes the event if conditions

of Lemma 8 is satisfied, i.e., if isPrunable = true then the global maximal p∗c needs no

update. Otherwise, it processes C-MaxRS on the snapshot (lines 13-14).

Time-Complexity. : The analysis of lines 1-4 here is similar to Algorithm 10. Iterating

over all the intersecting slices and checking the constraints takes up O(s× |X|) times in

worst case. So, if pruning is possible, the time-complexity of Algorithm 11 is O(s× |X|+

s + log n) time (faster than pre-pruning stage of Algorithm 10). But, in worst case, if

pruning is not possible, then the complexity will be O(sn) (similar to Algorithm 10).

4.4. Weighted C-MaxRS

In the discussions so far, we only considered the counting variant of the C-MaxRS

problem, i.e., the weights of each participating object are all equal to 1 (or, any other fixed

value). While we have noted the portability of the results, in this section, we explicitly

show how the algorithms and pruning schemes proposed thus far should be modified to

cater to the case when the objects can have different weights. Firstly, we appropriately

revise the definitions of f , g, and C-MaxRS-DU to allow different weights, and show that

it does not affect the monotonicity and non-submodularity of f and g. Subsequently,

137

Algorithm 11 SolveCMaxRS− (e−(oe), a, b, p
∗
c)

Require: An e+(oe) event, query size a× b, and current maximal point p∗c
Ensure: Updated maximal point p∗c

1: re ← the a× b rectangle centered at oe
2: QTree.insert(new Nodere)
3: Se ← set of slices intersecting re
4: Slazy ← set of slices marked lazy
5: isPrunable← true
6: for each si ∈ Se do
7: if after the addition R ∪ re conforms to X then
8: si.lazy ← true
9: isPrunable← false

10: Slazy ← Slazy ∪ {si}
11: end if
12: end for
13: if isPrunable = true then
14: return p∗c
15: end if
16: PrepareSlices(Slazy)
17: p∗c ← SliceSearchMR(p∗c)
18: return p∗c

we outline the modifications for the pruning schemes for the weighted version. While

there are no major changes incurred in the fundamental algorithmic aspects, we note that

weights may have impact on the pruning effects, as illustrated in Section 4.6.

4.4.1. Redefining f , g, and C-MaxRS-DU

fw: Let us define a set of POIClass K = {k1, k2, . . . , km}, where each ki ∈ K refers to

a class of objects. Suppose, O = {o1, o2, . . . , on} is the set of objects (POIs), and the set

W = {w1, w2, . . . , wn}, where wi > 0,∀wi ∈ W , contains the weight values of all POIs,

i.e., the weight of an object oi is wi. In this setting, each object oi ∈ O is represented as

a (location, class, wi) tuple at any time instant t. We denote a set X= {x1, x2, . . . , xm}

138

as MinConditionSet, where |X| =|K| and each xi ∈ R+ denotes the desired lower bound

of the weighted-sum of the objects of class ki in the interior of the query rectangle r, i.e.,∑∀oi
oi∈r∧oi.class=ki wi. Thus, the optimal region must have objects of class ki whose weights

add up to at least xi. Let us define lwi , a non-negative real number, for a given set of

objects O as follows:

lwi =

∀oj∑
oj∈O∧oj .class=ki

wj

.

Subsequently, we can define a utility function fw(O) : P(O)→ N0, mapping a subset

of spatial objects to a non-negative integer is defined as below,

fw(O) =


(
∑|K|

i=1 l
w
i), if ∀i ∈ {1, 2, 3, ..., |K|}, lwi > = xi

0, if ∃i ∈ {1, 2, 3, ..., |K|}, lwi < xi

.

C-MaxRS-DU: Let us denote the rectangle r centered at point p as rp, and Orp as the

set of spatial objects in the interior of rp. We can now define C-MaxRS-DU as follows

(including the weights):

Definition 6. Conditional-MaxRS for Data Updates (C-MaxRS-DU).

Given a rectangular spatial field F, a set of objects of interests O (bounded by F) and

their corresponding set of weight values W , a query rectangle r (of size a × b), a set of

POIClass K = {k1, k2, . . . , km}, a MinConditionSet X = {x1, x2, . . . , xm}, and a sequence

of events E={e1, e2, e3, . . .} (where each ei denotes the appearance or disappearance of a

point of interest), the C-MaxRS-DU query maintains the optimal location (point) p∗ for

139

r such that:

p∗ = argmaxp∈Ff
w(Orp)

where Orp ⊆ Oe for every event e in E of the data stream.

gw: Similar to the function g, we can introduce gw as a bijection of fw, i.e., for a set of

rectangles Rk = {r1, r2, . . . , rk}, let gw(Rk) = fw({o1, o2, . . . , ok}). gw : P(R)→ R0 maps

a set of dual rectangles to a non-negative real number (weighted-sum).

4.4.2. Monotonicity and non-submodularity of fw and gw

As we define wi ∈ W as a positive real number, the weighted-sum of a set of objects

–
∑

oi
wi, is also a positive real number. This is similar to the counting variant of the

problem. Thus, using the similar logic as Lemma 1 and Lemma 2, we derive the following:

Lemma 9. Both fw and gw are monotone functions.

Lemma 10. None of fw and gw is a submodular function.

The proofs follow the similar intuition as the corresponding proofs of Lemma 1 and

Lemma 2 and are omitted –however, we proceed with discussing their implication in a

more detailed manner next.

4.4.3. Discussion

Lemma 9 and Lemma 10 show that the properties of the utlity functions remain same,

for both counting and weighted version. Subsequently, we can derive the following:

140

Lemma 11. Removal of a rectangle re (object oe) from the point space F never in-

creases the value of gw(A(p)) (correspondingly fw(A(p))), ∀p ∈ P .

Lemma 11 can be proved in similar way as the proof of Lemma 3, as fw and gw are also

monotonous. Thus, Lemma 11 validates the other necessary lemmas (i.e., Lemma 4, 5,

and 6) related to the e− pruning scheme. This shows that we can solve the problem of an

e− event, for an object oe (rectangle re) and its weight we, by using the same algorithm

SolveCMaxRS−. For the e+ event, we present the following lemmas: (skipping proof for

brevity)

Lemma 12. Addition of a rectangle re (object oe) in the given space F never decreases

the value of gw(A(p)) (correspondingly fw(A(p))), ∀p ∈ P .

Lemma 13. Suppose, we have a set of classes K = {k1, k2, . . . , km}, and are given

corresponding MinConditionSet X = {x1, x2, . . . , xm}. Let R be the set of rectangles

overlapping with a slice si ∈ Sslice, and let lwi be the weighted-sum of rectangles of class

ki in R. Then, addition of a rectangle re of class ki has no effect on the local maximal

solution of si if:

(1) xi − lwi > we, or

(2) (∃lj 6= li) xj − lwj > 0

Lemmas 12 and 13 demonstrates that an e+ event, for an object oe (rectangle re) and

its weight we, can be processed similarly via SolveCMaxRS+ algorithm.

141

4.5. C-MaxRS in Bursty Updates

In many spatial applications, the data streaming rate often varies wildly depending on

various external factors – e.g., the time of the day, the need of the users, etc. A peculiar

phenomenon in such cases is the, so called, bursty streams – which is, the streaming rate

becomes unusually high and a large number of objects appearing or disappearing in a very

short interval. In such scenarios, instead of processing every single update, we assume

that the update streams are gathered for a period of time. The C-MaxRS-DU algorithm

is based on sequential processing of events, and thus, its efficiency is particularly sensitive

to the bursty input scenario. In this section, we first briefly discuss the challenges of

processing bulk of events via Algorithm 10 and 11, and argue that a different technique is

necessary to deal with the new bursty events in an aggregated manner. Subsequently, we

propose additional data-structures and a new algorithm, C-MaxRS-Bursty, to maintain

C-MaxRS during bursty streaming updates scenarios. Finally, we briefly discuss how

our proposed scheme can be utilized in a distributed manner, for the purpose of further

improvements in scalability.

4.5.1. Challenges

As per the algorithms presented in Section 4.3, Algorithm 10 (SolveCMaxRS−) and

Algorithm 11 (SolveCMaxRS+) are used to deal with any new e− and e+ event, respec-

tively. The worst case time complexity of both the algorithms is O(sn). Let us denote

γ as the average streaming (a.k.a. bulk-updates) rate during a bursty stream scenario,

i.e., γ events (both e+ and e−) occur simultaneously per time instance. In this setting,

the worst-case complexity of processing these events using C-MaxRS-DU is O(γsn). We

142

note that, due to the effectiveness of the pruning schemes, the average processing time is

considerably faster than the worst case complexity presented here (details in Section 4.6).

However, the overhead of performing Algorithm 10 and Algorithm 11 γ times is still sig-

nificant, specially when fast and accurate responses are required. For example, line 3

of Algorithm 10 takes O(s) time to find the slices Se that intersect with the new event

rectangle re. Instead of computing this γ times (i.e., γ × O(s)), it would be better if we

scan the list of slices only once, and retrieve all the slices that are affected by the new

γ events in one pass. Moreover, if the slice containing global p∗c , i.e., smax, is affected

by multiple events, then PrepareSlices() and SliceSearchMR() would be redundantly

processed multiple times. Hence, the intuition is that we can get rid of these overheads

by dealing with the bursty events aggregately.

To this end, we propose an additional data structure (e.g., a spatial index) and de-

vise an efficient algorithmic solution. In Section 4.6, we demonstrate via experimental

observations that, for a sufficiently large value of γ, C-MaxRS-Bursty outperforms the

event-based processing scheme by an order of magnitude. The basic idea is as follows: we

first create a modified slice-based index, Sindex for newly occurring γ events (appearing or

disappearing objects). Then, we directly add/remove these new events over the existing

slice structure Sslice in one iteration, and check the pruning conditions for each slice only

once. We describe these ideas in the following section.

4.5.2. Additional Data Structures

The first step, when handling bursty data updates, is to index the new events based on

the locations of their related objects. This allows us later to efficiently retrieve all the new

143

events related to each slice si ∈ Sslice. In this regard, any well-known indexing scheme

may be used, e.g., R-tree, Quad-tree, Grid indexing [61, 72], etc. To take advantage of

the already introduced slices data structure, we propose to use slice-based indexing for the

new data. Slice indexing is, basically, a special version of the p× q grid-indexing – where

q = 1. Suppose, Sindex represents the slice index of new appearing/disappearing objects.

Then, we can create Sindex as a duplicate of Sslice, i.e., width of each slice in Sindex is also

θ× b (where, θ > 1) and |Sindex| = |Sslice| = s. An example of the proposed slice indexing

is given in Figure 4.6. Suppose, there are 10 new events occurring at the same time – 7

e+ and 3 e−, and there are three slices which enclose these event locations. Note that,

by event location, we mean the location of the appearing/disappearing object related to

the event. In Figure 4.6, Slice1, Slice2, Slice3 has respectively 3, 4, 3 new events falling

within their boundary.

Figure 4.6. Slice indexing over new data.

144

As described in Section 4.3, each of the slices in Sslice track the corresponding

rectangles intersecting with them, in addition to the list of maximal slabs, local optimum

points and the other attributes. Sindex, in turn, indexes new events over the slices.

An event e, corresponding an object oe, is exclusively enclosed by exactly one slice in

Sindex, although the rectangle re can overlap with multiple slices. This is illustrated in

Figure 4.7. Based on this, we can divide the interior of each slice into three regions (cf.

Figure 4.7):

• Left-overlapping Region (lr): Rectangles of events in this region overlaps with the

left neighboring slice. Width of lr is b
2
. In Figure 4.7, events in lr of Slice2 impact the

processing of Slice1 too.

• Non-overlapping Region (nr): Rectangles of events in this region are fully enclosed

within the slice itself. nr is (θ − 1)× b wide, i.e., always non-empty as θ > 1.

• Right-overlapping Region (rr): Rectangles of events in this region overlaps with

the right neighboring slice. Width of rr, similar to lr, is b
2
. In Figure 4.7, events in rr of

Slice2 is also a part of the processing of Slice3.

Based on the discussion above, each slice si ∈ Sindex is represented as a 4−tuple

(seq num,Elr, Enr, Err). The role of each attribute is as follows:

• seq num: An integer value assigned to the slice. This encodes the boundary of the slice.

For a slice si, the horizontal extent of si is represented by [(seq numi−1)×θb, seq numi×

θb).

• Elr: The set of new events in the lr region of the slice.

• Enr: The set of new events in the nr region of the slice.

145

Figure 4.7. Regions within a slice.

• Err: The set of new events in the rr region of the slice.

Note that, both Sindex and Sslice can be merged into one giant slice data structure during

implementation. We present them as separate structures here, so that the background

motivation and complexity analysis can be clearly demonstrated in the text, i.e., the objec-

tive of these two structures are different – Sslice divides the space and overall computation

in small slices, while Sindex is used only to efficiently index a set of new events.

4.5.3. Processing Bursty Updates

When a collection of new e+ and e− events occur at a time instant, the first step is

to initialize and built the slice index Sindex. Function 12 shows the steps used to build

the index from scratch over the new data. In line 1, Sindex and seq num of its slices are

initialized. The other attributes of each slice si ∈ Sindex is initialized in lines 2 – 3, i.e., all

146

Algorithm 12 BuildIndex(Enew, θ, b)

Require: A set of new events Enew, slice-width constant θ, and query width b
Ensure: Newly build index Sindex

1: Sindex ← initialize a list of slices and their seq num (width = θb)
2: for each si in Sindex do
3: si.Elr, si.Enr, si.Err ← { }
4: end for
5: for each e in Enew do
6: se ← the slice oe is in
7: if oe ∈ se.lr then
8: se.Elr ← se.Elr ∪ e
9: else if oe ∈ se.rr then

10: se.Err ← se.Err ∪ e
11: else
12: se.Enr ← se.Enr ∪ e
13: end if
14: end for
15: return Sindex

event lists (based on the region) are set to an empty list. Lines 4 – 11 iterate though each

new events from Enew and set the index attributes accordingly. In line 5, the function

retrieves the slice to which oe belongs, which can be computed in O(1) time. Lines 6 –

11 find which region oe is in, and add the corresponding event to the appropriate list.

Finally, the newly created index Sindex is returned in line 12. The operations from lines

1 – 3 takes O(s) time, and lines 4 – 11 takes O(γ) time, where γ is the buursty updates

rate. The processing cost of Function 12 is O(γ) + O(s). If we assume γ > s, then the

overall time-complexity is O(γ).

Algorithm 13 shows the steps of our approach for handling a set of new bursty events

Enew, where |Enew| = γ. We combine the pruning ideas of Algorithm 10 and 11, and

ensure that PrepareSlices and SliceSearchMR functions are only called once for these

γ new events. In line 1, we use the BuildIndex function to prepare the slice index over

147

the new data in O(γ) time. We initialize Slazy, isPrunable, and prev in lines 2 – 4. The

idea is to traverse the slices from Sslice in one direction, e.g., from left to right. The main

idea is that for each slice si of Sslice, we retrieve the required information of new events

from the slice-index Sindex. The goal is to make sure that we query information of each

slice from Sindex only once throughout the process. In this regard, we maintain 3 variables

– prev, cur, and next – representing the seq num− 1, seq num, and seq num + 1 slices

from Sindex (new information) any time. Initially, in lines 4-6, cur is set to the left-most

slice, and prev is set to null as there is no slice before that value of cur.

Lines 7 - 29 iterate though each of the slices si from Sslice in order (e.g., left to right).

At first, information for the (i+ 1)-th slice index is retrieved into next. In line 9, all the

related new events of si is stored in Ecurslice, which is the union of new objects in cur

region, and prev.rr and next.lr region (cf. Figure 4.7). In line 10, we check if there are

any new events that overlap with the current slice si – otherwise we move on to the next

slice. In lines 12 – 15, we iterate through the e+ events of si — retrieve re, insert re in

the QTree and add re to si.R for each of them. Similarly, lines 16 – 23 iterate over the

e− events of si, although re is deleted from QTree and si.R in this case. Also, lines 20 –

22 ensure that si.lazy is set to true and si is added to Slazy if re overlaps with the local

optimum solution. Lines 28 and 29 updates the prev and cur variables appropriately, and

line 30 retrieves the slice smax containing the global solution. We need to recompute global

solution whenever smax.lazy = true or isPrunable = false (cf. lines 31 - 33). Finally,

the newly computed (or, if pruned, the old) p∗c is returned in line 34. In Algorithm 13,

each new event is only processed at most 2 times, because θ > 1 and a rectangle re can

only overlap with at most two slices. Thus, the overall time-complexity of lines 1- 30 of

148

Algorithm 13 is O(γ). Also, PrepareSlices and SliceSearchMR is only processed once

for all the new events, instead of worst case γ times via Algorithms 10 and 11. For large

values of N , the overall processing time of Algorithm 13 is consumed by the execution

time of PrepareSlices and SliceSearchMR.

4.5.4. Discussion

We presented a slice-based simplified indexing scheme in this section to process a set of

bursty events. As slice-indexes are a specialized grid-indexing [61], they can be imple-

mented both as main-memory or external-memory based. We implemented the proposed

slice-indexing in main memory for our experiments. The reason is two- fold. (1) Many

recent works have shown that main-memory indexes are usually necessary to provide high

update and build performance [72] – which is paramount in dealing with bursty updates

scenarios; and (2) In our experiments, we vary γ from 100 to 100k — which can be stored

in-memory. Although, we note that, in extreme scenarios (e.g., Facebook users) where the

no of total objects as well as bursty objects surpass the main memory storage capacity

of servers, external memory implementations and parallel processing of indexes would be

necessary. Many works such as [42, 45] presented parallel processing techniques for R-

trees and range queries. [42] developed a simple hardware architecture consisting of one

processor with several disks to parallelize R-tree processing, where R-tree code is identi-

cal to the one for a single-disk R-tree with minimal modifications. [90] proposed a novel

architecture named VegaGiStore, to enable efficient spatial query processing over big spa-

tial data and concurrent access, via distributed indexing and map-reduce [19] technique.

Recently, SpatialHadoop [22] provides a library to perform map-reduce based parallel

149

processing for many spatial operations, including R-tree and grid indexing. We can mod-

ify the grid indexing parameters for SpatialHadoop to convert it into a slice-indexing in

a straightforward manner. We note that, Hadoop [71] and map reduce procedure has a

significant overhead, i.e., SpatialHadoop slice indexing will only be useful if there are a

huge number of bursty events, as well as a lot of resources (Hadoop nodes) available.

4.6. Experimental Study

In this section, we evaluate the performance of our algorithms. To show the effec-

tiveness of our approach we compare it with the baseline. Since there are no existing

solutions, to evaluate our solutions to the C-MaxRS-DU problem, we extended the best

known MaxRS solution to cater to C-MaxRS-DU (see Section 4.3 – i.e., processing the C-

MaxRS at each event without any pruning) and used it as a baseline. For bursty streams,

we compare the performance of C-MaxRS-Bursty and C-MaxRS-DU, i.e., C-MaxRS-DU

becomes the baseline then.

Dataset : Due to user privacy concerns and data sharing restrictions, very few (if any)

authentic large categorical streaming data (with accurate time information) is publicly

available. Thus, we used synthetic datasets in our experiments to simulate spatial data

streams. Data points are generated by using both Uniform and Gaussian distributions in

a two-dimensional data space of size 1000m× 1000m = 1km2. To simulate the behavior

of spatial data streams from these static data points, we use exponential distribution with

mean inter-arrival time of 10s and mean service time of 10s. Initially, we assume that 60%

of all data points have already arrived in the system, and use this dataset for static part

of evaluation. The remaining 40% of the data points arrive in the system by following

150

exponential distribution as stated earlier. Any data point that is currently in the system,

can depart after being served by the system. For experiments related to C-MaxRS-Bursty,

we select γ no of events (either in Gaussian or uniform distribution) at any time instant

to emulate bursty inputs.

Parameters : The list of parameters with their ranges, default values and symbols are

shown in Table 4.1.

Parameter Name & Symbol Possible Values Default Value
Object distribution Uniform, Gaussian Gaussian
No. of objects, N 10k, 20k, 30k, 40k, 50k, 60k, 70k, 80k, 90k, 100k, 200k 50k

No. of POIClass, β 3, 4, 5, 6, 7 5
Min count (per class), µ 1, 2, 3, 4, 5 3
Query area, λ (in m2) 100, 225, 400, 625, 900 400

Theta, (θ) 1, 2, 3, 4, 5 3
Shape of R, b : a 0.25,0.5,1,2,4 1

Weight, wi [1, 10] 1
Bursty updates rate, γ 100, 250, 500, 1k, 2.5k, 5k, 10k, 20k, 1k

30k, 40k, 50k, 60k, 70k, 80k, 90k, 100k

Table 4.1. Parameters

Settings : We have used Python 3.5 programming language to implement our algorithms.

All the experiments were conducted in a PC equipped with intel core i5 6500 processor

and 16 GB of RAM. We measure the average processing time of monitoring C-MaxRS in

various settings. We also compute the performance of Static C-MaxRS computation. In

the default settings, the processing time for Static C-MaxRS is 85.86 s. Note that, we

exclude the processing time for static C-MaxRS computation in further analysis as this

part is similar for both baseline and our approach.

The datasets and the code used in the experiments are publicly available at:

http://www.cs.northwestern.edu/∼mmh683/project-works/cMaxRS-ds.html.

151

4.6.1. Performance Evaluation: Event-based Scenario

We now present our detailed observations over different combinations of the parameters

for non-bursty scenario (i.e., C-MaxRS-DU).

4.6.1.1. Varying Number of Objects, N . In this set of experiments, we vary num-

ber of objects, N , from 10K to 100K, and compare our algorithm with the baseline for

different N using both Gaussian and Uniform distributions. Figure 4.8(i) shows that for

Gaussian distribution, the average processing time for our approach (in seconds) increases

quadratically (semi-linearly) with the number of objects, whereas the processing time of

baseline increases exponentially with the increase of N . For Gaussian distribution, on

average our approach runs 3.08 times faster than the baseline algorithm. For Uniform

distribution, on an average our approach runs 3.23 times faster than the baseline algo-

rithm (Figure 4.8(ii)). We also observe that our approach outperforms the baseline in a

greater margin for a large number of objects as processing time of our approach increases

linearly with N for Uniform distribution.

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 1 2 3 4 5 6 7 8 9 10
No. of objects, N

Time (sec)

Baseline
Our Approach

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 1 2 3 4 5 6 7 8 9 10
No. of objects, N

Time (sec)

Baseline
Our Approach

(i) (ii)

Figure 4.8. Varying N (i) Gaussian (ii) Uniform.

4.6.1.2. Varying Theta (θ). Figure 4.9 compares the performance of our approach with

the baseline by varying theta (θ) for Gaussian and Uniform distributions. We observe that

for both distributions the processing time of baseline algorithm increases at a higher rate

152

 0

 0.15

 0.3

 0.45

 0.6

 0.75

 0.9

 1.05

 1.2

 1.35

 1.5

 1 2 3 4 5

θ

Time (sec)

Baseline
Our Approach

 0

 0.03

 0.06

 0.09

 0.12

 0.15

 0.18

 0.21

 0.24

 0.27

 1 2 3 4 5

Time (sec)

θ

Baseline
Our Approach

(i) (ii)

Figure 4.9. Varying θ (i) Gaussian (ii) Uniform.

than our algorithm, with the increase of θ. Moreover, in all the cases, our approach sig-

nificantly outperforms the baseline algorithm in the absolute scale/sense. On the average,

our approach runs 3.37 and 3.31 times faster than the baseline in Gaussian and Uniform

distributions, respectively.

 0

 0.35

 0.7

 1.05

 1.4

 1.75

 2.1

 2.45

 2.8

 3.15

 3.5

Query area, λ

Time (sec)

Baseline
Our Approach

100 225 400 625 900
 0

 0.025

 0.050

 0.075

 0.100

 0.125

 0.150

 0.175

 0.200

 0.225

 0.250

 0.275

100 225 400 625 900
Query area, λ

Time (sec)

Baseline
Our Approach

(i) (ii)

Figure 4.10. Varying λ (i) Gaussian (ii) Uniform.

4.6.1.3. Varying λ - the Area of the Query Rectangle. The impact of varying the

area of the query rectangle on the average processing times of our approach and base-

line algorithm, is shown in Figure 4.10(i) and Figure 4.10(ii). For Gaussian distribution,

on an average our approach shows 2.22 times better performance than the baseline ap-

proach. Similarly, in Uniform distribution, our approach runs 2.25 times (on average)

faster than the baseline. Additionally, note that, as the area of query rectangle increases,

153

corresponding processing time increases as well – due to the possibility of a dual rectangle

intersecting with more slices (and other dual rectangles).

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 3 4 5 6 7
No. of POIClass, β

Time (sec)

Baseline
Our Approach

 0
 0.015
 0.030
 0.045
 0.060
 0.075
 0.090
 0.105
 0.120
 0.135
 0.150
 0.165
 0.180

 3 4 5 6 7
No. of POIClass, β

Time (sec)

Baseline
Our Approach

(i) (ii)

Figure 4.11. Varying β (i) Gaussian (ii) Uniform.

4.6.1.4. Varying POIClass Count, β. The average processing time of our approach

and the baseline for varying POIClass Count, β is shown in Figure 4.11 (Gaussian (i)

and Uniform (ii)). We observe that the processing time is maximum for the initial case

where POIClass Count, β is minimum. Also, we can see that for the both distributions,

the processing time decreases with increasing value of β – i.e., handling larger number

of classes is faster. On an average our approach runs 3.45 times faster than the baseline

algorithm for Gaussian distribution of dataset. In case of Uniform distribution of data,

our approach runs 3.06 times faster than the baseline.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 1 2 3 4 5
Min Count (per class), µ

Time (sec)

Baseline
Our Approach

 0
 0.015
 0.030
 0.045
 0.060
 0.075
 0.090
 0.105
 0.120
 0.135
 0.150
 0.165
 0.180

 1 2 3 4 5
Min Count (per class), µ

Time (sec)

Baseline
Our Approach

(i) (ii)

Figure 4.12. Varying µ (i) Gaussian (ii) Uniform.

154

4.6.1.5. Varying Min Class Count, µ. Figure 4.12 shows the average processing time

of our approach and the baseline by varying Min Class Count, µ. Figures show that

for both Gaussian and Uniform distributions, our approach outperforms the baseline

significantly. We observe that on an average our approach runs 3.09 and 3.21 times faster

than the baseline for Gaussian and Uniform distributions of dataset, respectively. We

also note that, the processing time for our approach is largely unaffected by the varying

µ values.

(i) (ii)

Figure 4.13. Varying b : a (i) Gaussian (ii) Uniform.

4.6.1.6. Varying Shape of R, b : a. By default, we have used b : a = 1 in other

experiments, i.e., R is square-shaped. In this experiment, we investigate whether varying

the shape of R, i.e., changing the ratio between its width and height, has any effects on

the processing time of C-MaxRS-DU. In Figure 4.13(i) for Gaussian distribution, as width

(b) of R is increased, the processing time increases too. This is because, we use θ × b as

the slice width and as b increases, number of slices s decreases – reducing the benefits of

spatial subdivision. Interestingly, similar trend is not observed in the uniform settings.

We note that, in all cases, our approach runs faster than the baseline. In case of Uniform

distribution our approach outruns the baseline approach by 2.99 times on average. In

case of Gaussian distribution, our approach outruns the baseline approach by 2.82 times

on average.

155

4.6.1.7. Comparing Pruning Rules. In this set of experiments, we compare the per-

formance of the different components of our approach. First, we have extended the static

C-MaxRS algorithm to handle spatial data streams, which we call the baseline. Then we

introduce two pruning rules, one for the appearance event, e+-Pruning and the other for

disappearance event, e−-Pruning. Finally, we combine both pruning rules to design our

approach.

 0

 0.08

 0.16

 0.24

 0.32

 0.40

 0.48

 0.56

 0.64

 0.72

 0.80

Baseline e
+
-Pruning e

-
-Pruning Our Approach

Algorithm

Time (sec)

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

Baseline e
+
-Pruning e

-
-Pruning Our Approach

Algorithm

Time (sec)

(i) (ii)

Figure 4.14. Comparing pruning rules (Unweighted Objects)(i) Gaussian
(ii) Uniform.

From the figure we can see that e+-Pruning scheme gives 8.25% performance gain from

the baseline algorithm for Gaussian distribution and gives 8.56% performance gain from

the baseline algorithm for Uniform distribution of data. The e−-Pruning scheme provides

almost 62.49% performance gain from the baseline for Uniform distribution and 63.01%

performance gain from the baseline algorithm for Gaussian distribution.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Baseline e
+
-Pruning e

-
-Pruning Our Approach

Algorithm

Time (sec)

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Baseline e
+
-Pruning e

-
-Pruning Our Approach

Algorithm

Time (sec)

(i) (ii)

Figure 4.15. Comparing pruning rules (Weighted Objects) (i) Gaussian (ii) Uniform.

156

We also perform this experiment using weighted objects, where each object is assigned

with a random weight. We vary the weights of the objects from 1 to 10. In Figure 4.15,

we see similar trends among the evaluated algorithms. Also, we note that, the processing

time is faster for the weighted experiments. It is because, due to the variance in the

weights of objects, more events can be pruned easily. This experiment also validates our

analysis in Section 4.4.

Figure 4.16. Comparing C-MaxRS-DU and C-MaxRS-Bursty for default settings.

4.6.2. Performance Evaluation: Bursty Streaming Updates

We now present our detailed observations over different combinations of the parameters

for bursty updates (i.e., C-MaxRS-Bursty vs C-MaxRS-DU).

4.6.2.1. C-MaxRS-Bursty vs C-MaxRS-DU. We present the performance compar-

ison (over both distribution of data) for C-MaxRS-DU and C-MaxRS-Bursty in Fig-

ure 4.16 in default settings (i.e., γ = 1000). We can see that C-MaxRS-Bursty is way

more efficient than C-MaxRS-DU in handling bursty streams in both distributions, i.e., C-

MaxRS-Bursty is almost 5 and 10 times faster than C-MaxRS-DU in the default settings

for uniform and Gaussian distribution of data, respectively.

4.6.2.2. Varying γ. We change the value of the bursty streaming rate, γ, from 100 to

5000. Figure 4.17 shows the total processing time (in seconds) of γ events together. In

157

(i) (ii)

Figure 4.17. Varying γ (i) Gaussian (ii) Uniform.

Figure 4.17(i) (uniform distribution), initially when γ = 100, C-MaxRS-DU (2.99s) per-

forms better than C-MaxRS-Bursty (3.51s). But, for γ = 250, C-MaxRS-Bursty performs

faster, i.e., 7.4s vs 4.88s. Thus, for this setting, there is a value of γ in-between 100 and

250, after which C-MaxRS-Bursty starts out-performing C-MaxRS-DU. This aligns with

our intuition that for cases where γ is not too high, C-MaxRS-DU gives us the optimal

performance, whereas, C-MaxRS-Bursty is more efficient as γ increases.

In Figure 4.17, as the value of γ increases, the processing time for C-MaxRS-DU

increases exponentially, but the increase in C-MaxRS-Bursty is linear. C-MaxRS-Bursty

outperforms C-MaxRS-DU by 5.89 times on average for uniform distribution of data,

and by 10.94 times in case of Gaussian distribution of data. This experiment shows the

effectiveness of C-MaxRS-Bursty for high streaming data.

(i) (ii)

Figure 4.18. Varying N (i) Gaussian (ii) Uniform.

158

4.6.2.3. Varying N . Subsequently, we vary the value of N , i.e., number of objects,

and preset the results in Figure 4.18. Processing times of both the algorithms increase

with the increasing cardinality, although, we note that the increase in C-MaxRS-Bursty is

much slower. C-MaxRS-Bursty outperforms C-MaxRS-DU by 5.60 times on average for

uniform distribution of data. For Gaussian distribution, C-MaxRS-Bursty outperforms

C-MaxRS-DU by 11.34 times on average.

(i) (ii)

Figure 4.19. γ in larger scale (i) Gaussian (ii) Uniform.

4.6.2.4. Scalability of C-MaxRS-Bursty. In the final experiment, we show the effect

of larger γ values on C-MaxRS-Bursty in Figure 4.19. We also use a larger value of

N for this experiment – i.e., the value of γ is varied from 10, 000 to 100, 000, and the

total number of objects N is set to 200, 000. We omit the performance of C-MaxRS-DU

for this experiment as the processing time for large γ values is exponentially high (to

avoid skewing the graph). We can see that, the results in Figure 4.19 illustrate similar

trend as Figure 4.17, even though we used significantly larger values of γ and N . For

both distributions, processing time increases only slightly as the value of γ increases.

For example, in Figure 4.19(i), for a 10 times increase of γ value (from 10k to 100k),

the processing time only increases by 1.4 times (from 124.2s to 174.3s). Same is true

for uniform distribution (cf. Figure 4.19(i)), where this increase is even less (1.27 times,

159

i.e., from 95.1s to 124.8s). We also note that, the bulk of the processing time of C-

MaxRS-Bursty is consumed by lines 32 – 33 of Algorithm 13– i.e., executing the function

PrepareSlices and SliceSearchMR. These results demonstrate the scalability of C-

MaxRS-Bursty – where it is ensured that recomputation (i.e., lines 32 – 33) is performed

only once (in worst case) instead of γ times.

160

Algorithm 13 SolveCMaxRSBursty (Enew, a, b, θ, p
∗
c)

Require: New events Enew, a× b, slice-width constant θ, and current maximal point p∗c
Ensure: Updated maximal point p∗c

1: Sindex ← BuildIndex(Enew, θ, b)
2: Slazy ← set of slices marked lazy
3: isPrunable← true
4: prev ← NULL
5: cur ← Sindex.get(1)
6: for each si ∈ Sslice from left to right (i = 1, 2, . . .) do
7: next← Sindex.get(i+ 1)
8: Ecur slice ← prev.Err ∪ next.Elr ∪ cur.Elr ∪ cur.Enr ∪ cur.Err
9: if |Ecur slice| > 0 then

10: for each e+ ∈ Ecur slice do
11: re ← the a× b rectangle centered at oe
12: QTree.insert(re)
13: si.R← si.R ∪ re
14: end for
15: for each e− ∈ Ecur slice do
16: re ← the a× b rectangle centered at oe
17: QTree.delete(re)
18: if before the removal re ∈ A(si.p

∗
c) then

19: si.lazy ← true
20: Slazy ← Slazy ∪ {si}
21: end if
22: si.R← si.R− re
23: end for
24: if atleast one e+ in Ecur slice and si.R conforms to X then
25: isPrunable← false
26: si.lazy ← true
27: Slazy ← Slazy ∪ {si}
28: end if
29: end if
30: prev ← cur
31: cur ← next
32: end for
33: smax ←slice containg global p∗c
34: if smax.lazy = true or isPrunable = false then
35: PrepareSlices(Slazy)
36: p∗c ← SliceSearchMR(p∗c)
37: end if
38: return p∗c

161

CHAPTER 5

MAxRS3 for Spatial Shapes

In this chapter, we first review the basics of sweep-line technique, and the standard

approach for solving MaxRS (revisit) and P-MaxRS problem. We then proceed on to

introduce the problem of MAxRS3 and present a formal definition of the problem. Sub-

sequently, we provide the details of a novel and efficient algorithm to compute MAxRS3

for a given set of spatial shapes.

5.1. Background: Sweepline Algorithms, P-MaxRS

5.1.1. Sweepline Algorithms

Fundamentally, both the standard MaxRS problem and P-MaxRS problem solutions are

based on a sweep-line technique [68, 10] – a paradigm of conceptually “sweeping” a

horizontal (or vertical) line across the plane, stopping at certain discrete points (called

events) to perform different tests/computations. The events are marked by corresponding

Y-coordinates (for horizontal sweep-line) or X-coordinates (for a vertical sweep-line) at

which “something interesting” happens.

At each event ei ∈ E, some geometric computations need to performed with the objects

that either intersect or are in the immediate vicinity of the sweep line, and the final

solution is available once the line has passed over all objects.

In general, sweep-line algorithms maintain a data structure to store the events,

generally sorted by X or Y coordinates, and at a given instance, the data structure

162

stores only the active events. The overall processing time for a sweep-line algorithm is

O(|E| × Pei), where |E| = total number of events, and Pei = the processing time of each

event. Thus, when designing a sweep-line technique, the goal is to minimize |E| and Pei .

5.1.2. MaxRS for Point Objects

Let C(p,R) denote the region covered by an isothetic rectangle R, placed at a particular

point p. Given a rectangular spatial field F, an axis-parallel rectangle R (of size d1× d2),

and a set O of n spatial points O = {o1, o2, . . . , on} (bounded by F), where each oi

is associated with a weight wi, the answer to MaxRS query (AMaxRS(O,R)) retrieves

a position p for placing the center of R, such that
∑
{oi∈(O ∩ C(p,R))}wi is maximal. If

∀oi ∈ O : wi = 1, we have the count variant (cf. Figure 1.4). An in-memory solution to

MaxRS (cf. [58]) transforms it into a “dual” rectangle intersection problem by replacing

each object in oi ∈ O by a d1×d2 rectangle ri, centered at oi. R covers oi if and only if its

center is placed within ri. Thus, the rectangle covering the maximum number of objects

can be centered anywhere within the area containing a maximal number of intersecting

dual rectangles .

Using this transformation, [58] proposed a sweep-line algorithm to solve the MaxRS

problem. Viewing the top and the bottom edges of each rectangle as horizontal intervals,

an interval tree – i.e., a binary tree on the intervals – is constructed, and then a horizontal

line is swept vertically. The line stops at the top and bottom edges of each rectangle

(a.k.a. events). During each event (|E|=2n), the interval tree is updated accordingly, and

the count (i.e., the number of overlapping rectangles) for each interval currently residing

163

in the tree is computed (Pe=O(log n)). An interval with the maximum count during the

entire process is returned as the final solution and, the algorithm takes O(n log n) (i.e.,

O(|E| × Pei)) time.

5.1.3. MaxRS for Polygons

[58] proposed an extension that considers polygons instead of point objects. The problem

addressed in [58] ((P-MaxRS)) is: Given a rectangular spatial field F, an axis-parallel

rectangle R (of size d1×d2), and a set S of n non-overlapping spatial regions (convex poly-

gons) S = {s1, s2, . . . , sn} (bounded by F), the answer to P-MaxRS query (AP-MaxRS(S,R))

retrieves a position p for placing the center of R, such that:

∑
{∀si∈S}


1, if (si ∩ C(p,R)) = si

0, otherwise

is maximal.

Figure 5.1. P-MaxRS processing scheme.

(si ∩ C(p,R)) = si ensures that si is fully enclosed within R. At first, a base solution

is devised assuming all si ∈ S are axis-parallel rectangles. If any given si is larger than

R, it can safely be pruned, i.e., it cannot be fully enclosed by R. For a polygon si, we

164

have to place R with its top-left corner at p, where p is the top-left corner of si (cf. s1 in

Figure 5.1). Suppose, ri is the rectangle drawn from the bottom-right point of si – e.g.,

r1 in Figure 5.1. Clearly, R will enclose si completely, if and only if the bottom-right

corner of R lies in ri, which is defined as the prime rectangle for si. Given the prime

rectangles of all axis-parallel rectangles si ∈ S, the problem can be converted to the

rectangle intersection problem. In case of arbitrary polygons, R encloses a polygon if and

only if R encloses its minimum bounding rectangle (MBR) as shown in Figure 5.1 for s3.

Thus, given MBR s′i for all si ∈ S, the same techniques for axis-parallel rectangles can

be applied here too.

5.2. Problem Definition: MAxRS3

In many practical scenarios, maximizing the overall coverage area over the given set of

polygons is of more importance than the P-MaxRS problem which can return a placement

with many small polygons (see Figure 1.4). For example, suppose the set of given polygons

represent flood-affected spatial regions within a state/country. The objective then is to

find a way to maximize aid support by reaching to as large amount of flood-affected

area as possible. Let us use A(r) to denote the area of a given region r. Based on

these observations, we introduce a novel problem Maximizing Area-Range Sum for Spatial

Shapes (MAxRS3) as follows: Given a rectangular spatial field F, an axis-parallel rectangle

R (of size d1×d2), and a set S of n non-overlapping spatial regions (convex polygons) S =

{s1, s2, . . . , sn} (bounded by F), the answer to MAxRS3 query (AMAxRS3(S,R)) retrieves

a position p for placing the center of R, such that
∑
{∀si∈S}A (si ∩ C(p,R)) is maximal.

165

We term
∑
{∀si∈S}A(si ∩C(p,R)) as the score of any position p for MAxRS3 problem.

We note that both P-MaxRS and MAxRS3 only consider non-overlapping polygons. If

there is overlap between two polygons si and sj, we can either: (1) Combine the two

polygons into a new single one, e.g., snew = si∪sj; or, (2) Consider three separate disjoint

polygons sk(= si ∩ sj), si − sk, and sj − sk. The ideas presented in this paper can be

readily extended to include concave (non self-intersecting) polygons, but for brevity we

keep the discussion and algorithms limited to convex case. If not mentioned otherwise,

“polygon” refers to “convex polygons” throughout the rest of the paper.

5.3. Processing MAxRS3

We now discuss the challenges relevant to processing MAxRS3, and devise an

efficient algorithm by using a pair of top-to-bottom sweep-lines, accompanied by two left-

to-right sweep-lines. Subsequently, we analyze the time-complexity of the offered solution.

5.3.1. Challenges

Although MaxRS and P-MaxRS have efficient O(n log n) solutions, processing MAxRS3

poses a different set of challenges:

• Both MaxRS and P-MaxRS can be transformed into rectangle intersection problem.

Same is not true for MAxRS3 since containing the polygons “completely” is not required.

The optimal placement of R for MAxRS3 considers the area to be included to compute

the maximal coverage.

• The discrete event-points need to be identified, along with the corresponding processing

166

at each “interesting” points.

5.3.2. Basic Solution

Figure 5.2. Covered area and vertices of a given si.

Discrete Points: To identify the events, let us assume that each polygon si ∈ S

consists of mi vertices – vi1, vi2, . . . , vimi
, where vi1 = (xi1, yi1), vi2 = (xi2, yi2),

vim = (xim, yim), forming mi edges by connecting adjacent vertices in a pair-wise manner,

e.g., [{vi1, vi2}, {vi2, vi3},. . ., {vimi
, vi1}]. From the setting of MAxRS3, we observe that

the area of a polygon covered by R can always be decomposed into a trapezoid (rectangle

and squares are a special case of trapezoid) or a triangle. In both cases, the covered area

is a function of base (i.e., length of edges) and height – which depends on the slope of

certain edges. However, we observe that the slope of any given polygon si changes only

at the vertices, i.e., vi1, vi2, . . . , vimi
(see Figure 5.2). Thus, we use vertices of the input

polygons as our discrete event-points.

Multiple Sweep-lines: At first, we propose to sweep the space in top-to-bottom man-

ner, i.e., via using a horizontal sweep-line. During each event at a vertex vij, we have

167

to compute maximal placement of R having the highest coverage in the vicinity of vij.

An interesting observation is that the optimal placement of R may cover both vij’s above

(i.e., up to Y-axis coordinate (yi3 + d2), green in Figure 5.2) or below (i.e., up to Y-axis

coordinate (yi3 − d2), orange in Figure 5.2) regions. Thus, we use two sweep-lines in our

algorithm, always maintaining a Y-axis distance of d2 between them. Let us consider an

example scenario presented in Figure 5.3, where there are 4 polygons considered: s1, s2,

s3 and s4. The discrete points of interest will be all the vertices vij, e.g., v11, v21, v31, v41,

etc. In total, there are 18 such vertices in this setting. At first we will sweep the space

in top-to-bottom manner, and use two horizontal sweep-lines: (1) a leader horizontal line

(lh); and (2) a follower horizontal line (fh). During the whole process, lh leads (i.e., is

below) fh in the sweeping and the distance between fh and lh is set to d2, i.e., Ylh =

Yfh −d2 (assuming (0,0) is bottom-left point), where Ylh and Yfh denote the Y-coordinate

values of the corresponding sweep-lines. Both lh and fh stop at all vertices vij during

the sweep – thus, we have two kinds of events: (1) ehl, when the leader horizontal line

lh stops at a vertex; and (2) ehf , when the follower horizontal line fh stops at a vertex

(see Figure 5.3). In total, there will be 18 × 2 = 36 events in the example provided in

Figure 5.3.

Figure 5.3. Leader and follower sweep-lines for MAxRS3.

168

Events Processing Scheme: In case of ehl and ehf events, we will only consider the

space bounded by the two horizontal lines lh and fh, i.e., [Ylh , Yfh]. For example, in Fig-

ure 5.3, for an event ehf at v11, only the region bounded by the two orange lines will be

explored. We will again use the concept of multiple sweep-lines to compute the placement

having highest score in [Ylh , Yfh] bounded region, but this time, sweeping will take place

in a left-to-right manner. The idea is to use two vertical sweep-lines: (1) a leader vertical

line (lv); and (2) a follower vertical line (fv) (blue lines in Figure 5.3). Similar to the

horizontal sweep-lines, lv leads (i.e., is on the right of) fv and the distance between fv and

lv is set to d1, i.e., Xlv = Xfv +d1, where Xlv and Xfv denote the X-coordinate values. For

this secondary sweeping process, the discrete points of interest are the current intersection

points between the polygons and the horizontal lines – lh and fh. Both lv and fv stop

at all such intersection points during the left-right sweep – thus, we have two kinds of

events: (1) evl, when lv is involved; and (2) evf , when fv is involved. For example, the

vertical leader event evl (blue circle) occurs at one of the intersection points of s2 and lh

during the horizontal follower event ehf . There will be 11 × 2 = 22 such events in the

example provided in Figure 5.3.

During each evl and evf , we have to find the location p∗ having highest score, i.e.,∑
{∀si∈S}A (si ∩ C(p∗, R)). For this, we use the fact that the covered area of a given

polygon via R can always be decomposed into a trapezoid or triangle. We can compute

the area of a given polygon (such as si in Figure 5.2, where mi=5) as follows:

A(si) =
1

2
× (

∣∣∣∣∣∣∣
xi1 yi1

xi2 yi2

∣∣∣∣∣∣∣+

∣∣∣∣∣∣∣
xi2 yi2

xi3 yi3

∣∣∣∣∣∣∣+ . . .+

∣∣∣∣∣∣∣
ximi

yimi

xi1 yi1

∣∣∣∣∣∣∣)(5.1)

169

When performing the left-to-right sweeping:

(1) The intersection points and covered portion of edges of the polygons change. For

every little increment of covered portion δ, we already have (or, can pre-compute) the

constant slopes of the respective edges. In Equation 5.1, all xij and yij values are

constants.

(2) We need to maximize A in Equation 5.1 with the optimal placement of R during an

event, within the “permissible” ranges of δ. However, given the range for δ, Equation 5.1

is a sum of quadratic functions in δ and its first derivative is a linear one – thus, the

extreme can be calculated analytically.

(3) Most importantly, the ranges for δ are always bounded by the event-points of both

horizontal and vertical sweep-lines, i.e., ehf , ehl, evf , and evl. Thus, we can compute p∗ for

R during a vertical line-event, even if p∗ is in somewhere between two consecutive events.

In summary, we perform a top-to-bottom sweep-line technique using two horizontal lines

lh and fh, and then, perform a left-to-right sweep of the bounded space by two vertical

lines lv and fv at each ehf or ehl. During the whole process, we keep track of the maximal

coverage area and placement p∗, and eventually, return the result at the end of the

top-to-bottom sweeping.

5.4. Algorithmic Details

The processing of MAxRS3 is formalized in Algorithm 14. In line 1, vertices of all the

polygons are sorted in order of their yij value and inserted into a list vlist. In lines 2 – 5,

relevant variables are initialized. Lines 6 – 18 constitute the main working loop, i.e., the

170

top-to-bottom sweeping. Lines 7 – 14 check whether the next event should be ehl or ehf ,

and variables are updated accordingly. Line 15 performs the left-to-right sweeping using

lv and fv. For brevity, we skip the details of this secondary sweeping in Algorithm 14.

The maximal coverage area and optimal placement is tracked via lines 16 – 18.

Algorithm 14 Process-MAxRS3(S,R,F)

Require: A set of non-overlapping convex polygons S, query rectangle R of size d1 × d2
and bounding box F

Ensure: AMAxRS3 (i.e., p∗)
1: vlist ← the list of all vertices vij of each polygon si ∈ S sorted by their yij value
2: Ylh ← F.height
3: Yfh ← F.height + d2
4: ehl index, ehf index← 0
5: p∗,max coverage area← NULL, 0
6: while ehl index < |vlist| or ehf index < |vlist| do
7: if (Ylh − vlist[ehl index].yij) ≤ (Yfh − vlist[ehf index].yij) then
8: Ylh ← vlist[ehl index].yij
9: Yfh ← Ylh + d2

10: ehl index← ehl index+ 1
11: else
12: Yfh ← vlist[ehf index].yij
13: Ylh ← Yfh − d2
14: ehf index← ehf index+ 1
15: end if
16: plocal, local coverage area← Perform left-to-right sweep using vertical lines lv and

fv
17: if local coverage area > max coverage area then
18: max coverage area← local coverage area
19: p∗ ← plocal

20: end if
21: end while
22: return p∗

171

5.4.1. Time Complexity

Let us assume that there are n polygons, with m vertices each – so sorting in line 1 of

Algorithm 14 takes O((n×m) log(n×m)). There will be O(n×m) horizontal line events,

i.e., ehl or ehf – (cf. lines 6 – 18 of Algorithm 14). In each such event, when the left-

to-right sweep starts, there can be at most 2 × 2 = 4 intersections per non-overlapping

convex polygons with lh and fh, i.e., O(n) intersections in total. The area-calculation

needs O(m) number of 2× 2 determinants per polygon, taking a worst-case total cost of

O(n×m) at each ehl or ehf event. Thus, the overall time complexity is O((n×m)2).

172

CHAPTER 6

Conclusion, Remaining Work and Future Direction

In this chapter, we first present our ongoing works and expected contributions in

the following direction: predicting traffic speed for the densest regions during anomalous

events. In the final part, we conclude by briefly discussing the contributions of our already

completed works, and then, propose future directions and schedule for completing the

remaining works.

6.1. Traffic Prediction at Anomalous Events

Another ongoing work involves the problem of accurate short-term prediction of traffic

speed variation in anomalous scenarios. We propose an event-based algorithm that reacts

to detection of anomalous events (e.g., New Year’s eve, ball games, concerts, etc.) by

generating a collection of features that are subsequently used in the prediction model.

Specifically, we introduce a novel mobility demand feature which, when combined with

other relevant traffic-speed features, turns out to significantly improve the prediction ac-

curacy. The prediction model, in turn, is based on a Multi-Layer Perceptron (MLP) kind

of a feedforward artificial neural network. We present experimental observations that

demonstrate the improvements in the accuracy of the predicted traffic-speed fluctuations

during anomalous events. This is closely related to our discussed MaxRS (and its vari-

ants) problem, as we try to find the densest region of mobility requests/Uber calls, and

173

predicting the price of such services during anomalous events. Furthermore, our focus is

on predicting traffic speed for densest regions in the whole network.

Traffic prediction is essential for efficient and effective management of any Intelligent

Transportation System (ITS) and related categories of services, e.g., routing/navigation,

traffic-lights control, dynamic pricing of services in ridesharing platforms like Uber and

Lyft [28], etc. Many statistical and machine learning models have been proposed to

improve prediction accuracy – e.g., spectral analysis, regression methods, time series

model, Kalman filtering methods, neural networks, and other hybrid models [86, 26].

Traffic models rely on the historical traffic data from various sensing devices, e.g., Global

Positioning System (GPS), cameras, etc. – and due to advances in miniaturization of GPS-

enabled devices and networking/communication, large volumes of mobility-related dataset

are available. This, in turn, has spurred interests in various data mining problems related

to urban activities and transportation scenarios. Recently, models have been proposed to

indirectly infer and predict traffic condition from heterogeneous data sources (e.g., CO2

concentration in areas with high buildings density [89]).

At the heart of the motivation for this work is the observation that although most

of the mobility-related activities in everyday life may be periodic and with predictable

patterns, anomalous events may render traffic models invalid, and a fast and effective

reaction may be needed to enable catering to different transportation demands.

Example: On the New Year’s Eve 2016, an estimated one million people ushered in

the new year in Times Square [5]. Fig. 6.1 is a visualization for traffic speed of 11th

Avenue on Jan 1st, 2016. There is a sudden drop of traffic speed after midnight, which

reflects the traffic congestion incurred by one million people’s leaving from Times Square.

174

Figure 6.1. Traffic speed of 11th Ave. on Jan 1st, 2016.

For the purpose of this work, urban anomalies are defined as occurrences with spatio-

temporal extent, underlining abnormal mobility distributions. Urban anomalies result in

mobility black holes and volcanoes in Spatio-Temporal Graph (STG) model [30] – i.e.,

generate abnormal traffic flow. Because of their infrequent occurrence and their random

nature (in terms of traffic/mobility impact), it is very hard for traditional traffic models to

capture the impact of the anomalous change based on historical traffic data only. As hinted

in the example above, urban anomalies are often correlated with events whereby people

gather and disperse in a short period of time (e.g., ball games, concerts, social events, etc.)

– which motivated us to utilize real-time mobility demand (i.e., taxi/Uber/Lyft requests

and bike-sharing data) to both detect such events and predict resulting anomalous traffic

flow.

Our main contribution is an introduction of a prediction framework based on a feedfor-

ward artificial neural network (ANN) that uses both historical traffic data and the (surge

in the) real-time people’s mobility demand, in order to improve the prediction accuracy

when urban anomalies take place.

175

6.1.1. Related Literature

There are two basic approaches for characterizing the prediction of traffic descriptors (flow,

density, speed) in the existing literature: long term and short term. Long term prediction

aims to model the physical processes governing the evolution of traffic under normal

scenarios [89], whereas short term traffic prediction attempts to predict day-to-day, even

hour-to-hour status of the traffic [86]. Furthermore, the studies of short term traffic

prediction can be categorized into two basic types: the first one only considers the traffic

data collected by sensors, and the second one takes additional data into consideration (e.g.,

weather context). Many learning and inference algorithms have been proposed for traffic

prediction using traffic sensing data [86, 26]. For traffic prediction assisted by additional

(multisource) information [89], two most-considered categories are weather and holidays.

Our work belongs to the category of short-term traffic prediction and its main distinction

is the incorporation of the variations of the transportation-demands in the prediction

model. We propose a variant of [81] (statistical approach based on likelihood ratio test)

to detect anomalous events from the transportation demand, and subsequently, prepare

the input features for the ANN designed to predict the changes in the traffic descriptor

(speed) along road segments.

6.1.2. Problem Formulation

In the sequel, we discuss the context of our problem.

Traffic Descriptor. We rely on traffic flow models [26], in which, one can inter-

changeably use different quantities to describe the traffic state – e.g., flow vs. density

(vs. (average) speed). However, in macroscopic level (i.e., locally aggregated values),

176

those quantities are typically related – e.g., one can use (similarly to hydrodynamics)

Q(x, t) = ρ(x, t)∗V (x, t), where Q(x, t) = traffic flow, ρ(x, t) = traffic density, and V (x, t)

= (aggregated) speed at time t. We use aggregated traffic speed as a representation of

the flow.

Traffic Speed. For a given road segment rs and a time-stamp ti, we define its traffic

speed Si as the average traffic flow speed within time interval (ti−1, ti), where ti−1 is the

previous data reading time. In practice, traffic speeds are typically averaged over multiple

data readings and aggregated up to a common time cadence.

Problem Definition. Let S be the time-series data on traffic speed for road segment

rs and D represent the related mobility demand data. In addition, Demand Feature,

denoted as DF , is extracted from demand data D. We will present details on D and DF

in the subsequent sections. Assuming the current time ti and prediction length γ, the

traditional Short-term Traffic Prediction problem has the following setting: Given the

historical traffic speed data S within time interval [0, ti] for a road segment rs, develop a

traffic prediction model M(·) that outputs the traffic speed at time ti+γ, i.e., Si+γ = M(S).

Traditional statistical models will be invalid when anomalous events take place. Hence,

the problem addressed in this work, Short-term Anomalous Traffic Prediction can be

defined as follows: Given the historical traffic speed data S and demand features DF

within time interval [0, ti] for a road segment rs, develop an extended traffic prediction

model M∗(·) that outputs the traffic speed at time ti+γ, i.e., Si+γ = M∗(S,DF).

We propose an adaptive prediction framework to deal with short-term anomalous

traffic speed variations, as illustrated in Fig. 6.2. The framework consists of two parts:

batch training and online prediction. In the training stage, the road network is segmented,

177

and then correlated regions are calculated for a targeted road segment. Subsequently,

the historical mobility demand data and traffic speed data are preprocessed and stored

when anomalous events are detected. Finally, we extract demand features from mobility

demand data and train the anomalous traffic prediction model (i.e., ANN) with demand

features and historical traffic speed. When conducting online prediction, we first check for

anomalous events using real-time mobility demand data and then, if anomaly is detected,

predict the traffic speed with anomalous traffic model.

Figure 6.2. Overview of Prediction Framework.

6.2. Conclusion and Contribution

6.2.1. Co-MaxRS

We addressed the problem of determining the locations of a given axes-parallel rectangle

R so that the maximum number of moving objects from a given set of trajectories is inside

R. In contrast to the MaxRS problem first studied by the computational geometry com-

munity [38, 58], the Continuous MaxRS (Co-MaxRS) solution may change over time. To

avoid checking the validity of the answer-set at every clock-tick, we identified the critical

178

times at which the answer to Co-MaxRS may need to be re-evaluated, corresponding to –

events occurring when the dual rectangles of the moving objects change their topological

relationship. To speed up the processing of Co-MaxRS we used the kinetic data structures

(KDS) paradigm and proposed two pruning heuristics: (1) eliminating events from KDS;

and (2) eliminating the objects not affecting the answer (when re-computation of Co-

MaxRS is necessary). Moreover, we proposed a hierarchical grid-based indexing scheme,

specifically to improve the objects retrieval process (before pruning) for the Co-MaxRS

problem. Using the grid-based approach as the base, we also devised an efficient approx-

imation algorithm Approx-Co-MaxRS with a worst-case approximation ratio of 4. While

our algorithms mostly focused on the moving objects (resp. rectangles) defining the an-

swer set, the possible volume(s) (in terms of 2D space + time) swept by the Co-MaxRS

can be straightforwardly derived. Our experiments, over both real and synthetic data

sets, showcased that the proposed heuristics enabled significant speed-ups in terms of the

overall computation time from the upper bound on the time complexity.

6.2.2. C-MaxRS

In this paper, we have proposed a new variant of MaxRS query, namely Conditional

Maximizing Range-Sum (C-MaxRS) query in spatial data streams for both non-weighted

and weighted objects. Initially, we simply adapted the traditional MaxRS settings to

incorporate conditional constraints of different class of objects. However, to handle data

streams (i.e., appearance and disappearance of objects) with class-awareness, we needed

additional spatial data structures, quadtree and a variant of self-balancing binary tree

(e.g., we used AVL-tree), which enabled our algorithm to efficiently compute the changes

179

in the result for different partitions (or slices) of the dataspace. To further improve the

overall time-efficiency, we developed two pruning rules: one to handle the appearance of

an object and the other to handle disappearance of an object while updating C-MaxRS

results. Additionally, to accommodate a different kind of applications settings where

a bursty stream of data updates occur in a short time interval, we have proposed a

novel technique, C-MaxRS-Bursty to efficiently compute the C-MaxRS results via bulk

updates handling. We considered a large parameters space and conducted extensive set

of experiments. In sequential spatial data stream scenario, our approach, C-MaxRS-DU

yields three to four times improvements (on average) in terms of processing time, when

compared to the baseline algorithm. We have also observed that in a bursty scenario, our

approach C-MaxRS-Bursty outperforms our one-at-a-time approach, C-MaxRS-DU, by

5-10 times.

6.2.3. MAxRS3

We introduced a novel variant of the MaxRS problem – the MAxRS3 problem, which

determines the placement for a given fixed rectangle R in a 2D plane, such that the sum

of the areas of the intersections of a (subset of a) given collection of polygonal shapes and

R is maximized. In many real-world applications, the answers from MAxRS3 are preferred

than other similar problems such as P-MaxRS. We also presented the solution to MAxRS3

along with the corresponding algorithmic implementation. Finally, we analyzed the time-

complexity and processing time for our devised algoritm.

180

6.3. Possible Future Works and Proposed Schedule

Following are the possible extensions as future works, based on our past and present

contributions to the problems:

• While, intuitively, our approaches seem “transferable” to the case of circular

Co-MaxRS, we still need to have a more thorough investigation of the pruning

effects in the KDS – and a related challenge is to investigate Co-MaxRS when the

rectangles are in general positions (i.e., not restricted to be axes-parallel) [15].

• In our solution there may be cases where Co-MaxRS has discontinuities – i.e., the

current MaxRS needs to instantaneously change its location. Clearly, in practice

one may want to have a realistic time-budget for the MaxRS to “travel” from one

such location to another – which is another challenge to be addressed, in terms

of lost precision.

• Other natural extensions of this setting are to investigate the k-variant of Co-

MaxRS – i.e., the case of multiple mobile cameras jointly guaranteeing a contin-

uous maximal coverage, as well as the effective management of Co-MaxRS for

real time location updates.

• Similar to the existing parallel computing techniques (e.g., [69]), we should also

explore the possibility of having a distributed KDS implementation, i.e., dividing

the workload between a set of KDS instead of only one.

• We are planning to address a specific aspect of the scalability – namely, dis-

tributed data sources over large geographical areas, such as applications in par-

ticipatory sensing context, at a continent or world-wide scale. In such scenarios,

one would naturally want to distribute the computation among multiple regional

181

servers. A specific angle for this kind of settings is to investigate the trade-offs

between different paradigms (e.g., SpatialHadoop [22] vs. Spark [31]) in a spirit

similar to [83].

• Another extension is to incorporate the findings from the recent work for moni-

toring MaxRS over mobile objects [36] so that we can optimize mixed-tracking

of objects belonging to different categories (e.g., pedestrians, cars, and public

transportation users).

• For C-MaxRS, we would like to investigate the trade-offs arising when there is a

constraint between the time-instant of a particular update and the update of the

answer. This, in some sense, may require a new approach where the bulk update

algorithms and data structures proposed in this work will need to be adapted to

handle dynamic invocations (e.g., when the buffer of new data reaches certain

capacity).

• Complementary to the above, we plan to investigate the C-MaxRS in more tra-

ditional streaming settings – i.e., when there is a constraint on the memory and

the arrival rate is explicitly taken in consideration. In such cases, relying on data

sketches may be inevitable [18].

• We are investigating the variations of C-MaxRS where different kinds of mobility

may need to be incorporated – for both the users (cf. [36]) and the query rectangle

(e.g., in the Loon Project settings), as well as the mutual dependencies of both.

• In case of MAxRS3, we are presently investigating techniques for pruning certain

events from consideration during the sweep-line process to speed up the execution.

182

• We are also working on the scalability aspect of the MAxRS3 problem – i.e.,

access structures for the cases when the input is too large to fit in the main

memory.

• We are also planning to extend our solution to include spatial objects with extents

and 3-D spatial objects.

• In case of traffic prediction for anomalous events (another current/ongoing con-

tribution of us related to finding the densest region in a broader sense), incor-

porating multi-layer neural network/deep learning into our prediction framework

might be a good idea.

• Incorporating different contexts of abnormal demands (for the traffic prediction

problem) stemming from different transportation modes – like, for example, the

surge of trucks traffic upon arrival/unloading of vessels in ports.

• Again, investigating the benefits of merging multiple regions and their corre-

sponding prediction models could be a possible extension.

• For the problem of MaxRS3, one practical variation is to consider the possibility of

iso contour within the map, i.e., different depths (weights) within single spatial

shapes. Instead of discrete, there can also be continuous weight distribution

(pdfs).

• Finally, we plan to investigate the impact of the MaxRS problem in truly stream-

ing scenarios. The C-MaxRS problem considers a “stream of updates” or “bulk

updates”. In a truly streaming context, MaxRS is similar to Heavy Hitter Prob-

lems [13] (in 2-D) for streaming data.

183

Based on this, following is the tentative schedule we propose to wrap-up the remai-

ing works (in terms of submitting already complete or near-complete projects in Jour-

nal/Conference venues):

(1) Submitting the completed extentions of Co-MaxRS problem (approximation and

indexing) in ACM TSAS journal. This should be done by November, 2018.

(2) We are working on to devise pruning and index-based extension to the MAxRS3

problem, and conduct experimental evaluations to compare approaches. This

should be done by December, 2018.

(3) Finally, Incoporate deep learning models (e.g., RNN) in the the currently pro-

posed system for traffic speed prediction during anomalous events using mobility

demand. Also, we will try to see if incorporating other features such as social me-

dia activity has any effect on anomalous events detection and traffic prediction.

This should be done by January, 2018.

184

References

[1] Google Maps API. https://developers.google.com/maps/.

[2] OpenWeatherMap Weather API. http://openweathermap.org/api.

[3] Vis.js: JavaScript visualization library. https://visjs.org/.

[4] Google X Loon Project. https://x.company/loon/, 2016. Accessed: 2017-01-31.

[5] What to expect on new years, 2017. https://goo.gl/5dsJhV.

[6] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci. Wireless sensor
networks: a survey. Comput. Netw., 38(4):393–422, Mar. 2002.

[7] D. Amagata and T. Hara. Monitoring MaxRS in spatial data streams. In 19th Inter-
national Conference on Extending Database Technology, EDBT, 2016.

[8] G. Anastasi, M. Conti, M. Di Francesco, and A. Passarella. Energy conservation in
wireless sensor networks: A survey. Ad hoc networks, 7(3):537–568, 2009.

[9] B. Babcock, M. Datar, and R. Motwani. Load shedding for aggregation queries over
data streams. In Data Engineering, 2004. Proceedings. 20th International Conference
on, pages 350–361. IEEE, 2004.

[10] U. Bartuschka, K. Mehlhorn, and S. Näher. A robust and efficient implementation
of a sweep line algorithm for the straight line segment intersection problem. In IN
PROC. WORKSHOP ON ALGORITHM ENGINEERING. Citeseer, 1997.

[11] J. Basch, L. J. Guibas, and J. Hershberger. Data structures for mobile data. Journal
of Algorithms, 31(1), 1999.

[12] J. Cervino, E. Kalyvianaki, J. Salvachua, and P. Pietzuch. Adaptive provisioning of
stream processing systems in the cloud. In Data Engineering Workshops (ICDEW),
2012 IEEE 28th International Conference on, pages 295–301. IEEE, 2012.

https://developers.google.com/maps/
http://openweathermap.org/api
https://visjs.org/
https://x.company/loon/

185

[13] M. Charikar, K. Chen, and M. Farach-Colton. Finding frequent items in data streams.
In International Colloquium on Automata, Languages, and Programming, pages 693–
703. Springer, 2002.

[14] B. M. Chazelle and D.-T. Lee. On a circle placement problem. Computing, 36(1-2),
1986.

[15] Z. Chen, Y. Liu, R. C.-W. Wong, J. Xiong, X. Cheng, and P. Chen. Rotating MaxRS
queries. Information Sciences, 305, 2015.

[16] D.-W. Choi, C.-W. Chung, and Y. Tao. A scalable algorithm for Maximizing Range
Sum in spatial databases. Proceedings of the VLDB Endowment (PVLDB), 5(11),
2012.

[17] D. W. Choi, C. W. Chung, and Y. Tao. Maximizing Range Sum in external memory.
ACM Trans. Database Syst., 39(3):21:1–21:44, Oct. 2014.

[18] G. Cormode. Data sketching. ACM Queue, 15(2):60, 2017.

[19] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.
Communications of the ACM, 51(1):107–113, 2008.

[20] Y. Du, D. Zhang, and T. Xia. The optimal-location query. In International Sympo-
sium on Spatial and Temporal Databases, pages 163–180. Springer, 2005.

[21] A. Eldawy and M. F. Mokbel. SpatialHadoop: A MapReduce framework for spatial
data. In 31st IEEE International Conference on Data Engineering, ICDE, 2015.

[22] A. Eldawy and M. F. Mokbel. Spatialhadoop: A mapreduce framework for spatial
data. In Data Engineering (ICDE), 2015 IEEE 31st International Conference on,
pages 1352–1363. IEEE, 2015.

[23] E. Fasolo, M. Rossi, J. Widmer, and M. Zorzi. In-network aggregation techniques for
wireless sensor networks: A survey. Wireless Communications, IEEE, 14(2):70–87,
2007.

[24] K. Feng, G. Cong, S. S. Bhowmick, W. C. Peng, and C. Miao. Towards best region
search for data exploration. In ACM SIGMOD International Conference on Manage-
ment of Data, pages 1055–1070. ACM, 2016.

[25] J. Gudmundsson and M. J. van Kreveld. Computing longest duration flocks in tra-
jectory data. In ACM GIS Conference, 2006.

186

[26] J. Guo, W. Huang, and B. M. Williams. Adaptive kalman filter approach for sto-
chastic short-term traffic flow rate prediction and uncertainty quantification. Trans-
portation Research Part C: Emerging Technologies, 43:50–64, 2014.

[27] R. H. Güting and M. Schneider. Moving objects databases. Elsevier, 2005.

[28] R. Hahn and R. Metcalfe. The ridesharing revolution: Economic survey and synthesis.
In S. D. Kominers and A. Teytelboym, editors, More Equal by Design: Economic
design responses to inequality. 2017.

[29] F. J. Harvey and K. J. Krizek. Commuter bicyclist behavior and facility disruption.
Technical report, 2007.

[30] L. Hong, Y. Zheng, D. Yung, J. Shang, and L. Zou. Detecting urban black holes
based on human mobility data. In Proceedings of the 23rd SIGSPATIAL International
Conference on Advances in Geographic Information Systems, page 35. ACM, 2015.

[31] Z. Huang, Y. Chen, L. Wan, and X. Peng. Geospark sql: An effective framework
enabling spatial queries on spark. 6:285, 09 2017.

[32] M. M. Hussain, G. Trajcevski, K. A. Islam, and M. E. Ali. Visualization of range-
constrained optimal density clustering of trajectories. In SSTD, pages 427–432, 2017.

[33] M. M. Hussain, P. Wongse-ammat, and G. Trajcevski. Demo: Distributed MaxRS
in wireless sensor networks. In ACM Conference on Embedded Networked Sensor
Systems (SenSys). ACM, 2015.

[34] M. M. Hussain, P. Wongse-ammat, and G. Trajcevski. Demo: Distributed MaxRS in
wireless sensor networks. In Proceedings of the 13th ACM Conference on Embedded
Networked Sensor Systems, SenSys ’15, pages 479–480. ACM, 2015.

[35] M. M.-u. Hussain, B. Avci, G. Trajcevski, and P. Scheuermann. Incorporating
weather updates for public transportation users of recommendation systems. In Mo-
bile Data Management (MDM), 2016 17th IEEE International Conference on, vol-
ume 1, pages 333–336. IEEE, 2016.

[36] M. M.-u. Hussain, K. A. Islam, G. Trajcevski, and M. E. Ali. Towards efficient main-
tenance of continuous maxrs query for trajectories. In 20th International Conference
on Extending Database Technology, EDBT, 2017.

[37] M. M.-U. Hussain, G. Trajcevski, K. A. Islam, and M. E. Ali. Visualization of range-
constrained optimal density clustering of trajectories. In International Symposium
on Spatial and Temporal Databases, pages 427–432. Springer, 2017.

187

[38] H. Imai and T. Asano. Finding the connected components and a maximum clique of
an intersection graph of rectangles in the plane. Journal of algorithms, 4(4), 1983.

[39] H. Issa and M. L. Damiani. Efficient access to temporally overlaying spatial and
textual trajectories. In IEEE 17th International Conference on Mobile Data Man-
agement, MDM 2016, Porto, Portugal, June 13-16, 2016, pages 262–271, 2016.

[40] H. Jeung, M. L. Yiu, X. Zhou, C. S. Jensen, and H. T. Shen. Discovery of convoys in
trajectory databases. Proceedings of the VLDB Endowment (PVLDB), 1(1), 2008.

[41] P. Kalnis, N. Mamoulis, and S. Bakiras. On discovering moving clusters in spatio-
temporal data. 2005.

[42] I. Kamel and C. Faloutsos. Parallel R-trees, volume 21. ACM, 1992.

[43] T. Kanungo, D. M. Mount, N. S. Netanyahu, C. Piatko, R. Silverman, and A. Y.
Wu. An efficient k-means clustering algorithm: Analysis and implementation, 2000.

[44] S. Ke, J. Gong, S. Li, Q. Zhu, X. Liu, and Y. Zhang. A hybrid spatio-temporal data
indexing method for trajectory databases. Sensors, 14(7), 2014.

[45] J. Kim, S.-G. Kim, and B. Nam. Parallel multi-dimensional range query processing
with r-trees on gpu. Journal of Parallel and Distributed Computing, 73(8):1195–1207,
2013.

[46] J. Kleinberg. Bursty and hierarchical structure in streams. Data Mining and Knowl-
edge Discovery, 7(4):373–397, 2003.

[47] M. Koubarakis, T. Sellis, A. Frank, S. Grumbach, R. Güting, C. Jensen, N. Lorentzos,
Y. Manolopoulos, E. Nardelli, B. Pernici, H.-J. Scheck, M. Scholl, B. Theodoulidis,
and N. Tryfona, editors. Spatio-Temporal Databases – the CHOROCHRONOS Ap-
proach. Springer-Verlag, 2003.

[48] B. Krishnamachari, D. Estrin, and S. Wicker. The impact of data aggregation in
wireless sensor networks. In Distributed Computing Systems Workshops, 2002. Pro-
ceedings. 22nd International Conference on, pages 575–578. IEEE, 2002.

[49] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. TinyDB: an acquisi-
tional query processing system for sensor networks. ACM Transactions on database
systems (TODS), 30(1):122–173, 2005.

[50] J. Manyika, M. Chui, B. Brown, J. Bughin, R. Dobbs, C. Roxburgh, and A. H. Byers.
Big data: The next frontier for innovation, competition, and productivity, 2011.

188

[51] M. Mas-ud Hussain, A. Wang, and G. Trajcevski. Co-MaxRS: Continuous Maximiz-
ing Range-Sum query. Technical Report NU-EECS-16-08, Dept. of EECS, North-
western University, 2016.

[52] M. F. Mokbel, L. Alarabi, J. Bao, A. Eldawy, A. Magdy, M. Sarwat, E. Waytas, and
S. Yackel. MNTG: An extensible web-based traffic generator. In Advances in Spatial
and Temporal Databases. 2013.

[53] M. F. Mokbel, T. M. Ghanem, and W. G. Aref. Spatio-temporal access methods.
IEEE Data Eng. Bull., 26(2):40–49, 2003.

[54] M. F. Mokbel, X. Xiong, and W. G. Aref. SINA: Scalable incremental processing
of continuous queries in spatio-temporal databases. In ACM SIGMOD International
Conference on Management of Data, 2004.

[55] M. I. Mostafiz, S. Mahmud, M. M.-u. Hussain, M. E. Ali, and G. Trajcevski. Class-
based conditional maxrs query in spatial data streams. In Proceedings of the 29th In-
ternational Conference on Scientific and Statistical Database Management, page 13.
ACM, 2017.

[56] M. I. Mostafiz, S. M. F. Mahmud, M. M. Hussain, M. E. Ali, and G. Trajcevski.
Class-based conditional maxrs query in spatial data streams. In SSDBM, 2017.

[57] Y. Nakayama, D. Amagata, and T. Hara. An efficient method for identifying MaxRS
location in mobile ad hoc networks. In Database and Expert Systems Applications -
27th International Conference, DEXA, 2016.

[58] S. C. Nandy and B. B. Bhattacharya. A unified algorithm for finding maximum and
minimum object enclosing rectangles and cuboids. Computers & Mathematics with
Applications, 29(8), 1995.

[59] P. M. Narendra and K. Fukunaga. A branch and bound algorithm for feature subset
selection. IEEE Transactions on Computers, 26(9):917–922, 1977.

[60] J. Nievergelt and E. M. Reingold. Binary search trees of bounded balance. SIAM
journal on Computing, 2(1):33–43, 1973.

[61] B. Ooi, R. Sacks-Davis, and J. Han. Indexing in spatial databases. Unpub-
lished/Technical Papers, 1993.

[62] N. Pelekis and Y. Theodoridis. Mobility Data Management and Exploration. Springer,
2014.

189

[63] T.-K. Phan, H. Jung, and U.-M. Kim. An efficient algorithm for Maximizing Range
Sum queries in a road network. The Scientific World Journal, 2014, 2014.

[64] J. B. Rocha-Junior, A. Vlachou, C. Doulkeridis, and K. Nørv̊ag. Efficient processing
of top-k spatial preference queries. Proceedings of the VLDB Endowment (PVLDB),
4(2), 2010.

[65] D. Romik. Stirling’s approximation for n!: The ultimate short proof? The American
Mathematical Monthly, 107(6):556, 2000.

[66] H. Samet. Applications of spatial data structures. 1990.

[67] L. Sha, P. Lucey, Y. Yue, P. Carr, C. Rohlf, and I. A. Matthews. Chalkboarding: A
new spatiotemporal query paradigm for sports play retrieval. In 21st International
Conference on Intelligent User Interfaces, IUI, 2016.

[68] M. I. Shamos and D. Hoey. Geometric intersection problems. In FOCS, 1976.

[69] S. B. Shaw and A. Singh. A survey on scheduling and load balancing techniques
in cloud computing environment. In Computer and Communication Technology (IC-
CCT), 2014 International Conference on, pages 87–95. IEEE, 2014.

[70] S. Shekhar and S. Chawla. Spatial databases: A tour, volume 2003. Prentice Hall
Upper Saddle River, NJ, 2003.

[71] K. Shvachko, H. Kuang, S. Radia, and R. Chansler. The hadoop distributed file sys-
tem. In Mass storage systems and technologies (MSST), 2010 IEEE 26th symposium
on, pages 1–10. IEEE, 2010.

[72] D. Šidlauskas, S. Šaltenis, C. W. Christiansen, J. M. Johansen, and D. Šaulys. Trees
or grids?: indexing moving objects in main memory. In Proceedings of the 17th ACM
SIGSPATIAL international conference on Advances in Geographic Information Sys-
tems, pages 236–245. ACM, 2009.

[73] Y. Tao, X. Hu, D. Choi, and C. Chung. Approximate MaxRS in spatial databases.
Proceedings of the VLDB Endowment (PVLDB), 6(13), 2013.

[74] Y. Tao, D. Papadias, and J. Sun. The TPR*-tree: An optimized spatio-temporal
access method for predictive queries. In International Conference on Very Large Data
Bases (VLDB), 2003.

190

[75] N. Trigoni and B. Krishnamachari. Sensor network algorithms and applications.
Philosophical Transactions of the Royal Society of London A: Mathematical, Physical
and Engineering Sciences, 370(1958):5–10, 2012.

[76] C. R. Vicente, D. Freni, C. Bettini, and C. S. Jensen. Location-related privacy in
geo-social networks. IEEE Internet Computing, 15(3), 2011.

[77] R. C.-W. Wong, M. T. Özsu, P. S. Yu, A. W.-C. Fu, and L. Liu. Efficient method
for maximizing bichromatic reverse nearest neighbor. Proceedings of the VLDB En-
dowment (PVLDB), 2(1), 2009.

[78] P. Wonge-ammat, M. Mas-ud Hussain, G. Trajcevski, B. Avci, and A. Khokhar.
Distributed in-network processing of k-maxrs in wireless sensor networks. In Pro-
ceedings of the 6th International Conference on Sensor Networks (SENSORNETS
’17), volume 1, pages 108–117. SCITEPRESS, 2017.

[79] P. Wongse-ammat, M. M.-u. Hussain, G. Trajcevski, B. Avci, and A. Khokhar. Dis-
tributed in-network processing of k-maxrs in wireless sensor networks. In 7th Inter-
national Conference on Sensor Networks, SENSORNETS, 2017.

[80] D. Wu, N. Mamoulis, and J. Shi. Clustering in geo-social networks. IEEE Data Eng.
Bull., 38(2), 2015.

[81] M. Wu, X. Song, C. Jermaine, S. Ranka, and J. Gums. A lrt framework for fast
spatial anomaly detection. In Proceedings of the 15th ACM SIGKDD international
conference on Knowledge discovery and data mining, pages 887–896. ACM, 2009.

[82] X. Xiao, B. Yao, and F. Li. Optimal location queries in road network databases. In
IEEE International Conference on Data Engineering (ICDE), 2011.

[83] S. You, J. Zhang, and L. Gruenwald. Large-scale spatial join query processing in
cloud. In 31st IEEE International Conference on Data Engineering Workshops, ICDE
Workshops 2015, Seoul, South Korea, April 13-17, 2015, pages 34–41, 2015.

[84] X. Yu, K. Q. Pu, and N. Koudas. Monitoring k-nearest neighbor queries over moving
objects. In IEEE International Conference on Data Engineering (ICDE), 2005.

[85] J. Zhang, M. Zhu, D. Papadias, Y. Tao, and D. L. Lee. Location-based spatial queries.
In Proceedings of the 2003 ACM SIGMOD, 2003.

[86] Y. Zhang, Y. Zhang, and A. Haghani. A hybrid short-term traffic flow forecasting
method based on spectral analysis and statistical volatility model. Transportation
Research Part C: Emerging Technologies, 43:65–78, 2014.

191

[87] Y. Zheng. Trajectory data mining: An overview. ACM Transactions on Intelligent
Systems and Technology (TIST), 6(3), 2015.

[88] Y. Zheng, L. Zhang, X. Xie, and W. Y. Ma. Mining interesting locations and travel
sequences from GPS trajectories. In ACM International Conference on World Wide
Web. ACM, 2009.

[89] Z. Zheng, D. Wang, J. Pei, Y. Yuan, C. Fan, and F. Xiao. Urban traffic prediction
through the second use of inexpensive big data from buildings. In Proceedings of the
25th ACM International on Conference on Information and Knowledge Management,
pages 1363–1372. ACM, 2016.

[90] Y. Zhong, J. Han, T. Zhang, Z. Li, J. Fang, and G. Chen. Towards parallel spatial
query processing for big spatial data. In Parallel and Distributed Processing Sym-
posium Workshops & PhD Forum (IPDPSW), 2012 IEEE 26th International, pages
2085–2094. IEEE, 2012.

[91] X. Zhou, W. Wang, and J. Xu. General purpose index-based method for efficient
MaxRS query. In Database and Expert Systems Applications - 27th International
Conference, DEXA, 2016.

[92] Z. Zhou, W. Wu, X. Li, M. L. Lee, and W. Hsu. MaxFirst for MaxBRkNN. In IEEE
International Conference on Data Engineering (ICDE), 2011.

192

Vita

Muhammed Mas-ud Hussain was born in Dhaka, Bangladesh on December 01, 1988,

the son of Md. Liaquat Hussain and Baby Hussain. After completing high school, he

entered Bangladesh University of Engineering and Technology, receiving the degree of

Bachelor of Science in 2012. After graduation, he worked for two software companies

in Dhaka for one and half years, before deciding to pursue Doctoral studies. He joined

The Graduate School in the Department of EECS (Electrical Engineering and Computer

Science) at Northwestern University in Fall, 2013. In-between, he and Bony Anjabeen

tied the knot in the spring of 2013. His research, supervised by Dr. Goce Trajcevski, is

focused on Querying and Mining in Spatial and Moving Objects Databases, Applications

of Machine Learning Techniques, Data Management in Wireless Sensor Networks, and

Context-Awareness in Recommendation Systems. In Fall 2018, Mas-ud was appointed

as a lecturer by the Department of EECS at Northwestern University, to teach EECS

495: Introduction to Database Systems. He already gained substantial industry research

experiences as an intern at Cognitive User Experience Lab in IBM Research (mentor:

Mathew Davis), and HERE Research (mentor: Bo Xu). He has also worked as a Machine

Learning research intern (mentored by Linbin Yu) at Facebook, and planning to join

Facebook as a Research Scientist in 2019. More details on Mas-ud is available here.

http://www.cs.northwestern.edu/~mmh683/

	ABSTRACT
	Acknowledgements
	Dedication
	List of Figures
	List of Tables
	Chapter 1. Introduction
	1.1. Co-MaxRS
	1.2. Condtional-MaxRS
	1.3. MAxRS3
	1.4. Preliminaries
	1.5. Outline

	Chapter 2. Related Literature
	2.1. Related Works
	2.2. Our Previous Contributions

	Chapter 3. Processing Continuous MaxRS for Trajectories
	3.1. Basic Co-MaxRS
	3.2. Pruning in Co-MaxRS
	3.3. Space Partitioning and Indexing
	3.4. Approximate Co-MaxRS Solution
	3.5. Experimental Observations
	3.6. Demonstration: System Design and Demo Details

	Chapter 4. Processing Conditional MaxRS in Spatial Data Streams
	4.1. Problem Definition
	4.2. Basic bold0mu mumu CCCCCC-MaxRS
	4.3. C-MaxRS in Data Streams
	4.4. Weighted C-MaxRS
	4.5. C-MaxRS in Bursty Updates
	4.6. Experimental Study

	Chapter 5. MAxRS3 for Spatial Shapes
	5.1. Background: Sweepline Algorithms, P-MaxRS
	5.2. Problem Definition: MAxRS3
	5.3. Processing MAxRS3
	5.4. Algorithmic Details

	Chapter 6. Conclusion, Remaining Work and Future Direction
	6.1. Traffic Prediction at Anomalous Events
	6.2. Conclusion and Contribution
	6.3. Possible Future Works and Proposed Schedule

	References
	Vita

