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ABSTRACT

Linear Decomposition of Atomic Orbitals:

Mapping the Electronic Properties of Crystalline Materials

Maxwell T. Dylla

An extensive set of functional electronic properties depends on the electronic structure. These properties are

directly connected to the reciprocal-space representation of electronic structure. However, there is a comple-

mentary, real-space perspective that is described by combinations of atomic orbitals. Atomic orbitals are the

components of electronic structures, analogous to how elements are the components of crystal structures. To

further the analogy, relevant portions of the electronic structure are described by atomic orbital compositions.

Within a material family, the atomic orbital compositions can explain the variety of electronic structures ex-

pressed by each phase. An orbital phase diagram, which maps each phase according to its atomic orbital com-

position, can di�erentiate di�erent classes of electronic structure. In thermoelectric applications, the relevant

portions of the electronic structure are the valence and conduction band edges (the highest-performing mate-

rials are semiconductors). The location, shape, and number of carrier pockets near the band edge determine

their transport properties. In light of recent developments in structure-matching algorithms, which can group

databases of electronic structure calculations into material families, the orbital phase diagram approach will be

useful for identifying promising candidate materials within di�erent structure families. However, since many

materials are synthesized as polycrystalline samples, it is important to identify whether the measured properties

are a result of the intrinsic electronic structure or micro-structural defects. In particular, grain boundaries can

confound the interpretation of the transport properties.
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1.1 The experimental power factors of materials with complex Fermi surfaces are high, but grain

boundary resistance can degrade the electronic properties from those predicted by transport

models and measured in single crystal samples. Peak power factor at each temperature is

assessed from experimental transport properties with an e�ective mass model. 1 The peak

power factor at each temperature corresponds to an optimized carrier concentration. Bi2Te3, 2

CoSb3, 3 PbTe, 4 Mg3Sb2 (solid line assumes no grain boundary resistance), 5 and SrTiO3

(dashed line 6). 7 Fermi surfaces adapted from: CoSb3, 3 Mg3Sb2. 8 14

1.2 a) A gradient in chemical potential shifts the Fermi-Dirac distribution. The in�nitesimal

di�erence between neighboring occupations is positive for all carrier energies. Transport

proceeds down the chemical potential gradient. b) In contrast, a temperature gradient

changes the curvature of the Fermi-Dirac distribution. The selection function is odd around

the chemical potential. Carriers above the chemical potential di�use from hot to cold, while

carriers below �ow in opposition. 17

1.3 a) For a crystalline semiconductor, the energy dependence of the transport function G(E)

is derived from its constituent terms. A spherical, parabolic band edge determines the

charge carrier group velocity (v) and density of states (g). The energy dependence of

electron-phonon relaxation times (τ ) is inversely proportional to g. b) The convolution of

G(E) with selection functions determines thermoelectric transport coe�cients: including,

conductivity σ, the Seebeck coe�cient α, and the electronic contribution to thermal

conductivity κe. 21
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1.4 The distinct Fermi surfaces of perovskite oxides heavily in�uence their transport properties.

a) Fermi surfaces of SrTiO3 exhibit low-dimensional character, which is exempli�ed by a

highly-elongated shape that intersects the Brillouin zone boundary. b) Cylindrical Fermi

surfaces capture the low-dimensional character of the band structure, and the intersection of

the three cylinders accounts for the two nearly spherical Fermi surfaces observed in (a). This

band structure model is distinct from the isotropic (spherical) dispersion typically invoked

to convert experimental data to quantities such as e�ective mass. c) The low-dimensional

model is consistent with the experimental e�ective mass of doped SrTiO3 single crystals; it

properly reproduces the temperature and carrier dependence of the e�ective mass extracted

from the Seebeck coe�cient. Strongly varying e�ective masses may be a useful experimental

signature for identifying other low-dimensional electronic structures in three-dimensional

materials. 25

1.5 The two-dimensional density of states of perovskite oxides is responsible for their carrier-

density insensitive scattering (solid lines). For reference, the relaxation times of most

three-dimensional semiconductors decrease with increasing carrier-density (dashed line).

Data for SrTiO3
9 and KTaO3

10 are at 200 K. 28

1.6 The two-dimensional Fermi surfaces of perovskite oxides lead to temperature squared

resistivity. a) The resistivities of KTaO3, 10 SrTiO3, 7,9 and Ba(x)Sr(1-x)TiO3
11 are proportional

to temperature-squared (except at the lowest carrier-densities, where it is temperature-cubed

due to the temperature dependence of the Fermi level). b) The relaxation time extracted

with the two-dimensional model is dominated by acoustic phonons below room-temperature

and optical phonons at higher temperatures. Furthermore, even at low carrier-densities,

the relaxation time follows temperature-squared behavior. c) The additional source of

temperature dependence in the resistivities and relaxation times (T 2 v.s. T 1) comes from

their Fermi-surface dimensionality, as the number of accessible �nal scattering states for

electrons (states within the radius of a phonon Bose sphere) increases with increasing
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temperature. The additional temperature dependency from increasing �nal states, along with

increasing phonon occupation, leads to temperature-squared resistivity. 30

2.1 There are three crystallographic sites in the half-Heusler structure: X (blue), Y (red), and

Z (green). The Y -site is in a body-centered-cubic coordination environment formed by the

X- and Z-sites. The X- and Z-sites are in tetrahedral coordination environments formed by

the Y -sites (in the �rst nearest-neighbor shell) and octahedral coordination environments

formed by X- and Z-sites (in the second nearest-neighbor shell). 33

2.2 a) The valence band edges of half-Heusler electronic structures are primarily composed of

d-orbitals from the X- and Y -sites, and secondarily, p-orbitals from the Z-site. The relative

contributions of these basis orbitals describe the type of carrier pockets observed in this

structure family. b) Electronic structures with higher concentrations of Z-p orbitals at the

band edge have carrier pockets at the W-point with high degeneracy. c) Phases with valence

band edges dominated by X-d states have carrier pockets at the Γ-point, and d) band edges

dominated by Y -d states have carrier pockets at the L-point. 35

2.3 The di�erence in valence electron con�guration (encoded in group number) and

electronegativity of the X- and Y -species determines the energy o�set between the Γ- and

L-points. Engineering the relative energies of these k-points controls the degeneracy (four in

the case of L-pockets and one for Γ-pockets). 37

2.4 The W-point is at or near the valence band maximum for compounds with both a Group IV

element on the Z-site (Sn, Ge) and a Group IX on the Y-site (Co, Rh, or Ir). Furthermore, in

six of the seven W-pocket materials, the L-point is converged within 100 meV of the band

edge (total degeneracy of ten). 38

2.5 The electronic structure of SrTiO3 is described by two-dimensional crystal orbitals, even

though the crystal structure is three-dimensional and cubic. a) In the unitcell, local Ti-d and

O-p orbitals hybridize via covalent bonds; an octahedral crystal �eld splits the anti-bonding

Ti-d states into two subsets. Each hybrid state is visualized by maximally localized Wannier
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functions and exhibits strong anti-bonding character in the conduction states and subtle

bonding character in the valence states. b) Each hybrid orbital state broadens into bands in

momentum (k) space when they mix with adjacent unitcells. Crystal orbitals are formed from

the mixing of Wannier functions from all crystal sites, and the introduction of a Bloch phase

factor between neighboring orbital hybrids speci�es a particular k-state. For the lowest-lying

conduction bands (labeled by 1 and 2), mixing only exists between t∗2g orbitals of the same

x/y/z symmetry. c) There are two interactions between adjacent t∗2g orbitals that dictate the

strength of dispersion in k-space. (1) The strong π-interactions in the plane of each basis

orbital give dispersive character to the bands. (2) The weak, out-of-plane δ-interactions give

non-dispersive character, which is a signature of its low-dimensional electronic structure

along the Γ-X directions (parallel to the 〈100〉 family of crystallographic directions). 40

3.1 Grain boundary resistance has a particular signature in transport data. a) The experimental

conductivities of polycrystalline SrTiO3 are heavily a�ected and become activated with

temperature in extreme cases of grain boundary resistance (green). b) The Seebeck

coe�cients of polycrystalline samples are not a�ected by the grain boundary (there is only

one sample with a higher carrier concentration, which decreases the magnitude of the

Seebeck), and their temperature dependence is the same as single crystal samples. c) The

degraded conductivities result in lower power factors in polycrystalline samples. d) Any

doping dependence in the transport properties can be removed by analyzing the weighted

mobility, where all polycrystalline samples (dashed) fall below the single crystal properties

(solid). Experimental data from red to green: 6,7,11,12. The polycrystalline samples shown are

the median samples from the di�erent grain boundary phases in Figure 3.3a. This set of

samples demonstrates the range of expected grain boundary behaviors. 44

3.2 a) The lower oxygen vacancy concentrations (V ··
O ) in the vicinity of the grain boundary

are responsible for grain boundary resistance in SrTiO3 (the vacancy pro�le re�ects the

simulated data in 13). b) The depletion of positively charged oxygen vacancies induces a
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negative potential (φ) that c) perturbs the electronic states in the conduction band. d) As a

result, the grain boundary phase is depleted of free carriers (n) and is resistive. 46

3.3 a) The grain boundary phase undergoes transitions near temperatures that ceramic samples

are sintered. 14 Analyzing the transport of �fty samples near room temperature (450 K)

reveals that these phase transitions may be changing the defect energetics in the grain

boundary phase and therefore the observed grain boundary resistance. 6,7,11,12,15–19 Error

bars indicate one standard deviation for the distribution of weighted mobilities. b) Grain

boundary resistance is responsible for conductivity that is activated with temperature

(highlighted in green). Grain boundary engineering with graphene decreases the e�ect

of grain boundary resistance, and samples show metallic-like behavior (conductivity that

decreases with temperature, highlighted in black) at lower temperatures. 20,21 Single crystal

electronic properties are achieved by Lin et al.. 48

4.1 Illustration of the FCC primitive unit cells of several crystal structures. The structures are

related by defects. For example, the half-Heusler structure transforms into the rock-salt and

diamond structures when vacancies (open circles) are introduced. In addition, adding an

interstitial atom (black circle) to the half-Hesuler structure produces the Heusler structure. 50

B.1 a) A temperature gradient induces a selection function for electron heat transport, and for

b) heat-carrying bosons. The selection function can be interpreted as the per-mode speci�c

heat for phonons. The boson selection function is broader than −∂f/∂E (dashed curve). 71

D.1 The scattering frequency for electrons on 3D and 2D Fermi surfaces are qualitatively di�erent

and explained by the same scattering model. 1) At low temperatures both types of electrons

follow the Block T 5 law. 2) When the phonon Bose sphere exceeds the radius of the 2D

Fermi surface but is smaller than Fermi surface length, T 2 behavior is observed. 3) When the

phonon Bose sphere exceeds the radius of the 3D Fermi surface, T 1 behavior is observed. 4)

The 2D case is also expected to recover T 1 behavior when all phonon modes are saturated. 87
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E.1 Calculating metastable 17e- and 19e- compounds con�rms that valence di�erence rules

control the relative positions of the valence band Γ- and L-energies. Substituting Fe on the

Co site of TiCoSb dopes the material p-type and raises the energy of the L-point relative to Γ.

Substituting Ni on the Co site dopes the material n-type and raises the energy of the Γ-point

relative to the L-point. The relative energies of Γ and L appear to be primarily controlled

by the valence di�erence between the X- and Y-sites and not a�ected by the location of the

Fermi level. This virtual experiment indicates that the e�ect of dopants on the band structure

can be predicted from the valence di�erence rule. 88

E.2 We explore the e�ects of site-substitution on NbCoSn. The iso-valent substitution of Pb

on the Sn site does not signi�cantly a�ect the band structure. Solid-solutions between the

Sn- and Pb-analogs could lower the thermal conductivity through phonon alloy scattering

without signi�cantly impacting the electronic structure. P-type, aleo-valent substitutions on

each of the di�erent sites have di�erent e�ects on the electronic structure. Ti on the Nb-site

raises the energy of the Γ point per the valence di�erence rule, and increases the e�ective

mass of the hole-pockets. Substituting Fe on the Co-site raises the energy of the L-point,

but has less of an impact on the electronic structure compared to substituting Ti. In on the

Sn-site has remarkable changes to the electronic structure, raising the energy of the X-point.

This is a class of electronic structure not observed in the stable 18e- materials, so In may

be an interesting dopant to consider. Experiments should investigate the e�ects of di�erent

site-dopings on the thermoelectric transport properties. 89

F.1 The �gure of merit of SrTiO3 could be higher than 0.5 at room temperature if polycrystalline

samples can be synthesized with both electronic properties similar to single crystals and

low lattice thermal conductivities. Samples with a grain size of ∼20 nm should achieve

∼1 W/mK 22 and not degrade the electron mobility, since the electron mean free path (limited

by phonons at 300 K) is ∼1.5 nm. 91
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CHAPTER 1

Modeling Electronic Transport in Thermoelectric Applications

Thermoelectric devices are appealing, solid-state energy conversion technologies because they can operate in

two distinct modes—as generators and coolers. Regardless of operating mode, a high-performing thermoelectric

material has both a high conductivity (σ) and Seebeck coe�cient (α), and a low thermal conductivity (κ). These

intrinsic requirements de�ne the �gure of merit (zT = α2σT/κ) for thermoelectric materials (Appendix A). 23

Developing new thermoelectric materials with higher performance, wider ranges of operating temperatures, and

di�erent chemical compatibilities are active areas of research. 7,8,24–30

The identi�cation of promising thermoelectric materials is accelerated by guidance from �rst principles

calculations. 31–39 Many of these computational e�orts have focused on predicting the electronic terms of zT (the

power factor, α2σ) for bulk materials. 40 Colloquially, materials with high power factors have several, parallel

conducting channels for electrons or holes to transport through; these channels should also have high mobility.

Materials that meet these requirements have complex Fermi surfaces with multiple carrier pockets, such that the

Fermi surface can be used as a visual search strategy for high-performance. 41 The multiplicity of carrier pockets

satis�es the requirement for parallel channels, and so long as these carrier pockets have low band e�ective

masses, they will likely have high mobilities. This intuitive, visual description for high performance can be

quanti�ed by computing the complexity factor from �rst principles calculations. 42 The complexity factor is a

powerful descriptor for predicting the peak power factor (assuming that the correct carrier concentration can be

achieved through doping) and is an e�ective screening metric for high thermoelectric performance. Materials

with complex Fermi surfaces and high complexity factors are among the most promising thermoelectric materials,

because of their high power factors (Figure 1.1). 3–5,7

While electronic transport and thermoelectric performance is intimately tied to the electronic structure,

there are several aspects of transport that only depend on the distribution function of the carriers (Fermi-Dirac).

It is instructive to �rst discuss how charge carriers behave in electric �elds and temperature gradients without
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discussing the details of the electronic structure. Treating transport in a general way at �rst will help highlight

how electronic structure is involved in transport later on. The information carried by the electronic structure

is encoded in the transport function, which can be treated as a simple function of energy in this analysis. Af-

terwards, functional forms for the transport function can be derived using a simple toy-model for an electronic

band structure. When the electronic structure of a solid signi�cantly deviates from the simple toy-model, our

expectations for transport properties will have to be revisited.

1.1. In�uence of the Fermi-Dirac Distribution Function on Electronic Transport

To describe transport, we will take the Landauer approach. In 1957, Landauer sought to explain the di�usive

transport of charges in disordered metals containing polarizable point defect scattering sources. 43–48 At the time,

Boltzmann transport theory was the dominant approach to describe transport in crystalline solids, and Landauer’s

developments were largely ignored. However, the emergence of nanostructured and molecular electronics in the

mid-1980s rekindled interest in Landauer’s transport framework. 49–52

The Landauer approach is easily understood by considering a quantum system where we track the transport

of individual charge carriers. As an example, consider a benzene ring attached between two gold electrodes.
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Figure 1.1. The experimental power factors of materials with complex Fermi surfaces are high, but grain bound-
ary resistance can degrade the electronic properties from those predicted by transport models and measured in
single crystal samples. Peak power factor at each temperature is assessed from experimental transport properties
with an e�ective mass model. 1 The peak power factor at each temperature corresponds to an optimized carrier
concentration. Bi2Te3, 2 CoSb3, 3 PbTe, 4 Mg3Sb2 (solid line assumes no grain boundary resistance), 5 and SrTiO3
(dashed line 6). 7 Fermi surfaces adapted from: CoSb3, 3 Mg3Sb2. 8
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The Landauer approach speci�es boundary conditions at the gold electrodes on either side of the benzene ring:

�xed electron chemical potentials µ and temperatures T . The boundary conditions set the electron occupation

statistics f of the gold electrodes, which are a function of energy E. As an aside, the Fermi-level Ef is used

interchangeably with the electron chemical potential µ in some sources (here, we reserve “Fermi-energy” for

0 K),

f(E) =
1

e
E−µ
kT + 1

. (1.1)

Transport through the benzene ring occurs via an integer number of parallel transport channels,M(E), with well-

de�ned transition probabilities, T (E), through the channels. The current is given by a sum over the transitions,

weighted by the di�erence in occupation statistics between the electrodes. Electrons are always hopping in both

directions; there is only a net current, I , if the electron occupation is higher at one electrode (∆f = f2−f1 6= 0)

so that there are more particles making transitions from that electrode,

I = −2q

h

∫ ∞
−∞

T (E)M(E)∆fdE . (1.2)

The transport between the reservoirs can be modeled as ballistic, di�usive, or anywhere in between by tuning

the transition probability.

Extending the Landauer approach to bulk systems involves considering the current density, J , through an

in�nitesimal slice of bulk material. The �nite di�erence in particle occupation statistics becomes a gradient in

occupation ∇f , induced by a gradient in chemical potential or temperature. The transport channels and their

associated transition probabilities (T (E) and M(E)) can be combined into a positive-valued, energy-dependent

transport function G(E),

J = −q
∫ ∞
−∞

G(E)∇fdE . (1.3)

Note that the charge associated with a carrier q includes its sign (e.g., q for an electron is −e). This equation

can be generalized to treat more than just charge transport by electrons. The current density, J , in Eq. 1.3 is

the product of a particle �ux and the charge per particle q; we can treat the heat �ux from charge carriers by

considering the heat carried per particle. In addition, Eq. 1.3 is applicable to more than just electrons; if the suit-

able particle distribution function is used, the equation is equally valid for fermions, bosons, and Boltzmann-like
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particles. Therefore, we can treat more than just conductivity and the Seebeck coe�cient with Landauer theory;

contributions to the thermal conductivity from electrons and vibrational quanta are accessible (Appendix B).

Without specifying any material details—metal or semiconductor, crystalline or amorphous—we can begin to

understand charge transport induced from electric �elds and temperature gradients; these gradients will induce

gradients in the particle distribution function, which drives transport. Derivations in these sections will focus on

understanding the underlying transport of measurable quantities such as conductivities and the Seebeck coe�-

cient without specifying any functional form forG(E). In all cases, we will see that transport can be understood

from gradients in particle occupation statistics.

1.1.1. Charge transport in an electric �eld

Characterizing electronic transport induced from electric �elds is a typical situation in a thermoelectric labo-

ratory; conductivity measurements are carried out by applying a voltage across a sample at isothermal conditions.

An external bias results in a gradient in the electron chemical potential (∇µ = q∇V ), which in turn induces a

gradient in the electron occupation statistics. The electron distribution functions near the contacts of a sample

under applied bias (at isothermal conditions) are depicted in Fig. 1.2a. The high energy states near contact two

have a greater occupation than those states near contact one. The di�erence in electron occupation constitutes

a driving force to transfer electrons from contact two to contact one.

If we can �nd a relationship between the spacial gradient of the occupation statistics (∇f = ∂f/∂x) and

the spacial gradient of the electron chemical potential (∇µ = ∂µ/∂x), we can determine the current density

induced by an applied voltage. A chain rule relates the gradient of the occupation statistics and the gradient of

the chemical potential (∂f/∂x = ∂f/∂µ ·∂µ/∂x). However, it is far more convenient to formulate the derivative

of the carrier statistics with respect to energy, E, instead of chemical potential µ, since the integral for current

density is over energy-space. The derivative of the Fermi-Dirac function (Eq. 1.1) with respect to chemical

potential and energy are opposite in sign (∂f/∂µ = −∂f/∂E). Therefore, a succinct chain-rule relates the

spacial gradient of the occupation statistics and the spacial gradient of chemical potential (∇f = −∂f/∂E ·∇µ);

applying this chain-rule to the general current density equation informs us how a material responds to an applied
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voltage,

J∇V = −q2∇V
∫ ∞
−∞

G(E)
−∂f
∂E

dE . (1.4)

The negative derivative of the Fermi-Dirac function (see Fig. 1.2) and G(E) are positive-valued functions. This

means that current �ows down a voltage gradient regardless of material type (i.e., metal, n/p-type semiconductor,

or insulator). The details of G(E) and the temperature determine the magnitude of the current density.

Conductivity is the thermoelectric property of interest when we apply a voltage to a sample. Ohms law

(J = −σ∇V ) relates the current density to the magnitude of the applied bias,

σ = q2
∫ ∞
−∞

G(E)
−∂f
∂E

dE . (1.5)

A material’s conductivity, σ, is always positive regardless of whether a semiconductor is n- or p-type. The

derivative of the electron distribution function (−∂f/∂E) acts as a selection function that determines which

Figure 1.2. a) A gradient in chemical potential shifts the Fermi-Dirac distribution. The in�nitesimal di�erence
between neighboring occupations is positive for all carrier energies. Transport proceeds down the chemical
potential gradient. b) In contrast, a temperature gradient changes the curvature of the Fermi-Dirac distribution.
The selection function is odd around the chemical potential. Carriers above the chemical potential di�use from
hot to cold, while carriers below �ow in opposition.
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carriers are involved in transport (see Fig. 1.2). At high temperatures, particles in a wider energy range participate

in transport.

1.1.2. Charge transport in a temperature gradient

The Seebeck e�ect is a phenomenon where a temperature gradient in a material induces a voltage gradient.

Applying a temperature gradient across a sample and measuring the induced voltage in an open-circuit condition

de�nes the Seebeck coe�cient, α. There are two driving forces for carrier transport during a Seebeck measure-

ment: a temperature gradient and the induced voltage gradient. In the linear regime, we can treat the current

density from these two stimuli additively. To understand the Seebeck measurement, we need to �rst understand

transport induced from a temperature gradient in a short-circuit condition (i.e., the electron chemical potential is

constant throughout the sample).

1.1.2.1. Short-circuit condition. Applying a temperature gradient to a sample induces a gradient in the carrier

occupation statistics; with increasing temperature, the carrier distribution function broadens around the electron

chemical potential. The carrier occupation statistics near the contacts of a sample in a temperature gradient

(under short-circuit conditions) are depicted in Fig. 1.2b. Regions of the sample at high temperature have more

electrons occupying high energy states, and fewer occupying low energy states; there is thus a driving force to

transfer high energy electrons from hot to cold, and low energy electrons from cold to hot. This intuitive picture

will be con�rmed below by Landauer theory.

Again we use a chain rule to relate the spacial gradient of the occupation statistics with the spacial gradient

of the temperature (∇f = ∂f/∂T · ∇T = (E − µ)/T · −∂f/∂E · ∇T ). Using Eq. 1.3, the Landauer solution to

current density induced from a temperature gradient becomes:

J∇T = −q∇T
∫ ∞
−∞

G(E)

(
E − µ
T

)
−∂f
∂E

dE. (1.6)

While the negative derivative of Fermi-Dirac function and G(E) are positive-valued functions, E−µT is an odd

function around the electron chemical potential (see Fig. 1.2b). An electron above the chemical potential will

transport from hot-side to cold-side, while electrons with energies less than the chemical potential will transport
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from cold-side to hot-side. This asymmetry allows us to distinguish n- or p-type semiconductors; the electrons in

n-type transport are predominantly above the chemical potential, while the opposite is true for p-type materials.

A temperature analog to Ohm’s law (J = −ν∇T ) relates the current density to the magnitude of the tem-

perature gradient.

ν = q

∫ ∞
−∞

G(E)

(
E − µ
T

)
−∂f
∂E

dE (1.7)

The intensive, material quantity, ν, is an Onsager coe�cient that determines the current response from a tem-

perature gradient. Materials may respond di�erently depending on the nature of G(E). If G(E) is symmetric

around the chemical potential, there will be no net current. The selection function for transport from a tempera-

ture gradient is (E − µ)·(−∂f/∂E). Most of the carriers involved in transport will have energies 1.5 kBT above

or below the chemical potential (Fig. 1.2). It is important (though somewhat unfortunate) that the energy range

for temperature driven transport overlaps with the voltage driven transport.

1.1.2.2. Open-circuit condition. Having derived transport from a temperature gradient under short-circuit

conditions, we can now revisit the Seebeck e�ect where both temperature and voltage gradients are present

in a material. In the linear regime, the current densities induced by the temperature and voltage gradients are

additive. Historically, these two contributions were termed the di�usion and drift currents, respectively,

J = J∇T + J∇V = −ν∇T − σ∇V . (1.8)

A Seebeck measurement is de�ned at open-circuit conditions where the net current density is zero (J = 0). The

Seebeck coe�cient, α, is given by the ratio of the voltage di�erence and the temperature di�erence through the

thickness, l, of the sample,

α = −∆V

∆T
= − l∇V

l∇T
=
ν

σ
. (1.9)

Recall that ν and σ determine how readily a material responds to a temperature and voltage gradient, respectively.

From Eq. 1.9, we see that materials with a large Seebeck coe�cient respond more readily to a temperature

gradient than an electric �eld. To have an ideally large Seebeck, a material would not respond to an electric �eld

at all. However, it is impossible for electrons in a real material to respond to a temperature gradient and not a
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voltage gradient because the carriers involved in the two transport processes are in overlapping energy ranges;

this is apparent when one examines the selection functions in Fig. 1.2.

1.2. Connection between Electronic Structure and Transport Properties

In the previous sections, we found that carriers in particular energy ranges set by selection functions are

involved in transport. Now, we will explore the role of the energy-dependent transport function G(E) in de-

termining both conductivity and the Seebeck coe�cient in crystalline materials. First, we need to explore the

microscopic origins of G(E). Throughout this section, we will examine crystalline materials in the di�usive

transport regime; di�erent material classes may have di�erent functional forms for G(E).

1.2.1. The energy-dependent transport function

In crystalline materials, G(E) can be derived from the band structure and scattering theory. To determine

G(E), we must consider the collective motion of all the particles at a given energy. Conveniently, the band

structure organizes all of the particles by energy in reciprocal space. Each particle travels with a group velocity

determined by the slope of the band structure (vg = ∂E/∂k) in the transport direction. If we consider the average

squared-velocity
〈
v2
〉

of the particles at a given energy, then we can account for their collective transport with

the density of states g. On average, each particle scatters after a characteristic relaxation time τ (Appendix C).

The di�usivity of each individual particle is described by
〈
v2
〉
τ . G(E) is the sum of the individual particle

di�usivities, since transport occurs in parallel conducting channels.

G(E) =
〈
v(E)2

〉
τ(E)g(E) (1.10)

In crystalline inorganic materials, band edges are modeled as spherical carrier pockets with a parabolic dispersion.

The dispersion curvature is parameterized by an e�ective mass m∗ (E = ~2|k|2/2m∗). This model is referred to

as the single parabolic band or e�ective mass model 53 and determines the energy dependence of both the average

velocity
〈
v2
〉

and density of states, g, in G(E). Qualitatively, the slope of the parabolic dispersion increases into

the band, so
〈
v2
〉

must be an increasing function; the surface-area of the spherical pocket also increases into the

band, so g must be an increasing function. Speci�cally,
〈
v2
〉

increases linearly into a band, while g increases
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as the square-root of energy. At temperatures greater than 300 K, the relaxation time, τ , is typically limited by

phonon scattering, which scales inversely with g. Since the energy dependence of g and τ cancel, the electron

energy-dependent transport function is linear (Gel(E) = G0 ·E). Fig. 1.3 depicts the constituent terms in G(E).
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Figure 1.3. a) For a crystalline semiconductor, the energy dependence of the transport function G(E) is derived
from its constituent terms. A spherical, parabolic band edge determines the charge carrier group velocity (v) and
density of states (g). The energy dependence of electron-phonon relaxation times (τ ) is inversely proportional
to g. b) The convolution of G(E) with selection functions determines thermoelectric transport coe�cients:
including, conductivity σ, the Seebeck coe�cient α, and the electronic contribution to thermal conductivity κe.

1.2.2. Location of the Fermi Level

Now that we have a functional form forG(E), we can see how it interacts with selection functions to produce

the variety of transport properties seen in metals, insulators, and semiconductors. Since G(E) is zero inside of a

band gap, the most important di�erence between these three classes of materials is the proximity of a band gap

to the electron chemical potential. As we will see, the chemical potential should be located near a band edge to

maximize power factor.

1.2.2.1. Insulators/Semiconductors. The electron chemical potential in insulators and semiconductors is lo-

cated in proximity to a band gap. The di�erence between insulators and semiconductors is the size of the band

gap. When either material is degenerately doped, the electron chemical potential resides just inside the band edge
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(as illustrated in Fig. 1.3). The voltage induced selection function (conductivity) partially samples the band edge.

Only half of the temperature induced selection function (Seebeck coe�cient) samples the band edge; since the

temperature selection function is odd, this prevents transport cancellation between electrons above and below

the chemical potential. In this con�guration, we get both high Seebeck coe�cient and su�ciently high con-

ductivity. Materials with the electron chemical potential near a band edge tend to make the best thermoelectric

materials due to the compromise between temperature and voltage driven transport. Optimizing the location of

the chemical potential with respect to the band edge optimizes the power factor.

1.2.2.2. Metals. By contrast, the electron chemical potential in metals is deep inside a band. As a result, the

voltage selection function samplesG(E) where it is largest. However, the temperature selection function induces

cancellation between carriers below and above the chemical potential. While the conductivity of metals tends to

be high, their low Seebeck coe�cients make them poor thermoelectric materials. In addition, a metal’s electronic

contribution to the thermal conductivity is high because carriers on both sides of the chemical potential are

contributing.

1.2.3. Parameterization of High Power Factor

An important quantity for thermoelectric device performance is the power factor, α2σ. Mathematically, we

can write the power factor in terms of the Onsager coe�cients (ν and σ) that we derived in previous sections.

A material’s power factor is a competition between temperature (the numerator) and voltage (the denominator)

driven transport,

α2σ =

[∫∞
−∞G(E)

(
E − µ
T

)
−∂f
∂E

dE

]2
∫∞
−∞G(E)

−∂f
∂E

dE

. (1.11)

We have established that placing the electron chemical potential near a band edge optimizes a material’s power

factor; this placement o�ers a compromise between the temperature/voltage driven transport integrals in Eq.

1.11. However, experimentally-realized optimum power factors are highly variable between material systems.

The slope (G0) of G(E) explains the wide range of power factors observed experimentally. Examine Eq. 1.11,

G0 can be pulled from the integrals since it is energy-independent. Optimized power factor is roughly pro-

portional to G0, the slope of the transport function. In the thermoelectric literature this constant is refered to
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interchangably as the weighted mobility, µ0 (m∗/me)
3/2, or sigma-sub-E-not, σE0 . 54 While µ can be tuned by

doping, the transport function is material dependent, and can thus be controlled by clever design of the band

structure.

1.3. Anomolous Transport Properties From Low-Dimensional Electronic Structures

The band structures of many perovskite oxides deviate considerably from the isotropic dispersion assumed in

the previous section. Therefore, we will need to revisit some of our expectations for transport in these systems.

While these systems still have a linear transport function, we will need to revisit how to interpret e�ective

mass and the relaxation time. A new toy-model for the band structure will help us understand the experimental

transport properties (Appendix D). The Fermi-surfaces of this band structure are cylinders as opposed to spheres.

This band structure is in essence, two-dimensional, since there is no dispersion along the length of the cylinder.

Perovskite oxides span numerous compositions and are heavily studied as materials for catalytic, 55–58 fuel

cell, 59–62 thermoelectric, 63–66 and oxide electronics. 67–70 SrTiO3 is a particularly promising candidate for elec-

tronics, because it supports two-dimensional electron gases at its surfaces and interfaces, 71–73 which may lead

to new device applications. 74 In many of the aforementioned applications, perovskite oxides are n-type elec-

tronic conductors with a tunable carrier-density, but they can also be made insulating or as p-type conductors. 75

Understanding their mobility-limiting scattering mechanism is crucial for engineering their transport properties.

The discussion of electron scattering in perovskite oxides centers on the peculiar temperature dependence of

the electrical resistivity, which is not well understood. While the resistivities of typical heavily-doped semicon-

ductors and metals are proportional to temperature, 76,77 the resistivities of many perovskite oxides (SrTiO3, 9,78,79

SrMoO3, 80 KTaO3, 10 SrNbO3, 81 and SrCoO3) 82 are proportional to temperature-squared (T 2). Electron-electron

scattering, which is known to give T 2 at low temperatures in strongly correlated materials, is typically invoked

to explain the anomalous temperature dependence. 83 If the results of low temperature experiments are analyzed

in isolation, electron-electron scattering may be a su�cient explanation for T 2 behavior. However, T 2 resistiv-

ity persists above room temperature in many perovskite oxide semiconductors, 7,9–11 which calls into question

whether electron-electron scattering is truly the dominant mechanism in these materials. Furthermore, recent

�rst principles calculations have indicated that transport is dominated by electron-phonon scattering. 84,85
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The peculiar T 2 resistivity can be explained by the remarkable Fermi surfaces of the d-bonding perovskite

oxides (other perovskite oxides, such as BaSnO3, do not share these features). These Fermi surfaces are assem-

blies of ellipsoids with high aspect ratios that are nearly cylindrical (they are often described as “warped” or

having a “jack” shape), can intersect the Brillouin zone boundary at low energies in high carrier density samples,

and are distinct from the Fermi surfaces invoked in standard transport models for semiconductors and metals,

from which the expectation of linear-temperature resistivity originates. Cylindrical Fermi surfaces re�ect the

low-dimensional electronic structures of these materials, which is discussed in the literature but not included in

transport analyses of bulk samples. 86 Low-dimensional Fermi surfaces explain several other transport phenom-

enon in addition to T 2 resistivity, such as the temperature and carrier-density dependence of the e�ective mass

and the carrier-density dependence of scattering.

1.3.1. A Low-Dimensional Fermi-Surface Model

The transport properties of semiconductors are typically characterized by an e�ective mass. The e�ective

mass relates experimental transport properties to the band-edge electronic structure. For semiconductors with

simple, nearly-spherical Fermi surfaces, an isotropic mass (m∗) is often su�cient to describe the transport proper-

ties. 1,87 However, the Fermi surfaces of perovskite oxides are more complicated, and the e�ective mass description

must re�ect the anisotropic Fermi surfaces of the three sets of t∗2g states. From the preceding chemical analysis,

the e�ective mass in one direction (the δ-interaction direction) should be heavier than the other two, which are

comparatively lighter because of the strong π-interactions (mh � ml). The carrier pockets described by this

anisotropic description are prolate, ellipsoidal carrier pockets.

Exy =
~2
(
k2x + k2y

)
2ml

+
~2k2z
2mh

(1.12)

The anisotropic limit of this carrier pocket (mh →∞ when the δ-interactions are negligible) captures the cylin-

drical shape of SrTiO3 Fermi surfaces, which intersect the Brillouin zone boundary at energies close to the con-

duction band edge energy (Fig. 1.4a).

A cylindrical Fermi surface has two-dimensional character, since the E − k relationship now only depends

on the k-vector in two of the three dimensions. The absence of dispersion in one direction leads to an electron
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density-of-states (DOS) that is independent of energy, like a free electron in two dimensions. Energy independent

DOS is a signature of low-dimensional electronic structures, and is qualitatively di�erent than a typical three-

dimensional DOS, which is proportional to the square-root of energy. The energy dependence of the DOS is

reduced in the perovskite oxides, because the number of states in the heavy mass direction saturates once the

Fermi surface intersects the Brillouin zone boundary.
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Figure 1.4. The distinct Fermi surfaces of perovskite oxides heavily in�uence their transport properties. a) Fermi
surfaces of SrTiO3 exhibit low-dimensional character, which is exempli�ed by a highly-elongated shape that
intersects the Brillouin zone boundary. b) Cylindrical Fermi surfaces capture the low-dimensional character of
the band structure, and the intersection of the three cylinders accounts for the two nearly spherical Fermi surfaces
observed in (a). This band structure model is distinct from the isotropic (spherical) dispersion typically invoked
to convert experimental data to quantities such as e�ective mass. c) The low-dimensional model is consistent
with the experimental e�ective mass of doped SrTiO3 single crystals; it properly reproduces the temperature
and carrier dependence of the e�ective mass extracted from the Seebeck coe�cient. Strongly varying e�ective
masses may be a useful experimental signature for identifying other low-dimensional electronic structures in
three-dimensional materials.

The combination of the three orthogonal, anisotropic carrier pockets results in isotropic electrical conduc-

tivity and Seebeck coe�cients. For example, the isotropic conductivity is the sum of conductivities from two

pockets in the light mass direction and one pocket in the heavy mass direction (σ = 2σl + σh). Since the charge

carrier group velocity (vg ∝ ∂E/∂k) is zero in the heavy mass direction, only two cylinders e�ectively contribute

to transport (σ = 2σl) along each crystallographic axis. Combining the three, anisotropic carrier pockets leads

to isotropic transport behavior but does not a�ect the energy dependence of the DOS, which remains a constant.

A low-dimensional, three-cylinder model (Fig. 1.4b) re�ects the interwoven, crystal orbital sheets that form the

conduction band states of many perovskite oxides (Fig. 2.5c). Each cylindrical band of states is formed from one

t∗2g crystal orbital.
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Perovskite oxides are not the only compounds with this peculiar band-edge structure; �rst principle cal-

culations have shown that some Heusler compounds share these features. 88 As in the perovskite oxides, low-

dimensional features in the Heusler compounds are attributed to d-orbital chemistry, so there may be even more

structure families with these low-dimensional features. The transport coe�cients of the three-cylinder band

model are derived in the SI, and might be useful when modeling the transport properties of Heuslers in addition

to perovskite oxides.

1.3.2. 2D Transport in Bulk Perovskite Oxides

A two-dimensional electronic structure explains many of the unconventional trends in transport properties

observed in semi-conducting perovskite oxides. It explains the dependence of the experimental e�ective masses

on temperature and carrier concentration, the carrier-density dependence of scattering, and the temperature

dependence of resistivity. The measurements that characterize these anomalous properties are direct-current

or stationary transport studies of n-type materials, in which SrTiO3 is a band conductor. 89 Deformation poten-

tial phonon scattering 90 is successful in modeling all three of these experimental transport properties, which

suggests that electron-phonon scattering limits the intrinsic mobility of single crystalline SrTiO3 and other per-

ovskite oxide semiconductors with d-p hybridization. While SrTiO3 can exhibit a polaron transport response at

very low carrier-densities in very pure samples 91 and in optical measurements, 92 the properties studied here are

overwhelmed by band transport. Furthermore, grain boundaries in polycrystalline samples can cause deviations

from the transport responses characterized here for single crystal samples. 93

1.3.2.1. E�ective Mass Behavior. The concept of “e�ective mass” is useful for connecting experimental trans-

port properties to the properties of an underlying electronic structure. For example, the Seebeck e�ective mass

(m∗s) aggregates the Seebeck coe�cient and carrier-density into one term that characterizes the density of states

e�ective mass of electronic charge carriers. The Seebeck mass is the e�ective mass that reproduces the ex-

perimental Seebeck and carrier concentration using a simple, three-dimensional, free-electron model (a single,

isotropic, parabolic, rigid band model). 1,87 If a system is described well by a three-dimensional free-electron model

(such as most common metals and semiconductors), then the Seebeck mass will be largely constant for di�erent

temperatures and charge carrier concentrations. Changes in the extracted e�ective mass with temperature or
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carrier-density can signal that the underlying band structure is di�erent. In the case of SrTiO3 and perovskite

oxides in general, these changes (Fig. 1.4c) can be modeled by their assembly of two-dimensional, cylindrical

Fermi surfaces.

The Seebeck masses of doped SrTiO3 single crystals were determined in this way using carrier concentrations

estimated from the chemical doping concentrations (either Lanthanum or Niobium). 7 The Seebeck mass decreases

with increasing temperature and carrier concentration (Fig. 1.4c). Theoretical transport from a three-cylinder

model validates that this complex behavior is explained by the low-dimensional electronic structure. When cal-

culating the theoretical transport, an energy-independent relaxation time was used, the cylindrical length was

set by the experimental lattice constant (l = 2π/a = 1.6 · 1010 m−1), and an e�ective radial mass (ml) of 1.5 me

was estimated by �tting the experimental transport properties. The carrier and temperature dependent Seebeck

mass observed in the experimental data is captured by the low-dimensional band model (Fig. 1.4c). A strongly

temperature and carrier dependent Seebeck mass (or any other experimentally determined e�ective mass) is a

useful experimental signature for identifying low-dimensional electronic structures in three-dimensional mate-

rials. Changing e�ective masses in these cases do not correspond to a changing band curvature.

1.3.2.2. Carrier-Density Dependence of Scattering. The underlying two-dimensional DOS of perovskite ox-

ides can also explain unusual aspects of their electron scattering. Hall e�ect measurements of electron-doped

SrTiO3 demonstrate that phonon scattering is dominant at temperatures greater than 10 K. 94 In the phonon-

dominated regime, the relaxation time is largely independent of carrier-density. 95 This anomalous behavior is

qualitatively di�erent from the behavior of typical three-dimensional semiconductors and metals, where the

relaxation time decreases with increasing carrier-density. 76,77 For both SrTiO3 and KTaO3, the same trend in

scattering frequency is observed from analyzing a combination of the Seebeck coe�cient and conductivity; 89 the

relaxation time of each material is found to be largely independent of carrier-density (Fig. 1.5).

The three-cylinder transport model predicts that the relaxation time should be independent of carrier-

density. To understand this result, it is important to recognize that transport measurements investigating scatter-

ing only probe the behavior of electronic carriers near the Fermi level (Ef ), which shifts in response to changes

in carrier-density. For example in an n-type semiconductor, increasing the carrier-density increases the Fermi

level. Therefore, transport measurements of samples with di�erent carrier-densities measure the relaxation time
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(τ ) of electronic carriers at di�erent energy levels. For materials dominated by non-polar phonon scattering (de-

formation potential scattering), the relaxation time is inversely proportional to the electron density of states (g)

at the Fermi level, 90 because the density of states determines the number of states a given electron can scatter

into. In a three-dimensional material (g ∝ E1/2), the relaxation time decreases with increasing carrier-density

(τ ∝ E−1/2f ). However, the two-dimensional density of states of perovskite oxides (g ∝ E0) makes the relaxation

time insensitive to carrier-density, since the density of states does not change with Fermi level position.

τ2D (Ef , T ) = τ0 (T ) (1.13)

The absolute magnitude of the relaxation time (τ0) physically depends on the temperature, primarily through

the number of excited phonons (proportional to temperature at high temperatures). However, the temperature

dependency can be quite complicated at lower temperatures, where all the scattering phonons modes are not

appreciably excited.

1.3.2.3. Temperature-Squared Resistivity. The two-dimensional Fermi surfaces of d-bonding perovskite ox-

ides explain the anomalous temperature dependence of their resistivity. This resistivity is typically proportional

to T 2 (which is typically associated with electron-electron scattering at low temperatures) 83 and is quite ubiq-

uitous in metallic perovskite oxides. 10,78–81 In many semi-conducting compounds including SrTiO3, 7,9 KTaO3, 10
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Figure 1.5. The two-dimensional density of states of perovskite oxides is responsible for their carrier-density
insensitive scattering (solid lines). For reference, the relaxation times of most three-dimensional semiconductors
decrease with increasing carrier-density (dashed line). Data for SrTiO3

9 and KTaO3
10 are at 200 K.
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and Ba(x)Sr(1-x)TiO3 solid-solutions 96 this behavior persists to high temperatures (Fig. 1.6a), where phonon scat-

tering dominates transport and electron-electron interactions are expected to be comparably weaker. 94 There

is a slight carrier-density dependence to the temperature dependency, where the resistivity is T 3 at the lowest

carrier-densities (see the most resistive KTaO3 sample in Fig. 1.6a and). 97 Application of the three-cylinder model

to Seebeck-conductivity data shows that all of these samples (including the lowest carrier-density samples) have

a T 2 relaxation time (Fig. 1.6b). For high carrier-density samples, the classic Drude model (ρ−1 = ne2τ/m∗)

illustrates how the relaxation time is inversely related to the resistivity. For the low carrier-density samples,

the additional temperature dependence in the resistivity originates from the Fermi level shifting with temper-

ature, since the Fermi level is more sensitive to temperature at low carrier-densities. The T 3 resistivity at low

carrier-densities has also been explained through �rst principles calculations of electron-phonon coupling, which

is consistent with our model interpretation. 85 The relaxation times of all SrTiO3 and KTaO3 samples are the same

within each compound, and the relaxation times of Ba(x)Sr(1-x)TiO3 samples change monotonically through the

solid solution. The shorter relaxation times at the BaTiO3 end of the solid-solution are likely due to stronger

electron-phonon coupling in BaTiO3. The relaxation times extracted for SrTiO3 at 300 K are similar in magnitude

to those calculated in �rst-principles simulations of electron-phonon scattering. 84

Several discussions in the literature suggest that elongated Fermi surfaces, such as those observed in elemen-

tal Bismuth, 98 can induce T 2 scattering and resistivity through electron-phonon interactions. 89,99,100 Typically,

the scattering rate from electron-phonon scattering is expected to be proportional to temperature, because the

number of phonons (nq ∼ kT ) increases linearly with temperature. 76,77 At high temperatures, where all phonons

have nearly equal occupation (above the Debye temperature), this leads to electrical resistivity proportional to

T 1. However at lower temperature, when not all phonon modes are equally available for scattering electrons,

additional temperature dependencies arise. At a given temperature, only phonon modes with energy less than

the thermal energy are substantially occupied (qthermal = kT/vs); these phonons occupy a volume of k-space

enclosed in a Bose sphere with radius qthermal. The phonons can scatter an electron on the Fermi surface into

another electron state on the Fermi surface enclosed within the radius of the Bose sphere (centered on the initial

electron state, Fig 1.6c). Due to increasing temperature, the radius of the Bose sphere increases, which increases

the number of accessible �nal electron states (nfinal) and therefore increases the scattering. For cylindrical
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Fermi surfaces, when the radius of the Bose sphere is greater than the cylindrical radius, the number of �nal

states increases linearly with qthermal, which is roughly along the linear dimension of the cylinder. The com-

bined temperature dependencies from phonon occupation and the number of accessible �nal, scattered states

results in temperature squared scattering rates (τ−1 ∼ nq · nfinal ∼ T 2). As the temperature increases and the

phonon energy exceeds that of the acoustic branch, the dispersive optical modes then extend the T 2 temperature
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Figure 1.6. The two-dimensional Fermi surfaces of perovskite oxides lead to temperature squared resistivity. a)
The resistivities of KTaO3, 10 SrTiO3, 7,9 and Ba(x)Sr(1-x)TiO3

11 are proportional to temperature-squared (except
at the lowest carrier-densities, where it is temperature-cubed due to the temperature dependence of the Fermi
level). b) The relaxation time extracted with the two-dimensional model is dominated by acoustic phonons below
room-temperature and optical phonons at higher temperatures. Furthermore, even at low carrier-densities, the
relaxation time follows temperature-squared behavior. c) The additional source of temperature dependence in
the resistivities and relaxation times (T 2 v.s. T 1) comes from their Fermi-surface dimensionality, as the number
of accessible �nal scattering states for electrons (states within the radius of a phonon Bose sphere) increases
with increasing temperature. The additional temperature dependency from increasing �nal states, along with
increasing phonon occupation, leads to temperature-squared resistivity.
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dependence to higher temperatures in perovskite oxides. 101 For less curved Fermi surfaces, at extremely low tem-

peratures, the phonon Bose sphere is so small that it would “see” the Fermi surface as a plane, so the number of

accessible �nal states increases as temperature-squared (a q2 area of �nal states). Combining this with a forward-

scattering T 2 term results in the T 5 temperature dependence of resistivity predicted by Block. 102 However, the

resistivities of most metals 103,104 and perovskite oxides in particular do not show T 5 temperature dependence,

because of other scattering mechanisms at these temperatures. 94 The full range of temperature dependencies for

typical and two-dimensional Fermi surfaces are illustrated in Figure D.1.

A scattering model (D.36) that includes both acoustic phonon and optical phonon deformation potential scat-

tering con�rms this intuitive phase space explanation for temperature-squared relaxation times (Fig. 1.6b). This

model considers two phonon branches (populated following the Bose-Einstein distribution function) scattering

an electron on a cylindrical Fermi surface. The �rst phonon branch models the acoustic modes, while the second

models the dispersive soft optical modes, which have minimum energy at Gamma but are o�set higher in energy

from the acoustic modes. 101 The relaxation time below 300 K is dominated by the acoustic scattering modes,

while the non-polar optical modes become the dominant scattering source above room temperature. The defor-

mation potential scattering implemented in this physical model is consistent with the experimentally observed

relaxation time from 100 K to 1000 K, and the model might be improved at higher temperatures by including

scattering from higher-energy optical modes. In fact, recent �rst-principles evidence suggests that there are at

least three optical branches that contribute to the electron-phonon scattering. 85 Furthermore, this model predicts

that the relaxation time should become T 1 at very high temperatures (Fig. S1), when all optical modes are appre-

ciably excited. The temperature at which this occurs corresponds to an apparent Debye temperature as measured

from the speci�c heat capacity, 105 which accounts for the excitation of the optical modes. By contrast, a Debye

temperature estimated from the speed of sound would underestimate this transition temperature, because this

method only considers the acoustic modes.
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CHAPTER 2

Electronic Structures as Linear Combinations of Atomic Orbitals

When discussing electronic structure in crystalline materials, there are dual aspects to consider. On one hand

is the reciprocal-space representation—that of electronic band diagrams—where electronic states are indexed by

their wave-vector k and band-index n. We found that this representation explains the di�erences in thermo-

electric performance between di�erent materials. The complementary perspective of the electronic structure is

represented in real-space, where the electronic states correspond to combinations of atomic orbitals. 106,107 Lin-

ear combination of atomic orbitals (LCAO) and tight binding theory describe the connection between these two

aspects of electronic structure, which facilitates connections between electronic properties and crystal chem-

istry. 108–111 Small variations in the fractional contribution from each orbital type (s/p/d/f) on each crystal site can

have an enormous impact on the electronic band structure. For example, in the diamond-like semiconductors,

small variations in orbital character explain whether their band gaps are direct or indirect. 112 While information

on electronic properties are more directly encoded within the reciprocal-space representation, 40,113 the atomic

orbital representation is e�ective when explaining the variance among multiple electronic structures. In partic-

ular, atomic orbitals are powerful when analyzing electronic structures within a structure family, because the

crystallographic sites are �xed and only the fractional orbital contributions are changing.

2.1. Motivation for Mapping Electronic Structures within the half-Heusler Family

The half-Heusler structure family (Figure 2.1) is an excellent test-case for exploring the variance in electronic

structure with an atomic orbital basis-set. These materials are strong candidates for thermoelectric applications

because of their large peak power factors, which are a result of weak electron-phonon coupling and high valley

degeneracy imposed by the symmetry of the Brillouin zone. 114–118 However, these materials su�er from high

lattice thermal conductivities. To reduce the thermal conductivity, half-Heuslers are synthesized as complex
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solid-solutions, which scatter lattice vibrations through alloy scattering. 29,116,119–124 Isovalent substitutions pri-

marily lower the lattice thermal conductivity, and aliovalent substitutions tune the carrier-density in addition to

suppressing thermal conductivity. The highest-performing systems can involve �ve or more atomic-components,

but to simplify their description, these systems can be expressed as pseudo-binaries, pseudo-ternaries, and ect.

of end-member half-Heusler phases. For example, the quarternary system Nb(1-x)TaxFeSb is the pseudo-binary

NbFeSb−TaFeSb.

While lattice thermal conductivities in solid-solutions are quantitatively described by empirical models, 125–127

changes in electronic properties are understood more qualitatively. One main e�ect to consider is band structure

engineering—how changes in stoichiometry a�ect aspects of the electronic structure. To �rst order, the appar-

ent band structure in a solid-solution (inferred from electronic transport measurements) is a linear interpolation

between the end-member electronic structures. 128–134 For example in the Zintl structure family, the band gap

and e�ective mass in n-type Mg3Sb2-Mg3Bi2 change linearly with composition between Mg3Sb2 and Mg3Bi2. To

begin to understand how changes in atomic-composition (and atomic orbitals) a�ect electronic structure in the

half-Heusler family, we calculated the electronic structures of the stable, semi-conducting (18 valence electrons)

Figure 2.1. There are three crystallographic sites in the half-Heusler structure: X (blue), Y (red), and Z (green).
The Y -site is in a body-centered-cubic coordination environment formed by the X- and Z-sites. The X- and
Z-sites are in tetrahedral coordination environments formed by the Y -sites (in the �rst nearest-neighbor shell)
and octahedral coordination environments formed by X- and Z-sites (in the second nearest-neighbor shell).
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phases reported in the ICSD. 135 To quantitatively compare the calculated phases, we decomposed their near

band-edge electronic structures into their natural components—atomic orbitals. Information on atomic orbitals

in solids are encoded in the projected density of states, 136,137 which we use to construct a map of the valence band

electronic structures. Based on this map, we �nd that there are three distinct classes of electronic structure. The

valence band maximum is at a di�erent k-point in the Brillouin zone for each electronic structure class. Phases

that are intermediates of the extreme cases have increased valley degeneracy from the energy convergence of

multiple k-points at the band edge. Similar to the valence rules developed to predict the stability of half-Heusler

phases, 135 we develop several valence rules that predict the relative energies of k-points in the Brillouin zone. In-

stead of considering the total valence electron count (rules for stability), these rules consider the relative valence

electron con�gurations of the elements on each site of the crystal structure.

2.2. Orbital Phase Diagram of the half-Heusler Valence Band Electronic Structures

In p-type semiconductors, charge-transporting holes occupy states in the valence bands according to the

distribution function for holes (h = 1 − f , where f is the Fermi-Dirac distribution function). 138 These valence

states are ascribed to particular atomic orbitals in the projected density of states (gi). The number of occupied

holes from a particular atomic orbital (pi) is accumulated from the valence band states.

pi =

∫
V B

gi(E) · h(E) · dE (2.1)

The fractions of atomic-like holes (xi = pi/Σipi) describe the composition of the system of holes in a particu-

lar phase. This composition depends on the electron chemical potential (Fermi-level) and temperature, but for

consistency across multiple p-type phases, standard conditions can be chosen. In this work, the Fermi-level is

placed at the valence band edge and the temperature is 700 K, which is near the temperature at the peak power-

factor for these materials. Between the three crystallographic sites (X/Y /Z) and three orbital characters (s/p/d)

there are nine components to consider. However, only several of the components contribute meaningfully to the

valence states, and 97% of the variation in orbital character is accounted for by the X-d, Y -d, and Z-p compo-

nents alone. Therefore, the phases can be represented in a Gibbs phase triangle (Figure 2.2a). In contrast to a
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conventional phase diagram, which represents the stable phases within a composition region, the “orbital phase

diagram” represents the diverse electronic structures expressed by phases within a structure family.

Figure 2.2. a) The valence band edges of half-Heusler electronic structures are primarily composed of d-orbitals
from the X- and Y -sites, and secondarily, p-orbitals from the Z-site. The relative contributions of these basis
orbitals describe the type of carrier pockets observed in this structure family. b) Electronic structures with higher
concentrations of Z-p orbitals at the band edge have carrier pockets at the W-point with high degeneracy. c)
Phases with valence band edges dominated by X-d states have carrier pockets at the Γ-point, and d) band edges
dominated by Y -d states have carrier pockets at the L-point.
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There are three limiting cases of valence band electronic structures (indicated by blue, red, and green). The

�rst class of electronic structure (blue) has the valence band maximum at Γ, which has a degeneracy of one

in the �rst Brillouin zone (Nvk ). To clarify, we are considering the degeneracy imposed by the symmetry of

the Brillouin zone, which does not include the number of degenerate bands (Nvo , orbital degeneracy) at that

k-point (Nv = Nvk · Nvo ). TiNiSn is an example compound from this class, where the valence band edge is

dominated by Ti-d states (Figure 2.2c). The second electronic structure class (red) has its valence band maximum

at the L-point—a degeneracy of four. TaFeSb exempli�es this class, where the band edge states are dominated

by Fe-d (Figure 2.2d). In the last class of electronic structure (green), the valence band maximum is at the W-

point (degeneracy of six). These electronic structures (e.g. NbRhSn in Figure 2.2b) have relatively higher band-

edge contributions from Z-p orbitals, which originates from the states along the X-W path (green-orange hue).

Each of the other electronic structures are intermediates of the three limiting cases. For example, NbCoSn is an

intermediate between the W-point (green) and L-point (red) extremes, with both carrier pockets within 100 meV

of the band edge. Irrespective of the electronic structure class, the type of atomic orbitals contributing to each k-

point (within the �rst valence band) are similar among all of the half-Heusler materials—the Γ-point is dominated

by X-d states, the L-point is dominated by Y -d states, and Z-p states are mixed into the X-W path. Therefore,

the chemical bonding is similar among all the materials. The primary source of variance among their electronic

structures is the relative energies of the Γ-, L-, and W-points, which are linked to the relative energies of their

constituent atomic orbitals.

2.2.1. Valence Rules for Engineering Γ-L Carrier Pockets

Engineering the Γ-L energy o�set tunes the valley degeneracy and the thermoelectric performance of half-

Heusler materials. 116 The relative energies of the Γ- and L-points are described by simple, chemical di�erences

between the X- and Y -species. The dominant, �rst-order e�ect is the di�erence in valence between the X- and

Y -species, which is encoded in their group (column) number on the periodic table. In a linear model, di�erences

in valence account for over 85% of the variation in the Γ-L energy o�set (Figure 2.3). Compounds with larger

di�erences in valence have valence band maxima at Γ (e.g. TiNiSn, where Ni has six more valence electrons than

Ti), while compounds with smaller di�erences in valence have valence band maxima at L (e.g. NbFeSb, where Fe
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has only three more valence electrons than Nb). A second-order descriptor is the di�erence in electronegativity

between the X- and Y -species, which can account for di�erences in the Γ-L energy o�set between compounds

with isovalent species (e.g. NbCoSn and NbRhSn). Furthermore, elemental characteristics of the Z-species do

not improve the prediction of the Γ-L energy o�set, likely because the energies are properties of the X- and

Y -species orbitals. Recall that the Γ- and L-point states are formed from the X-d and Y -d orbitals.

The valence di�erence rule extends beyond the semiconducting phases to metastable phases with 17 and

19 valence electrons, which are p- and n-type metals (Figure E.1). For example, while the energy di�erence

between the Γ- and L-points is nearly zero for TiCoSb, the Γ-pocket dominates the valence band maximum

in the Ni-substituted analog; TiNiSb has a larger valence di�erence and 19 valence electrons. Conversely, in

the Fe-substituted analog, the L-pocket dominates; TiFeSb has 17 valence electrons and a smaller di�erence in
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Figure 2.3. The di�erence in valence electron con�guration (encoded in group number) and electronegativity
of the X- and Y -species determines the energy o�set between the Γ- and L-points. Engineering the relative
energies of these k-points controls the degeneracy (four in the case of L-pockets and one for Γ-pockets).
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valence. While TiNiSb and TiFeSb are not stable themselves, there are implications for forming solid-solutions

between TiCoSb and and either of the metallic end-members (electronic doping)—the relative energies of the Γ-

and L-points may change.

2.2.2. Engineering Highly-Degenerate W-pocket Alloys
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Figure 2.4. The W-point is at or near the valence band maximum for compounds with both a Group IV element
on the Z-site (Sn, Ge) and a Group IX on the Y-site (Co, Rh, or Ir). Furthermore, in six of the seven W-pocket
materials, the L-point is converged within 100 meV of the band edge (total degeneracy of ten).

Materials that contain both group-IV (e.g. Sn) and group-IX (e.g. Co) elements adopt a distinct class of

electronic structure, where the W-point is at or near the valence band edge (Figure 2.4). In six of these seven

phases, the W-point and L-point are both within 100 meV of the valence band edge, e�ectively converged at

1200 K. While only Sn- and Ge-containing end-member phases are reported stable in the literature, the calcu-

lation of metastable NbCoPb con�rms that this valence rule extends beyond Sn- and Ge-containing compounds

(Figure E.2). Entropy-stabilized solid-solutions between NbCoSn and NbCoPb could bene�t from reduced lat-

tice thermal conductivity from alloy scattering and retain valley-high degeneracy throughout the solid-solution.

However, the carrier-density must be tuned to optimize the thermoelectric transport properties. There are three

sites where aleovalent substitution can introduce additional holes in the system and tune the carrier-density.

We have computed several site-substituted end-members to investigate the potential changes in band structure

induced by candidate dopant elements (Figure E.2). Substituting on theX- and Y -sites has the expected behavior
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of tuning the Γ-L energy o�set, based on the valence di�erence rules developed in the previous section. Substi-

tuting Ti on the Nb-site raises the relative energy of the Γ point, since the valence di�erence between Ti and Co

is larger than between Nb and Co. Introducing Fe on the Co-site has the opposite e�ect, and pushes the L-point

above the W-point, un-converging the bands. However, substituting In on the Sn-site has an entirely new e�ect.

In NbCoIn, the X-point is at the valence band edge. This compound has entirely di�erent class of electronic

structure, distinct from the three archetypal band structures identi�ed in Figure 2.2. The band structure has �at

and dispersive character between the X- and W-points, which is similar to the band character found in SrTiO3

and some full-Heusler phases. 88,139 There may be di�erences in transport properties between materials doped on

each of the three sites.

2.3. Alternatives to an Atomic-Limit Representation: Hybrid Orbital Basis Sets

In the preceding section, we found that atomic orbital representations clearly separate di�erent classes of

electronic structure within a family of compounds. Plotting each phase within an orbital phase diagram helps

elucidate the primary sources of variance among the reciprocal-space electronic structures. However, the atomic

orbital representation fails to capture the role of bonding within the electronic structure. For example, in half-

Heusler phases that are dominated by a combination of X-d and Y -d character, do the d-orbitals from each site

form a bond? or are they non-bonding? Upon inspection of the band structure, it is clear that they are non-

bonding, because there is relatively little mixing of the orbital character at individual k-points, but this is not

explicitly clear from the orbital scores. The atomic orbital representation does not describe how the individual

orbitals interact with one another. Hybrid orbital basis-sets can overcome this shortcoming. In the solid-state,

Wannier orbitals are a powerful option for investigating orbital hybridization. The speci�c hybridization of the

atomic orbitals can help explain the dispersion of the electronic bands in the reciprocal-space representation of

the electronic structure.

The valence and conduction band structures of many perovskite oxides (including SrTiO3) are composed of

d-orbitals from the B-site (Ti-site) and p-orbitals from the oxygen sites. 86 The speci�c mixing of the d/p-orbitals

is complicated, but can be simpli�ed by constructing maximally localized Wannier functions. Wannier functions

are the crystal equivalent of localized molecular orbitals and visually embodies hybridization of the constituent
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atomic orbitals. 140 Furthermore, the dispersion of electronic bands in momentum (k) space is readily rational-

ized by the mixing of Wannier functions from all crystal sites, which creates a crystal orbital—the extension of

molecular units to periodic systems. We �nd that the conduction bands are composed of two-dimensional crystal

orbitals, which is re�ected in two-dimensional dispersion at the conduction band edge.
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Figure 2.5. The electronic structure of SrTiO3 is described by two-dimensional crystal orbitals, even though the
crystal structure is three-dimensional and cubic. a) In the unitcell, local Ti-d and O-p orbitals hybridize via
covalent bonds; an octahedral crystal �eld splits the anti-bonding Ti-d states into two subsets. Each hybrid
state is visualized by maximally localized Wannier functions and exhibits strong anti-bonding character in the
conduction states and subtle bonding character in the valence states. b) Each hybrid orbital state broadens into
bands in momentum (k) space when they mix with adjacent unitcells. Crystal orbitals are formed from the mixing
of Wannier functions from all crystal sites, and the introduction of a Bloch phase factor between neighboring
orbital hybrids speci�es a particular k-state. For the lowest-lying conduction bands (labeled by 1 and 2), mixing
only exists between t∗2g orbitals of the same x/y/z symmetry. c) There are two interactions between adjacent
t∗2g orbitals that dictate the strength of dispersion in k-space. (1) The strong π-interactions in the plane of each
basis orbital give dispersive character to the bands. (2) The weak, out-of-plane δ-interactions give non-dispersive
character, which is a signature of its low-dimensional electronic structure along the Γ-X directions (parallel to
the 〈100〉 family of crystallographic directions).

At the unit cell level, Wannier functions for SrTiO3 show strong hybridization of titanium d-states (Ti-d)

and oxygen p-states (O-p), which create bonding or anti-bonding covalent interactions (Fig. 2.5a). The bonding

character of the valence states is expressed by distortions of the O-p orbitals toward the titanium atoms. By

contrast, the Ti-d and O-p orbitals in the conduction states have opposite phase, which represents anti-bonding

character. The anti-bonding t2g hybrids (t∗2g) are lower in energy than the anti-bonding eg hybrids (e∗g ), because
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π-anti-bonding interactions are relatively weaker than σ-anti-bonding interactions. The degeneracy of the anti-

bonding states is determined by the octahedral symmetry of the crystal �eld. Furthermore, the anti-bonding

states retain the symmetry representations of pure d-states, even though they are hybridized with O-p—their

symmetry properties, including mutual orthonormality, are not a�ected.

Wannier functions on neighboring crystal sites overlap and mix, which creates dispersive bands of energy

states. The electron states in these bands are well known as the Bloch wavefunctions. Individual Bloch states

(k-states) are constructed from a sum of Wannier functions from all the crystal sites, with appropriate phase

factors (set by k) between neighboring orbitals. The set of Wannier functions required to represent a Bloch state

(not accounting for the phase factors) de�nes what can be understood as a crystal orbital. The Bloch states of the

lowest-lying conduction bands (blue in Fig. 2.5b, which determine n-type transport) can be grouped into three

bands based on their crystal orbital symmetry (an alternative ordering to energy). Each band of states is described

by a single crystal orbital, which is composed of a single t∗2g Wannier function (tiled over all lattice sites). While

the typical band ordering by energy (Fig. 1.4a) is convenient from a computational standpoint, the alternative

grouping by crystal orbital (Fig. 1.4b) facilitates a chemical interpretation of the electronic structure, because the

dispersion of bands in k-space is explained by the changes in the crystal orbital bonding interactions as a Bloch

phase is introduced. The k-space dispersion can be explained by the crystal orbitals themselves.

Consider the band of states described by the x-y t∗2g crystal orbital (d∗xy, states dominated by the Ti-dxy

atomic orbitals). In the x-y plane, the neighboring Wannier functions overlap via strong π-interactions, while

in the z-direction, they overlap via weak δ-interactions (Fig. 2.5c). Again in the x-y plane, notice that the O-p

orbitals within one Wannier function are in a bonding con�guration to the Ti-d orbitals in a neighboring Wannier

function. Thus the π-interaction is bonding at Γ (k = 0), whereas if there was no d/p-hybridization and only

Ti-dxy character, the interaction would be anti-bonding at Γ. The energies of the electronic states increase as

k moves from Γ to X; orbitals become more anti-bonding with their neighbors as a Bloch phase is introduced.

Therefore, the conduction band minimum is at Γ. The bridging oxygen character is essential for the strong π-

interactions in the x-y plane, but there is a lack of bridging oxygen character in the z-direction. Hybridization

between Ti-dxy and O-p orbitals in the z-direction is symmetry forbidden, since those orbitals are orthogonal.

The weak interactions in the z-direction makes this crystal orbital two-dimensional, since only two directions
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have substantive interactions. The weaker orbital overlap along the z-direction leads to anisotropic dispersion,

which is so weak that Fermi surfaces of this carrier pocket resemble a cylindrical shape.

Each of the three conduction bands are composed of symmetry equivalent t∗2g crystal orbitals. For each

crystal orbital, there is a direction where p/d-hybridization is forbidden, which weakens the dispersion in that

crystallographic direction, and creates cylindrical Fermi surfaces in the Brillouin zone. All three of the t∗2g Fermi

surfaces intersect to create the complex Fermi surfaces predicted by �rst-principles electronic structure calcu-

lations 141,142 and observed in ARPES measurements. 71–73 These Fermi surfaces are often described as “warped”

or having a “jack shape” (Fig. 1.4a). The Fermi surfaces of two-dimensional electron gases observed by ARPES

are projections of bulk Fermi surfaces onto planes in the Brillouin zone (planes parallel to the surface plane),

which indicates that the surface electronic structure is controlled by the same orbital basis. 73 Other perovskite

oxides with the same orbital interactions as SrTiO3 have electronic structures with similar character and disper-

sion. By contrast, other perovskite oxides, such as BaSnO3, will not have these features, because they lack d-p

hybridization (it is weak s-p hybridization) in the valence and conduction bands. 143

The crystal orbital analysis is relatively straightforward for SrTiO3, because the Bloch states can be divided

into three bands based on their crystal orbital symmetry. The crystal orbitals for each band of k-states do not

depend on k. In systems where the Bloch states can not be divided into crystal orbital invariant bands, this

analysis may be signi�cantly more complicated. Nevertheless, the maximum localization criteria for Wannier

functions naturally leads to crystal orbital representations that do not vary strongly with k, 140 so this method of

analysis may be generalized to other crystals.
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CHAPTER 3

Thermoelectric Material Performance in Polycrystalline Systems

In practice, defects are introduced into either the lattice or micro-structure of promising thermoelectric mate-

rials to suppress their thermal conductivities. The creation of grain boundary interfaces through nanostructuring

is one of the most promising strategies. 144–146 However, grain boundaries can limit the electronic performance of

some thermoelectric materials such as Mg3Sb2 and SrTiO3 (Figure 1.1). 5,6 Treating the grain boundary as a sec-

ondary phase (sometimes termed a grain boundary complexion) explains the rich transport behavior observed in

polycrystalline samples and is conceptually appealing for considering thermodynamic design principles for tun-

ing these properties, since the grain boundary phase itself can be changed (phase transitions) or engineered. 147,148

Furthermore, this conceptual framework is compatible with recently developed ab-initio defect calculations, 149

which could be used to study and explain grain boundary resistance on a microscopic level. Optimizing the in-

terfacial properties of SrTiO3 using grain boundary engineering could lead to higher thermoelectric performance

than previously realized, especially near room temperature (Appendix F).

3.1. The E�ect of Grain Boundaries on Electronic Transport

Comparing the response of polycrystalline ceramics and single crystals of SrTiO3 highlights the e�ect of

grain boundaries on the conductivity and Seebeck coe�cient. While the temperature dependence of polycrys-

talline samples show activated conductivity to varying degrees (Figure 3.1a), which is qualitatively di�erent from

the behavior of heavily-doped single crystal samples; the Seebeck coe�cients only gradually increase with tem-

perature (Figure 3.1b), which is the same Seebeck behavior as the single crystals. 7 Therefore, grain boundary

e�ects have a particular signature in transport data: conductivity is heavily a�ected, while the Seebeck coef-

�cient is not. The same phenomenon is observed in the Mg3Sb2 material system and is explained by a series

circuit model, where the grain and grain boundary are treated as separate phases that contribute to the overall

properties, 5 without invoking energy �ltering at the interface. 150,151
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In the series circuit model, the resistances from the grain and grain boundary regions are additive. Therefore,

the apparent resistivity is the sum of the individual resistivities, weighted by the relative thickness of the grain

and grain boundary regions (ρ = (1 − tGB)ρG + tGBρGB). While the thickness of the grain boundary is

typically much smaller than the grain size (tGB � 1, because the grain size is on the order of microns and the
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Figure 3.1. Grain boundary resistance has a particular signature in transport data. a) The experimental conduc-
tivities of polycrystalline SrTiO3 are heavily a�ected and become activated with temperature in extreme cases of
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grain boundary (there is only one sample with a higher carrier concentration, which decreases the magnitude
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grain boundary is on the order of nanometers), the resistivity of the grain boundary can be much greater than the

resistivity of the grains (ρGB � ρG). In this case, the grain boundary contribution to the transport is still non-

negligible (ρ 6= ρG). In fact, the grain boundary can dominate the transport response at low temperature (green

in Figure 3.1a). By contrast, the Seebeck coe�cient is typically not dominated by the grain boundary phase.

When the thermal conductivities of the grain and grain boundary are similar in magnitude (because a signi�cant

amount of heat is transported through the interface by phonons), the total Seebeck coe�cient is a weighted sum

of the individual Seebeck coe�cients of the grain and grain boundary regions (α = (1 − tGB)αG + tGBαGB).

For a grain size of 1 µm and a grain boundary thickness of 10 nm, the Seebeck coe�cient of the grain boundary

would need to be greater than∼10,000 µV/K to have the same magnitude of e�ect as observed in the resistivity.

Therefore, the total Seebeck coe�cient is dominated by the grain properties (α ∼ αG), which is typically on the

order of ∼100 µV/K . For a polycrystalline sample with conductivity dominated by grain boundary resistance,

the Seebeck behavior is remarkably similar to the single crystal properties (green in Figure 3.1b).

Due to the carrier concentration dependence of transport properties, the sample-to-sample variation in

grain boundary e�ects is di�cult to quantify in polycrystalline ceramics. One solution is to analyze Seebeck-

conductivity data with an e�ective mass model. 1 In the e�ective mass model, the weighted mobility (µ0(m∗/me)
3/2)

quanti�es both the number (characterized by the e�ective Seebeck mass, m∗) and mobility (characterized by the

mobility parameter, µ0) of conduction channels for thermoelectric transport—it is a carrier concentration in-

dependent quantity, similar to mobility in the Drude model (σ = nµ). The weighted mobility is correlated to

the potential for high power factor, can be used to directly compare the electronic properties of samples with

di�erent carrier concentrations, and shows that the electronic properties of all the polycrystalline samples are

worse than single crystals in terms of thermoelectric performance (Figure 3.1d, although they could be equal in

the case of no grain boundary resistance). This analysis reveals that transport properties at lower temperatures

are a�ected by grain boundaries the most, since the weighted mobility is degraded by a lesser fraction at high

temperatures. Optimizing the carrier concentration in samples not a�ected by grain boundary resistance will

result in high power factors, even near room-temperature, which are comparable to other high-performing ther-

moelectric materials (Figure 1.1). In samples dominated by grain boundary resistance, high power factors are

only achieved at high temperatures (green in Figure 3.1c).



46

3.2. Microscopic Origins of High Grain Boundary Resistance

The accumulation of excess charge near grain boundaries is the origin of high grain boundary resistance

in SrTiO3. 152 The electric potential induced by these charges is directly observed in electron holography ex-

periments of bi-crystals and polycrystalline ceramics, 153–156 and is indirectly measured by electrical impedance

measurements. 153,157–160 These experiments indicate that the grain boundary potential is negative. A negative

grain boundary potential suggests that there is either a depletion of positively charged defects or an excess

of negatively charged defects near the boundary. In n-type materials, a dominant point defect to consider is the

positively-charged oxygen vacancy (V ··
O ), which is an electron-donating defect. Molecular dynamics simulations

indicate that the concentration of V ··
O is depleted in regions near dislocation cores, which form the substructure

of grain boundaries. 13 Furthermore, oxygen vacancy depletion has been observed in tracer di�usion experiments

near free-surfaces. 161 Depleted V ··
O concentrations near interfaces (Figure 3.2a) are consistent with the negative

potentials (Figure 3.2b). The induced potential bends the conduction bands upwards, which produces a barrier

for electron conduction (Figure 3.2c). The electronic resistance is high, due to the lack of free carriers in the

grain boundary region (Figure 3.2d). Transport models indicate that a low carrier concentration at the interface

explains the high resistivities of polycrystalline samples. 5
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Figure 3.2. a) The lower oxygen vacancy concentrations (V ··
O ) in the vicinity of the grain boundary are responsi-

ble for grain boundary resistance in SrTiO3 (the vacancy pro�le re�ects the simulated data in 13). b) The depletion
of positively charged oxygen vacancies induces a negative potential (φ) that c) perturbs the electronic states in
the conduction band. d) As a result, the grain boundary phase is depleted of free carriers (n) and is resistive.
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Depleted V ··
O concentrations in grain boundary phases indicate that their point defect formation energy is

higher than in the bulk phase (∆Ef,gb > ∆Ef,b). However, it is well known that these defect energetics and

concentrations are controlled by the chemical potential of oxygen, which is set by the partial pressure of oxygen

in experiments. 75 The oxygen partial pressure may even control the relative defect concentrations of the interface

and bulk phases (not just their individual magnitudes), because polycrystalline samples show less grain boundary

resistance at low oxygen partial pressures, compared to high oxygen partial pressures. 93 A second consideration

for the relative defect formation energies is the grain boundary phase itself, because the grain boundary interface

undergoes phase transitions with temperature. 14 At these phase transition temperatures (near 1490, 1545, and

1605 ℃), the coarsening kinetics of the boundary and the grain boundary width change discontinuously, and each

phase may have di�erent defect formation energies. Polycrystalline ceramics from the literature are typically

sintered at either 1400, 1500, or 1600 ℃. 6,7,11,12,15–19 Each sintering temperature falls within a di�erent grain

boundary phase region, and therefore, each sintering temperature likely produces a di�erent grain boundary

phase. Analyzing �fty samples from the literature shows that the (assumed) di�erent grain boundary phases have

statistically di�erent amounts of grain boundary resistance (Figure 3.3a). Insight into the microscopic di�erences

between these grain boundary phases might be enhanced by �rst-principles defect calculations. 149 Several �rst-

principles studies have already treated neutral point defects in interface structures. 162–164

3.3. Extrinsic Grain Boundary Engineering Strategies

Several extrinsic strategies have been used to control grain boundary phases and grain boundary resistance.

One such strategy for controlling grain boundary resistance is adding layers of graphene into the grain boundary

structure. 20,21 Samples with the addition of graphene show far less activated conductivity near room temperature

(Figure 3.3b). Mechanistically, there is some EELS evidence that indicates that the graphene acts as a reducing

agent, where oxygen vacancy formation is promoted in regions adjacent to the interfacial graphene. 21 However,

it is not yet clear whether the addition of graphene could also provide a conductive network that shorts areas of

the grain boundary with high resistance or whether it screens the localized interface charges. Furthermore, the

addition of graphene inhibits coarsening of the grain structure and has been shown to increase interfacial thermal
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resistance in other material families, such as skutterudite. 165 Decorating grain boundaries with graphene appears

to be a robust strategy for optimizing both the electronic and thermal properties of thermoelectric materials.

A second strategy has sought to control the grain boundary orientation angles of ceramic samples by �rst

synthesizing nanocrystalline precursors stabilized by di�erent weak acids. 166 The choice of acid stabilizes di�er-

ent surface planes in the nanocrystals, which results in di�erent populations of grain boundaries in the sintered

samples. Samples with more Σ3 boundaries, a twin grain boundary with high atomic registry, showed lower

grain boundary resistance. Oxygen di�usion experiments of Σ3 bicrystals have indicated that this grain bound-

ary orientation does not accumulate a potential barrier, 167 which has been con�rmed by �rst-principles supercell

calculations of that interface. 168
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Figure 3.3. a) The grain boundary phase undergoes transitions near temperatures that ceramic samples are sin-
tered. 14 Analyzing the transport of �fty samples near room temperature (450 K) reveals that these phase transi-
tions may be changing the defect energetics in the grain boundary phase and therefore the observed grain bound-
ary resistance. 6,7,11,12,15–19 Error bars indicate one standard deviation for the distribution of weighted mobilities.
b) Grain boundary resistance is responsible for conductivity that is activated with temperature (highlighted in
green). Grain boundary engineering with graphene decreases the e�ect of grain boundary resistance, and sam-
ples show metallic-like behavior (conductivity that decreases with temperature, highlighted in black) at lower
temperatures. 20,21 Single crystal electronic properties are achieved by Lin et al..
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CHAPTER 4

Looking Forward: Mapping Properties in Calculation Databases

Due to the e�ciency of density functional theory in high-throughput computing paradigms 137,169, the prop-

erties of many crystalline materials are readily available in open-source databases, such as the Open Quantum

Materials Database and the Materials Project. 143,170,171 Applying the orbital phase diagram technique to structures

in these databases could be a powerful strategy for exploring their electronic properties. However, this tech-

nique is most powerful when applied to material families, where each phase has the same crystal sites. Recent

advances in assessing the local coordination environments in crystal structures show promise for organizing

materials databases into structure families. 172,173 Since each structure is composed of a set of sites, we can use

the distribution of local coordination environments in a structure as quantitative measure of that structure. For

example, all of the sites in the rock-salt structure have octahedral local coordination environments, while all the

sites in a diamond-like material are in tetrahedral environments. The di�erence between the distributions of

coordination environments in two structures measures their similarity. Structures within a similarity threshold

may belong to the same family. A prototype of this database organization is implemented on the Materials Project.

When measuring the structural similarity between two phases, we are measuring whether those two phases

transform into one another through the introduction of one or more site-substituting defects. This can be taken

one step further by considering whether two phases are similar when introducing either vacancy or interstitial

defects (Figure 4.1). For example, placing an interstitial atom in the diamond primitive unit-cell transforms it

into the half-Heusler structure. Recent work on half-Heusler materials has shown that there are new phases

to be discovered between material families in this fashion, where the new phases are described as intermediate

defect structures. 135,174 The 19-electron half-Heusler phases are between diamond-like and half-Heusler struc-

tures. Since these phases share a set of common sub-lattices with their respective end-members, the orbital phase

diagram approach would also be useful for exploring the electronic properties between defect-related material

families.
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Figure 4.1. Illustration of the FCC primitive unit cells of several crystal structures. The structures are related
by defects. For example, the half-Heusler structure transforms into the rock-salt and diamond structures when
vacancies (open circles) are introduced. In addition, adding an interstitial atom (black circle) to the half-Hesuler
structure produces the Heusler structure.
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APPENDIX A

Power from a Thermoelectric Device

Thermoelectric materials are used in both Peltier coolers and thermoelectric generators; as a case study, we

will investigate power generation from a material with resistanceRTE connected to a load resistorRL. The power

at the load resistor is generated from a current ITE driven by the thermoelectric voltage VTE = α∆T , where ∆T

is the temperature drop across the thermoelectric material. The generated power P = I2TERL becomes

P =
α2∆T 2

(RTE +RL)2
RL. (A.1)

By being able to freely adjust the RL to RTE ratio (m = RL/RTE), the power becomes

P ∝ α2σ∆T 2 · m

(1 +m)2
. (A.2)

The power is maximized when the power dissipated by joule heating in the thermoelectric material is matched by

the power dissipated by the load resistor (m = 1). We see that the maximum power is proportional to the power

factor α2σ and that low thermal conductivity is inherently needed for power generation, because it determines

the magnitude of the achievable temperature drop (∆T ) in the thermoelectric material. For optimizing power in

an actual device, considering the heat exchanger and thermal impedance matching introduce interdependencies

that make the optimization problem more than just optimizing power factor 175.
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APPENDIX B

Heat Transport from Electrons and Lattice Vibrations

The general current density equation (Eq. 1.3) can be adopted for heat transport by exchanging the charge

per particle with the energy per particle (q → ∂Q/∂c). Since the heat carried per particle depends on energy, it

is pulled into the integral,

JQ = −
∫ ∞
−∞

∂Q

∂c
G(E)∇fdE . (B.1)

The heat carried by a fermion is referenced to its chemical potential, while the heat carried by a boson is on an

absolute energy scale
∂Qf
∂c

= E − µ , (B.2)

∂Qb
∂c

= E . (B.3)

We can now derive the heat transport induced from electric �elds and temperature gradients. The derivations

will follow the same �ow as the sections on charge transport. Chain rules will relate voltage and temperature

gradients to gradients in occupation statistics; then, Onsager relations will elucidate measurable quantities. We

will encounter two new selection functions for heat transport

B.0.0.1. Electronic thermal conductivity. In the sections on charge transport, we derived the current densi-

ties induced from voltage and temperature gradients (Eqs. 1.4, 1.6). We can apply these results to heat transport

by converting the charge carried per-particle to the heat carried per-particle (q → E − µ). Notice that one unit

of charge remains in the voltage equation from converting a chemical potential gradient to a voltage gradient

(∇µ = q∇V ),

JQ,∇V = −q∇V
∫ ∞
−∞

G(E) (E − µ)
−∂f
∂E

dE , (B.4)

JQ,∇T = −∇T
∫ ∞
−∞

G(E)
(E − µ)

2

T

−∂f
∂E

dE . (B.5)
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Figure B.1. a) A temperature gradient induces a selection function for electron heat transport, and for b) heat-
carrying bosons. The selection function can be interpreted as the per-mode speci�c heat for phonons. The boson
selection function is broader than −∂f/∂E (dashed curve).

We have already seen the upper selection function when we examined temperature-driven charge transport. The

selection function indicates that electrons above the chemical potential carry heat down a voltage gradient, while

electrons below the chemical potential oppose this heat-�ow. The lower selection function (E − µ)2·(−∂f/∂E)

is an even function around the electron chemical potential, so heat carried by electrons always �ows down a

temperature gradient (see Fig. B.1).

Another Onsager coe�cient relates the heat current density to an applied temperature gradient (JQ =

−κe∇T ) at open-circuit conditions; this coe�cient is the electronic contribution to the thermal conductivity, κe,

κe =
JQ,∇T
∇T

∣∣∣∣
J=0

+
JQ,∇V
∇T

∣∣∣∣
J=0

. (B.6)

There are thus two contributions toκe: one driven by a temperature gradient and one driven by a voltage gradient.

The temperature term is κ0,

κ0 =

∫ ∞
−∞

G(E)
(E − µ)

2

T

−∂f
∂E

dE, (B.7)

and is independent of an applied voltage. We refer to the voltage driven term as κ1,

κ1 = q
∇V
∇T

∣∣∣∣
J=0

∫ ∞
−∞

G(E) (E − µ)
−∂f
∂E

dE . (B.8)



72

We can see that the origin of κ1 is heat driven by a voltage gradient. Electronic thermal conductivity is de�ned

at open-circuit conditions where∇V/∇T is related to the Seebeck coe�cient,

κe = κ0 − α2σT . (B.9)

We can understand Peltier heat currents and heat pumps by relaxing the zero-current condition. Running current

through a material decreases∇V in Eq. B.8. Decreasing the magnitude of the voltage gradient tends to increase

the e�ective electronic thermal conductivity. The voltage driven term allows thermoelectric devices to be used as

heat pumps or Peltier coolers. In one con�guration, heat is actively pumped across the device whereas reversing

the applied voltage results in Peltier cooling.

B.0.0.2. Lattice thermal conductivity. In addition to electrons, atomic vibrations also transport heat. Since

vibrational quanta have no charge associated with them, they do not respond to an electric �eld; the only driving

force for heat-�ux (barring the formation of a polaron) is a temperature gradient. Landauer theory for heat

transport (Eq. B.1) relates the heat �ux to the gradient of the carrier statistics. A chain rule relates the spacial

gradient of Bose-Einstein statistics with the spacial gradient of the temperature (∇fb = ∂fb/∂T · ∇T = E
T ·

−∂fb/∂E · ∇T ). The Landauer solution for bosonic heat-�ux induced from a temperature gradient is

JQ,∇T = −∇T
∫ ∞
0

G(E)

(
E2

T

)
−∂fb
∂E

dE. (B.10)

Notice that the lower limit of the integral is zero, since vibrational quanta energies are measured on an absolute

energy scale. Remarkably, the selection function for heat carrying bosons (E2 · −∂fb/∂E) is similar to electrons

driven by an electric �eld (−∂f/∂E); while the boson selection function is the same shape, it is about twice as

broad (see Fig. B.1). Therefore, heat carried by bosons always travels down a temperature gradient.

Lattice thermal conductivity relates heat �ux to an applied temperature gradient (JQ = −κl∇T ),

κl =

∫ ∞
0

G(E)

(
E2

T

)
−∂fb
∂E

dE , (B.11)
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Expanding the derivative of Bose-Einstein statistics is instructive, since it reveals the per-mode speci�c heat,

κl =

∫ ∞
0

G(E)
E2

kT 2

eE/kT(
eE/kT − 1

)2 dE . (B.12)

Readers will typically �nd lattice thermal conductivity formulated as the product of the energy-dependent trans-

port function G(E) and the per-mode speci�c heat, though you may need to infer G(E). The non-zero energy

span for G(E) in the case of phonons or vibrational modes is smaller than that of fermions, which means that

most or all vibrational modes will be active in transport above 300 K. We stress that this derivation applies to more

than just phonons, which only exist in crystalline materials; this theory treats vibrational quanta in amorphous

materials equally well.
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APPENDIX C

A Generaral Formulation of the Relaxation Time

The relaxation time is an important quantity for transport. In essence, it is the time constant that determines

how quickly a system returns to the equilibrium distribution function f0 when an external stimulus is removed.

We will be concerned with the distribution function for Fermions.

f0 =

[
exp

(
ε (k)− µ
kBT

)
+ 1

]−1
(C.1)

This chapter will develop a general form of the relaxation time that makes no assumptions on the nature of the

scatterer or the electronic states. Then, the in�uence of electron-phonon processes on the relaxation time will be

explored. Particular attention will be turned to the results of scattering by long wavelength acoustic modes for

anisotropic electron dispersions. In principle, we will �nd that longitudinal and shear displacements by phonons

can contribute to scattering.

C.1. A general description of the relaxation time

According to the Boltzmann equation, the rate-of-change of the non-equilibrium distribution function f is

the sum of occupational changes from di�usion, �eld-driven, and scattering processes.

∂f/∂t = (∂f/∂t)diff + (∂f/∂t)field + (∂f/∂t)scat (C.2)

For the in�uence of scattering on the distribution function, consider the probabilityW (k,k′) that an initial state

k scatters into a �nal state k′. The total change in the occupation is a sum of possible scattering processes (both

in-to and out-of a state k) weighted by the occupation of the initial and �nal states, which re�ects the Pauli
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exclusion principle for Fermions.

(∂f/∂t)scat =
∑
k′

{W (k′,k) f (k′) [1− f (k)]−W (k,k′) f (k) [1− f (k′)]} (C.3)

For the remaining terms of the Boltzmann equation, the di�usion term is proportional to the particle velocity

v (k) and the spacial gradient of f , while the �eld term is proportional to the external driving force F and the

state-dependent gradient of f . We have now established the form for each term of the Boltzmann equation.

(∂f/∂t)diff = −v (k)∇rf (C.4)

(∂f/∂t)field = −~−1F∇kf (C.5)

In the linear regime, when the perturbing stimuli are weak, the non-equilibrium distribution function can be

de�ned as an additive perturbation from the equilibrium distribution function f0.

f (k) = f0 (k) + f1 (k) (C.6)

The additive form of the non-equilibrium distribution function (f ) allows us to separate contributions from the

equilibrium distribution function (f0) from non-equilibrium terms (f1) in the scattering expression. The mathe-

matical details of this simpli�cation can be found in Askerov, but the result is an expression formulated in terms

of the relaxation time (τ ) notation. The relaxation time can be interpreted as the time constant that controls

how fast the non-equilibrium distribution function evolves into the equilibrium distribution function when the

perturbing stimulus is turned o�.

(∂f/∂t)scat = −f1 (k) /τ (k) . (C.7)

The relaxation time is formulated in terms of transition probabilities and the equilibrium and non-equilibrium

terms of the distribution function. Knowledge of the non-equilibrium distribution function is required to specify

the relaxation time; the relaxation time does not merely depend on transition probabilities.

1

τ (k)
=
∑
k′

W (k,k′)

{
1− f0 (ε′)

1− f0 (ε)
− f0 (ε)

f0 (ε′)

f1 (k′)

f1 (k)

}
(C.8)
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Thus far, we have only assumed that the perturbation from the equilibrium distribution function is small so

that we need to only deal in linear terms of f1. We will now need to solve for the non-equilibrium distribution

function to completely specify the relaxation time.

To solve for the non-equilibrium distribution function, we need to consider the di�usion and �eld terms of

the Boltzmann equation. The additive form of the non-equilibrium distribution function (Eq. C.6) simpli�es the

di�usion and �eld terms; since f1 is small, it can be neglected so that the spacial/state-dependent gradients are

functions of f0 only.

∇kf ≈ (∂f0/∂ε) (∂ε/∂k) (C.9)

∇rf ≈ kBT (∂f0/∂ε)∇r
ε− µ (r)

kBT (r)
(C.10)

In the steady state, where the non-equilibrium distribution function is not evolving with time, the solution to the

Boltzmann equation is now a function of a generalized disturbing force Φ, which is responsible for the deviation

from the equilibrium distribution function.

f (k) = f0 (k)− τ (k) [v (k) Φ (ε)] (∂f0/∂ε) , (C.11)

In the absence of a magnetic �eld, the disturbing force depends on both the electrochemical potential gradient

(µ̃ = µ−eφ, where φ is the electrostatic potential), and the temperature gradient. In specifying Φ, we have made

the assumption that we are in a linear regime, where the spacial gradients of chemical potential and temperature

(Eq. C.10) are linearly separable.

Φ (ε) = −∇µ̃− ε− µ
T
∇T (C.12)

Having determined the non-equilibrium distribution function, we can now write the relaxation time in terms

of the generalized disturbing force. Notice that this expression only depends on the equilibrium distribution

function, but may require an iterative method to solve since it depends on the relaxation time itself.

1

τ (k)
=
∑
k′

W (k,k′)
1− f0 (ε′)

1− f0 (ε)

{
1− τ (k′)

τ (k)

v (k′) Φ (ε′)

v (k) Φ (ε)

}
(C.13)
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This form of the relaxation time is general for any disturbance that is weak, so the non-equilibrium distribution

function must be only a small perturbation from the equilibrium distribution function. Besides that they are

Fermions, no assumptions of the nature of the electronic states have been made.

C.2. Calculating transition probabilities

From the preceding analysis, it can be seen that calculating the transition probabilities between quantum

states is intrinsic to the problem of calculating the relaxation time. The transition probability during unit time is

given by a matrix element that depends on the perturbing Hamiltonian Ĥ′. Energy of the quantum states before

(n) and after (n′) the transition must be conserved. This result is derived from time-dependent perturbation

theory and is colloquially known as Fermi’s golden rule.

W (n, n′) =
2π

~

∣∣∣〈n′|Ĥ′|n〉∣∣∣2 δ (εn′ − εn) (C.14)

The matrix elements are calculated as spacial integrals of the initial and �nal (unperturbed) wave functions.

〈
n′|Ĥ′|n

〉
=

∫
ψ∗n′Ĥ′ψndr (C.15)

To begin calculating transition probabilities, forms for the unperturbed states and the perturbing Hamiltonian

must be found. The form of the perturbing Hamiltonian will depend on the scattering source.

C.3. Electronic scattering by acoustic phonons

In principle, the atomic displacement vector unk for the kth atom in the nth cell of a crystal with N total

cells is a sum of the displacements from all phonon wave vectors {q} from all branches {j}.

unk =
1√
N

∑
qj

{
ekj (q) bj (q) exp (iqan) + e∗kj (q) b∗j (q) exp (−iqan)

}
(C.16)

Here, ekj (q) is the oscillation direction of the kth atom, and an is the lattice vector of the nth cell. Furthermore,

bj (q) is the complex time dependent coordinates of phonon q from branch j with energy ωj (q).

bj (q) ∼ exp (−iωj (q) t) (C.17)
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It is convenient to disregard the e�ect of individual atomic positions and investigate electron-phonon scattering

in the continuum limit. This simpli�cation is especially applicable when considering long wavelength acoustic

phonons; the phonon wavelength is much larger than the atomic spacing, and all k atoms oscillate in phase. There

is now no explicit dependence on k and n in the displacement vector, and the unit cell vector an is replaced by

a continuous position vector r. Furthermore ej is now a unit vector (ej → êj ). When only counting acoustic

modes, the sum over the branches {j} will run from 1-3.

uac =
1√
N

∑
qj

êj (q)
{
bj (q) exp (iqr) + b∗j (q) exp (−iqr)

}
(C.18)

In the deformation potential method, the perturbing Hamiltonian is a tensor quantity related to the linear shift

in energy E1αβ with changing deformation uαβ . Note that element-wise multiplication is implied.

Ĥ′ac =
∑
αβ

Ĥ′αβ =
∑
αβ

∑
j

Ej1αβu
j
αβ (C.19)

In the limit of small displacements, the deformation tensor elements are given by the derivatives of the displace-

ment components (u (r) = u
(∑3

i=1 aix̂i

)
) with respect to the component directions.

uαβ =
1

2

(
∂uα
∂xβ

+
∂uβ
∂xα

)
(C.20)

Calculating the deformation tensor informs the functional dependence of the perturbing Hamiltonian. In princi-

ple, both diaganal and shear components of the tensor should be considered.

Ĥ′αβ =
iE1αβ

2
√
N

∑
qj

{qαx̂β êj (q) + qβx̂αêj (q)}
{
bj (q) exp (iqr)− b∗j (q) exp (−iqr)

}
(C.21)

The total purturbation is given by a sum over the perturbations from every deformation mode.

Ĥ′ac =
∑
αβ

iE1αβ

2
√
N

∑
qj

{qαx̂β êj (q) + qβx̂αêj (q)}
{
bj (q) exp (iqr)− b∗j (q) exp (−iqr)

}
(C.22)

In addition, when the scattering source is itself part of the quantum system, its wave function must be

included in the speci�cation of initial and �nal states. For example the initial and �nal states for electron-phonon
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scattering are given by a product of the electron (ψk) and phonon (φNqj ) wave functions.

ψn = ψk
∏
qj

φNqj (C.23)

In the case of phonons, the initial and �nal quantum states are speci�ed by quantum numbers related to

both the electron and phonon states. k is used to specify the electron states, while Nqj speci�es the number

of phonons at wave vector q in branch j. Therefore the electron-phonon quantum system is speci�ed by the

quantum state n =⇒ (k, Nqj). The transition frequency from one quantum state to another depends on both

the electron and phonon states.

W
(
kNq,j ,k

′N ′q,j
)

=
2π

~

∣∣∣〈k′N ′q,j |Ĥ′|kNq,j

〉∣∣∣2 δ
εk′ − εk +

∑
qj

(
N ′qj −Nqj

)
~ωj (q)

 (C.24)

Total energy conservation considers both the electron energies ε and phonon energies ~ω. Since computing the

relaxation time for electrons concerns the transitions from state k to k′, we must sum over all the phonon states

of the system.

W (k,k′) =
∑
N ′qj

W
(
kNq,j ,k

′N ′q,j
)

(C.25)
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APPENDIX D

Transport from Low-Dimensional Carrier Pockets

D.1. Anisotropic limit of ellipsoidal pockets: cylinders

Consider a prolate, ellipsoidal carrier pocket. The dispersion of this pocket is characterized by a light mass

(m∗l ) in two directions and a heavy mass in the third direction (m∗h).

ε = ~2
(
k2x + k2y

2m∗l
+

k2z
2m∗h

)
(D.1)

The band edge of this carrier pocket is the point (kx = ky = kz = 0) in k-space, and Fermi surfaces of the carrier

pocket are prolate ellipsoids. In the limit of an extremely heavy mass (m∗h → ∞) there is no dispersion in the

heavy direction.

ε =
~2
(
k2x + k2y

)
2m∗

=
~2r2

2m∗
(D.2)

The band edge of this carrier pocket is now the line (kx = ky = 0), and Fermi surfaces of this carrier pocket are

cylinders. The length of the cylinder is restricted by the size of the �rst Brillouin zone. Since the electron group

velocity in zero in the heavy mass direction, the conductivity tensor has only two non-zero elements (σ∗) they

are in the directions perpendicular to the cylindrical axis.

σij =


σ∗ 0 0

0 σ∗ 0

0 0 0

 (D.3)
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The transport tensor ν (which is the numerator of the Seebeck coe�cient for isotropic systems) is also anisotropic.

νij =


ν∗ 0 0

0 ν∗ 0

0 0 0

 (D.4)

We will see that three orthogonal cylindrical pockets give isotropic transport coe�cients.

D.2. Three orthogonal cylindrical pockets

The total conductivity tensor from multiple carrier pockets is given by element-wise addition 40. The con-

ductivity from three pockets is now isotropic.

σij =
∑
k

σij,k = 2σ∗


1 0 0

0 1 0

0 0 1

 (D.5)

Likewise, ν adds element-wise for multiple carrier pockets.

νij =
∑
k

νij,k = 2ν∗


1 0 0

0 1 0

0 0 1

 (D.6)

The total seebeck coe�cient for multiple carrier pockets is then given in terms of σ and ν.

αij = σ−1αi ναj =
ν∗

σ∗


1 0 0

0 1 0

0 0 1

 = α∗ (D.7)

Since both the conductivity and Seebeck coe�cient are isotropic, we need to only compute one of the tensor

elements from a single cylindrical pocket (σ∗ and α∗) to determine the overall transport from three cylindrical

pockets.
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D.3. The conductivity tensor element

The conductivity tensor is computed by integrals over the Brillouin zone 40.

σij = e2
∫

dk
4π3

τ (ε) vi(k)vj(k)

(
−∂f
∂ε

)
ε=ε(k)

, (D.8)

where vi(k) = 1
~
∂ε(k)
∂ki

is the group velocity, τ is the relaxation time, and f is the Fermi-Dirac distribution

function. We will �rst evaluate the conductivity tensor element σ∗ for a cylindrical pocket.

σ∗ = σxx = e2
∫

dk
4π3

τ (ε) vx(k)vx(k)

(
−∂f
∂ε

)
ε=ε(k)

, (D.9)

where

vx(k) =
1

~
∂ε (k)

∂kx
(D.10)

=
1

~
∂

∂kx

[
~2
(
k2x + k2y

)
2m∗

]
(D.11)

=
1

~
2~2kx
2m∗

(D.12)

=
~kx
m∗

. (D.13)

=⇒ σ∗ = e2
∫

dk
4π3

τ (ε)

(
~kx
m∗

)2(
−∂f
∂ε

)
ε=ε(k)

(D.14)

The integration over all of k-space is easiest in cylindrical coordinates with the z-axis orientated along the cylin-

drical axis.

=⇒ σ∗ = e2
∫ ∫ ∫

rdrdθdz

4π3
τ (ε)

(
~r cos θ

m∗

)2(
−∂f
∂ε

)
ε=ε(r)

(D.15)

=
e2~2

4π3m∗2

∫ ∞
r=0

dr τ (ε) r3
(
−∂f
∂ε

)
ε=ε(r)

∫ 2π

θ=0

dθ cos2 θ

∫ l

z=0

dz (D.16)

=
e2~2l

4π2m∗2

∫ ∞
r=0

dr τ (ε) r3
(
−∂f
∂ε

)
ε=ε(r)

(D.17)
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The energy ε is directly related to r through the ε− k relationship (Eq. D.2).

r =

√
2m∗

~2
ε1/2 =⇒ dr =

1

2

√
2m∗

~2
ε−1/2dε (D.18)

=⇒ σ∗ =
e2~2l

4π2m∗2

∫ ∞
ε=0

(
1

2

√
2m∗

~2
ε−1/2dε

)
τ (ε)

(√
2m∗

~2
ε1/2

)3
−∂f
∂ε

(D.19)

=
e2~2l

4π2m∗2

∫ ∞
0

1

2

(√
2m∗

~2

)4 (
ε1/2

)2
τ (ε)

−∂f
∂ε

dε (D.20)

σ∗ =
e2l

2π2~2

∫ ∞
0

ε τ (ε)
−∂f
∂ε

dε (D.21)

Provided an expression for the relaxation time τ is given, we now have an expression for the conductivity tensor

element σ∗.

D.4. The Seebeck tensor element

By calculating the conductivity tensor element σ∗, we are now able to infer the Seebeck tensor element α∗.

The Seebeck coe�cient is the ratio of two transport integrals. The numerator is the conductivity convoluted

with (ε − µ), which is ν∗. The denominator is expressly conductivity. There is an addition factor of 1/eT that

comes from the numerator 40.

α∗ =
1

eT

∫∞
0
ε(ε− µ) τ (ε)

−∂f
∂ε

dε∫∞
0
ε τ (ε)

−∂f
∂ε

dε

(D.22)

We now have equations for commonly measured transport coe�cient (conductivity and Seebeck) from a

cylindrical carrier pocket.

D.5. Density of states and carrier concentration

The number of states N in a cylindrical volume of k-space is

N = 2
πlr2

(2π)
3 , (D.23)
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where r is the radius of the cylinder and l is its length. We have expressly included the electron spin degeneracy.

With the ε− k relationship (Eq. D.2) we convert radius to energy:

=⇒ N =
2πl

(2π)
3

2m∗ε

~2
(D.24)

=
2lm∗

(2π)
2 ~2

ε. (D.25)

The density of states N is the number of states dN within an energy window dε.

N (ε) =
dN

dε
=

lm∗

2π2~2
(D.26)

The density of states for a cylindrical pocket is independent of energy, which is like the density of states for a

2D, quantum-con�ned system. The convolution ofN with the Fermi-Dirac distribution function determines the

number of carriers n.

n =

∫ ∞
0

N (ε) f (ε) dε (D.27)

=

∫ ∞
0

lm∗

2π2~2
f (ε) dε (D.28)

n =
lm∗

2π2~2

∫ ∞
0

f (ε) dε (D.29)

D.6. Carrier relaxation time

The goal of this section is to derive an energy-dependent relaxation time in a deformation potential frame-

work from Fermi’s golden rule. Fermi’s golden rule determines the transition frequencyW from initial state k to

�nal state k′. Each initial and �nal state are connected by a matrix element M , and energy must be conserved.

Wk,k′ =
2π

~
∣∣Mk,k′

∣∣2 δ(Ek − Ek′) (D.30)

The matrix element M is represented as a convolution of the initial and �nal states with a perturbing poten-

tial V , which is (in general) position (r) dependent. The initial and �nal states are represented as plane waves
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(
|k〉 ↔ eik·r

)
.

Mk,k′ = 〈k′|H ′|k〉 =

∫
V (r)ei(k−k

′)·rdV (D.31)

Each �nal state k′ additively contributes to the total scattering frequency Γ for a particular initial state k; the

energy-conserving δ-function in Eq. D.30 heavily restricts the number of allowed �nal states {k′}. In addition,

scattering events are weighed by a forward scattering factor. The scattering frequency is inversely related to the

relaxation time τ .

Γ(k) =
1

τ(k)
=

∫
dk′

(2π)
3Wk,k′

(
1− k̂ · k̂

′)
(D.32)

=
2π

~

∫
dk′

(2π)
3

∣∣Mk,k′
∣∣2 (1− k̂ · k̂

′)
δ(Ek − Ek′) (D.33)

The allowed �nal states lie on the same isoenergy surface as the initial state (Fermi surface, S). In addition, when

scattering is by non-polar phonons, the matrix element squared is proportional to the phonon wavevector, which

induces the transition (|M |2 ∼ q =
∣∣k′ − k

∣∣) 90.

1

τ(k)
∼ 2π

~

∫
S

dk′

(2π)
3 q
(

1− k̂ · k̂
′)

(D.34)

However, at �nite temperature, the occupation of phonons is described by the Bose-Einstein distribution function

nq (q) = 1/
(
eE(q)/kT − 1

)
. The distribution function weights each individual scattering event (from the initial

state k to the �nal state k′) by the number of phonons which can cause that transition.

1

τ(k)
∼ 2π

~

∫
S

dk′

(2π)
3nqq

(
1− k̂ · k̂

′)
(D.35)

With knowledge of the electron Fermi surface (which sets {k′}, the set of �nal states) and the phonon dispersion

(which sets nq , the phonon occupation), the relaxation time can be computed numerically.

1

τ(k)
∼

∑
{k′}∈S

nqq
(

1− k̂ · k̂
′)

(D.36)

Scattering times were computed with Equation D.36 for spherical and cylindrical Fermi surfaces. A Debye

phonon dispersion (~ω = vsq) was used to illustrate how the shape of the Fermi surface impacts the temperature
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dependence of the relaxation time. The results are shown in Figure D.1. At very low temperatures, both Fermi

surfaces show Block T 5 behavior in the relaxation time. However, near 10 K, the two relaxation times diverge

from one another. The scattering frequency rises faster in the cylindrical (2D) case, because additional scattering

states along the Fermi surface became accessible in this temperature range, while the �nal states in the spherical

(3D) case are all accessible (because the Fermi surface is not elongated). This model predicts that the T 2 behavior

in the cylindrical case should become T 1 at very high temperatures.

The temperature dependencies of relaxation times are directly controlled through the occupation function

nq . However, it is not immediately obvious what this temperature dependency is, because the occupation is

a complicated function. The description is signi�cantly simpli�ed by decoupling the occupation statistics into

two terms, following the discussion of T 2 resistivity in Bi 100. These two terms represent the fact that low energy

phonons are increasing their occupation linearly (nq), while higher energy phonons are only just becoming occu-

pied at higher temperatures (n�nal). For a Debye model dispersion, the front of the �nal states moves linearly with

temperature (qthermal = kT/vs, where vs is the speed of sound). Decoupling the occupation statistics into these

two terms illustrates how �nite temperature in�uences the relaxation time (see the discussion of temperature-

squared resistivity in the main text). These terms make it clear why low-dimensional Fermi surfaces could have

additional temperature dependencies in the relaxation time at elevated temperatures (from the n�nal).
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Figure D.1. The scattering frequency for electrons on 3D and 2D Fermi surfaces are qualitatively di�erent and
explained by the same scattering model. 1) At low temperatures both types of electrons follow the Block T 5 law.
2) When the phonon Bose sphere exceeds the radius of the 2D Fermi surface but is smaller than Fermi surface
length, T 2 behavior is observed. 3) When the phonon Bose sphere exceeds the radius of the 3D Fermi surface,
T 1 behavior is observed. 4) The 2D case is also expected to recover T 1 behavior when all phonon modes are
saturated.
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APPENDIX E

Meta-Stable Half-Heusler Electronic Structures

Figure E.1. Calculating metastable 17e- and 19e- compounds con�rms that valence di�erence rules control the
relative positions of the valence band Γ- and L-energies. Substituting Fe on the Co site of TiCoSb dopes the
material p-type and raises the energy of the L-point relative to Γ. Substituting Ni on the Co site dopes the
material n-type and raises the energy of the Γ-point relative to the L-point. The relative energies of Γ and L
appear to be primarily controlled by the valence di�erence between the X- and Y-sites and not a�ected by the
location of the Fermi level. This virtual experiment indicates that the e�ect of dopants on the band structure can
be predicted from the valence di�erence rule.
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Figure E.2. We explore the e�ects of site-substitution on NbCoSn. The iso-valent substitution of Pb on the Sn site
does not signi�cantly a�ect the band structure. Solid-solutions between the Sn- and Pb-analogs could lower the
thermal conductivity through phonon alloy scattering without signi�cantly impacting the electronic structure.
P-type, aleo-valent substitutions on each of the di�erent sites have di�erent e�ects on the electronic structure.
Ti on the Nb-site raises the energy of the Γ point per the valence di�erence rule, and increases the e�ective mass
of the hole-pockets. Substituting Fe on the Co-site raises the energy of the L-point, but has less of an impact on
the electronic structure compared to substituting Ti. In on the Sn-site has remarkable changes to the electronic
structure, raising the energy of the X-point. This is a class of electronic structure not observed in the stable 18e-
materials, so In may be an interesting dopant to consider. Experiments should investigate the e�ects of di�erent
site-dopings on the thermoelectric transport properties.



90

APPENDIX F

Outlook for the Thermoelectric Performance of SrTiO3

Analyzing the mean free path of electrons in single crystals of SrTiO3 indicates that nanostructuring could be

an e�ective strategy for improving the thermoelectric performance, even near room temperature. In this analysis,

the mean free path (l = v ·τ ) is the product of the average particle velocity (v) and relaxation time (τ ), and should

be shorter than any micro-structural feature (the grain size) introduced to lower the lattice thermal conductivity.

The relaxation time for electrons in single crystals (which is dominated by electron-phonon scattering) is near

∼10 fs at 300 K 89, and the average electron velocity can be estimated from the thermal energy (v =
√

3kbT/m∗),

also at 300 K. For electrons with an inertial e�ective mass of 0.5 me
176 (estimated from the curvature of the band

structure), the mean free path is estimated to be∼1.5 nm. Therefore, the linear density of micro-structural defects

(grain boundaries) should be much less than ∼1/nm to avoid lowering the electron mobility 177.

The thermal conductivity of La-doped SrTiO3 can be as low as 1.2 W/mK (at room temperature) when the

grain size is 24 nm 22. Since 24 nm is much larger than the mean free path of electrons, ∼1 W/mK might be

achieved in nanostructured samples without sacri�cing the electron mobility (so long as there is no grain bound-

ary potential and depletion of free carriers at the boundary). However, the lattice thermal conductivity should

not be expected to be less than ∼1 W/mK, because this is near the di�usive limit of the lattice thermal conduc-

tivity (an estimation of the minimum thermal conductivity 178) as estimated from the number-density of atoms

(n) and the transverse (vt) and longitudinal (vl) speeds of sound (κdiff ∼ 0.76n2/3kb
1
3 (2vt + vl) ∼ 1 W/mK).

The transverse and longitudinal speeds of sound are ∼4900 and ∼7900 m/s, respectively, and do not change

signi�cantly with electronic doping 11.

The performance outlook of SrTiO3 can be estimated from the power factors measured in single crystals 7 and

the minimum lattice thermal conductivity estimate using an e�ective mass model 1. This analysis (at a carrier

concentration optimized for 450 K and a constant lattice thermal conductivity) indicates that the average zT

between 300 and 1000 K would be higher than 0.5—with a peak zT approaching 0.7—in the di�usive limit of the
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Figure F.1. The �gure of merit of SrTiO3 could be higher than 0.5 at room temperature if polycrystalline samples
can be synthesized with both electronic properties similar to single crystals and low lattice thermal conductivities.
Samples with a grain size of ∼20 nm should achieve ∼1 W/mK 22 and not degrade the electron mobility, since
the electron mean free path (limited by phonons at 300 K) is ∼1.5 nm.

lattice thermal conductivity (Figure F.1). However, simultaneously achieving low lattice thermal conductivity

and high electronic performance will require precise control of the interface structure, so as to minimize the

role of grain boundary resistance. Given the success of grain boundary engineering to control grain boundary

depletion regions, the outlook for SrTiO3 as a nanostructured thermoelectric material is promising, even near

room temperature.
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APPENDIX G

Calculation Methods

G.1. Calculations of SrTiO3

A plane-wave electronic structure calculation 137 was projected onto Wannier functions for three sets of iso-

lated bands 179 with Wannier90. The electronic structure calculation was carried out using a plane-wave basis

(cuto� energy of 520 eV) in the VASP package with a 12x12x12 Monkhorst-pack k-point mesh, PAW psudopo-

tential, and PBE functional. The nine top-most valence bands were initially projected onto Oxygen-p orbitals,

conduction bands 1-3 onto Titanium-d t2g orbitals, and conduction bands 4-5 onto Titanium-d eg orbitals. The

obtained Wannier functions were visualized using crystallographic software. 180,181 Analytic transport coe�cients

were derived for a cylindrical band model using the Boltzmann transport framework. 40 Tensor quantities for con-

ductivity and the Seebeck coe�cient were obtained and implemented numerically in Python utilizing a package

that implements precise approximations to the Fermi-Dirac integrals. 182 The Boltzmann transport coe�cients

were used to extract the Seebeck mass and relaxation time. The relaxation time model was implemented numer-

ically in Python. Temperature-dependent convergence with k-point mesh density was obtained. The shape of

the model relaxation time was set by the relative scattering strength of acoustic to optical phonons and the scale

by the absolute magnitude of the acoustic scattering strength.

G.2. Calculations of half-Heuslers

Electronic structure calculations were carried out using a plane-wave basis (cuto� energy of 520 eV) in the

VASP package with with PAW psudopotentials and the PBE functional. 137 The structural degrees of freedom

were relaxed using 12x12x12 Monkhorst-Pack k-point meshes, followed by relaxation of the electronic degrees

of freedom using 15x15x15 meshes. Finally, a non-self-consistent �eld calculation with 20x20x20 gamma-centered

meshes was used to calculate quantitatively accurate density of states with tetrahedron smearing. 183 In addition,

e�ective masses were calculated using the BoltzTraP package. This set of calculations were performed with
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the atomate work�ow software. The projected density of states were quanti�ed in the matminer package using

the SiteDOS featurizer. 173 The Fermi surfaces of the electronic structures were visualized using the pymatgen

package. 184 The most important atomic features for modeling the Γ-L energy o�set were determined by ridge-

regression. 185
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