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ABSTRACT 

 

Travel Time Reliability in Stochastic Dynamic Transportation Networks: 

Modeling, Path Finding and Routing 

 

Travel time is a key aspect of capturing and evaluating the operational performance and 

service quality of transportation systems, and travel time improvement is a common objective for 

travelers, service providers, transportation practitioners and agencies. However, the reliability of 

travel times, including the probability of unexpected delays, is an important factor for travelers’ 

satisfaction with their transportation network experience, shown to affect their travel choices. 

Travel time reliability can also play a significant role in the decision making of goods shippers and 

logistic firms, where variability can have a direct economic impact. Modeling travel time 

variability is key to quantifying the inherent uncertainty in the knowledge of future events in a 

transportation network. It provides a more comprehensive representation of the state of the 

network and allows for making decisions that account for uncertainty and are robust to potential 

travel time variability.  

This dissertation is concerned with modeling, optimization, and analysis problems in 

stochastic dynamic transportation networks, where link travel times are modeled as random 

variables with time-varying distributions. Motivated by the need for data-driven and application-

oriented modeling and optimization approaches for transportation network analysis that consider 

travel time reliability, the overarching goal of this thesis is to define, model and present solution 

approaches for key problems in stochastic dynamic transportation networks. The key objectives of 

this thesis include (1) modeling the temporal and spatial dependencies in stochastic transportation 
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networks revealed in observed travel time data, (2) devising solution approaches for the estimation 

of path travel time distributions considering those spatio-temporal dependencies, (3) defining and 

solving path finding problems for reliable least-time routing, (4) incorporating en-route 

information in routing problems and analyzing its impact on travelers’ decision making.  

To meet the first objective, this thesis presents a comprehensive methodology for modeling 

the temporal and spatial aspects of stochastic transportation networks, as well as their intersection: 

the temporal variation of spatial characteristics and vice versa. To address the second objective, 

this thesis presents, tests, and evaluates a number of distribution estimation approaches that 

consider the network’s spatio-temporal characteristics. The third objective is at the center of three 

problem classes of concern in this dissertation: (1) a priori reliable least-time paths, (2) trajectory-

adaptive reliable least-time strategies, and (3) information-adaptive reliable least-time routing. The 

fourth and final objective is concerned with a key characteristic of stochastic network models, 

namely that knowledge of future network states can be adjusted based on information of past and 

current states. This objective is met via the latter two of these problem classes that consider traveler 

decision making based on in-vehicle trajectory data availability and connected vehicle information 

access in a connected environment.  

In addressing these core objectives, this dissertation achieves the larger goal of presenting 

a comprehensive conceptual and methodological framework for modeling, estimation, and 

optimization in stochastic dynamic networks. The modeling and estimation methods from the first 

two objectives are key tools in addressing the problems in the following two objectives. 

Furthermore, the solution approaches for the three routing problems contain a shared component 

that allows for their solution to be initiated in a single shared procedure.   
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The problem classes and solution approaches that this thesis is concerned with have several 

important application areas. The stochastic transportation networks characterization and 

estimation of path travel time distributions can be applied for performance measurement and 

monitoring of transportation policies, projects and applications concerned with the reliability 

performance of transportation systems. Reliable path finding problems have a host of relevant 

applications, such as reliability-based vehicle routing of freight or mobility service providers, or 

applications for emerging transportation technologies and services such as electric vehicles, 

autonomous vehicles, ride-sourcing companies, etc. Real time data access and the increased use of 

navigation services also call for making reliability-based decision-making adaptive to information.  
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Chapter 1 Introduction 

1.1 Motivation 

The performance of transportation systems, especially their efficiency and quality of 

service, is important to every level of society. From the impact on the environment and the safety 

of the communities these systems serve, to the transportation costs of businesses and industries, to 

the time, resources, and quality of life of individuals, the impact of transportation problems and 

solutions is ubiquitous. Travel time is a key aspect of assessing the operational efficiency and 

service quality of transportation systems and improving travel time is often seen as the common 

objective of individual travelers, service providers, transportation practitioners and agencies. Yet 

from the perspective of individual users, there are key characteristics of travel time that are 

traditionally not accounted for in transportation systems evaluations. Firstly, travelers evaluate the 

transportation system through their experience on entire paths or trajectories for specific origin-

destination pairs, rather than in distinct portions of the network or via overall aggregate quantities. 

Secondly, travelers can be concerned about travel time variability at least as much as they care 

about mean travel time and have varying levels of sensitivity to travel time reliability.  

Transportation networks and their performance are affected by exogeneous factors such as 

changing weather conditions, work zones, and traffic control devices, which impact the decisions 

and actions of travelers (Kim and Mahmassani, 2015; Filipovska et al., 2019; Filipovska and 

Mahmassani, 2020a). Travelers’ decisions in turn become part of the operation of the system and 

endogenously affect the state and performance of the network. The performance of transportation 

networks is uncertain due to fluctuations in both the exogeneous and endogenous factors that 

affected it. Such fluctuations cause uncertainty in the transportation network and as a result the 
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travel time between any pair of points in the network can be viewed as a random variable. 

Moreover, systematic time-dependence and variation of some of the exogenous factors cause the 

distributions of travel times in the network to be non-stationary and time-dependent. The presence 

of travel patterns, the structure of the network and the dependence of traffic conditions across links 

additionally impose spatial and temporal dependencies between travel times in the network, 

whether on individual links or more generally between two points in the networks.  

Travel time reliability has been recognized as an important factor for users’ satisfaction 

with their experience in a transportation network and has been shown to affect the travel and 

activity choices of individual travelers. Furthermore, it affects the service levels experienced by 

goods shippers and logistics firms and has a direct economic impact on their decisions. As such, 

travel time reliability affects the route choices of individual travelers and fleet operators in the 

network. However, unlike in deterministic networks where travel times are cardinal numbers, users 

in stochastic networks may have different responses to travel time variability based on their 

personal preferences and risk tolerance, which may also be non-stationary and vary depending on 

factors such as their departure time or trip purpose. The presence of different types of users with 

varying levels of risk tolerance and different reliability-based objectives in the network may also 

result in different network dynamics. 

Reliability-based path finding and routing in stochastic dynamic networks is a multi-

faceted problem. Firstly, it requires the modeling of travel time distributions across various paths 

on the network so as to capture their time-varying nature and intrinsic spatio-temporal 

dependencies. Secondly, reliability-based objectives call for path finding solutions that extend 

beyond stationary and deterministic path search and are complicated by the characteristics of 
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stochastic dynamic networks. Furthermore, since solutions to path finding problems are inherently 

uncertain, accounting for en-route information about revealed travel times in the network may 

result in a change to the optimal path selection for a given user, which introduces the need for 

adaptive routing solutions. With the increased reliance on traveler information services and 

navigation systems, and the increasing availability of trajectory data via geographical positioning 

systems (GPS), users expect real-time updated information and increasingly use such information 

for their decision-making.  

1.2 Research Overview and Objectives 

This dissertation is concerned with problems in stochastic dynamic networks with spatio-

temporal dependencies. The overarching objective of this dissertation is to define, model and 

present solution approaches for key problems in stochastic dynamic transportation networks 

through a comprehensive conceptual and modeling framework.  

Modeling approaches for the estimation of path travel time distributions are developed to 

capture the progression of traffic over space and time and the non-stationary correlation between 

travel times on different links. Considering different ways to model stochastic dynamic networks 

and the spatio-temporal dependencies of travel times in such networks, this study will review 

existing methods and introduce new approaches for modeling travel time variability in the 

network, specifically at the path level. The objective for this portion of the dissertation is to provide 

conclusions and guidelines for unifying the travel time variability modeling approaches with those 

for stochastic dynamic network modeling. Applications of such a modeling framework may 

include, but are not limited to, performance measurement, performance monitoring and simulation 
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modeling in the context of transportation policies, projects and applications concerned with the 

reliability performance of transportation systems.   

This dissertation further aims to extend the modeling framework to include path finding 

approaches in stochastic dynamic networks, by applying the travel time variability and estimation 

methods, based on different ways of modeling stochastic dynamic networks, and with different en-

route information access scenarios. Firstly, assuming no en-route information access, the problem 

of a priori path finding is addressed with exact and approximate approaches for path generation 

and under different reliability-based least-time objectives. Secondly, in the case of adaptive 

routing, problem definitions and solution approaches differ based on different assumptions 

regarding levels of spatio-temporal correlations in the network, en-route information availability 

and traveler responses to information. This study proposes exact and heuristic approaches for 

adaptive routing problems to improve the efficiency of adaptive routing solutions and make them 

suitable for real-time application. Problem definitions with different information types and 

different responses to information are considered under a unified methodological framework. 

Furthermore, since objectives for path finding in stochastic dynamic networks can vary between 

different users or applications, the routing approaches are suitable for heterogeneous users with 

different objective types and risk sensitivity levels.  

1.3 Stochastic Dynamic Network Problems 

This section introduces and defines the problems addressed in this dissertation, discusses 

the features of the problems and how they will be addressed. The problem definitions are followed 

by the associated expected contributions in section 1.4.  
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Consider a transportation network consisting of a set of nodes and directed arcs. The travel 

times along the arcs in the network are modeled as positive continuous random variables with 

distributions that vary over time. Furthermore, the link travel times are assumed to be correlated 

over space and time. The characterization of such generalized stochastic dynamic networks is the 

first step in defining and formulating the problems in this dissertation and is an extension to the 

stochastic, time-varying network definitions introduced by Miller-Hooks (1999) and extended by 

Gao (2004). Miller-Hooks (1999) defines stochastic time-varying networks via a set of discrete 

time-bins each of equal duration of the smallest increment of time over which a perceptible change 

in the travel time distributions will occur. Then, for each such time-bin and each arc in the network, 

a set of non-negative real valued possible travel times with their associated probabilities are given. 

Gao (2004) extends this framework and models the dependence between the arc travel times via 

joint time-dependent discrete distributions i.e. the possible joint realizations of travel times on all 

of the arcs for each time-bin.  

1.3.1 Characterization of Stochastic Dynamic Networks 

One of the goals of this dissertation is to introduce methods for data-driven characterization 

of the network where travel time data can be utilized to model the link travel time distributions. 

This framework will provide approaches to determine the points in time where the link travel time 

distributions change, or equivalently, to determine segments of time for which the marginal 

distributions can be considered constant. Furthermore, spatio-temporal dependencies between the 

arc travel times are to be modeled via a generalized covariance structure that may also change over 

time. The strength and presence of correlations may change for different spatial and temporal 

neighborhoods that are to be identified from the data.  



23 

 

Once the stochastic dynamic network with spatio-temporal dependencies is characterized 

in this manner, the problems addressed in this study pertain to the estimation of path travel time 

distributions, a priori and adaptive path finding problems, with different information access and 

response types, and are outlined in sections 1.3.2 to 1.3.5. These problems are further developed 

as part of the conceptual framework in Chapter 3 and formally addressed in later chapters of this 

dissertation. 

1.3.2 Estimation of Path Travel Time Distributions 

Given a stochastic dynamic network where the network link travel times are random 

variables with time-varying distributions correlated over space and time, the problem is to establish 

an approach or set of approaches for the estimation of path travel time distributions as the sum of 

such time-varying correlated random variables. The distribution function of the sum of random 

variables is determined by solving a convoluting integral, and in this problem the convoluting 

integral needs to be reformulated to allow for time-dependence and correlations between the 

random variables. Convolution integrals that account for the time-dependence aspect have been 

formulated in previous work, but they can only be solved analytically in restricted cases and with 

certain types of distribution forms. Partial dependence between the link travel times has been 

incorporated into the convolution formulation when modeled via different states each link could 

experience and their likelihood of occurrence.  

In modeling the path travel time distributions for the case with generalized correlations 

between the time-varying link travel time distributions, the formulation of the convolution integral 

itself is challenging and often intractable. Since the general case is not limited to certain 

distribution types for the link travel times, the convolution integrals do not have analytic solutions. 
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Therefore, this portion of the study will aim to identify or develop and test different approaches 

for the estimation and computation of path travel time distributions. These approaches are intended 

to be applicable to general cases, while also leveraging the specific characteristics of the stochastic 

dynamic network.   

1.3.3 The A Priori Path Finding Problem 

Given a stochastic dynamic network with time-varying and correlated link travel time 

random variables, the a priori path finding problem focuses on determining the optimal paths, for 

a given set of departure times, from an origin node to all destination nodes in the network for a 

given reliability-based optimality criterion. The a priori path finding problem requires the 

estimation of path travel time distributions, which would be methodologically addressed via the 

problem in Section 1.3.2 in order to perform comparisons of path distributions as part of the search. 

Additionally, it can be expected that the modeling and characterization of the stochastic dynamic 

network and its correlation structure will significantly impact the possible solutions for path 

finding problems 

The problem of a priori path finding is made more difficult in the context of stochastic 

dynamic networks with spatio-temporal dependencies since the characteristics of the network can 

easily invalidate some commonly used assumptions that exploit the network structure and allow 

for efficient solution algorithms, such as the first-in-first-out (FIFO) assumption and Bellman’s 

principle of optimality. Without Bellman’s principle of optimality, typically used path finding 

approaches for time-dependent networks become almost equivalent to the comparison and 

evaluation of all possible paths in the network. Such a solution approach can be very expensive 

computationally and inefficient, and therefore not suitable for most potential applications. 
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Therefore, one of the goals of this dissertation in relation to the path finding problem is to develop 

efficient heuristic path finding approaches that leverage the structure and the characterization of 

the stochastic dynamic network. 

1.3.4 The Trajectory-Adaptive Routing Strategy Problem 

In the trajectory-adaptive routing problem, given the stochastic dynamic network with 

correlated link travel times, the objective is to find an optimal routing strategy (or routing policy) 

that is designed to allow for changes in the path (or next node selection) at each intermediate node 

based on en-route revealed information about the network. This adaptive routing problem is not 

simply a path finding problem since its solution can be seen as a collection of paths, rather than a 

single path. The trajectory-adaptive problem assumes the simplest and most common type of 

information access, where a traveler has access solely to information from their own trajectory. 

In describing the problem of adaptive strategy finding, it should be noted that in order for 

this problem to be solved fully it should be addressed from the perspective of a strategic or 

proactive traveler. A strategic traveler considers the availability of information in all later decision 

stages (i.e., the information that could be realized) so as to plan and choose their route based on 

the different likelihoods of choosing each of the paths comprising the routing policy. This problem 

carries the challenges of the a priori path finding problem, but the number of possible solutions to 

be evaluated increases significantly with the consideration of en-route decision points. Since the 

adaptive routing strategy problem directly relates to the use of en-route real-time information it 

should be expected to be solved in real time, which further amplifies the need for efficient solution 

approaches that simplify the problem without a significant loss in accuracy.  
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1.3.5 The Information-Adaptive Routing Problem 

The information-adaptive problem considers a more general definition of information 

access, where a traveler in a connected environment can also have access to the trajectory 

information of any connected vehicle in the network.  In this setting, a strategic traveler would not 

be realistic because consideration of the possible information they could receive in the future, in 

order to devise a routing strategy, would require knowing the destinations of the connected 

vehicles (CVs) in the environment, their objectives, access and response to information. However, 

the problem of information-adaptive routing for a traveler reactive to information allows for 

modeling the typical response to large levels of information and understanding the impact that 

information can have on a traveler’s decisions, and specifically on meeting their objectives. 

1.4 Contributions 

This dissertation makes several methodological and conceptual contributions to the 

scientific literature.  

First, this thesis considers the problem of stochastic transportation network modeling. It 

presents a taxonomy of existing stochastic dynamic network models and extends the taxonomy to 

inform future research in this domain. It develops a data-driven and application-oriented approach 

for the characterization of stochastic dynamic networks with spatio-temporal dependencies to 

reveal the network characteristics from data, instead of imposing them as a priori assumptions. 

The approach includes methods for modeling the spatio-temporal dependencies between the link 

travel times via a generalized covariance structure, testing for the strength, presence and change 

in those correlations for different spatial and temporal neighborhoods based on patterns revealed 

in the data.  
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Second, this thesis addresses the problem of estimation of path travel time distributions, 

identifying and testing approaches that can be used for this problem in the context of stochastic 

dynamic networks with generalized correlations. Solving this problem contributes to the literature 

on estimating path travel time distributions by comparing and contrasting different modeling 

approaches and providing conclusions for the methods suitable for a variety of application 

purposes. This contribution extends the unified framework for modeling stochastic dynamic 

networks and provides approaches that can be used for data driven solutions in path finding 

problems, not restricted by distribution types or state-based correlation modeling.  

Third, this thesis deals with the problem of a priori path finding and contributes to the 

existing work in two related ways. To maintain the ability for efficient path finding by exploiting 

the network structure, modifications of Bellman’s optimality principle or stochastic dominance are 

presented to allow for approximate solution approaches with adjustable risk-tolerance levels. Then, 

using those modified principles and approximation approaches it presents a heuristic approach 

with improved efficiency for path finding in stochastic dynamic networks with correlations. 

Fourth, this dissertation presents a solution approach for trajectory-adaptive strategic 

routing that unifies this problem with the problem of priori path finding. Finally, it considers the 

problem of information-adaptive reactive routing via a general definition of information access 

and presents a solution approach that can be used for different special case problem under the 

general definition. Under this problem, it considers the stochastic dynamic network as a connected 

environment and solves the information-adaptive routing problem for different connectivity levels 

by varying the penetration of connected vehicles. 
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1.5 Organization 

Chapter 1 introduces the dissertation by providing the motivation for the topic, presenting 

the research overview and objectives, and describing its contributions. Chapter 2 reviews the 

literature on the topics relevant to this dissertation. Chapter 3 presents the conceptual framework 

for the thesis and addresses each of its components and how they connect to one another within 

the overall conceptual framework. Chapter 4 focuses on the stochastic dynamic network 

characterization and presents an approach for data-driven modeling of its spatio-temporal 

dependencies. Chapter 5 is concerned with the problem of modeling and estimation of path travel 

time distribution in stochastic dynamic networks with correlations.  

Chapter 6, Chapter 7 and Chapter 8 each present a different optimization problem in 

stochastic dynamic networks using the modeling approaches from Chapter 4 and Chapter 5. 

Chapter 6 is focused on the a priori problem of reliable least-time paths (RLTP). Chapter 7 

considers the problem of trajectory-adaptive reliable least-time strategies (TA-RLTS). Chapter 8 

focuses on the information-adaptive reliable least-time routing (IA-RLTR) problem. Chapter 9 

concludes the dissertation with a summary of contributions, applications, and future research areas.   
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Chapter 2 Literature Review 

This chapter presents a review of the literature relevant to this dissertation. As the topics 

of travel time reliability and the modeling and analysis of stochastic networks are quite broad, the 

literature review presented in this section is not meant to be exhaustive.  

The literature review is separated into four sections that categorize the literature according 

to the problems introduced in section 1.3. First, relevant literature is presented regarding the 

approaches for stochastic dynamic network modeling in section 2.1. Then, literature on travel time 

variability modeling is presented in section 2.2 as it relates to the problem of estimation of path 

travel time distribution. The literature on path finding is separated into two closely related parts 

according to the problem definitions for the a priori path finding and adaptive routing. Section 2.3 

provides an overview of the a priori path finding problems in the literature and section 2.4 reviews 

the body of literature on adaptive routing problems. Studies on problems with different types of 

information access and traveler response to information are all included in section 2.4 as this 

portion of the body of literature is relatively small.  

2.1 Stochastic Dynamic Network Modeling 

The modeling or characterization of stochastic transportation networks is considered in the 

literature primarily as part of problems for optimization or analysis in the contest of the stochastic 

network, rather than seeking to understand and model the network as a problem of its own.  

The relevant studies, most of which will be considered again in other sections of this 

literature review, are summarized here, and categorized in terms of their approach to modeling the 

stochastic transportation network. Specifically, the approaches to modeling time variation or time 

dependence in the network and spatial dependence between link travel time distributions are used 
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as the primary dimensions for comparison. The summary of the categorized literature is presented 

in Table 2-1. 

Table 2-1. Summary of temporal and spatial dependence characterization of  

stochastic transportation networks 

Temporal Dependence 

Characterization 

Spatial Dependence 

Characterization 

References 

Time-invariant network 

assumption 

Independent link travel times 

assumed 

Nie and Wu (2009a), Chen et al. 

(2013), Chen et al. (2016) 

Partial link travel time 

dependencies with a Markovian 

link state model 

Xing and Zhou (2011), Xing and 

Zhou (2013) 

Full link travel time 

dependencies with a stationary 

joint link travel time distribution 

Zockaie et al. (2013), Zockaie et 

al. (2014) 

Full link travel time 

dependencies with a stationary 

general correlation structure 

Prakash and Srinivasan (2014), 

Srinivasan et al. (2014), Prakash 

and Srinivasan (2015), Zeng et 

al. (2015), Chen et al. (2018) 

Partial link travel time 

dependencies for neighboring 

links only 

Fan et al. (2005) 

Link travel times vary 

during a peak period with 

fixed time intervals of 1 

time unit 

Independent link travel times 

assumed 

Miller-Hooks and Mahmassani 

(1998a), Miller-Hooks and 

Mahmassani (2000a), Miller-

Hooks and Mahmassani (2003a) 

Link travel times vary 

during a peak period with 

fixed time intervals  

Independent link travel times 

assumed 

Wu and Nie (2009), Zhang et al. 

(2010), Nielsen et al. (2014), 

Pretolani (2000), Miller-Hooks 

(2001a), Miller-Hooks and 

Mahmassani (2003a), Opsanon 

and Miller-Hooks (2006), 

Prakash and Srinivasan (2017), 

Prakash et al. (2018) 

Partial link travel time 

dependencies with a Markovian 

link state model 

Nie and Wu (2009b) 
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Partial link travel time 

dependencies for neighboring 

links in an ‘impact area’ 

Chen et al. (2012) 

Dependence, but additive mean 

variance assumed 
Ji et al. (2011) 

Link travel time dependencies 

with a scenario-based 

representation 

Yang and Zhou (2014) 

Full link travel time 

dependencies with a stationary 

joint link travel time distribution 

Gao and Chabini (2006), 

Pretolani et al. (2009), Huang 

and Gao (2012), Zockaie et al. 

(2016), Huang and Gao (2018) 

Full link travel time 

dependencies with a stationary 

joint link travel time 

distribution: correlated log-

normal 

Chen et al. (2020) 

Full link travel time 

dependencies with a stationary 

general correlation structure 

Yang and Zhou (2017), Zhang et 

al. (2017) 

 

The literature summary in Table 2-1 reveals a few major categories by simply grouping the 

studies based on their assumptions in modeling the stochastic networks. Temporally, networks are 

primarily classified as time-invariant (or static) stochastic networks and time-varying stochastic 

networks with fixed time intervals. Spatially, different dependence assumptions for the link travel 

time random variables are encountered, primarily models assuming independent link travel time 

distributions, those assuming partial dependence, and models with full link travel time dependence 

assumptions. These categories are further expounded and classified in the taxonomy section of the 

corresponding Chapter 4. 

2.2 Travel Time Variability Modeling 

The literature addresses the problem of modeling and estimation of travel time distributions 

at a few different aggregation levels, such as the network, origin-destination (O-D), path and link 
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level. Additionally, travel time variability has been defined from different perspectives, such as 

day-to-day, within-day (or time-of-day) and vehicle-to-vehicle variability.  

At the network level, Mahmassani et al. (2012) demonstrate that the mean and standard 

deviation of network travel times (per unit distance) are highly positively correlated. Hunter et al. 

(2013) present a method for estimating travel time distributions in a network based on probe 

vehicle data, under the assumption that link travel times follow a multivariate Gaussian 

distribution. This study further presents a path travel time model that learns the network travel 

time distributions and makes inference on the travel time distributions for arbitrary paths in the 

network. Westgate and coauthors (2013) proposes statistical methods to estimate travel time 

distributions on a road network using Markov chain Monte Carlo approaches using GPS-enabled 

ambulance data. However, being a special type of network travel, ambulance trip data may 

misrepresent the features of urban traffic networks. Kim and Mahmassani (2014, 2015) propose a 

compound distribution representation of travel time distributions at the network level to capture 

both vehicle-to-vehicle and day-to-day variability, which is then integrated with mixture modeling 

techniques to model unobserved heterogeneity due to daily roadway conditions. At a general level, 

a few studies examine travel time variability analytically and statistically. Pu (2011) explores the 

mathematical relationships and interdependencies of a number of reliability measures under the 

assumption of lognormally distributed travel times. The study finds that the coefficient of variation 

is a good proxy for several other reliability measures. Fosgerau and Fukuda (2012) apply 

nonparametric statistical techniques to travel time data and show that though the mean and 

standard deviation of travel time change with the time of day, standardized travel time is ‘roughly 
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independent’ of the time of day. Even further, the authors conclude that, when using standardized 

travel times, the independence assumption ‘could be reasonable’. 

The question of estimating path travel time distributions can be answered in several ways, 

depending on the available information. A very large sample of trajectory data may allow for 

distributions to be constructed from experienced travel times for all users who have traveled the 

path of interest. However, to construct travel time distributions along any user-specified path, 

including those with very few observed vehicle traversals, one needs to identify vehicle traversals 

of segments or links along the path so as to synthesize the path’s travel time distribution. 

Researchers have focused on the use of different types of data and various methods for estimating 

travel time distributions. Rahmani et. al (2013) point out some potential pitfalls when estimating 

path travel time distributions, specifically focusing on trajectories with incomplete traversal of the 

route, non-uniform coverage of the route in terms of the number of observations and using a non-

representative vehicle sample. Ramezani and Geroliminis (2012) use probe vehicles’ travel times 

along all links in an arterial route and estimate the route travel time distributions with a Markov 

chain approach where spatial correlations between successive links on a path are captured using 

transition probabilities. Such an approach is limited by the assumption that travel-time 

dependencies exist only between consecutive links and that such transitions between different links 

are conditionally independent. Another study synthesizes route travel time distributions based on 

segment-level temporal and spatial distributions by adding percentile-by-percentile values of the 

travel times (Isukapati et al., 2013). However, this technique may not be appropriate for 

generalized correlation structures. In terms of estimating the moments of a travel time distribution, 

Eisele and coauthors devise a method for estimating the mean and variance of route travel times 
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(Eisele et al., 2015), while a study by Chen and Osorio (2014) presents an analytic approach for 

approximating the standard deviation of travel times. Chen et al. (2017) introduced a copula-based 

model for estimating path travel time distributions on urban arterials which was shown to be 

superior to convolution and distribution fitting methods. However, the authors point out that the 

inputs to the proposed model are segment travel times, the marginal distributions for which need 

to be specified or estimated separately. A few other relevant studies use Markov Chain and 

Gaussian mixture models and specifically focus on incorporating signalized intersections (Ma et 

al., 2017; Yildirimoglu and Geroliminis, 2013).  

2.3 A Priori Path Finding in Stochastic Networks 

Reliability-based stochastic routing has been studied primarily with a focus on a priori path 

problems, and with early research assuming stationary stochastic networks, later extended to the 

time-varying case. The pivotal work on this topic (Frank, 1969) presents a closed form solution 

for the travel time probability distribution on shortest paths in stochastic stationary networks. 

Subsequently, procedures for discrete solutions and using utility functions to represent decision 

makers’ preferences were presented (Eiger et al., 1985; Mirchandani, 1976; Sigal et al., 1980). In 

stochastic time-varying (STV) networks, a series of studies by Miller-Hooks and Mahmassani 

(2000b) focus on finding least expected time (LET) paths, least possible travel time paths (1998b), 

and propose label correcting algorithms using definitions of optimality based on first-order 

stochastic dominance (FSD) and definite stochastic dominance (2003b, 1998b). As indicated in 

the previous section, routing in stochastic networks has important implications for decision making 

under uncertainty and optimality conditions may be defined based on application-specific 

objectives or the preferences and risk tolerance of different user groups. Beside the LET criterion, 
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studies have used reliability-based rules such as the shortest path problem with on-time arrival 

probability (SPOTAR) introduced by Nie and Wu (2009b, 2009a) or minimum travel time budget 

paths (MTTBP) (Zockaie et al., 2013, 2015, 2016; Fakhrmoosavi et al., 2018, 2019). Besides the 

fundamental difference in assumptions of static or time-varying travel time distributions, 

stochastic networks are modeled differently based on assumptions of dependency between link 

travel times.  

The literature on a priori path finding problems in stochastic networks is summarized in 

Table 2-2, which separates the studies based on whether they consider time-invariant or time-

varying stochastic networks. For each reference, the table indicates whether correlations between 

travel times are considered and if so, indicates how those correlations are modeled. Additionally, 

the type or approach for the solution algorithm are given, the solution type and the objective 

function or criterion used for path finding.  

Table 2-2. Studies on a priori path finding problems in stochastic network 

Reference Correlations Solution Algorithm Solution Type Objective 

Stochastic Time-Invariant Network Assumption 

Nie and Wu 

(2009a) 
No 

Label-correcting 

algorithm 
All O to 1 D 

Shortest w 

Max on-time 

arrival prob. 

Xing and Zhou 

(2011) 

Yes, partial – 

Markovian 

link state 

model 

Lower-bound 

approximate method 
O-D pair 

Most reliable 

path 

Chen et al. 

(2013) 
No 

Multi-criteria label-

setting algorithm and 

A* algorithm (heuristic) 

All O to 1 D 

Reliable 

shortest path, 

𝛼-conf. 

Xing and Zhou 

(2013) 

Yes, partial – 

Markovian 

link state 

model 

Heuristic using 

Lagrangian relaxation 

(previous paper) 

O-D pair 

Absolute and 

percentile 

robust 

shortest path 
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Zockaie et al. 

(2013) 

Yes, via joint 

link travel 

time 

distribution 

2-stage Monte-Carlo 

Simulation approach 
All O to 1 D 

Shortest w 

given on-time 

arrival prob. 

Prakash and 

Srinivasan 

(2014) 

Yes, general 

correlation 

structure 

Pruning algorithm 

based on label-

correcting procedures 

O-D pair 

Minimum 

Robust Cost 

Path 

Srinivasan et al. 

(2014) 

Yes, general 

correlation 

structure 

Bounds-based sufficient 

optimality criterion 

algorithm 

Exact 

O-D pair 

Maximum 

reliability 

path 

Zockaie et al. 

(2014) 

Yes, via joint 

link travel 

time 

distribution 

Outer approximation 

method 
All O to 1 D 

Min path 

travel time 

budget 

Prakash and 

Srinivasan 

(2015) 

Yes, general 

correlation 

structure 

Bilevel minimization 

problem 

Exact algorithm 

O-D pair 

Maximum 

reliability 

path 

Zeng et al. 

(2015) 

Yes, general 

correlation 

structure 

Lagrangian relaxation-

based approach 
O-D pair 

α -reliable 

path problem 

Chen et al. 

(2016) 
No 

Deviation path 

algorithm and A* 

approximation 

O-D pair 
K α-reliable 

paths 

Chen et al. 

(2018) 

Yes, general 

correlation 

structure 

A moment-matching-

based hybrid genetic 

algorithm (MHGA) and 

heuristic constraints 

O-D pair 
α -reliable 

path problem 

Stochastic Time-Varying Network Assumption 

Miller-Hooks 

and Mahmassani 

(1998a) 

No 
Modified label-

correcting algorithm 

All O to 1 D, 

set of departure 

times 

Least possible 

time 

Miller-Hooks 

and Mahmassani 

(2000a) 

No 

Label-correcting 

algorithm, 

Exact 

All O to 1 D, 

set of departure 

times 

Least-

expected time 

Miller-Hooks 

and Mahmassani 

(2003a) 

No 
N/A (measures for 

comparison discussed) 
N/A N/A 

Wu and Nie 

(2009) 
No 

Label-correcting 

algorithm 

All O to 1 D, 

single 

departure time 

Shortest w 

Max on-time 

arrival prob. 

Nie and Wu 

(2009b) 

Yes, partial – 

Markovian 

Label-correcting 

algorithm and 

approximation  

All O to 1 D, 

set of departure 

times 

Shortest w 

given on-time 

arrival prob. 
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link state 

model 

Zhang et al. 

(2010) 
No 

Chaotic Immune 

Particle Swarm 

Optimization  

O-D pair 

Multi-

objective 

(mean and 

variance) 

Ji et al. (2011) 

Yes, but 

additive mean 

variance 

assumed 

Simulation-based multi-

objective genetic 

algorithm  

(Approximate) 

O-D pair 

Min travel 

time budget 

with given 

reliability 

level 

Chen et al. 

(2012) 

Yes, for 

neighboring 

links in an 

‘impact area’ 

Multi-criteria A* 

algorithm 
All O to 1 D 

K shortest α-

reliable paths 

Huang and Gao 

(2012) 

Yes, joint 

distribution 

representation 

Exact label-correcting 

algorithm 

All O to 1 D, 

set of dep. 

times 

Min Expected 

Disutility 

Yang and Zhou 

(2014) 

Yes, via 

scenario-

based 

representation 

Lagrangian relaxation-

based lower bound 

approximation 

O-D pair 

Least 

expected 

travel time 

Nielsen et al. 

(2014) 
No 

Best-first branch and 

bound method 
O-D pair 

Min expected 

cost 

Zockaie et al. 

(2016) 

Yes, joint 

distribution 

representation 

2-stage Monte-Carlo 

Simulation approach 
All O to 1 D 

Min path 

travel time 

budget 

Yang and Zhou 

(2017) 

Yes, general 

correlation 

structure 

Mathematical 

formulation (to be 

solved with LP 

algorithms) 

O-D pair 

On-time 

arrival prob- 

ability and 

percentile 

travel time 

Zhang et al. 

(2017) 

Yes, general 

correlation 

structure 

Lagrangian relaxation 

(LR) based algorithm 
O-D pair 

Reliable 

shortest path 

(RSP) 

problem 

Chen et al. 

(2020) 

Yes, as 

correlated 

log-normal 

distributions 

Dynamic moment-

matching method and 

approximation 

O-D pair 
Reliable 

Shortest Path 
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2.4 Adaptive Routing in Stochastic Networks 

Adaptive routing problem formulations carry the time-dependence and correlation 

modeling questions, and also differ based on assumptions of information access. At the root of 

adaptive path finding is the idea that en-route revealed information about travel times in the 

network changes the knowledge of future travel time distributions in the network and potentially 

leading to a change in the optimal path for the user. Some of the comprehensive studies on the 

optimal routing strategy problems in STV networks (Gao and Chabini, 2006; Gao and Huang, 

2012) present a taxonomy of the definitions of such problems. The different assumptions on link 

travel time dependency and information access in the literature are addressed in turn here, 

primarily with a focus on adaptive routing in STV networks, referencing the a-priori problems or 

the time-invariant counterparts where appropriate.  

Studies of routing in STV networks differ in their assumptions and modeling of link travel 

time dependencies. Gao and Chabini define complete dependency as the case when travel times 

on all links and across all time-intervals are correlated, while on the other end of the spectrum is 

the assumption of no spatial or temporal dependence (Gao and Chabini, 2006). Limited 

dependency assumptions could also be made in order to capture some dependence and attempt to 

mitigate some of the potential problems and complications of the general dependency case.  

The assumption of no dependency between link travel times is prevalent in the literature 

both for the case of stochastic static (i.e., time-invariant) and STV networks. A series of studies by 

Miller-Hooks and Mahmassani are based on the assumption of no dependency for the problem of 

a priori path finding (1998b, 2003b) and adaptive path finding (2001b; 2003a; 2006). For the a 

priori path finding problem, studies address the shortest reliable path problem (Chen et al., 2013, 
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2016; Nie and Wu, 2009b) and minimum travel time budget path finding problem (Zockaie et al., 

2014). A few studies in the STV context assume limited dependency, and their representation of 

such dependencies varies across the literature. For example, in the a priori path finding context 

Nie and Wu (2009b) extend their work to include limited spatio-temporal dependencies between 

link travel times. The assumption of complete generalized dependency is the most general case, 

where the limited dependency and no dependency assumptions can be seen as special cases. Thus, 

solution methods for path finding or routing problems under the complete dependency assumption 

are directly applicable for solving the other types of problems, while the reverse does not hold. 

STV networks with complete link travel time dependencies in the literature are modeled in a few 

different ways. In the context of a priori path finding Zockaie et al. (2013, 2016) use a complete 

joint travel time distribution representation for the entire network. The studies addressing adaptive 

path-finding problems with different assumptions of travel time dependencies are further discussed 

below along with their assumptions on information access.  

In terms of access to information, Gao and Chabini (2006) categorize adaptive routing 

problems in three groups. Perfect online information assumes the knowledge of link travel times 

across the entire network and for all past time periods; no online information is the case where 

travelers have no knowledge of previously realized travel times anywhere in the network, while 

partial online information assumes the knowledge of travel times on a portion of the network links 

and past time periods.  

The modeling implications of assumptions on information access go hand in hand with the 

assumptions on travel time dependency. In the context of networks that assume no dependencies 

between link travel time distributions, adaptive routing is based on time alone (also referred to as 
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time-adaptive routing) and the problem definition and solution method remain unchanged under 

the various information access assumptions. A number of studies address such problems in the 

literature, such as (Miller-Hooks, 2001; Miller-Hooks and Mahmassani, 2003a; Prakash and 

Srinivasan, 2017; Pretolani, 2000) to name a few. Some studies have also addressed the problems 

with partial online information and partial network dependency. A study by Fan and coauthors 

(Fan et al., 2005) addresses the adaptive path finding problem in static stochastic networks with 

limited correlations, where links can experience one of two states and conditional probabilities are 

introduced to address the correlation between the states on adjacent links.  

Complete network dependency is assumed in a few studies with different assumptions of 

information access. In the context of static stochastic networks, studies by Srinivasan and 

coauthors (Prakash and Srinivasan, 2018, 2015; Srinivasan et al., 2014) present a few approaches 

for modeling correlations in link travel time distributions. Additionally, studies by Gao and 

coauthors (Gao and Chabini, 2006; Gao and Huang, 2012) assume complete temporal and spatial 

stochastic dependence of link travel times, where a joint distribution of discrete link travel times 

is applied. Various assumptions on information access are made with information scenarios such 

as delayed global information, real-time local information, and pre-trip global information. 

Trajectory-adaptive routing is a special case of partial information that has been considered 

in some studies (Huang and Gao, 2018; Opasanon and Miller-Hooks, 2006; Pretolani et al., 2009) 

based only on the knowledge given user’s trajectory. Specifically, trajectory information assumes 

the knowledge of travel times for the links traversed by the user and for the time periods during 

which they were traversed on their current route. Such an assumption is appropriate under 

decentralized routing systems which may have access to historical information, but only utilize the 
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current trip information for en-route decisions. Specifically, a multicriteria adaptive path finding 

study (Opasanon and Miller-Hooks, 2006) presents a label-correcting algorithm, but under the 

assumption of no travel time distribution dependencies. Subsequently, a study by Pretolani and 

coauthors (Pretolani et al., 2009) provides an in-depth comparison of the time-adaptive and 

trajectory-adaptive problem in multi-criterion optimal routing. More recently, a study by Huang 

and Gao (Huang and Gao, 2018) presents an approach for trajectory-adaptive routing with 

complete dependency between link travel times. In this study, the complete stochastic dependency 

between link travel times is represented via a joint discrete travel time distribution across the links 

in the network and a peak travel period, and the authors present an exact solution algorithm for 

such a problem. A limitation of this study is the assumption of discrete travel times and the need 

to maintain a finite number of support points in the event space (i.e., the number of possible 

realizations of travel times in the network). Additionally, the authors demonstrate that the running 

time of the algorithm grows exponentially with the network size.  

Table 2-3 summarizes the literature on adaptive path finding problems in stochastic 

networks. In addition to all of the information contained in the previous table, Table 2-3 also points 

out the problem type, which indicates the type of information-adaptive problem considered for 

each reference. 

Table 2-3. Studies on adaptive path finding problems in stochastic network 

Reference 
Problem 

Type 
Correlations 

Solution 

Algorithm 

Solution 

Type 
Objective 

Stochastic Time-Invariant Network Assumption 

Fan et al. 

(2005) 

Trajectory-

Adaptive 

Yes, partial – 

states for 

neighboring 

links 

Picard’s 

Method of 

Successive 

Approximation 

All O to 1 D 

Least 

expected 

travel time 

Stochastic Time-Varying Network Assumption 
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Pretolani 

(2000) 

Time-

adaptive 
No 

N/A 

Formulation 

only 

O-D pair 

(formulation) 

Minimum 

expected and 

Min-max cost 

Miller-

Hooks 

(2001a) 

Time-

adaptive 
No 

Modified 

label-

correcting 

algorithm 

All O to 1 D, 

set of 

departure 

times 

Least 

expected time 

Miller-

Hooks and 

Mahmassani 

(2003a) 

Time-

adaptive 
No 

N/A (measures 

for comparison 

discussed) 

N/A N/A 

Opasanon 

and Miller-

Hooks 

(2006) 

Time-

adaptive 
No 

2 stage 

approach: 

generation and 

selection of 

hyperpath 

All O to 1 D, 

set of 

departure 

times 

Multicriteria – 

Least 

disutility 

Gao and 

Chabini 

(2006) 

Full 

information, 

Full history-

adaptive 

Yes, via joint 

distribution 

representation 

Decreasing 

Order of Time 

Algorithm, 

Exact 

All O to 1 D, 

set of 

departure 

times 

Least 

expected 

travel time 

Pretolani et 

al. (2009) 

Time-

adaptive 

and history-

adaptive 

Yes, via joint 

distribution 

representation 

N/A 

(Formulation / 

representation 

only) 

O-D pair 

N/A 

(Formulation/ 

representation 

only) 

Prakash and 

Srinivasan 

(2017) 

Time-

adaptive 
No 

Iterative 

bounds-based 

algorithm 

O-D pair 

Minimum 

robust-cost 

strategy 

Prakash et 

al. (2018) 

Time-

adaptive 
No 

Label-

Correcting 

Network-

Pruning 

Procedure 

O-D pair 

Minimum 

Robust-Cost 

strategy 

Huang and 

Gao (2018) 

Trajectory-

Adaptive 

Yes, via joint 

distribution 

representation 

Decreasing 

order of time 

algorithm 

All O to 1 D, 

set of 

departure 

times 

Minimum 

Expected 

Disutility 

2.5 Conclusion 

A review of the literature relevant to this dissertation is presented in this chapter. The 

literature review sections 2.1 to 2.3 cover the literature related to the problems introduced in 

sections 1.3.1 to 1.3.3, respectively. The review of literature on adaptive routing problems in 
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section 2.4 jointly covers the literature relevant to the problems introduced in sections 1.3.4 and 

1.3.5. This chapter identifies gaps in the existing literature that are to be addressed in this 

dissertation. The specific problems, research questions and gaps that this dissertation is concerned 

with are first presented via the conceptual framework in Chapter 3 and then addressed individually 

in Chapter 4 through Chapter 8.  
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Chapter 3 Conceptual Framework 

One goal of this dissertation is to develop a comprehensive framework that incorporates 

the approaches for modeling and optimization in stochastic dynamic networks. This chapter 

presents the conceptual framework, describing each of the components in turn, in sections 3.1 to 

3.5 as they correspond to the problems identified in sections 1.3.1 to 1.3.5 in the Introduction, and 

later presented individually in Chapter 4 through Chapter 8. The overall conceptual framework is 

illustrated in Figure 3-1. 

 
Figure 3-1. Dissertation Framework 
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The illustrated dissertation framework in Figure 3-1 shows the connections between the 

various components, either directly from one component to the next, or via an intermediate 

component.  

 

3.1 Stochastic Dynamic Network Characterization 

An important aspect of modeling and optimization in stochastic networks is the ability to 

identify the characteristics of the network accurately and effectively. The goal of this component 

of the thesis is to present an approach for the characterization of stochastic dynamic networks that 

would correctly capture the dynamics and interdependencies in the network and be useful for 

analysis and optimization. 

In characterizing the stochastic dynamic network, a few important questions are asked, that 

will have a significant impact on the modeling of path travel time distributions and the optimization 

problems to follow. 

1. Is the network time-invariant or time-varying? 

Time-varying network models, as mentioned in Section 1.1 and in the literature review in 

Chapter 2, are necessary for representing the dynamics of the network and capturing the 

changes in the network’s performance over time. If using a time-varying network model, 

the next question is to determine the appropriate duration of time-intervals with which 

travel time distributions vary. 

2. Are the travel times on network links correlated? 

The structure of the network itself and the presence of travel patterns lead to dependence 

of the traffic conditions on different links in the network, and consequently lead to 
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correlations between the travel time distributions. If link travel times can in fact be modeled 

as correlated random variables, then a range of questions need to be answered on the type 

of correlations that exist between link travel times and their nature within the context of 

stochastic dynamic networks, which are further explored in Chapter 4. 

3. Are travel times distributions impacted by endogenous and exogeneous factors in the 

network? 

The performance of transportation networks has been shown to be affected by a range of 

factors, ranging from different demand patterns due to special events, work zones, incidents 

or accidents, or weather events that change the driving behavior of travelers at a large scale. 

This question would aim to evaluate if and how the time-variability and interdependence 

of network travel times may change due to the impact of such factors. 

The characterization of the stochastic dynamic network is the basis for the remaining 

components of this thesis, from the modeling of path travel time distributions, the assumptions that 

can be made for a priori path finding or the type of information relevant for adaptive routing.  

3.2 Path Travel Time Distribution Modeling and Estimation 

Establishing an approach (or set of approaches) for modeling path travel time probability 

distributions is essential to devising a cohesive framework for optimization in stochastic dynamic 

networks, and specifically for path finding and adaptive routing problems. As mentioned in 

Chapter 1, user-centric measures in the transportation network focus on full trips, paths, or 

trajectories that a given user may experience. In the context of stochastic dynamic networks, that 

translates into modeling the variability of travel time along entire paths for a given origin-

destination pair, which is captured via the path travel time distribution.  
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Figure 3-1 shows that on the input side of path travel time probability modeling are the 

modeling of the stochastic dynamic network, and through that the availability of historical data. 

These two components are closely related to one another and also affect the type of models that 

would be appropriate or necessary for modeling path travel time distributions, as they become 

inputs for each following component, as shown in Figure 3-1. 

In addition to these questions on the input side concerning the modeling of the stochastic 

dynamic network and the available data, there is important work that can be done in terms of the 

modeling of path travel time distributions. As mentioned in the literature review, determining the 

distribution of path travel times in stochastic dynamic networks is equivalent to the problem of 

determining the distribution of the sum of random variables. The sum of random variables is 

typically determined via a convolution integral. However, in this case, those travel time variables 

can be time-varying and correlated over space and time, which complicates the convolution 

integral and, in some cases, makes it impossible for the integral to be formulated in the first place. 

In cases when the integral can be formulated, numerical approximation approaches could be used 

to estimate the analytically intractable integrals. Monte-Carlo simulation approaches, which are 

typically used for the estimation of intractable integrals, can be implemented, and modified, for 

the specific problem at hand. Other sampling approaches suitable for sampling correlated random 

variables, such as Gibbs or the Metropolis-Hastings sampling, may be more appropriate for this 

application. Parametric methods can also be considered and compared to sampling-based 

approaches.  

An important question that arises from all of the considerations in this section is – what 

level of detail is actually necessary in order to model path travel time distributions with sufficient 
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accuracy? Which details can be forgone in order to make the approach simpler, more intuitive, 

computationally efficient, and applicable? Devising an approach for modeling path travel time 

distributions that is suitable given the stochastic dynamic network and the available input data will 

require a complete experimental design that accounts for these factors. The numerical experiments 

will need to consider the accuracy and computational effort for the possible approaches in order to 

identify one or more of these methods as suitable for certain definitions of the stochastic dynamic 

network.  

3.3 A Priori Path Finding 

With the path travel time modeling approaches devised based on section 3.2, the 

distribution estimates are to be used for path finding. As introduced in the literature review Section 

2.3, the problem of path finding in stochastic dynamic networks is significantly different from the 

corresponding problems in deterministic networks. Given the stochastic dynamic network, 

decisions are made under uncertainty and as such they can only be optimal at an aggregate or 

overall level. The optimality of a specific solution is itself uncertain, for example a least expected 

travel time optimal path is expected to have the shortest travel time, but there is some likelihood 

that once travel times are revealed there may have been other better paths.  

The literature review in Section 2.2 describes the existing work on a priori and adaptive 

path finding in stochastic networks and summarizes all of the references in Table 2-2. There is a 

lot of variation in the literature in terms of the assumptions of time-dependence and the modeling 

of correlations for such problems. Therefore, the modeling of the stochastic dynamic network, per 

section 3.1 and specifically the dependence assumptions regarding link travel time distributions 

will significantly impact the possible solutions for path finding problems. One goal in this thesis 



49 

 

is to unify the formulation of the path finding problem with the problem of modeling travel time 

probabilities and estimation of path travel time distributions via their shared formulation of the 

stochastic dynamic network.  

Assumptions necessary for the accurate modeling of path travel time distributions will need 

to remain and extend into the path finding problem, and as such will have an impact on the path 

finding solution approaches. Some important aspects of the assumptions typically made in the path 

finding problem need to be revised and re-assessed with respect to the context of stochastic 

dynamic networks.  

One complicating factor is the first-in-first-out (FIFO) assumption that in deterministic 

networks specifies that vehicles entering a given link at a later time must also exit that link later. 

This assumption is critical for establishing the acyclicity criterion for optimal paths, i.e., that an 

optimal path will not traverse the same node more than once, thus preventing cycling in the 

network. The FIFO assumption has been modified for different networks, for example in networks 

that account for turning movements, vehicles entering a link at a later time may be allowed to exit 

it earlier if they are making a different turning movement. In the context of stochastic dynamic 

networks, the FIFO criterion has been adjusted and substituted with a stochastic FIFO criterion 

that is defined differently in different studies.  

Another difficulty is introduced by the non-applicability of Bellman’s principle of 

optimality, typically critical in the design of path finding solution algorithms that make use of the 

network structure. The principle says that any sub-path of the optimal path for a given origin-

destination pair is itself optimal for the intermediate nodes. The optimality principle needs to be 

adjusted for stochastic dynamic networks in a few different ways. For networks with independent 
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link travel times, Bellman’s principle has been successfully used when applied to the dominance, 

rather than optimality, of paths and sub-paths using the first order-stochastic dominance (FSD) 

criterion. However, for stochastic dynamic networks with correlated link travel times, Bellman’s 

principle has also been shown to be invalid with the FSD criterion. Thus, modifications of this 

principle are further investigated for a dominance criterion that can be used with Bellman’s 

principle (i.e., at intermediate nodes) in stochastic dynamic networks with correlations. Even 

further, probabilistic versions of the criterion may be possible, for example ones where the 

likelihood of a sub-path’s dominance can be quantified. Such modifications form the basis of 

algorithms for generating eligible paths for optimal a priori path finding in Chapter 6.  

3.4 Trajectory-Adaptive Strategic Routing 

The trajectory-adaptive routing problem in the context of a strategic traveler is a type of 

information-adaptive routing problem, previously discussed in the literature review in Section 2.4 

and is summarized in Table 2-3. The problem difficulties for stochastic path finding problems, 

described in the previous section, are also relevant here. However, information-adaptive routing 

problems are defined by two key characteristics: the type of information access and the type of 

traveler response to information.  

Trajectory-adaptive strategic routing considers access to in-vehicle information i.e., 

traveler’s own trajectory and a strategic (i.e., proactive) response to that information. The problem 

specific are defined in more detail in Chapter 7. The important aspects of this problem with regard 

to the cohesive conceptual framework are that it is defined on the basis of the stochastic dynamic 

network model per section 3.1, uses the path travel time distribution estimation approaches 

according to section 3.2 and the eligible path generation criteria and algorithms from section 3.3. 
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3.5 Information-Adaptive Reactive Routing 

The information-adaptive routing problem in the contest of a reactive traveler considers 

the other side of adaptive routing, there the traveler has access to external information via other 

vehicles’ trajectories in a connected environment and the traveler has a reactive response to that 

information. With rapidly changing types and access to online information in transportation 

networks, the case of a vehicle operating in a connected environment is now conceivable and may 

allow for more fluid definitions of partial online information access for adaptive routing problems. 

One aim of this component of the thesis is to unify the formulation of the adaptive routing 

problem with the problems of modeling travel time probabilities and estimating path travel time 

distributions via their shared formulation of the stochastic dynamic network. Furthermore, the goal 

is to integrate those aspects of the problem with different types of information access under one 

broad definition. Previous studies have considered the extreme cases of full information access, 

from the perspective of a centralized operator, or trajectory access, where an in-vehicle information 

system may only have access to that vehicle’s trajectory only. However, modeling information 

access in a connected environment can allow for a fluid problem definition that can be used with 

varying levels of information availability. Under this definition, the full information case, the 

trajectory-information, or spatial neighborhood information can all be seen as special cases of a 

general information access definition.  

Thus, this component of the dissertation also unifies the a priori and adaptive path finding 

problems via a solution approach that can be used to solve both problems. Additionally, this 

component aims to provide efficient solution approaches, as previous studies in the literature have 
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recurrently recognized the need for approximate solution approaches, heuristics or hybrid 

approaches for adaptive path finding.  

3.6 Conclusion 

This chapter provides the conceptual framework for the proposed dissertation, centered 

around the goal of developing a comprehensive framework to incorporate the approaches for 

modeling, path finding and routing in stochastic dynamic networks. The input, methodology and 

output side for each of the components of the conceptual framework are addressed in sections 3.1 

through 3.5. The next five chapters of the thesis, Chapter 4 through Chapter 8, present the 

problems, methods, and results on each of the conceptual framework components presented here.  

Chapter 4 Characterization of Stochastic Dynamic Networks 

4.1 Overview 

The modeling of path travel time reliability, path finding and routing in stochastic dynamic 

transportation networks are rooted in the idea that a transportation network can be represented as 

a stochastic dynamic system. Consequently, it is important to characterize and specify the 

transportation network as a stochastic dynamic system accurately and effectively. An accurate 

specification of the network that correctly captures the network characteristics, including its 

dynamics and interdependencies, is crucial to having a useful model of the real network. 

Furthermore, an effective characterization that can be used for analysis and optimization is 

important to having a functional model of the network. There are often trade-offs between these 

objectives: accurate modeling of the network may involve modeling the complexity of its 
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dynamics and interdependencies to a level of specificity that could be at odds with the usefulness 

of the resulting model, where simplicity is important for its applicability.  

This chapter presents an approach for characterizing the spatial and temporal features of 

stochastic dynamic transportation networks. Starting with a problem definition in section 4.2, this 

chapter then presents a systematic taxonomy for stochastic dynamic network characterization in 

section 4.3 along with a review of literature from several relevant domains. The methodology in 

section 4.4 presents the approaches selected for the spatial and temporal characterization of 

stochastic dynamic networks. Section 4.5 presents a sensitivity analysis performed to assess the 

network characterization results and their robustness across several main dimensions related to 

parameters in the characterization methodology and changes in the network data due to varying 

demand and weather conditions.  

4.2 Problem Statement 

This section presents the problem of characterization of stochastic dynamic networks 

addressed in this chapter. Section 4.2.1 provides an outline of the research questions answered 

through this chapter, while section 4.2.2 provides a more formal problem definition for those 

questions. 

4.2.1 Research Questions 

In defining the stochastic dynamic network, several questions on how the network is to be 

modeled will have a significant impact on the modeling of path travel time distributions and the 

optimization problems to be solved in this system. These research question expand on the general 

questions introduced in the conceptual framework in section 3.1. 



54 

 

1. Is the network considered to be time-invariant or time-varying? 

As mentioned in Section 1.1 and in the literature review Section 2, time-varying networks 

are necessary for representing the dynamics of the network and capturing the changes in the 

network’s performance through time. Stochastic dynamic networks are typically modeled with 

time intervals, where travel time distributions can be considered static within each time interval 

but vary from one time interval to the next. Thus, an important aspect of modeling a stochastic 

time-varying network is the question of determining the appropriate time interval duration.  

2. Are there dependencies between travel times on different links? 

The structure of the network itself and the presence of travel patterns lead to dependence 

of the traffic conditions on different links in the network, and consequently lead to correlations 

between the travel time distributions. If link travel times can in fact be modeled as correlated 

random variables, then a range of questions need to be answered on the type of correlations that 

exist between link travel times and their nature within the context of stochastic dynamic networks. 

• Are there dependencies between all or some of the links’ travel times in the networks?  

• Are there groups of links within which dependencies exist and outside which 

dependencies can be considered negligible? 

• Are link travel times correlated over time? Given that traffic takes time to progress over 

space, there may be some time lag in the dependencies leading to link travel times being 

correlated across time.  

• Are link travel time correlations stationary or do they vary over time? If temporal 

variation is observed, the duration of the corresponding time intervals also needs to be 

estimated. 
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3. Are the temporal and spatial dependencies stationary over varying network conditions? 

The performance of transportation networks has been shown to be affected by a range of 

exogeneous factors, ranging from new demand patterns due to special events, work zones 

impacting the flow of traffic, incidents or accidents, weather events that change the driving 

behavior at a large scale, etc. The question is whether the temporal and spatial dependencies of 

travel time distributions in the network vary with any of these exogeneous factors. Specifically, 

the following questions can be asked:  

• Are time-intervals for time-variable networks stationary over space and time? Over 

space, one needs to examine if link travel time distributions vary at the same rate across 

all links (or groups of links) in the network. Across time, the question is whether time 

time-interval duration for temporal dependence changes based on the time of day. 

• Are link travel time dependencies stationary over time? That is, one needs to examine 

whether link travel time correlations change over time and to determine the 

corresponding time-interval.  

• More broadly, which of the aspects of the stochastic dynamic network, modeled as part 

of answering questions 1 and 2, can be considered robust with respect to the impact of 

some or all exogeneous factors considered? This question aims to understand if the 

modeled characteristics can be considered robust attributes of the network or if they are 

dependent on external factors.  

Answering these specific questions, as well as devising approaches for how to find those 

answers for different networks is important in deciding how to model the travel time distributions 

across the network and may be essential in devising methods for the estimation of path travel time 
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distributions. As mentioned at the opening of this section, however, each of these questions should 

be supplemented with the question of whether each added level of complexity can be modeled and 

whether it needs to be modeled. That is, which added details can be eliminated to make the network 

model more intuitive and applicable while retaining a sufficient level of accuracy? 

4.2.2 Problem Definition 

To summarize the problem statement introduced through the research questions in the 

previous section, a more formal definition of the problem is presented here. Considering the links 

in the network and their random variable travel times, represented as a time series through a given 

day or time period, the problems for spatial and temporal characterization can be defined as 

follows. 

The spatial characterization aims to find groups of links on the network, spatially adjacent 

to one another, within which link travel times are highly dependent but can be considered 

independent from those outside their group. An important step in finding such groups is to define 

an appropriate goodness of fit measure, accounting for the similarity of link travel times (as they 

vary with time) and then find groups, clusters, or communities of links so as to maximize the 

goodness of fit measure.  

The temporal characterization considers the time series of the travel times on any given 

network link and aims to find the points in time where a change in the underlying link travel time 

distribution is likely to have occurred. Namely, the problem is to find (continuous) periods of time 

where the link travel times can be considered to be observations from a single stationary underlying 

distribution, but a change in the distribution is detected from one period to the next. If link travel 

time dependencies exist, based on the spatial characterization, the aim is to find the points where 
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link travel time distributions change jointly for groups of dependent (i.e., jointly distributed) link 

travel times, so as to capture the changes in the mean and covariance of the joint distribution. 

4.3 Taxonomy for Stochastic Dynamic Network Modeling 

As introduced in the literature review, the modeling and optimization problems in 

stochastic dynamic transportation networks are not entirely new. A stochastic dynamic 

transportation network is a model of the transportation network in which the travel times across 

the network links are random variables with time-varying distributions that may also exhibit 

spatio-temporal dependencies.  

The existing literature on modeling and optimization problems in stochastic dynamic 

networks is extensive and diverse. However, most of the studies in this domain, as presented in 

the literature review in Chapter 2, approach stochastic dynamic networks from the perspective of 

different optimization problems within the network rather than with the goal of modeling the 

network itself. Models of the network underlying the problem definitions are typically treated as 

assumptions imposed to the network, rather than being uncovered or exposed from data or network 

characteristics.  

Table 4-1. Taxonomy of stochastic dynamic network models 

 Temporal Dimension Spatial Dimension 
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Do travel time distributions in the 

network vary over time? 

• Time-invariant networks, 

• Time-varying networks with a 

fixed time interval. 

Are link travel times dependent random 

variables? 

• Independent link travel times, 

• Partial Markovian dependence between 

neighboring links, 

• Partial dependence for links in impact 

neighborhoods with fixed radius, 

• Full dependence via known joint link 

travel time distribution or correlation 

structure. 
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This taxonomy aims to present a unified overview of the modeling dimensions that can be 

considered in characterizing a transportation network as a stochastic dynamic system. Some of 

these dimensions have been extensively explored in existing literature, several have been primarily 

treated as assumptions, while others are new dimensions of modeling that are introduced here to 

give a more comprehensive model of the stochastic dynamic transportation network.  Table 4-1 

displays the general classification of stochastic network models and introduces the additional 

dimensions for further classification based on the questions introduced in the problem definition. 
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In time-varying networks: In networks with spatial dependencies: 

Temporal Variation 

Do link travel time distributions’ 

time-intervals change over time? 

• Time-intervals have fixed 

durations over time, 

• Time-interval durations 

change over time. 

Does the presence or strength of dependencies 

between link travel times change over time? 

• Link travel time correlations are static, 

• Link travel time correlations vary over 

time with the link travel time 

distributions, 

• Link travel time correlations vary over 

time with intervals different from the 

link travel time distributions. 

Spatial Variation 

Do link travel time distributions’ 

time-intervals change over space? 

• Time-intervals have fixed 

durations for the entire 

network, 

• Time-interval durations vary 

over space (i.e., across the 

network links). 

Does the presence of dependencies between 

link travel times change over space? 

• Link travel time correlations exist for 

equal-size neighborhood for each link, 

fixed over time, 

• Link travel time correlations exist for 

equal-size neighborhood for each link, 

that vary over time or changing 

conditions, 

• Link travel time correlations exist within 

spatial neighborhoods of varying size 

and distance, fixed over time,  

• Link travel time correlations exist within 

spatial neighborhoods that vary over 

time or changing conditions. 
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4.3.1 Existing Taxonomic Categories 

Stochastic transportation networks are typically classified based on the temporal and spatial 

dependencies, as seen in the literature in section 2.1. Some additional observations to identify the 

existing taxonomic categories based on Table 2-1 are presented here. 

In the temporal dimension, networks are classified based on whether the travel time 

distributions vary over time and two major categories are encountered: time-invariant or static 

stochastic networks and time-varying stochastic networks with fixed time intervals. The time 

intervals for the temporal variation of travel time distributions are fixed across time, (i.e., they 

have the same duration for all times of day), across space (i.e., they are equal for all network links) 

and are considered stationary under changing network conditions. 

In the spatial dimension, the literature classifies different models of stochastic 

transportation networks based on dependence assumptions for the link travel time random 

variables. Three primary categories emerge: (1) models assuming independent link travel time 

distributions, (2) models assuming partial dependence, and (3) models where full dependence 

between link travel times is assumed. The second category can be further separated into models 

assuming Markovian dependence and those assuming partial dependence for neighboring links in 

an impact area of pre-specified radius. In the third category, a few subcategories exist: cases where 

dependence is modeled via a given correlation structure or via a given joint link travel time 

distribution, either of pre-specified distribution functional form or as discrete distributions with 

finite support.  
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The existing taxonomic categories cover the main questions in modeling stochastic 

transportation networks and the major assumptions that can be made in answering them. Three 

important limitations should be pointed out:  

(1) The existing categories do not consider cross-sectional categories that may emerge from 

considering the temporal and spatial dimension simultaneously. 

(2) The existing categories are imposed onto a given network or data set rather than uncovered 

from the network structure and its data.  

(3) The existing categories have emerged as rather rigid classes where assumptions hold 

equally over the entire spatial and temporal domain of the network. 

4.3.2 Extended Taxonomic Categories 

An important premise of this chapter is to consider stochastic networks in the general sense 

and allow for underlying assumptions, such as those regarding the time-variability or spatial 

dependence, to vary across the temporal and spatial domain considered. The existing taxonomic 

categories can be seen as special cases of this unifying generalized modeling framework for 

stochastic dynamic networks. The taxonomic categories define here are presented in a flexible 

manner to allow for a data-driven modeling framework, as presented in section 4.4 below. 

The bottom portion of Table 4-1 outlines the additional dimensions for further 

classification of stochastic dynamic networks. These categories are concerned with allowing for 

cross-sectional classification considering both the temporal and spatial dimension, and thus allow 

for fluidity of the assumptions across the network and the temporal domain under consideration. 

Some of the categories have been considered in previous work (Filipovska et al., 2021; Filipovska 
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and Mahmassani, 2020b), although not explicitly presented as distinct from the existing taxonomic 

categories or classified according to the taxonomy presented here.  

The additional dimensions for further classification of stochastic dynamic networks are 

addressed in the temporal and spatial dimensions with sub-categories for cross-sectional 

classification. 

Firstly, for time-varying networks temporal and spatial variation of the time intervals can 

be considered. In terms of temporal variation, in asking the question of whether link travel time 

distributions’ time-intervals change over time, two categories can be added: 

• Time-varying networks with time-interval durations fixed and equal over time. 

• Time-varying networks with time-interval durations that vary over time. 

In terms of spatial variation, in asking the question of whether link travel time distributions’ 

time-intervals change over space, two categories can be added: 

• Time-varying networks with time-interval durations fixed and equal over the entire 

network. 

• Time-varying networks with time-interval durations that vary across the network (i.e., may 

be specific to each link or neighborhood of links).  

Secondly, for networks with spatial dependencies, temporal and spatial variation of the 

spatial dependencies (both in their strength and existence) can be considered. In terms of temporal 

variation, in asking the question of whether the presence or strength of correlations between link 

travel times change over time, three categories can be added: 

• Networks with static (over time) link travel time dependencies. 
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• Time-varying networks with link travel time dependencies (or correlations) that vary with 

the link travel time distributions. 

• Time-varying networks with link travel time dependencies (or correlations) that vary 

intervals different from those of the link travel time distributions. 

Thirdly, in terms of spatial variation, in asking the question of whether the presence of 

dependencies between link travel times changes over space, four categories can be added: 

• Networks where link travel time correlations exist for equal-size neighborhood for each 

link, fixed over time, where the size can be determined based on physical or network-based 

distances.  

• Networks where link travel time correlations exist for equal-size neighborhoods for each 

link, that vary over time or with changing conditions. 

• Networks where link travel time correlations exist within spatial neighborhoods of varying 

size and distance, fixed over time. 

• Networks where link travel time correlations exist within spatial neighborhoods of varying 

size and distance, that vary over time or with changing conditions. 

The following section presents a review of methods relevant for spatio-temporal network 

characterization to provide the basis for a methodology to address each of the limitations of 

existing taxonomic categories. 

4.3.3 Review of Methods Relevant for Spatio-Temporal Network Characterization 

This section presents a review of methods relevant for spatio-temporal network 

characterization that can be used for obtaining data-driven models of stochastic dynamic networks 

according to the extended taxonomic categories presented above.  
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4.3.3.1 Review of Community Finding Approaches from Network Science 

To give a brief overview of the notion of community structures and community finding in 

networks, this section reviews some introductory and classical works in this domain. Community 

structure detection is a data analysis technique used for understanding large-scale network data 

where the goal is to find groups that a network can best be divided into, assuming that it naturally 

divides into subgroups based on some characteristics (Newman, 2010, 2006).  

An important concept in finding community structures in networks is the notion of 

modularity, defined by Newman and coauthors (2004) as a property of the network and a specific 

proposed community structure that measures the goodness of fit for the proposed structure to the 

underlying network. Modularity has been the basis for the development of a whole class of 

community finding clustering algorithms, specifically those targeted towards large networks 

(Clauset et al., 2004).  

The Louvain Modularity-Maximization Approach for Community Finding 

A key modularity maximization approach, developed for highly practical applications and 

suitable for large networks, is the Louvain method introduced by Blondel and coauthors (2008). 

The Louvain is a heuristic introduced to address some of the challenges of the fastest modularity 

maximization approximation algorithm proposed by Clauset and coauthors (2004). The Louvain 

method recognizes that there may be several natural divisions and organization levels in large 

networks (where communities can be divided into sub-communities) and is thus intended to reveal 

this hierarchical structure. The details on the Louvain method and the corresponding algorithm can 

be found in the original work (Blondel et al., 2008), but some key aspects, such as the general 

structure of the algorithm and the modularity computation, are presented in the methodology in 

section 4.4.1 for completeness.  
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As can be expected, the Louvain approach is not readily applicable to the problem of 

community detection in transportation networks. There are key differences in how transportation 

networks are modeled and how the notions of adjacency and proximity translate for the application 

to transportation networks. The methodology section presents these key differences and the 

approach taken in this study to adequately adapt the Louvain algorithm for modularity optimization 

to the context of transportation networks. 

Advancements in Network Community Finding  

Some more recent advancements in the domain of network community detection would 

allow for more sophisticated approaches for community finding in transportation networks. A 

study by Mucha and coauthors (Mucha et al., 2010) focuses on finding community structures in 

time-dependent, multiscale and multiplex networks, which can be useful when considering 

applying community finding approaches to dynamic transportation networks. However, these 

methods require further adaptation to be suitable for application to transportation networks and are 

not suited for large-scale network implementation. 

A recent review paper on the challenges and opportunities in community structure in 

complex networks emphasizes the relevance of time evolving networks and the extraction of 

communities in complex networks where nodes and links can disappear or be introduced, or 

attributes of the nodes and links may be variable (Cherifi et al., 2019). The authors consider 

snapshot-based approaches, evolutionary algorithms, online community finding, and predicting 

community evolution. Some extensions of the generative models of communities in complex 

networks may be useful for the further study and analysis of transportation network 

characterization. The present study aims to introduce the notion of community finding for the 
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characterization of stochastic dynamic transportation networks, and as such the focus is on 

implementing and testing the most prevalent and applicable approaches and to adequately adapt 

them for application to transportation networks. The idea of having evolving network communities 

that may change over time or with the change of some exogenous or endogenous factors are 

considered via numerical experiments for sensitivity analysis, but it may be worthwhile to 

investigate more sophisticated methods in future work. 

Measuring Robustness of Community Structure in Networks  

To conclude this brief review, it is important to consider the notion of evaluating and 

comparing network community structures. As indicated at the start of this section, modularity is 

typically used to evaluate the goodness of fit of a given community structure on the underlying 

network of interest. By using modularity optimization, the approach implemented in this study 

aims to maximize modularity in order to obtain the best fit community structure for a given 

network and data. However, adjusting the parameters of the community finding algorithm or 

changing the conditions of the network itself may lead to different community structures of the 

transportation network that all maximize modularity for the problem at hand.  

For an effective sensitivity analysis of the applied methodology with respect to varying 

parameters of the algorithm or varying network conditions, it is important to compare the resulting 

community structures and evaluate whether community structure tends to be robust or highly 

varying with respect to those factors. The notion of robustness of community structures in 

networks can be used for this purpose, along with approaches to quantify network perturbation, 

differences in community structure, and use existing information-theoretic measures for 

community structure comparison (Karrer et al., 2008).  
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The measures of similarity or difference between community assignments are typically 

categorized as (1) pair counting measures – evaluating the number of pairs of nodes in the same 

or different communities in two assignments; (2) cluster matching measures comparing the best 

match for each cluster in two different community assignments; and (3) information-theoretic 

measures for clustering. This study will use a few different measures to perform the sensitivity 

analysis for network community assignments in the network characterization. Specifically, pair 

counting measures used in this study are the adjusted Rand score and Fowlkes-Mallows score, 

normalized mutual information score - which a cluster matching measure, while homogeneity and 

completeness are information-theoretic measures.  Further detail on each of the measures and their 

interpretation are given in the methodology section. 

4.3.3.2 Review of Time Series Similarity Measures 

Time series analysis is the study of time series data defined as sequences of measurements 

over time describing the behavior or state of systems. This section provides a brief review of 

methods for comparison of time series and retrieval of similar time series. An extended 

introductory survey on this topic is presented by Last at al. in a book on data mining in time series 

data bases (2004), and it should be noted that this review is oriented towards approaches suitable 

for this study. 

Most robust distance measures for time series comparison utilize signature-based similarity 

search. An initial approach introduced by Agrawal et al. (1993) is the F-index in which a 

‘signature’ of the time series is extracted from its frequency domain which preserves Euclidean 

distance. Piecewise constant approximation was introduced based on the idea of dividing each time 

series into k equal-length segments and comparing the average values of each segment as a 

coordinate for the k-dimensional signature vector (Keogh et al., 2001a; Yi, B and Faloutsos, 2000). 
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Landmark models introduced significant progress in this domain, where landmarks are identified 

in the time series as points of great importance. The approach introduced by Perng et al. (2000) 

has been shown to be invariant with respect to a number of transformations, including shifting, 

uniform amplitude scaling, uniform time scaling, non-uniform time-scaling (time warping) and 

non-uniform amplitude scaling. 

For the application to transportation networks, specifically to comparing link travel times 

as time-series, an important challenge in comparing time-varying travel times on a pair of links 

comes from the difficulty in defining the time-scaling or shifting necessary to match the time series 

in a way that would be experienced by a vehicle on the network. If one were to consider a vehicle 

traversing a pair of links on the network (consecutive or otherwise) that vehicle will experience 

travel times on the two links with a certain lag in between. However, considering a string of 

vehicles, one might observe that the time-lag changes over time due to shifting traffic patterns. 

This complexity becomes difficult to model from a mathematical or physical perspective, and data 

mining methods may be useful to find and extract existing patterns.  

Dynamic Time Warping (DTW) has been suggested as a technique for more robust distance 

calculations for time series comparison. The DTW technique was introduced for the purpose of 

finding patterns in time series data by Berndt and Clifford (1994). The authors demonstrated the 

usefulness of the approach and pointed out its limitations to being implemented in large data bases. 

DTW for time series data analysis has been advanced significantly via techniques to improve on 

its computational limitations, specifically by modifying DTW to operate on higher-level 

abstractions of the data via piecewise aggregate approximation (Keogh and Pazzani, 2000) and 

exact indexing of DTW (Keogh and Ratanamahatana, 2005). Details on the DTW technique, the 



68 

 

Piecewise DTW (PDTW) algorithm, and exact indexing approximation can be found in the 

original papers (Berndt and Clifford, 1994; Keogh and Ratanamahatana, 2005; Keogh and Pazzani, 

2000). In summary, DTW aims to find an alignment of two time series that may have an overall 

similar shape but are misaligned in a non-linear manner in the time axis. DTW finds the most 

appropriate shifting and scaling (even if non-uniform) so that the patterns in the time-series are 

aligned. Then, distance can be calculated for two aligned time series observations, often referred 

to as the minimum DTW distance. More rigorous treatment of DTW and how it used in this study 

is provided in the methodology section below.  

4.3.3.3 Review of Time Series Change Point Detection Approaches 

In dynamic and complex systems, and change point detection (CPD) is the problem of 

finding the points where changes in time series data occur, often viewed as changes in the 

underlying probability distributions due to changes in the state or the system behavior 

(Aminikhanghahi and Cook, 2017; Last et al., 2004). CPD is closely related to the idea of time 

series segmentation but has been defined more broadly and studied in the fields of data mining, 

statistics, and computer science. 

Classification of Change Point Detection Approaches 

Change point detection algorithms are typically classified as batch (i.e., offline) or online 

(Last et al., 2004). In addition to having different computational requirements, the key difference 

is that offline algorithms consider the entire time series all at once, while online algorithms observe 

the process as it occurs and aim to detect a change point (often associated with an anomaly or 

attack on the system) as soon as possible after its occurrence.  

Another important distinction is between supervised and unsupervised methods for change 

point detection. Like with other machine learning or statistical approaches, supervised learning 
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requires labeled data, and a model is trained to accurately replicate the known labels and accurately 

assign labels to new observations. Unsupervised methods, on the other hand, discover patterns in 

unlabeled data, which in the context of change point detection would mean finding change points 

based on statistical features of the data itself without knowing the ‘true’ change points beforehand 

(Aminikhanghahi and Cook, 2017).  

Most change point detection methods can be classified into three main categories: sliding 

windows, top-down, and bottom-up approaches (Last et al., 2004). Sliding window approaches 

start with a small segment that is grown until some error bound is exceeded and then starts a new 

window with the next data point. Top-down approaches recursively partition the time series until 

stopping criteria are met, while bottom-up methods start with the finest possible segmentation and 

merge segments until stopping criteria are met (Keogh et al., 2001b). Each of these algorithms 

have their advantages and shortcomings and the details can be found in some classical texts and 

review studies on the topic (Aminikhanghahi and Cook, 2017; Keogh et al., 2001b; Last et al., 

2004). 

Change Point Detection Models 

In addition to considering is the application and available data are suitable for supervised 

or unsupervised modeling, online or offline applications, and choosing the specific algorithm to 

use, one also needs to choose the model. In CPD methods, the model is typically implemented as 

a cost function that then defines the stopping criteria for the chosen algorithm. Further, there are a 

variety of changes that may be considered in multi-dimensional time-series, typically depending 

on the application at hand. For example, one may wish to find a change in the probability 
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distribution of any one of the variables and thus consider them jointly, or simply to find change in 

the distribution of the target variable and then see the corresponding changes in other variables.  

A comprehensive review of CPD models and cost functions in the context of offline CPD 

methods is presented by Truong et al. (2020). The authors classify cost functions as parametric 

and non-parametric and provide an overview of the most commonly used models in each category. 

Parametric models are based on assumptions about the data at hand, while non-parametric models 

can be more robust when features of the data are not known or the research question is posed as a 

data mining problem.  

To maintain the generality in characterizing stochastic dynamic networks, this study will 

focus primarily on non-parametric methods. Early non-parametric models have focused on least 

absolute deviation detecting changes in the median of a signal without assuming an underlying 

distribution (Bai, 1995) or similarly least squared deviation detecting mean-shifts in the signal.  

An interesting group of models for multivariate data CPD are those based on rank statistics. Using 

rank statistics is a popular strategy to deriving distribution-free statistics in statistical inference. 

This notion has been applied to finding multiple change points to multivariate time-series so as to 

measure the joint behavior of the marginal rank statistics of each coordinate (Lung-Yut-Fong et 

al., 2015; Truong et al., 2020). Another common set of approaches is kernel-based detection, which 

require a user-defined kernel function (Arlot et al., 2019; Truong et al., 2020). The advantage of 

the kernel transformation is that the change point is then applied to detect mean-shifts in the 

appropriately transformed time-series. This study compares these four main models for CPD 

methods and ultimately selects the rank statistics model as the most general approach that allows 

for changes in the full rank of multivariate time series to be considered and detected. A question 
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that may be interesting for future work is to consider if some of the simpler and more restricted 

models may be sufficient from an accuracy perspective.  

Measuring Robustness of Change Point Detection Results 

To conclude this review on CPD approaches, this section considers the evaluation and 

comparison of change point detection results. As previously seen in the case of community 

structures, in order to perform the sensitivity analysis and evaluate if and how the change points 

detected may vary under certain conditions measures of similarity or robustness for change-point 

models on a time series are needed. For this purpose, the comparison of change point models is 

seen as a comparison of clustering configurations, similarly to the case of community 

characterization. Therefore, the main ideas for measuring robustness remain the same and the same 

measures are applicable. In this study, the Rand index and Fowlkes-Mallows Index were used as 

the CPD robustness measures.  

4.4 Methodology 

This section presents the methodology for the problem of characterizing a stochastic 

dynamic transportation network considering the spatial and temporal dimensions, along with 

cross-sectional spatio-temporal aspects of the network, based on network characteristics revealed 

from travel time data in the network and according to the extended taxonomic categories presented 

in section 4.3.2 and Table 4-1. The methodological framework is complete with methods from 

network theory and time series analysis that can be used for data-driven stochastic dynamic 

network characterization.  

This section is broken down into three subsections, each focusing on an aspect of network 

characterization and the corresponding methodology. Firstly, section 4.4.1 considers spatial 
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characterization of the network, where the goal is to detect the existence of a community structure 

of the transportation network. In this study, the application of existing network community 

detection methods to transportation networks requires a few additional steps due to some 

differences in how a network is viewed and modeled.  

Secondly, section 4.4.2 considers temporal characterization of the network, where the goal 

is to detect time-intervals within a given temporal domain so that link travel time distributions can 

be considered constant within each time-interval and changing from one interval to the next. 

Equivalently, the aim is to identify points in time when the link travel time distribution changes, 

given that travel times on a given link over a specified temporal domain form a time series. This 

question will be approached from the standpoint of time-series analysis, where the study of change 

point detection focuses on this problem precisely: to detect if and when changes may have occurred 

in the probability distribution of a stochastic process or time series.  

Finally, section 4.4.3 considers the intersection of the spatial and temporal domain, 

bringing together the components from the earlier two to provide a complete methodology for 

spatio-temporal stochastic dynamic network characterization.  

4.4.1 Spatial Characterization via Network Community Detection 

This section considers the spatial characterization for stochastic dynamic networks, aiming 

to identify neighborhoods of network links such that link travel times within a given neighborhood 

are dependent, while dependencies can be considered negligible outside a links’ neighborhood. 

For this purpose, community detection approaches from network science are considered as the 

starting point. Most community detection approaches are in fact clustering methods that account 

for the underlying structure of the network so that clusters are formed by considering adjacent 
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nodes. As mentioned above, the application of network community detection methods to stochastic 

dynamic transportation networks requires some adaptations of existing approaches due to some 

differences in how a network is viewed and modeled.  

4.4.1.1 Transportation Network Structure Adaptation 

Network community structure is typically built considering the network vertices as objects 

to be clustered based on their connectivity and closeness (or similarity) to one another considering 

from the edges (i.e., links) in the network. The most immediate difference with transportation 

networks comes from the fact that in transportation networks travel is primarily experienced on 

links (i.e., edges) and nodes (or vertices) are seen the connectors between those links.  

Additionally, travel time is associated with links and in stochastic dynamic networks link travel 

times are the random variables to be modeled. Edge community finding approaches exist in 

network science but are not as common, varied, or scalable as those for node community detection.  

Therefore, unlike typical network community finding approaches based on node clustering, 

in this study the goal is to identify groups or communities of edges rather than vertices. In order to 

allow for the implementation of common network clustering approaches, the transportation 

network is to be transformed, so that the network links can be modeled as graph vertices that hold 

certain properties and are to be placed in communities. Thus, the transportation network nodes are 

the objects that hold link adjacency information, and the adjacency of links is determined by 

converting the transportation network nodes to graph edges so that neighboring links can remain 

adjacent.  

A note on terminology is added here to clarify these distinctions in upcoming sections. For 

the sake of clarity, the transportation network will be referred to as network and its elements nodes 

and links, while the network science notion of network will be termed graph with its elements 
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vertices and edges. Thus, the transformation of the transportation network into a graph is 

performed by viewing the network links as vertices of the graph, and the network nodes as edges 

of the graph.  

4.4.1.2 Link Travel Time Similarity for Community Detection  

The second important difference when considering community finding in transportation 

networks relates to the idea of proximity or similarity of the network nodes. Network science 

applications typically model the distance between vertices in the graph so that community finding 

is based on the density of connections between vertices and the proximity between a pair of vertices 

contributes to how densely connected a community would be. Clustering approaches typically use 

an adjacency matrix that contains information on the adjacency of graph vertices or a weighted 

adjacency matrix where vertex connections also have a weight that is interpreted as a stronger 

connection. 

In this application, however, the transportation network links are to be grouped based on 

the dependence or similarity of link travel times, rather than any measure of physical proximity. 

While it is important that the links’ adjacency remains under consideration, the implementation of 

community detection approaches would also require a measure of similarity between link travel 

times in lieu of the network science notion of proximity or adjacency weights.  

It should be noted that some community discovery algorithms have been developed to 

specifically focus on clustering graph vertices with attributes so as to account for both the network 

structure and the vertex attributes. Modeling the link travel times as attributes of the network links 

and implementing network attribute community clustering approaches could be one option to 

addressing the challenge at hand. However, this idea would be insufficient for dynamic 

transportation networks where the travel times are time-varying attributes of the network links. 



75 

 

Furthermore, considering vectorized link travel times (i.e., time-series) as node attributes in these 

approaches would be equivalent considering snapshots of travel times across network links for a 

given time, which also has significant limitations. Transportation network dynamics are much 

more complex, specifically when considering time-varying link travel times, and the similarity of 

travel times along a pair of links should be considered over time and ideally account for the time-

lag between a given vehicle’s traversal of the two links.  

This study considers more suitable measures of link travel time similarity that are to be 

derived based on the time-series of link travel times, i.e., travel times experienced on each link 

across time. As reviewed previously in section 4.3.3.2, a number of time series similarity measures 

exist in time series analysis, each for different applications and capturing different aspects of time 

series comparison. To maintain the generality of the approaches and avoid imposing characteristics 

onto the time-series comparisons, this study considers dynamic time warping (DTW) as a method 

to calculate the optimal match between two time series and then determine the distance between 

the two aligned time series.  

4.4.1.3 Louvain Community Finding Approach with Dynamic Time Warping 

Overview of Modularity Optimization 

As introduced in the literature review on network community structures in section 4.3.3.1, 

a class of community finding approaches have been developed around the notion of modularity 

optimization (or maximization). Modularity measures the goodness of fit of a specified community 

division or assignment for a given network (Clauset et al., 2004).  

Originally, Newman and coauthors defined modularity (2004) with the notion of adjacency 

of network nodes: if 𝐴 is an adjacency matrix for a given network, then the adjacency element 𝐴𝑣𝑤 

is 1 if vertices 𝑣 and 𝑤 are connected and 0 otherwise. If the vertices are divided into communities 
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such that the vertex 𝑣 belongs to community 𝑐𝑣 then the fraction of edges that lie in the same 

community can be defined as  

∑ 𝐴𝑣𝑤𝛿(𝑐𝑣, 𝑐𝑤)𝑣𝑤

∑ 𝐴𝑣𝑤𝑣𝑤
=

1

2𝑚
∑ 𝐴𝑣𝑤𝛿(𝑐𝑣, 𝑐𝑤)

𝑣𝑤

 

where 𝛿(𝑐𝑣, 𝑐𝑤) is 1 if 𝑐𝑣 = 𝑐𝑤 and 0 otherwise, and 𝑚 is the number of edges in the graph 𝑚 =

1

2
∑ 𝐴𝑣𝑤𝑣𝑤 . 

It can be observed that this fraction will be large if there are many within-community edges, 

thus large for good divisions of the network. A useful measure is obtained if from this fraction is 

subtracted its expected value for a randomized network, since on its own this fraction will be 

maximized by assigning all vertices into a single community. By letting 𝑘𝑣 be defined as the degree 

of the vertex 𝑣 i.e., the number of edges incident upon it 𝑘𝑣 = ∑ 𝐴𝑣𝑤𝑤  the modularity 𝑄 is defined 

as follows: 

𝑄 =
1

2𝑚
∑ [𝐴𝑣𝑤 −

𝑘𝑣𝑘𝑤

2𝑚
] 𝛿(𝑐𝑣, 𝑐𝑤)

𝑣𝑤

, 

where the probability of an edge existing between vertices 𝑣 and 𝑤 in a randomized network with 

the same vertex degrees is 𝑘𝑣𝑘𝑤/2𝑚 .  

 Therefore, in this definition of modularity, nonzero values all represent deviation from 

randomness and the authors point out that a value above 0.3 is a good indicator for significant 

community structure in a network. 

The Louvain Algorithm for Modularity Optimization in Large Networks 

The community finding approach used in this study is the Louvain algorithm (Blondel et 

al., 2008), initially introduced in the literature review section, which expands on and develops a 

fast heuristic suitable for large networks based on the initial work of Newman and coauthors 
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(Clauset et al., 2004; Newman and Girvan, 2004). Blondel and coauthors use the same definition 

of modularity 𝑄 as defined above, often referred to as the Newman measure of modularity.  

The Louvain method uses a simple algorithm of two phases repeated iteratively. This 

section will provide a brief summary of the method, but  the details can be found in the original 

work (Blondel et al., 2008). An important advantage of the Louvain algorithm is that it is extremely 

fast with linear complexity on linear and sparse data. An additional benefit to the application of 

transportation networks that is used here is the opportunity to use weighted network edges – and 

the Louvain algorithm is defined assuming a weighted network of N vertices, where the simple 1-

0 non-weighted network can be seen as a special case.  

Phase 1:        

 Assign each vertex to its own community, i.e., there are as many communities as 

there are vertices. For each node 𝑣: 

  Consider the neighboring vertices 𝑤 ∈ 𝑁, 𝑤 ≠ 𝑣 and 𝐴𝑣𝑤 ≠ 0. 

Evaluate the gain in modularity if 𝑣 is removed from its community 

and assigned to the community of 𝑤.  

Place 𝑣 in the community for which the gain is maximum and positive. 

 Stop when no individual move will improve modularity.   

Phase 2:        

 Build a new graph whose vertices are the communities found in Phase 1. The 

weights of the edges between the new vertices are the sum of weights of edges 

between the nodes in the two corresponding communities.  

Go to Phase 1 for the next iteration.  

 

According to the authors, part of the algorithm efficiency is due to the ease of computing 

the gain in modularity for moving a single node 𝑣 into a community 𝐶, as follows: 

Δ𝑄 = [
∑ ∙𝑖𝑛 + 𝑘𝑣,𝑖𝑛

2𝑚
− (

∑ ∙𝑡𝑜𝑡 + 𝑘𝑣

2𝑚
)

2

] − [
∑ ∙𝑖𝑛

2𝑚
− (

∑ ∙𝑡𝑜𝑡

2𝑚
)

2

− (
𝑘𝑣

2𝑚
)

2

] 
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Where ∑ ∙𝑖𝑛  is the sum of the weights of edges inside 𝐶, ∑ ∙𝑡𝑜𝑡  is the sum of edges incident to nodes 

in 𝐶, 𝑘𝑣 is the sum of weights on the edges incident to 𝑣 and 𝑘𝑣,𝑖𝑛 is the sum of weights on the 

edges from 𝑣 to nodes in 𝐶 and 𝑚 is the  sum of all weights of all edges in the graph.  

The implementation of a weighted adjacency matrix in the community finding algorithm 

is an important aspect of implementing these approaches in the context of transportation networks. 

The computation of these weights can be specific to the application at hand, but it is important to 

note that when using the adjacency matrix for modularity optimization higher edge weights 

indicate a stronger relationship between the pair of vertices relative to lower edge weights. The 

remainder of this section focuses on applying the Louvain method to transportation networks 

adapted as described in the previous sections.  

Dynamic Time Warping for Link Travel Time Similarity 

In order to appropriately define the weight of edges in the adapted network, where 

transportation network links are seen as graph vertices and the nodes between them serve as 

connecting edges this study uses dynamic time warping (DTW) due to its generality and 

robustness, to avoid imposing characteristics or limitations on the time series comparisons and 

instead extract the information from the data itself. The review of the DTW technique is extended 

here so as to explain its application to the present study and is based on the paper introducing the 

exact indexing of DTW approximation used in this study (Keogh and Ratanamahatana, 2005). 

Let 𝑄 and 𝐶 be two time series, potentially of different lengths 𝑛 and 𝑚 respectively. The 

two sequences are aligned by constructing an 𝑛-by-𝑚 matrix where the (𝑖, 𝑗) element contains the 

distance between the two points and corresponds to an alignment between the points 𝑞𝑖 and 𝑐𝑗. 

Then a warping path 𝑊 is a set of matrix elements that defines a mapping between the time series 
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where the 𝑘𝑡ℎ element of 𝑊 is defined as 𝑤𝑘 = (𝑖, 𝑗)𝑘 and the total number of elements in 𝑊 is at 

least equal to max(𝑚, 𝑛) and at most equal to 𝑚 + 𝑛 − 1. In addition, the warping path is subject 

to boundary conditions, continuity, and monotonicity constraints. As there may be several eligible 

warping paths, DTW alignment is based on the path that minimizes warping cost: 

𝐷𝑇𝑊(𝑄, 𝐶) = min √∑ 𝑤𝑘

𝐾

𝑘=1

 . 

This definition allows for Euclidean distance to be seen as a special case of DTW where 𝑤𝑘 =

(𝑖, 𝑗)𝑘, 𝑖 = 𝑗 = 𝑘 and as can be expected the two sequences and the warping path must all have the 

same length T. 

 To the DTW distance as a similarity metric in this study, the minimum DTW distance is 

converted to a similarity measure by using the inverse. In this study DTW distance never equals 0 

except for the trivial case when finding the distance between two of the same time series, thus the 

inverse – potentially scaled by a constant depending on the order of magnitude, were used as 

weights in the adjacency matrix. 

4.4.2 Temporal Characterization via Time-Series Change Point Detection 

This section considers the temporal characterization for stochastic dynamic networks, 

aiming to identify time-intervals of the temporal domain where link travel time distributions are 

constant. Change point detection approaches from time series analysis focus on this problem and 

are designed to identify points in time when the probability distribution of a time series changes. 

For a time period between two change points, the observations can be considered to be drawn from 
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the same distribution, different from the distribution that the observations beyond the change 

points.  

CPD approaches would allow for the time varying aspect of travel times in stochastic 

networks to be modeled mathematically and in a data-driven manner. In CPD, the resulting time 

intervals are not restricted to uniform duration across time or across the different links. Namely, 

link travel time distributions can vary with time intervals that change over time (e.g., with the time 

of day) and across space (e.g., from link to link, or from neighborhood to neighborhood).  

A brief review on the classes of change point detection (CPD) algorithms and models were 

given in the literature review. This section provides the problem formulation and expands on that 

brief review in order to introduce and explain the specific CPD methodology used in this study. 

4.4.2.1 Change Point Detection Algorithms for Link Travel Times 

CPD approaches can be applied to for multi-variable time series change point detection 

when the time series can be seen as observations from a joint multivariate distribution. In the case 

of this study, since link travel times are considered to be correlated random variables, multivariate 

time series analysis is needed. An important consideration when using multivariate CPD 

approaches is that the random variables are seen as jointly distributed, so a change in the 

underlying distribution for one of the variables translates into a change of the joint distribution and 

thus the change points are the same across all jointly distributed variables. This approach has 

obvious shortcomings in that it may create an unnecessarily high number of change points due to 

changes in any one of the time series. On the other hand, the joint distribution cannot be ignored 

as it is requisite for detecting changes in the covariance between variables that would be missed in 

the case of single variable time series CPD. Therefore, an important question in implementing 
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multivariate CPD is to decide when to model variables as jointly distributed and when any potential 

dependencies can be ignored in order to avoid an excessively large number of change points.  

This study models link travel times as jointly distributed for links in the same community 

based on the community detection results from the previous methodology section. With this 

approach a single set of change points (or time series segmentations) are obtained for each 

community of links that are spatially near one another and exhibit significant similarity as 

measured by the inverse DTW distance.  

Consider a multivariate non-stationary random process 𝑦 = {𝑦1, … , 𝑦𝑇} with values in 

ℝ𝑑(𝑑 ≥ 1) and 𝑇 samples. In CPD, the signal 𝑦 is assumed to be piecewise stationary, meaning 

that it can be separated into time-periods so that within each time period the underlying random 

process is stationary and comes from a single distribution, and then the characteristics of the 

process change abruptly at some unknown time instants 𝑡1
∗ < 𝑡2

∗ < ⋯ < 𝑡𝐾
∗ . CPD consists of 

estimating the indexes 𝑡𝑘
∗  and in some cases the total number of changes 𝐾, and is a model selection 

problem of choosing the best possible segmentation 𝒯 = {𝑡1, … , 𝑡𝐾} so as to minimize a 

quantitative criterion 𝑉(𝒯, 𝑦). 

A number of CPD algorithms were considered for this study, based on those included in 

the literature review section, including kernel-based approaches, sliding-window, bottom-up and 

binary segmentation approaches. To select the preferred algorithm this study relied on insight from 

the literature and a small sensitivity analysis that showed that all algorithms yielded the same 

change points for fixed parameters that define the stopping criteria, but there were some 

differences in computational run time. The bottom-up algorithm was selected due to its superior 

performance in terms of computational run times. Some benefits of bottom-up segmentation are 
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the low complexity, its ability to perform single or multiple change point detection, and that it can 

work with a known or unknown number of change points. Algorithmic analysis of the bottom-up 

approach is presented by Keogh et al. (2001b) and (Fryzlewicz, 2007). 

The algorithms used and tested here were implemented in Python according to the 

implementations presented by Truong et al. (2020) and the Python package ‘ruptures’ presented 

in this survey paper. In these algorithms, the assumption is that the criterion function 𝑉(𝒯, 𝑦) for 

a particular segmentation of a signal 𝑦 is the sum of costs of all segments that define the 

segmentation:  

𝑉(𝒯, 𝑦) ≔ ∑ 𝑐(𝑦𝑡𝑘...𝑡𝑘+1
)

𝐾

𝑘=0

 

where 𝑐(⋅) is a cost function measuring goodness-of-fit for the sub-signal to a specific model.  

4.4.2.2 Implementation of Change Point Detection Algorithms  

One of the benefits of the bottom-up algorithm for CPD, as indicated above, is that it can 

work whether the number of change points is known beforehand or not. The vast majority of CPD 

methods are better or only suited for problems where the number of different regimes, and thus 

the number of change points, in the time-series is known and the task of the algorithm is to find 

the best locations for those known number of change points. However, for most data mining 

applications the number of change points is part of the unknowns in the problem and thus the task 

of the algorithm is a more complex one – to determine both how many change points there are and 

when they occur. 

Implementing algorithms to search for the number and (temporal) location of the time 

series change points requires different types of stopping criteria and specifications. Without proper 

specifications, the tendency of the algorithm is to detect a change point where there is even the 
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smallest variation in the time series values. Three key parameters can be modified to obtain the 

desired solution quality for most CPD algorithms, including the bottom-up approach. In the 

simplest case the algorithm takes an input of the number of break points in the time series. 

Alternatively, one can specify a complexity penalty parameter 𝑝 or a threshold on the residual 

norm 𝜖. According to Truong et al. (2020) the complexity penalty parameter works as a constraint 

that balances the goodness-of-fit term and the actual choice of the complexity penalty relates to 

the amplitude of the changes to detect. A very low penalty can lead to the detection of too many 

change points, even ones that are actually the result of noise, while too much penalization may 

detect only the most important changes or none at all.  For problems with unknown number of 

changes, the problem presented above is modified so as to have the objective function 

min
𝒯

𝑉(𝒯) + 𝑝(𝒯). The most common and popular choice is the linear penalty (also known as the 

𝑙0 penalty) where a smoothing parameter 𝛽 needs to be calibrated and 𝑝(𝒯) = 𝛽|𝒯|. The penalty 

used in this study is based on the Bayesian Information Criterion and Akaike Information 

Criterion, defined as: 

𝑝(𝒯) = |𝒯| log(𝑇) 𝜎2 

as presented and explained by Truong et al. (2020). In this notation 𝜎 is the standard deviation of 

the signal noise, where the signal would be the observed link travel times. Including this value in 

the penalty term ensures that changes in link travel time are ignored if they are likely be due to the 

standard deviation of the underlying noise in observation.  

4.4.3 Spatio-Temporal Stochastic Dynamic Network Characterization 

Having presented the methodology for spatial characterization of the transportation 

network via community structures and for temporal characterization via time series change point 
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detection, this section briefly presents the overall methodology used for spatio-temporal stochastic 

dynamic network characterization that brings these two components together. Opportunities exist 

for further exploration and implementation of more complex or extended versions of the presently 

used methods to obtain potentially more realistic models of the transportation network. This 

methodology aims to provide the starting point for implementing these methods in the domain of 

transportation networks. The methodology is separated into two stages, as presented below. 

The first stage consists of community finding in the transportation network, given full 24-

hours of observations. The underlying assumption is that the community structure or community 

assignment of network links will be fixed over time and developed on the basis of the inverse of 

the minimum dynamic time warping (DTW) distance for any pair of full-day link travel time 

observations in the form of time series. The resulting community structure and corresponding 

community assignments are then interpreted as spatial neighborhoods (continuous on the network 

itself) that are composed of links with high link travel time similarity according to the inverse 

minimum DTW distance. Therefore, the assumption is that link travel times are considered 

dependent for any pair of links within the same community, but dependencies can be disregarded 

for links placed in different communities.  

The second stage builds on the community structure and consists of change point detection 

(CPD) for all sets of jointly distributed multivariate link travel time distributions as time series 

observed over a full 24 hours. The CPD is applied to each community in the network assuming the 

joint distribution of link travel times in the community. CPD for multiple variables implies that 

the change is detected for the joint distributions and the change points are thus the same across all 

variables considered simultaneously. For this application, that would translate to having change 
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points and corresponding time intervals that are the same across all links within a given 

community, but different communities may have different change points.  

4.5 Sensitivity Analysis for Stochastic Dynamic Network Characterization 

The methodology for characterizing stochastic dynamic transportation networks was tested 

and evaluated via a sensitivity analysis set up to answer two key research questions. Firstly, by 

implementing the methodology on a given network and data set with varying modeling parameters, 

the sensitivity analysis evaluates how the network characterization varies with the main modeling 

parameters and if it can be considered robust with respect to those parameters. This aspect of the 

sensitivity analysis also aimed to assess for values of ranges for the key parameters that are 

especially suitable for the network at hand. Secondly, by implementing the methodology with fixed 

modeling parameters over different operational conditions in the network, the sensitivity analysis 

was set up to evaluate how the network characterization varies with changing network conditions. 

Specifically, with varying demand patterns and weather conditions were used to evaluate their 

impact on the network characterization and test for its robustness. 

4.5.1 Study Sites and Data 

The sensitivity analysis for this study was performed on the large-scale Chicago network 

consisting of 4805 links and 1578 nodes. This study used simulated data that would allow for a 

sensitivity analysis to test for the robustness of the network characterization over varying 

exogenous and endogenous changes. Simulations were performed using a state of the art 

simulation-based dynamic traffic assignment tool DYNASMART-P (Mahmassani et al., 2004), 

previously calibrated to perform simulations for a varying operational conditions based on varying 
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weather and demand conditions from real historical data from the network of Chicago (Yelchuru 

et al., 2017). Defining and calibrating these operational conditions is outside the scope of this 

study. For this study, simulated data were obtained for a total of 9 cases: a base case of ‘regular’ 

weekday demand pattern and clear weather conditions, four cases of varied demand patterns with 

clear weather conditions, and four weather cases with the regular weekday demand pattern to be 

compared to the base case. 

Link travel times were extracted for the full day for each case with a frequency of one 

observation per minute, resulting in 1440 travel time observations for each link for each of the nine 

cases. The simulation output allows for travel time information to be extracted in two ways: (1) 

using vehicle trajectory data and considering the start and end times on the given link for any 

vehicle that traverses that link at the given time, or (2) using detector data and converting the 

aggregated speed observation into travel time for a given link and at the given time. For this study, 

travel time data were extracted primarily from vehicle trajectory data and supplemented with 1-

minute detector data for times where no vehicle was detected on a given link.  

4.5.2 Sensitivity Analysis of Modeling Parameters 

The first part of the sensitivity analysis was designed to understand and evaluate the 

robustness of the network characterization while varying the modeling parameters for the spatial 

and temporal characterization methods introduced in the methodology section.  

4.5.2.1 Parameter Selection and Values 

The Louvain algorithm for community detection has two primary parameters that could be 

varied to potentially result in different network community assignments. The first parameter, 

optimization tolerance 𝜖𝑜𝑝𝑡, is the minimum increase in the objective function to enter a new 
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optimization pass (i.e., first stage) in the Louvain algorithm. The second parameter, aggregation 

tolerance 𝜖𝑎𝑔𝑟, is the minimum increase in the objective function to enter a new aggregation pass 

(i.e., second stage). If the objective function cannot be increased by at least 𝜖𝑜𝑝𝑡 with another 

optimization pass or 𝜖𝑎𝑔𝑟 with another aggregation pass the algorithm terminates. Based on 

preliminary tests on the network data, the following values for the two parameters were selected 

for the sensitivity analysis.  

𝜖𝑜𝑝𝑡 ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1};  𝜖𝑎𝑔𝑟 ∈ {0.00001, 0.0001, 0.001, 0.01, 0.1} 

In the bottom-up approach for change point detection two parameters can be varied for 

different change point results. The first is considered a parameter in the implementation according 

to Truong at al. (2020) but is in fact the choice of model, as described in the literature review 

section. Different models measure different types of changes in the underlying travel time 

distribution and were included in this sensitivity analysis as a way of seeing if the use of a more 

complex model would have better sensitivity and result in more change points. Four different 

models were tested in this study: 𝑙1 i.e., least absolute deviation, 𝑙2 i.e., least squared deviation, 

𝐾𝑟𝑏𝑓 i.e., kernelized mean change with the radial basis function (rbf) kernel, and 𝑐𝑟𝑎𝑛𝑘 i.e., a rank-

based model with the empirical mean and covariance matrix for the complete rank signal. The 

second parameter is the penalty term, previously presented in the methodology in section 4.4.2. 

The penalty term was implemented as a constraint specified by the penalty parameter 𝑝, a function 

of known variables which may vary between spatial and the assumed standard deviation of noise 

𝜎. The value of 𝜎 specified the amplitude of small changes in travel time observations that can be 

ignored as being due to noise of observations rather than the underlying distributions. Therefore, 
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in this analysis 𝑝(𝒯) = |𝒯| log(𝑇) 𝜎2 was varied based on values of 𝜎 to be tested, 𝜎2 ∈

{0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1}. 

 Based on these parameters and their specified values, this portion of the case study 

considered 5 values for each of the parameters 𝜖𝑜𝑝𝑡 and 𝜖𝑎𝑔𝑟 resulting in 25 different community 

specifications. For each of those, CPD was tested with a total of 40 parameter combinations from 

the 4 models and 10 values for the penalty parameter, resulting in a total of 1000 cases for the 

complete spatio-temporal specification of the network. For the sensitivity analysis with exogenous 

and endogenous changes in section 4.5.3, the 1000 cases were tested using the data for each of the 

9 days, for a total of 9000 experiments.  

4.5.2.2 Sensitivity Analysis Results for Network Community Structure 

In this section, the sensitivity analysis results for the network community structure are 

considered while varying the Louvain algorithm parameters 𝜖𝑜𝑝𝑡 and 𝜖𝑎𝑔𝑟. Three sets of results 

are presented: (1) characteristics of the network community structures for each combination of 

parameters, (2) cluster comparison using the robustness scores, and (3) visual representations of 

the community structures for a few of the cases.  

Network Community Structure Characteristics  

The network community characteristics included in this portion of the analysis are the 

numbers and sizes of communities in each community assignment resulting from the varied 

parameter values. Table 4-2 shows the number of communities obtained from each of the 

parameter combinations, a total of 25 network community structures obtained, and Table 4-3 

shows information on the size of the communities, including mean, maximum, and minimum 

community size for each of the 25 community structures.  
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Table 4-2. Number of communities for 25 network community structures varying tolerance 

parameters for aggregation and optimization. 

 𝜖𝑎𝑔𝑟 values 

𝜖 𝑜
𝑝

𝑡
 v

al
u
es

 

 𝟎. 𝟎𝟎𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟏 𝟎. 𝟎𝟏 𝟎. 𝟏 

𝟎. 𝟎𝟎𝟎𝟎𝟏 60 60 68 68 194 

𝟎. 𝟎𝟎𝟎𝟏 60 60 69 69 194 

𝟎. 𝟎𝟎𝟏 60 60 69 69 194 

𝟎. 𝟎𝟏 60 60 70 70 200 

𝟎. 𝟏 58 59 64 96 240 

Table 4-3. Mean, maximum, and minimum community size for 25 network community 

structures varying tolerance parameters for aggregation and optimization. 

Mean community size 

  𝜖𝑎𝑔𝑟 values 

  𝟎. 𝟎𝟎𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟏 𝟎. 𝟎𝟏 𝟎. 𝟏 

𝜖 𝑜
𝑝

𝑡
 v

al
u
es

 𝟎. 𝟎𝟎𝟎𝟎𝟏 80.08 80.08 70.66 70.66 24.77 

𝟎. 𝟎𝟎𝟎𝟏 80.08 80.08 69.64 69.64 24.77 

𝟎. 𝟎𝟎𝟏 80.08 80.08 69.64 69.64 24.77 

𝟎. 𝟎𝟏 80.08 80.08 68.64 68.64 24.03 

𝟎. 𝟏 82.84 81.44 75.08 50.05 20.02 

Maximum and minimum community size 

  𝜖𝑎𝑔𝑟 values 

  𝟎. 𝟎𝟎𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟏 𝟎. 𝟎𝟏 𝟎. 𝟏 

𝜖 𝑜
𝑝

𝑡
 v

al
u
es

 𝟎. 𝟎𝟎𝟎𝟎𝟏 217 2 217 2 217 2 217 2 154 2 

𝟎. 𝟎𝟎𝟎𝟏 217 2 217 2 217 2 217 2 154 2 

𝟎. 𝟎𝟎𝟏 217 2 217 2 217 2 217 2 154 2 

𝟎. 𝟎𝟏 219 2 219 2 219 2 219 2 148 2 

𝟎. 𝟏 237 4 237 2 237 2 214 1 137 1 

 

Comparing the characteristics of the network community structures obtained from the 

sensitivity analysis in Table 4-2, the number of communities for most cases is close or equal to 60. 

For the cases as 𝜖𝑜𝑝𝑡 varies from 0.01 to 0.00001 and 𝜖𝑎𝑔𝑟 goes from 0.0001 to 0.00001, the 

number of communities is 60 and the maximum, mean and minimum size of resulting communities 

are also equal. This shows that there may possibly be a convergence in the community structures, 
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since reducing the tolerance parameters did not yield further aggregation of the communities or 

improvement in the optimization of modularity.  

Increasing the value of 𝜖𝑜𝑝𝑡 to 0.1 results in a slight decrease in the number of communities 

for 𝜖𝑎𝑔𝑟 ∈ {0.00001, 0.0001}, showing possible robustness of the community characteristics with 

respect to the optimization phase. However, as 𝜖𝑎𝑔𝑟 increases, the number of communities can 

increase to close to 70 and then close to 200 for 𝜖𝑎𝑔𝑟 = 0.1, signifying that 0.1 may be too large 

of a value for this parameter as it does not have the ability to further aggregate the community 

structure.  

From the values in Table 4-2 and Table 4-3, the 6 cases with the same community 

characteristics in fact had the same modularity as modularity optimization had reached a limit at 

approximately 0.94781 (and modularity is bounded by 1). Decreasing the tolerance for aggregation 

to 0.01 from 0.1 resulted in an increase in modularity close to 0.1 but a significant decrease in the 

number of communities through aggregation, a relatively high value for modularity can be 

achieved with a large number of small communities but the final marginal increase of modularity 

by 11% had a significant impact on the community structure and yielded a potentially robust 

structure. Further aggregations did not have significant improvements in modularity i.e., less than 

1𝐸−5 equivalent to 0.001% increase.  

Community Robustness Measures 

The same set of community structure results were further compared via clustering 

similarity and robustness measures that primarily pertain to quantifying the overlap of different 

cluster community structures. Three different measures were used for community robustness 

evaluation, as introduced in the literature review and methodology sections: 
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• Adjusted Rand Score (ARS) is the ratio of the number of pairs clustered in the same 

way (i.e., either in the same community or in different communities) in both 

assignments to the total number of pairs, adjusted with the expectation of the null 

(random) model.  

• Fowlkes-Mallows Similarity (FMS) coefficient is the geometric mean between the 

precision and recall and is the number of pairs of points in the same clusters is 

accounted for while not accounting for the value of points being placed in different 

clusters, which would have resulted in a skew towards 1 in the ARS.  

• Normalized Mutual Information score (NMI) is a normalization of the mutual 

information score where the similarity between two labels of the same data is compared 

independently of the values of cluster labels.  

Since similarity measures were computed for all pairs of the 25 community assignments, 

there are (252 − 25)/2 values calculated for each measure, and the results were separated across 

the tables below. For easier reading of the results, the identifiers assigned to the 25 cases are shown 

in Table 4-4 to be used to refer to these 25 cases in the corresponding results. 

Table 4-4. Reference identification numbers for the 25 cases of community structures 

 𝜖𝑎𝑔𝑟 values 

𝜖 𝑜
𝑝

𝑡
 v

al
u
es

 

 𝟎. 𝟎𝟎𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟏 𝟎. 𝟎𝟏 𝟎. 𝟏 

𝟎. 𝟎𝟎𝟎𝟎𝟏 0 1 2 3 4 

𝟎. 𝟎𝟎𝟎𝟏 5 6 7 8 9 

𝟎. 𝟎𝟎𝟏 10 11 12 13 14 

𝟎. 𝟎𝟏 15 16 17 18 19 

𝟎. 𝟏 20 21 22 23 24 
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Table 4-5 shows the cases in which significant robustness was observed (highlighted in 

yellow in Table 4-4) with their values for ARS, FMS and NMI. Values along the diagonal are not 

relevant, and the tables are symmetric.  

Table 4-5. ARS, FMS and NMI values for 8 cases of community assignments 

ARS 

 ID 2 

ID
 1

 

 𝟎 𝟏 𝟓 𝟔 𝟏𝟎 𝟏𝟏 𝟏𝟓 𝟏𝟔 

𝟎 − 1.00 0.99 0.99 0.98 0.98 0.97 0.97 

𝟏  − 0.99 0.99 0.98 0.98 0.97 0.97 

𝟓   − 1.00 0.99 0.99 0.96 0.96 

𝟔    − 0.99 0.99 0.96 0.96 

𝟏𝟎     − 1.00 0.97 0.97 

𝟏𝟏      − 0.97 0.97 

𝟏𝟓       − 1.00 

𝟏𝟔        − 

FMS 

 ID 2 

ID
 1

 

 𝟎 𝟏 𝟓 𝟔 𝟏𝟎 𝟏𝟏 𝟏𝟓 𝟏𝟔 

𝟎 − 1.00 0.99 0.99 0.98 0.98 0.97 0.97 

𝟏  − 0.99 0.99 0.98 0.98 0.97 0.97 

𝟓   − 1.00 0.99 0.99 0.96 0.96 

𝟔    − 0.99 0.99 0.96 0.96 

𝟏𝟎     − 1.00 0.97 0.97 

𝟏𝟏      − 0.97 0.97 

𝟏𝟓       − 1.00 

𝟏𝟔        − 

NMI 

 ID 2 

ID
 1

 

 𝟎 𝟏 𝟓 𝟔 𝟏𝟎 𝟏𝟏 𝟏𝟓 𝟏𝟔 

𝟎 − 1.00 1.00 1.00 0.99 0.99 0.99 0.99 

𝟏  − 1.00 1.00 0.99 0.99 0.99 0.99 

𝟓   − 1.00 0.99 0.99 0.99 0.99 

𝟔    − 0.99 0.99 0.99 0.99 

𝟏𝟎     − 1.00 0.99 0.99 

𝟏𝟏      − 0.99 0.99 

𝟏𝟓       − 1.00 

𝟏𝟔        − 
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From Table 4-5, NMI values for most pairs were equal to 1 or 0.99 and similarly ARS and 

FMS values were very close to 1, confirming that the community structure for the network is robust 

for these 8 cases with the threshold parameters 𝜖𝑜𝑝𝑡 ∈ {0.01, 0.001, 0.0001, 0.00001} and 𝜖𝑡𝑜𝑙 ∈

{0.0001, 0.00001}.  

To compare these fairly robust clustering assignments with those with different 

characteristics, the next set of results compare case 6 with the cases for which 𝜖𝑎𝑔𝑟 = 0.1, in the 

far-right column highlighted in green in Table 4-4. The FMS values are shown in Table 4-6, since 

the ARS and NMI values showed similar results.  

The FMS values show some robustness of the less aggregated cases, i.e., all except case 6. 

Comparing the case 6 with the less aggregated clustering results show relatively high values for 

FMS, above 0.84 and for three cases equal to 0.88, thus showing that even though the 

characteristics of these assignments were very different in terms of the number and size of resulting 

communities, the actual community assignments remained similar. Since the robustness scores 

measure similarity of the clustering assignments based on overlaps and the Louvain approach 

performs hierarchical clustering, it is likely that the more aggregated structures were obtained by 

the merging of clusters from the less aggregated cases. 

Table 4-6. FMS values for 6 cases of network community structures 

 ID 2 

ID
 1

 

 𝟔 𝟒 𝟗 𝟏𝟒 𝟏𝟗 𝟐𝟒 

𝟔 − 0.88 0.88 0.88 0.87 0.84 

𝟒  − 1.00 1.00 0.99 0.96 

𝟗   − 1.00 0.99 0.96 

𝟏𝟒    − 0.99 0.96 

𝟏𝟗     − 0.96 

𝟐𝟒      − 
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Visual Inspection of Network Communities 

Some visual representations illustrating the different community assignments are included 

in this section in Figure 4-1 through Figure 4-4. Since the community assignments for the 8 cases 

shown in Table 4-5 have a large number of communities but do not exhibit a lot of variation from 

one another, they are difficult to compare visually. Thus, some cases with stronger differences are 

selected to be shown here and will be referred to using the reference identification numbers from 

Table 4-4. Specifically, cases 6, 12, 18 and 24, where 𝜖𝑜𝑝𝑡 = 𝜖𝑎𝑔𝑟 = 0.0001, 0.001, 0.01, and 0.1 

respectively, are shown in Figure 4-1 through Figure 4-4.  

Each of the four figures shows the network communities from the resulting network 

structure of the Louvain algorithm with the corresponding threshold parameters. In the network 

represented on the map, each connected set of links represented in the same color form a 

community.  In reading these figures it should be noted that it is likely that the same color has been 

reused to color different communities within one figure since all of the cases in the figures have at 

least 60 communities, and links belong in the same community only if they have the same color 

and are connected. In comparing Figure 4-1 through Figure 4-4, the matching of colors between 

separate figures should not be considered as the colors are simply associated with cluster 

numberings.  
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Figure 4-1. Mapped network communities 

for case ID = 6, ϵopt = ϵagr = 0.0001   

 
Figure 4-2. Mapped network communities 

for case ID = 6, ϵopt = ϵagr = 0.001   

   

 
Figure 4-3. Mapped network communities 

for case ID = 6, ϵopt = ϵagr = 0.01  

 
Figure 4-4. Mapped network communities 

for case ID = 6, ϵopt = ϵagr = 0.1   

 A few observations can be made from the presented figures. Comparing Figure 4-1, Figure 

4-2 and Figure 4-3, it can be seen that many of the same groups of links remain through all three 
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cases, but noting that Figure 4-2 and Figure 4-3 show more segmentation than can be seen in Figure 

4-1. However, Figure 4-4 has a significantly larger number of separate communities. Even so, 

many of the community structures are similar to those observed in the other cases and careful 

inspection reveals that these are similar to the communities in the other cases, simply broken down 

further. Quantitative analysis of these results was provided in the previous section and should be 

used as the primary way for evaluating the sensitivity analysis results.   

4.5.2.3 Sensitivity Analysis Results for Temporal Change Point Detection 

The results for the sensitivity analysis on the CPD results consists of 40 cases for each of 

the 25 community assignments, resulting in a total of 1000 cases. This section focuses on 

comparing the change point results for a single fixed community assignment case where 𝜖𝑜𝑝𝑡 =

𝜖𝑎𝑔𝑟 = 0.0001, to focus the analysis on the impact of the change-point results. The 40 cases for 

CPD robustness tests were created by combining 4 different CPD models and 10 values for the 

penalty parameter by specifying the noise standard deviation. This section presents two sets of 

results: section 0 presents the characteristics of the change point intervals for the 40 cases, and 

section 0 presents the change point comparison using the robustness tests.  

Change Point Results Characteristics 

The characteristics of the change point detection results included in this analysis are the 

numbers of change points and sizes of time intervals for the travel time data on each of the 

communities, using the different models and parameter values. Change point detection was 

performed for each of the communities separately, therefore fixing the parameters for community 

detection to  𝜖𝑜𝑝𝑡 = 𝜖𝑎𝑔𝑟 = 0.0001 resulted in 60 communities, meaning that CPD is to be 

evaluated across 60 multivariate time series for each of the 40 cases. Table 4-7 shows the 
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maximum, mean and minimum number of time bins detected for the 60 multivariate time series 

for the 40 cases of varying the CPD models and the penalty parameter 𝑝 are.  

Important observations about the models can be made from the results in each of the rows 

in Table 4-7, showing how the number of change points differ from one model to another.  

Table 4-7. Maximum, mean, and minimum number of change-points or time-intervals for 

the 40 cases varying the model and parameter values. 

 

CPD Models 

𝒍𝟏 𝒍𝟐 𝒄𝒓𝒂𝒏𝒌 𝑲𝒓𝒃𝒇 

max mean min max mean min max mean min max mean min 

𝝈
 v

al
u

es
 s

p
ec

if
yi

n
g 

𝒑
 

0.1 288 132.20 3 288 127.13 2 288 281.28 224 144 16.23 3 

0.2 288 115.22 1 288 120.77 1 288 275.10 195 93 7.65 1 

0.3 288 106.57 1 288 117.67 1 288 266.57 170 74 5.23 1 

0.4 288 101.40 1 288 115.22 1 288 256.12 157 55 4.17 1 

0.5 288 97.22 1 288 113.67 1 288 243.52 146 54 3.85 1 

0.6 288 93.62 1 288 111.97 1 288 228.97 134 45 3.40 1 

0.7 288 90.08 1 288 110.88 1 288 214.52 121 40 3.13 1 

0.8 288 87.43 1 288 109.65 1 288 199.48 112 33 2.95 1 

0.9 288 85.10 1 288 108.48 1 285 185.77 110 31 2.77 1 

1 288 82.98 1 288 107.38 1 281 173.32 106 25 2.42 1 

 

Seeing that the rank-based model, accounting for changes in both the mean and the 

covariance, has detected a significantly larger number of change points compared to those detected 

by the other models confirms the hypothesis that there are in fact changes in the covariance of the 

link travel time random variables and they may not necessarily coincide with the occurrence of 

changes in the mean. Using the lower order models would detect change points in the mean of 

multivariate time series, but not the dependence. 

Considering the columns in Table 4-7, variations in the number of change points when 

varying the penalty parameter 𝑝 for each of the models can be observed. As the value of the penalty 

increases, linear in 𝜎2, the mean number of change points detected decreases. This is consistent 
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with the interpretation of the penalty parameter based on 𝜎2: if a larger value for the underlying 

noise of the observations is assumed, a larger portion of the potential change points are attributed 

to variations due to noise and a smaller number are detected as true change points. On the other 

hand, the minimum and maximum number of change points remain robust for all except the rank 

model and for all except the largest value of 𝑝.  

Additional data on the duration of the resulting time intervals or regimes from change-point 

detection are shown in Table 4-8, presenting the maximum, mean and minimum duration of 

detected time intervals in minutes. This data shows information corresponding to that in Table 4-7 

where the durations of those intervals instead of their number are shown. All cases where 288 

change points were detected over the 24-hour period had resulting time intervals of 5 minutes.  

Table 4-8. Maximum, mean, and minimum duration [minutes] of time interval or regime 

for the 40 cases varying the model and parameter values. 

 

CPD Models 

𝒍𝟏 𝒍𝟐 𝒄𝒓𝒂𝒏𝒌 𝑲𝒓𝒃𝒇 

max mean min max mean min max mean min max mean min 

𝝈
 v

al
u

es
 s

p
ec

if
yi

n
g 

𝒑
 

0.1 1035 75.65 5 1040 148.66 5 50 5.14 5 1095 218.48 5 

0.2 1440 138.76 5 1440 297.16 5 70 5.28 5 1440 353.94 5 

0.3 1440 182.58 5 1440 348.68 5 110 5.50 5 1440 492.35 5 

0.4 1440 211.59 5 1440 390.47 5 230 5.80 5 1440 611.48 5 

0.5 1440 219.69 5 1440 415.59 5 270 6.15 5 1440 632.39 5 

0.6 1440 227.78 5 1440 421.03 5 415 6.59 5 1440 693.98 5 

0.7 1440 254.35 5 1440 437.65 5 415 7.08 5 1440 743.40 5 

0.8 1440 278.11 5 1440 470.86 5 420 7.65 5 1440 765.53 10 

0.9 1440 286.43 5 1440 485.22 5 420 8.25 5 1440 823.17 10 

1 1440 331.59 5 1440 489.52 5 490 8.86 5 1440 941.36 10 

 

Focusing on the rank model, which both according to the theory and the data is most 

sensitive to detecting change points, the time interval durations ranged from 5 to 50 minutes with 
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the mean close to 5 minutes, for the case most sensitive to noise (i.e., lowest 𝜎 and 𝑝 values). For 

the cases robust to noise, i.e., larger values of 𝑝, the durations of time interval increased up to 490 

minutes (i.e., 8 hours and 10 minutes) with the mean at 8.86 minutes.  

Robustness Measures for Change Point Detection Results 

To continue the comparison of the CPD results, this section considers robustness measures 

making use of clustering similarity measures not much different than those considered in the 

previous section. The two similarity measures considered here were the Rand Index and the 

Fowlkes-Mallows Index defined similarly to the Rand score and Fowlkes-Mallows score 

robustness measures for community clusters. The similarity scores were computed pairwise for 

each pair of the 40 cases considered for CPD. Since each of the 40 cases included performing CPD 

for the 60 communities for the sample case of community structure results, the scores were 

computed as mean values over all links in the network corresponding to the cluster size weighted 

average of the scores for each community. Since these results contain a total of 

(402 − 40)/2 values for each of the similarity measures, only some of the more interesting cases 

were considered here.  

Having seen that the rank-based model had the highest sensitivity and exhibited a lot of 

variation in terms of the number and duration of time intervals detected, Table 4-9 focuses on the 

similarity measure values for this model across the 10 values for the penalty parameter. As the 

values for 𝑝 are farther apart the similarity between the change point results also decreases. For 

close and low values of 𝑝 where 𝜎 ∈ {0.1, 0.2, 0.3} the RI values are equal to 1 and remain high 

as the values increase. Only after increasing 𝜎 to 0.8 or 0.9 RI values lower than 0.995 and 0.992 

are encountered, demonstrating very strong robustness for the CPD results for large ranges of the 
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penalty parameter 𝑝, perhaps indicating that assuming large values for 𝜎 decreases robustness due 

to the removal of some change points that are significant, and not necessarily due to noise. 

Table 4-9 Average RI and FMI values for pairwise comparison of 10 cases  

using the rank based CPD model. 

Average Rand Index values 
 𝝈 values specifying 𝒑 

𝟎. 𝟏 𝟎. 𝟐 𝟎. 𝟑 𝟎. 𝟒 𝟎. 𝟓 𝟎. 𝟔 𝟎. 𝟕 𝟎. 𝟖 𝟎. 𝟗 𝟏. 𝟎 

𝝈
 v

al
u

es
 s

p
ec

if
yi

n
g 

𝒑
 

𝟎. 𝟏 − 1.000 1.000 0.999 0.998 0.997 0.995 0.992 0.988 0.984 

𝟎. 𝟐 
 

− 1.000 0.999 0.998 0.997 0.995 0.992 0.989 0.984 

𝟎. 𝟑 
  

− 0.999 0.999 0.997 0.995 0.992 0.989 0.984 

𝟎. 𝟒 
   

− 0.999 0.998 0.996 0.993 0.989 0.985 

𝟎. 𝟓 
    

− 0.999 0.997 0.994 0.990 0.986 

𝟎. 𝟔 
     

− 0.998 0.995 0.992 0.987 

𝟎. 𝟕 
      

− 0.997 0.994 0.989 

𝟎. 𝟖 
       

− 0.997 0.992 

𝟎. 𝟗 
        

− 0.995 

𝟏. 𝟎 
         

− 

Average Fowlkes-Mallows Index values 
 𝝈 values specifying 𝒑 

𝟎. 𝟏 𝟎. 𝟐 𝟎. 𝟑 𝟎. 𝟒 𝟎. 𝟓 𝟎. 𝟔 𝟎. 𝟕 𝟎. 𝟖 𝟎. 𝟗 𝟏. 𝟎 

𝝈
 v

al
u

es
 s

p
ec

if
yi

n
g 

𝒑
 

𝟎. 𝟏 − 0.990 0.984 0.975 0.958 0.935 0.908 0.877 0.850 0.822 

𝟎. 𝟐 
 

− 0.986 0.977 0.961 0.938 0.911 0.880 0.852 0.825 

𝟎. 𝟑 
  

− 0.979 0.965 0.942 0.916 0.885 0.857 0.829 

𝟎. 𝟒 
   

− 0.969 0.948 0.923 0.892 0.865 0.837 

𝟎. 𝟓 
    

− 0.953 0.931 0.903 0.877 0.849 

𝟎. 𝟔 
     

− 0.940 0.917 0.892 0.867 

𝟎. 𝟕 
      

− 0.928 0.909 0.887 

𝟎. 𝟖 
       

− 0.924 0.907 

𝟎. 𝟗 
        

− 0.922 

𝟏. 𝟎 
         

− 

 

Considering the FMI values from Table 4-9, a similar pattern can be observed, where the 

FMI values are very high for the low values of 𝜎 and decrease even more significantly as larger 

values are considered. In addition, it should be observed that a pairwise comparison of cases with 
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high 𝜎 values, such as comparing the cases where 𝜎 ∈ {0.8, 0.9, 1.0}, robustness is also low 

indicating that these solutions were not robust even compared to relatively similar cases. The 

results presented here are a small portion of the results obtained from the total cases considered, 

however the main observed patterns remain the same.  

Some conclusions from the observations in these results are that the rank based CPD model 

may be needed as it does capture significantly more change points by accounting for changes in 

the covariance matrix, relative to the models that are based on mean or median values only. The 

CPD results are robust for lower values of 𝜎, the assumed standard deviation of noise in the 

observations, thus inferring that large 𝜎 values can lead to highly different CPD results by omitting 

potentially significant change points.  

4.5.3 Sensitivity Analysis to Exogenous and Endogenous Changes 

The second part of the sensitivity analysis was designed to understand and evaluate the 

robustness of the network characterization with varying network conditions. Specifically, this 

study considers exogenous changes in the network via varying weather conditions and endogenous 

changes via varying demand patterns. The network characterization sensitivity analysis was 

performed on a base case for a ‘regular’ weekday demand pattern and clear weather and 8 

additional cases: 4 cases with different weather and 4 cases with different demand patterns. Thus, 

the 1000 cases from the sensitivity analysis of modeling parameters were now tested over the 9 

days, resulting in a total of 9000 cases. Nevertheless, the goal of this portion of the sensitivity 

analysis is to understand how a single characterization of the network, with fixed, may change 

when applied to data from the different weather or demand cases.  
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The sensitivity analysis results are separated across two parts of this section, considering 

the effect of changes in weather and demand patterns, respectively. Those sections are each 

organized like the previous one, considering the sensitivity analysis in terms of summary 

information and robustness measures for the community structures and change points or intervals. 

This results section focuses only on the robust cases considering a smaller range for the parameters 

where 𝜖𝑜𝑝𝑡 ∈ {0.00001, 0.0001,0.001} and 𝜖𝑎𝑔𝑟 ∈ {0.00001, 0.0001} for community detection, 

and the rank-based model and 𝜎 ∈ {0.1, 0.2, 0.3, 0.4, 0.5} for CPD.  

4.5.3.1 Sensitivity Analysis Results for Varying Weather Conditions 

Sensitivity Analysis of Community Structures 

For the five different weather conditions, this analysis considers the changes in some of 

the characteristics of resulting communities and the robustness measures of community structures.  

Table 4-10 shows a summary of the characteristics of the community structures for 6 

combinations of values for the tolerance parameters 𝜖𝑜𝑝𝑡 ∈ {0.00001, 0.0001,0.001} and 𝜖𝑎𝑔𝑟 ∈

{0.00001, 0.0001} over the 5 days with varying weather conditions (including the base clear 

weather case). The number and mean size of the resulting communities are stable across the 

different days, but the consistency among clustering assignment will be further evaluated through 

the robustness measures.  

The cluster robustness measure considered here is the normalized mutual information 

(NMI) score and Table 4-11 shows the NMI values, pairwise, for the 5 weather cases, with the 

threshold parameters fixed to 𝜖𝑜𝑝𝑡 = 𝜖𝑎𝑔𝑟 = 0.0001. 
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Table 4-10. Number of communities and mean community size for 6 combinations 

of ϵopt and ϵagr values, across 5 days with varying weather conditions 

𝝐𝒂𝒈𝒓 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟎𝟏 
 

 
Number 

Mean 
size 

Number 
Mean 
size 

W
e

at
h

e
r 

C
as

e
 ID

s 
 

𝝐𝒐𝒑𝒕 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 

𝟏 58 82.84 58 82.84 

𝟐 56 85.80 56 85.80 

𝟑 56 85.80 56 85.80 

𝟒 55 87.36 55 87.36 

𝟓 55 87.36 55 87.36 

 𝝐𝒐𝒑𝒕 = 𝟎. 𝟎𝟎𝟎𝟏 

𝟏 58 82.84 58 82.84 

𝟐 56 85.80 56 85.80 

𝟑 56 85.80 56 85.80 

𝟒 55 87.36 55 87.36 

𝟓 55 87.36 55 87.36 

 𝝐𝒐𝒑𝒕 = 𝟎. 𝟎𝟎𝟏 

𝟏 58 82.84 58 82.84 

𝟐 56 85.80 56 85.80 

𝟑 56 85.80 56 85.80 

𝟒 55 87.36 55 87.36 

𝟓 55 87.36 55 87.36 

 

Table 4-11. NMI for the 5 different weather cases for a fixed penalty parameter value 

  Weather Case IDs 

  1 2 3 4 5 

W
ea

th
er

 C
as

e 
ID

s 1 − 0.877 0.874 0.877 0.852 

2  − 0.889 0.883 0.896 

3   − 0.884 0.894 

4    - 0.874 

5     − 

 

 The NMI values show statistical robustness as all values are well above 0.5 on the 0 to 1 

scale. However, relative to the NMI values obtained for the sensitivity analysis across parameters 
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in section 4.5.2.2, where the NMI scores were all greater than or equal to 0.99, robustness is 

notably lower. This indicates that, while there is significant consistency in the community 

structures, weather conditions do have a notable effect on the network community structures.  

Sensitivity Analysis of Change Point Detection Results 

For the five different weather conditions, this analysis considers the changes in some of 

the characteristics of resulting change points and the robustness measures of CPD results. Again, 

the values are considered for a single case with 𝜖𝑜𝑝𝑡 = 𝜖𝑎𝑔𝑟 = 0.0001 and considering the robust 

penalty parameter values where 𝜎 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.  

First, the number of change points and the duration of resulting time intervals, averaged 

across all network communities were considered for the 6 parameter values and over the 5 different 

weather cases. The results shown in Table 4-12 show that as the value for 𝑝 changes there is some 

change in the characteristics of the change point results, however the results are more stable when 

considered for any given value of 𝑝, the characteristics remain relatively stable across the different 

days.  

Table 4-12. Mean number of change points (n) and interval durations (d) in minutes for 

6 values of the penalty parameter p across 5 weather cases. 

Case ID 1 2 3 4 5 

 n d n d n d n d n d 

𝝈
 v

al
u

es
 s

p
ec

if
yi

n
g 

𝒑
 

𝟎. 𝟏 281.12 5.14 282.34 5.12 277.11 5.21 281.15 5.13 280.00 5.17 

𝟎. 𝟐 274.72 5.29 276.00 5.26 269.98 5.36 275.91 5.24 271.40 5.37 

𝟎. 𝟑 266.97 5.50 268.48 5.43 263.91 5.49 270.15 5.37 260.35 5.65 

𝟎. 𝟒 257.02 5.77 259.09 5.66 255.68 5.69 262.78 5.54 247.24 6.01 

𝟎. 𝟓 244.10 6.15 247.07 5.99 246.55 5.93 254.40 5.75 232.85 6.44 

𝟎. 𝟔 230.33 6.55 234.34 6.35 237.25 6.19 243.87 6.04 218.85 6.90 
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To assess the robustness of the change point results, the similarity measures used in the 

previous sections were considered: Rand Index and Fowlkes-Mallows index. To perform the 

comparison, the values for the penalty parameter was fixed by setting 𝜎 = 0.1 and the results are 

shown in Table 4-13. These results show very high values for both the RI and FMI scores, even 

compared to the cases where simply the parameters were varied, showing that in terms of the 

temporal change point results, the characterization was very robust with respect to varying weather 

conditions encouraging the possibility that in fact network characterizations may not need to be 

re-defined and fitted separately across different weather operational conditions. 

Table 4-13. RI and FMI values for a single community and CPD case,  

across 5 weather cases 

RI 

  Weather Case IDs 

  1 2 3 4 5 

W
e

at
h

e
r 

C
as

e
 ID

s 1 − 0.9999 0.9995 0.9998 0.9999 

2  − 0.9995 0.9998 0.9999 

3   − 0.9995 0.9996 

4    − 0.9998 

5     − 

FMI 

  Weather Case IDs 

  1 2 3 4 5 

W
ea

th
er

 C
as

e 
ID

s 1 − 0.9918 0.9871 0.9912 0.9917 

2  − 0.9868 0.9910 0.9916 

3   − 0.9846 0.9861 

4    − 0.9898 

5     − 
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4.5.3.2 Sensitivity Analysis Results for Varying Demand Patterns 

Analogous to the previous section, here the five different demand patterns are considered 

to evaluate the changes in the spatial and temporal characterization of the network.  

Sensitivity Analysis of Community Structures 

The analysis in this considers the changes in some of the characteristics of resulting 

communities and the robustness measures of community structures with the changing demand 

patterns.  

Table 4-14. Number of communities and mean community size for 6 combinations 

of ϵopt and ϵagr values, across 5 days with varying demand patterns 

 
     

𝝐𝒂𝒈𝒓 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 𝟎. 𝟎𝟎𝟎𝟏 
 

 
Number 

Mean 
size 

Number 
Mean 
size 

D
e

m
an

d
 C

as
e

 ID
s 

 
𝝐𝒐𝒑𝒕 = 𝟎. 𝟎𝟎𝟎𝟎𝟏 

𝟏 58 82.84 58 82.84 

𝟐 63 76.27 63 76.27 

𝟑 66 72.80 66 72.80 

𝟒 74 64.93 74 64.93 

𝟓 67 71.72 67 71.72 

 𝝐𝒐𝒑𝒕 = 𝟎. 𝟎𝟎𝟎𝟏 

𝟏 58 82.84 58 82.84 

𝟐 63 76.27 63 76.27 

𝟑 66 72.80 66 72.80 

𝟒 74 64.93 74 64.93 

𝟓 67 71.72 67 71.72 

 𝝐𝒐𝒑𝒕 = 𝟎. 𝟎𝟎𝟏 

𝟏 58 82.84 58 82.84 

𝟐 63 76.27 63 76.27 

𝟑 66 72.80 67 71.72 

𝟒 75 64.07 75 64.07 

𝟓 69 69.64 69 69.64 
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Table 4-14 shows a summary of the characteristics of the community structures for 6 

combinations of values for the tolerance parameters 𝜖𝑜𝑝𝑡 ∈ {0.00001, 0.0001,0.001} and 𝜖𝑎𝑔𝑟 ∈

{0.00001, 0.0001} over the 5 days with varying demand patterns. It can be observed that the 

number and mean size of the resulting can somewhat vary with the changing demand conditions. 

The consistency among clustering assignment can be evaluated through the robustness measures. 

The cluster robustness measure considered here is again the normalized mutual information 

(NMI) score and Table 4-15 shows the NMI values, pairwise, for the 5 demand cases considered, 

where the threshold parameters were fixed to 𝜖𝑜𝑝𝑡 = 𝜖𝑎𝑔𝑟 = 0.0001. 

Table 4-15. NMI for the 5 different demand cases for a fixed penalty parameter value 

  Demand Case IDs 

  1 2 3 4 5 

D
e

m
an

d
 C

as
e

 ID
s 1 − 0.875 0.872 0.856 0.852 

2  − 0.905 0.882 0.889 

3   − 0.892 0.892 

4    − 0.891 

5     − 

 

The values for NMI comparing the clustering assignments across different demand cases show 

some level of robustness statistically as all values are well above 0.5 on the 0 to 1 scale. Again, 

relative to the NMI values obtained for the sensitivity analysis across parameters, where the NMI 

scores were all greater than or equal to 0.99, robustness has been reduced. This indicates that while 

there is significant consistency in the community structures, demand conditions can have some 

effect on the network community structures. In comparison to the results observed when 

considering different weather cases, however, the robustness is slightly stronger in this case.  

Sensitivity Analysis of Change Point Detection Results 
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Similar to the corresponding section for the weather cases, for the five different demand 

patterns, the changes in some of the characteristics of resulting change points and the robustness 

measures of change point detection results are considered. Here, the values are considered for a 

single case again, setting 𝜖𝑜𝑝𝑡 = 𝜖𝑎𝑔𝑟 = 0.0001 and considering the robust penalty parameter 

values where 𝜎 ∈ {0.1, 0.2, 0.3, 0.4, 0.5}.  

First, the number of change points detected and the duration of resulting time intervals, 

averaged across all network communities were considered for the 6 parameter values and over the 

5 different demand cases. The results shown in Table 4-16 show that as the value for 𝑝 changes 

there is some change in the characteristics of the change point results, however when considered 

for any given value of 𝑝 as the characteristics remain relatively stable across the different demand 

cases, similarly to what was observed for the weather case analysis.  

Table 4-16. Mean number of change points (n) and interval durations in minutes (d) for 6 

values of the penalty parameter p across 5 demand cases 

Case ID 1 2 3 4 5 

 n d n d n d n d n d 

𝝈
 v

al
u

es
 s

p
ec

if
yi

n
g 

𝒑
 

𝟎. 𝟏 281.12 5.14 278.49 5.22 275.30 5.35 277.31 5.30 276.48 5.28 

𝟎. 𝟐 274.72 5.29 272.21 5.36 269.71 5.49 270.85 5.46 270.30 5.42 

𝟎. 𝟑 266.97 5.50 264.22 5.57 262.56 5.69 263.84 5.64 261.85 5.64 

𝟎. 𝟒 257.02 5.77 253.00 5.88 253.09 5.96 255.00 5.89 252.07 5.90 

𝟎. 𝟓 244.10 6.15 239.22 6.28 241.58 6.32 243.43 6.22 240.31 6.23 

𝟎. 𝟔 230.33 6.55 226.22 6.68 227.64 6.77 228.55 6.70 225.87 6.68 

 

To assess the robustness of the change point results, the Rand Index and Fowlkes-Mallows 

index are considered again, and also the value for the penalty parameter was fixed by setting 𝜎 =
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0.1 and the results are shown in Table 4-17. Again, these results show very high values for both 

the RI and FMI scores, similarly to the results seen when comparing the weather cases.  

Therefore, in terms of the temporal change point results, the characterization was very 

robust with respect to varying demand conditions again. Through these results and those seen for 

the sensitivity analysis on the weather cases it can be concluded that the temporal characterizations 

of the network are very robust, while the spatial characterizations may show some non-negligible 

variations but can be considered statistically robust.  

Table 4-17. RI and FMI values for a single community and CPD case,  

across 5 weather cases 

RI 

  Demand Case IDs 

  1 2 3 4 5 

D
e

m
an

d
 C

as
e

 ID
s 1 − 0.9999 0.9997 0.9998 0.9998 

2  − 0.9997 0.9998 0.9998 

3   − 0.9997 0.9997 

4    − 0.9998 

5    
 

− 

FMI 

  Demand Case IDs 

  1 2 3 4 5 

D
e

m
an

d
 C

as
e 

ID
s 1 − 0.9925 0.9923 0.9919 0.9915 

2  − 0.9922 0.9917 0.9917 

3   − 0.9915 0.9917 

4    − 0.9913 

5     − 
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4.6 Conclusion 

This chapter is focused on the problem of characterizing stochastic dynamic networks and 

their underlying spatial and temporal dependencies. A systematic taxonomy for stochastic dynamic 

network characterization is presented, featuring the main dimensions in defining a stochastic 

dynamic network: temporal variation of network characteristics, temporal and spatial 

dependencies and their existence, strength, range, and variation, and stationary vs. non-stationary 

characteristics of the network.  

The approaches considered for stochastic dynamic network characterization are drawn 

from network science, time series analysis and data mining aimed at developing data-driven 

models of stochastic transportation networks. The presented methodology consists of two stages: 

(1) community detection using network clustering approaches with similarity measures derived 

from dynamic time warping, and (2) temporal change point detection across the joint travel time 

distributions for each of the resulting communities. The network communities are interpreted as 

neighborhoods where link travel time dependencies are considered high within each community, 

but negligible between them. The change point detection results consist of time intervals where 

joint link travel time distributions are stationary and change points where the underlying 

distribution changes, for each community of links.  

A sensitivity analysis was performed to test for the robustness of the network 

characterization across two main dimensions. Firstly, the modeling parameters were varied to 

evaluate ranges or values for each of the parameters where the network characterization was robust 

or better specified. Secondly, for fixed parameter values a sensitivity analysis was performed using 

different network data resulting from varying weather and demand conditions in the network to 
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understand and test the robustness of the network characterization with respect to exogenous and 

endogenous factors. Overall, the network characterization was shown to be robust, especially in 

terms of the temporal characterization. The spatial characterization shows some practical variation 

with changes in the weather and demand cases but was also demonstrated to be statistically robust. 

This study opens a number of additional questions and considerations that have the 

potential to serve as basis for future work. Methodologically, sophisticated algorithms for 

community structures and change point detection can be applied. Different community finding 

approaches can be considered, such as algorithms for finding overlapping communities. Such an 

extension would also require a change in the temporal characterization approaches as well. 

Furthermore, change point detection can be performed on the community structure itself, 

determining the points in time when the community structure changes significantly and thus 

capturing temporal variation in the existence of link travel time dependencies.  
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Chapter 5 Estimation of Path Travel Time Distributions in Stochastic 

Dynamic Networks with Correlations1 

5.1 Overview 

This chapter focuses on the problem of estimating path travel time distributions in 

stochastic dynamic networks with capture generalized dependencies between link travel times in 

the network. It presents a systematic taxonomy of problem situations related to the main 

dimensions in modeling stochastic travel times in the network and estimating path travel time 

distributions. A comprehensive methodology of sampling-based convolution estimation 

algorithms is presented, paired with data analysis approaches, considering the factors that define 

the taxonomy. The chapter also includes extensive numerical experiments with a complete 

experimental design considering the computational effort and accuracy of the various methods.  

5.2 Taxonomy for Path Travel Time Distribution Estimation 

The estimation of path travel time distributions encapsulates a range of problems that can 

be very diverse from a number of perspectives. The types of available data, the assumptions made 

about the network characteristics, the type of results the estimation aims to achieve, and the 

characteristics of relevant applications, are all important considerations that will shape the 

characteristics of the problem and solution approaches. This taxonomy aims to organize relevant 

information to help define the types of problem that may arise along with the relevant solution 

approaches.  

 

1 Portions of this chapter parallel sections of (Filipovska and Mahmassani, 2020b, 2020c, 2021)  
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The literature on travel time reliability modeling and the estimation of travel time 

distributions in transportation networks considers several different aggregation levels and 

definitions of variability. Travel time distributions have been estimated at the network, origin-

destination (O-D), path and link level. This chapter is specifically concerned with the estimation 

of travel time distributions at the path level.  

Table 5-1. Taxonomy of path travel time distribution estimation problems 

Assumptions Input Factors Output 

Underlying Network 

• Graph / Virtual network 

• Test road network 

• Real road network 

Network Congestion and 

Travel Times 

Temporal Aspect 

• Static 

• Time-dependent 

Spatial Dependence 

• Independent 

• Partial stationary 

dependence 

• Full stationary 

dependence 

• Generalized dependence 

Sources of Variability 

• Time  

• Driver behavior 

• External conditions 

• Mixed 

Data Source / Type 

• Vehicle trajectory data 

• Detector-based data 

• Both data types 

Data Quality 

• Full observations 

• Missing data points 

Data segmentation 

• Link level 

• Fixed sub-path level 

• General sub-path level 

Supplemental Information 

• Time information 

• Vehicle information 

• Date information 

• Exogenous factors  

Estimated Distribution Form 

• Parametric 

• Non-parametric 

Path-Finding Application 

• None 

• A priori 

• Adaptive 

Distribution Timeframe 

• General 

• Single departure time 

• Departure period 

Distribution Application 

• General 

• Case-specific 

• User-specific 

 

Travel time variability in the literature has been defined from different perspectives, 

including day-to-day, within-day (or time-of-day) and vehicle-to-vehicle variability. This study 

further classifies the categorizations for formulating problems and solutions for the estimation of 
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path travel time distributions. The taxonomy considers three types of factors: underlying 

assumptions, input side factors, and output type.  

The three taxonomic categories are interrelated. For example, a problem definition based 

on certain underlying assumptions may be incompatible with some input categories, or a problem 

definition based on output requirements may also be restricted by some of the underlying 

assumptions.  

5.2.1 Taxonomic Factors Related to Underlying Assumptions 

This section presents factors of the taxonomy of travel time distribution estination 

problems that are related to the underlying assumptions for the problem and the environment.  

5.2.1.1 Underlying Network 

Three levels are considered for this factor. A graph or virtual network is an abstraction of 

a real network, where the links and nodes represent the roads and their intersections, respectively. 

Test networks, while not as abstract as graphs, are simplistic networks designed for the purpose of 

analysis to have some specified characteristics. Real road networks model the characteristics and 

structure of physical real-world road networks.  

5.2.1.2 Network Congestion and Travel Times 

In modeling transportation networks, the network links may include congestion which can 

be modeled differently based on temporal and spatial dependence assumptions. Networks are 

generally categorized as deterministic vs. stochastic; this study only considers stochastic networks.  

From the temporal aspect, static networks are ones where congestion remains constant 

through the analysis period and thus travel time distributions are also constant. Time-dependent 

networks are ones where congestion varies based on the time of day and thus the travel time 
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distributions vary with time. In stochastic networks, this category is designated as stochastic time-

varying (STV) networks or stochastic time-dependent (STD) networks. Mixed network models 

also exist, where typically a peak period is modeled with time dependence, and the network is 

considered static outside the peak period. This thesis, in accordance with Chapter 4 views a mixed 

network as a special case of a time-varying network where the time interval changes based on the 

time of day. 

In terms of spatial dependence, travel times across the transportation network can be 

modeled as independent or dependent. This taxonomy further categorizes the network based on 

the type of dependence. Stationary dependence assumes fixed dependence, through time or other 

varying conditions. Partial stationary dependence assumes that dependence exists but is restricted 

spatially, often to adjacent or neighboring links. Full dependence assumes that dependence exists 

across all link travel times in the entire network. Again, partial dependence can be seen as a special 

case of full dependence with certain quantities set to zero.  

Generalized dependence is introduced as a new category (factor level) that aims to bring 

together extensions to current dependence models. Generalized dependence is a non-stationary full 

dependence (where partial dependence neighborhoods can be modeled as a special case) that varies 

over time, possibly with the same time variation structure as the link travel time variables.  

5.2.1.3 Sources of Variability 

In modeling travel time variability, assumptions about sources variability can significantly 

impact the type of relevant models. Time as the source of variability can capture day-to-day or 

within-day variation. Driver behavior as the source of variability considers vehicle-to-vehicle 

variability (thus requiring vehicle trajectory data).  External conditions as the source of variability 

can be considered explicitly via mixture models using the likelihood of occurrence for a certain 
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scenario, or implicitly by extracting the variation from the data without having information of the 

external factors may have caused it.  

5.2.2 Taxonomic Factors Related to Input Characteristics 

This section presents factors of the taxonomy that are related to the the input side of the 

problem, primarily relating to the available data.  

5.2.2.1 Data Source or Type 

The data sources or types can include Lagrangian (mobile) or Laplacian (stationary) 

measurements, typically as vehicle trajectory data or detector-based data, respectively. Vehicle 

trajectory data are a type of mobile data, which can be obtained from a range of different sources, 

where observations on actual vehicles’ traversed trajectories are available typically as time and 

location observations with a certain frequency. Travel time information can be extracted or 

estimated by mapping vehicle trajectory data onto a network. Detector-based data are a type of 

stationary data typically associated with a fixed location that provide observations on the 

occupancy and speed of vehicles traversing the detector location, aggregated over short periods of 

time. The type of available data is important in defining and approaching the problem of path travel 

time estimation. If both data types are available, the analyst may choose to define the problem so 

as to utilize both data types.  

5.2.2.2 Data Quality 

The quality of the available input data, whether full observations are available or there are 

missing data points, plays an important role in defining the goal of estimation. When full data is 

available, the path travel time estimation is primarily formulated as a mathematical problem of 
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probability modeling. Missing data points would require the formulation of a data mining 

component for the imputation of missing information.  

5.2.2.3 Data Segmentation 

The segmentation of the data is classified as: link-level segmentation, fixed (sub-)path 

segmentation, and general (sub-)path segmentation. Data segmented at the link level allow for 

travel time information to be obtained for individual network links only. Typically, detector-based 

data is segmented at the link level, but vehicle trajectory data, if fully anonymized and 

disaggregated can also be segmented at the link level. Fixed (sub-)path segmentation allows for 

travel time data to be obtained aggregated at the level of specific network paths or sub-paths. 

Aggregated vehicle trip data can come at this level of segmentation if it contains information on 

the traversed path and travel time for each trip, but not the travel times (or time of arrival) for any 

intermediate point en-route. General (sub-)path segmentation is data that can be segmented at the 

link level but also provide travel times for any covered (sub-)path and can be extracted from 

disaggregated vehicle trajectory data.  

5.2.2.4 Supplemental Information 

Different types of supplemental information may be available in the input data. The 

categories included here are those most relevant to the problem at hand and are not exhaustive or 

mutually exclusive. Date and time information provide the exact date and time of day for each 

observation, respectively. These supplemental information types are necessary for modeling day-

to-day and within day variation, respectively. Vehicle information, relevant only to vehicle 

trajectory data types, includes identification of the vehicle producing each observation, necessary 

for modeling vehicle-to-vehicle variation. Information on exogeneous factors is a more general 

category that can include information on weather, special events in the network or any other 
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exogenous factors relevant to the model and would be necessary if the analyst or researcher intends 

to model event or scenario-based variation.  

5.2.3 Taxonomic Factors Related to the Output Requirements 

This section presents taxonomic factors related to the output requirements for the problem 

at hand.  

5.2.3.1 Estimated Distribution Form 

The estimated distribution can have parametric or non-parametric form. Parametric 

distribution output is obtained when an assumption is made on the functional form of the 

distribution of the underlying data and thus the estimation is reduced to estimating the specific 

parameters of that function to obtain a good fit to the data. Non-parametric distribution output 

makes no assumptions about the functional form of the distribution, they typically take a collection 

of samples and estimate an empirical mass function that summarizes the data for which key 

characteristics of the distribution can then be estimated.  

5.2.3.2 Path-Finding Application 

The path travel time distribution estimation can be performed for the purpose of being 

utilized for path finding applications or not. A priori path finding applications determine the path 

for a given origin-destination pair and departure time(s). Adaptive path finding applications 

determine a collection of paths for a given origin-destination pair and departure time(s), so that the 

selected path is based on revealed information.  

5.2.3.3 Distribution Timeframe 

A path travel time distribution can be estimated without a specified departure time, for a 

single departure time, or for a departure period. Each of the different timeframe categories would 
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require different ways of accounting for within-day or day-to-day variation. A distribution for a 

departure period will require that the possible departure times within a given period be modeled 

and the resulting distribution to account for any within-day variation.  

5.2.3.4 Distribution Application 

The application of the path travel time distribution can be general, when simply a good 

distribution of the travel times along the network is needed, or case- or user-specific. Case-specific 

distributions can be based on exogenous or endogenous factors, such as, for example, the 

estimation of travel time distribution under specified weather conditions. User-specific 

distributions may need to account for the behavior of the specific driver or vehicle and potentially 

omit vehicle-to-vehicle variation. 

5.3 Problem Definition 

The primary focus of this chapter is the problem of efficient and accurate estimation of 

travel time distributions on user-specified paths across stochastic dynamic networks with 

generalized spatio-temporal travel time dependencies. Stochasticity of travel times in the 

transportation network can be due to a number of factors and capturing generalized spatio-temporal 

dependencies between link travel times relies on the availability of trajectory data. Therefore, 

assuming the availability of trajectory data, the methodological challenge of estimating path travel 

time distributions on any given route in the network is two-fold.  

The first methodological challenge is one of probability modeling, where given the link 

travel time distributions the goal is to estimate the path travel time distribution, i.e., given the 

distributions of individual random variables, the goal is to estimate the distribution of their sum. 

The distribution of a sum of random variables is represented with a convolution integral, thus the 
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fundamental problem is to formulate and solve a convoluting integral where random variables can 

be correlated and have varying distribution forms.  

Suppose a path 𝑃 is composed of 𝐾 consecutive segments {𝑙1, 𝑙2, … , 𝑙𝐾} where travel time 

on segment 𝑙𝑖 ∀ 𝑖 ∈ {1, 2, … , 𝐾} is a random variable 𝜃𝑖 whose distribution is denoted by 𝜋𝑖. In 

this notation the segments comprising path 𝑃 can be sub-paths of varying lengths, where a special 

case would be to consider the individual links comprising the path. The distribution of travel times 

Θ𝑃 on the path 𝑃 is obtained by solving the appropriate convolution integral. In the simplest case, 

assuming independent random variables, the convolution integral for two random variables (that 

is, 𝐾 = 2) can be written as: 

(𝜋𝑖 ∗ 𝜋𝑗)(𝑇) =  ∫ 𝜋𝑖(𝜏)𝜋𝑗(𝑇 − 𝜏)𝑑𝜏
∞

−∞

 

If the random variables have time-varying distributions, so that 𝜋𝑖 is different at each time 

𝑡, the convolution integral at time 𝑡 becomes:  

(𝜋𝑖 ∗ 𝜋𝑗)
𝑡
(𝑇) =  ∫ 𝜋𝑖

𝑡(𝜏)𝜋𝑗
𝑡+𝜏(𝑇 − 𝜏)𝑑𝜏

∞

−∞

 

For the case of travel time random variables, 𝜋𝑖 are supported only on [0, ∞) in general, or 

some specific range [𝑡𝑚𝑖𝑛, 𝑡𝑚𝑎𝑥], and the integral can be appropriately truncated.  

Dependencies between segment travel times can be specified depending on the application. 

Distributions may vary based on exogeneous conditions, such as weather or seasonal attributes, or 

different operational states that may be defined based on day of the week or demand level. Without 

loss of specificity, let 𝜁 be an operational condition indicator, and suppose that operational 

conditions may be different, yet dependent, on different segments, then the integral is further 

specified by: 
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(𝜋𝑖 ∗ 𝜋𝑗)
𝑡
(𝑇) =  ∫ 𝜋𝑖

𝜁𝑖,𝑡(𝜏)𝜋
𝑗

𝜁𝑗|𝜁𝑖,𝑡+𝜏
(𝑇 − 𝜏)𝑑𝜏

∞

−∞

 

To generalize even further, suppose 𝜃𝑖
𝑡𝑖 , 𝜃

𝑗

𝑡𝑗
 are jointly distributed in a time-varying manner 

so that that the joint distribution will vary over the combination of times 𝑡𝑖 , 𝑡𝑗 and a nonstationary 

correlation can be estimated for 𝜃𝑖 , 𝜃𝑗  over all combination of times 𝑡𝑖, 𝑡𝑗 . 

The second methodological challenge in this problem is concerned with identifying 

appropriate segments that may be used to best synthesize the travel time distribution of a path, and 

as such is a challenge of data mining. Identifying the appropriate segments depends on available 

trajectory data and the travel patterns captured in it, as well as the spatio-temporal dependencies 

in the network. Using link-level travel time distributions is one special-case solution to this 

methodological challenge. However, if the data allows, in some cases it may be useful to consider 

using sub-paths of the path in question, each comprised of one or more links, that are stitched 

together to estimate the path travel time distribution. The benefit of this alternative may be that 

some of the correlations between link travel times can be implicitly captured within known sub-

path travel time distributions and thus improve both the computational requirement and accuracy 

of the resulting estimation.  

5.4 Methodology 

This section presents a few groups of approaches for the estimation of path travel time 

distributions, that can be classified according to the output requirement categories previously 

introduced in the taxonomy summarized in Table 5-1. To provide a comprehensive set of methods, 

separate approaches or modifications are presented for each method type for their application to a 

different category of output requirements.  
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An overview of the path travel time estimation methods is presented in Table 5-2, grouping 

the approaches into four types and categorizing them according to each of the five classifications 

based on the output requirements. Four types of estimation approaches are presented: Monte-Carlo 

Simulation (MCS) based approaches, Metropolis-Hastings Simulation (MHS) based methods, 

Normal to anything (NORTA) distribution and Lognormal distribution approximation methods. 

This methodology expands on the initial work and approaches by Filipovska et al. (2021). 

 

Table 5-2. Estimation approaches, types, and categories according to the taxonomy 

  
Distribution 

Form 

Path-Finding 

Application 

Distribution 

Timeframe 

Distribution 

Application 

M
C

S
 b

as
ed

 

MCS-I 

Non-

parametric 

A Priori 

Adjustable for 

each type 

Adjustable for 

each type 

MCS-TD-I 
A Priori or 

Time-Adaptive 

MCS-TD-S 
A Priori or 

Adaptive 

MCS-TD-ST 
A Priori or 

Adaptive 

M
H

S
 

b
as

ed
 

MHS-S Non-

parametric 

A Priori or 

Adaptive 

Adjustable for 

each type 

Adjustable for 

each type 

MHS-TD 

N
O

R

T
A

 

d
is

tr
ib

u
ti

o
n

 NORTA-S 
Parametric 

A Priori or 

Adaptive 

Adjustable for 

each type 

Adjustable for 

each type 
NORTA-TD 

NORTA-TD-ST 

L
o
g
n
o
rm

al
 

ap
p
ro

x
im

at
io

n
 

Lognormal 

Parametric 
Adjustable for 

each type 

Adjustable for 

each type 

Adjustable for 

each type 
Lognormal TD 

 

In the following subsections, suppose a path 𝑃 is composed of 𝐾 consecutive segments 

{𝑙1, 𝑙2, … , 𝑙𝐾} where travel time on segment 𝑙𝐾 ∀ 𝑖 ∈ {1, 2, … , 𝐾} is a random variable 𝜃𝑖 whose 
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distribution is denoted by 𝜋𝑖. In reading this section, one can assume the simplest case where 

{𝑙1, 𝑙2, … , 𝑙𝐾} is the set of 𝐾 links comprising the path 𝑃 with their respective link travel time 

random variables 𝜃𝑖  and distributions 𝜋𝑖  ∀ 𝑖 ∈ {1, 2, … , 𝐾}. However, the methods are developed 

so that, either based on the input data structure or the analyst’s desires, they can be applied to a 

different type of segmentation of the path. Let Θ𝑃 be the travel time random variable for path 𝑃, 

with a corresponding cumulative distribution function (CDF) 𝑈𝑃 such that for a given travel time 

𝑇, 𝑈𝑃(𝑇) = 𝑃(Θ𝑃 ≤ 𝑇).  

5.4.1 Monte-Carlo Simulation (MCS) Based Estimation Approaches 

Four variations of the Monte-Carlos Simulation (MCS) based approach are presented in 

this section, starting with an approach assuming independent random variables and then relaxing 

the assumptions in each sub-sequent modification.  

5.4.1.1 MCS-based Approach Assuming Static and Independent Random Variables (MCS-I) 

Under the assumption that travel time distributions are time-invariant, then 𝑈𝑃 can be 

written with the following convolution integral: 

𝑈𝑃(𝑇) = ∫ ⋯ (∫ (∫ 𝜋1(𝜏1) ⋅ 𝜋2(𝜏2 − 𝜏1)
∞

0

𝑑𝜏1) ⋅

∞

0

𝜋3(𝜏3 − 𝜏1 − 𝜏2)𝑑𝜏2) ⋯ 𝜋𝑁 (𝑇 − ∑ 𝜏𝑗

𝑁−1

𝑗=1

)
∞

0

𝑑𝜏𝑁−1 

The MCS approach for static and independent segment travel times, MCS-SI, is as follows. 

• Sample link travel time observations 𝜃̃𝑖
𝑗
 according to 𝜋𝑖 ∀ 𝑖 ∈ {1, 2, … , 𝐾} for iterations 𝑗 ∈

{1, … , 𝑀} 

• Compute the path travel time samples Θ̃𝑃
𝑗

= ∑ 𝜃̃𝑖
𝑗𝑁

𝑖=1  for iterations 𝑗 ∈ {1, … , 𝑀} 

Then the samples Θ̃𝑃
𝑗

 ∀ 𝑗 ∈ {1, … , 𝑀} form a simulated estimate the distribution of Θ𝑃. 
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5.4.1.2 MCS-based Approach Assuming Dynamic (Time-Varying) and Independent Random 

Variables (MCS-TD-I) 

In this modification, link travel time distributions are still independent random variables, 

but unlike the original case above, they are now dynamic or time varying. To apply the MCS 

approach, a planning horizon of length 𝑇𝑃 is considered for the departure times and the link travel 

time distributions are considered across a set of time intervals 𝒯. Segment travel times then have 

a stationary distribution within each time-interval, given as 𝜋𝑖
𝑡  ∀ 𝑖 ∈ {1, … , 𝐾}, 𝑡 ∈ 𝒯.  A few 

important notes should be added when considering a distribution across a given horizon. 

• A travel time distribution across the planning horizon 𝑇𝑃 would require data for a longer 

time duration (captured by 𝒯) so as to cover the departure times across downstream 

sections of the path.  

• To determine the path travel time distribution across the planning horizon 𝑇𝑃, sampling 

across the possible departure times is needed.  

• If 𝑇𝑃 is the departure time period, the discretization into time-intervals equal to those in 𝒯 

might not be appropriate. For generality, suppose that departure times are a random 

variable 𝜗 distributed according to 𝜌 with a continuous support over the planning horizon 

of duration 𝑇𝑃.  

• The choice of the distribution of departure times across the planning horizon 𝑇𝑃 can vary, 

especially based on the distribution application. A user-specific distribution would account 

for the likelihood of a users’ departure across the given horizon, which may be a uniform 

distribution. A general or network-based distribution would be based on the distribution of 

departure times seen in the data, which would be an empirical distribution.   
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• The durations of time intervals in 𝒯 can have varying durations, depending on how the 

changes in travel time distributions are modeled. For generality, let 𝜙(𝑡) = 𝓉 ∈ 𝒯 be a 

function that converts a time 𝑡 ∈ 𝑇𝑃 into the corresponding time interval in 𝓉 ∈ 𝒯.  

The MCS approach is extended to its time-dependent modification, MCS-TD-I, as follows: 

For iterations 𝑗 ∈ {1, … , 𝑀}: 

• Sample a starting time 𝜗𝑗̃ is from the distribution 𝜌 and find the corresponding time interval 

𝓉𝑗 = 𝜙(𝜗̃𝑗). 

• Sample a travel time 𝜃̃1 from 𝜋1
𝑡1 where 𝑡1 = 𝓉𝑗  for the first segment. 

• For each next segment 𝑖 ∈ {2, … , 𝐾}, sample a travel time 𝜃̃𝑖 from 𝜋𝑖
𝑡𝑖  with 𝑡𝑖 =

𝜙(𝜗̃𝑗 + ∑ 𝜃̃𝑙
𝑖
𝑙=0 ) i.e., the time interval corresponding to the departure time on segment 𝑖.   

• The sampled path travel time is then set to Θ̃𝑃
𝑗

= ∑ 𝜃̃𝑖
𝐾
𝑖=1 . 

5.4.1.3 MCS-based Approach Assuming Time-Dependence and Spatially Correlated Random 

Variables (MCS-TD-S) 

Assuming that link travel times have time-varying distributions and are spatially correlated 

with one-another, the sampling approach needs to be adjusted so that segment travel times are 

sampled with correlation.  

When considering stochastic dynamic networks, the estimation of dependencies between 

link travel times is an added source of difficulty. This application assumes that dependence is 

accounted for given the correlations and marginal travel time distributions, with the ability to 

sample conditionally from the marginal distributions. This variation of the MCS approach, 

abbreviated MCS-TD-S, assumes stationary correlations between travel times on different 

segments on the path. Namely, even though 𝜃𝑖
𝑡𝑖 and 𝜃𝑖

𝑡𝑖
′

 for some segment 𝑖 ∈ {1, … , 𝐾} and time 
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periods 𝑡𝑖 , 𝑡𝑖
′ ∈ 𝒯 have different distributions, the covariance between 𝜃𝑖

𝑡𝑖 and 𝜃
𝑗

𝑡𝑗
 is defined so that 

𝑐𝑜𝑣 (𝜃𝑖
𝑡𝑖 , 𝜃

𝑗

𝑡𝑗) =  𝑐𝑜𝑣 (𝜃𝑖

𝑡𝑖
′

, 𝜃
𝑗

𝑡𝑗
′

) ∀ 𝑖, 𝑗 ∈ {1, … , 𝐾}, 𝑖 ≠  𝑗, ∀ 𝑡𝑖, 𝑡𝑖
′, 𝑡𝑗 , 𝑡𝑗

′ ∈ 𝒯. 

A number of techniques exist for sampling correlated random variables, but they may not 

be directly applicable to the case with time-varying distributions. An extension to the MCS-TD 

approach is presented here, abbreviated as MCS-TD-S to be used with stationary covariance 

structures. 

Step 1: Estimate the covariance: 

• For segments 𝑖, 𝑗 ∈ {1, … , 𝐾}, 𝑖 ≠  𝑗, select a sample of size S from the set of trajectories 

traversing both 𝑖 and 𝑗. These are the joint samples for the segment travel times on 𝑖, 𝑗. 

• Estimate the covariance between all joint link travel times on the pair (𝑖, 𝑗).  

Step 2: Obtain the initial sample: 

For iterations 𝑗 ∈ {1, … , 𝑀}: 

• Sample a departure time 𝜗𝑗̃ is from the distribution 𝜌 and find the corresponding time 

interval 𝓉𝑗 = 𝜙(𝜗̃𝑗). 

• Sample a travel time 𝜃̃1 for the first segment from 𝜋1
𝑡1 where 𝑡1 = 𝓉𝑗  

• For each next segment, 𝑖 ∈ {2, … , 𝐾}, sample a travel time 𝜃̃𝑖 from 𝜋𝑖
𝑡𝑖  where 𝑡𝑖 =

𝜙(𝜗̃𝑗 + ∑ 𝜃̃𝑙
𝑖
𝑙=0 ).  

• Save the vector of samples 𝜃̃𝑗 = {𝜃̃1, 𝜃̃2, … , 𝜃̃𝐾}. 

Step 3: Obtain a correlated sample: 

For each sample 𝑗 ∈ {1, … , 𝑀}: 

• Multiply the 𝜃̃𝑗 = {𝜃̃1, 𝜃̃2, … , 𝜃̃𝐾} by the covariance Σ to obtain a new 𝜃̃𝑗′
. 
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• Then set Θ̃𝑃
𝑗

= ∑ 𝜃𝑖
𝑗′

𝐾
𝑖=1 . 

This method for sampling correlated random variables is based on an approximate 

approach proposed by Lurie and Goldberg (1998), but adjusted so as to allow for time-varying 

random variables with a stationary covariance structure.  

5.4.1.4 MCS-based Approach Assuming Time-Dependence and Spatio-Temporally Correlated 

Random Variables (MCS-TD-ST) 

This section modifies the previously presented approach, to be used under the assumption 

that travel time covariances vary over time, along with the distributions themselves. Thus, the 

covariance between the travel times on two segments 𝑖, 𝑗 ∈ {1, … , 𝐾} is defined for each 

combination of time-bins (𝑡𝑖 , 𝑡𝑗) where 𝑡𝑖, 𝑡𝑗 ∈ 𝒯 are the time-bins associated with the traversal of 

segments 𝑖 and 𝑗 respectively, resulting in a total of |𝒯| × |𝒯| covariance values to be estimated 

for each pair of links and a total of  |𝒯|2|𝐴|2 where 𝐴 is the set of links in the network. It should 

be noted that the covariance can vary over time with the travel time distributions themselves, or 

less frequently. The modified approach, abbreviated as MCS-TD-ST is as follows: 

Step 1: Estimate the covariance: 

• For segments 𝑖, 𝑗 ∈ {1, … , 𝐾}, 𝑖 ≠  𝑗, a sample of size S is selected from the set of 

trajectories traversing both 𝑖 and 𝑗.  

• The covariance is estimated for each time-bin combination (𝑡𝑖, 𝑡𝑗) where 𝑡𝑖, 𝑡𝑗 ∈ 𝒯 by 

computing the covariance of link travel times that occurred in the corresponding time-bins, 

as a matrix Σ of size |𝒯|2|𝐴|2 where Σ[𝑖, 𝑗, 𝑡𝑖, 𝑡𝑗] = 𝑐𝑜𝑣(𝜃𝑖
𝑡𝑖 , 𝜃

𝑗

𝑡𝑗). 

Step 2: Obtain the initial sample: 

For iterations 𝑗 ∈ {1, … , 𝑀}: 
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• Sample a departure time 𝜗𝑗̃ from 𝜌 and find the corresponding interval 𝓉𝑗 = 𝜙(𝜗̃𝑗). 

• Sample a travel time 𝜃̃1 for the first segment from 𝜋1
𝑡1 where 𝑡1 = 𝓉𝑗  

• For each next segment, 𝑖 ∈ {2, … , 𝐾}, sample a travel time 𝜃̃𝑖 from 𝜋𝑖
𝑡𝑖  where 𝑡𝑖 =

𝜙(𝜗̃𝑗 + ∑ 𝜃̃𝑙
𝑖
𝑙=0 ).  

• Save the vector of samples 𝜃̃𝑗 = {𝜃̃1, 𝜃̃2, … , 𝜃̃𝐾} and their corresponding time bins 𝑡̃𝑠 =

{𝑡̃1, 𝑡̃2, … , 𝑡̃𝑁}. 

Step 3: Obtain a correlated sample: 

For each sample 𝑗 ∈ {1, … , 𝑀}: 

• Multiply the 𝜃̃𝑗 = {𝜃̃1, 𝜃̃2, … , 𝜃̃𝑁} by the covariance Σ𝑗, that Σ[𝑖, 𝑘] = 𝑐𝑜𝑣 (𝜃𝑖
𝑡̃𝑖 , 𝜃𝑘

𝑡̃𝑘) where 

𝑡̃𝑖, 𝑡̃𝑗 are as saved in 𝑡̃𝑠 = {𝑡̃1, 𝑡̃2, … , 𝑡̃𝑁} to obtain a new  𝜃̃𝑗′
. 

• Set Θ̃𝑃
𝑗

= ∑ 𝜃̃𝑖
𝑗′

𝐾
𝑖=1 .  

5.4.2 Metropolis-Hastings Simulation (MHS) Based Estimation Approaches 

The approaches presented in this section are based on the Metropolis-Hastings (M-H) 

algorithm, a powerful Markov chain method to simulate multivariate distributions. A detailed 

introduction of the M-H can be found in the exposition paper by Chib and Greenberg (1995), where 

the authors provide a derivation of the method and guidance for its implementation. The exposition 

also demonstrates that a few different algorithms, most notably the Gibbs sampler, are special 

cases of the Metropolis-Hastings algorithm, originally pointed out by Gelman (1993). A brief 

introduction to the approach is provided below. 
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5.4.2.1 Metropolis-Hastings Sampling Based Estimation Assuming Stationary Spatially 

Correlated Random Variables (MHS-S) 

The M-H algorithm is a Markov chain Monte Carlo (MCMC) method, based on the MCMC 

theory of generating samples from a target density 𝜋(⋅) using a transition kernel whose 𝑛th iterate 

converges to 𝜋(⋅). The problem is to find the appropriate transition kernel 𝑃(𝑥,⋅) that represents 

the move from a starting or current point 𝑥. The M-H algorithm utilizes a candidate generating 

density (often referred to as proposal distribution) denoted 𝑞(𝑥, 𝑦) such that ∫ 𝑞(𝑥, 𝑦)𝑑𝑦 = 1, so 

that is the process is at a point 𝑥, the density generates a value 𝑦 from 𝑞(𝑥, 𝑦). However, for 𝜋(⋅) 

to be the invariant density of 𝑃(𝑥,⋅), 𝑞(𝑥, 𝑦) should satisfy the reversibility condition 

𝜋(𝑥)𝑞(𝑥, 𝑦) = 𝜋(𝑦)𝑞(𝑦, 𝑥). The M-H algorithm allows for the utilization of a candidate 

generating density 𝑞(𝑥, 𝑦) without satisfying this condition but by correcting the number of moves 

made from 𝑥 to 𝑦 by introducing a probability of move 𝛼(𝑥, 𝑦) < 1, i.e., probability that the move 

is made. Then, transitions from 𝑥 to 𝑦 where 𝑥 ≠ 𝑦 are made so that 𝑝𝑀𝐻 ≡ 𝑞(𝑥, 𝑦)𝛼(𝑥, 𝑦). Then 

𝛼(𝑥, 𝑦) is to be found so that 𝑝𝑀𝐻(𝑥, 𝑦) satisfies the reversibility condition. The Gibbs sampler is 

a M-H algorithm adaptation with a special proposal distribution so that the acceptance probability 

is always equal to 1.  

Further detail and derivation of the M-H algorithm can be found in the study by Chib and 

Greenberg (1995), but some relevant remarks are included here. The M-H algorithm is specified 

by the candidate-generating density 𝑞(𝑥, 𝑦). If a candidate sample is rejected, the step is not made, 

and the current value remains the next item in the sequence. The iterative procedure of the M-H 

algorithm can be summarized as follows: (1) given a position 𝑥𝑗 , sample a proposal position 𝑦𝑗 

from the proposal or transition distribution 𝑞(𝑦; 𝑥𝑗), (2) accept this proposal with probability 
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min (1,
𝑝(𝑦|𝐷)

𝑝(𝑥𝑗
|𝐷)

𝑞(𝑥𝑗;𝑦)

𝑞(𝑦;𝑥𝑗)
), where 𝐷 is the observed data. If this step is accepted, then 𝑥𝑗+1 = 𝑦, 

otherwise 𝑥𝑗+1 = 𝑥𝑗 . A common parametrization of 𝑞(𝑦; 𝑥𝑗) is a multivariate Gaussian 

distribution centered around 𝑥𝑗 . 

As mentioned previously, draws are regarded as samples from the target density only after 

the chain has passed the transient stage and the effect of the starting value can be ignored. 

Therefore, the remaining question is how large of an initial sample should be discarded, which 

may depend on the actual starting point itself.  

For the problem of sampling path travel time distributions via joint segment travel times, 

an issue of general affine invariance can be encountered in employing the standard M-H algorithm, 

occurring when distributions may have high aspect ratios due to variation in scale. Ensemble 

samplers have been proposed for general applications with affine invariance, due to Goodman and 

Weare (2010), where an ensemble of M-H walkers are used, with different starting points, in order 

to obtain a good estimate of the distribution. This study will employ Goodman and Weare’s 

ensemble M-H sampler, implemented according to Foreman-Mackey et al. (2013).  

An important caveat of the M-H algorithm that still holds for the ensemble sampler is that 

a proposal density needs to be specified and the entire walk of the M-H algorithm is based on the 

same underlying candidate-generating density. While this assumption may be appropriate for use 

with time-invariant random variables, this section presents a modification to be applied for time-

varying random variables. The M-H algorithm was tested with two types of proposal functions 

(often referred to as moves, as they generate the next move in the procedure) – a Gaussian proposal 

function, originally recommended by Metropolis et al. (Metropolis et al., 1953) and a second type 

of proposal introduced by Goodman and Weare (Goodman and Weare, 2010), informally called 
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the “stretch move”, which has been shown to outperform the standard M-H. Thus, these two types 

of proposal functions result in two variations of the MHS-S method abbreviated as MHS-S-S and 

MHS-S-G for the stretch and Gaussian move, respectively. 

5.4.2.2 Metropolis-Hastings Sampling Based Estimation Assuming Time-Varying Random 

Variables with Time-Varying Spatial Correlation (MHS-TD) 

The implementation presented above is suitable for the sampling of time-invariant random 

variables. A second variation for Metropolis-Hastings Sampling (MHS) based estimation with 

time-varying random variables and time-varying correlation structure MHS-TD, is presented here. 

The special case of time-varying random variables with stationary covariance is omitted as it is 

incompatible with the MHS implementation. 

The MHS sampling approach was applied for the case of time-varying travel time 

distributions with time-varying spatial correlations via a mixture model. A mixture distribution is 

simply the probability distribution of a random variable derived from a collection of other random 

variables – in this case the time-interval specific cases for the time interval combinations resulting 

from the time of traversal at each link of the path. Then the distribution functions, both probability 

density and cumulative distribution, can be expressed as a convex combination (i.e., a weighted 

sum) of the other density and functions, respectively. Similar as above, two types of proposal 

functions were tested resulting in two variations of the MHS-RD method abbreviated as MHS-

TD-S and MHS-TD-G for the stretch and Gaussian move, respectively. 

For this approach, the time intervals for the traversal of the segments are used as the basis 

for the mixture components, as vectors of size 𝐾 equal to the number of path segments. Then, each 

mixture component is the stationary MHS estimate for the given time intervals and the 

probabilities associated with each component i.e., the mixture weights are determined according 
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to the application. Similar to the approach seen in the MCS-based methods, if the goal is to estimate 

the path travel time distribution accurately based on the network conditions the probabilities are 

determined empirically form the data. If the goal is to estimate the path travel time distribution to 

be experienced by a traveler, departure times can be seen as uniformly distributed and time-

intervals can be determined accordingly. 

5.4.3 Normal To Anything (NORTA) Distribution Estimation Approaches 

The set of approaches presented in this section are based on the NORTA (NORmal To 

Anything) distribution model, originally introduced by Cario and Nelson (1997). The NORTA is 

a model for representing a multi-dimensional random vector 𝑿 with arbitrary marginal 

distributions and any feasible correlation matrix using a transformation-oriented approach. 

Specifically, the model transforms a base standard multivariate normal vector 𝒁 to achieve the 

desired marginal distributions for the components of the input random vector 𝑿 and an 

appropriately adjusted correlation matrix. Hence, 𝑿 is referred to as having a NORTA (NORmal 

To Anything) distribution. Cario and Nelson’s work is closely related to methods that transform a 

random vector 𝑼 with uniformly distributed marginals, known as a copula. The authors describe 

the NORTA transformation as a two-step process, where the multivariate normal vector 𝒁 is first 

transformed into a multivariate uniform vector 𝑼, which is then transformed into the desired input 

vector 𝑿. The major contribution of the NORTA approach is that it is a general-purpose and easy-

to-use tool, that is not based on approaches to mix distributions or exploit properties of a particular 

family of distributions. However, as can be expected, this is achieved at the expense of 

computational efficiency in fitting and random-variable generation, as the authors point out.  
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A complete introduction to the NORTA model can be found in the original work (Cario 

and Nelson, 1997) as well as the preceding publication (Cario and Nelson, 1996) that introduces 

many of the concepts for developing this model. This section presents summary of the NORTA 

model that should be sufficient for the implementation and modifications presented after.  

The goal of the NORTA model is to define a random vector 𝑿 = (𝑋1, 𝑋2, … , 𝑋𝐾)′ with 

specified properties, including marginal distributions 𝑋𝑖~𝐹𝑋𝑖
, 𝑖 = 1, 2, … , 𝐾 where each 𝐹𝑋𝑖

 is an 

arbitrary cumulative distribution function (cdf) and a given Corr[𝑿] = 𝚺𝑿. 

Then 𝑿 is represented as a transformation of a 𝐾-dimensional standard multivariate normal 

(MVN) vector 𝒁 = (𝑍1, 𝑍2, … , 𝑍𝐾)′ with correlation matrix 𝚺𝒁. Denoting the univariate standard 

normal cdf as 𝚽 and setting 𝐹𝑋
−1(𝑢) ≡ inf{𝑥: 𝐹𝑋(𝑥) ≥ 𝑢} as the inverse cdf, the NORTA vector 

𝑿 = (𝐹𝑋1

−1[𝚽(Z1)], 𝐹𝑋2

−1[𝚽(Z2)], … , 𝐹𝑋𝐾

−1[𝚽(ZK)])
′
. Thus, the transformation 𝐹𝑋𝑖

−1[𝚽(⋅)] ensures 

that 𝑋𝑖 has the marginal distribution 𝐹𝑋𝑖
 and the central problem in fitting the NORTA model is to 

select a 𝚺𝒁 that gives the desired 𝚺𝑿 after the transformation. The approach to estimating the 𝚺𝒁 

from a given 𝚺𝑿 or observed data 𝑿̃ is not presented here as it is not the central problem in this 

study, and the details can be found in the original paper (Cario and Nelson, 1997). 

5.4.3.1 NORTA Distribution Estimation Assuming Stationary Spatial Correlation of Time-

Dependent Random Variables (NORTA-TD-S) 

For this application, the NORTA estimation approach is adapted to sample jointly 

distributed time-dependent random variables with a stationary (i.e., time-invariant) correlation. 

Thus, for a path 𝑃 composed of 𝐾 consecutive segments {𝑙1, 𝑙2, … , 𝑙𝐾} travel time on segment 

𝑙𝑘 ∀ 𝑖 ∈ {1, 2, … , 𝐾} and for a time interval 𝓉 ∈ 𝒯 is a random variable 𝜃𝑘
𝓉 with a cdf 𝐹𝜃𝑘

𝓉 . Let 𝜽 =

(𝜃1, 𝜃2, … , 𝜃𝐾)′ and Θ𝑃 again denote the path travel time i.e., Θ𝑃 = ∑ 𝜃𝑘
𝐾
𝑘=1 . 
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With the stationary covariance 𝚺𝜽 is invariant across the time intervals in 𝒯, and thus a 

single corresponding 𝚺𝒁 needs to be estimated and then samples from 𝒁 are to be transformed back 

into samples from 𝜽. Assumptions and notation for the departure time and its distribution are as 

introduced previously in section 5.4.1.2. Sampling from the modified NORTA-TD distribution is 

then as follows: 

For iterations 𝑗 ∈ {1, … , 𝑀}: 

• Sample a starting time 𝜗𝑗̃ is from the distribution 𝜌 and find the corresponding time interval 

𝓉𝑗 = 𝜙(𝜗̃𝑗). 

• Obtain a sample for 𝒁 ~𝑁(𝟎, 𝚺𝒁). 

• For the first segment, let 𝜃̃1 = (𝐹𝜃1

𝑡1)
−1

[𝚽(Z1)] wh ere 𝑡1 = 𝓉𝑗 . 

• For each next segment 𝑘 ∈ {2, … , 𝐾}, a travel time 𝜃̃𝑘 = (𝐹𝜃𝑘

𝑡𝑘)
−1

[𝚽(𝑍𝑘)] with 𝑡𝑘 =

𝜙(𝜗̃𝑗 + ∑ 𝜃̃𝑖
𝑘
𝑖=0 ) i.e., the time interval corresponding to the departure time on segment 𝑖.   

• Then, the sampled path travel time is Θ̃𝑃
𝑗

= ∑ 𝜃̃𝑘
𝐾
𝑘=1 . 

Therefore, while 𝒁 can be sampled jointly, the transformation from 𝑍1, 𝑍2, … , 𝑍𝐾 to 

𝜃1, 𝜃2, … , 𝜃𝐾 is done sequentially since the time interval 𝑡𝑘 corresponding to the segment 𝑙𝑘 is 

obtained based on the knowing the sampled values for 𝜃𝑖 for 𝑖 < 𝑘.  

5.4.3.2 NORTA Distribution Estimation Assuming Time-Varying Spatial Correlation of 

Random Variables (NORTA-TD-ST) 

The second modification of the NORTA approach is one where the time-varying random 

variables also have a time-varying correlation. As introduced previously, such a correlation would 

require the computation of |𝒯|2 values for each value in 𝚺𝑿. For a vector of 𝐾 variables, NORTA 
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needs to perform 
𝐾(𝐾−1)

2
 operations (Cario and Nelson, 1997). Thus, for the time-varying 

correlation the number of operations would be 
𝐾(𝐾−1)

2
|𝒯|2 where 𝒯 is the set of time intervals over 

which the distribution varies. However, since an important limitation of the NORTA method is the 

computational inefficiency of generating 𝚺𝒁, this modification with a time-varying correlation, is 

designed so as to estimate as few of the elements of 𝚺𝒁 as possible. Additionally, as previously 

seen in section 5.4.1.4, even if all elements of this matrix are computed only a portion of them are 

being utilized.  

Then, sampling from the modified NORTA-TD-TS distribution was implemented in the 

form of a mixture distribution between the various cases of stationary distributions with their 

occurrence estimated according to the empirical data. Similar to the approach taken for the MHS 

estimation, the time intervals for the traversal of the segments are used as the basis for the mixture 

components, as vectors of size 𝐾 equal to the number of path segments. Then, each mixture 

component is the stationary NORTA estimate for the given time intervals and the probabilities 

associated with each component i.e., the mixture weights are determined according to the 

application.  

5.4.4 Lognormal Approximation Estimation Approaches 

The second parametric estimation approach is one commonly used in the literature to 

approximate the sum of correlated non-negative random variables via a lognormal distribution 

(Mehta et al., 2007). This approach has been applied in studies considering stochastic networks, 

initially by Chen et al. (2018) for the case of time-invariant stochastic networks, and later adapted 

for the case of time-varying random variables (Chen et al., 2020) using the dynamic moment-
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matching method (DMM). This study utilizes a mixture model to implement a time-varying 

modification of the lognormal approximation, similar to the approaches taken for the MHS and 

NORTA estimation methods.  

5.4.4.1 Lognormal Approximation for Time-Invariant Random Variables with Spatial 

Correlation 

The lognormal approximation, according to the Fenton-Wilkinson approach (Fenton, 

1960) approximates path travel time distributions by a lognormal distribution whose first origin 

moment 𝑀𝑃 and second central moment 𝐷𝑃 are the sum of the origin moments of the links and the 

sum of all of the elements of the covariance matrix of link travel times, respectively (Chen et al., 

2018). For a path 𝑃 composed of 𝐾 consecutive segments {𝑙1, 𝑙2, … , 𝑙𝐾} with time-invariant mean 

of the logarithm of travel times {𝜇1, 𝜇2, … , 𝜇𝐾}, standard deviations of the logarithm of travel times 

{𝛿1, 𝛿2, … , 𝛿𝐾} and correlation coefficient 𝜌𝑘,𝑘′for segments 𝑘 and 𝑘′, the moments can be 

calculated with the moment-matching method they can be found as follows: 

𝑀𝑃 = ∑ exp(𝜇𝑘 + 0.5𝛿𝑘
2)

𝐾

𝑘=1

, 

 𝐷𝑃 = ∑ exp(2𝜇𝑘 + 𝛿𝑘
2)(exp(𝛿𝑘

2) − 1)

𝐾

𝑘=1

+ ∑ 𝜌𝑖𝑗

𝑘,𝑘′∈{1,…,𝐾}

√exp(2𝜇𝑘 + 𝛿𝑘
2)(exp(𝛿𝑘

2) − 1) exp(2𝜇𝑘′ + 𝛿𝑘′
2 )(exp(𝛿𝑘′

2 ) − 1)  

Then the approximate lognormal distribution parameters for the path travel time are: 

𝜇𝑃 = ln (
𝑀𝑃

2

√𝑀𝑃
2 + 𝐷𝑃

) , 𝛿𝑃 = √ln (1 +
𝐷𝑃

𝑀𝑃
2) 
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Finally, the path travel time distribution is then approximated so that 

Θ𝑃~𝐿𝑜𝑔𝑛𝑜𝑟𝑚𝑎𝑙(𝜇𝑃, 𝛿𝑃
2), or equivalently ln(Θ𝑃) ~𝑁(𝜇𝑃 , 𝛿𝑃

2). 

5.4.4.2 Lognormal Approximation for Time-Dependent Random Variables 

The approach for using the lognormal approximation for time-dependent random variables 

in this study was developed using a mixture model of the stationary lognormal approximations 

across all time-intervals combinations for the time of traversal for each path segment.  

An approach for lognormal approximation for the case of time-varying random variables 

was introduced by Chen et al. (2020). However, the presented approach is not suitable for the 

estimation of path travel time distributions across a time period, but rather for a given single time 

of day. Due to this and in order to maintain the consistency with some of the other modifications 

based on mixture models, such as the MHS and NORTA presented in sections 5.4.2 and 5.4.3, 

respectively.  

5.5 Numerical Experiments 

Numerical experiments were performed to evaluate the performance of the path travel time 

estimation approaches. This section introduces the study sites and data are introduced in 5.5.1, 

followed by the experimental design in 5.5.2, the performance measures used in this study in 5.5.3,  

leading into the results and analysis in 5.5.4. 

5.5.1 Study Sites and Data 

The methods for estimation of path travel time distributions were intended to be used for 

an urban network with the availability of trajectory data. Hence, this study used simulated 

trajectory data on the network of Chicago, with 1578 nodes and 4805 links as shown in Figure 5-1. 
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Trajectories observed for departure times in the morning peak period from 6 AM to 9 AM were 

considered.  

To test the performance of the presented methods, a set of 100 paths were selected from 

the network, covering 902 of the network links. The paths were selected so as to have a large 

number of vehicle traversals, i.e., trajectory observations, that would provide a reliable estimate of 

the path travel time distribution to be used as the ground truth. 

 

 
Figure 5-1. Large scale Chicago network 

5.5.2 Experimental Design 

The vehicle trajectory data for the morning peak period consisted of any vehicle trajectory 

observations traversing any portion of the paths considered. For the 100 selected paths, the travel 

time distributions estimated from empirical observations were used as ground truth. Link-based 

estimation was performed with the four Monte Carlo sampling approaches: MCS-I, MCS-TD, 

MCS-TD-S and MCS-TD-ST, the two Metropolis-Hastings sampling methods: MHS and MHS-
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TD, three NORTA-based approaches NORTA-S, NORTA-TD-S and NORTA-TD-ST, and two 

variations of the lognormal approximation Lognormal and Lognormal-TD. The approaches with 

time-dependence were tested using a uniform time interval 𝛿 = 10 𝑚𝑖𝑛. The number of samples 

𝑀 for each of the approaches was set to 1000.  

5.5.3 Performance Measures 

To evaluate the performance of the different approaches for the estimation of path travel 

time distributions, this chapter uses two sets of accuracy measures along with one measure of 

efficiency.  

The first set of accuracy measures are statistical measures for the comparison of non-

parametric distributions.  

• The Kolmogorov-Smirnov (KS) statistic is a measure of closeness for two probability 

distributions and one of the most useful and general nonparametric methods for 

comparing two samples (Chakravarty et al., 1967; Daniel, 1990). The KS statistic takes 

the largest absolute difference between two distribution functions and can take values 

from 0 to 1, where a value closer to 0 signifies a better fit. 

• The Epps-Singleton (ES) statistic (Epps and Singleton, 1986) is a test using the 

empirical characteristic function and based on a quadratic form in differences between 

respective components of empirical characteristic functions of two samples.  

• The Wicoxon rank-sum test (often also referred to as the Mann-Whitney-Wilcoxon 

(MWW) test) is a nonparametric test with the null-hypothesis that the samples 𝑋 and 𝑌 

are drawn from the same distributions, with the alternative hypothesis that the values 
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of one sample are more likely to be larger than those of the other (Mann and Whitney, 

1947; Wilcoxon, 1945).  

The second set of accuracy measures are based on assessing the performance of the distribution 

estimation approaches in estimating select quantities related to the distribution, similarly to the 

approach taken by Kim and Mahmassani (2014b). Here, the mean absolute percentage error 

(MAPE) is calculated for each of six estimated quantities for each of the distributions: mean, 

coefficient of variation (CV), 25th percentile, median, 75th percentile and 90th percentile of the 

distribution. If 𝑥 is the quantity to be estimated, and 𝑥̂ is the estimate of 𝑥 for a given method, then 

for 𝑛 estimated values: 

𝑀𝐴𝑃𝐸(%) =
100

𝑛
∑ |

𝑥𝑖 − 𝑥̂𝑖

𝑥𝑖
|

𝑛

𝑖=1

. 

In addition to the three statistical measures and the 𝑀𝐴𝑃𝐸 for the six distribution quantities, 

the final measure to be considered is the computational run time for obtaining each estimate (or 

sample) of the distribution.  

5.5.4 Results and Analysis 

The numerical experiments results are summarized via the average distribution comparison 

statistics, the MAPE across six distribution quantities and mean computational run times across 

the 100 paths for each of the total of 13 estimation methods. Table 5-3 presents the results for the 

computational run times and the distribution comparison statistics KS, ES and MWW with their 

corresponding p-values, while the MAPE values for the distribution quantities are shown in Table 

5-4. 
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Table 5-3. Computational run times and accuracy measures for the estimation 

approaches, including the KS, ES and MWW statistics and their corresponding p-values. 

Method Run time (s) KS KS-p ES ES-p MWW MWW-p 

MCS-I 0.027 0.289 0.130 39.928 0.071 −1.295 0.071 

MCS-TD 4.630 0.431 0.031 115.602 0.007 0.540 0.007 

MCS-TD-S 9.431 0.493 0.015 447.273 0.010 −0.257 0.010 

MCS-TD-ST 10.420 0.457 0.028 156.239 0.013 1.232 0.013 

MHS-S-S 1942.210 0.416 0.009 79.999 0.018 −4.771 0.018 

MHS-S-G 1724.065 0.722 0.000 198.151 0.000 0.684 0.000 

MHS-TD-S 1158.337 0.266 0.018 130.732 0.021 2.882 0.021 

MHS-TD-G 1158.337 0.263 0.016 124.040 0.013 2.620 0.013 

NORTA-S 19.253 0.143 0.410 9.382 0.341 −0.593 0.341 

NORTA-TD 19.818 0.255 0.131 26.409 0.109 −0.523 0.109 

NORTA-TD-ST 2491.961 0.192 0.240 13.537 0.175 1.124 0.175 

LOGN 0.314 0.295 0.075 38.016 0.055 −0.463 0.055 

LOGN-TD 12.660 0.220 0.198 15.677 0.166 0.398 0.166 

 

Table 5-4. MAPE (%) values for six distributions quantities for all approaches 

Method mean CV 25th median 75th 90th 

MCS-I 22.57 333.34 39.96 15.90 20.47 28.42 

MCS-TD 23.44 83.34 46.88 28.02 26.34 24.53 

MCS-TD-S 33.25 182.01 49.42 41.98 40.05 36.62 

MCS-TD-ST 24.34 75.28 55.19 40.56 32.57 28.61 

MHS-S-S 11.57 63.67 43.31 24.43 23.12 11.30 

MHS-S-G 19.02 93.89 85.65 39.93 40.56 24.27 

MHS-TD-S 13.46 98.13 27.92 10.68 11.40 21.52 

MHS-TD-G 12.36 89.13 26.55 10.62 9.63 20.15 

NORTA-S 2.49 16.94 8.59 6.53 4.85 4.38 

NORTA-TD 28.36 544.41 35.09 14.26 24.49 37.75 

NORTA-TD-ST 10.26 180.60 26.64 7.65 7.91 10.58 

LOGN 22.20 1139.32 56.65 12.82 17.57 24.92 

LOGN-TD 8.63 128.78 36.75 8.26 7.54 11.16 

 

The results in Table 5-3 show a significant variation in the computational run times 

between different approach types and their modifications, making it apparent that some approaches 
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may be much more suitable for real-time or online applications, while others may only be relevant 

for offline applications. Specifically, the MHS approaches and the NORTA approach with time-

varying correlations exhibit significantly higher computational run times. 

The KS statistic is considered further in Figure 5-2, as the most widely used measure for 

distribution comparison and testing. It can be observed that the MCS approaches show a very high 

variation in KS statistic value, while the NORTA approaches are consistent it their low variation. 

It is interesting to observe the NORTA-S (stationary) approach which exhibits the lowest mean 

and very low variation for the KS statistic. Low KS statistic values indicate a better fit of the 

distributions. 

 

Figure 5-2. Box Plot of the KS statistic values for all estimation approaches. 

 To consider the other statistics and compare across them, the focus is on the corresponding 

p-values since the statistics themselves have varying scales and interpretation, but the p-values 
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translate each statistic into the probability under the null hypothesis, which in all cases is a proxy 

for the estimated and ground truth observations being from the same distribution. The average p-

values for the KS and ES statistics are shown in Figure 5-3, and the MWW p-values are omitted 

as they are equal to those for the ES statistic. High p-values are preferable as they indicate higher 

probability that the simulated sample is drawn from the same distribution as the ground truth. It 

can be observed that the NORTA-S approach results in especially high average p-values for both 

the KS and ES statistic.  

 

Figure 5-3. Average p-values for the KS and ES statistics across all approaches 

The p-values are further analyzed via the summary of their variation for the ES statistic 

across all approaches, shown in Figure 5-4.  
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Figure 5-4. Box Plot of the ES statistic p-values values for all estimation approaches 

While the NORTA-S approach had high average p-values, it can be observed that it also 

exhibits the highest variation in p-values with the 25th and 75th percentile at 0.031 and 0.637, 

respectively. These results make it difficult to conclude that the promising NORTA-S approach 

can be reliably used for accurate estimation of path travel time distributions. Most approaches, 

other than the NORTA and Lognormal approximation have small variation and undesirably low 

p-values. Some interesting approaches to consider based on the results in Figure 5-4, may be the 

NORTA-TD and Lognormal-TD approaches with lower mean p-values compared to NORTA-S 

but significantly higher than the other methods and with lower variation. This is further supported 

by considering the plot of cumulative distribution functions for the ES statistic p-values, shown in 

Figure 5-5 for the NORTA and Lognormal approaches. The plots show that for the p-value 

maximization problem, the cumulative distribution function for the p-values of the NORTA-S is 
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stochastically dominated at the first order by that of the other four approaches. At any cumulative 

probability value, the NORTA-S approach has the lowest ES p-value among these approaches.  

 

Figure 5-5. Cumulative distribution function of ES statistic p-values for five of the 

estimation approaches 

The estimation approaches can be further evaluated via their performance in terms of 

estimating the distribution quantities: the mean, CV, 25th percentile, median, 75th and 90th 

percentile values. The MAPE values for these quantities for each approach are shown in Table 5-4. 

These results show some variation in the estimation errors for the distribution values with 

the different approaches. The MAPE on the mean and CV values are additionally shown in Figure 

5-6. With the mean error values, the NORTA-S approach shows the lowest error for the estimation 

of both the mean and CV values of the path travel time distributions. Interestingly, the NORTA-

TD-ST approach shows better performance for the mean and CV MAPE values compared to the 

NORTA-TD approach, showing the benefit of using a non-stationary correlation structure. 

Similarly, the Lognormal-TD improves on the Lognormal approximation, and the MHS-TD-S and 
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MHS-TD-G approaches have lower error compared to the time-invariant versions MHS-S, except 

for the low MAPE on the mean with MHS-S-S. 

 

Figure 5-6. MAPE for the mean and CV of path travel time distributions for all approaches 

The MAPE for the remaining distribution quantities, the 25th percentile, median (50th 

percentile), 75th and 90th percentile are presented in Figure 5-7. From the visualization, it can be 

seen that a few of the approaches show an imbalance in their ability to accurately estimate the right 

or left tail of the distribution. Specifically, the MHS-S-S shows low errors for the high percentiles, 

but high errors for the low percentiles, while the opposite is true for the MHS-TD approaches. For 

the NORTA-TD and Lognormal approximation, the error increases farther along in the right tail 

of the distribution. Only a few of the approaches are consistent in their estimation, namely the 

MCS-TD and MCS-TD-S with relatively high MAPE near 30% and 40% respectively for all four 

quantities, and NORTA-S, NORTA-TD-ST with errors averaging near 5% and 10%, respectively. 

Finally, the Lognormal-TD shows consistent errors near 10% for all four quantities.  
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Figure 5-7. MAPE for the 25th percentile, median (50th percentile), 75th and 90th 

percentile of path travel time distributions 

Combining these results from Figure 5-6 and Figure 5-7, with those from the previous 

figures Figure 5-2, Figure 5-3, and Figure 5-4, a few of the approaches can be discussed further. 

The NORTA-S approach achieves low mean error values, but be the least reliable approach among 

the thirteen, as its p-values vary significantly across the numerical tests. The modification 

NORTA-TD-ST performs better when it comes to the MAPE across distribution quantities, while 

also having relatively high p-values with significantly less variation compared to NORTA-S. 

However, while this approach is accurate across the different measures, it should be noted that it 

has the highest run times across all presented methods, since it requires the estimation of multiple 

covariances, which is the computationally demanding aspect with NORTA. There are a few 

considerations to implementing this approach with reduced computational times. Firstly, recent 

advances in implementing NORTA have introduced ways to improve its efficiency, including an 
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approach by Niaki and Abbasi (2008) for generating NORTA correlation matrices using artificial 

neural networks and a recent graphical processing unit (GPU)-accelerated NORTA algorithm for 

high dimensional multivariate simulation by Li et. al. (2019). Secondly, the time varying NORTA 

correlation matrices can be pre-computed offline for any online applications, thus eliminating large 

run time requirement. The Lognormal approximation methods also warrant further discussion, 

especially the Lognormal-TD, which has accuracy close to that of NORTA-TD-ST. The 

Lognormal-TD was implemented as a mixture model and as such it has higher computational run 

times relative to the time invariant Lognormal.  

5.6 Conclusions and Future Work 

This chapter addresses the question of estimating path travel time distributions in stochastic 

time-varying networks with generalized correlation structures. Four classes of estimation 

approaches are presented, including Monte Carlo simulation and Metropolis-Hastings sampling as 

non-parametric approaches, as well Normal to Anything (NORTA) distribution and Lognormal 

distribution approximations as parametric estimation approaches. Based on the presented 

taxonomy for the estimation of path travel time distributions, variations of the standard approaches 

for each of the four classes are introduced, to allow for different types of assumptions, input 

categories and output requirements categories.  

The numerical experiments in this study are performed on a set of paths on the Chicago 

network, calibrated using real-world data. The results and analysis compare the performance of 

the thirteen presented approaches across a number of accuracy measures and the computational 

run times. The most interesting approaches are the NORTA estimation method and its modification 
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with time-varying correlations NORTA-TD-ST, each showing better performance across different 

measures.  
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Chapter 6 Reliable A Priori Path Finding in Stochastic Dynamic Networks2 

6.1 Overview 

This chapter considers the problem of finding time-dependent reliable least-time paths 

(RLTP), where joint time-varying link travel time distributions are unknown and path travel time 

distributions are to be estimated. The RLTP problem thereby connects the path travel time 

distribution estimation approaches with their application to reliability-based path finding in 

stochastic dynamic networks with spatio-temporal dependencies. 

This chapter presents an approach for the RLTP problem for a priori paths via a path 

generation approach. The path-generation algorithm is a label-correcting (LC) algorithm in line 

with those developed by (Miller-Hooks and Mahmassani, 2003a, 2000b; Nie and Wu, 2009a, 

2009b) with adjustments for the problem considered here. Specifically, given the methodological 

difficulties of applying dominance criteria at intermediate nodes in stochastic networks with 

dependent travel times, this chapter presents two sets of approximate dominance criteria. The path 

generation approach is applied with a novel path travel time estimation approach, utilizing a time-

dependent NORmal To Anything (NORTA) sampling technique from Chapter 5. Finally, this 

chapter applies the proposed solution approach to the large-scale Chicago network using simulated 

vehicle-trajectory data, performs a priori path finding for six reliability-based least-time objective 

functions, and evaluates the performance of the approximate path dominance criteria with respect 

to an exact solution.   

 

2 This chapter builds on the work in (Filipovska and Mahmassani, 2020b) and parallels an article under review 

for presentation at the 2022 101st Annual Meeting of the Transportation Research Board.  
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6.2 Problem Definition and Methodological Difficulties 

This section defines the problem and the notation for the a priori RLTP problem. Firstly, the 

STV network with generalized link travel time correlations is presented as the setting for the 

problem in section 6.2.1. Secondly, definitions and distinctions of a priori and adaptive routing in 

STV networks are presented in section 6.2.2, followed by a discussion of optimality, and some of 

the characteristics of the problem that are crucial for the solution methodology in the context of 

correlated STV networks. 

6.2.1 Stochastic Time-Varying Network Modeling and Notation 

Let the STV network be a directed graph 𝐺(𝑁, 𝐴, 𝒯), where 𝑁 is the set of |𝑁| = 𝑛 nodes 

and 𝐴 is the set of |𝐴| = 𝑚 links, and 𝒯 is the set of time periods. The link travel times are assumed 

to be random variables jointly distributed across time. The travel time on each link (𝑖, 𝑗) at time 𝑡 

is a continuous positive random variable, denoted Θ𝑖𝑗
𝑡 , constrained by a minimum and maximum 

possible travel time value with a truncated distribution 𝜋𝑖𝑗
𝑡 . Note that here capital Θ𝑖𝑗 is used to 

denote the random variable, while the values it takes are denoted with 𝜃𝑖𝑗. The dependencies 

between the link travel times are defined via link-pairwise covariances, which vary over time-

period pairs, so that 𝑐𝑜𝑣(Θ𝑖𝑗
𝑡1 , Θ𝑘𝑙

𝑡2) is the covariance between the travel time on link (𝑖, 𝑗) during 

time interval 𝓉1 ∈ 𝒯 and that on link (𝑘, 𝑙) during time period 𝓉2 ∈ 𝒯. This study assumes that link 

travel time distributions vary across the time periods in the set 𝒯 and can be considered static 

outside the peak period covered by 𝒯. An alternative and stronger assumption would be that the 

set of time intervals 𝒯 covers the entire necessary time period, i.e., any path of interest can be 

traversed within the duration of the entire time period covered by the set 𝒯 with probability 1 for 
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a range of chosen departure times. Since the travel times for each link have truncated distributions, 

the duration of the time period covered by 𝒯 can be determined for the given network on the basis 

of the maximum travel times on its links. 

6.2.1.1 Estimation of Path Travel Time Distributions for Path Finding 

An important challenge in modeling an STV network is the estimation of its path travel time 

distributions. If the network link travel time distributions with their temporal variation and spatio-

temporal correlations are modeled as outlined above, the path travel time distribution for a given 

path and departure time cannot be directly extracted from the link travel time distributions and 

needs to be estimated instead. The problem of path travel time distribution estimation was 

introduced in Chapter 5, and the approaches presented there are relevant and will be applied with 

the solution approach for this chapter. A few of the key aspects of the problem definition are 

presented here so as to remain consistent with the notation used in this chapter.  

Suppose a path 𝑃 is composed of 𝐿 consecutive links {(𝑗0, 𝑗1), (𝑗1, 𝑗2), … , (𝑗𝐿−1, 𝑗𝐿} ∈ 𝐴. To 

simplify the notation, let the travel time distribution for each link (𝑗𝑘−1, 𝑗𝑘) ∀ 𝑘 ∈ {1, … , 𝐿} be a 

time-varying random variable, so that Θ𝑘
𝑡  is a distinct random variable of the travel time on link 

(𝑗𝑘−1, 𝑗𝑘) during time period 𝓉 ∈ 𝒯 with a distribution 𝜋𝑘
𝓉  truncated by a minimum and maximum 

travel time 𝜃𝑘
𝑚𝑖𝑛 and 𝜃𝑘

𝑚𝑎𝑥. Let Θ𝑃 denote the travel time random variable for path 𝑃 with a 

corresponding density function Π𝑃 and cumulative distribution (cdf) 𝑈𝑃, where for a given travel 

time 𝑇, 𝑈𝑃(𝑇𝑃) = 𝑃(Θ𝑃 ≤ 𝑇).  

The presented solution methodology assumes known marginal link travel time 

distributions, estimated time-varying correlations, and the ability to perform conditional sampling.  
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Thus, the solution approach can utilize the estimation methods presented by Filipovska et al. 

(2021), and this chapter applies the best performing approaches from Chapter 5.  

6.2.1.2 Assumptions for Path Finding Approaches 

Path finding in STV networks with dependencies is made further difficult by the assumption 

of first-in-first-out (FIFO) consistency. In deterministic networks with time-varying link travel 

times, a link is FIFO if it is modeled so that entering the link later must result in leaving it later. In 

STV networks the travel time on each link, and by extension the arrival time at its end node, is a 

random variable. The FIFO consistency assumption can be extended to stochastic dynamic 

network problems in different ways, often depending on the specific problem definition. Studies 

by Miller-Hooks and Mahmassani (2003a, 1998a) present a definition in which a later departure 

time leads to a later arrival time with probability equal to 1 for any link in the network. Specifically, 

for a link (𝑖, 𝑗) ∈ 𝐴, with a travel time 𝜃𝑖𝑗
𝑡  at time 𝑡, 𝑃{𝑠 + 𝜃𝑖𝑗

𝑠 ≤ 𝑡 + 𝜃𝑖𝑗
𝑡 } = 1 ∀ 𝑠 ≤ 𝑡. An 

alternative condition, as a definition for Stochastic FIFO, is presented in later studies by Nie and 

Wu (2009a, 2009b) where a probability density function 𝜋𝑖𝑗
𝑡  is FIFO consistent if its CDF satisfies 

the following condition: 𝑈𝑖𝑗
𝑡1(𝑇𝑏 − 𝑡1) ≥ 𝑈𝑖𝑗

𝑡2(𝑇𝑏 − 𝑡2) ∀ 𝑡1 ≤ 𝑡2, for a given arrival time 𝑇𝑏. This 

condition ensures earlier arrival times are more probable with earlier departure times. In a network 

with independent link travel time random variables, the FIFO-consistency of all individual links 

implies the FIFO-consistency of any given path. Allowing for correlations or interdependent link 

travel times, an equivalent stochastic FIFO-consistency of the network can be established by 

imposing the condition on all marginal and conditional link travel time distributions, which then 

ensures the condition is satisfied for the travel time distribution of any path as the sum of jointly 

distributed random variables (Nie and Wu, 2009b). 
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6.2.2 A Priori Path Finding and Optimality in STV Networks 

The central problem in this chapter is finding optimal a priori paths under reliability-based 

least-time objectives. The definition of a priori path finding and its distinction from adaptive 

routing is initially described in Chapter 2, and the key characteristic of a priori path finding is that 

a solution consists of a single path optimizing a given objective function for an origin-destination 

pair and a specified departure time. Formally, the problem is to determine a path from origin node 

𝑟 ∈ 𝑁 to all destination nodes 𝑗 ∈ 𝑁\{𝑟} for each of a range of departure times 𝑡. Some simplifying 

assumptions in this study are that waiting at nodes and cyclic paths are not permitted. Specifically, 

this chapter extends the work of Filipovska and Mahmassani (2020b) to present an approach for 

the RLTP problem using a path generation approach with alternative path dominance criteria using 

approximations to reduce the required computational effort and find a good approximate solution 

to the problem.  

Additionally, the solution approach in this chapter can be used for one or more objectives 

focused on finding reliable least-time strategies. In stochastic networks, travel time distributions 

can be compared along several different criteria (i.e., expected travel time, variance, travel time 

budget, 𝛼-confidence travel time, etc), and different paths may be preferable under each objective. 

Reliable least-time strategies can be generally defined around least-time objectives, and some 

examples from the literature include: least expected travel time (LET) (Miller-Hooks and 

Mahmassani, 2000a), least possible time (Miller-Hooks and Mahmassani, 1998a), least 𝛼-

confidence travel time (Chen et al., 2018; Zeng et al., 2015), on-time arrival probability (Yang and 

Zhou, 2017), reliable shortest paths (Chen et al., 2020; Zhang et al., 2017).  
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Two objective types are considered in this study: Value at Risk (VaR) and Conditional Value 

at Risk (CVaR). A number of previous studies for path finding in stochastic networks use the least 

𝛼-confidence travel time objective (Chen et al., 2018; Nie and Wu, 2009a; Zeng et al., 2015), 

which is an application of the Value at Risk (VaR) measure of risk, typically used for evaluating 

the risk of financial investments. VaR is evaluated for a given probability value 𝑝 = 1 − 𝛼, so that 

the probability of a loss greater than VaR(𝑝) is 𝑝, while the probability of a loss less than VaR(𝑝) 

is 1 − 𝑝 = 𝛼 (Holton, 2012). Applied to travel time distributions, the VaR(1 − 𝛼) is equivalent to 

the 𝛼-confidence travel time. Therefore, finding the least 𝛼-confidence travel time objective is 

equivalent to minimizing VaR(1 − 𝛼). Thus least 𝛼-confidence travel time is equivalent to least 

VaR for probability 𝑝 = 1 − 𝛼. However, VaR has been criticized as a measure of risk, most 

importantly for not being a coherent risk measure due to its violation of the sub-additivity property 

(Dowd, 2007). The Conditional Value-at-Risk (CVaR) is a coherent risk measure, defined as the 

average of VaR values for 𝑝 ≥ 1 − 𝛼, i.e., the expected value for the worst 𝛼-percentile cases 

(Rockafellar and Uryasev, 2000). Its application from evaluating investment portfolios to travel 

time distributions needs to consider that a positive return on investments is seen as gain, while 

should be seen as a loss when considering travel times. However, moving from the VaR-based 

travel time objective of least 𝛼-percentile travel time to the CVaR-based objective of least expected 

travel time above the 𝛼-percentile can be understood as follows: the VaR-based objective captures 

some level of risk by considering and comparing the travel times at the 𝛼-percentile, while a 

CVaR-based objective captures the expectation of how much greater the travel time can get in that 

𝛼-percentile tail. This study will consider and compare both of these objective types with varying  
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𝛼 values. In applications, different 𝛼 values can be used to represent different travelers’ sensitivity 

to risk and reliability preferences that may vary due to trip purpose or activity type. 

6.2.3 Characteristics of STV Networks with Generalized Correlations 

For a complete problem definition, this section presents and discusses some of the 

characteristics of STV networks with generalized correlations, how they relate to the problem at 

hand and the resulting sources of difficulty for the solution approach. Firstly, the non-applicability 

of Bellman’s principle is demonstrated, secondly, some aspects of path comparisons are addressed. 

6.2.3.1 Non-applicability of Bellman’s Principle 

The non-applicability of Bellman’s principle in the context of stochastic networks has been 

shown for different cases and dominance criteria in STV networks with correlated link travel times 

(Hall, 1986; Huang and Gao, 2018; Nie and Wu, 2009b; Prakash and Srinivasan, 2017). The 

relevant results are presented here for completeness. Objective-based non-applicability of 

Bellman’s principle, for example with respect to expected value dominance or 𝛼-confidence least 

time paths, have been shown in the literature (Gao and Huang, 2012; Huang and Gao, 2018). While 

Bellman’s principle with respect to first-order stochastic dominance can be maintained for a 

number of path finding problems in STV networks (Nie and Wu, 2009b), and even some 

appropriately defined STV networks with limited dependencies (Nie and Wu, 2009b), the principle 

does not hold for STV networks with generalized correlations.  

First-order stochastic dominance (FSD) is a case of partial stochastic ordering where a path 

𝑘𝑂𝐷 dominates path 𝑙𝑂𝐷 in the first order if 𝑈𝑘(𝑇𝑠) ≥ 𝑈𝑙(𝑇𝑠) ∀ 𝑇𝑠 ∈ [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥]; and ∃ at least 

one nonzero Lebesgue measure open interval Λ ∈ [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] s.t. 𝑈𝑘(𝑇𝑠) > 𝑈𝑙(𝑇𝑠) ∀ 𝑇𝑠 ∈ Λ. By 

this definition, a path 𝑙𝑂𝐷 is FSD-admissible if ∃ no path 𝑘𝑂𝐷 such that 𝑘𝑂𝐷 dominates 𝑙𝑂𝐷 for all 
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departure times. Additionally, an FSD-admissible path 𝑙𝑂𝐷 is FSD-optimal if ∃ a departure time 

𝑡0 and an nonzero Lebesgue measure open interval Λ ∈ [𝑇𝑚𝑖𝑛, 𝑇𝑚𝑎𝑥] s.t. 𝑈𝑙(𝑇𝑠) > 𝑈𝑘(𝑇𝑠) ∀ 𝑇𝑠 ∈

Λ, ∀ 𝑙 ≠ 𝑘.  

Example 1. Consider the illustrative example network in Figure 6-1 and the joint link, 

subpath and path travel time realizations shown in Table 6-1. Bellman’s principle with respect to 

FSD would claim that sub-paths of FSD-admissible paths must also be FSD admissible. Let us 

consider the paths O-a-b-D and O-a-e-b-D with their sub-paths to node b, i.e., O-a-b and O-a-e-b. 

Comparing the full paths, we notice that O-a-e-b-D is FSD-admissible (i.e. not dominated by O-

a-b-D). However, its sub-path O-a-e-b is not FSD-admissible as it is dominated by O-a-b. 

Therefore, by counterexample we have shown that an FSD-admissible path can have a sub-path 

that is not FSD-admissible.∎  

 

Figure 6-1. Example network for Example 1 

Table 6-1. Possible joint link, sub-path, and path travel time realizations for Example 1 

 Link Travel Times 

Realization (𝑂, 𝑎) (𝑎, 𝑏) (𝑎, 𝑒) (𝑒, 𝑏) O-a-b O-a-e-b O-a-b-D O-a-e-b-D 

1 1 1 0.5 0.5 2 2 5 5 

2 1 2 1 1 3 3 4.5 4.5 

3 1 2 1.5 1.5 3 4 4 5 

4 2 1 0.5 1.5 3 4 5 6 

5 2 2 1 1 4 4 6 6 

6 2 2 1 1.5 4 4.5 5.5 6 
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6.2.3.2 Path Comparisons 

The problem of path comparisons is relevant and important for this problem, since path 

comparisons are at the foundation of the path finding approach. As indicated in the section above, 

first-order stochastic dominance (FSD) is a common criterion for path comparison in stochastic 

dynamic networks. Previous studies have shown that the set of a priori FSD non-dominated paths 

in STV networks will contain paths that may be inefficient in that, though non-dominated, they 

would never contribute to an adaptive routing strategy (Miller-Hooks and Mahmassani, 2003a). 

However, in STV networks with dependencies, the FSD comparison does not allow for the 

elimination of sub-paths at intermediate nodes due to the non-applicability of Bellman’s principle. 

This chapter will present and compare the use of two variations of the FSD criterion for a priori 

path finding: firstly, the traditional FSD criterion with Bellman’s principle, yielding approximate 

solutions, and secondly, an exact-to-approximate variation of the FSD criterion that makes use of 

the truncated travel time distributions in the network and the knowledge of the minimum and 

maximum possible travel times. The details of these approaches are presented as part of the 

solution methodology.  

6.3 Solution Methodology 

This section presents a solution approach for a priori path finding for the time-dependent 

reliable least-time path (RLTP) problem via a path generation algorithm. The algorithm is defined 

to utilize a variety of possible criteria for stochastic path comparison and dominance. Hence, the 

approach for stochastic path comparisons and dominance is described first in 6.3.1, followed by 

the time dependent RLTP solution algorithm in 6.3.2. With the dominance criteria presented here, 

the solution approach can be used for exact or approximate generation of eligible paths and can be 
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applied for a priori path finding for a range or least-time reliability-based objectives, as presented 

in section 6.2.2. This section concludes with a note on the estimation of path travel time 

distributions in 6.3.3, an important aspect of the path finding and evaluation methodology. 

6.3.1 Stochastic Path Comparisons and Dominance 

The previous section introduces some of the methodological difficulties of the path finding 

problem in stochastic dynamic networks, including the non-applicability of Bellman’s principle 

for path comparisons with correlated link travel times. Miller-Hooks and Mahmassani (1998b) 

present a general framework for determining a priori nondominated least time paths in stochastic 

time-varying networks. The authors present four different implementations with three different 

notions of dominance, under the assumption of independence of travel time random variables 

across links and across different time intervals. The three dominance criteria include deterministic 

pairwise dominance, stochastic pairwise dominance and expected value pairwise dominance. 

Deterministic pairwise dominance can be applied to the stochastic network with dependencies, 

with appropriate modeling of truncated link travel time distribution. However, stochastic pairwise 

dominance via the FSD criterion and expected value pairwise dominance cannot be applied for 

path generation in networks with correlations, as they cannot be applied at intermediate nodes, as 

described in section 6.2.3.  

In this study, two types of dominance criteria are presented: an approximate adjusted FSD 

criterion that can be applied at intermediate nodes, and a deterministic dominance criterion that 

can be applied at intermediate nodes and relaxed to allow for approximate solutions.  

Deterministic dominance: A path k is deterministically dominant over path l for a given 

departure time if, for all realizations of the network, the travel time along path k is always equal to 
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or less than the travel time on path l. Let 𝜃𝑘 and 𝜃𝑙 denote the travel time random variables on the 

paths k and l with cumulative distribution functions (cdfs) 𝑈𝑘 and 𝑈𝑙, respectively. If the travel 

times on the two paths are independent, comparing the two paths is analogous to comparing the 

two path travel time distributions independently and establishing that 𝑃(𝜃𝑙 < 𝜃𝑘) = 0. When 

using truncated travel time distributions, deterministic dominance can be established by simply 

comparing the minimum and maximum possible travel times, as is demonstrated by the range 

criterion and range algorithm by Miller-Hooks and Mahmassani (1998b). If 𝜃𝑙
𝑚𝑎𝑥 ≤ 𝜃𝑘

𝑚𝑖𝑛, it 

follows that 𝜃𝑙 < 𝜃𝑘 for 𝜃𝑙 ∈ [𝜃𝑙
𝑚𝑖𝑛, 𝜃𝑙

𝑚𝑎𝑥) and 𝜃𝑘 ∈ (𝜃𝑘
𝑚𝑖𝑛, 𝜃𝑘

𝑚𝑎𝑥], resulting in 𝑃(𝜃𝑙 < 𝜃𝑘) = 0. 

This criterion can be used to allow for the generation of eligible paths and the elimination 

of paths at intermediate nodes when there is sufficient knowledge that they have no or low 

likelihood of being non-dominated or optimal. Two measures are considered here: a relaxed 

deterministic dominance (RDD) for stochastic comparison at varying risk levels and an adjusted 

first-order stochastic dominance (A-FSD) to be applied at intermediate nodes.  

Assuming that the link travel times are truncated random variables with absolute time-

invariant minimum and maximum travel time denoted 𝜃𝑖𝑗
𝑚𝑖𝑛 and 𝜃𝑖𝑗

𝑚𝑎𝑥 ∀(𝑖, 𝑗) ∈ 𝐴. Then for a path 

𝑘, 𝜃𝑘
𝑚𝑖𝑛 = ∑ 𝜃𝑖𝑗

𝑚𝑖𝑛
𝑖𝑗∈𝑘  and 𝜃𝑘

𝑚𝑎𝑥 = ∑ 𝜃𝑖𝑗
𝑚𝑎𝑥

𝑖𝑗∈𝑘  are bounds (though potentially loose bounds) on 

the path travel time. Then for a given origin-destination pair 𝑖 − 𝑠, least time path finding can be 

performed with static deterministic costs set to 𝜃𝑖𝑗
𝑚𝑖𝑛, resulting in the minimum possible travel time 

for any path from node 𝑖 to destination 𝑠. Then for any node 𝑖 ∈ 𝑁\{𝑠}, the absolute minimum 

travel time from 𝑖 to 𝑠 can be defined in this manner, denoted 𝜏𝑖
𝑚𝑖𝑛. The following proposition can 

be established: 
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Proposition 6-1: Given the definition of the STV network modeling and notation from 

Section 2.1. with truncated random travel times, consider a path 𝑘𝑂𝑖 from origin node 𝑂 to the 

intermediate node 𝑖 with a travel time r.v. 𝜃𝑘 . Suppose the absolute minimum travel time from 

node 𝑖 to destination 𝐷 is 𝜏𝑖
𝑚𝑖𝑛. Then for any path 𝑙𝑂𝐷 from 𝑂 to destination 𝐷 via the sub-path 

𝑘𝑂𝑖, the travel time random variable 𝜃𝑙 will be bounded as follows: 𝜃𝑙 ≥ 𝜃𝑘 + 𝜏𝑖
𝑚𝑖𝑛.  

Proof 6-1. Let 𝑙𝑂𝐷 be path from 𝑂 to 𝐷 via 𝑘𝑂𝑖 be decomposed into two sub-paths 𝑘𝑂𝑖 and 

𝑘𝑖𝐷
′  from 𝑂 to 𝑖 and 𝑖 to 𝐷, respectively. By definition, 𝜏𝑖

𝑚𝑖𝑛 is a lower bound on travel times for 

all paths from 𝑖 to 𝐷 and as such 𝜃𝑘′ ≥ 𝜏𝑖
𝑚𝑖𝑛. Then, it follows 𝜃𝑙 = 𝜃𝑘 + 𝜃𝑘′ ≥ 𝜃𝑘 + 𝜏𝑘′

𝑚𝑖𝑛.  

6.3.1.1 Relaxed Deterministic Dominance (RDD) for Intermediate Nodes 

As introduced above, for two paths 𝑙 and 𝑘 with their travel times starting at departure time 

𝑡 denoted 𝜃𝑙
𝑡 and 𝜃𝑘

𝑡 , deterministic path dominance is evaluated by testing if 𝑃(𝜃𝑙
𝑡 < 𝜃𝑘

𝑡  ) = 0. 

Then, from Proposition 6-1 follows the corollary stated below. 

Corollary 6-1. Consider a path 𝑙′ from 𝑂 to 𝐷 and its travel time for departure time 𝑡 

denoted 𝜃
𝑙′
𝑡0. Let 𝑘 be a path from 𝑂 to intermediate node 𝑖, with travel time 𝜃𝑘𝑗

𝑡  for departure time 

𝑡, and 𝑙 be a path from 𝑂 to 𝐷 via 𝑘 with travel time 𝜃𝑙
𝑡. We know that 𝜃𝑙

𝑡 ≥ 𝜃𝑘
𝑡 + 𝜏𝑗

𝑚𝑖𝑛,𝐷
, then to 

evaluate 𝑃(𝜃𝑙
𝑡 ≤ 𝜃𝑙′

𝑡 ) an upper bound can be derived as follows, 𝑃(𝜃𝑙
𝑡 ≤ 𝜃𝑙′

𝑡 ) = 𝑃(𝜃𝑘
𝑡 + 𝜏𝑗

𝑚𝑖𝑛,𝐷 ≤

𝜃𝑙
𝑡 ≤ 𝜃𝑙′

𝑡 ) ≤ 𝑃(𝜃𝑘𝑟𝑖
+ 𝜏𝑖

𝑚𝑖𝑛 ≤ 𝜃
𝑙′
𝑡0).  

The special case example for deterministic dominance is simpler. Namely, if 

𝑃(𝜃𝑘𝑟𝑖
+ 𝜏𝑖

𝑚𝑖𝑛 ≤ 𝜃
𝑙′
𝑡0) = 0 and 𝜃𝑙

𝑡 ≥ 𝜃𝑘
𝑡 + 𝜏𝑗

𝑚𝑖𝑛,𝐷
, then 𝑃(𝜃𝑙

𝑡 ≤ 𝜃𝑙′
𝑡 ) = 0.  

The relaxation of the deterministic dominance is introduced here as an approximate 

criterion. To improve the computational effort needed to produce for the generation of eligible 
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paths, the deterministic criterion 𝑃(𝜃𝑙
𝑡 ≤ 𝜃𝑙′

𝑡 ) = 0 is modified to allow for paths to be eliminated 

if they have a very low likelihood of being optimal 𝑃(𝜃𝑙
𝑡 ≤ 𝜃𝑙′

𝑡 ) ≤ 𝜖 where 𝜖 is some admissible 

risk to eliminating a potentially optimal path.  

Then at an intermediate node 𝑖, from Corollary 6-1: if 𝑃(𝜃𝑘𝑟𝑖
+ 𝜏𝑖

𝑚𝑖𝑛 ≤ 𝜃
𝑙′
𝑡0) ≤ 𝜖, then 

𝑃(𝜃𝑙
𝑡0 ≤ 𝜃

𝑙′
𝑡0) ≤ 𝑃(𝜃𝑘𝑟𝑖

+ 𝜏𝑖
𝑚𝑖𝑛 ≤ 𝜃

𝑙′
𝑡0) implies 𝑃(𝜃𝑙

𝑡0 ≤ 𝜃
𝑙′
𝑡0) ≤ 𝜖. Therefore, 𝑃(𝜃𝑘𝑟𝑖

+ 𝜏𝑖
𝑚𝑖𝑛 ≤

𝜃
𝑙′
𝑡0) ≤ 𝜖 can be used as a criterion for early elimination at an intermediate node 𝑖 by showing that 

even the best-case paths to the destination via subpath 𝑘 will not meet the eligibility criterion. This 

probabilistic criterion based on the risk-level tolerance value 𝜖 is a heuristic criterion allowing for 

certain paths to be eliminated at intermediate nodes. The higher the risk tolerance value 𝜖, the 

larger the number of eliminated paths (i.e., ineligible for the given risk tolerance), leading to 

reduced computational effort for the path finding, with the trade-off of potentially resulting in sub-

optimal a priori path solutions. 

6.3.1.2 Adjusted First-Order Stochastic Dominance (FSD) for Intermediate Nodes   

Proposition 6-1 can also be used for the application of the FSD criterion at intermediate 

nodes in the network. However, it should be noted that while paths are computed from a single 

origin to all destinations, the eligibility of sub-paths at an intermediate node is determined for each 

destination. That is, a subpath 𝑘𝑂𝑖 from 𝑂 to intermediate node 𝑖 will be tested for eligibility for 

all destination nodes 𝑗 ∈ 𝑁\{𝑂} and may be deemed eligible for some or all destination nodes. The 

first-order stochastic dominance can then be applied to subpaths from 𝑂 to 𝑖 with the absolute 

minimum lower bound for paths from 𝑖 to 𝐷 for each possible destination 𝐷 ∈ 𝑁\{𝑂}. The 

criterion, including multiple departure times, is stated bellow.  
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Let 𝑘𝑂𝑖 be a path from 𝑂 to 𝑖 with a travel time random variable 𝜃𝑘
𝑡  for departure time 𝑡. 

For some 𝑗 ∈ 𝑁\{𝑂, 𝑖} construct the adjusted random variable 𝜃𝑘𝑗

𝑡,𝑚𝑖𝑛 = 𝜃𝑘
𝑡 + 𝜏𝑖,𝑗

𝑚𝑖𝑛 with 

distribution function 𝐹𝑘𝑗

𝑡,𝑚𝑖𝑛
. By Proposition 6-1, 𝜃𝑘𝑗

𝑡,𝑚𝑖𝑛 ≤ 𝜃𝑙
𝑡 for any path 𝑙𝑂𝑗 from 𝑂 to 𝑗 at 

departure time 𝑡 via 𝑘𝑂𝑖 (with distribution function 𝐹𝑙
𝑡) and can be tested against any eligible path 

𝑙′ from 𝑂 to 𝑗 with travel time 𝜃𝑙′
𝑡  for departure time 𝑡. If the distribution function of 𝜃𝑙′

𝑡 , denoted 

𝐹𝑙′
𝑡 , stochastically dominates 𝐹𝑘𝑗

𝑡,𝑚𝑖𝑛
, then the A-FSD criterion assumes it will stochastically 

dominate 𝐹𝑙
𝑡. Namely, if 𝐹𝑙′

𝑡 ≻𝐹𝑆𝐷 𝐹𝑘𝑗

𝑡,𝑚𝑖𝑛
, we say 𝐹𝑙′

𝑡 ≻𝐴−𝐹𝑆𝐷 𝐹𝑙
𝑡 for any path 𝑙𝑂𝑗 from 𝑂 to 𝑗 at 

departure time 𝑡 via 𝑘𝑂𝑖. Then all such 𝑙𝑂𝑗 are A-FSD-dominated for departure time 𝑡 and 𝑘𝑂𝑖 is 

deemed ineligible for departure time 𝑡 to destination node 𝑗.  

6.3.2 Time-Dependent Reliable Least-Time Paths (RLTP) Algorithm 

The solution method presented here considers he TD-RLTP problem where probability 

distributions can be considered in their continuous or temporally discrete form. The TD-RLTP 

algorithm is based on general path generation approach by Miller-Hooks and Mahmassani (Miller-

Hooks and Mahmassani, 1998b), their LC algorithms for the LET problem (2000b) and the 

SPOTAR problem by Nie and Wu (2009a). This methodology directly builds on the study by 

Filipovska and Mahmsaani (2020b), but introduces new tests for path dominance and eligibility 

via the two path comparison tests presented in the previous section and also applies the 

methodology for multiple reliability-based least-time objective functions.  

For a set of departure times within an established peak period, the procedure generates the 

eligible paths from a given origin node 𝑂 to all possible destination nodes in the network or a 

specified subset of destination nodes. While the path search and path travel time distribution 
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estimation are performed once, a path’s eligibility is checked for each departure time and each 

destination node.  

6.3.2.1 TD-RLTP Algorithm 

Let the network and notation be defined according to the notation in section 6.2.1, which 

is here extended to incorporate the notation used in Chapter 5.  Let the set 𝒯 = {𝓉0, 𝓉1, … , 𝓉𝐿−1} 

be the set of time 𝐿 intervals for the variation of travel time distributions where and 𝓉𝑙 refers to the 

time interval [𝓉𝑙 , 𝓉𝑙+1) ∀ 𝑙 ∈ {1, 2, … , 𝐿 − 1}. Let departure times at the origin be 𝕥 ∈ 𝕋, so that the 

time period covered by 𝒯, namely the interval [𝓉0, 𝓉𝐿) must contain all of the departure times  𝕥 ∈

𝕋 and accommodate for the latest possible arrival times for all 𝕥 ∈ 𝕋. In the estimation approaches 

in Chapter 5, departure times were seen as a random variable that should have the distribution of 

departure times realized in the network. However, departure times at the origin in the path finding 

problem are from a pre-specified set, and a path is to be found for each departure time. Let the 

function 𝜙(⋅) be defined so that any time 𝑡 such that 𝓉0 ≤ 𝑡 <  𝓉𝐿 can be converted to the 

corresponding time interval 𝓉𝑙 ∈ 𝒯 via the function 𝜙(𝑡) = 𝓉.  

 

Path Generation Algorithm for Reliable Least-Time Paths (RLTP) Problem  

Given:  
 The network 𝐺(𝑁, 𝐴, 𝒯), where 𝒯 is the set of time-bins {𝓉0, 𝓉1, … , 𝓉𝐿−1}. 

The function 𝜙(⋅) ∈ 𝒯. 

An origin node 𝑂.  
The set of departure times 𝕥 ∈ 𝕋.  

A set of destination nodes 𝒟, which if unspecified is set to 𝒟 = 𝑁\{𝑂}. 

The dominance criterion to be used (RDD with risk -tolerance parameter 𝜖 or A-FSD). 

The value of the sample size 𝑆 to be used for distribution simulation. 

Find: 

 The path eligibility indicators Λ𝑖𝑑
𝑘𝕥 = 0, 𝑖 ∈ 𝑁, 𝑑 ∈ 𝒟, 𝕥 ∈ 𝕋, 𝑘 ∈ {1, 2, … , 𝑀} indicating 

which paths 𝑘 at intermediate node 𝑖 are eligible to destination 𝑑 for departure time 𝕋 at 

the origin. 
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The travel time distributions for the set of eligible paths 𝑘 ∈ {1, 2, … , 𝑀} from the origin 

node 𝑂 and departure times 𝕥 ∈ 𝕋 to each of the destinations 𝑑 ∈ 𝒟, contained in the 

vector-label 𝑈𝑑
𝑘𝕥.  

The corresponding vector pointers 𝑝𝑖
𝑘, 𝐿𝑖

𝑘 ∀ 𝑘 ∈ {1, 2, … , 𝑀}, 𝑖 ∈ 𝑁 which can be used to 

trace back the path for each node.  

Step 0: Initialization  

 Define 𝑀 large enough to contain as many potentially eligible path identifiers as might 

be required.  

Initiate the vector pointers 𝑝𝑖
𝑘 = ∞, 𝐿𝑖

𝑘 = ∞ ∀ 𝑘 ∈ {1, 2, … , 𝑀}, 𝑖 ∈ 𝑁, the node-path pair 

eligibility vector indicators 𝑞𝑖
𝑘(𝕥 , 𝑑) = 0 ∀ 𝑘 ∈ {1, 2, … , 𝑀}  and the vector link labels 

𝑢𝑖
𝑘𝕥 = [𝑁𝑜𝑛𝑒]𝑆 of size 𝑆, ∀ 𝑖 ∈ 𝑁, 𝕥 ∈ 𝕋, 𝑑 ∈ 𝐷.  

Define the vector label of path travel time distributions 𝑈𝑑
𝑘𝕥 = [𝑁𝑜𝑛𝑒]𝑆 ∀ 𝑑 ∈ 𝐷, 𝑘 ∈

{1, 2, … , 𝑀}, 𝑡𝑜 ∈ 𝑇0.  

Initiate a scan-eligible FIFO list SE = {∅}.  

 For the origin node 𝑂 ∈ 𝑁, define path 1𝑂𝑂 and let 𝐿𝑂
1 = 0, 𝑝𝑂

1 = 0.  

Add the node-path ID pair to the SE list.  

 Step 0.1: Definition of absolute minimum travel time labels 

  Initialize the minimum extension labels as 𝜏𝑖𝑑
𝑚𝑖𝑛 = ∞, ∀ 𝑖 ∈ 𝑁, 𝑑 ∈ 𝐷, and set 

𝜏𝑖𝑑
𝑚𝑖𝑛 = 0 if 𝑖 = 𝑑. 

Perform a static, deterministic path search on the network 𝐺(𝑁, 𝐴) with link costs 

𝜃𝑖𝑗
𝑚𝑖𝑛∀(𝑖, 𝑗) ∈ 𝐴.  

Save the minimum travel times from each 𝑖 ∈ 𝑁 to each 𝑑 ∈ 𝐷 as 𝜏𝑖𝑑
𝑚𝑖𝑛.  

 Step 0.2: Initialization of distributions  

  Take the node-path-ID pair (𝑂 − 1) from the SE list.  

Find the set of outgoing links from the node 𝑂, i.e., 𝐴𝑂 = {(𝑂, 𝑗) ∈ 𝐴}.  

For each departure time 𝕥: 

   Jointly obtain a sample 𝑡𝑂𝑗
𝕥  of size 𝑆 for the random variables 𝜃𝑂𝑗

𝕥  

distributed according to 𝜋𝑂𝑗
𝕥  

For each link 𝑎 = (𝑂, 𝑗) ∈ 𝐴𝑜: 

    Save the sampled values in 𝑢𝑗
1𝕥 = 𝑡𝑂𝑗

𝕥   , maintaining the sample 

order. Update the pointers 𝐿𝑗
1 = 𝑂, 𝑝𝑗

1 = 1. Set 𝑈𝑑
1𝕥 =  𝑡𝑂𝑗

𝕥 . 

Set 𝑞𝑗
1(𝕥, 𝑑) = 1 ∀ 𝑑 ∈ 𝐷. 

Add the node-path ID pair (𝑗 − 1) to the SE list.  

   End for. 

  End for. 

Step 1: SE list scan 

 If the SE list is not empty, select the first node-path ID pair (𝑖 − 𝜇) from the front of the 

queue in a FIFO manner. Go to Step 2. 

Otherwise, if SE is empty, terminate.  

Step 2: Conditional Sampling 
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 Determine the subset 𝕋𝜇 = {𝕥 ∈ 𝕋|𝑢𝑖
𝜇𝕥

≠ ∅} i.e., departure times for which the path with 

identifier 𝜇 to node 𝑖 is eligible for at least one destination node. 

Trace back the path 𝑃𝜇 from node-path ID pair 𝑖 − 𝜇.  

Determine the set of next possible links 𝐴𝑖 = {(𝑖, 𝑗) ∈ 𝐴, 𝑗 ∉ 𝑃𝜇}: 

 Find their path ID as 𝜇𝑗 = min{𝑘 ≤ 𝑀|𝐿𝑗
𝑘 = ∞}. 

 For each departure time 𝕥 ∈ 𝕋𝜇: 
  Determine the subset of destinations for which the path with identifier 𝜇 to node 𝑖 

is eligible, 𝒟𝜇 = {𝑑 ∈ 𝒟|Λ
𝑗𝑑

𝜇𝑗𝕥
=1} 

For each sample 𝑠 ∈ {1, 2, … , 𝑆}: 

   Find the time intervals of departure for each link in 𝑃𝜇 via 𝓉𝑖′ =

𝜙(𝕥 + ∑𝑢
𝑖′
𝜇𝕥

), extract the appropriate time-dependent joint link travel time 

distributions and covariance matrix using the exit bins, and jointly sample 

from 𝜋𝑎𝑗

𝓉𝑗
, where 𝑎𝑗 = (𝑖, 𝑗) ∈ 𝐴𝑖 conditional on the previous link travel 

times 𝑢
𝑖′

𝜇
𝑖′𝕥 

[𝑠] ∀ 𝑖′ ∈ 𝑃𝜇.  

Save the samples into the temporary labels 𝑢𝑗
′𝕥

[𝑠] ∀ (𝑖, 𝑗) ∈ 𝐴𝑗 . 

  End for. 

 End for. 

Step 3: Path Comparisons 

 Call the Path Comparison Procedure to obtain the indicators Λ
j

𝜇𝑗(𝕥, 𝑑), updated vector 

pointers 𝑝
𝑗

𝜇𝑗 , 𝐿
𝑗

𝜇𝑗
, vector link labels 𝑢

𝑗

𝜇𝑗𝕥
 and 𝑈

𝑗

𝜇𝑗𝕥
 if 𝑗 ∈ 𝐷 and SE list. 

 Go to Step 1. 

 

The path generation algorithm presented above terminates after having determined all 

eligible paths to all destination nodes from the origin, for all given departure times. Once it has 

been completed, the optimal a priori paths for each destination, departure time pair 𝑑 ∈ 𝐷, 𝕥 ∈ 𝕋 

can be determined by computing the objective function value for the distribution saved in 

𝑈𝑑
𝑘𝕥 ∀ 𝑘 ∈ {𝑘 ∈ {1,2, … , 𝑀}|Λ𝑑𝑑

𝑘𝕥 = 1}, then selecting the 𝑘 with the minimum objective function 

value.  

It is evident that since this evaluation is performed subsequent to the eligible path 

generation procedure, the eligible paths are the same across all objectives. Thus, this algorithm is 

not objective-function specific, but its performance for different types of objectives may vary. 
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6.3.2.2 Path Eligibility Test  

The path comparison procedure that updates the pointers, identifiers and labels is given below. 

This procedure performs a comparison of the newly identified path and determines its eligibility 

(i.e., whether it is dominated or not), according to the specified dominance criterion (RDD with 

𝜖 ≥ 0 or A-FSD from section 6.3.1. 

Path Comparisons Procedure 

Given: 

 The set of relevant departure times 𝕋𝜇 and destination nodes 𝒟𝜇.  

Last node and path identifier (𝑖 −  𝜇). Next node and path identifier (𝑗 − 𝜇).  

The path 𝑃𝜇 from origin 𝑂 to 𝑖 with identifier 𝜇. 

The indicators Λ, vector pointers 𝑝, 𝐿, the vector link labels 𝑢 and the vector label of path 

travel time distributions 𝑈 if 𝑗 ∈ 𝐷. The temporary labels 𝑢𝑗
′. 

The type of path dominance criterion: RDD (𝜖) or A-FSD. 

Current SE list. 

Find: 

 Indicators Λ
j

𝜇𝑗(𝕥, 𝑑), updated vector pointers 𝑝
𝑗

𝜇𝑗 , 𝐿
𝑗

𝜇𝑗
, the vector link labels 𝑢

𝑗

𝜇𝑗𝕥
 and the 

vector label of path travel time distributions 𝑈
𝑗

𝜇𝑗𝕥
 if 𝑗 ∈ 𝐷. Updated SE list. 

Procedure: 

For each 𝕥 ∈ 𝕋𝜇: 

 Recover link travel time samples and determine the path travel time samples as the sum 

𝜏𝜇𝑗
[𝑠] = [∑ 𝑢

𝑖′

𝜇
𝑖′𝕥

[𝑠]𝑖′∈𝑃𝜇 ] + 𝑢𝑗
′𝕥

[𝑠] ∀ 𝑠 ∈ {1, 2, … , 𝑆}. Set 𝑧 = 1. 

For each 𝑑 ∈ 𝒟∗ = 𝒟𝜇\{𝑖} : 

  Determine the lower bound on the distribution of extensions of 𝑃𝜇 via 𝑗 to 𝑑 as 

𝜏∗ = 𝜏𝜇𝑗
+ 𝜏𝑗𝑑

𝑚𝑖𝑛. 

Find the identifiers 𝐾 = {𝑘|Λ𝑑𝑑
𝑘𝕥 = 1} of all complete eligible paths to destination 

𝑑 for departure time 𝕥. 

For each path 𝑘 ∈ 𝐾: 
   Set 𝑐 =  0: 

If the dominance criterion is RDD (𝜖): 

Compute the probability 𝑝 =  𝑃(𝜏∗ ≤ 𝑈𝑑
𝑘𝕥). 

If 𝑝 ≥ 𝜖, set 𝑐 = 1. 
Otherwise, if 𝜏∗ ≻𝐹𝑆𝐷 𝑈𝑑

𝑘𝕥 set 𝑐 = 1. 
If 𝑐 = 1: 

If 𝑗 = 𝑑, set 𝑈𝑑

𝜇′𝑡𝑝 = 𝜏𝜇𝑗
. 

Set Λ
𝑗𝑑

𝜇𝑗𝕥
= 1 and 𝑧 = 𝑧 + 1. 
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  End for. 

If 𝑧 ≥ 1:  

Set 𝐿
𝑗

𝜇𝑗 = 𝑖, 𝑝
𝑗

𝜇𝑗 = 𝜇. Save 𝑢
𝑗

𝜇𝑗𝕥
=  𝑢𝑗

′𝕥
 . 

Add the node-path ID pair (𝑗 − 𝜇′) to the SE list. 

 End for. 

End for. 

 

6.3.3 A Note on the Estimation of Path Travel Time Distributions 

An important problem in implementing path finding solutions in stochastic dynamic 

networks is the estimation of travel time distributions along paths or sub-paths with spatio-

temporal dependencies. The approach presented here assumes known marginal link travel time 

distributions, time-dependent correlations between link travel times and the ability to conditionally 

sample based on that information. Thus, the algorithm can be applied for any case where those 

criteria are satisfied.  

To make the approach applicable in general cases, not restricted to the distribution form 

for the marginal distributions or that link travel times have the same distribution form, utilizing 

the methods presented in previously in Chapter 5 is recommended. In this chapter, the Normal-to-

anything (NORTA) approach time time-dependence and time-varying correlations is used when 

applying the path finding approach.  

For the implementation of these estimation methods in path finding, especially for the cases 

with time-dependent correlation structure, it may be useful to pre-compute the distribution 

characteristics necessary for sampling. Specifically, the NORTA covariance structures can be used 

as an input to the solution approach to avoid extended computational run times associated with 

computing the time-varying correlation structure within path finding and potentially in an 

inefficient manner. 
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6.4 Numerical Experiments and Results 

This section presents the numerical experiments designed to evaluate the performance of 

the TD-RLTP algorithm. The network and data used for the numerical experiments are presented 

in section 6.4.1, the design of the experiments is outlined in section 6.4.2, and the results are 

presented and analyzed in section 6.4.3. 

6.4.1 Network and Data for Numerical Experiments 

The numerical experiments for this study used the large-scale Chicago network of 1,578 

nodes and 4,805 links, which was previously shown in Chapter 5. The data used for these 

experiments were obtained from simulations performed using a mesoscopic simulator, 

DYNASMART-P (Mahmassani et al., 2004). To obtain a data set with variability in link travel 

times, simulations were performed with varying demand levels and weather conditions, resulting 

in a total of 25 scenarios based on real-world observations. From the performed simulations, 

vehicle trajectory data were extracted for the morning peak period between 7:00 and 10:00 a.m. 

for the entire network. The numerical experiments used a randomly selected origin node and all 

destination nodes in the network, with a range of departure times in the early portion of the morning 

peak period. The departure times were considered every five minutes for the first 20 minutes of 

the peak period, i.e., at 7:00, 7:05, 7:10, 7:15, and 7:20 a.m. 

6.4.2 Design of the Experiments 

The numerical experiments were designed so as to evaluate the performance of the 

algorithm across a few key aspects that can be seen as parameters of the algorithm.  
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Firstly, the numerical experiments were designed to test the performance of the solution 

algorithm with the different path dominance criteria it was designed to use: the Adjusted First-

Order Stochastic Dominance (A-FSD) criterion for intermediate nodes (section 6.3.1.2) and the 

Relaxed Deterministic Dominance (RDD) criterion for intermediate nodes (section 6.3.1.1). The 

RDD criterion includes an adjustable risk-tolerance parameter 𝜖 indicating the strength of 

dominance required for path dominance. The TD-RLTP algorithm was tested with the A-FSD 

criterion and with the RDD criterion with 6 different values for 𝜖, 𝜖 ∈

{0, 0.01, 0.05, 0.1, 0.15, 0.2}. It should be noted that the RDD criterion with 𝜖 = 0 is equivalent to 

the deterministic dominance criterion introduced by Miller-Hooks and Mahmassani (Miller-Hooks 

and Mahmassani, 1998b), adjusted to be applied at intermediate nodes, which is a very strong 

criterion that is exact, even in the case with dependencies, but can be rather computationally 

expensive.  

Secondly, the numerical experiments were designed to test the performance of the solution 

algorithm, along with the various dominance criteria, across different reliability-based least time 

objective functions. The algorithm and each of the dominance criteria were tested for a total 6 

different objective functions of two types: Value at Risk (VaR) and Conditional Value at Risk 

(CVaR) based objectives, as described in section 6.2.2. Three values for 𝛼 were considered for 

each of the objective types: 𝛼 ∈ {0.7, 0.8, 0.9}.  

Thus, the performed numerical experiments performed the path generation for a randomly 

selected origin node 𝑂 to all 1577 destination nodes 𝑁\{𝑂}, for 5 departure times, and using 7 

different dominance criteria (i.e., the A-FSD and RDD with 6 values for 𝜖), resulting in a total of 

55,195 cases. Then the best a priori paths and their objective values were found according the 6 
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objective functions, for each departure time, destination, and dominance criterion, thus leading to 

a total of 331,170 resulting path solutions and objective function values. 

As mentioned above, these numerical experiments apply the path finding approach with 

the time dependent NORTA approach for path travel time distribution estimation, described in the 

previous chapter. Additionally, the time dependent NORTA covariance structure was precomputed 

and used as an input to the solution approach to avoid extended computational run times and to 

allow for the evaluation of this approach independently of the computational effort required for 

the NORTA covariance computation. 

Finally, to test for the importance of considering correlations, path finding was performed 

with path travel time distribution estimation correlation without correlation. For this portion of the 

experiments, path solutions were found by ignoring the presence of correlations for each of the 6 

objective functions and all destination nodes. The objective function values for the optimal paths 

were then re-computed to account for correlations to be compared to the exact a priori path finding 

approach with the RDD (𝜖 = 0) criterion. 

6.4.2.1 Research Questions and Performance Measures 

In evaluating the results from the numerical experiments, the following research questions 

were considered: 

• How does the accuracy of the path generation approaches change when considering the 

different dominance criteria for the TD-RLTP algorithm?  

o What is the effect on the number of incorrect paths, i.e., paths selected as optimal 

different from the exact solution? 

o What is the effect on the objective function value of selected path? 

o How do these values vary across the different objective functions? 
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• How does the computational effort change when considering the different dominance 

criteria for the TD-RLTP algorithm?  

o What is the effect on the computational run time? 

o What is the effect on the number of paths generated to each destination node? 

• How do path finding solutions discounting correlations compare to those with 

correlations?  

o How many of the selected paths were suboptimal, i.e., different from the exact 

solution with correlations? 

o What is the effect on the objective function value of selected path? 

Therefore, the performance measures considered here include the raw values for the 

computational run time in seconds, as well as the maximum and average number of paths per node 

demonstrating the computational effort for the TD-RLTP algorithm with different dominance 

criteria. Additionally, the percent change in computational run time relative to the exact solution 

case, i.e., using the deterministic dominance criterion by setting 𝜖 = 0 in the RDD criterion. In 

terms of the accuracy for a priori path finding, the raw and average values for the objective 

functions are considered, and the performance measures include the percentage of incorrectly 

selected paths i.e., optimal paths different from the exact solution, and the Mean Absolute 

Percentage Error (MAPE) for the objective function value on those paths. These values are 

considered averaged across all cases, for each dominance criterion, as well as averages for each of 

the different objective functions, in order to test for trends or variations between the two objective 

types and their 𝛼-percentile values.  
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6.4.3 Results and Analysis of the Numerical Experiments 

This section presents the summary of the results from the numerical experiments and their 

analysis in the corresponding sub-sections.  

6.4.3.1 TD-RLTP Algorithm Accuracy Results 

The results in Table 6-2 include the average objective value achieved by the optimal paths 

obtained with each dominance criterion and for each of the six different objective functions.  

Table 6-2. Average objective function values for all objectives  

with different dominance criteria 

Dominance 

Criterion 

Objective Function 

VaR, 𝛼 = 0.7 VaR, 𝛼 = 0.8 VaR, 𝛼 = 0.9 CVaR, 𝛼 = 0.7 CVaR, 𝛼 = 0.8 CVaR, 𝛼 = 0.9 

R
D

D
 

ϵ = 0 25.1370 27.8721 31.7347 32.0661 34.6180 38.8783 

ϵ = 0.01 25.1370 27.8721 31.7347 32.0661 34.6180 38.8783 

ϵ = 0.05 25.1370 27.8721 31.7347 32.0664 34.6197 38.8839 

ϵ = 0.1 25.1370 27.8731 31.7348 32.0693 34.6394 38.9916 

ϵ = 0.15 25.1371 27.8754 31.7488 32.0815 34.6945 39.2074 

ϵ = 0.2 25.1371 27.8765 31.8208 32.1061 34.7480 39.3086 

A-FSD 25.1370 27.8722 31.7347 32.0661 34.6180 38.8785 

 

Averaged across the destination nodes and departure times, the objective function values 

exhibit little variation, showing that on average the impact of the dominance criterion is not 

significant. Therefore, Table 6-3 considers additional measures of performance relative to the 

exact case with the RDD 𝜖 = 0 criterion. 

The performance measures considered in Table 6-3 include: the percent of incorrect paths 

for each dominance criterion across all objective functions, i.e., the percent of optimal paths 

different from the exact solution, the MAPE for the objective function value for those paths and 

the average MAPE across all cases, i.e., including those where the MAPE is equal to zero and the 

optimal path is the same as the exact solution. 
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Table 6-3. Performance measures for all objectives with different dominance criteria 

Dominance 

Criterion 

Percent Incorrect 

Paths 

Objective MAPE 

for Incorrect Paths 
Average MAPE 

R
D

D
 

ϵ = 0.01 0.0022% 0.09% 0.0000% 

ϵ = 0.05 0.0246% 8.67% 0.0021% 

ϵ = 0.1 0.1590% 12.55% 0.0200% 

ϵ = 0.15 0.4278% 14.92% 0.0638% 

ϵ = 0.2 0.8220% 15.63% 0.1285% 

A-FSD 0.0269% 0.24% 0.0001% 

 

These results show that the percent of incorrect paths and their objective value MAPE 

increase as the value of 𝜖 increases for RDD criterion but are relatively low for the A-FSD 

criterion. These results are also presented visually in Figure 6-2.  

 

Figure 6-2. Performance measures for path generation with different dominance criteria 

From Figure 6-2, it can be observed that both in terms of the number of incorrect paths and 

the MAPE of objective function values, the RDD with 𝜖 = 0.01 has the lowest error relative to 

the exact solution with a total MAPE for the incorrect paths at 0.09% and the A-FSD criterion 
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comes close with 0.24%. However, as the value of 𝜖 increases for the RDD criterion, the MAPE 

increases quickly, along with the percent of incorrect paths to maximum values of 15.63% and 

0.822%, respectively, achieved at 𝜖 = 0.2. Therefore, while the number of incorrectly chosen 

paths remains below 1%, the MAPE for those paths increases up to 15.63% with the increase of 𝜖.  

To consider whether and how the performance varies with the different objective functions, 

the percent of incorrect paths and their MAPE are also presented for each of the objective functions 

in Table 6-4 and Table 6-5, respectively. Several important observations can be made from these 

results. For both objective types, as the value of 𝛼 increases the number of incorrect paths increases 

in most cases, both for the RDD and A-FSD dominance criteria, though this trend does not hold 

strictly. 

Table 6-4. Percent incorrect paths for each objective with different dominance criteria 

Dominance 

Criterion 

Objective Function 

VaR, 𝛼 = 0.7 VaR, 𝛼 = 0.8 VaR, 𝛼 = 0.9 CVaR, 𝛼 = 0.7 CVaR, 𝛼 = 0.8 CVaR, 𝛼 = 0.9 

R
D

D
 

ϵ = 0.01 0.00% 0.00% 0.00% 0.00% 0.00% 0.01% 

ϵ = 0.05 0.00% 0.00% 0.00% 0.01% 0.03% 0.11% 

ϵ = 0.1 0.00% 0.03% 0.01% 0.04% 0.34% 0.54% 

ϵ = 0.15 0.01% 0.07% 0.16% 0.24% 0.87% 1.21% 

ϵ = 0.2 0.03% 0.12% 0.59% 0.59% 1.40% 2.20% 

A-FSD 0.00% 0.05% 0.00% 0.00% 0.01% 0.09% 

Table 6-5. Objective function value MAPE of incorrect paths for each objective with 

different dominance criteria 

Dominance 

Criterion 

Objective Function 

VaR, 𝛼 = 0.7 VaR, 𝛼 = 0.8 VaR, 𝛼 = 0.9 CVaR, 𝛼 = 0.7 CVaR, 𝛼 = 0.8 CVaR, 𝛼 = 0.9 

R
D

D
 

ϵ = 0.01 0.00% 0.00% 0.00% 0.00% 0.00% 0.53% 

ϵ = 0.05 0.00% 0.00% 0.00% 12.52% 21.94% 17.58% 

ϵ = 0.1 0.00% 5.57% 0.76% 30.97% 10.90% 27.13% 

ϵ = 0.15 0.78% 8.98% 20.17% 14.16% 12.76% 32.68% 

ϵ = 0.2 0.49% 6.95% 31.27% 14.34% 15.00% 25.72% 

A-FSD 0.00% 0.43% 0.00% 0.00% 0.37% 0.67% 
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Considering the RDD criteria with 𝜖 > 0, for lower 𝛼 values for both the VaR and CVaR 

objectives, the percent of incorrect paths and MAPE become significant at higher 𝜖 values. Thus, 

the highest percent of incorrect paths occur for the Var and CVaR objectives at the highest 𝛼 value 

considered here 𝛼 = 0.9 and the highest 𝜖 value, 𝜖 = 0.2. Additional observations can be made 

by considering these results visually, as shown in Figure 6-3. It can be observed that the percent 

of incorrect paths is significantly higher when for the CVaR objective, for all considered values of 

𝛼, and especially so when using the RDD criterion with larger 𝜖 values. The A-FSD criterion has 

a low percent of incorrect paths across all objectives and does not show a significant difference 

between the CVaR and VaR objectives as was the case for the RDD criteria, demonstrating that it 

may be robust with regards to the objective type and 𝛼 value.  

 

Figure 6-3. Percent incorrect paths for each objective and dominance criterion 

6.4.3.2 TD-RLTP Algorithm Computational Effort Results 

The computational effort results are shown in Table 6-6, including the computational run 

time, and the average and maximum number of generated eligible paths for each of the seven 
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dominance criteria. The computational run time presented here is the total for all destination nodes 

and all departure times, while the number of eligible paths is considered for each case. 

Table 6-6. Computational effort for path generation with different dominance criteria 

Dominance 

Criterion 

Computational 

Run Time 

Average Number of 

Eligible Paths 

Maximum Number 

of Eligible Paths 

R
D

D
 

ϵ = 0 4384.78 11.72 67 

ϵ = 0.01 2433.28 6.49 57 

ϵ = 0.05 1890.35 5.04 53 

ϵ = 0.1 1572.11 4.20 37 

ϵ = 0.15 1331.79 3.55 34 

ϵ = 0.2 1132.02 3.03 30 

A-FSD 947.14 2.53 19 

 

These results are also depicted graphically in Figure 6-4, where it can be seen that all three 

values: the computational run time, and the average and maximum number of paths all decrease 

as the 𝜖 value increases for the RDD criterion, but the lowest values are achieved by the A-FSD 

criterion, which shows lower computational effort compared to all cases of 𝜖 ∈

{0, 0.01, 0.05, 0.1, 0.15, 0.2}. Considering the computational run times relative to the exact case 

of RDD with 𝜖 = 0, the run decreases from 44.5% going to RDD with 𝜖 = 0.01 to 74.2% with 

𝜖 = 0.2. The largest time savings of 78.4% occur when using the A-FSD criterion. 
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Figure 6-4. Computational effort for path generation with different dominance criteria 

These results are especially interesting considering the accuracy results presented 

previously. The A-FSD criterion was shown to be one of the best performing in terms of error 

values relative to the exact solution, second only to the RDD criterion with 𝜖 = 0.01. However, 

given that the computational run times for the RDD with 𝜖 = 0.01 are over double those for the 

A-FSD criterion, the A-FSD criterion offers a good compromise in the trade-off between accuracy 

and computational effort.  

6.4.3.3 Impact of correlations in TD-RLTP solutions 

To evaluate the impact of correlations and the importance of accounting for correlations in 

path finding approaches, the path solutions without correlations are compared to the exact solution 

of RDD with 𝜖 = 0. Similar to the results in section 6.4.3.1, the percent incorrect paths, the 

objective value MAPE for those incorrect paths and on average were considered, across all 

solutions and for each of the 6 objective functions. These results are shown in Table 6-7, where 

the VaR and CVaR objectives are abbreviated as V and C, respectively. 
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Table 6-7. Performance of Solutions without Correlations 

 ALL 

Cases 

Objective function 

V(𝛼 = 0.7) V(𝛼 = 0.8) V(𝛼 = 0.9) C(𝛼 = 0.7) C(𝛼 = 0.8) C(𝛼 = 0.9) 

Percent Incorrect 

Paths 
39.30% 25.98% 42.65% 44.46% 42.06% 43.33% 46.14% 

Objective MAPE 

for Incorrect Paths 
16.52% 14.47% 15.38% 17.54% 15.94% 16.99% 18.60% 

Average MAPE 6.49% 3.76% 6.56% 7.80% 6.70% 7.36% 8.58% 

 

These results show that across all cases the percent of incorrect paths was 39.3%, with 

objective MAPE for those paths on average at 16.52%. Furthermore, the percent incorrect paths 

and the MAPE for those paths vary with the chosen objective function, increasing with the value 

of 𝛼 for both objective types, and showing higher values for the CVaR objectives relative to the 

VaR objectives at a given value for 𝛼. For the CVaR objective function with 𝛼 = 0.9, the percent 

of incorrect paths was highest at 46.14% and the MAPE for those paths on average at 18.6%. These 

values are significant, showing that anywhere from 25.98% to 46.14% of the solution paths were 

incorrect when discounting the correlations and with significantly large error values. These results 

demonstrate the importance of accounting for correlations in finding optimal a priori paths in 

stochastic dynamic networks, by quantifying the effect of discounting the presence of correlations. 

They further demonstrate that for applications with greater risk sensitivity, where the VaR and 

CVaR objective functions with larger values of 𝛼 are used, the importance of accounting for 

correlations is greater and the effect of discounting correlations is even more significant. 

6.5 Conclusion 

This chapter presents an approach for solving the time-dependent reliable least-time path 

(RLTP) problem on STV networks with link travel time correlations via a path generation 
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approach. The approach can be applied with a range of path dominance criteria, and this chapter 

presents an Adjusted First-Order Stochastic Dominance (A-FSD) criterion and a Relaxed 

Deterministic Dominance (RDD) criterion with an adjustable risk-tolerance level. The path 

generation approach with the A-FSD and RDD criteria is intended to be used for a priori path 

finding under reliability-based least-time objectives in stochastic networks. Two types of 

objectives are presented in this chapter, based on investment risk measures Value at Risk (VaR) 

and Conditional Value at Risk (CVaR) that can be applied with an adjustable confidence level 𝛼.  

Numerical experiments were performed to evaluate the solution approach and the different 

dominance criteria. The dominance criteria were compared in terms of computational effort and 

error measures relative to an exact solution. The approach was also tested for the two types of 

objective functions, each applied with three confidence levels 𝛼. The numerical experiments show 

the applicability of the solution approach across different objective functions, the impact of the 

adjustable risk-tolerance level for the RDD criterion and the compromise achieved by the A-FSD 

criterion in terms of the trade-off between computational effort and accuracy of the solution. Future 

chapters will consider the application of this approach and the different dominance criteria for 

finding adaptive routing strategies.  
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Chapter 7 Trajectory-Adaptive Reliable Least-Time Routing Strategies3  

7.1 Overview 

This chapter focuses on the problem of finding optimal trajectory-adaptive routing 

strategies in stochastic dynamic networks with reliability-based objectives, or trajectory-adaptive 

reliable least-time strategies (TA-RLTS). The strategy finding problem in stochastic dynamic 

networks is approached under the assumption of complete spatio-temporal link travel time 

dependencies that can be modeled via joint time-varying travel time distributions with time-

varying correlation structures. In stochastic dynamic networks with spatio-temporal correlations, 

the transportation network is modeled as a system in which travel times experienced in one part of 

the network at a future time can be dependent on travel times experiences in other parts of the 

network at earlier times. Information-adaptive routing problems are defined by two key factors 

that determine the availability of information and how it will affect a traveler’s choices.  

This chapter is concerned with a special case of partial information availability: the 

knowledge of the traveler’s own trajectory while traveling, i.e., where they have been and at what 

time. A few previous studies have considered trajectory-adaptive routing problems (Huang and 

Gao, 2018; Opasanon and Miller-Hooks, 2006; Pretolani et al., 2009). Adaptivity to the traveler’s 

own trajectory information is an appropriate assumption under decentralized routing systems 

which may have access to historical information for any a priori knowledge, but each user can only 

utilize the current trip information for en-route decisions. 

 

3 This chapter builds on article under review by Filipovska and Mahmassani. 
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In addition to the type of available information, the type of response a traveler can have to 

that information is also an important defining aspect of the problem. A traveler may choose to 

ignore any information they have access to, to react to it, or to be proactive (i.e., strategic) in 

response to the information. Reactive travelers consider the information as it arrives and make a 

new decision at each decision point (i.e., each intersection in the network). Proactive (or strategic) 

travelers make a plan, considering the availability of information at all later decision points, and 

follow a strategy that dictates their choice at each intersection based on information they will have 

received when they arrive there. This chapter is concerned with the latter, a traveler proactive to 

their own trajectory information. Thus, instead of searching for a path, the solution is a collection 

of paths, i.e., a routing strategy that the traveler will follow.  

This chapter utilizes the representation for jointly distributed link travel times across the 

entire network as continuous random variables with time-varying distributions and correlation 

structures as presented in Chapter 4; it applies approaches for path travel time distribution 

estimation with generalized correlations as introduced in Chapter 5; and it utilizes the eligible path 

generation approach presented in Chapter 6 to introduce a generalized 2-stage optimal strategy 

finding approach.  

The remainder of this chapter is organized as follows. Section 7.2 presents the problem 

statement and methodological difficulties, and includes specific definitions related to the 

trajectory-adaptive reliable least time strategy (TA-RLTS) problem in 7.2.3. The solution 

methodology is presented in section 7.3, with the first stage in 7.3.1 and the second in 7.3.2. Section 

7.4 focuses on the numerical experiments with the experimental design in 7.4.1 and the results and 

analysis in 7.4.2. Conclusions and discussions on future work are presented in section 7.5. 
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7.2 Problem Statement and Methodological Difficulties 

This section defines the problem for the trajectory adaptive reliable least-time strategy 

(TA-RLTS) problem and the methodological difficulties associated with it. The definition and 

notation of the stochastic dynamic network with generalized link travel times is the setting for this 

problem, as presented in section 6.2.1 and extended in section 7.2.1 for the specific problem 

considered here. Definitions and distinctions of types of adaptive routing in stochastic dynamic 

networks are presented in section 7.2.2. Specific definitions for the TA-RLTS problem are detailed 

in section 7.2.3 and the discussion of optimality and path comparisons is extended in section 7.2.4. 

7.2.1 Stochastic Time-Varying Network Modeling and Notation 

Let an STV network be a directed graph 𝐺(𝑁, 𝐴, 𝒯), where 𝑁 is the set of |𝑁| = 𝑛 nodes, 𝐴 

is the set of |𝐴| = 𝑚 links, and 𝒯 is the set of time periods, corresponding to the definitions and 

notation in Chapter 6. The link travel times are random variables jointly distributed across time, 

with Θ𝑖𝑗
𝑡  denoting the travel time on each link (𝑖, 𝑗) at time 𝑡 - a continuous positive random 

variable with a truncated distribution 𝜋𝑖𝑗
𝑡  constrained by a minimum and maximum possible value. 

The dependencies between the link travel times are defined via link-pairwise covariances that vary 

over time-period pairs, so that 𝑐𝑜𝑣(Θ𝑖𝑗
𝑡1 , Θ𝑘𝑙

𝑡2 ) is the covariance between the travel time on link (𝑖, 𝑗) 

during time interval 𝓉1 ∈ 𝒯 and that on link (𝑘, 𝑙) during time period 𝓉2 ∈ 𝒯. 

The challenge of the estimation of path travel time distributions remains as introduced in 

Chapter 6. This problem setting, with link travel times modeled as time-varying random variables 

correlated across space and time, requires that each subsequent link’s travel time distribution is for 

the corresponding time-interval 𝓉𝑖, and conditional on the realized travel times on each of the 
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traversed link 𝜋𝑖
𝓉𝑖(𝜃𝑖|𝜏𝑗∀𝑗 < 𝑖). Thus, the estimation of path travel time distributions is performed 

using approaches introduced in Chapter 5. 

An important network modeling assumption for path finding is the first-in-first-out (FIFO) 

consistency assumption. Its importance for defining stochastic dynamic networks and path finding 

problem was introduced in Chapter 6 in the context of a priori path finding. In the context of 

adaptive routing, optimal strategies may involve cycles. Since the choice of route is based on the 

information available to the user, an optimal strategy may include a traveler exploring a route with 

the option of ‘resetting’ if new information reveals that a different choice at a previous node is 

sufficiently likely to yield improvements on the traveler’s reliability-based objective. Further 

detail, formal definitions and examples can be found in studies by Polychronopoulos and Tsitsiklis 

(1996) and Provan (2003).  

In this chapter, the solution space for the TA-RLTS problem is constrained to acyclic paths 

and strategies only. This chapter uses the definition of stochastic FIFO presented by Nie and Wu 

(2009b) and given previously in section 6.2.1, and the problem is defined under the assumption 

that cyclicity is precluded as a property of the user.  

7.2.2 A priori and Adaptive Routing in STV Networks 

The focus of this chapter is on the problem of determining trajectory-adaptive routing 

strategies and their associated travel time distributions to find the optimal routing strategy based 

on specified reliability-based optimality criteria. The distinction between a priori and adaptive 

routing is initially described in section 1.2. This section expands on that distinction via a small 

example.  
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In a priori path finding an entire route is selected before the departure at the origin node and 

no en-route deviations are permitted. Adaptive routing problems for proactive (i.e., strategic) 

travelers focus on determining a strategy composed of a set of paths with decisions to be made 

along subsequent nodes. Since link travel times are random variables, their actual travel times 

become known as they are realized (i.e., the link is traversed), and thus the departure time for each 

following link is also known only as a random variable.  

Time-adaptive routing strategies are based on the idea that a better path could potentially be 

selected knowing the actual arrival time at an intermediate node. In the context of STV networks 

with correlated link travel times, in addition to knowing the arrival time, the revealed information 

of realized travel times on previous links also allows for conditional travel time distributions on 

any upcoming links given the previously traversed links’ travel times.  

In a time-adaptive context, strategies for which route to take, given the intermediate 

information of arrival time at each intermediate node, can be represented by an acyclic subnetwork 

(i.e. hyperpath) representation. A directed hypergraph model for a time-adaptive problem is given 

by Pretolani (2000), and later extended for the time-adaptive and history-adaptive multi-criterion 

routing in STV networks (Pretolani et al., 2009). The latter study uses a definition for history-

adaptive routing equivalent to the definition for trajectory-adaptive routing by Huang and Gao 

(2018), and points out that in a history-adaptive strategy the successor of a node 𝑖 at time 𝑡 is not 

unique and is chosen based on the travel times experienced on previous links (also referred to as 

the arrival history). 

This section demonstrates the effect of adaptive routing relative to a priori path finding and 

contrasts the different types of adaptive routing via examples. Consider the network 𝐺(𝑁, 𝐴) 
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shown in Figure 7-1 and suppose the possible travel time realizations of the joint link travel time 

distribution are as given in Table 7-1, with a fixed departure time at the origin 𝑂, 𝑡0 = 0.  

 

Figure 7-1. Example network 1 

Consider the case of a traveler planning a trip from 𝑂 to 𝐷, where one of two paths can be 

taken: O-a-b-D and O-a-b-c-D, for which the travel times for each realization of the network are 

as shown in the corresponding columns in Table 7-1. For simplicity, suppose that each of the given 

realizations have the same probability of occurrence in the network. 

Table 7-1. Possible joint link and path travel time realizations for example network 1 

 Link Travel Times Path Travel Times 

Realization (𝑂, 𝑎) (𝑎, 𝑏) (𝑏, 𝐷) (𝑏, 𝑐) (𝑐, 𝐷) O-a-b-D O-a-b-c-D 

1 1 1 3 1 1 5 4 

2 1 2 1.5 1 1 4.5 5 

3 1 2 1 1 1 4 5 

4 2 1 2 0.5 1 5 4.5 

5 2 2 2 2 1 6 7 

6 2 2 1.5 1 2 5.5 7 

 

Example 1. A Priori vs. Time-Adaptive Routing 

In the a priori problem a traveler chooses one of the two possible paths before beginning 

their trip, based on the entire travel time distributions for the two paths. At the a priori level, the 

paths O-a-b-D and O-a-b-c-D have the discrete travel time distributions {4, 4.5, 5, 5, 5.5, 6} and 

{4, 4.5, 5, 5, 7, 7}, respectively. As such, the distribution of the first path, O-a-b-D, dominates that 

of the second path, O-a-b-c-D, via first-order stochastic dominance, and has a lower expected value 

as well as 𝛼-confidence value for 𝛼 > 0.7.  
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In the time-adaptive problem, the traveler decides on a strategy on which path to travel based 

on the information of arrival time at the intermediate node where the decision is to be made (in 

this case node 𝑏), referred to as branching node. Therefore, for each of the three possible arrival 

times at node 𝑏, equal to 2, 3 or 4, the user chooses the better sub-path from 𝑏 to 𝐷, based on their 

objective.  

• Arriving at the branching node at time 2, the total path travel time experienced by the 

user can be 5 or 4 by selecting the sub-path b-D or the sub-path b-c-D, respectively. 

Thus, the traveler would select the extension sub-path b-c-D with the lower travel time.  

• Arriving at the branching node at time 3 (corresponding to realizations 2, 3 and 4), the 

path travel time distributions that can be experienced by selecting the sub-paths b-D or 

b-c-D are {4, 4.5, 5} and {4.5, 5, 5}, respectively, and a user with the objective of 

minimum expected travel time would select the extension sub-path b-c-D.  

• Finally, arriving at the branching node at time 4, the traveler again chooses between 

sub-paths b-D and b-c-D with travel times {5.5, 6} and {7, 7}, respectively, and would 

select the former of the two.  

This example shows how the a priori solution differs from the time-adaptive solution and 

the quality of the two solutions can be compared. For the a priori solution, having selected path O-

a-b-D, the travel time distribution of the solution path is {4, 4.5, 5, 5, 5.5, 6}, again assuming equal 

probability for each possible realized value. With the time-adaptive strategy the travel time 

distribution is {4, 4, 4.5, 5, 5.5, 6}, which dominates that of the path O-a-b-D via first-order 

stochastic dominance.  
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The solution to the a priori problem is a possible solution to the time-adaptive problem, i.e., 

equivalent to choosing the path O-a-b-D for all arrival times at the intermediate node. The solution 

space for the a priori problem is always a subset of the solution space for the time-adaptive 

problem. Thus, the optimal solution to the time-adaptive problem will be at least as good as that 

of the a priori problem, regardless of the objective.  

Example 2. Time-adaptive vs. trajectory-adaptive routing 

Extending the problem in Example 1, consider the trajectory-adaptive routing problem. Here 

the traveler has the information of their trajectory, so in addition to choosing the best path for each 

possible arrival time at the intermediate node, they make a choice for each trajectory (or history) 

with which they will have arrived at the intermediate node.  

Node b can be reached at time 3 (corresponding to realizations 2, 3 and 4) with two different 

‘histories’, namely having experienced travel times 1-2 or 2-1 on the previous links (O, a) - (a, b). 

In the time-adaptive problem, arriving at node b at time 3 the traveler would choose node D – 

equivalent to choosing the path O-a-b-D. However, in the trajectory-adaptive case, the strategy 

would be summarized as follows: 

• Arriving at node 𝑏 with experienced ravel times 2 and 1 on links (O, a) - (a, b), the 

conditional travel times on the sub-paths b-D and b-c-D would be 5 and 4.5 

respectively, so the traveler would choose sub-path b-c-D. 

• Arriving at node 𝑏 with experienced travel times 1-2 on links (O, a) - (a, b), the traveler 

would choose sub-path b-D with travel time distribution {1, 1.5} over the sub-path b-

c-D with distribution {2, 2}. 
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This example shows that the solution for the time-adaptive problem is also a possible 

solution for the trajectory-adaptive problem. However, not being responsive to the trajectory 

information, the time-adaptive problem has a more restricted solution space, which again indicates 

that the optimal solution to the trajectory-adaptive problem will be at least as good as that of the 

time-adaptive problem, regardless of the objective.  

7.2.3 Trajectory-Adaptive Reliable Least-Time Strategy Problem 

This chapter considers the problem of finding reliable trajectory-adaptive routing strategies 

in stochastic dynamic networks with spatio-temporally correlated link travel times. The problem 

definition assumes that a traveler formulates a strategy for their trip to destination, with 

intermediate node decisions accounting for the potential future decisions given that choice. The 

strategy becomes realized as a decision is made at each branching node based on information 

revealed from the traveler’s own trajectory.  

The trajectory information H is defined as a series of consecutive node-time pairs that the 

traveler has experienced from the origin node 𝑖0 at their departure time 𝑡0, up to the current node 

𝑖 and time 𝑡: 𝐻 = {(𝑖0, 𝑡0), (𝑖1, 𝑡1), … , (𝑖, 𝑡)}. By this definition, equivalent to that by Huang and 

Gao (2018), the trajectory contains the information of the revealed travel times along the traversed 

links so that the observed travel time on link (𝑖𝑘−1, 𝑖𝑘) departing at time 𝑡𝑘−1 was 𝑡𝑘 − 𝑡𝑘−1 for 

each node-time pair (𝑖𝑘, 𝑡𝑘) for 𝑘 ≠ 0. Then, assuming dependence between link travel times 

across time, the travel time distributions on any future links on the traveler’s potential route can 

be conditioned on the travel times experienced on links they traversed in the path to the current 

node. A definition for a trajectory-adaptive routing strategy, equivalent to that by Huang and Gao 

(2018), is presented here: 
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Definition 1. Trajectory-Adaptive Routing Strategy: A trajectory-adaptive routing strategy 𝜍 

can be defined as a mapping from state to decision. The state is defined as the triplet {𝑖, 𝑡, 𝐻}, 

where 𝑖 is the current node, 𝑡 is the current time – equivalent to the time of arrival at the current 

node, and 𝐻 is the current trajectory information, as defined above. The action space at state 

{𝑖, 𝑡, 𝐻} is {𝑗 ∈ 𝑁 ∶ (𝑖, 𝑗) ∈ 𝐴}, i.e., the set of nodes adjacent to 𝑖, and the decision for which node 

𝑗 to take next: 𝜍: {𝑖, 𝑡, 𝐻} → 𝑗.  

The strategy at node 𝑖 at time 𝑡, 𝜍(𝑖, 𝑡, 𝐻(𝑖, 𝑡)) can be recursively defined as a combination 

of the next node 𝑗 and the set of sub-policies exiting node 𝑗 at possible arrival times with the 

corresponding resulting trajectory information 𝐻, {𝜍𝑘(𝑗, 𝑡𝑘), 𝐻(𝑗, 𝑡𝑘)}. For a problem definition 

with a finite set of possible travel times on any given link, this recursive definition can be 

implemented exactly. The problem definition in this chapter requires the use of a simulation or 

estimation approach for the recursive implementation. 

Definition 2. Routing Strategy Decision Node: A decision node for a trajectory-adaptive 

routing strategy 𝜍 is a node 𝑖 ∈ 𝑁 such that |{𝑗 ∈ 𝑁 ∶ (𝑖, 𝑗) ∈ 𝐴}| > 1, namely a node for which 

there is more than one possible next node that can be chosen.  

Definition 3. Routing Strategy Branching Node: A branching node for a trajectory-adaptive 

routing strategy 𝜍 is a decision node 𝑖 ∈ 𝑁 such that |{𝜍(𝑖, 𝑡, 𝐻) = 𝑗 ∀ {𝑖, 𝑡, 𝐻}}| > 1, namely a 

decision node for which there are multiple unique sub-strategies across the different states it can 

take.  

Based on the above definition, a branching node is formed only at those decision nodes that 

are the origin for more than one sub-strategy and not all nodes or all decision nodes along the 

trajectory-adaptive strategy are branching nodes. The decision nodes can be known by considering 
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the network itself, but whether or not a decision node will be a branching node depends on the 

final strategy.  

At the initial decision point, if the trip origin node is the first decision node, the user decides 

based on an evaluation of their entire strategy with respect to their reliability-based objective. The 

difference between proactive and reactive routing has previously been shown in other related 

studies, including those by Waller and Ziliaskopoulos (2002) and Gao and Huang (2012). What 

follows is a short example to illustrate the nature of proactive decision making and distinguish 

between the reactive traveler and the traveler who is proactive to information.  

Given the previous definitions and the informal description of a routing strategy as a 

collection of paths, a few important definitions remain, to be illustrated via Example 3. Let a 

routing strategy path be defined as a path from origin 𝑂 = 𝑖0 to destination 𝐷 = 𝑖𝑙+1 consisting of 

the consecutive links {(𝑂, 𝑖1), (𝑖1, 𝑖2), (𝑖2, 𝑖3), … , (𝑖𝑙, 𝐷)} such that ∀ 𝑖𝑘 ∈ {𝑖0, 𝑖1, . . , 𝑖𝑙} ∃ 𝑡𝑘, 𝐻𝑘 

such that 𝜍(𝑖𝑘, 𝑡𝑘, 𝐻𝑘) = 𝑖𝑘+1. Namely, for some arrival time and history combinations, there are 

sub-strategies from 𝑂 to 𝐷 that traverse the path {(𝑂, 𝑖1), (𝑖1, 𝑖2), (𝑖2, 𝑖3), … , (𝑖𝑙, 𝐷)}. Note that at 

the origin node, 𝑡0 is the departure time at origin and 𝐻0 = ∅ is an empty set, since there is no 

observed trajectory at the origin. Hence, the origin node cannot be a branching node, but it can be 

considered a decision node at which a choice is made between more than one strategy. 

For any given routing strategy path, the existence of some 𝑡𝑘, 𝐻𝑘 such that 𝜍(𝑖𝑘, 𝑡𝑘 , 𝐻𝑘) =

𝑖𝑘+1 is necessary but there may exist more than one such time and trajectory for each node 𝑖𝑘, so 

the general notation should be for a set ℍ𝑘 = {{𝑡𝑘, 𝐻𝑘}|𝜍(𝑖𝑘, 𝑡𝑘, 𝐻𝑘) = 𝑖𝑘+1}.  

Definition 4. Path’s Contribution to a Routing Strategy: For a path from 𝑂 = 𝑖0 to 𝐷 =

𝑖𝑙+1, {(𝑂, 𝑖1), (𝑖1, 𝑖2), … , (𝑖𝑙−1, 𝑖𝑙), (𝑖𝑙, 𝐷)} and departure time 𝑡0 with the corresponding sets ℍ𝑘 ≠
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∅ ∀𝑖𝑘 ∈ ∀ 𝑖𝑘 ∈ {𝑖0, 𝑖1, . . , 𝑖𝑙}, the path’s contribution to the routing strategy is the probability at the 

final node, 𝑝 = ∑ 𝑝({𝑡𝑙, 𝐻𝑙}|ℍ𝑙−1, … , ℍ1, ℍ0}{𝑡𝑙,𝐻𝑙}∈ℍ𝑙
. Informally, a path’s contribution to a 

routing strategy is the likelihood that a path is selected if part of the routing strategy. 

From this definition it follows that the sum of such probabilities for all routing strategy 

paths of a given strategy must be equal to 1, simply ensuring that for any realization of events in 

the network one and exactly one path must be selected. Thus let the set of paths on a strategy be 

denoted 𝕂, where 𝕂 = {{(𝑂, 𝑖1), (𝑖1, 𝑖2), (𝑖2, 𝑖3), … , (𝑖𝑙, 𝐷)} |{{𝑡𝑘, 𝐻𝑘}|𝜍(𝑖𝑘, 𝑡𝑘, 𝐻𝑘) = 𝑖𝑘+1} ≠

∅ ∀ 𝑖𝑘 ∈ {𝑖0, 𝑖1, . . , 𝑖𝑙}}, i.e., the set of all paths that satisfy the definition for being routing strategy 

paths. For each path 𝕜 ∈ 𝕂, let its contribution to the strategy, per definition 4 be denoted 𝑝𝕜 and 

its path travel time random variable Θ𝕜 according to the notation in section 7.2.1.   

Definition 5. Routing Strategy’s Travel Time Distribution: A routing strategy’s travel time 

cumulative distribution function (cdf) is determined as a mixture model, i.e., the cdf of the random 

variable Θ𝑆 = ∑ 𝑝𝕜Θ𝕜𝕜∈𝕂 . The strategy’s cdf is simply a mixture of the cdfs of the paths it is 

composed of, with the contribution probability values serving as mixture weights.  

Consider a network, expanded from that shown in Figure 7-1, as shown in Figure 7-2 and 

suppose the possible travel time realizations of the joint link travel time distribution are as given 

in Table 7-2, with a fixed departure time at the origin 𝑂, 𝑡0 = 0. Suppose the traveler is planning 

a trip from 𝑂 to 𝐷, based on the travel times for each realization of the network as shown in Table 

7-2, assuming that each of the given realizations have the same probability of occurrence.  
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Figure 7-2. Example network 2 

Table 7-2. Possible joint link travel time realizations for example network 2 

 Link Travel Times 

Realization (𝑂, 𝑎) (𝑎, 𝑏) (𝑎, 𝑒) (𝑏, 𝐷) (𝑏, 𝑐) (𝑐, 𝐷) (𝑒, 𝐷) (𝑒, 𝑓) (𝑓, 𝐷) 

1 1 1 0.5 3 1 1 0.5 0.5 1 

2 1 2 1 1.5 1 1 1 1 1.5 

3 1 2 1.5 1 1 1 0.5 1.5 1 

4 2 1 0.5 2 0.5 1 1 1 1 

5 2 2 1 2 2 1 0.5 1 1.5 

6 2 2 1 1.5 1 2 1 1.5 1 

 

Table 7-3. Possible joint link and path travel time realizations for example network 2 

 Link Travel Times 

Realization (𝑂, 𝑎) (𝑎, 𝑏) (𝑎, 𝑒) O-a-b-D O-a-b-c-D O-a-e-D O-a-e-f-D 

1 1 1 0.5 5 4 3 3.5 

2 1 2 1 4.5 5 5 5.5 

3 1 2 1.5 4 5 5 5.5 

4 2 1 0.5 5 4.5 4.5 5 

5 2 2 1 6 7 5.5 6.5 

6 2 2 1 5.5 7 6 6.5 

 

In this example network with 3 decision nodes a, b, e, the traveler could have a total of 4 

different realized paths, and a decision made at node a is a choice for a preferred sub-strategy from 

that node, and similarly at nodes b and e. 

Example 3. Trajectory-Adaptive routing for a Proactive Traveler 
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For simplicity suppose that the traveler wants to minimize their expected travel time from 

O to D. For conciseness, the path travel time distributions with the corresponding realizations from 

Table 7-2 and the travel times on links before decision points are shown in Table 7-3. 

Consider the proactive traveler at the origin node, making a choice for what will be their 

decision at future node a, based on what they will have experienced on the link O-a. The proactive 

traveler anticipates the travel times on subsequent links (a-b and a-e) conditional on those 

experienced for link O-a and their decision at each subsequent node (b and e), based on those 

possible realizations. In this manner, they build the distribution for each sub-strategy and make a 

decision at the first decision node 𝑎. Note that in this example, the origin 𝑂 is not a decision node.  

If travel time on link O-a is  𝑡𝑂𝑎 = 1, then: 

Considering choosing b the traveler will choose paths 

{
𝑂 − 𝑎 − 𝑏 − 𝑐 − 𝐷 with expected travel time 4 if 𝑡𝑎𝑏 = 1
𝑂 − 𝑎 − 𝑏 − 𝐷 with expected travel time 4.25  if 𝑡𝑎𝑏 = 2

  for an overall expected travel 

time of 4.167. 

Considering choosing e the traveler will choose paths  

{

𝑂 − 𝑎 − 𝑒 − 𝐷 with travel time 3 if 𝑡𝑎𝑒 = 0.5 
𝑂 − 𝑎 − 𝑒 − 𝐷 with travel time 5 if 𝑡𝑎𝑒 = 1 
𝑂 − 𝑎 − 𝑒 − 𝐷 with travel time 5 if 𝑡𝑎𝑒 = 1.5 

 for an overall expected travel of 4.33. 

Thus, if 𝑡𝑂𝑎 = 1 the traveler would choose node b as the next node with a better expected travel 

time. This process can be repeated for the case when travel time on link O-a is  𝑡𝑂𝑎 = 2. ∎ 

 Applying the definitions introduced in this section it can be noted that nodes 𝑎, 𝑏, 𝑒 are 

decision nodes. At node 𝑒, the traveler chooses 2 next nodes for the two possible trajectories to 𝑎, 

thus 𝑎 is a branching node. Node 𝑏 is also a branching node for the same reason, but at decision 

node 𝑒 the same decision is made for all cases, so this node is not a branching node.  
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 Finally, given that the probability of arriving at 𝑎 with 𝑡𝑂𝑎 = 1 is 0.5, and O-a-b-c-D is 

chosen for 2 of the 3 realizations given 𝑡𝑂𝑎 = 1, the contribution of O-a-b-c-D to the strategy is 

0.5 ⋅
2

3
≈ 0.333. For path O-a-b-D, the contribution to the strategy is 0.5 ⋅

1

3
≈ 0.111. Finally, 

arriving at 𝑎 with 𝑡𝑂𝑎 = 2 with probability 0.5, the path O-a-e-D is selected for all realizations 

given 𝑡𝑂𝑎 = 2, hence its contribution to the strategy is 0.5. 

7.2.4 Optimality and Path Comparisons for Trajectory-Adaptive Routing Strategies 

This section presents and discusses some important characteristics of stochastic dynamic 

networks with generalized correlations. These characteristics are addressed in relation to the 

problem at hand and provide support for the solution methodology presented in the following 

section. An important characteristic that applies to the problem in this chapter is the non-

applicability of Bellman’s principle, which is demonstrated in section 6.2.3.1 for the a priori path 

finding problem. Since a priori paths are special case solutions to the adaptive routing problem, 

the counterexample presented in the previous chapter holds and Bellman’s principle remains non-

applicable in this problem as well.  

This section discusses optimality of trajectory-adaptive routing strategies as solutions of 

the TA-RLTP problem in 7.2.4.1, path comparisons for eligible paths in 7.2.4.2, and for trajectory-

adaptive strategy building in 7.2.4.3.   

7.2.4.1 Optimality of Reliable Trajectory-Adaptive Routing Strategies 

Routing decisions in stochastic dynamic networks can be made based on a variety of 

reliability or distribution-based objective functions. Similar to the solution approach in Chapter 6, 

this chapter aims to develop an approach for trajectory-adaptive strategy finding that is not 

restricted to one single objective function. Example 3 shows that the traveler’s routing strategy is 
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determined based on the objective function and future decisions are also anticipated based on that 

objective. Thus, each strategy and sub-strategy must be built and evaluated for each objective 

function.  

The presented methods, extended here for the case of trajectory-adaptive routing, can be 

used with a variety of possible least-time objectives, including but not limited to: least expected 

travel time (LET) (Miller-Hooks and Mahmassani, 2000a), least possible time (Miller-Hooks and 

Mahmassani, 1998a), least 𝛼-confidence travel time (Chen et al., 2018; Zeng et al., 2015), on-time 

arrival probability (Yang and Zhou, 2017), reliable shortest paths (Chen et al., 2020; Zhang et al., 

2017). It should be noted that the proposed approach may perform differently with different types 

of objectives and is not expected to be applicable for certain types of objectives not centered on 

least time solutions, such as ones focused on variance.  

This chapter considers two types of objectives, introduced for the a priori problem in 

Chapter 6, the minimum Value at Risk (VaR) and Conditional Value at Risk (CVaR) for varying 

𝛼-percentile values. The details on those objective functions and their interpretation can be found 

in section 6.2.2. 

7.2.4.2 Path Comparisons for Eligible Paths Generation 

Solving the TA-RLTS problem in this chapter is based on the ability to perform path 

comparisons as a basis for the path generation and strategy building approach, which is evident 

from Example 3 on the trajectory-adaptive routing for a proactive traveler.  

To address the issue of generating eligible paths to be part of a travelers’ strategy as a 

combination of paths, eligible paths can be generated according to the dominance criteria and path 

generation approach presented in Chapter 6. The path generation approach was presented with two 

types of dominance criteria, a relaxed deterministic dominance (RDD) criterion with a variable 
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risk-tolerance level that specifies the relaxation level, and an adjusted First-order Stochastic 

Dominance (A-FSD), both modified to be applied at intermediate nodes. The details on those path 

dominance criteria can be found in section 6.3.1. 

7.2.4.3 Path Comparisons for Trajectory-Adaptive Strategy Building 

Considering path comparisons for building a routing strategy, two important 

methodological difficulties must be addressed.  

Firstly, at any branching node, the distributions of non-disjoint paths (i.e., paths that share 

links in the topological network that are traversed in the same time period) cannot be compared 

directly, since they are not independent. Discounting the dependence would result in comparing 

path travel times that cannot occur simultaneously in the network. This problem is addressed in 

more detail in a paper by Miller-Hooks and Mahmassani on path comparisons in STV networks 

(2003a). To account for the correlations the distributions of non-disjoint paths must be compared 

conditionally on the travel times on the shared links at the times that they are traversed. 

Secondly, implementing such conditional distribution comparison is made more difficult 

when considering correlations. Given time-varying distributions and correlations, the conditional 

distributions should account for the time-interval in which future links will be traversed, which are 

themselves random variables, and thus there may be more than one possible correlation value that 

might be realized with different likelihoods. This is a problem of estimation of path travel time 

distributions, which is the focus of Chapter 5, thus this chapter referrers to the approaches 

presented in section 5.4.  

Additionally, path comparisons at branching nodes may require different criteria to those 

used for a priori path comparisons. Previous studies have shown that the set of a priori FSD non-

dominated paths in STV networks will contain paths that may be inefficient in that, though non-
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dominated, they would never contribute to an adaptive routing strategy (Miller-Hooks and 

Mahmassani, 2003a). However, in STV networks with dependencies, the opposite may be true. 

Namely, there may be paths that are a priori FSD-dominated but would still contribute to the 

adaptive strategy. Two examples are considered below.  

Example 4. FSD Path Comparisons 

Consider the example network 1, shown in Figure 7-1. The travel times, shown in Table 1, are for 

a single departure time 𝑡0 = 0, and the FSD-admissible paths can be determined by comparing 

their travel time distribution. The two possible paths, O-a-b-D and O-a-b-c-D, have the travel time 

realizations with equal probabilities {4, 4.5, 5, 5, 5.5, 6} and {4, 4.5, 5, 5, 7, 7}, respectively. 

Comparing these two paths directly, it can be observed that for all possible total travel times 𝑇𝑠 ∈

{4, 4.5, 5, 5.5, 6, 7}, the CDF for the path O-a-b-D is larger or equal to that of O-a-b-c-D, and thus 

the path O-a-b-c-D would be dominated by FSD and not FSD-admissible. However, Example 2 

demonstrated that for two cases if the travel times on the initial links O-a and a-b are realized 

according to realizations 1 and 4, the selected path would be O-a-b-c-D, despite being FSD-

dominated. ∎ 

In Example 4, the FSD-dominated path would contribute to the final strategy for 2 of the 6 

realizations of the network, equivalent to 33.3% of the cases, which points to a measure that can 

be used for evaluating the likelihood of a path to contribute the overall strategy.  Namely, from the 

example network 1, it can be observed that the contribution of the path to the overall strategy 

would be limited by the likelihood with which its value is lower than that of another path 

comprising the same strategy. This comparison is equivalent to that of the relaxed deterministic 

dominance criterion with the 𝜖 value from Chapter 6. It should be noted that this probabilistic 
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comparison of the two paths should be evaluated conditionally on the realized values on the shared 

links. The example continues, to illustrate the path comparison and likelihood computation. 

Example 5. Probabilistic Path Comparisons 

For this example, let paths O-a-b-D and O-a-b-c-D be called path 1 and 2, with path travel 

time random variables denoted 𝑇1and 𝑇2, respectively. Let each possible realization of these 

distributions be denoted 𝑡1
(𝑠)

 and 𝑡1
(𝑠)

 for the realization 𝑠 ∈ {1, 2, … , 6}. Evaluating the travel time 

random variables on the two paths independently, 𝑃(𝑇2 ≤ 𝑇1) would be as follows: 

𝑃(𝑇2 ≤ 𝑇1) = ∑
1

6
⋅ 𝑃(𝑇2 ≤ 𝑡1

(𝑘)
)

6

𝑘=1

=
1

6
(

4

6
+

2

6
+

1

6
+

4

6
+

4

6
+

4

6
) =

19

36
= 0.527. 

However, conditional on the shared links’ travel times, the correct comparison would be: 

𝑃(𝑇2 ≤ 𝑇1|𝑡𝑂−𝑎, 𝑡𝑎−𝑏) = ∑
1

6
⋅ 𝑃(𝑇2 ≤ 𝑡1

(𝑘)
|𝑡𝑂−𝑎, 𝑡𝑎−𝑏)

6

𝑘=1

=
1

6
(1 + 0 + 0 + 1 + 0 + 0) =

2

6

≈ 0.333. ∎ 

In the case with two paths, the probability of lower travel time directly translates to the 

fraction of contribution to the strategy, since the value is based on the number of realizations. In 

cases with more than two paths, each such pairwise comparison would give an upper bound on the 

fraction of contribution to the strategy, with the lowest pairwise probability a given path can 

achieve being the tightest upper bound. To illustrate this principle, the following example is 

considered. 

Example 6. Probabilistic Path Comparisons for Strategy Building 

Consider the example network 2, in Figure 7-2, with the travel time distributions as given 

in Table 7-2 and Table 7-3. Let the paths O-a-e-D and O-a-e-f-D be called path 3 and 4 with travel 
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time random variables denoted 𝑇3 and 𝑇4, respectively. The probability 𝑃(𝑇2 ≤ 𝑇1) = 0.333 as 

seen with Example 4, and it can be shown that 𝑃(𝑇2 ≤ 𝑇3) = 0.5 and 𝑃(𝑇2 ≤ 𝑇4) = 0.5. In 

forming the optimal strategy, path 2 would be at least as good as paths 3 and 4 in 50% of the cases, 

but at least as good as path 1 in 33.3% of the cases. Thus, there are cases where path 2 is chosen 

relative to paths 3 and 4, but path 1 can still be chosen in place of path 2. Thus, path 2 would be 

selected in at most 33.3% of the network realizations. ∎  

Therefore, the pairwise random variable comparison of path travel time distributions as 

introduced here can be used as the basis for eliminating paths that are not likely to contribute to 

the resulting strategy, i.e., likely inefficient, and is exactly the idea behind the relaxed deterministic 

dominance (RDD) criterion from the previous chapter. The probabilistic criterion in RDD is thus 

a proxy for the path’s contribution to the strategy as an upper bound on the probability of the path’s 

contribution to the strategy. 

7.3 Solution Methodology 

The proposed solution approach for the trajectory-adaptive reliable least-time strategies 

(TA-RLTS) problem in stochastic dynamic networks with generalized correlations is a 2-stage 

approach that can be used for finding exact and approximate solutions.  

An important objective for this solution methodology is to unify several problems and 

solution types for path finding and routing in stochastic dynamic networks that have been treated 

separately in the literature. Firstly, the a priori path finding problem is unified with the trajectory 

adaptive routing problem via the shared solution approach for generating eligible paths for finding 

both a priori and adaptive solutions. Secondly, the solution methodology for both exact and 

approximate solutions unifies these, typically disparate, ways to approach the problem at hand. 
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The need for approximate solution methods has been demonstrated in a number of studies focused 

on adaptive routing in stochastic networks. However, while some distinct approximate strategy 

finding methods exist, the important gap of concern in this study is to provide an approach that 

can be used for both approximate and exact solutions, with an adjustable level of uncertainty that 

can be tuned for specific applications based on particular accuracy and efficiency requirements.  

The definition for the TA-RLTS problem in this chapter, allowing for continuous random 

travel times requires a method that can approach the stochastic optimization problem with an 

infinite and uncountable event space, which cannot be solved by enumeration. Hence, the 2-stage 

solution approach is accompanied with simulation-based path travel time estimation approaches, 

as presented in Chapter 5. 

Furthermore, the proposed solution methodology unifies different types of problems that 

can results from different objective or optimality definitions in stochastic dynamic networks, as 

presented in section 7.2.4.1. The solution methodology is not specific to a single objective function 

but is intended to be suitable for a range or reliability-based least-time objectives. With this 

characteristic, the approach is presented for finding the optimal strategy for multiple objectives in 

a single run of the algorithm.  

Given a set of departure times and a specified origin node, Stage 1 of the solution approach 

is the generation of eligible paths to all destination nodes in the network according to the TD-

RLTP approach from Chapter 6. Stage 2 uses the reduced network based on this set of eligible 

paths and builds the optimal trajectory-adaptive routing strategy with its travel time distribution.  

Section 7.3.1 summarizes the methodology for generating of eligible paths, the details of which 
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can be found in Chapter 6. Section 7.3.2 presents the approach for finding the optimal routing 

strategies, i.e., the algorithm for Stage 2 of the proposed solution approach. 

7.3.1 Eligible Path Generation 

The solution approach for generating eligible non-dominated paths was presented as part 

of the solution for the RLTP problem in Chapter 6. Two types of dominance criteria were 

presented, adjusted from the general framework for determining a priori nondominated least time 

paths in stochastic time-varying networks by Miller-Hooks and Mahmassani (1998b). The 

approximate adjusted First-Order Stochastic Dominance (A-FSD) criterion and relaxed 

deterministic dominance criterion (RDD) are adjusted to be applied at intermediate nodes in the 

stochastic dynamic network with correlations, based on the stochastic dominance and deterministic 

dominance criteria by Miller-Hooks and Mahmassani (1998b).  

The RDD criterion was modified with a relaxation parameter 𝜖 that specifies the allowable 

level of risk in eliminating a potentially viable path. In the TA-RLTS problem addressed here, this 

risk level corresponds to an upper bound on the likelihood of a path being part of the optimal least-

time strategy, as shown via Examples 4 through 6. Some supporting explanations are included in 

this section.   

In the TA-RLTS problem, only paths that share one or more of their initial links, from the 

origin to an intermediate node, could be part of the same strategy. A routing strategy constructed 

under a given objective function can be seen as a collection of a priori paths. Section 7.2.3 showed 

that the optimal strategy is always at least as good as any of the a priori paths it is composed of. 

Thus, the travel time of any a priori path can be seen as the upper bound on the travel time of the 

optimal strategy created using that path. Comparison of paths not on the same strategy is equivalent 
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to the comparison of the upper bounds (on the objective) of the corresponding strategies and gives 

no indication of the likelihood of their usefulness for strategy building. Thus, in identifying eligible 

paths that will (or are likely to) contribute to a resulting strategy, only paths that share at least one 

initial link from the origin to an intermediate node are compared to one another.  

Given this understanding, in generating eligible paths we will aim to define the likelihood 

that a path will be part of an optimal strategy. Conversely, if a path is to be eliminated from 

consideration for the optimal strategy (i.e., designated as ineligible), that positive likelihood can 

be seen as risk of loss on the objective of the strategy. Considering building a strategy using paths 

l and k, if 𝑃(𝜃𝑙 < 𝜃𝑘) = 0, path l can safely be eliminated since it will not contribute to a least-

time strategy that would involve path k.  Thus, based on the comparisons established in Examples 

5 and 6 in section 7.2.4.3, the likelihood 𝑃(𝜃𝑘 ≤ 𝜃𝑙) can be identified as a measure of the path’s 

eligibility. Conversely, in designating paths as ineligible 𝑃(𝜃𝑘 ≤ 𝜃𝑙) can be seen identified as a 

measure of risk for path k relative to path l. 

If aiming to generate only paths that have some positive likelihood of being part of an 

optimal strategy and safely eliminate all paths with no such likelihood, the criterion 𝑃(𝜃𝑘 ≤ 𝜃𝑙) ≤

0 may be used, where 𝑘 and 𝑙 are paths that share one or more of their initial links. The path 

generation with the criterion of eliminating all paths dominated according to this criterion is 

equivalent to the deterministic dominance criterion by Miller-Hooks and Mahmassani. To allow 

for approximate solutions in cases of large networks, this elimination criterion can be relaxed: 

instead of requiring that 𝑃(𝜃𝑘 ≤ 𝜃𝑙) ≤ 0 for a path to be non-eligible, a small value 𝜖 can be 

defined so that any path 𝑘 is eliminated if there exists a path 𝑙 (here, potentially on the same 

strategy) such that 𝑃(𝜃𝑘 ≤ 𝜃𝑙) ≤ 𝜖. Thus, the path k is eliminated with a small likelihood of 
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contributing to the optimal strategy, which we refer to as the risk-level tolerance in generating 

eligible paths.  

By definition, the criterion with an 𝜖 > 0 will eliminate at least as many (and potentially more) 

paths as the deterministic dominance criterion and as such will result in solutions no better than 

the deterministic dominance criterion. However, by eliminating a larger number of paths, these 

approximate or relaxed dominance criteria can reduce the computational effort required for 

generating eligible paths and their resulting strategies. Following from the above and the results in 

examples 5 and 6, the following proposition is presented: 

Proposition 7-1. For a pair of paths 𝑘𝑟𝑠 and 𝑙𝑟𝑠 for a specified origin-destination pair r-s, 

which share at least one link from the origin to an intermediate node, the probability 𝑃(𝜃𝑘
𝑡0 ≤ 𝜃𝑙

𝑡0) 

is an upper bound on the likelihood of path 𝑘 contributing to the optimal joint strategy formed by 

𝑘, 𝑙 and other paths for the O-D pair 𝑟 − 𝑠, here referred to as the risk of eliminating path 𝑘𝑟𝑠 for 

departure time 𝑡0. The best (i.e., tightest) upper bound on the risk of eliminating path 𝑘𝑟𝑠 can be 

found as min
𝑙𝑟𝑠

′
 {𝑃(𝜃𝑘

𝑡0 ≤ 𝜃
𝑙′
𝑡0)} over all other paths 𝑙𝑟𝑠

′  for the same strategy. 

Proof 7-1. Suppose in comparing the paths 𝑘𝑟𝑠 and 𝑙𝑟𝑠 for a specified origin-destination 

pair r-s, which share at least one link from the origin to an intermediate node via joint realizations 

on the network, we find that 𝑃(𝜃𝑘
𝑡0 ≤ 𝜃𝑙

𝑡0) = 𝑝 < 1. This indicates that in 𝑝 < 1 proportion of the 

possible realizations for the network, path 𝑘𝑟𝑠 has a shorter travel time. In building the strategy 𝜍1 

that contains paths 𝑘 and 𝑙, given the shared links from the origin to the destination between the 

two paths, suppose path 𝑘 is selected for 𝑞 > 𝑝 proportion of the possible realizations. Then for a 

(𝑞 − 𝑝) portion of the realizations, travel time on path 𝑘 is grater than that on path 𝑙 but path 𝑘 is 

selected for 𝜍1. Thus, there exists another strategy 𝜍2 in which for those (𝑞 − 𝑝) realizations path 
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𝑙 with a lower travel time is selected, making strategy 𝜍2 FSD-dominant relative to 𝜍1, thus by 

contradiction showing that 𝜍1 cannot be the optimal strategy composed of paths 𝑘 and 𝑙. From this, 

by induction we can see that for a larger number of paths, the contribution of 𝑘 to the strategy is 

constrained by the minimum of the pairwise comparison probabilities.  

The criterion established here allows for the comparison and elimination of paths via their 

full travel time distributions from the origin to destination. However, removing potentially 

inefficient paths at intermediate branching nodes is beneficial when the estimation of full path 

travel time distributions is computationally expensive, and even more so when working with larger 

networks. The above criterion is extended so as to evaluate the potential for useful paths at a given 

branching node. Using truncated link travel time distributions, the Proposition 6-1 and Corollary 

6-1 from the previous chapter apply here.  

From Corollary 6-1, it is established that if 𝑃(𝜃𝑘𝑟𝑖
+ 𝜏𝑖

𝑚𝑖𝑛 ≤ 𝜃
𝑙′
𝑡0) ≤ 𝜖, and 𝑃(𝜃𝑙

𝑡0 ≤

𝜃
𝑙′
𝑡0) ≤ 𝑃(𝜃𝑘𝑟𝑖

+ 𝜏𝑖
𝑚𝑖𝑛 ≤ 𝜃

𝑙′
𝑡0) then 𝑃(𝜃𝑙

𝑡0 ≤ 𝜃
𝑙′
𝑡0) ≤ 𝜖. Therefore, following from the likelihood 

of including eligible paths discussed in Proposition 7-1 and its equivalent risk of designating 

ineligible paths, 𝑃(𝜃𝑘𝑟𝑖
+ 𝜏𝑖

𝑚𝑖𝑛 ≤ 𝜃
𝑙′
𝑡0) ≤ 𝜖 can be used as a criterion for early elimination at an 

intermediate node 𝑖 by showing that even the best case for its extensions will not meet the 

eligibility criterion. This probabilistic criterion based on the risk-level tolerance value 𝜖 is a 

heuristic criterion which allows for certain paths to be eliminated and not considered in the 

building of the final adaptive routing strategy, if their likelihood of contributing to the strategy is 

low enough. The higher the risk tolerance value 𝜖, the larger the number of eliminated paths (here 

referred to as ineligible for the given risk tolerance), leading to reduced computational effort for 
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the building of the optimal adaptive strategy, but with the trade-off of increased overall travel time 

value and objective function value of the resulting strategy.  

Therefore, Stage 1 of the TA-RLTS solution approach is the TD-RLTP algorithm for path 

generation from section 6.3.2. The note on estimating path travel time distributions remains 

relevant here, and this chapter will also use the NORmal-To-Anything (NORTA) approach with 

time-dependence and time-varying distributions from Chapter 5. The path generation algorithm 

above terminates after having determined all eligible paths to all destination nodes from the origin, 

for all given departure times. The primary results needed from the Stage 1 procedure are the 

eligible path travel time distributions 𝑈𝑑
𝑘𝕥 ∀ 𝑑 ∈ 𝐷, 𝑘 ∈ {1, 2, … , 𝑀}, 𝑎 ∈ 𝐴, 𝕥 ∈ 𝕋. The sets 𝐾𝑑 =

{𝑘 |Λ𝑂
𝑘 (𝕥, 𝑑) = 1}∀ 𝑑 ∈ 𝐷, 𝕥 ∈ 𝕋 contain the identifiers for the eligible paths for each destination 

and departure time.  are eligible, and each path can be traced back using the pointers 𝑝𝑖
𝑘, 𝐿𝑖

𝑘 ∀ 𝑘 ∈

{1, 2, … , 𝑀}, 𝑖 ∈ 𝑁. The conditionally sampled link travel time distributions are also saved and can 

be further used in building the optimal strategy in Stage 2 of the solution approach. 

7.3.2 Optimal Routing Strategy Finding 

The second stage of the solution approach uses the generated eligible paths and their path 

travel time distributions from Stage 1 to find the optimal trajectory-adaptive strategies for a set of 

objectives. The strategy building can be performed for one or multiple objectives simultaneously, 

solving the routing strategy problem for heterogenous users with different reliability-based 

objectives.  

The algorithm reads the set of eligible paths each destination to the origin node and at each 

decision node, the conditional distributions for the sub-strategy at that node are obtained, the 

objective value(s) are computed and the appropriate sub-strategy path for each sampled realization 



207 

 

of the network is selected. Given that the reading of the network and the simulation are performed 

once, solving the optimal routing strategy for multiple objectives does not have a significant impact 

on the computational time and effort. However, since different objectives can be expected to result 

in different strategy distributions, strategy building with multiple criteria generates and holds a 

larger amount of data. The procedure for finding optimal routing strategies is presented below. 

Continuing from Stage 1 the decision nodes in the network are based on the eligible paths 

from each node to the destination, not simply by the network structure as seen in the examples in 

the previous section. 

Solution Algorithm, Stage 2: Procedure for Finding Optimal Routing Strategies 

Given: 

 The network 𝐺(𝑁, 𝐴, 𝒯), where 𝒯 is the set of time periods {𝓉0, 𝓉1, … , 𝓉𝐿−1}. The function 

𝜙(⋅) ∈ 𝒯.  

The joint time-varying link travel time distributions with time-varying covariance 

structure.  

The origin node 𝑂. The destination 𝑑 ∈ 𝒟, which if unspecified is set to  𝐷 = 𝑁\{𝑂}. 

The set of departure times 𝕥 ∈ 𝕋.  
The results from Stage 1: the travel time distributions for the set of eligible paths, for the 

selected dominance criterion, from 𝑂 to each of the destinations 𝑑 ∈ 𝒟 and for each 

departure time 𝕥 ∈ 𝕋 contained in the vector-labels 𝑈𝑑
𝑘𝕥 and 𝑢𝑖

𝑘𝕥, the corresponding vector 

pointers 𝑝𝑖
𝑘, 𝐿𝑖

𝑘  ∀ 𝑘 ∈ {1, 2, … , 𝑀}, 𝑖 ∈ 𝑁. 

The set of objective functions to be used for determining the strategies, 𝑂𝐵𝐽. 

Find: 

 The travel time distributions of the optimal strategy 𝑈𝑒𝑥𝑡
𝑖𝑘,𝕥(𝑜𝑏𝑗) and the pointers 𝐶𝑒𝑥𝑡

𝑖𝑘,𝕥 ∀𝑖 ∈

𝑁, 𝕥 ∈ 𝕋, 𝑘 ∈ {1, 2 … , 𝑀} 𝑠. 𝑡. 𝐿𝑖
𝑘 ≠ ∞, 𝑜𝑏𝑗 ∈ 𝑂𝐵𝐽, for each 𝑑 ∈ 𝒟. 

Step 0: Initialization 

 Step 0.1: Find all eligible paths. 

  For the destination node 𝑑 ∈ 𝒟,  from the eligibility indicators Λ 
𝑘𝕥 ∀ 𝑘 ∈

{1, 2, … , 𝑀}, 𝕥 ∈ 𝕋, save the node-path ID pairs and links that each path traverses, 

using the pointers 𝐿 and 𝑃 as follows: 

For each 𝕥 ∈ 𝕋: 

   Define the set 𝑃𝑛
𝕥 = {} and 𝑃𝑎

𝕥 = {}. 

For each 𝑘 ∈ 𝐾 = {𝑘 | Λ𝑑𝑑
𝑘𝕥 = 1}: 

    Initialize the lists 𝑃𝑛𝑘 = {} and 𝑃𝑎𝑘 = {}. 

Let 𝑗 = 𝐷, 𝜇 = 𝑘. Add (𝑗 − 𝜇) to the list 𝑃𝑛𝑘.  

While 𝑗 ≠ 𝑂: 
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Let 𝑗′ = 𝑗. Update 𝑗 = 𝐿𝑗
𝜇

 and 𝜇 = 𝑝𝑗
𝜇

.  

Add (𝑗 − 𝜇) to the list 𝑃𝑛𝑘. 

Add the link 𝑎 = (𝑗, 𝑗′) to the list 𝑃𝑎𝑘. 

Reverse the lists 𝑃𝑛𝑘  and 𝑃𝑎𝑘. Add 𝑃𝑛𝑘 to 𝑃𝑛
𝕥 and 𝑃𝑎𝑘 to 𝑃𝑎

𝕥. 

   For each time 𝕥 ∈ 𝕋: 

Save the number of occurrences for each of the node-path ID pairs (𝑗 −
𝜇) in any path in 𝑃𝑛

𝕥 (indicating the number of sub-paths to destination) 

as 𝑁𝑗−𝜇
𝕥 .  

 Step 0.2: Initialize pointers and labels 

  Initialize SE, a first-in-first-out (FIFO) queue of scan-eligible node-path ID pairs.  

For each final pointer at the destination (𝑑 − 𝑘) | Λ𝑑𝑑
𝑘𝕥 = 1, add (𝑑 − 𝑘) to SE. 

Initialize the list 𝑅 = {} to contain all read nodes. 

Initiate empty vector labels 𝑈𝑒𝑥𝑡
𝑖𝑘,𝕥 = [𝑁𝑜𝑛𝑒]𝑆 and vector pointers 𝐶𝑒𝑥𝑡

𝑖𝑘,𝕥 = [𝑁𝑜𝑛𝑒]𝑆 

 ∀𝑖 ∈ 𝑁, 𝑘 ∈ {1, 2 … , 𝑀}, 𝑠. 𝑡. 𝐿𝑖
𝑘 ≠ ∞, ∀𝑡𝑝 ∈ 𝕋0 each of size 𝑆. 

For each 𝑡𝑝 ∈ 𝕋0: 

Step 1: SE queue check 

 If the SE queue is not empty, take the node-path ID pair (𝑗 − 𝜇) at the front of the queue, 

i.e., in a FIFO manner.  

If the number of unique paths in 𝑃𝑎𝑘 is 1, go to Step 4. 

Otherwise, find the previous node (𝑗′, 𝜇′) such that 𝑗′ = 𝐿𝑗
𝜇

 and 𝜇′ = 𝑝𝑗
𝜇

. Add 

(𝑗′, 𝜇′) to 𝑅. 

If (𝑗′, 𝜇′) has 𝑁𝑗′−𝜇′
𝕥  occurrences in 𝑅 and 𝑁𝑗′−𝜇′

𝕥 = 1, add (𝑗′, 𝜇′) to the SE 

queue. 
Else if (𝑗′, 𝜇′) has 𝑁𝑗′−𝜇′

𝕥  occurrences in 𝑅 and 𝑁𝑗′−𝜇′
𝕥 > 1, then (𝑗′, 𝜇′) is a 

decision node, go to Step 2.  

Otherwise, go back to Step 1.  

Otherwise, if SE queue is empty, go to Step 3. 

Step 2: Decision node evaluation 

 Find the set of paths that contain the branching node-path ID pair (𝑗′ − 𝜇′) from 𝑃𝑛
𝕥 and 

𝑃𝑎
𝕥 as 𝑃𝑛

𝕥(𝑗′, 𝜇′) and 𝑃𝑎
𝕥(𝑗′, 𝜇′).  

Call the Decision Node Evaluation Procedure for node-path ID pair (𝑗′ − 𝜇′) to obtain 

the vector labels and pointers for the sub-strategy at the branching node, 𝑈𝑗′𝜇′
 and  𝐶𝑗′𝜇′

, 

respectively for each objective function 𝑜𝑏𝑗. Let 𝑈𝑒𝑥𝑡
𝑗′𝜇′

(𝑜𝑏𝑗) = 𝑈𝑗′𝜇′
(𝑜𝑏𝑗) and 

𝐶𝑒𝑥𝑡
𝑗′𝜇′

(𝑜𝑏𝑗) = 𝐶𝑗′𝜇′
(𝑜𝑏𝑗).  

Replace the paths from 𝑃𝑎

𝑡𝑝(𝑗, 𝜇) in 𝑃𝑎

𝑡𝑝
 with 𝑃𝑠

𝑗𝜇
 (i.e., the shared portion of the path) and 

append the indicator 𝑒𝑥𝑡 at the end.  

Add (𝑗′, 𝜇′) to the SE queue. 

Go to Step 1. 

Step 4: Origin node evaluation  

 The resulting 𝑈𝑒𝑥𝑡
𝑜,0(𝑜𝑏𝑗) and 𝐶𝑒𝑥𝑡

𝑜,0(𝑜𝑏𝑗) contain the strategy travel time distribution and 

point to the sub-strategy from the origin respectively, for each of the objective functions 
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𝑜𝑏𝑗. The objective function value for each of the strategies can be determined by 

evaluating the distribution for that objective 𝑈𝑒𝑥𝑡
𝑜,0(𝑜𝑏𝑗). 

 

The decision node evaluation procedure is given below. This procedure evaluates the possible 

strategy paths at the decision node and determines the travel time distribution of the conditional 

sub-strategy from that branching node.  

 

 

Decision Node Evaluation Procedure 

Given: 

 All of the items given for the Stage 2 Procedure for Finding Optimal Routing Strategies 

The current branching node-path ID pair (𝑗 − 𝜇), the set of paths that contain it from 𝑃𝑛
𝕥 

and 𝑃𝑎
𝕥 as 𝑃𝑛

𝕥(𝑗, 𝜇) and 𝑃𝑎
𝕥(𝑗, 𝜇)..  

Find: 

 The vector labels 𝑈𝑗𝜇 and pointers 𝐶𝑗𝜇 for the sub-strategy at the branching node  (𝑗 − 𝜇) 

Step 0: Initialize 

 Find the shared links for the set of paths 𝑃𝑎
𝕥(𝑗, 𝜇) as 𝑃𝑠

𝑗𝜇
 and the node-path ID pairs from 

𝑃𝑛
𝕥(𝑗, 𝜇), from the origin to the branching node 𝑗.  

Separately, save the sub-paths from node 𝑗 to the destination 𝑑 for each of the paths in 

set 𝑃𝑎
𝕥(𝑗, 𝜇).  

Retrieve the travel times on the shared links from the origin to node 𝑗 from 𝑢𝑎
𝑘𝕥 and find 

the corresponding time intervals via the function 𝜙(⋅).  

For each of the objective functions considered set 𝑈𝑜𝑏𝑗 = [𝑁𝑜𝑛𝑒]𝑆  
Step 1: Retrieve conditional distributions 

 For each extension sub-path 𝑘′ ∈ 𝑃𝑎
𝕥(𝑗, 𝜇): 

  If the extension 𝑘′ does not contain the indicator 𝑒𝑥𝑡: 
For each sample 𝑠 ∈ {1, 2, … , 𝑆}: 

   Find the list of exit time intervals using 𝜙, find the appropriate time-

dependent joint link travel time distributions and covariance matrix using the 

exit bins.  

For each link 𝑎′ ∈ 𝑘′: 
    Sequentially sample from 𝜋𝑎′ 

𝑒  where 𝑒 is the time interval for exit time 

at (𝑗 − 𝜇(, conditional on the previous link travel times 𝜏𝑎𝑐

𝜇𝕥[𝑠]. Save 

the samples into the temporary labels 𝑢𝑡𝑒𝑚𝑝
𝑠 (𝑎′, 𝑠′) ∀ 𝑠′ ∈ {1, 2, … , 𝑆′}. 

Compute the sum 𝑢𝑘′
𝑠 = ∑ 𝑢𝑡𝑒𝑚𝑝

𝑠 (𝑎′, 𝑠′)𝑎′∈𝑘′  
  Otherwise, if the extension 𝑘′  contains the indicator 𝑒𝑥𝑡: 
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Retrieve the link travel time distributions 𝑢𝑎
𝑧∀𝑎′ ∈ 𝑘′𝑖𝑓 𝑎 ∈ 𝐴, 𝑠 ∈

{1, 2, … , 𝑆} and 𝑢𝑒𝑥𝑡 = 𝑈𝑒𝑥𝑡
𝑗′𝑧

 for the final node 𝑗′, where 𝑧 is a place holder 

for the corresponding path identifier. Then let 𝑢𝑘′
𝑠 = ∑ 𝑢𝑎

𝑧(𝑠)𝑎′ + 𝑢𝑒𝑥𝑡(𝑠). 
Step 2: Evaluate branching node extensions 

 For each sample 𝑠 ∈ {1, 2, … , 𝑆}: 

  For each objective function 𝑜𝑏𝑗: 
   Determine the objective function value for the distribution of 𝑂𝑘′ =

𝑢𝑘′
𝑠 ∀ 𝑘′ ∈ 𝑃𝑎

𝕥(𝑗, 𝜇).  

Select 𝑘∗ = 𝑘′ ∈ 𝑃𝑎
𝕥(𝑗, 𝜇) with the minimum or maximum (depending on the 

objective) value for the 𝑂𝑘′ let 𝑈𝑜𝑏𝑗(𝑠) = 𝑢𝑘∗
𝑠  and 𝐶𝑜𝑏𝑗(𝑠) = 𝑘∗. 

 Set 𝑈𝑗𝜇(𝑜𝑏𝑗) = 𝑈𝑜𝑏𝑗 and 𝐶𝑗𝜇(𝑜𝑏𝑗) = 𝐶𝑜𝑏𝑗 (∀ 𝑠 ∈ {1, 2, … , 𝑆}). 

 

The result of the Stage 2 procedure is the final travel time distribution from the origin, based 

on each of the objectives 𝑜𝑏𝑗, which can be directly retrieved from 𝑈𝑒𝑥𝑡
𝑜,0 (𝑜𝑏𝑗). The objective value 

for each of the distributions can be obtained with their corresponding objective functions. The 

vector pointers 𝐶𝑒𝑥𝑡
𝑜,0(𝑜𝑏𝑗) point to the (conditional) sub-strategy from the origin for each of the 

objective functions 𝑜𝑏𝑗.  

7.4 Numerical Experiments 

This section presents the numerical experiments designed to evaluate the performance of 

the solution methodology for the TA-RLTS problem in this chapter. The network and data used 

for the experiments are same as those for the experiments in Chapter 6, using the same 25 scenarios 

for the simulations, the 7:00 to 10:00 a.m. peak period, along with the same origin node and 

departure times. The design of this chapter’s experiments is outlined in 7.4.1, and the results and 

analysis are presented in 7.4.2.  
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7.4.1 Design of the Numerical Experiments 

The numerical experiments were designed to evaluate the performance of the solution 

approach, in terms of efficiency and accuracy, across the various dominance criteria for the path 

generation and different objective functions for selecting the optimal strategy. 

Similar to the numerical experiments in the previous chapter, all 7 different dominance 

criteria were tested, the RDD with 6 𝜖 values, 𝜖 ∈ {0, 0.01, 0.05, 0.1, 0.15, 0.2} and the A-FSD 

criterion. Again, the RDD with 𝜖 = 0 is an exact criterion leading to exact solutions for the optimal 

strategy. The six objective functions are also defined corresponding to those in the previous 

chapter, the Value at Risk (VaR) and Conditional Value at Risk (CVaR), each with three values 

for the 𝛼-percentile tail, 𝛼 ∈ {0.7, 0.8, 0.9}.  

The TA-RLTS problem was solved for a single randomly selected origin node to all 

destination nodes in the network, for the 5 departure times, with an optimal strategy determined 

for each dominance criterion and for each objective function, resulting in a total of 331,170 

solutions.  

As in the previous chapter, the path travel time distributions were estimated via the time-

dependent NORTA approach with time-varying covariance structure, introduced in Chapter 5.  

7.4.1.1 Research Questions and Performance Measures 

The numerical experiments were designed to answer several research questions to gain an 

understanding of the TA-RLTS problem itself and the proposed solution approach.  

Regarding the TA-RLTS problem and the solutions obtained in these numerical 

experiments, the experiments tested are intended to answer the following questions: 

• How complex are the optimal routing strategies?  
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o To be evaluated via the number of decision nodes and branching nodes in the 

optimal routing strategy, for each objective function and on average. 

• How computationally expensive is it to obtain TA-RLTS solutions? 

o To be evaluated via the average and maximum computational run times. 

• What is the effect of selecting a strategy compared to an a priori path solution? 

o To be evaluated via the objective values for optimal strategies compared to 

those of optimal a priori paths, for each objective function. 

Regarding the performance of the solution approaches, the following questions are to be 

answered via the numerical experiments: 

• How does the performance of the solution approach vary with the approximate 

dominance criteria?  

o To be evaluated relative to the base full strategy via the change in the number 

of branching nodes, the change in the objective function values, and the change 

in run times.  

• How does the performance of the solution for the approximate criteria vary across the 

different objective functions? 

o To be evaluated via the change in the objective function values of optimal 

solutions for each objective function.  

To answer these research questions, the applicable performance characteristics and 

measures include actual run times, numbers of decision and branching nodes for optimal strategies, 

and percent relative difference to measure change in objective values.  
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7.4.2 Results and Analysis of the Numerical Experiments 

The numerical results are separated into two sections, according to the two types of 

research questions, evaluating TA-RLTS solutions relative to a priori paths in 7.4.2.1 and the 

performance of the TA-RLTS approach with its approximations in 7.4.2.2. 

7.4.2.1 Evaluation of Trajectory-Adaptive Strategy Solutions 

Considering the first two research questions, the results in Table 7-4 show the overall 

complexity of the TA-RLTS solutions via the average and maximum computational run times and 

the average and maximum numbers of branching nodes for each solution.  

To clarify, a solution is considered a strategy obtained for a specific origin-destination pair, 

with a specified departure time, and for a specified objective function. However, a single run finds 

the solutions for all departure times and all objectives. 

 

Table 7-4. Complexity of trajectory-adaptive strategy solutions: run times and branching 

nodes numbers 

Dominance 

Criterion 

Average Run 

Time (s) 

Maximum Run 

Time (s) 

Average 

Branching 

Nodes Number 

Maximum 

Branching 

Nodes Number 

R
D

D
 

ϵ = 0 27.90 7.46 165.08 37 

ϵ = 0.01 21.09 4.44 120.09 23 

ϵ = 0.05 18.21 3.45 99.17 21 

ϵ = 0.1 15.93 2.82 82.14 18 

ϵ = 0.15 13.99 2.39 76.37 16 

ϵ = 0.2 11.63 1.92 57.57 15 

A-FSD 10.70 1.61 57.07 13 

 

Table 7-4 shows that, on average, the run times decrease with the complexity of the strategy 

itself, i.e., its number of branching nodes, across the different dominance criteria used. This trend 
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can be understood as follows: the stricter the dominance criterion, reducing the set of eligible paths 

to destination, the fewer the number of decision nodes, thus restricting the number of possible 

branching nodes and reducing the computational effort needed due to fewer evaluation points. 

These results are also shown in Figure 7-3.  

Focusing on the solutions for the RDD criterion with 𝜖 = 0, considered the base full 

strategy, on average run times for obtaining the strategy are 27.9 seconds, but can be as high as 

165 seconds. On average, a trajectory-adaptive strategy had 7.46 branching nodes, and the 

maximum number of branching nodes can be up to 37. These values indicate that the strategies 

can contain a significant number of options compared to the a priori path. The average and 

maximum number of strategy paths for the full strategy solutions were 14.27 and 67 paths, 

respectively. 

 

Figure 7-3. Overall complexity of trajectory-adaptive strategy solutions: 

run times and branching nodes numbers 
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Next, consider the effect of choosing a strategy, relative to an a priori solution in terms of 

the objective function values. The objective function values, on average across all cases and for 

each objective function (in minutes of travel time), for the full trajectory-adaptive strategy and the 

a priori path solutions are shown in Table 7-5, along with average and weighted average percent 

relative difference values.  

Table 7-5. Objective values and differences for trajectory-adaptive strategy and a priori 

solution 

 Average objective function value  Percent relative difference 

 Full TA Strategy  A Priori Path  Average 
Weighted 

Average 

All Cases  28.75 31.53 11.23% 8.51% 
VaR, 𝛼 = 0.7 24.41 25.65 9.24% 4.86% 
VaR, 𝛼 = 0.8 26.58 28.21 10.24% 5.76% 
VaR, 𝛼 = 0.9 29.31 31.81 10.99% 7.88% 

CVaR, 𝛼 = 0.7 28.82 32.02 11.41% 10.00% 
CVaR, 𝛼 = 0.8 30.46 34.19 12.12% 10.93% 
CVaR, 𝛼 = 0.9 32.95 37.28 13.40% 11.61% 

  

Table 7-5 shows that on average, the percent relative difference in objective function value 

is 11.23%, meaning that the objective function value for the strategy is that much lower than for 

the a priori solution, and the weighted average that adjusts for the actual value of time savings is 

8.51%. Furthermore, the percent relative difference, which can be interpreted as percent travel 

time savings on the objective function value, increase for the stronger, more risk-sensitive 

objectives. This trend can be better observed in the graphical representation of these results shown 

in Figure 7-4. As the 𝛼-percentile level increases, both for VaR- and CVaR-based objectives, the 

percent relative time savings increase. Similarly, the CVaR-based objectives have higher percent 

relative difference than the VaR-based objectives at equal values for 𝛼. 
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Figure 7-4. Objective values and differences for trajectory-adaptive strategy and a priori 

solution for all objective functions 

The interpretation of these results is that for more risk-averse travelers or applications, 

where the objective is either with higher 𝛼 values or a more risk sensitive CVaR-based objective, 

the percent relative difference between the two solutions is greater. Thus, for such travelers or 

applications, it may be more important to consider trajectory-adaptive solutions as they can lead 

to much more significant savings on the objective function, here observed on average at 13.4% for 

the  CVaR, 𝛼 = 0.9 objective function. For less risk-sensitive travelers or applications, such as those with 

VaR-based objectives and 𝛼 = 0.7 or 𝛼 = 0.8, the time savings are much lower, but on average still at 

9.24% and 10.24%, respectively.  

7.4.2.2 Performance of the TA-RLTS Approach and Approximations 

This section considers the performance of the solution approach with the approximate 

dominance criteria, relative to the full strategy for the exact criterion, i.e., RDD with 𝜖 = 0. The 

run times and number of branching nodes, average and maximum values, for the different 
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dominance criteria are shown in Table 7-4 and Figure 7-3 in the previous section, showing the 

downward trend in the solution complexity and computational effort as the 𝜖 increases for the 

RDD criterion and moving to the A-FSD criterion. In Table 7-6, these results are supplemented 

with the relative percent difference on the average run time, number of branches and objective 

function value for all cases, relative to the exact solution with the RDD with 𝜖 = 0 criterion.  

Table 7-6. Average percent relative difference in run times, number of branches and 

objective values for approximate solution cases 

Approximate 

Criterion Used 

Average Percent Relative Difference 

Run Time Number of Branches Objective Value 

RDD 𝜖 =  0.01 −31.32% −33.18% 3.36% 
RDD 𝜖 =  0.05 −41.32% −45.72% 4.67% 
RDD 𝜖 =  0.1 −49.42% −54.77% 5.39% 
RDD 𝜖 =  0.15 −55.09% −61.14% 6.73% 
RDD 𝜖 =  0.2 −61.94% −67.62% 7.85% 

A-FSD −65.60% −71.49% 8.25% 
 

 Moving from the exact criterion to using the eligible paths generated via the approximate 

criteria can lead to significant time savings, up to 65.6% average decrease in the run time when 

using the A-FSD criterion, and from 31.32% to 61.94% run time savings when using the RDD 

with 𝜖 values from 0.01 to 0.2. This result is similar to that observed for the a priori solutions’ run 

times in the previous chapter. The number of branches in the optimal strategy decreases with the 

run time. However, these savings in computational effort and complexity are accompanied with a 

strict increase in the percent relative difference of the objective function value, where the 

approximate approaches lead to an increase in the objective function value.  

These trends can be better observed in Figure 7-5. An important observation from these 

results is that the solution based on the A-FSD criterion produces the highest increase in the 

objective function values relative to the exact solution.  
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Figure 7-5. Average percent relative difference in run times, number of branches and 

objective values for approximate solution cases 

This result is interesting, since the A-FSD was observed to be the second-best approximate 

criterion for the a priori solution. Of course, the important reason for this discrepancy is the fact 

that the FSD criterion (and subsequently the stronger A-FSD) criterion does not eliminate paths 

based on their likelihood to contribute to a strategy, but rather the path’s potential to be a priori 

optimal. This was demonstrated via Example 4 in section 7.2.4. On the other hand, the RDD 

criterion, having been derived as a measure of the path’s contribution to the strategy is seen to 

result in an increase in the objective function value that increases with the risk tolerance parameter 

𝜖. 

Next, to consider how the performance varies across the objective functions, Table 7-7 

shows the percent relative difference in objective value for the approximate approaches for each 

of the objective functions, where the VaR and CVaR objectives are abbreviated as V and C, 

respectively.  
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Table 7-7.  Average percent relative difference objective values for approximate solution 

cases by objective function 

Approximate 

Criterion Used 

Average Percent Relative Difference 

V(𝛼 = 0.7) V(𝛼 = 0.8) V(𝛼 = 0.9) C(𝛼 = 0.7) V(𝛼 = 0.8) V(𝛼 = 0.9) 

RDD 𝜖 =  0.01 2.83% 3.19% 3.36% 3.36% 3.54% 3.88% 
RDD 𝜖 =  0.05 4.02% 4.48% 4.64% 4.69% 4.85% 5.34% 
RDD 𝜖 =  0.1 4.56% 5.09% 5.30% 5.43% 5.69% 6.30% 
RDD 𝜖 =  0.15 5.01% 5.89% 6.31% 6.87% 7.46% 8.82% 
RDD 𝜖 =  0.2 5.77% 6.84% 7.47% 7.98% 8.68% 10.32% 

A-FSD 6.80% 7.89% 8.31% 8.25% 8.71% 9.56% 
 

A similar trend is observed, where the stronger dominance criteria generally lead to a 

higher percent relative difference from the exact solution for all objectives. Additionally, the 

difference in objective value increases for the more risk-sensitive objectives. These trends are 

further visually presented in Figure 7-6. The results in Figure 7-6 show that the effect of using an 

approximate criterion is greater for some objective functions compared to others. Namely, for both 

the VaR- and CVaR-based objectives, increasing the 𝛼 percentile level increases the relative 

difference in the objective value compared to the exact solution. 

Therefore, for applications with more risk-sensitive objectives it may be more important to 

use the exact dominance criterion or determine which would be a good approximate criterion. This 

is important since for risk-sensitive objectives, such as CVaR with 𝛼 = 0.9, the increase in 

objective was observed to reach 10.32%, relative to the exact solution. On the other hand, for less 

risk-sensitive objectives approximate criteria may be a good choice. For example, for the VaR 

objective with 𝛼 = 0.7, the RDD crierion with 𝜖 = 0.01 has the lowest increase in objective value 

of 2.83% and the highest effect on the objective was observed at 3.88%, for the run time savings 

of about 31% up to 65%, seen in Table 7-6. 
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Figure 7-6. Average percent relative difference objective values for approximate 

solution cases by objective function 

Another notable observation from Figure 7-6 is that the RDD criterion with sufficiently 

high 𝜖 value and for the more risk-sensitive objectives can be outperformed by the A-FSD 

criterion. In these results, this effect only occurs when 𝜖 = 0.2, indicating that a 20% risk-tolerance 

level may be too high for certain objective types. 

7.5 Conclusion and Future Work 

This chapter focuses on the problem of finding optimal trajectory-adaptive reliable least-time 

strategies (TA-RLTS) in stochastic dynamic networks with generalized spatio-temporal 

correlations between link travel times. A two-stage path and strategy finding approach is presented, 

adjustable to admit different levels of risk or approximation into the solution via approximate 

dominance criteria for path generation. The solution method is suited for multiple reliability-based 

objectives in the least-time category.  
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Numerical experiments were performed on the network of Chicago to test the performance 

and applicability of the proposed solution algorithm and give insights into some of its 

characteristics. The experimental results showed the impact of a TA-RLTS solution compared to 

an a priori path solution. Additionally, the performance of the approach was tested with 

approximate dominance criteria and six different objective functions based on the Value at Risk 

(VaR) and Conditional Value at Risk (CVaR) risk measures. The numerical results demonstrate a 

trade-off between reduced computational effort (i.e., computational run time savings) and 

increased least-time based objectives (i.e., loss on the objective function). Additionally, the 

numerical experiments revealed that the effect of the approximation varies with the risk sensitivity 

of the objective function.  

This study opens several questions that can be explored in future work. One assumption made 

in the problem definition is that cyclicity is precluded as a property of the user. Solving the problem 

with recourse can be considered in future work. Understanding the effect of allowing cyclic paths 

and the value of information available to or collected by the user are also worthy of further study. 

Additional computational tests may be needed in order to understand the performance of the 

solution algorithm and heuristic for different sizes and types of networks. Furthermore, there is 

some motivation of understanding how the effect of the risk-tolerance parameter may change in 

different networks and with different data sets.  
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Chapter 8 Information-Adaptive Routing in Connected Environments 

8.1 Overview 

Having considered the problems of a priori reliable least-time paths (RLTP) and trajectory-

adaptive reliable least-time strategies (TA-RLTS) in stochastic dynamic networks, this chapter is 

focused on the problem of information-adaptive routing in the context of a connected environment.  

Adaptive routing in stochastic dynamic networks was discussed in detail in Chapter 7, 

introducing adaptive routing problems as defined by two key characteristics of the problem: the 

availability of information and the traveler’s response to that information. The problem of 

trajectory-adaptive routing strategies is concerned with a special case of partial information 

availability: the traveler’s own trajectory, and specifically for the case of the proactive (i.e., 

strategic) traveler. The problem to be considered in this chapter approaches adaptive routing in the 

context of a connected environment and for a reactive traveler. 

Information-adaptive routing in a connected environment allows for a more general 

definition of information availability. Information from connected vehicles traveling in the 

stochastic dynamic network may be available at varying levels, depending on the number of 

connected vehicles in the network, and in various parts across the network, depending on those 

vehicles’ trajectories.  

The problem defined in this chapter considers the use of such information that becomes 

available as time passes and connected vehicles make their way through the network with the 

response of a reactive traveler. In contrast to the proactive traveler’s response to information, 

presented in the previous chapter, where the solution is a strategy consisting of a collection of 

paths, the reactive traveler receives information and adjusts the path to destination at each decision 
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node. Thus, the solution for this type of problem consists of a path chosen at each decision node 

to the destination, based on the information available at the time of arrival at that node.  

This chapter utilizes the representation for jointly distributed link travel times across the 

entire network as continuous random variables with time-varying distributions and correlation 

structures from Chapter 4; the approaches for path travel time distribution estimation from Chapter 

5; and the eligible path generation approach from Chapter 6 to solve the information-adaptive 

reliable least-time routing (IA-RLTR) problem presented here.  

The remainder of this chapter is organized as follows. The problem definition and its 

methodological difficulties are presented in section 8.2, including definitions of information 

availability in a connected environment in 8.2.2 and specifics on the IA-RLTR problem in 8.2.3. 

The solution methodology is presented in section 8.3, while section 8.4 focuses on the numerical 

experiments with the experimental design in 8.4.1 and the results and analysis in 8.4.2. 

Conclusions and discussions on future work are presented in section 8.5.  

8.2 Problem Definition and Methodological Difficulties 

The information-adaptive reliable least-time routing (IA-RLTR) problem and the 

methodological difficulties associated with it are presented in this section. First, an overview on 

the stochastic time-varying network and modeling is presented for completeness in 8.2.1, the 

details for which can be found in the corresponding sections in Chapter 6 and Chapter 7. Next, 

section 8.2.2 defines information availability in a connected environment and section 8.2.3 

presents additional definitions and examples and defines the IA-RLTR problem at hand.  
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8.2.1 Stochastic Time-Varying Network Modeling and Notation 

Similar to Chapter 6 and Chapter 7, this chapter defines an STV network 𝐺(𝑁, 𝐴, 𝒯) with 

𝑁 the set of |𝑁| = 𝑛 nodes, 𝐴 the set of |𝐴| = 𝑚 links, and 𝒯 the set of time periods. Link travel 

times are random variables jointly distributed across time, with travel time on link (𝑖, 𝑗) at time 𝑡 

denoted Θ𝑖𝑗
𝑡 . Here, the random variables are modeled to vary across the time periods in 𝒯 but be 

constant within each single time period. Link travel times are modeled as continuous positive 

random variables with a truncated distributions 𝜋𝑖𝑗
𝑡 , constrained by a minimum and maximum 

possible value. Dependencies between the link travel times are defined via link-pairwise 

covariances that vary over time-period pairs, so that 𝑐𝑜𝑣(Θ𝑖𝑗
𝓉1 , Θ𝑘𝑙

𝓉2) is the covariance between the 

travel time on link (𝑖, 𝑗) during time period 𝓉1 ∈ 𝒯 and that on link (𝑘, 𝑙) during time period 𝓉2 ∈

𝒯. 

Path travel time distributions are estimated according to the approaches in Chapter 5, and 

the assumptions from Chapter 6 and Chapter 7 carry over to this problem definition: only acyclic 

paths are considered and no waiting at nodes is permitted.  

8.2.2 Information Availability in a Connected Environment 

In this chapter, the stochastic dynamic network is assumed to be a connected environment. 

Elfar et al. (2018) define a connected environment as one where vehicles share their detailed 

trajectories through vehicle-to-vehicle (V2V) or vehicle-to-infrastructure (V2I) communications. 

Connected vehicles have the ability to share information on their location, speed, acceleration to 

other vehicles in the environment and receive the same types of information from other connected 

vehicles.  
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In a stochastic dynamic network with spatio-temporal dependencies, the travel times 

realized across the network and over time are highly interdependent. Thus, travel times that will 

be experienced along the path a particular traveler intends to traverse will depend on travel times 

experienced in other parts of the network and at earlier points in time. Modeling network link 

travel time dependencies allows for information regarding travel times across various parts of the 

network in the past to be used to update the knowledge of future travel time distributions on the 

links of interest to a given traveler or decision maker.  

The previous chapter presents a definition of trajectory information H, as a series of 

consecutive node-time pairs the traveler has experienced from the origin node 𝑖0 at departure time 

𝑡0 up to the current node 𝑖 and time 𝑡: 𝐻 = {(𝑖0, 𝑡0), (𝑖1, 𝑡1), … , (𝑖, 𝑡)}. The trajectory information 

𝐻 also contains the revealed travel times along the traversed links.  

This chapter assumes that the connected environment traveler has access to connected 

vehicle (CV) information from all CVs in the network, which traverse actual trajectories during 

the time of the traveler’s trip. This definition assumes that a traveler does not have access to CV 

information prior to start of their trip and has access to trajectory information from all CVs that is 

received over time from the start of their trip. Thus, the traveler departing at origin 𝑖0 and time 𝑡0 

has access to trajectory information 𝐻𝑣 for each connected vehicle 𝑣, from the first node 𝑗0 they 

reach at the time 𝑡𝑗0 closest to 𝑡0, up to the last node they reached 𝑗 at the time 𝑡𝑗 closest to current 

time 𝑡: 𝐻𝑣
𝑡0𝑡

= {(𝑗0, 𝑡𝑗0), (𝑗1, 𝑡𝑗1), … , (𝑗, 𝑡𝑗)}. Let 𝒱 denote the set of all connected vehicles in the 

network, then the information available to the traveler would be ℋ𝑡0𝑡 = {𝐻𝑣
𝑡0𝑡

 ∀ 𝑣 ∈ 𝒱}.  

It should be noted that even though 𝒱 contains all the connected vehicles in the network, 

the definition of 𝐻𝑣 ensures that each traveler has access only to the CV trajectory information 
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from the traveler’s start at origin at time 𝑡0 to the current time 𝑡. Hence, any vehicles not actively 

traveling in the network during that time will deliver no information and any trajectory (or part of 

a trajectory) that a vehicle traversed prior to time 𝑡0 will be excluded from ℋ. 

This definition of information availability in a connected environment is a type of partial 

information availability that is more general than that from the previous chapter. In fact, access to 

the traveler’s own trajectory information only, as used in Chapter 7, can be seen as a special case 

of this definition, where the traveler’s own vehicle is the only one in the set 𝒱. Other special cases 

of partial information availability can also be framed as special cases of this definition. For 

example, the information availability in a special neighborhood can be obtained by restricting 𝐻𝑣 

to contain information only for nodes 𝑖 that are in the predefined spatial neighborhood. The full 

information case is also a special case of this definition, when the set 𝒱 contains all vehicles in the 

network, i.e., in the case of a fully connected environment. This definition allows for this problem 

definition and its solution approach to be generalized for any level or type of information that can 

be specified under the definition for connected environment information. 

8.2.3 Information-Adaptive Reliable Least-Time Routing Problem 

This chapter considers the problem of finding information-adaptive reliable-least time 

routes (IA-RLTR) in stochastic dynamic networks with spatio-temporally correlated link travel 

times. The problem definition assumes the traveler has access to vehicle trajectory information 

from a connected environment, denoted ℋ, and defined in the previous section. The IA-RLTR 

assumes a reactive traveler that considers the information as it arrives and makes a new decision 

at each decision point. This problem definition differs significantly from that of the proactive 
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traveler defined in the previous chapter. This section will define some of the key concepts for the 

problem definition and present short examples to illustrate those.  

Definition 1. Information-Adaptive Routing Solution: An information-adaptive routing 

solution 𝜌 can be defined as a mapping from state to decision. The state is defined as the triplet 

{𝑖, 𝑡, ℋ}, where 𝑖 is the current node, 𝑡 is the current time – equivalent to the time of arrival at the 

current node, and ℋ is the current information from the connected environment, as defined above. 

The action space at state {𝑖, 𝑡, ℋ} is {𝑗 ∈ 𝑁 ∶ (𝑖, 𝑗) ∈ 𝐴}, i.e., the set of nodes adjacent to 𝑖, and the 

decision for which node 𝑗 to take next: 𝜌: {𝑖, 𝑡, ℋ} → 𝑗.   

The information-adaptive routing solution here is defined recursively, similarly to the 

trajectory-adaptive routing strategy. However, a there are some key differences in determining a 

strategy (for the proactive traveler) versus a path (for the reactive traveler). In determining which 

next node to select, i.e., the appropriate mapping 𝜌({𝑖, 𝑡, ℋ}) = 𝑗, the IA-RLTR problem selects a 

single path to the destination, rather than recursively considering the following decision nodes.  

Definition 2. Decision Node: A decision node for an information-adaptive routing strategy 

𝜌 is a node 𝑖 ∈ 𝑁 such that |{𝑗 ∈ 𝑁 ∶ (𝑖, 𝑗) ∈ 𝐴}| > 1, namely a node for which there is more than 

one possible next node that can be chosen. 

A key difference relative to the trajectory-adaptive strategy is that the IA-RLTR problem 

considers one decision node at a time and the next decision node is only known after the decision 

is made at the current node.  

To illustrate these two differences, consider the example network 2 from the previous 

chapter, shown here in Figure 8-1 with the possible travel time realizations of the joint link travel 
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time distribution given in Table 8-1 and Table 8-2. This example can be contrasted to Example 3 

in the previous chapter.  

Table 8-1. Possible joint link travel time realizations for example network 2 

 Link Travel Times 

Realization (𝑂, 𝑎) (𝑎, 𝑏) (𝑎, 𝑒) (𝑏, 𝐷) (𝑏, 𝑐) (𝑐, 𝐷) (𝑒, 𝐷) (𝑒, 𝑓) (𝑓, 𝐷) 

1 1 1 0.5 3 1 1 0.5 0.5 1 

2 1 2 1 1.5 1 1 1 1 1.5 

3 1 2 1.5 1 1 1 0.5 1.5 1 

4 2 1 0.5 2 0.5 1 1 1 1 

5 2 2 1 2 2 1 0.5 1 1.5 

6 2 2 1 1.5 1 2 1 1.5 1 

 

 

Figure 8-1. Example network 2 

Table 8-2. Possible joint link and path travel time realizations for example network 2 

 Travel Times 

Realization (𝑂, 𝑎) (𝑎, 𝑏) (𝑎, 𝑒) O-a-b-D O-a-b-c-D O-a-e-D O-a-e-f-D 

1 1 1 0.5 5 4 3 3.5 

2 1 2 1 4.5 5 5 5.5 

3 1 2 1.5 4 5 5 5.5 

4 2 1 0.5 5 4.5 4.5 5 

5 2 2 1 6 7 5.5 6.5 

6 2 2 1 5.5 7 6 6.5 

 

Example 1. Information-Adaptive routing for a Proactive Traveler 

Consider a reactive traveler who wants to minimize their expected travel time from O to 

D. The traveler starts at the origin with a chosen path to destination O-a-e-D, that minimizes the 

expected path travel time with no (additional) information, so their next node is a. 
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Suppose the traveler experiences travel time 𝑡𝑂𝑎 = 2 on link O-a and also receives 

information from the CV environment that another vehicle traversed link a-b with travel time 

𝑡𝑎𝑏 = 2. Then, at node 𝑎, conditional travel time distributions for all paths can be recomputed 

resulting in the following expected travel times: 𝐸(𝑡𝑂𝑎𝑏𝐷) = 5.75, 𝐸(𝑡𝑂𝑎𝑏𝑐𝐷) = 7, 𝐸(𝑡𝑂𝑎𝑒𝐷) =

5.75 and 𝐸(𝑡𝑂𝑎𝑒𝑓𝐷) = 6.5 and the minimum expected travel time is 5.75 for both paths  O-a-b-D 

and O-a-e-D and the traveler can select either of those. This process is repeated at the next decision 

node. ∎ 

Thus, in contrast to the proactive traveler that makes a “plan” (i.e., chooses a strategy) to 

the destination node – considering the different possible outcomes and their likelihood, the reactive 

traveler simply makes a new choice at each decision node as it is encountered, and information is 

received.  

Some additional terminology that will be used in relation to the IA-RLTR problem is 

presented here. The initial path is the path chosen at the origin and used to make the first decision 

for next node, when no information is available to the traveler, and will also be referred to as the 

a priori path. For each decision node 𝑖, the optimal and selected path according to the information 

available at that node will be referred to as the path at node 𝑖. A path will be considered to be ‘in 

the solution’ if it was the selected path at any decision node 𝑖. A change of path at node 𝑖 takes 

place if the selected path at node 𝑖 is different from the immediate previous selected path. The path 

realized with all intermediate node decisions, from the origin to the destination, is the a posteriori 

path and will also be referred to as the final path. 

From these definitions, the existence of decision changes at intermediate nodes does not 

imply that the a posteriori node is different from the a priori node. In example network, the traveler 
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could start with selected path O-a-e-D, then at node a decide on path O-a-e-f-D, then at node e 

select path O-a-e-D again. In that case, a change of path occurred at two intermediate nodes, but 

O-a-e-D is both the a priori and a posteriori path.  

8.3 Solution Methodology 

The proposed solution approach for the information-adaptive reliable least-time routing 

(IA-RLTR) problem in stochastic dynamic networks with connected environment information 

access is a 2-stage approach. Firstly, eligible a priori paths are generated using the approach for 

the RLTP problem in Chapter 6. Secondly, the information-adaptive path finding approach 

evaluates the paths at each decision node and determines the optimal path to destination based on 

the available information from the connected environment.  

8.3.1 Eligible Paths Generation 

The approach for generating eligible non-dominated a priori paths, presented as part of the 

solution for the RLTP problem in Chapter 6, is summarized here. The approach eliminates 

dominated paths at intermediate nodes based on two types of dominance criteria: an adjusted First-

Order Stochastic Dominance (A-FSD) criterion and a relaxed deterministic dominance criterion 

(RDD), based on the stochastic dominance and deterministic dominance criteria by Miller-Hooks 

and Mahmassani (1998b). The RDD criterion was modified with a relaxation parameter 𝜖 that 

specifies the allowable level of risk in eliminating a potentially viable path.  

8.3.2 Information-Adaptive Path Updating 

The second stage of the solution approach uses the Stage 1 eligible paths and travel time 

distributions in a procedure for information-adaptive path updating. Unlike the previous 

algorithms, this portion of the solution approach is performed for each destination node, departure 



231 

 

time, for a given objective function. The procedure presented below includes the updating of the 

joint link travel time distributions at each decision node, based on the conditional on the connected 

environment information delivered at the arrival time at that decision node. In this manner, the 

algorithm is self-contained. However, since the updating of the travel time distributions is 

conditional on the information up to the current time, the updating can be performed 

simultaneously for multiple O-D pairs, which would make the Stage 2 approach significantly more 

efficient.  

Solution Algorithm, Stage 2: Procedure for Information-Adaptive Path Updating 

Given: 

 The network 𝐺(𝑁, 𝐴, 𝒯). The function 𝜙(⋅) ∈ 𝒯.  

The joint time-varying link travel time distributions with time-varying covariance 

structure.  

The origin node 𝑂. Destination 𝑑 ∈ 𝒟. Departure time 𝕥 ∈ 𝕋.  
The results from Stage 1, for the selected dominance criterion: the path eligibility 

indicators Λ𝑖𝑑
𝑘𝕥 , the travel time distributions for the set of eligible paths and their links, 

𝑈𝑑
𝑘𝕥 and 𝑢𝑖

𝑘𝕥 and the corresponding vector pointers 𝑝𝑖
𝑘, 𝐿𝑖

𝑘 for 𝑖 ∈ 𝑁,   𝑘 ∈ {1, 2, … , 𝑀}. 

The objective function 𝑓𝑜𝑏𝑗 for path selection. 

The set of connected vehicles 𝒱. 

Find:  

 The set of decision nodes, (𝑖, 𝜇) ∈ Δ𝑑
𝕥  with their arrival times 𝑡𝑖,𝜇.  

The path to destination for each decision node 𝒫𝑖
𝜇

∀ (𝑖, 𝜇) ∈ Δ𝑑
𝕥  and the corresponding 

updated travel time distributions 𝓊𝑖
𝑘𝕥 ∀ 𝑖 ∈ 𝑁,   𝑘 ∈ {1, 2, … , 𝑀}. 

Step 0: Initialization 

 Step 0.1: Initialize pointers and labels 

  Initialize Δ𝑑
𝕥 = {(𝑂, 1)}. 

Set the arrival time at 𝑂, 𝑡𝑂,1 = 𝕥, and set it as the current time 𝑡 = 𝑡𝑂,1 

𝓊𝑖
𝑘𝕥 = 𝑢𝑖

𝑘𝕥 ∀ 𝑖 ∈ 𝑁,   𝑘 ∈ {1, 2, … , 𝑀}.  

 Step 0.1: Retrieve all eligible paths. 

  For the destination node 𝑑 ∈ 𝒟,  from the eligibility indicators Λ 
𝑘𝕥 ∀ 𝑘 ∈

{1, 2, … , 𝑀}, save the node-path ID pairs and links for each path as 𝑃𝑛𝑘 and 𝑃𝑎𝑘 for 

𝑘 ∈ 𝐾 = {𝑘 | Λ𝑑𝑑
𝑘𝕥 = 1} into sets 𝑃𝑛

𝕥 and 𝑃𝑎
𝕥, respectively. 

 Step 0.3: A priori path at origin 

  Find the optimal a priori path 𝑃∗, where  
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𝑃∗ = 
𝑃𝑛𝑘∈𝑃𝑛

𝕥
𝑎𝑟𝑔𝑚𝑖𝑛

𝑓𝑜𝑏𝑗 ( ∑ 𝑢𝑖
𝜇𝕥

(𝑖,𝜇)∈𝑃𝑛𝑘

) 

Set 𝒫𝑂
1 = 𝑃∗. 

Set the current decision node 𝛿 = (𝑂, 1). 

Go to Step 1. 

Step 1: Find next decision node  

 Find the path at current decision node 𝛿, 𝑃∗ = 𝒫(𝛿).  

Find the next node in 𝛿′ = 𝑃∗. 

Find the set of relevant paths 𝑃𝛿′ = {𝑃𝑛𝑘 ∈ 𝑃𝑛
𝕥 | 𝛿′ ∈ 𝑃𝑛

𝕥}  

If the number of unique paths in 𝑃𝑎𝑘 is 1, go to Step 4. 

Otherwise, find the next decision node as the farthest node 𝛿 that is in all paths in 𝑃𝛿′ .  
Set 𝛿 as the current decision node. Set 𝑃𝛿 = 𝑃𝛿′. 

Add 𝛿 to Δ𝑑
𝕥  

Go to Step 2.  

Step 2: Distribution updating 

 Sample a travel time to 𝛿 via 𝑢𝑖
𝑘𝕥, let the arrival time 𝑡𝛿 be set as the current time 𝑡 = 𝑡𝛿. 

Retrieve the CV trajectory information ℋ𝕥𝑡𝛿 = {𝐻𝑣
𝕥𝑡𝛿  ∀ 𝑣 ∈ 𝒱}. 

Find the set of links in the relevant paths as 𝐴′ ⊂ 𝐴, 𝐴′ = {(𝑖, 𝑗) ∈ 𝑃 ∀ 𝑃 ∈ 𝑃𝛿}. 
Update the travel time distributions 𝓊𝑖

𝑘𝕥 = 𝑢𝑖
𝑘𝕥|ℋ𝕥𝑡𝛿. 

Go to Step 3.  

Step 3: Decision node evaluation 

 Find the optimal a priori path 𝑃∗, where  

𝑃∗ = 𝑃∈𝑃𝛿

𝑎𝑟𝑔𝑚𝑖𝑛
𝑓𝑜𝑏𝑗 ( ∑ 𝓊𝑖

𝜇𝕥

(𝑖,𝜇)∈𝑃

) 

Set 𝒫(𝛿) = 𝑃∗. 

Go to Step 1.  

Step 4: Termination  

 Return the set of decision nodes, (𝑖, 𝜇) ∈ Δ𝑑
𝕥  with their arrival times 𝑡𝑖,𝜇. 

The path to destination for each decision node 𝒫𝑖
𝜇

∀ (𝑖, 𝜇) ∈ Δ𝑑
𝕥  and the corresponding 

updated link travel time distributions  𝓊𝑖
𝑘𝕥 ∀ 𝑖 ∈ 𝑁,   𝑘 ∈ {1, 2, … , 𝑀}. 

 

At termination the procedure returns the decision nodes with the corresponding arrival 

times and the selected paths at each decision node. It should be noted that the updating of the future 

links travel times is done at each node with the new available information. Thus, the travel time 

distributions and objective values for the possible paths are becoming more certain at each next 
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decision node. Thus, travel times or objective function values computed at earlier decision nodes 

cannot be directly compared to those computed at later nodes. The path updating procedure also 

returns the path selected at each decision node 𝒫𝑖
𝜇

∀ (𝑖, 𝜇) ∈ Δ𝑑
𝕥  and the final updated travel time 

distributions 𝓊𝑖
𝑘𝕥 ∀ 𝑖 ∈ 𝑁,   𝑘 ∈ {1, 2, … , 𝑀} with the most up to date information.  

8.4 Numerical Experiments 

This section presents the numerical experiments designed to evaluate the performance of 

the solution methodology for the TA-RLTS problem in this chapter. The network and data used 

for the experiments are same as those for the experiments in Chapter 7, using the same 25 scenarios 

for the simulations, the 7:00 to 10:00 a.m. peak period, along with the same origin node and 

departure times. This section describes the design of the numerical experiments in section 8.4.1, 

and the results and analysis are presented in section 8.4.2.  

8.4.1 Design of Numerical Experiments 

The numerical experiments were designed to answer a number of research questions 

regarding the IA-RLTR problem considered in this chapter and to evaluate the performance of the 

solution approach, in terms of efficiency and accuracy, across the various dominance criteria for 

the path generation and different objective functions for selecting the optimal path. 

8.4.1.1 Research Questions and Performance Measures 

This section outlines the research questions asked for these numerical experiments and the 

performance measures that can be used to answer them. Two sets of research questions are the 

basis of the design for these numerical experiments: the first set of questions presented below are 

concerned with the performance of the solution approach and approximations, while the second 
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set of questions are regarding the IA-RLTR problem and the impact of information relative to the 

a priori RLTP problem.  

Regarding the performance of the solution approaches, the following questions are 

addressed via the numerical experiments: 

• How does the performance of the solution approach vary with the approximate 

dominance criteria?  

o To be evaluated relative to the exact solution case via number of changes in 

selected path, the change in the objective function values and run times.  

• How does the performance of the solution for the approximate criteria vary across the 

different objective functions? 

o To be evaluated via the change in the objective function values of optimal 

solutions for each objective function. 

• How does the effect of selecting the a posteriori versus a priori path vary for different 

approximate dominance criteria? 

o To be evaluated via the objective values for optimal a posteriori paths compared 

optimal a priori paths, with the different approximate dominance criteria. 

Regarding the IA-RLTR problem and the solutions obtained in these numerical 

experiments, the experiments were designed to answer the following questions: 

• What is the effect of connected vehicle information access?  

o To be evaluated via the number of path changes relative to the number of 

decision nodes for each solution, for different objective functions and different 

levels of information availability. 
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• What is the effect of selecting the a posteriori compared to an a priori path solution? 

o To be evaluated via the objective values for optimal a posteriori paths compared 

optimal a priori paths, for different objective functions and information 

availability levels. 

To answer these research questions, the applicable performance characteristics and 

measures include actual run times, numbers of decision and branching nodes for optimal strategies, 

and percent relative difference to measure change in objective values.  

8.4.1.2 Experimental Design 

The experimental design for this study consists of two sets of numerical experiments 

corresponding to the two sets of research questions presented above.  

To evaluate the performance of the solution algorithm with different dominance criteria 

and objectives, the percentage of CVs was fixed to 𝑝 = 20% and the solution approach was tested 

with all 7 dominance criteria: the RDD with 6 𝜖 values, 𝜖 ∈ {0, 0.01, 0.05, 0.1, 0.15, 0.2} and the 

A-FSD criterion, and for the six objective functions from the previous chapter were also used here: 

the Value at Risk (VaR) and Conditional Value at Risk (CVaR), each with three values for the 𝛼-

percentile tail, 𝛼 ∈ {0.7, 0.8, 0.9}. 

To evaluate the IA-RLTR problem and the impact of information relative to the RLTP 

problem, the solution approach was tested by setting the dominance criterion in Stage 1 of the 

solution approach to the RDD criterion with 𝜖 = 0, which leads to exact path finding solutions. 

To test the impact of information level, the level of connectivity in the network was varied by 

varying the percentage of CVs in the network with 𝑝 ∈ {10%, 20%, 30%, 40%, 50%}, all to be 
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compared to the base case of 𝑝 = 0% which is equivalent to simply solving the RLTP problem 

from Chapter 6. To evaluate the effect with respect to the different objectives mentioned above.  

Each of these tests were performed by solving the IA-RLTS problem for a single origin 

node and 5 departure times, same as that in Chapter 7, and for a set of 250 randomly selected 

destination nodes. Thus, 45,000 tests were performed for the first set of experiments and 52,500 

tests for the second set of experiments, for a total of 97,500 tests.  

8.4.1.3 Simulation of the Connected Environment 

An important component of the numerical experiments for this chapter is the simulation of 

a connected environment to model the connected vehicle information access. To simulate the 

connected environment, one of the 25 simulated scenarios used for modeling the travel time 

distributions was selected as the ‘realized scenario’ and its data for the morning peak period from 

7 to 10 a.m. were considered. Additionally, to test for the impact of information, the portion of 

connected vehicles (CVs) in the network were varied. These numerical experiments considered 

five cases, where CVs were assumed to make up 𝑝 ∈ {10%, 20%, 30%, 40%, 50%} of all vehicles 

in the network. To ensure that the numerical results are more generalizable, these experiments used 

5 different sets of samples for CV data. Namely, 5 different randomly selected sets of vehicles 

were used for each of the CV penetration levels from 10% to 50%.  

As part of setting up the numerical experiments, the 5 sets of CVs in the network were pre-

selected to ensure the same vehicles were delivering the same information across all numerical 

experiment cases. For each set vehicles were randomly selected with a few key rules. For 

consistency in the distribution of information over time, for each value of 𝑝, the corresponding 

percent of vehicles were selected from those starting their trip in each 30-minute window of the 

morning peak period. Additionally, since different vehicles may travel different trajectories and 
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deliver varying quantities of data, the set of CVs was built so that the vehicles selected for 𝑝 =

10% were a strict subset of those selected for 𝑝 = 20%, which were in turn a strict subset of those 

selected for 𝑝 = 30% and so on.  

A final note should be added regarding the design of experiments with different levels of 

connectivity. Since path travel time distributions are conditioned only on the available information 

for each value of 𝑝, the conditional travel time distributions may vary from one case to the next. 

Namely, the higher the level of connectivity (i.e., as 𝑝 increases) the more information is available 

and the conditional travel time distributions become more accurate. Therefore, path solutions 

obtained with different levels of information cannot be directly compared with their travel time 

distributions at the given information level. In these experiments, the solutions with varying 

information levels were compared with the most updated conditional distributions at the highest 

information level. 

8.4.2 Results and Analysis 

The numerical results and their analysis are separated into two sections, corresponding to 

the two groups of research questions presented in the previous section. The results on the 

performance of the IA-RLTR approach with the approximate dominance criteria are presented in 

section 8.4.2.1, followed by results on the IA-RLTR solutions with varying levels of information 

and their comparison to a priori path solutions in section 8.4.2.2. 

8.4.2.1 Performance of the IA-RLTR Solution Approach and Approximations  

This section considers the performance of the solution approach with various approximate 

dominance criteria and across six different objective functions, for the case of CV penetration of 

𝑝 = 20% in the stochastic dynamic network.  
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The results presented here show average values, across all path solutions for the 250 O-D 

pairs with 5 departure times and for 6 different objective functions, i.e., a total of 3000 path 

solutions for each of the 7 dominance criteria. Table 8-3 shows some of the overall solution 

characteristics, including the run time (RT) in seconds, the percent updated paths, the number of 

decision nodes (DNs) per path, percent decision nodes (DNs) with change and run time (RT) per 

decision node (DN) in seconds.  

Table 8-3. Overall solution characteristics with different dominance criteria 

Dominance 

Criterion 
RT (s) 

Updated 

Paths (%) 

DNs per 

Path 

DNs with 

Change (%) 

RT per  

DN (s) 

RDD, ϵ = 0 3284.47 56.00% 3.92 20.46% 697.23 
RDD, ϵ = 0.01 2110.71 52.33% 3.20 20.41% 546.07 
RDD, ϵ = 0.05 1619.52 47.33% 2.92 19.76% 459.00 
RDD, ϵ = 0.1 1367.64 46.17% 2.67 19.63% 423.79 
RDD, ϵ = 0.15 1311.62 44.17% 2.51 19.41% 422.00 
RDD, ϵ = 0.2 1040.88 43.33% 2.33 19.34% 368.38 

A-FSD 1011.25 40.67% 2.26 18.14% 366.82 
 

The run time and run time per decision node increase with the approximate solutions, as 

do the number of decision nodes per path. The number of decision nodes at which a change occurs 

also decreases slightly. These results can also be seen in Figure 8-2, where the impact of 

approximation on the computational effort is visualized. 



239 

 

 

Figure 8-2. Average number of decision nodes and run time per decision node with 

different dominance criteria 

Figure 8-2 shows that the average run time can decrease drastically by introducing 

approximations. Simply using the RDD criterion with 𝜖 = 0.01 yields a 35% decrease in run time, 

while using the A-FSD criterion reduces the average run time by 69.2%. These time savings are 

in part associated with the number of decision nodes, but as the run time per decision node also 

decreases the time savings can also be due to the number of possible paths to be evaluated at each 

decision node.  

This effect of using approximate solutions translates to the effectiveness of the obtained 

solution. Figure 8-3 shows the percent of updated paths and percent of decision nodes with path 

updates. Updated paths are considered paths in which a path change was made for at least one 

decision node, meaning that the availability of information led to the solution being updated from 

the a priori path. With the exact approach 56% of the paths were updated, and that number 

decreases down to 40.67% with the approximate solutions. This is an interesting result, showing 
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that a large portion of the updated paths in the exact solution are still updated with approximation, 

and the run time savings close to 70% were achieved by reducing the updated paths by 15.33 

percentage points. However, it is important to consider how these updates to the path translate into 

travel time improvements. 

 

Figure 8-3. Percent updated paths and percent of decision nodes with path change with 

different dominance criteria 

Overall results on travel time savings with path updating are presented in Table 8-4, 

including the average and maximum values of time savings in minutes and percent (i.e., percent 

relative difference) compared to the a priori solution.  

The travel time savings across all paths and all objectives were on average 11.31% and up 

to 82.74% for the exact solution and decrease down to 6.48% on average and 76.99 % at maximum 

for the A-FSD criterion. The average values from Table 8-4 are also presented visually in Figure 

8-4.  
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Table 8-4. Overall travel time savings with path updating for different dominance criteria 

Dominance 

Criterion 

Average Values Maximum Values 

Time Saved 

(min) 

Percent Time 

Saved (%) 

Time Saved 

(min) 

Percent Time 

Saved (%) 

RDD, ϵ = 0 4.501 11.31% 109.24 82.74% 
RDD, ϵ = 0.01 3.958 10.04% 108.40 82.55% 
RDD, ϵ = 0.05 2.167 8.47% 71.47 82.76% 
RDD, ϵ = 0.1 1.993 7.79% 71.22 82.81% 
RDD, ϵ = 0.15 1.949 7.65% 71.34 82.92% 
RDD, ϵ = 0.2 1.745 7.04% 69.24 76.99% 

A-FSD 1.602 6.48% 69.20 76.99% 
 

 

Figure 8-4. Average raw and percent travel time savings for updated paths 

Looking at the average percent travel time savings, it is important to note the effect of small 

levels of approximation. Namely, considering the RDD criterion with 𝜖 = 0.01, the average travel 

time savings reduce from 11.31% to 10.04%, i.e., close to 1 percentage point, and the maximum 

travel time savings reduce by less than 0.2 percentage point. However, this approximate solution 

was obtained with a 35% shorter run time relative to the exact solution, as was shown in Table 8-3 
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and Figure 8-2. Similarly, in terms of minutes of travel time savings, introducing a low level of 

risk, here 𝜖 = 0.01 did not significantly impact the solution quality. To compare the performance 

of these approaches across different objective functions, the average travel time savings and 

percent travel time savings are shown in Table 8-5, where again the VaR and CVaR objective 

types are abbreviated as V and C, respectively.  

Table 8-5. Travel time savings for different dominance criteria and objective functions 

 Objective: V(𝛼 = 0.7) V(𝛼 = 0.8) V(𝛼 = 0.9) C(𝛼 = 0.7) C(𝛼 = 0.8) C(𝛼 = 0.9) 
  Average Travel Time Saving (min) 

D
o
m

in
an

ce
 

C
ri

te
ri

o
n

 

RDD 𝜖 =  0.01 3.68 6.14 4.37 4.22 4.38 4.36 

RDD 𝜖 =  0.05 2.92 5.64 3.82 4.07 4.01 3.50 
RDD 𝜖 =  0.1 1.69 3.16 1.72 2.11 2.09 2.30 
RDD 𝜖 =  0.15 1.43 3.18 1.56 1.67 1.75 2.17 
RDD 𝜖 =  0.2 1.39 3.21 1.49 1.90 1.82 2.20 

A-FSD 1.32 2.79 1.08 1.57 1.67 2.06 
  Average Percent Travel Time Saving 

D
o
m

in
an

ce
 

C
ri

te
ri

o
n

 

RDD 𝜖 =  0.01 10.45% 13.10% 11.16% 11.21% 11.16% 10.96% 

RDD 𝜖 =  0.05 9.14% 11.75% 9.47% 10.36% 9.70% 9.94% 
RDD 𝜖 =  0.1 7.88% 9.60% 7.32% 8.78% 8.60% 8.67% 
RDD 𝜖 =  0.15 7.00% 8.98% 6.90% 7.93% 7.86% 8.22% 
RDD 𝜖 =  0.2 6.62% 8.67% 6.66% 7.90% 7.83% 8.11% 

A-FSD 6.29% 8.29% 5.45% 7.17% 7.30% 7.68% 
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Figure 8-5. Average percent travel time saved for different dominance criteria and 

objective functions 

It can be seen that there are no significant differences in the time savings for different 

objective functions, but the overall trend remains of decreasing time and percent travel time 

savings with the use of approximate dominance criteria. The average percent travel time savings 

for each objective function are shown in Figure 8-5, where it can be observed that the largest 

savings were achieved for the VaR objective with 𝛼 = 0.8, followed by the CVaR objectives, then 

the remaining VaR objectives. The trend of reducing percent travel time savings with the 

approximate dominance criteria can also be observed. 

On the whole, these results demonstrate the potential of approximate dominance criteria in 

improving the computational efficiency of the solution approach and illustrate the trade-off 

between efficiency and solution quality. The results also show that using the RDD criterion with 

low values for the risk-tolerance level 𝜖, here the lowest value tested being 𝜖 = 0.01 can maintain 

the solution quality, relative to stronger approximations, while also yielding significant savings in 

computational effort.  
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8.4.2.2 Evaluation of Information-Adaptive Routing in a Connected Environment 

This section presents the results on the IA-RLTR solutions with varying levels of 

information and considers how they compare to a priori solutions to assess the impact of 

information access. This set of experiments were performed for a single dominance criterion, the 

RDD with 𝜖 = 0, which leads to exact solutions. It should be noted that these experiments were 

conducted separately from those in section 8.4.2.1 above, so their results are not compared directly. 

In this portion of the numerical experiments, the effect of increasing information 

availability via increased penetration of connected vehicles in the connected environment is 

assessed via the percent of updated paths and their raw and percentage travel time savings in terms 

of the objective function value. These results are always compared relative to the original path 

solution, which is equivalent to the optimal a priori path from the RLTP problem. The general 

results, including the percent of updated paths, and average and maximum travel time savings are 

shown in Table 8-6. 

Table 8-6. Impact of information-adaptive solution with different CV penetration levels 

CV 

penetration 

(%) 

 Average Values Maximum Values 

Updated 

Paths (%) 

Time Saved 

(min) 

Percent Time 

Saved (%) 

Time Saved 

(min) 

Percent Time 

Saved (%) 
10% 54.00% 2.68 7.63% 66.10 80.14% 
20% 56.00% 3.29 8.21% 66.10 80.14% 
30% 56.53% 3.30 8.96% 66.10 80.14% 
40% 56.80% 3.50 9.44% 66.10 80.14% 
50% 58.07% 4.16 11.28% 66.10 80.14% 

 

The results in Table 8-6 show an increase in the number of updated paths as information 

availability increases with higher CV penetration level, from 54% to 58.07%. The average travel 

time savings, relative to the a priori solution, both in minutes and percent travel time increase with 

the increase of information, but the maximum travel time savings are constant across the 5 cases, 
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indicating that they were achieved with the lowest level of information. Thus, the 10% CV 

penetration provided sufficient information for 54% of the paths to be updated, on average with 

7.63% in travel time savings per updated path, and the subsequent increase in CV penetration by 

an additional 40 percentage points resulted in an increase in updated paths by only 4.07 percentage 

points and the percent travel time savings by 3.65 percentage points. Overall, this indicates that 

the average travel time savings across all considered paths, including those not updated at all, were 

4.12% for the CV penetration level at 10% and 6.55% for the CV penetration level at 50%.  

Considering the travel time savings for different objective function, shown in Table 8-7, 

the same general trend is observed, but no significant differences across the different objectives. 

From Table 8-7, the highest average travel time savings are achieved at the highest level of CV 

penetration for each objective. The difference in travel time savings from the 10% penetration 

level to 50% varies slightly across the different objectives, with the largest difference at 4.58 

percentage points for the VaR (𝛼 = 0.8) objective.  

Table 8-7. Percent travel time savings for IA solutions for different objectives  

 Objective: V(𝛼 = 0.7) V(𝛼 = 0.8) V(𝛼 = 0.9) C(𝛼 = 0.7) C(𝛼 = 0.8) C(𝛼 = 0.9) 

%
 C

V
 

p
en

et
ra

ti
o
n

 10% 4.25% 6.03% 7.48% 8.13% 9.91% 10.01% 
20% 4.93% 7.58% 7.79% 8.38% 10.42% 10.15% 
30% 7.06% 7.88% 8.05% 9.06% 11.11% 10.62% 
40% 7.16% 8.05% 9.21% 9.37% 11.77% 11.08% 
50% 8.16% 10.62% 11.99% 11.34% 13.34% 12.25% 

 

These results show that the effect of access to information is important when moving from 

the a priori to a low level of information access, such as the 10% CV penetration level. However, 

the marginal improvements for increased CV penetration are relatively low. Of course, the impact 

of information access and CV penetration levels can vary due to a range of other factors not 
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accounted for in these experiments, such as the distribution of CV trips across the network and 

over time. Such questions may provide interesting areas for future research. 

8.5 Conclusion and Future Work 

This chapter addresses the problem of finding optimal information-adaptive reliable least-

time routes (IA-RLTR) in stochastic dynamic networks with spatio-temporal dependencies. The 

problem setting consists of a stochastic dynamic network that is also a connected dynamic 

environment. This chapter presents a general definition for information access in a connected 

vehicle environment and defines the IA-RLTR problem for a reactive traveler. A two-stage 

solution approach is presented, using the path generation algorithm for a priori paths from Chapter 

6 and an information-adaptive path updating approach.  

Numerical experiments on the large-scale Chicago network tested for the characteristics of 

the problem at hand and the performance of the solution approach. The experiments tested the 

performance of the approach with different dominance criteria and for different objective 

functions, and compared the effect of information access at different connected vehicle penetration 

levels. The experimental results show the trade-off between computational effort and solution 

quality in the IA-RLTR problem. Using approximate dominance criteria allows for reduced 

computational run times at the expense of finding the optimal solution and specifically in the travel 

time savings of the IA solution relative to a priori paths. However, the results show that controlling 

the level of approximation via the risk-level tolerance criterion 𝜖 allows for finding a balance 

between the two at low values for 𝜖. Testing for different levels of information access by varying 

the level of CV penetration in the connected environment, the numerical results show the 
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significant impact of information access at low CV penetration levels and small marginal increases 

as the CV penetration increases. 

Several questions related to this study may be interesting for future research. Firstly, 

regarding the approximate solution approaches, future work may evaluate the impact of 

approximations and their performance in networks of different size or type. Secondly, in terms of 

the information availability and CV penetration levels, it may be interesting to investigate the 

effect of information based on the types of trips the CVs take and their distribution across space 

and time. Thirdly, a larger problem that can be considered in future work may be to combine the 

proactive (i.e., strategic) traveler approach from the TA-RLTS problem in the previous chapter 

with the reactive traveler approach from the problem in this chapter. In such a problem, a traveler 

could choose a strategy that is updated at each node based on incoming CV information. This 

problem would also allow for a comparison of the trajectory- and information-adaptive problems 

to evaluate the impact of the traveler’s own trajectory versus CV information in achieving 

improvements in travel time.  
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Chapter 9 Concluding Remarks 

9.1 Summary and Contributions 

This dissertation focuses on addressing modeling and optimization problems in stochastic 

dynamic networks. The motivation for this topic arises both from the importance of reliability as 

a factor in evaluation and decision-making in transportation networks and from the need for a 

cohesive framework to approach optimization problems in this complex setting. One of the main 

objectives of this dissertation is to present a comprehensive and cohesive set of approaches for 

modeling, estimation, and optimization in stochastic dynamic networks.    

The broad contributions of this dissertation include the characterization of stochastic 

dynamic networks in a data-driven and application-oriented manner, presenting approaches for the 

estimation of path travel time distributions, and defining and solving path finding problems for 

reliable least-time routing. The routing problems presented in this dissertation include the problem 

of a priori reliable least-time paths in Chapter 6, trajectory-adaptive reliable least-time strategies 

in Chapter 7 and information-adaptive reliable least-time routing in Chapter 8. The dissertation 

presents unifying solution approaches that can be used for solving all three of these problem types 

that also utilize the modeling and estimation approaches from the previous chapters. Additional 

and more specific contributions are presented in the overview sections for each chapter.  

9.2 Applications 

The problems studied in this dissertation have several important application areas. The 

characterization of stochastic transportation networks can be applied for performance 

measurement, performance monitoring and simulation modeling in the context of transportation 
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policies, projects and applications concerned with the reliability performance of transportation 

systems.  The estimation of path travel time distributions is a key aspect of assessing transportation 

networks from the user perspective, evaluating the transportation system by considering entire 

paths or trajectories and accounting for the importance of travel time reliability.  

Reliable path finding problems have a host of applications, besides the most apparent 

problem of individual traveler routing. Reliability-based decision making is more important at 

larger scales, for applications such as freight or mobility service providers where lack of reliability 

translates to economic cost. Emerging transportation technology and service advancements may 

be even more concerned with reliable routing, such as the cases of electric vehicles, autonomous 

vehicles, ride-sourcing companies, etc. Emerging transportation data also call for making 

reliability-based decision-making adaptive to information. With the increased reliance on traveler 

information services and navigation systems, and the availability of trajectory data via 

geographical positioning systems (GPS) or connected vehicles (CVs), real-time information access 

is becoming more ubiquitous and the ability to use that information and respond to it is also 

becoming more important.  

9.3 Future Research Areas 

This dissertation, along with its results, analysis, and discussion, opens up several 

additional questions and considerations that provide a basis for future work. For the 

characterization of stochastic dynamic networks, more sophisticated approaches for community 

structures and change point detection can be applied, such as ones where change point detection 

can be performed on the community structure itself.  
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In terms of path finding and routing problems, solving the problem with recourse, and 

understanding the effect of allowing cyclic paths are worthy of further study. Additional 

computational tests may be needed in order to understand the performance of the solution 

algorithm and heuristic for different sizes and types of networks.  

An interesting problem for future work may be to combine the proactive (i.e., strategic) 

traveler approach with the reactive traveler perspective to compare the two and potentially evaluate 

the impact of the traveler’s own trajectory versus CV information. In terms of the information 

availability, future research may investigate the effect of information based on the type of trips for 

CVs and their distribution across space and time.  
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