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ABSTRACT

Geometrically Modelling the Lubin-Tate Action

Catherine Ray

The action of the automorphisms of a formal group on its deformation space is

crucial to understanding periodic families in the homotopy groups of spheres and the

unsolved Hecke orbit conjecture for unitary Shimura varieties. This action is called the

Lubin-Tate action. We first show sufficient conditions for geometrically modelling this

action as coming from an action on a moduli stack, generalizing previous constructions

using the moduli stack of elliptic curves. We then construct such a stack satisfying

these conditions for height p− 1 for all odd primes p, and conjecture the correct stack

for height h = pk−1(p − 1) for all odd primes. These heights capture all topologically

interesting information for odd primes. We construct these stacks both locally and

globally using inverse Galois theory and Hurwitz stacks. Finally, we relate these stacks

to the reduced regular representation of cyclic groups, and use this to compute the

action explicitly.
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Introduction

The action of the automorphisms of a formal group on its deformation space is

crucial to understanding periodic families in the homotopy groups of spheres and the

unsolved Hecke orbit conjecture for unitary Shimura varieties. We can explicitly deter-

mine this action by geometrically modelling it as an action on a moduli space, which

we construct using inverse Galois theory and some representation theory.

0.1. Homotopic Motivation for the Lubin-Tate Action

Many geometric problems have been reduced to solvable problems in stable homo-

topy theory. This began with Thom’s approach to computing cobordism groups using

homotopy theory, continued with Stolz’s use of Spin cobordism to study manifolds of

positive scalar curvature, and most recently, crescendoed to the work of Hill-Hopkins-

Ravenel on the Kervaire invariant (12).

The original problem which has motivated many developments in stable homotopy

theory, and which is very far from being understood completely, is the computation of

stable homotopy groups of spheres. Bousfield localization informs us that it is sufficient

to understand what happens rationally and what happens at each prime p. The p-

complete sphere spectrum, although simpler than the sphere spectrum we started with,

is still a very complicated object. We need further ideas to break this up into more

manageable pieces. The chromatic viewpoint arose in the late 1960s. It is the most

successful approach to the structure of stable homotopy, both from a conceptual and
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a calculational standpoint, connecting algebraic topology of finite complexes with deep

patterns in number theory.

After the Adams spectral sequence allowed us to begin computing them, stable

homotopy groups of spheres previously seemed chaotic and without pattern. Through

the groundbreaking work of Quillen in the late 1960s and its expansions by Morava

in the 1970s, we discovered that the stable homotopy groups of spheres have deep

structure.

The stable homotopy groups of spheres are like a complicated multilayered signal,

and we may construct band pass-filters to read the individual messages. These band-

pass filters are extraordinary cohomology theories constructed from one dimensional

formal group laws, and they detect periodic families in the homotopy groups of spheres.

The starting point of chromatic homotopy theory is the observation that any co-

homology theory for which we have a natural theory of Chern classes gives rise to

a smooth one-parameter formal group defined over its ring of coefficients. A formal

group is an arithmetic object which can be thought of as a refinement of the concept

of a Lie algebra, one which behaves well also in positive characteristic. Surprisingly,

the formal group associated to the complex bordism cohomology theory MU turns out

to be isomorphic to the universal formal group, setting up a dictionary between ho-

motopy theory and the theory of formal groups. The geometry of the moduli stack of

formal groups thus controls the stable homotopy category. Much of what can be proved

and conjectured about stable homotopy theory arises from the study of this stack, its

stratifications, and the theory of its quasi-coherent sheaves.

At a fixed prime p, there is a single invariant called height which stratifies the

moduli stack of formal groups. For a prime p and a height h one has the Morava

K-theory spectrum K(h) which corresponds to the closed point (h, p) of the Balmer
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spectrum Spec(S), and one has the Morava E-theory spectrum Eh which corresponds

to the formal neighborhood of K(h) in the Balmer spectrum.

The latter yields an efficient filtration of the homotopy groups of p-localized spheres

πh(S(p)) through localizations LhS of the p-local sphere spectrum S(p) of the relative

opens of Spec S. These localizations fit into the chromatic tower

· · · → LhS(p) → · · · → L1S(p) → L0 ' S(p),Q

and the chromatic convergence theorem of Hopkins and Ravenel (25) implies that the

resulting filtration on π∗(S) is exhaustive, that is, S(p) = holimLhS(p).

For a finite CW spectrumX, the difference between Lh(X) and Lh−1(X) is measured

by LK(h)(X), in the sense that the previous tower arises from an ascending filtration of

the (p)-local stable homotopy category Sp,

SpQ ' Sp0 ⊂ Sp1 ⊂ · · · Sph ⊂ · · · ⊂ Sp(p),

with filtration quotients equivalent to the category of K(h)-local spectra.

Let H be a one dimensional formal group of height h over a perfect characteristic

p field k, then Jh := Aut(H/k) acts on the functions on the deformation space of H,

which we call OLT . The action of Jh on OLT is called the Lubin-Tate action.

If we expand the deformation problem to include units, as discussed in Section , the

ring E∗ that represents it is the coefficient ring of Morava E-theory.

By the work of Devinantz-Hopkins-Miller (6), we can access the K(h)-local category

using the Jh-equivariant homotopy theory of Eh,

[LK(h)(Eh ∧X)]hJh ' LK(h)X.
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We are thus able to calculate periodic families in the homotopy groups of spheres by

a homotopy fixed point spectral sequence which begins with the information of the

Lubin-Tate action:

H∗(Jh, E∗)⇒ π∗(LK(h)S).

The issue now is that directly computing the action of Jh on LT∗ is not tractable. By

work of Henn (9), we may hope to reduce to computing the action of finite subgroups

of Jh. Even computing finite subgroups is recalcitrant and requires tools from algebraic

geometry.

Elliptic curves appearing in homotopy theory because they provide a geometric

model of the Lubin-Tate action of finite subgroups at height 1 and 2 (10) (14) (1). It is

much more difficult to create an abelian variety which geometrically models the Lubin-

Tate action at height three or higher: by Cartier duality one must consider abelian

varieties of dimension ≥ 3, and then only those for which a 1-dimensional formal group

of height h breaks off as a summand of the formal group associated to the abelian

variety.

The idea of geometric modelling has been implicit in the literature for some time,

but has never been made precise. This thesis describes exactly the conditions a stack

must satisfy to model the Lubin-Tate action. Then we investigate this in detail in the

case of stacks parameterizing Artin-Schreier curves. We further establish what would be

necessary to carry out a similar investigation in the case of stacks parameterizing more

general Artin-Schreier-Witt curves. Artin-Schreier curves were previously considered

in this context (7) and (26) (27), see also (13).

Some of the past work on geometric models, as in (2), uses unitary Shimura varieties

of signature (1, h − 1) in order to produce moduli stacks of abelian varieties with CM

structure which forces the associated formal group to split into 1-dimensional formal
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groups. The downside of this approach is that these abelian varieties almost never

arise as Jacobians of families of curves, so one is forced to work with a variety of large

dimension. In fact by Oort’s conjecture, for g � 0 there should not exist a positive

dimensional special subvariety of the moduli of principally polarized abelian varieties

of dimension g which is contained in the Torelli locus and which intersects the open

Torelli locus nontrivially. Such special subvarieties parameterize abelian varieties with

CM structure which actually come from Jacobians of families of curves, and the point

of Oort’s conjecture is that this can only happen for very small g (conjecturally only

for g ≤ 7) (20).

Geometric models of the Lubin-Tate action give access to certain types of calculation

which are otherwise inaccessible. The Kevaire invariant one theorem for p ≥ 5, was

proved using the action of Cp for height h = p− 1 (24). It is suspected that the action

of C9 for height h = p(p − 1) will detect the remaining p = 3 case. For example, for

the prime two, height 4, the action of C8 detects all of the Kevaire elements, but the

action of C2 detects only some of them. The original plan of (12) went through the

study E(4)hC8 , but it was far too difficult at that time. At the prime two, the homotopy

groups of the spectrum EhC4
4 have been calculated (19).

0.2. Arithmetic and Geometric Motivation for the Lubin-Tate Action

The Lubin-Tate action also plays a distinguished role in arithmetic geometry through

its relation to the local Langlands correspondence. Although this is not the primary

lens through which we study the Lubin-Tate action, it is nevertheless important to

explain the broader context into which this action fits.

Let F be a finite extension of Qp with valuation ring OF and residue field OF/$ =

Fq where $ is a uniformizer. The goal of local class field theory is to describe the
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Abelian Galois extensions of F , which is achieved through the local Artin reciprocity

morphism recF : F× → Gal(F ab/F ) which is continuous with dense image; to make

this an isomorphism we can either enlarge Gal(F ab/F ) = Gal(F ab/F ur)oẐ to the Weil

group W (F ab/F ) = W (F ab/F ur)oZ to obtain the local Artin reciprocity isomorphism

recF : F×
∼−→ W (F ab/F ), or we can restrict F× to the profinite completion F̂× to obtain

the local Artin reciprocity isomorphism r̂ecF : F̂×
∼−→ W (F ab/F ).

Miraculously, the Abelian extensions of F and the Artin reciprocity morphism can

be described explicitly in terms of Lubin-Tate formal groups.

Let F$ be the set of formal power series f ∈ OF [[t]] such that f(t) = $t + O(t2)

and such that f(t) ≡ tq mod $. For f ∈ F$ there exists a unique formal group

law Ff (x, y) ∈ OF [[x, y]], the Lubin-Tate formal group law, which admits f as an

endomorphism. The Lubin-Tate formal group laws over OF are precisely those formal

group laws over OF (of height h[F : Q] for admitting an endomorphism with derivative

at the origin equal to $ and which reduces modulo $ to the Frobenius endomorphism

φq. Each a ∈ OF defines an endomorphism [a]f ∈ End(Ff ) such that [a]f (t) = at+O(t2),

which defines an isomorphism [·]f : OF
∼−→ End(Ff ).

For the unramified Abelian extensions we have the following. For µn the set of n-th

roots of unity in F we have F ur =
⋃
p-n F (µn) with Gal(F ur/F ) ' Ẑ.

For the totally ramified Abelian extensions we have the following. For f ∈ F$

consider the OF -module Λf = {x ∈ F | |x| < 1} with group law x + y = Ff (x, y)

and action a · x = [a]f (x), both of which converge in F . For h ≥ 1 consider the OF -

submodule Λf,h = {x ∈ Λf | [$]nf (x) = 0}. Let F$,h = F [Λf,h]. Then F$,h/F is

totally ramified of degree (q− 1)qh−1, the action of OF on Λf,h defines an isomorphism

(OF/$h)× ' Gal(F$,h/F ), in particular F$,h/F is an Abelian Galois extension and we

have F ab =
⋃
h≥1 F$,h with Gal(F ab/F ) ' F̂× = O×F ×$Ẑ.
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To summarize this last point, for each h ≥ 1 the Lubin-Tate formal group law

defines a unique up to isomorphism formal OF -module of height h over Fq (that is a

formal group of height h[F : Q] over Fp) whose endomorphism ring in the category of

formal OF -modules over Fp is isomorphic to OD where D is the unique division algebra

of invariant 1
h

over F . The torsion points of these Lubin-Tate formal groups, adjoined

to F , exhaust the totally ramified Abelian extensions of F , in striking analogy with the

theory of complex multiplication for number fields.

What about the non-Abelian extensions of F? For this to make sense, we need to

generalize the local Artin reciprocity morphism to the local Langlands correspondence:

recF :

 irreducible supercuspidal

representations of GLn(F )

→
irreducible n-dimensional

representations of WF


Miraculously, the local Langlands correspondence can be realized explicitly in terms of

cohomology of the Lubin-Tate tower. We will explain this quickly in the case F = Qp.

As explained previously, we have the Lubin-Tate space LT = Spf(W (Fp)[[u1, . . . , uh−1]])

of formal deformations of a fixed formal group G0 of height h over Fp, where LT (R)

parameterizes pairs (G, ι) where G is a 1-dimensional commutative formal group over R

and ι : G0
∼−→ G⊗R Fp. Let LT be the rigid generic fiber of LT , which is a p-adic rigid

open ball of radius 1. We have the Lubin-Tate space LTn of level pn, where LTn(R)

parameterizes triples (G, ι, α) where (G, ι) ∈ LT (R) and α : (Z/pnZ)h
∼−→ G[pn] is a

Drinfeld level pn structure. Let LT n be the rigid generic fiber of LTn. Drinfeld showed

LT n → LT is an étale cover of the p-adic rigid open ball of radius 1 with Galois

group GLh(Z/pnZ). At infinite level, the Lubin-Tate tower LT ∞ (morally this is the

inverse limit lim←−n LT n, although this does not exist as a rigid space) carries an action

of GLh(Qp)×D× ×WQp .
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For ` 6= p one can define the `-adic cohomology H∗c (LT ∞,Q`) = lim−→n
H∗c (LT n,Q`)

using Berkovich’s nearby cycle sheaves, which carries an action of GLh(Qp)×D××WQp .

By the Jacquet-Langlands correspondence we have a canonical bijection:

JL :

 irreducible supercuspidal

representations of GLn(F )

→
irreducible supercuspidal

representations of D×


By Harris-Taylor we have a canonical bijection:

rec :

 irreducible supercuspidal

representations of GLn(Qp)

→
irreducible n-dimensional

representations of WQp


such that for π an irreducible supercuspidal representations of GLh(Qp) we have

HomGLh(Qp)(π,H
∗
c (LT ∞,Q`)) = JL(π)⊗ rec(π)

Much more is known in general: the theorem of Harris-Taylor does not assume F = Qp,

and there are more general theorems of Boyer (3) and Scholze (28) which realize the local

Langlands correspondence for irreducible admissible representations of GLn(F ) (rather

than just the irreducible supercuspidal representations) in terms of the cohomology of

a similar tower of formal deformations of a fixed p-divisible group of height h over Fp.

There are now very general theorems of Fargues-Scholze (22) which realize the local

Langlands correspondence for irreducible admissible representations of G(F ) for any

reductive group G in terms of the cohomology of certain local Shimura varieties studied

by Rapoport-Zink (cite) and Scholze-Weinstein (21).

It is worth mentioning that many of the above theorems about the local Lang-

lands correspondence are proved using global methods. Roughly speaking, one embeds

the Lubin-Tate tower at infinite level into some tower of Shimura varieties at infinite
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level, then the automorphic representations of G(A) appearing in the cohomology of

the tower of Shimura varieties at infinite level restrict to the desired irreducible ad-

missible representations of G(F ). For example Deligne (5) realizes the local Langlands

correspondence for GL2(Qp) for p > 2 by realizing the global Langlands correspondence

for GL2(A) in the cohomology of the tower of modular curves at infinite level. More

generally Harris-Taylor and Scholze both realize the local Langlands correspondence for

GLh(Qp) by studying the cohomology of a certain tower of unitary Shimura varieties

of signature (1, h − 1) at infinite level. The role of such unitary Shimura varieties is

explained by the fact that locally symmetric spaces for GLh are not Shimura varieties

for h ≥ 3, and instead one must locate the cohomology of such locally symmetric spaces

for GLh in the boundary cohomology of some other Shimura variety, and the unitary

Shimura varieties of signature (1, h− 1) do just this.

Finally we should remark that Hurwitz spaces of branched Z/nZ-covers of P1 deter-

mine unitary Shimura varieties associated to the group algebra of Z/nZ. The Lubin-

Tate spaces which appear in the description of formal deformations of such branched

Z/nZ-covers should therefore be related to some part of the local Langlands correspon-

dence, and the corresponding unitary Shimura varieties allow for global methods to be

applied in this situation.

0.3. Division Algebra Finite Subroups: Algebraic vs Topological

As we mentioned, there are two types of things meant when people say Morava

stabilizer group. Here we are talking about the maximal order Jh in the division algebra,

and not the Galois group extension.

Lemma 0.3.1. ((4) pp. 4, (11)) Let h = pk−1(p − 1) where p is odd. Let Jh be the

Morava stabilizer group of height h (not extended). This is the only height h in which
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there are p-Sylow subgroups of Jh. Further, the p-cyclic subgroup in Jh of largest order

sits inside of the maximal finite subgroup Γ := Cpk o C(p−1)2.
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Roadmap

Here is an outline of the thesis. We define the notion of geometric modelling in

Section 2. In Theorem 2.0.3, we show that for a moduli stack M to geometrically

model a finite subgroup G of the Morava stabilizer group acting on the Lubin-Tate

space, it is sufficient for it to satisfy two criterion, which we define in Section 1.2.

We construct a few equivalent examples of a moduli stack M which satisfies these

criterion for the maximal finite subgroup of the Morava stabilizer group Jh for height

h = p− 1, in Sections 5, 6, and in 7. This is done in Theorem 5.0.2.

We further set up a moduli stackMk fibered over our h = p−1 deformation moduli

stack, in Sections 5, 3.3, and 3.5. We conjecture in 4.9.1 that this satisfies the geometric

modelling criterion for h = pk−1(p−1), and show that it has h-splitting up to isogeny in

the case h = 6 and p = 3. We explain why we cannot use our previous proof method to

immediately show it has h-splitting integrally in Section 3.3. However, there are a few

ways we may be able to tweak the proof approach to conclude what we desire, which

is also expressed in Section 3.3.

The set up of the constructive part of the thesis is as follows.

• We consider a curve X over a field k of characteristic p such that G ⊂ Autk(X).

[Section 3]

• We consider a moduli stack M on which there is a point Spec k → M corre-

sponding to a map py : X → P1
k. If we consider M to be a deformation moduli

stack, then one of the criterion (modelling) is automatically satisfied. Section
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5. We can also take integrally defined stacks, as in Section 6 and 7 but this is

not needed for geometric modelling. We relate the global and local stacks in

6.

• That leaves us to consider the other criterion (deformation h-splitting). This

is done in two steps. We consider how G acts on the Dieduonne module

associated to the Jacobian of this curve, D((X/k)[p∞]). This action splits off

a one-dimensional, whose connected component is a one dimensional formal

group law of height h, which we call e1Ĵ(X/k), discussed in Section 4.6.1,

Theorem 4.8.1. It also splits off a universal one dimensional formal group law

of height h, which we prove in Section 8.

• We then look at what geometric modelling buys us. We get the following by

studying the action of Aut(X) on M. We may represent the stack M by a

ring Λ, and find that it is the completion of the reduced regular representation

in Theorem 5.0.6. This gives us an equivalence to the ungraded Lubin-Tate

ring. We then relate this to the graded Lubin-Tate in Lemma 5.0.8. We further

speculate the analogous result for h = p(p−1) using tangent spaces, in Section

5.2 and more specifically in Conjecture 5.2.9.

• Finally, we compute the corresponding cohomology of the E2-page of the homo-

topy fixed point spectral sequence in Section 9 for h = p− 1. The cohomology

calculation for h = 6 and p = 3 is in a forthcoming paper joint with Eva

Belmont and is available upon request.
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CHAPTER 1

Background for Structural Theorem

1.1. Background on Deformation Functors

Let k be a characteristic p field. Let Artk be the category of triples (R,m, ι : k '

R/m), where R is an Artinian local ring with maximal ideal m. We will suppress m and

ι from the notation.

Definition 1.1.1. We define the deformation functor of a given map. Given a

map f : X → Y of schemes over a field k, we define a functor Deff :X→Y from Artk to

groupoids as follows. Let X ,Y be schemes over A ∈ Artk. Objects are pullback diagrams

of the form:

X X

Y Y

Spf k Spf A

f F

Morphisms are pullback diagrams of the form:

X ′

X X Y ′

Y Y Spf A′

Spf k Spf A

F ′

f F

Definition 1.1.2. We define the deformation functor of a given map fixing the

target. Given a map f : X → Y of schemes over a field k, we define a functor Deff :X→Y
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from Artk to groupoids as the functor above, where we further require the target Y is

isomorphic to the trivial deformation.

Definition 1.1.3. We define the deformation functor of a map f : X → Y which

fixes the target Y as a specialization of definition definition 1.1.1 to the case where Y

is the product family, i.e., Y := Y ×k S, where S = Spf(A).

Definition 1.1.4. The stacky deformation functor Def f :X→Y of a map f : X → Y

of schemes is the same as the deformation functor of that map, but we allow the maps

to be pullbacks up to an automorphism of the base Y .

We define this case, which includes deformations of subobjects in a fixed base (called

a Hilbert scheme). If we take the example of the base Y being P1
k, then fixing the base

means we do not allow bundles of P1, only the constant family P1
A itself as the base.

Definition 1.1.5. Let B be a stack, and A be an object over B. We define

Aut(A,B) to be the pullback automorphism groupoid. An object in the groupoid

Aut(A,B) is a commutative diagram of the form,

β∗A A

B B

α
∼

β

we denote this as (α, β). We consider only α which are isomorphisms, and only contin-

uous automorphsims of B (automorphisms which preserve the maximal/chosen ideal).

Composition of objects (α, β) and (δ, γ) are:

(γ ◦ β)∗A β∗A A

B B B

β∗δ α

γ β
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and morphisms are isomorphisms of diagrams.

Definition 1.1.6. The deformation functor of a scheme X over a field k is Defid:X→X .

That is, objects are of the form

X X

Spf k Spf A

This functor carries a natural action by two different groups Aut(X/k) and Aut(X, k).

The former acts by precomposition, leaving the base field fixed. That is, j ∈ Aut(X/k)

acts by the following:

X X X

Spf k Spf k Spf A

j

The latter acts by precomposition, allowing for automorphisms of the base field.

That is, (j, h) ∈ Aut(X, k) acts by the following:

X X X

Spf k Spf k Spf A

j

h

Since k is a characteristic p field, these sit in a short exact sequence

Aut(X/k)→ Aut(X, k)→ Gal(k/Fp).
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1.2. Defining the Lubin-Tate action

Definition 1.2.1. Let FGLR be the category of formal group laws over a ring R ∈

Artk. Fix H ∈ FGLk. The groupoid DefH(R) has as objects:

{F ∈ FGLR, ι : H
'−→ F ⊗R k},

and as morphisms: isomorphisms f of formal group laws over R which reduces to the

identity modulo m.

Let Pro(Artk) be Artinian local rings with quotient field k. It is a theorem of Lubin

and Tate (Theorem 3.1 (16)) that DefH → π0(DefH) is an equivalence, and further that

DefH is pro-representable

DefH(R) ' HomPro(Artk)(LT,R).

We call LT ' W (k)[[u1, ..., uh−1]] the Lubin-Tate ring, and Spf LT the Lubin-Tate

space.

There is another deformation problem, topologists also refer to the ring associated

to it as the Lubin-Tate ring. his is simply the periodic version of the above setup, but

may be given an explicit moduli theoretic meaning.

Definition 1.2.2. Let FGL◦R be the category of pairs (F, a) of F ∈ FGLR together

with a chosen element a ∈ R×, where morphisms are isomorphisms f : (F, a)→ (G, b)

such that a = f ′(0)b.

There is a natural transformation from FGL◦ → FGL sending an object (F, a) to

aF (a−1x, a−1y). This is an equivalence with inverse. Def◦H(R) is also pro-representable,

by the ring LT∗ := W (k)[[u1, ..., uh−1]][u±] where u is an element of degree 2. We will
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dinstinguish between the two Lubin Tate rings by calling one LT and the other LT∗,

where LT = LT0. It is the ring LT∗ which arises as the coefficient ring of Morava

E-theory of height h.

We define Autcts(A) = Aut(Spf A) for A ∈ Artk to be the automorphisms of A

preserving its maximal ideal.

There are two automorphism groups which naturally act on DefH , discussed at the

end of Section 1.1, which we distinguish by calling them J = Aut(H/k) and Aut(H, k).

Topologists usually distinguish these by calling them the small Morava stabilizer group

and the big Morava stabilizer group, respectively. This paper will only use J , so we do

not use this language.

Theorem 1.2.3. (17) Let FGL
(h)
k denote the category of height h formal group laws

over a field k. Fix H ∈ FGL(h)
k . The group Jh := Aut(H/k) is the units of a division

algebra with Hasse invariant 1/h.

We will often drop the height h from the notation when the height is fixed.

Example 1.2.4. For example, when H is the Honda formal group of height h, it is a

theorem of Dieudonné and Tate that Aut(H/k) may be written in the following way,

where a ∈ W (k) are acted on by Frobenius:

(W (k)〈S〉/(Sh = p, aS = Saσ)×.

Definition 1.2.5. We let H ∈ FGL
(h)
k and LT (k,H) := W (k)[[u1, ..., uh−1]]. The

universal deformation of H is an object Funiv ∈ FGLLT such that for any R ∈ Artk and

any F ∈ FGLR of height h there is a unique local R-algebra homomorphism α : LT → R

such that F is ?-isomorphic to α∗(Funiv). We will also refer to this as “the universal

formal group law” for a given height.
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1.3. New Definitions

Definition 1.3.1. We call a stack “good” if it is either a smooth Artin stack or a

smooth formal stack.

Definition 1.3.2. Let M be a good stack and U → M be a curve over M. We

further request that M[X] is smooth.

Suppose G acts on U . Then, [X] : Spec k →M models G if [X] is fixed by G. In

particular,

• G ↪→ Aut(X)

• G ↪→ Aut(Û[X],M̂[X]), that is, on a formal neighborhood of [X].

Lemma 1.3.3. (Prop 2.5, Page 8, (23)) A stack M locally of finite type is smooth iff

for any S0 ↪→ S a closed embedding defined by a nilpotent ideal, any morphism S0 → X

can be extended to a morphism S →M. Furthermore, if this condition is true merely

for all ideals of square zero, a priori a weaker condition, then the stack is nevertheless

smooth.

Corollary 1.3.4. The condition of formal smoothness implies that not only do we have

the natural restriction map, but we also have an adjoint ι

Aut(Û[X],M̂[X]) Aut(X/k)

ι

Definition 1.3.5. Let (R, I) ∈ Pro(Artk) and f : X → Spec(R) a curve. Suppose

G acts continuously on f . Let J ∧e be the formal group law associated to the Jacobian

of X . Then, X has deformed h-splitting if there is a G-equivariant isomorphism of
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formal groups, which is a splitting

J ∧e ' Funiv × P,

where Funiv is a universal formal group of height h.

Note that by satisfying Definition definition 1.3.5, it follows that R ' LTh.

Definition 1.3.6. We say the curve has h-splitting if the curve X is over a field k

of characteristic p > 0.
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CHAPTER 2

Structural Theorem: Geometric Modelling

Before we can use the notion of geometric modelling we need to understand it. We

now prove exactly what is required of a moduli space of curves for it to model the

Lubin-Tate action.

Lemma 2.0.1. For any element X in a Zp-linear category with an action of G, there

is an injective map Zp[G] ↪→ End(X).

Lemma 2.0.2. Let G be a finite group. Define πχ := 1
|G|
∑

g∈G χ(g)−1g as an element

in Zp[G]. Then, πχ is an idempotent element, where χ is a character of G. We denote

the idempotent associated to powers of it as χi.

We define some maps that will soon be relevant. Let γ be the map given by the

definition of modelling G, let T be the projection of Aut(A,B) to just Aut(B), and let

the completion with respect to the ideal be the ideal from the definition of deformed

h-splitting.

Theorem 2.0.3. Let G be any finite subgroup of the group Jh for any fixed height h ≥ 1

and prime p. Let U be a curve over a moduli stack M with a point [X] : Spec k →M

which has deformed h-splitting and models G.

Then, the following composition map φ is the Lubin-Tate action of G on LT .
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(2.1) G Aut(Û[X],M̂[X]) Aut(M̂[X]) ' Autcts(LT )

φ

γ T

Remark. Here is an informal statement of the theorem. For any fixed subgroup

G of the Morava stabilizer group Jh, if we have a curve X with certain properties

(deformed h-splitting and modelling G), then the universal lift of the action of Aut(X)

on the deformations of X is in fact the Lubin-Tate action.

Proof. We may form the following diagram.

• The map c is a map defined in several steps.

(1) Take the Jacobian of Û[X]. We call this Ĵ[X].

(2) Take the formal completion of J at the origin e. We call this Ĵ[X],e..

(3) Take the idempotent decomposition of Ĵ[X],e into ⊕ieiĴ[X],e. This splitting

is idempotent because all pointed categories are idempotent.

(4) By the property of deformed h-splitting, there is an e1 such that Funiv '

e1Ĵ[X],e, where Funiv is the universal formal group law of height h defined

in definition 1.2.5. We thus project from the full decomposition of Ĵ[X],e

onto the e1 component. We call this map π.
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Aut(Û[X],M̂[X]) Aut(Ĵ[X],M̂[X]) Aut(Ĵ[X],e,M̂[X])

Aut(⊕ieiĴ[X],e, LT ) Aut(e1Ĵ[X],e, LT )

Aut(Funiv, LT )

Jac

c

∧
e

'

π

'

Steps (2), (3) and (4) in the definition of c are well-defined by definition iff U has

deformed h-splitting.

• The map j is the Lubin-Tate action of J = Aut(F/k) = Autk(F ) on LT .

• The maps ι and ι′ are defined due to the moduli problems being formally

smooth, so we have not just the restriction map but a map defined the other

way (Lemma 1.3.4).

• Let F be a one dimensional height h formal group associated to X, arising from

X satisfying h-splitting (F ' e1 Jac(X)∧e ). The map c̄ is the map c reduced

to its special fiber, Spec k (by the canonical quotient map). It does the same

thing as c but with Jac(X), and again only makes sense iff X has h-splitting

(which is implied by U having deformed h-splitting).

• We remind the reader that we use T to denote be the projection of Aut(A,B)

to just Aut(B).
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We now consider the following diagram. We will use this diagram to show the

left side is also the Lubin-Tate action.

G Autk(X) Autk(F )

Aut(Û[X],M̂[X]) Aut(Funiv, LT )

Aut(M̂[X]) Aut(LT )

γ c̄

ι ι′

j
c

T T

Now, we make a few remarks to conclude that the diagram (2) commutes.

• The upper square commutes since c̄ is defined as the specialization of c.

• The lower square commutes by the definition of deformed h-splitting.

• The map c ◦ ι ◦ γ is injective by Lemma 2.0.1, because any group actions on

elements in the category respect the idempotent decomposition of morphisms

in the category. In other words, the projection π respects equivariance.

We’ve shown now that the diagram commutes by construction. This implies that T ◦ι◦γ

coincides with j, the Lubin-Tate action of J = Aut(F/k) on LT . �
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CHAPTER 3

Artin-Schreier-Witt and Harbater-Katz-Gabber curves

In this section we will review some basic properties of Artin-Schreier curves, and

more generally of Artin-Schreier-Witt curves, which will be used in subsequent sections.

3.1. Ramification Theory

Definition 3.1.1. Let f : X → Y be a morphism of schemes over an algebraically

closed field k (or over Z). The ramification divisor R of f is the divisor on X given by

R =
∑
P

length(ΩX/Y )P [P ]

where the sum is taken over closed points P of X.

Definition 3.1.2. Let f : X → Y and g : Y → Z be two morphisms of affine

schemes. Consider the short exact sequence

0→ f ∗ΩY/Z → ΩX/Z → ΩX/Y → 0

. The different ideal DX/Y is the annihilator ideal of the sheaf ΩX/Y considered as an

O(X)-module.

The exponent of the different at a closed point P of Y is the valuation of DX/Y at

the place P , that is the exponent of the prime P in the primary decomposition of the

ideal DX/Y .

We now move to a discussion of local fields. Given an extension of fields L/K, a

nonzero prime ideal p ⊂ OK is called ramified in L if the ideal OL in OL factors into
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primes as

pOL = qe11 · · · qenn .,

where ei > 1 for some i. (define wild and tame ram).

If L/K is a finite abelian extension of local fields with Galois group G, there are

two different filtrations of G. The “lower numbering” behaves well with respect to

subgroups of G, that is, for all normal subgroups H ⊂ G, then H` = G` ∩ H. The

”upper numbering” behaves well with respect to quotients of G, in the sense that for

all normal subgroups H of G, one gets: ∀u ≥ −1, (G/H)u = (GuH)/H.

Definition 3.1.3. If L/K is a finite abelian extension of local fields with Galois

group G, then the ith ramification group (with lower numbering) is:

Gi := {g ∈ G|g acts trivially on OL/pi+1
L }.

Further, this forms a decreasing filtration of G,

G = G−1 ⊃ G0 ⊃ G1 ⊃ · · ·Gm = 0.

Note that G0 = 1 iff L/K is unramified, G1 = 1 iff L/K is tamely ramified (ramifi-

cation index is prime to the residue charactertistic.) G = G1 iff G is a p-group iff L/K

is totally wildly ramified.

When we are considering it locally, a nice reformulation:

Definition 3.1.4. Given G ⊂ Aut(k[[t]]), then the ith ramification subgroup (with

lower numbering) is:

Gi := {g ∈ G|g acts trivially on k[[t]]/(ti+1)}.
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Further, this forms a decreasing filtration of G,

G = G−1 ⊃ G0 ⊃ G1 ⊃ · · ·Gm = 0.

Definition 3.1.5. We denote by `i the lower jumps for L/K or of G, which are

numbers satisfying G`i 6= G`i+1

Theorem 3.1.6. (Stichtenoth) Let K be a local field of char p > 0 with perfect residue

field. Let L/K be the extension given by the equation Y p − Y = a, for some a ∈ K

and denote G := Gal(L/K).. Then, if vK(a) = −m < 0 and if m is prime to p, the

extension L/K is cyclic of degree p and totally ramified. Further, its ramification groups

are given by

G = G−1 = · · · = Gm and Gm+1 = 1.

Remark. This can be generalized to Artin-Schreier-Witt curves.

The most important fact about lower numbers is the Hilbert different formula:

Theorem 3.1.7. (Hilbert’s different formula) Consider a Galois extension F ′/F of

function fields, and a place P ∈ PF and a place P ′ ∈ PF ′ laying over P . Then, the

different exponent d(P ′|P ) is

deg(DL/K) := d(P ′|P ) :=
∞∑
i=0

|Gi(P
′/P )| − 1.

Theorem 3.1.8 (Wild Riemann Hurwitz with one branch point). . Let f : X → Y

be a map with ramification divisor R consisting of one point P ′ ∈ X which is totally

wildly ramified over a point P ∈ Y , then we call deg d := degP ′|P (DX/Y ), and

g(X) =
1

2
(deg(f)(2g(Y )− 2) + deg d) + 1.
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3.2. Artin-Schreier Theory

Artin-Schreier theory gives a classification of of Z/pZ-Galois extensions of fields

of characteristic p. For K a field of characteristic p the Artin-Schreier polynomial

xp − x − f ∈ K[x] for f ∈ K is irreducible precisely if f 6= hp − h for any h ∈ K,

in which case the splitting field is a Z/pZ-Galois extension of K. Conversely, every

Z/pZ-Galois extension of K is the splitting field of some Artin-Schreier polynomial.

Specializing to the case where K = k(x) is the function field of P1, Artin-Schreier

extensions have the following geometric incarnation:

Definition 3.2.1. Let k be a field of characteristic p. An Artin-Schreier curve

over k is a smooth projective geometrically connected curve X1 admitting a morphism

f : X1 → X0 = P1
k which is a Z/pZ-Galois cover.

Such an Artin-Schreier curve admits an affine equation of the form yp−y = f where

f 6= hp − h for any h ∈ k(x), and admits two canonical projections: the projection

px : X1 → P1
k onto the x-coordinate which is a Z/pZ-Galois cover, and the projection

py : X1 → P1
k onto the y-coordinate.

We will be particularly interested in the following example: consider the Artin-

Schreier curve X1 = {yp − y = xp−1} over k = Fpp−1 .

Definition 3.2.2. We now define the curve and main maps that will be used in the

rest of this section. The Artin-Schreier curve X over k = Fpp−1 with affine form

yp − y = xp−1
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has two projection maps to P1
k). The first map px is the Z/p-Galois map coming from

its definition. The second map py is a degree p− 1 map.

X

P1 [x : y : z] P1

[x : z] [y : z]

px py

Lemma 3.2.3. • This curve is of genus g = (p−1)(p−2)
2

.

• The map px is totally wildly ramified at one point, the point infinity on P1.

• The ramfication locus of the map on the right py is Fp plus the point at infinity

on P1, with tame ramification of order (p− 1).

Proof. • This is proved three times. It is in both Lemma 4.3.3 and Lemma

4.3.1, as well as Lemma 4.7.1.

If one’s curve X is embedded in P 2 then for any point x ∈ P 2 there is a map from

X to L given by the following. Here L(x, p) is the line intersecting x and p.

πx : X → L

p 7→ L(x, p) ∩ L

If x ∈ P2 is not in X, then the degree of the resulting map πx is equal to the degree

d of X. We restrict the domain of our map P2\{x} → P1 to be X → P1. The degree

of the resulting map is equal to the degree of X, because a line intersects C in degX

number of points.

In case of x ∈ X we have a well-defined map on X\x. This map can be continued

to a well-defined map on the whole C. We do so as follows. Geometrically, we map x
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along the tangent line at x to X, now if you count the degree of the map it becomes

degX − 1. This is because there are degX points on every line, including x.

• The point at infinity of P1 is [1 : 0 : 0]. Note that yp−y = y(y−1) · · · (y− (p−

1)). The Galois action acts by y 7→ y + 1, leaving x unaffected, thus infinity

is fixed. The degree of px is determined by the fact that the projection from

[x : z] is constructed as a projection from [0 : 1 : 0], which is not a point on X.

• The map py is constructed as a projection from [1 : 0 : 0], which is a point on

X, thus, it is degree p− 1. Again, note that yp− y = y(y− 1) · · · (y− (p− 1)).

The ramification points of this map are then [0 : i : 1] and [1 : 0 : 0], where

0 ≤ i ≤ p− 1.

�

3.3. Artin-Schreier-Witt Theory

Artin-Schreier theory gives a classification of of Z/pnZ-Galois extensions of fields of

characteristic p, specializing to the usual Artin-Schreier theory in the case n = 1. The

idea is to mimic what happens in Artin-Schreier theory using the scheme of truncated

Witt vectors.

Let k be a perfect field of characteristic p. For n ≥ 1 let Wn be the scheme of

truncated Witt vectors of length n. We have a morphism

℘ : Wn → Wn

(x0, . . . , xn−1) 7→ (xp0, . . . , x
p
n−1)− (x0, . . . , xn−1)

which satisfies ℘(x+ y) = ℘(x) + ℘(y). Addition of Witt vectors is given by

x+ y = (S0(x, y), S1(x, y), . . .)
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where Si(x, y) is a certain polynomial in the components of x and y. For example:

S0(x, y) = x0 + y0

S1(x, y) = x1 + y1 +
1

p
(xp0 + yp0 − (x0 + y0)p)

Let Ci(x, y) be the part of Si(x, y) only involving xi and yi. For example:

C0(x, y) = x0 + y0

C1(x, y) =
1

p
(xp0 + yp0 − (x0 + y0)p)

Now we have the following classification of Z/pnZ-Galois covers:

Theorem 3.3.1. (Bouw-Witt) Let k be a perfect field of characteristic p and let X be

a normal variety over k with function field K = k(X). Let f0, . . . , fn−1 ∈ K such that

f0 6= hp − h for any h ∈ K. Let f = (f0, . . . , fn−1) : X 99K Wn be the corresponding

rational morphism and consider the pullback

Y Wn

X Wn

π ℘

f

Then π : Y → X is a Z/pnZ-Galois cover. Conversely, every Z/pnZ-Galois cover of X

arises in this way.

Specializing to the case where X = P1 and K = k(x) is the function field of P1, we

arrive at the following definition:

Definition 3.3.2. Let k be a field of characteristic p. An Artin-Schreier-Witt curve

over k is a smooth projective geometrically connected curve Xn admitting a morphism

f : Xn → X0 = P1
k which is a Z/pnZ-Galois cover.



38

Such an Artin-Schreier curve admits an affine equation of the form

yp0 − y0 = f0

yp1 − y1 = f1 − C1(y0, f0)

...

ypn−1 − yn−1 = fn−1 − Cn−1(y, fn−2)

and admits two canonical projections: the projection px : Xn → P1
k onto the x-coordinate

which is a Z/pZ-Galois cover, and the projection py : X1 → P1
k onto the y-coordinate.

Example 3.3.3. We consider the equations for the Artin-Schreier-Witt curve X2 (the

general case can be deduced from this but its also discussed in more detail in Wild-by-

tame covers (Obus and Pries)). Let f0, f1 ∈ k(x) and consider the polynomial

C1(x, y) =
1

p
((x+ y)p − xp − yp) =

1

p

∑
1≤i≤p−1

(
p

i

)
xiyp−i =

∑
1≤i≤p−1

(p− 1)!

i!(p− i)!
xiyp−i

Then the Artin-Schreier-Witt curve X2 has the following affine equation:

yp − y = f0

wp − w = f1 − C1(y, f0)

We will be particularly interested in the case where f0 = xd and f1 = 0.

Definition 3.3.4. An Artin-Schreier-Witt curve is a smooth projective curve X

over a field k of characteristic p which may be considered as a Z/pk-Galois cover of the

P1, px : X → X/(Z/pk) ' P1.

We may consider other maps from our curve to P1.
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Xk−1

...

X1

P1 [x : y : z] P1

[x : z] [y : z]

Z/pn−Galois degree pn−1(p−1)

Z/p−Galois degree p−1

3.4. Conjectures relating this to the Lubin-Tate action

Let G = Z/pk o Z/(p− 1)2.

Conjecture 3.4.1. Let us consider an Artin-Schreier-Witt curve X of minimal genus

which is totally wildly ramified at one point with Galois group Z/pk and whose auto-

morphism group contains G. Let px be the map described above. Then, the universal

curve over Deframpx has deformed h-splitting, where pk − pk−1 = pk(p− 1).

Remark. Defram
px is deformations of the map where we only allow the ramification

divisor to deform in one ramification dimension.

Conjecture 3.4.2. The ring representing Deframpx is Sym(Ind
Z/pk
Z/p ρ) completed at the

ideal J defined by X as a G -representation.

It would then follow from Theorem 2.0.3 that E∗ ' Sym(Ind
Z/pk
Z/p ρ)∧J as a G-

representation, and further, that this commutes with taking Tate cohomology. That

is, the following is true, where ∆ is the product of the polynomial generators of

Sym(Ind
Z/pk
Z/p ρ),
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H∗(G,E∗) ' H∗(G, Sym(Ind
Z/pk
Z/p ρ))[∆−1]∧J .

3.5. Harbater-Katz-Gabber Curves

These curves, totally wildly ramified at one point, are extremely special. In fact it

has been shown that all finite subgroups of Aut k[[t]] are realized by Harbater-Katz-

Gabber curves. More specifically, Given an algebraic curve X on which G acts with a

fixed point x having residue field k, then G acts on the completion ÔX,x of the local

ring x at X, and ÔX,x ' k[[t]] for any choice of uniformizing parameter t at x. Every

finite subgroup G of Aut(k[[t]]) arises in this way from curves of this form.

For the sake of getting our hands on these elusive creatures, let’s discuss the prop-

erties of our particular example of Artin-Schreier-Witt curves which are also Harbater-

Katz-Gabber curves with p-Sylow subgroup Z/p2.

We consider now curves which are Z/pk-Galois covers of P1
k, which are totally wildly

ramified at infinity.

Lemma 3.5.1. Given an Artin-Schreier-Witt curve for Z/p2 totally wildly ramified at

one point over a field of char p. The minimal higher ramification jumps are u1 = 1,

u2 = p. The minimal lower ramification jumps are l1 = 1, l2 = p(p− 1) + 1.

Proof. Lower jumps are calculated using valuations. �

Lemma 3.5.2. Given an Artin-Schreier-Witt curve for Z/p2 totally wildly ramified

at one point over a field of char p such that the first equation is yp − y = a, where

vL(a) = −m < 0. The higher ramification jumps are u1 = m, u2 = m. The lower

ramification jumps are l1 = m, l2 = m(p(p− 1) + 1).



41

Proof. We take Lemma 3.5.1. Changing the valuation to m can be compared with

taking a pullback by the equation zm = x. The total cover then is totally ramified of

degree mp2. The original cover is a quotient of the total one.

Subquotients preserve lower jumps. So the lower jumps of the sub-cover (which is

the pullback) are m and m(p(p− 1) + 1). Using Herbrand’s formula again yields m and

mp for the upper jumps of the pullback cover. �

Lemma 3.5.3. Z/p2-Artin-Schreier-Witt curves X of minimal genus have genus g(X) =

1
2
(p4 − 2p3 + p2 − 2p) + 1.

Proof. By the Riemann-Hurwitz formula, for a map f : X → Y , we have g(X) =

1
2
(deg(f)(2g(Y ) − 2) + deg d) + 1. The degree of our ramification divisor, by Hilbert

different formula (Stichtenoth) and Lemma 3.5.1 is d = p2(p−1)+(u2− (p−1))(p−1),

where u2 = (p− 1)(p(p− 1) + 1). �

Remark. These curves have quite a large genus. For example, the Z/p2 curve for

p = 3 is genus 16, and for p = 5 its genus 196. It grows quickly since there is a quadratic

term.

Lemma 3.5.4. The conductor (wrt the Z/pk-Galois map) of the totally wildly ramified

point at infinity on our Artin-Schreier-Witt curve C is pk − pk−1 + 1.

Proof. This follows from the definition of conductor in terms of Herband’s lemma.

�
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CHAPTER 4

Proof of h-Splitting for Artin-Schreier Curves

4.1. Dieudonné modules

Definition 4.1.1. Suppose V is a smooth d-dimensional formal variety over A

a Zp-algebra. We define the deRham cohomology of V to be the cohomology of the

complex of differentials Ω•V/A, this is the usual deRham complex of the algebra A(V ).

That is, Ωi
V/A is the ith exterior power of the A-module of Kähler differentials Ω1

A(V )/A '⊕
iA[[T1]], ..., Td]]dTi.

Definition 4.1.2. Suppose F is a formal group over A a complete local Zp-algebra

with residue field k. We define the Dieduonné module D(F/k) to be the cohomology

classes ω ∈ H1
dR(F/A) which are translation invariant. Let Σ : F × F → F be the

addition law, and let pr1, pr2 : F × F → F be the projections. Then, [ω] ∈ H1
dR(F/A)

is translation invariant iff Σ∗(ω)− (pr1(ω) + pr2(ω)) is exact.

Note that this definition uses the group structure of F , whereas the deRham coho-

mology does not.

Remark. The more practically useful definition of the Dieudonne module of a

formal group F over a perfect field k is D(F/k) := Ext1
W (k)(F (W (k)),W (k)). We then

get the exact sequence

Ext1(F (W (k)), N≥1W (k)→ Ext1
W (k)(F (W (k)),W (k))→ Ext1(F (W (k)), k) ' Lie(F∨).

This is the analogue of the Hodge-to-deRham short exact sequence.



43

Example 4.1.3. Let us calculate the Dieudonné module of Ĝm, the formal group of

the multiplicative group. This is ExtW (k)(W (k)×,W (k)) ' W (k)dlog(1 + T ), in other

words dT
1+T

= dlog(1 + T ).

Let us consider a curve X over a perfect field k of characteristic p. Let a lift of X

to R ∈ Artk be denoted as X . Further, we consider the Jacobian of this lift, denoted as

J , and the formal variety associated to the completions of X and J at the point x as

X̂ and Ĵ . We define the Jacobian of a curve X as J (X/R) := Pic0(X/R), which we

call J to simplify notation when X and R are clear.

Let us consider the Abel-Jacobi map defined by the point x ∈ X ,

ψx : X → J

as ψx(y) = the class of the invertible sheaf I(y)−1 ⊗ I(x), where I denotes the invert-

ible sheaf y ∈ X viewed as a Cartier divisor. Let X̂ denote the formal completion of X

along x, and let Ĵ denote the formal completion of J at e := OX . This is a pointed

Lie variety of dimension one. Since φx(0) = 0, φx induces a map of pointed formal Lie

varieties:

ψ̂x : X̂ → Ĵ .

Lemma 4.1.4. (15) (5.9.2) The Abel-Jacobi map induces a map on cohomology. The

composite is injective

D(J ) Ĵ H1
dR(X̂ )

(φ̂x)∗
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Lemma 4.1.5. (15) (Katz, Section 5.6, top of pg 202) The following is an isomorphism

compatible with Hodge filtrations:

H1
dR(J ) ' D(Ĵ ) := H1,prim

dR (J ).

That is, we can just calculate the deRham cohomology of the Jacobian J , and this

automatically selects for the primitives in the deRham cohomology of the formal Lie

variety associated to J .

This means that we can view the Dieduonné module of J ⊗ k as laying in the

Hodge-to-deRham SES. (label this equation)

0→ H0(J ,Ω1
J )→ H1

dR(J /R)→ H1(J ,OJ )→ 0

The Abel-Jacobi map induces isomorphisms that are natural in X .

H0(J ,Ω1
J ) ' H0(X ,Ω1

X )

H1(J ,OJ ) ' H1(X ,OX )

H1
dR(J /R) ' H1

dR(X/R).

By Grothendieck-Serre duality,

H0(X ,Ω1
X ) ' H1(X ,OX )∨.

So, by Lemma 4.1.4, we can in fact calculate the Dieduonne module Ĵ as H1
dR(X/R),

and write it in the following short exact sequence (which is isomorphic to the above).
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0→ H0(X ,Ω1
X )→ H1

dR(X/R)→ H1(X ,OX )→ 0.

4.1.1. Slope decompositions and the Dieudonné-Manin classification

We consider the noncommutative ring arising naturally from Gabriel’s theorem,

Q := W (k){F, V }/(FV = p).

Formal groups are a type of p-divisible group. The Dieudonné module functor gives

an embedding of the category of p-divisible of groups of height h into finitely generated

Q-modules which are free as W (k)-modules of rank h. This is a categorical equivalence.

We define QF := W (k)[1/p]{F}/(Fa = σ(a)F ). The category of p-divisible groups

up to isogeny has a fully-faithful embedding into the category of finitely generated

QF -modules.

The category of finitely generated QF -modules is semi-simple, and if k is an alge-

braically closed field, the simple objects are of the form

Gr/s := QF/QF (F r − ps).

The fraction r/s is called the slope and is written in simplest form. The number r

is the dimension of the p-divisible group, and the number s is the height.

Remark. For non-algebraically closed fields we would need descent theory to de-

scribe the simple modules.

The phrasing “slope a appears in an integral Dieudonné module D” means that in

the Dieudonné-Manin decomposition of the rational module D[1/p] there is at least one

summand of the form Gr/s.
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4.2. Properties of Artin-Schreier Curves

Lemma 4.2.1. The Artin-Schreier curve yp − y = xp−1 over Fpp−1 has the following

properties.

(1) Z/po Z/(p− 1)2 ⊆ Autk(X)

(2) The Jacobian of this curve has h-splitting for h = p− 1.

Proof. We demonstrate the elements that generate this subgroup of the automor-

phism group. The map y 7→ y + 1 generates Z/p, and the map f([x : y : z]) = [αpx :

αp−1y : z], where α is a (p − 1)2st root of unity. The latter property is proved in

Proposition 4.8.1. �

4.3. Holomorphic Differentials of Curves

Let X be a curve over a ring in Artk, and let us decompose it into two affine pieces

X = A ∪B.

Given a sheaf F over X, we have the following Mayer-Vietoris sequence.

0→ H0(X,F) ↪→ F(A)×F(B)→ F(A) ∩ F(B)→ H1(X,F → 0.

In particular, if take the decomposition of X into the point at infinity and its

complement X = U ∪ {∞}, we get the following sequence, let T be a divisor at ∞.

0→ H0(X,F) ↪→ F(U)×F∧∞ → F∧∞[
1

T
]→ H0(X,F)→ 0.

A global section H0(X,Ω1
X) can be specified by either a basis in terms of F(U), as in

Lemma 4.3.1 or in terms of F∧∞, as in Lemma 4.4.2. This is because we are considering

H0(X,F) as a subset of F(U)×F∧∞.
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We include both of these derivations of holomorphic differentials in order to show

the reader that we do not need the curve to be planar to work with the holomorphic

differentials of that curve explicitly.

Lemma 4.3.1. A basis of holomorphic differentials of plane curve X defined by an

equation P of degree d is

{xiyjdx : 0 ≤ i+ j ≤ d− 3}.

Indeed, any choice of distinct (i, j) where both i and j are greater than 0 such that the

there are exactly (p−1)(p−2)
2

such pairs will also produce a basis.

Proof. A genus of smooth projective plane curve of degree d is (d− 1)(d− 2)/2, so

we need to construct that many holomorphic differentials. For a smooth plane curve

X given by equation P (x, y) = 0 we have Pxdx+ Pydy = 0 (by differentiating P = 0),

where Px, Py are the derivatives of P with respect to x and y respectively. Since X

is smooth the vector (Px, Py) doesn’t vanish anywhere on X. Hence we can define a

holomorphic nowhere (on X) vanishing 1-form ω = dy
Px

= − dx
Py

. We may also choose

any non-zero scalar multiple of ω as our ω.

Let us examine pairs (i, j) such that 0 ≤ i+j ≤ d−3. This is choosing ordered pairs

of numbers from the set {0, 1, ..., d − 2}, in other words, from a set of d − 1 numbers.

There are then
(
d−1

2

)
= (d−1)(d−2)

2
of such (i, j).

We thus get a set of precisely (d − 1)(d − 2)/2 holomorphic forms on X, given by

xiyjω for such (i, j). Further, all such forms are pairwise distinct, making this a basis,

though we do not show this here. �

We may also construct a basis for Γ(X,Ω1
X) for Artin-Schreier curves X without

using that they are plane curves. This technique only needs a locally defined basis and
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the notion of uniformizer, which we have for the more general case. First, we translate

our basis to being in terms of the universal.

Lemma 4.3.2. Given the uniformizer T on the Artin-Schreier curve corresponding to

the point at infinity, and x corresponding to the coordinate on P1

dx = T p(p−3)dT.

Proof. Let T = y
x
, this is a uniformizer of the Artin-Schreier curve at infinity.

Further, for e(T ) some invertible power series,

x = T−pe(T )

y = T−(p−1)e(T )

We may thus expand.

dT = d(yx−1)

=
1

x
dy − y/x2dx

= (p− 1)xp−1dx− y/x2dx

= (T−p(p−3) − T 2p−p+1)dx

= T−p(p−3)[1 + T p+1+p(p−3)]dx

Since the latter factor is invertible, we get dx = T p(p−3)ψ(T )dT as claimed. �
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Lemma 4.3.3. A basis of holomorphic differentials the Artin-Schreier curve over R ∈

Artk with affine equation yp − y = xp−1 is

{z−(pi+(p−1)j)+p(p−3)dz + higher order terms|i, j > 0},

where the exponent of z must be greater than 0.

Proof. Let k = Fq where q contains enough roots of unity. Let us consider the

curve X = U ∪∞. The uniformizer at infinity of this curve is T := y
x
. We thus have

the following pullback diagram:

Γ(X,ΩX/k) Ωk[[T ]]/k

ΩU/k Ωk((T ))/k

This is isomorphic to

Γ(X,ΩX/k) k[[T ]]dT

Adx k((T ))dT

We now calculate the lower map – which requires us to write dx in terms of dT. We

can now calculate the map Adx 7→ k((T ))dT . Elements in Adx are of the form axiyjdx

+ higher order terms. By lemma 4.3.2, their image is aT−(pi+(p−1)j)+p(p−3)dT + higher

order terms. This is in the image of k[[T ]]dT → k((T ))dT iff i + j ≤ p− 3. This then

gives us the k-basis of Γ(X,ΩX/k) that we expect, {xiyjdx, i+ j ≤ p− 3}. �
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4.4. Holomorphic Differentials of Artin-Schreier-Witt Curve for Z/p2

Galois extension

Lemma 4.4.1. Let u be uniformizer at infinity of the Artin-Schreier-Witt curve for

Cp2, then

dx = up
4−2p3+p2−2pdu

.

Proof. Here is our convienient key:

X2 wp − w = g(Cp(x), y) P” u

X1 yp − y = xp−1 P ′ T

X0 x P 1
x

We begin by finding a uniformizer for P ′. That is, a function f ∈ k(Y1) such that

vP ′(f) = 1. We begin by noting that vP (x) = −1, since P = ( 1
x
), thus.

vP ′(x) = −p.

further vP ′(x
p−1) = pvP (xp−1) = −p(p− 1), thus vP ′(y

p − y) = −p(p− 1) > 0, thus,

vP ′(y) = −(p− 1).

We now wish to solve for vP ′(x
iyj) = 1, we can do this by picking i = −1, j = 1, such

that −1(p) + 1(p− 1) = p− 1− p = 1. So we have

T =
y

x
.
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When we plug the formulas for x and y in terms of T into the equation for Y2 :

wp − w = f(x, y), we get, for some d, where d is prime to p

wp − w = T−d.

Since x has a larger power of T , the largest power of T will come from the factor

xm(p−1)y, where m = (p − 1) (from xm = yp − y) So, in general for the Cp2 Artin-

Schreier-Witt cover, we get:

wp − w = −x(p−1)2y + other

= −T−p(p−1)2−(p−1) + other

= −T−(p−1)(p(p−1)+1) + other

= −T−(p3−2p2+2p−1) + other

Thus, for us, d = p3−2p2 +2p−1. We now repeat the cycle to determine a u ∈ k(Y2)

such that vP”(u) = 1. We note that vP”(wp − w) = −pd, thus vP”(w) = −d. Just to

have on hand, note that vP”(x) = −p2, and vP”(y) = −p(p− 1).

So, to find u, we need to solve for xiyjwk such that vP”(xiyjwk) = 1. In other words,

we are solving for ip2 + jp(p− 1) + kd = −1. For general p, i = −p, j = 2, k = 1 works.

u = x−py2w
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Y2 wp − w = g(Cp(x), y) P” u = x−py2w

Y1 yp − y = xp−1 P ′ T = y
x

Y0 x P 1
x

For some invertible power series e(u)

x = u−p
2

e(u)

y = u−p(p−1)e(u)

w = u−de(u)

So, keeping in mind that u = x−py2w, and dy = −(p− 1)xp−2dx, and that we only

have to consdider dominating term in the polynomial for wp − w.

dw = d(−x((p− 1)2)y

= x(p−1)2dy − (p− 1)2x(p−1)2−1)ydx

= x(p−1)2+(p−2)dx+ u−p
2((p−1)2−1)−p(p−1)dx

= u−p
4+p3+p2dx+ u−p

4+2p3−p2−pdx

= −u−p4+p3+p2(ε(u))dx
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We get:

du = d(x−py2w)

= xpy−2dw − pwx−p−1y−2dx− 2wx−py−3dy

= u−p(−p
2)−2p(p−1)−(p4−p3−p2)dx− 2u−d+p3+3p(p−1)dy

= u−p
4+2p3−p2+2pdx

dx = up
4−2p3+p2−2pdu

�

Lemma 4.4.2. A basis of holomorphic differentials of the minimal genus Artin-Schreier-

Witt curve for Cp2 totally wildly ramified at one point is

{au−(p2i+p(p−1)j+dk)+(p4−2p3+p2−2p)du+ higher order terms|i, j, k ≥ 0, j, k ≤ p− 1},

where the exponent of u must be greater than 0.

4.5. Prequel to Proof of h-splitting

The Dieudonné module of a formal group associated to a variety X can be described

as it integral cristalline cohomology H1
cris(X, k), which we will henceforth call H1

cris, this

is a W (k)-module. This module is flat which means it can be described fiberwise – that

is, if we can understand it mod p and over its generic fiber H1
cris[

1
p
], and H1

cris/p '

H1
dR(X, k). In Section 4.6 we pin down the Dieudonné module mod p, and in Section

4.7 we pin it down over its generic fiber. Finally, we put this together in Section 4.8 to

understand H1
cris integrally.
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4.6. Method of Splitting Dieudonné Module of Jacobian using Idempotent

Splitting of Holomorphic Differentials

We fix the following notation for the rest of this subsection. Let J be the Jacobian

of a curve X with affine form yp − y = over R ∈ Artk, and let J ∧e be its formal group.

Theorem 4.6.1. The formal group J ∧e splits into p − 2 summands of dimensions

1, 2, ..., p− 1 respectively.

Proof. • Let ζ be a (p− 1)st root of unity. Then, we have f ∈ Aut(X) such

that

f : [x : y : z] 7→ [ζx : y : z].

The Abel-Jacobi map
∫
∞ : X → J is constructed with respect to ∞ := [1 :

0 : 0], thus the identity section e of J corresponds to the image of ∞. Since

Aut(X) ↪→ Aut(J ), it is further the case that

Z/p− 1 ⊂ Stab∞(Aut(X) ↪→ Stabe(Aut(J )) ↪→ Aut(J ∧e ).

Thus, Z/(p− 1) ⊆ Aut(J ∧e ).

• Using Lemma 2.0.1, we have an injective map from

⊕
i

eiZp[G] = Zp[G] ↪→ End(J ∧e )

where ei are the idempotents induced by πχ. This implies that

J ∧e =
⊕
i

eiJ ∧e .
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Let T ∗e (J ) be the cotangent space of J , for the same reason, we have

T ∗e (J ) =
⊕
i

eiT
∗
e (J ).

• By Lemma 4.6.2,
⊕

eiT
∗
e (J ) is p − 2 summands of dimension 1, 2, ..., p − 2

respectively.

• It remains to show that

dim eiT
∗
e (J ) = dim eiJ ∧e .

The image of ei on the tangent space contains the tangent space of the image

of ei on the formal group, that is

Te(eiJ ∧e ) ⊆ eiT
∗
e (J ).

Thus, there is an inequality between dimensions. However, they sum up to an

equality for varying i, hence they are all, in fact, equalities.

�

Lemma 4.6.2. The cotangent space of the Jacobian J splits into
⊕

i eiT
∗
e (J ), which

is p− 2 summands of dimension 1, 2, ..., p− 2 respectively.

Proof. By the Grothendieck-Serre duality of curves, for any curve X,

T ∗e (J ) ' H1(X,OX) ' H0(X,Ω1
X)∧.

Let us now examine the action of Z/(p− 1) ∈ Aut(X) on H0(X,Ω1
X , we call f the

generator of Z/(p− 1).



56

By Lemma 4.3.1 and 4.3.3, for our degree d curve X, we may write a basis of T ∗e (J )

as follows

{xiyjdx : 0 ≤ i+ j ≤ d− 3}

or equivalently

{z−(pi+(p−1)j)+p(p−3)dz +O(z2)|i, j > 0}.

Recall that

f([x : y : z]) = [ζx : y : z],

where ζ is a (p− 1)st root of unity. (Truly, it acts by f([x : y : z]) = [αpx : αp−1y : z],

where α is a (p − 1)2st root of unity. But we can divide out, to get [αp−(p−1)x : y :

α−(p−1)z], thus looking at is as only an action on x, then α−1 is a (p − 1)2st-root of

unity again.) Note that since this action depends only on x, thus on the value of i and

not on j, the map f induces following partition.

There are d− 2 pairs such that i = 0, i.e., (0, 1), (0, 2), ..., (0, d− 2). Further, there

are d−3 pairs such that i = 1, and in general, (d−2)−k pairs such that i = k. Ending

with 1 pair such that d− 3 is the smallest, i.e., (d− 3, d− 2).

The differential ωi,j := xiyjdx corresponding to (i, j) is acted on by

f : ωi,j 7→ ζ iωi,j.

Equivalently, since T = y
x

and Z/(p− 1)2 acts by (x, y) 7→ (αpx, α(p−1)) where α is

(p− 1)2 root of unity. Thus, T 7→ α−1dT , and TdT 7→ α−2TdT .

Thus,

ejT
∗
eJ = 〈ζ i〉T ∗e (J ).

�
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4.7. Isogeny Decomposition Using Eigenvalues of Frobenius

We now describe its slope decomposition, which is a description of H1
cris up to

isogeny. These are the eigenvalues of Frobenius.

Theorem 4.7.1. (Thm 4.1 (18)) Let us consider φ to be a multiplicative character,

and χ to be an additive character. Let t ∈ F×p and let its lift to W (k) be denoted t̃. Let

us define φi(t) = ζ it̃ where ζ is a pth root of unity, and χj(t) = −t̃−j. The eigenvalues

of Frobenius on the curve X : yp − y = xp−1 are sums of the following form.

τ(φi, χj) =
∑
t∈F×p

φi(t)χj(t).

where 1 ≤ i ≤ p− 1 and 1 ≤ j ≤ p− 2.

Corollary 4.7.2. The slopes of the p-divisible group associated to the curve C are

{1/(p− 1), 2/(p− 1), ..., (p− 2)/(p− 1)}.

Proof. We use the eigenvalues above. The key observation of Stickelberger is that

for λ = 1− ζ,

τ(φi, χj) = −j−1λj mod λj+1.

Since vp(λ) = 1/(p−1), this means that vp(τ(φi, χj)) = j
p−1

. So we get (p−1) copies

of each 1 ≤ j ≤ (p− 2).

Each of these eigenvalues has multiplicity p− 1. �

We now show how to go from this slope decomposition up to isogeny to an integral

decomposition.

4.8. Integral Decomposotion of Dieudonné module

We can rephrase h-splitting of the Artin-Schreier curve in Theorem 4.2.1 as follows:
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Theorem 4.8.1. Let X be the projectivization of yp − y = xp−1. The p-divisible group

of Jac(X) splits off a 1-d piece of height p− 1 and dimension 1.

Remark. The phrasing ’slope a appears in an integral Dieudonné module D’ means

that in the Dieudonné-Manin decomposition of the rational module D[1/p] there is at

least one summand of the form K[F ]/(F r − ps) where a = s/r is written in simplest

form. Since the slope 1/(p − 1) has to appear in H1
cris, it appears in one of these

summands (H1
cris)

χj
.

Proof. Let χ be a multiplicative character of Z/(p−1). We use theorem 4.6.2, which

tells us that H0(X,Ω1
X) ' ⊕j∈Z/(p−1)H

0(X,Ω1
X)χ

j
breaks up into all 1-d components,

where the components acted on by χj are j-dimensional.

Further, by Serre duality,

H0(X,Ω1
X) ' H1(X,OX)∧.

Because of the dual in this isomorphism, the summand acted on by χj is sent to

the summand χ−j, this is cruicial for what follows. In particular, the summand of

H1(X,OX)χ
j

is (p− 1)− j-dimensional.

H0(X,Ω1
X)χ

j → H1(X,OX)χ
−j

H0(X,Ω1
X)χ

−j → H1(X,OX)χ
j

SinceH1
dR(X) is an extension ofH1(X,OX) byH0(X,Ω1

X) as a Z/p− 1-representation,

the summand H1
dR(X)χ

j
has dimension j + p− 1− j = p− 1 for every 1 ≤ j ≤ p− 2.

H0(X,Ω1
X)→ H1

dR(X)→ H1(X,OX).
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It follows that in the decomposition H1
cris =

⊕
(H1

cris)
χj

every summand has rank

p − 1 as a W(k)-module. By Manin’s slope formulas (Lemma 4.7.1), slope 1/(p-1)

appears at least once in H1
cris. Therefore it appears in some (H1

cris)
χj

, which is to say

that (H1
cris)

χj
[1/p] has D1/(p−1) as a direct summand.

Since the dimension of (H1
cris)

χj
[1/p] is (p− 1) and not larger, we get that D1/(p−1)

is actually all of (H1
cris)

χj
[1/p]. So (H1

cris)
χj

is the integral Dieudonné module of some

p-divisible group, and the sum of all slopes appearing is (p− 1) ∗ 1/(p− 1) = 1 so the

dimension of this p-divisible group is 1. �

Corollary 4.8.2. Let χ be a multiplicative character of Z/(p−1). In the decomposition

H0(X,Ω1
X) ' ⊕j∈Z/(p−1)H

0(X,Ω1
X)χ

j
, the Dieudonné module of this p-divisible group is

the summand corresponding to j = 1.

Proof. We can conclude that j = 1, from the proof of Lemma 4.6.2. This is because

a 1-dimensional p-divisible group has to have a 1-dimensional Lie algebra, and its Lie

algebra is dual to F 1
Hodge on (H1

cris)
χj
/p = (H1

dR)χ
j

but by Lemma 4.6.2 this F 1
Hodge has

dimension j. �

Example 4.8.3. Let us consider the Artin-Schreier curve with affine form x4 = y5− y

over F54. The collection of holomorphic differentials are then: This breaks up as a

C5 o C4-rep into 3 indecomposable representations whose basis are as follows.

R1 := dx ydx y2dx

R2 := xdx xydx

R3 := x2dx
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In terms of the coordinate z, these blocks of basis are

R1 := z10dz z6dz z2dz

R2 := z5dz zdz

R3 := dz

We are able to explicitly see how the idempotent components of the pairing of holo-

morphic differentials and the slope decompositions relate. The slopes of the curve, ac-

cording to Lemma 4.7.1 are 1/4, 2/4, 3/4, which becomes G1/4 × 2G1/2 × G3/4. We

further know that j/4 is associated to the component (H1
dR)χ

j
.

• The 1-dimensional component H0(X,Ω1
X)χ

1
spanned by (dz) maps to (H1

dR)χ
1

corresponding to slope 1/4 which maps to the 3-d component H1(X,OX)χ
3

spanned by the dual of (z10dz, z6dz, z2dz).

• The 2-dimensional component H0(X,Ω1
X)χ

2
spanned by (z5dz, zdz) maps to

(H1
dR)χ

2
corresponding to slope 2/4 which maps to the 2-d component H1(X,OX)χ

2

spanned by the dual of (z5dz, zdz).

• The 3-dimensional component H0(X,Ω1
X)χ

3
spanned by (z10dz, z6dz, z2dz) maps

to (H1
dR)χ

3
corresponding to slope 3/4 which maps to the 1-d component H1(X,OX)χ

1

spanned by the dual of (dz).

4.9. Examples of Newton Slopes from Frobenius Eigenvalues

We provide some examples supporting the following conjecture.

Conjecture 4.9.1. Given a Harbater-Katz-Gabber curve X with automorphism group

Z/pk o Z/(p − 1)2, and considering the map py, the Jacobian of X has deformed h-

splitting,

We have the following supportive examples:
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Example 4.9.2. • y3 − y = 1/x2, w3 − w = −x2y2 − x4y − y5 − y7 is an ASW

curve with genus 29, with slope decomposition 6G0 ×G1/6 × 2G1/3 × 11G1/2 ×

2G2/3 ×G5/6 × 6G1

• y3−y = 1/x2, w3−w = −x2y2−x4y is the minimal genus ASW curve – genus

16, with slope decomposition G1/6 × 2G1/3 × 4G1/2 × 2G2/3 ×G5/6

These were obtained using Magma’s LPolynomial function. The code is available at

https: // github. com/ catherineray/ newton . The inverting of x in the example is

only in order for the naive homogenization to not require us to remove the line [y : z]

to make our homogenized curve irreducible, it isn’t playing a major role.

Another conjecture supporting the above conjecture is the following.

Conjecture 4.9.3. The Jacobians of Harbater-Katz-Gabber curves with automorphism

groups Z/pk o Z/m have complex multiplication with CM field Q(ζm).

Combining this with a theorem of Oort relating CM-extensions to heights of sloped

components, we get that in general h-splitting should exist.

We also here address an example of why the strategy above does not immediately

work for Z/p2-Galois extensions, as smoothly as it did for Z/p-extensions.

Let us consider the p = 3 example in more detail to demonstrate the issue of splitting

the basis of holomorphic differentials naively. We consider the curve X whose affine

component A is defined by the pair of equations

y3 − y = x2, w3 − w = −x2y2 − x4y

https://github.com/catherineray/newton
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Lemma 4.9.4. We have an action on the curve X by C4 generated by the map
x

y

w

 7→

i3x

i2y

−w

 =


−ix

−y

−w

 .

Proof. We know this on the bottom curve y3 − y = x2, it thus suffices to show it

preserves the equation w3 − w = −x2y2 − x4y.

The action sends

−x2y2 7→ −(−ix)2(−y)2 = −(i10x2y2) = x2y2

−x4y 7→ −(−ix)4(−y) = −(i14x4y) = x4y

−x2y2 − x4y 7→ x2y2 + x4y.

It then follows that the action on w by (−1) preserves the equation. �

We enumerate the basis of this curve using 4.4.2.
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i j k 30-(9i+6j+14k) action

0 0 0 30 31

0 0 1 16 17

0 0 2 2 3

0 1 0 24 25

0 1 1 10 11

0 2 0 18 19

0 2 1 4 5

1 0 0 21 22

1 0 1 7 8

1 1 0 15 16

1 1 1 1 2

1 2 0 9 10

2 0 0 12 13

2 1 0 6 7

2 2 0 0 1

3 0 0 3 4

The action of Z/4 on the holomorphic differentials give us the following decomposi-

tion, which is insufficient to isolate a one-dimensional piece. We suspect that utilizing

higher Hasse-Witt matrices will in fact isolate the one-dimensional piece integrally.

χj H0(X,Ω1
X)χ

j

χ0 u3du, u7du, u15du

χ1 du, u4du, u12du, u16du, u24du

χ2 udu, u9du, u21du

χ3 u2du, u6du, u10du, u18du, u30du
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CHAPTER 5

Local Construction: Formal Moduli

This section introduces the moduli stack on which we will apply the structural

theorem, shows it is representable, and pins down the action of the group G.

Definition 5.0.1. We use the definition 1.1.3, to consider the moduli space of

deformations of the map f := py from the Artin-Schreier We refer to this moduli stack

as: Deff :X→P1 or Deff .

Remark. This is a local neighborhood on an integral Hurwitz stack of genus g

curves with a map to P1 with ramification datum D = (p− 1)(
∑p−1

i [0 : yi : 1] + [0 : 1 :

0]). See section .

Theorem 5.0.2. The moduli functor Defpy :X→P1 models G, and has deformed h-splitting.

Proof. By Theorem 2.6.1 (29), the automorphism group of the point X lifts au-

tomatically to automorphisms of deformations of X (or deformations of maps from

X). This implies that modelling is automatically satisfied for moduli stacks which are

deformation stacks.

As for showing that the moduli functor has deformed h-splitting, this is shown by

combining Theorem 4.8.1 and Theorem 8.0.3. �

We can understand the action of G this deformation stack, described in lemma 5.0.6,

which will buy us something enormous. We will now discuss and establish the process

of pinning this action down in more generality.
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The main observation is that the formal moduli scheme of deformations of a totally

tamely ramified morphism f : X → P1 can be identified with the formal moduli scheme

of deformations of the branch divisor of f in P1:

Lemma 5.0.3. Let f : X → P1 be a finite morphism which is totally tamely ramified,

let R =
∑

i ni[yi] be the ramification divisor of f , and let D = f(R) be the branch

divisor of f . Then we have an isomorphism of formal schemes

Deff :X→P1 ' DefD,P1

Proof. Since finite morphisms f : X → P1 with tame ramification are uniquely

determined by their ramification divisors we have an isomorphism of formal schemes

Deff :X→P1 ' DefR,X . Under the assumption that f : X → P1 is totally tamely ramified

of degree d, for D =
∑

i[xi] we have R =
∑

i d[yi] where yi is the unique point above xi.

But then formal deformations of R in X correspond bijectively to formal deformations

of D in P1 and it follows that we have an isomorphism of formal schemes DefR,X '

DefD,P1 . �

Lemma 5.0.4. Let D =
∑

1≤i≤n ni[xi] be an effective divisor on P1. Let DefD,P1 be

the formal moduli scheme of deformations of the divisor D in P1. Then we have an

isomorphism of formal schemes

DefD,P1 '
∏

1≤i≤n

Defni{xi},P1

Proof. We use the following result of Kodaira: for Z ↪→ X a smooth embedding

with normal bundle NZ/X such that H1(X,NZ/X) = 0 (and such that Ext2
X(Ω1

X ,OX) =

0 and Ext2
Z(Ω1

Z ,OZ) = 0) then DefZ,X is unobstructed and the canonical morphism

DefZ,X → DefX is smooth. For X = P1 and Z = D as above these conditions are
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satisfied so the canonical morphism DefD,P1 → DefP1 = Spf(W (k)) is smooth, hence

DefD,P1 ' Spf(W (k)[[t1, . . . , tn]]) where n = dim(H0(P1, ND/P1)). It follows that we

have an isomorphism of formal schemes

DefD,P1 ' Spf(W (k)[[t1, . . . , tn]]) �

Remark. It is helpful to think about the above lemma in the following way. For

D =
∑

1≤i≤n ni[xi] be an effective divisor on P1 as above, and let Defni[xi]},P1 be the

formal moduli scheme of deformations of a point xi in P1. Then we have an isomorphism

of formal schemes

DefD,P1 '
∏

1≤i≤n

Defn{xi},P1

since for X = P1 and Z = {xi} the canonical morphism Def{xi},P1 → DefP1 =

Spf(W (k)) is smooth, hence Def{xi},P1 ' Spf(W (k)[[ti]]).

In other words to understand infinitesimal deformations of a divisor in P1 it is

enough to consider infinitesimal deformations of each point separately. Intuitively, one

cannot collide separate points in a divisor by applying an infinitesimal deformation.

Lemma 5.0.5. Let D =
∑
ni[xi] and B =

∑
[xi] There is a closed inclusion of formal

schemes

DefB,P1 ↪→ DefD,P1

Proof. On the right hand side, we allow for deformations of a given fixed [xi] with

coefficient n to split into xi + εj for 1 ≤ j ≤ n. By removing the coefficients in front of

xi we are only allowing for deformation in one infinitesimal direction, that is, [xi] can

only split into xi + εi. �



67

Similarly let DefD,P1 be the formal moduli stack of deformations of the divisor D

in P1 and let Def {xi},P1 be the formal moduli stack of deformations of a point xi in P1.

Then we have an isomorphism of formal stacks

DefD,P1 ' DefD,P1 //G

where G = {ϕ ∈ PGL2 | ϕ(D) = D} is the subgroup of Aut(P1) = PGL2 fixing D

(i.e. fixing the points of D up to permutation), and we have an isomorphism of formal

stacks

Def {xi},P1 ' Def{xi},P1 //Gm oGa

where GmoGa is the subgroup of Aut(P1) = PGL2 fixing xi. In particular, the formal

stacks DefD,P1 and
∏

1≤i≤nDef {xi},P1 are not isomorphic unless n = 1: for instance

dim(DefD,P1) = n− dim(G) whereas dim(
∏

1≤i≤nDef {xi},P1) = −n.

Since Aut(P1) acts 3-transitively on P1, the group G fixing D is finite as soon as

n ≥ 3. The group G is trivial if the n ≥ 3 points of D are in general position, but the

group G may be nontrivial for certain special configurations of points, as is the case for

the Artin-Schreier curve. This immediately gives us the following.

Lemma 5.0.6. Let n = p− 1, for the Artin-Schreier map f := p2 defined in Definition

, Def f is represented by

Spf W (k)[[t1, ..., tn]]//Gm oGa ' Spf(Sym(ρ)[∆−1])∧I )0

where the ideal I is the special fiber of X (p, t1 − 0, ..., tn − (n − 1)), where ρ :=

ker k[Z/p] → k is the reduced regular representation, Delta = t1 · · · tn, and the sub-

script denotes the 0th graded component.
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Remark. Considering H0(C,Nf ) as a G rep, we see the following. The generator σ

in Z/p acts on X by sending y∞ 7→ y∞, and yi 7→ yi+1 for all others, where the subscript

is considered mod p. Then, the generator τ in Z/(p−1) acts by sending yi 7→ yζi, where

ζ is a (p− 1)st root of unity.

Let G ' Z/po Z/(p− 1)2, and let E(h)∗ be coefficients of Morava E-theory.

Theorem 5.0.7. As G-representations,

(E(h)∗)
Z/(p−1) ' Sym ρ∧I ,

where I is the maximal ideal corresponding to the point X on Deff . Further,

H∗(G,Λ)∧I ' H∗(G,E∗)
Z/(p−1).

Proof. By Theorem 5.0.2, Deff satisfies the conditions of Theorem 2.0.3, we may

thus conclude that the action of G on the ring representing Deff is isomorphic as a

G-representation to LT , that is,

Def f ' LT//G.

Further, we showed in theorem 5.0.6 that Def f ' Sym(ρ)∧I . �

Theorem 5.0.8. Let Λ := Sym ρ∧I . As G-representations,

E(h)∗ ' Λ[ti
1/(p−1)],
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where I is the maximal ideal corresponding to the point X on Deff , and ti are the

generators of Sym ρ. Further,

H∗(G,Λ)∧I ' H∗(G,E∗)
Z/(p−1).

Further, H∗(G,Λ)[∆−1]∧I ' H∗(G,E∗).

Proof. The automorphism group being lifted to Aut(Û[X],M̂[X]) requires us to lift

to the ring with (ti)
1/p−1, as seen in Section 7. This is then required if we are to extend

the relationship from LT to LT∗. �

Remarkably enough, Theorem 5.0.8 suggests that the essential complexity of aK(h)-

local sphere is ultimately discernible in a quotient of the regular representation of a

cyclic group.

5.1. Artin-Schreier-Witt p2 Local deformations

We now make a quick observation about how formal deformations of morphisms

behave under composition, and then apply this observation in the case of Artin-Schreier-

Witt curves for Z/p2Z.

Recall that for f : X → Y a morphism of schemes over a field k we have the functor

Deff : Artk → Grpd sending A ∈ Artk to the groupoid of pullback diagrams of the

form

X X

Y Y

Spf k Spf A

f F
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For g : Y → Z another morphism of schemes we obtain a morphism of formal moduli

schemes

Deff :X→Y ×DefY Defg:Y→Z → Defg◦f :X→Z

given by pasting pullback diagrams when the morphism Y → Y in the first is equal to

the morphism Y → Y in the second:

( X X

Y Y

Spf k Spf A

f F

,

Y Y

Z Z

Spf k Spf A

g G
)
7→

( X X

Z Z

Spf k Spf A

g◦f G◦F
)

The essential image of the morphism Deff :X→Y (A)×DefY Defg:Y→Z(A)→ Defg◦f :X→Z(A)

consists of those pullback diagrams in Defg◦f :X→Z(A) such that the deformed morphism

H : X → Z factors as G ◦ F : X → Y → Z with F ∈ Deff :X→Y (A) and G ∈

Defg:Y→Z(A) yielding the following pullback diagram:

X X

Y Y

Z Z

Spf k Spf A

f F

H

g G

Similarly we obtain a morphism of formal moduli stacks

Def f :X→Y ×DefY Def g:Y→Z → Def g◦f :X→Z

given by pasting pullback diagrams, with the same characterization of the essential

image. This is all to say that to deform a morphism g ◦ f : X → Z it is enough to

deform each morphism f : X → Y and g : Y → Z separately, up to a compatiblity

condition which allows the pullback diagrams to be pasted.
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5.2. Tangent Spaces of Deformation Moduli Problems

5.2

We now recall some facts we will use about tangent spaces of formal moduli schemes,

which amounts to understanding first-order deformations rather than formal deforma-

tions. This will help give more context to some of the subtleties of the previous section.

We may consider the short exact sequence

0→ TX → f ∗TY → Nf → 0,

The long exact sequence related to this has the coboundary δ : H0(Nf ) → H1(TX)

which takes a deformation of the map f to the corresponding definition of X, forget-

ting the map; the kernel consists of deformations of f fixing both X and Y , modulo

automorphisms of X.

Lemma 5.2.1. For f : X → P1 where X is genus 2 or higher,

0 H0(X, f ∗TP1) H0(X,Nf ) H1(X,TX) H1(X, f ∗TP1) 0
δ

Remark. We may think of this lemma as telling us the following. Given any cover

f : X → P1, this cover is determined by (1) The image of the ramification ideal of f in

P1 and (2) An element of the global sections of Nf .

Proof. This can be shown as a consequence of the long exact sequence.

0 H0(X,TX) H0(X, f ∗TP1) H0(X,Nf )

H1(X,TX) H1(X, f ∗TP1) H1(X,Nf ) 0
δ
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For genus greater than or equal to 2, H0(X,TX) is 0, since 2 − 2g is the degree of

TX . Further, H0(X,Nf ) is related to the ramification points, and H1(X,TX) is the

infinitesimal deformations of the curve. Higher cohomologies vanish, so we are left

with.

0 H0(X, f ∗TP1) H0(X,Nf ) H1(X,TX) H1(X, f ∗TP1) 0
δ

�

Definition 5.2.2. Given a map f : X → Y , denote the normal sheaf of the map f

as

Nf = coker(df : TX → f ∗TY )

Example 5.2.3. If f is the inclusion of X as a subvariety of Y , then we get the usual

definition of Nf = TY |X/TX = (IX/Y /I
2
X/Y )∧.

Theorem 5.2.4 (Harris-Morrison Deformation Theory). If Y is nonsingular, than the

tangent space to the deformation functor f : X → Y keeping only Y fixed is

H0(X,Nf ).

We consider the Artin-Schreier-Witt curves and maps py defined in 4.2.1.

Lemma 5.2.5. The tangent space of Defpy :X1→P1
k

is isomorphic to the following. Let yi

be the uniformizer of the sheaf at the point i.

H0(X1, (Npy)) =
∏

yi∈{0,...,p−1,∞}

k[[yi]]/(yi)
p−1.
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Proof. The sheaf Nf is a skyscraper sheaf with length the degree of ramification

at each ramification point of the map f . We exposit that here.

Let f : X → Y be a finite morphism of smooth curves. It is useful to have in mind

the exact sequence

0→ f ∗ΩY → ΩX → ΩX|Y → 0.

Note that ΩX/Y is a torsion sheaf since the two other sheaves are locally free of the

same rank (they are line bundles on X). At a point q ∈ Y and p ∈ X in the preimage

of q, let dx denote a generator for ΩY,q as a OY,q-module. Now, (ΩX|Y )P = 0 if and

only if f ∗dx is a generator of ΩX,p, which happens if and only if f pulls back a local

parameter to a local parameter, that is p is unramified.

Moreover, the exact sequence above shows that the ramification index is exactly the

length of the sheaf ΩX/Y . �

Lemma 5.2.6. Given a ramification divisor B =
∑
bi :=

∑
nipi, the map of

Defbi,P1 → Defpi,P1

induces a map on tangent spaces forgetting the length of the ramification:

k[yi]/(yi)
n−2 7→ k[yi]/(yi)

2.

This is worth noting when attempting to compare deformation problems which keep

track of the degree of the divisor, and those which do not.

Remark. Considering H0(X,Npy) as a G rep, we see the following. The generator

σ in Z/p acts on X by sending y∞ 7→ y∞, and yi 7→ yi+1 for all others, where the
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subscript is considered mod p. Then, the generator τ in Z/(p − 1) acts by sending

yi 7→ yζi, where ζ is a (p− 1)st root of unity.

Lemma 5.2.7. The tangent stack of Defpy :X2→P1 is the following.

H0(X2, (Npy)) =
∏

yi∈{0,...,p−1

k[[yi]]/(yi)
p−1 ⊕ k[[y∞]]/(y∞)M(p−1).

Where M := p4 − 2p3 − 2p2 + 3p.

Proof. We again rewrite dt in terms of du. By Lemma 5.2.8, we found that dt =

up
4−2p3−p2+3pdu, in other words,

dt = uNdu.

We may trace the uniformizer through the different maps. They are multiplicative and

therefore we may divide them.

X2

X1

P1

N=p4−2p3−p2+2p

M=N−p(p−1)

p(p−1)

Thus the uniformizer above infinityN =M−p(p−1) = (p4−2p3−p2+2p)−p(p−1) =

p4 − 2p3 − 2p2 + 3p. �

Lemma 5.2.8. Let u be a uniformizer at infinity of the Artin-Schreier-Witt curve for

Z/p2 totally wildly ramified at one point, and let t be the uniformizer of P1 at infinity.

Then,

dt = up
4−2p3−p2+3pdu
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Proof. The first step is to express dt in terms of dw. We do so as follows. The

dominating term of wp −w is is x(p−1)2y. Due to a previous calculation, we know that:

dw = d(x(p−1)2y)

= u−p
4+p3+p2dx

Thus we may proceed to

du = d(xpy−2w)

=
x−p

y2
dw +

−pwx−p−1

y2
dx+

−2wx−p

y3
dy

The dominating term is x−p

y2
dw, so we get:

du =
x−p

y2
dw

= up
3+2p(p−1)up

4+p3+p2dx

= u−p
4+2p3+3p2−3pdx

dx = up
4−2p3−3p2+3pdu

We know that x = t−1, and x = u−p
2
, therefore t−2 = u−2p2 , and dx = u−2p2dt.

Thus we conclude:

du = u−p
4+2p3+3p2−3pdx

= u−p
4+2p3+p2−2pdt

dt = up
4−2p3−p2+2pdu
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�

Conjecture 5.2.9. Considering H0(X2, Npy) as a G ' Z/p2 o Z/(p− 1)2 representa-

tion, we see the following. The generator for Z/p2 comes from a combination of two

compatible actions. One Z/p acts on each fixed H0(X2, (Npy)yi) by sending yi to a root

of unity times itself, and the other Z/p is generated by the σ in Z/p acts on X by send-

ing y∞ 7→ y∞, and yi 7→ yi+1 for all others, where the subscript is considered mod p.

These two actions must be compatible, which restraints from from a Z/p× Z/p action

to a Z/p2 action. The generator of Z/(p − 1) acts the same as in X1 the generator τ

in Z/(p− 1) acts by sending yi 7→ yζi, where ζ is a (p− 1)st root of unity.
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CHAPTER 6

Global Construction: Hurwitz Stacks

It is worth spending a moment remarking on the relevance of Hurwitz schemes as

a global analogue of the deformation spaces we have studied in the previous section.

To that end we quickly recall a rather general construction of Hurwitz schemes which

makes sense in characteristic p, following (30) Wewers.

Definition 6.0.1. Let X/S be a family of smooth projective geometrically connected

curves over a stack S. We say D ⊆ X is a marking divisor if it is a closed subscheme

of X such that D → S is a finite étale cover of constant degree. One should think of S

as some moduli space of curves and X the universal family of curves over S.

Even if we are ultimately interested in studying branched covers of a single fiber of

X/S, it is often useful to study how these branched covers deform as their branch loci

deform, which can be understood by studying branched covers of X/S tamely ramified

along D.

We may take S = Un = Pn −∆n where ∆n is the discriminant locus and X = P1
Un

the universal family of projective lines, then a point in Un corresponds to n unordered

marked points on P1 which yields a marking divisor D ⊆ P1
Un

of degree n. This Un is

the unordered configuration space. In other words, S =M0,[n] is the moduli of genus 0

curves with n unordered marked points and X = U0,[n] is the universal family of curves

over M0,[n].

If we wish to study the stack of ordered points, we would consider On = (P1)n−∆n

where ∆n =
⋃

1≤i 6=j≤n{xi = xj} is the fat diagonal locus.
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It may be helpful to visualize the fibers in the universal family of projective lines

over Un: a point in Un corresponds to n unordered marked points in P1, the fiber (in

blue) over that point in P1
Un

is the P1 with that configuration of points. We have also

displayed the marking divisors (in red):

Un

P1
Un

The Hurwitz scheme parameterizing branched covers of P1 naturally lives over Un. It

may be helpful to visualize the fibers: for a point in Un corresponding to n unorderd

marked points in P1, the fiber over that point in P1
Un

is the P1 with that configuration

of points, over which we can consider branched covers X → P1 with branch locus that

configuration of points:
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Un

P1
Un

P1

X

The point of considering such Hurwitz schemes is that we can study branched covers

X → P1 not only fiber-wise with the branch loci fixed, but also in families as the branch

loci are allowed to deform.

Remark. More generally, if we want to study branched covers of genus g curves

we may take S =Mg,[n] the moduli of genus g curves with n unordered marked points

and X = Ug,[n] the universal family of curves.

Definition 6.0.2. Now we can define the Hurwitz stack. For an S-scheme S ′ → S

let HX(S ′) be the groupoid of finite covers ρ′ : Y ′ → X ′ = X ×S S ′ tamely ramified

along D′ = D ×S S ′.

If S is smooth, then HX is represented by an algebraic stack which is smooth and

étale over S. We do not focus on this, for we will be using a slightly more elaborate

stack for our purposes.
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Remark. The scheme S modulates X, that is, in a fiber we study branched covers

of a fixed X.

The Hurwitz stack HX encodes information about covers of X/S, with restriction

on ramification (only allowing for tame ramification) but without restriction on mon-

odromy. We can control the monodromy of such covers in terms of the tame étale

fundamental group as follows. For s a geometric point of S and for x a geometric point

of the fiber Xs we have an exact sequence of tame étale fundamental groups

πDs
1 (Xs, x)→ πD1 (X, x)→ π1(S, s)→ 0

A representation φ : πD1 (X/S, x)→ Σn gives rise to a cover ρ : Y → X tamely ramified

along D. Note that Y/S has connected fibers precisely if φs : πDs
1 (Xs, x) → Σn is

transitive.

Definition 6.0.3. Let n ≥ 1 be an integer, let G ⊆ Σn be a transitive subgroup,

and let N ⊆ Σn be a subgroup containing G as a normal subgroup. We consider

covers ρ : Y → X coming from representations φ : πD1 (X, x) → Σn with im(φ) ⊆ N

and im(φs) = G. A G-N-cover is a cover ρ : Y → X with choice of representation

φ : πD1 (X, x)→ Σn inducing ρ, modulo conjugation by elements of N .

Example 6.0.4. For example, if G ↪→ Σn is the regular representation and N = G

then a G-N-cover is a Galois cover ρ : Y → X along with a choice of isomorphism

Aut(Y/X)
∼−→ G.

Example 6.0.5. As another example, if G ↪→ Σn is a faithful transitive representation

and N is the normalizer of G in Σn then a G-N-cover is simply a cover ρ : Y → X with
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monodromy group G on each fiber; even if the fibers are G-Galois covers, the Galois

action need not be defined over S.

Definition 6.0.6. Now we can define the G-N-Hurwitz scheme. For an S-scheme

S ′ → S let HN
X(G)(S ′) be the groupoid of G-N-covers ρ′ : Y ′ → X ′ = X ×S S ′ tamely

ramified along D′ = D ×S S ′. Then HN
X(G) → HX is (relatively) represented by an

algebraic stack over HX , étale over HX .

Theorem 6.0.7 ((30) Theorem 4). If S is smooth, then HN
X(G) is represented by an

algebraic stack which is smooth, finite-type, and étale over S, and which is finite over S

after base-change to Z[ 1
#G

]. In fact, HN
X(G) is represented by a scheme HN

X (G) precisely

if the centralizer of G in N is trivial.

Example 6.0.8. For example taking S = Un = Pn − ∆n and X = P1
Un

as before,

then HN
X(G) = HN

n (G) is the Hurwitz scheme parameterizing tamely ramified G-Galois

covers of P1 with n branch points.

Corollary 6.0.9 ((30) Theorem 3). A specicialization of the above theorem is then the

following. HN
n (G) is represented by an algebraic stack which is smooth and finite type

over Z, and which is finite étale over Un after base-change to Z[ 1
#G

].

Returning to the situation of Artin-Schreier covers of P1, recall that we can regard

the Artin-Schreier curve yp − y = xp−1 as either a wildly ramified Z/pZ-Galois cover

of P1, or as a tamely ramified Z/(p− 1)Z cover of P1 which is not Galois. We consider

them as the latter in the rest of this section.

Remark. The version of Hurwitz stacks that we have reviewed above only handles

tamely ramified covers, defining a wild Hurwitz stack which sees Z/pZ-Galois covers
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of P1 such as the Artin-Schreier cover requires additional work and we do not treat it

here.

We may consider the Hurwitz stack HN
p (Z/(p − 1)Z) where Z/(p − 1)Z ↪→ Σp is a

faithful transitive representation and where N is the normalizer of Z/(p − 1)Z in Σp.

It is not a priori clear that such a faithful transitive representation always exists, or

if there are necessary conditions on p. Granting its existence, HN
p (Z/(p − 1)Z) is the

Hurwitz stack parameterizing tamely ramified Z/(p − 1)Z-covers of P1 with p branch

points, and the Artin-Schreier curve yp−y = xp−1 defines a point AS ∈ HN
p (Z/(p−1)Z).

By corollary 6.0.9 HN
p (Z/(p − 1)Z) is represented by an algebraic stack which is

smooth and finite type over Z, and which is finite étale over Un after base-change to

Z[ 1
p−1

].

The isomorphism from the previous section can now be explained as follows:

Theorem 6.0.10. Deff :X→P1 ' DefD,P1

Proof. The former is a formal neighborhood in HN
X and the latter is a formal

neighborhood in UN = Pn −∆n. The theorem follows map from HN
X(G)→ Un is finite

étale.

The formal neighborhood of the point AS ∈ HN
p (Z/(p− 1)Z) is represented by the

deformation stack Def f :X→P1 studied in the previous section. The formal neighborhood

of the corresponding point D = {0, 1, . . . , p−1} ∈ Un is represented by the deformation

stack DefD,P1 , and since HN
p (Z/(p − 1)Z) is finite étale over Un after base-change to

Z[ 1
p−1

], we obtain an identification of these formal neighborhoods. �
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CHAPTER 7

Global Construction: Algebraic Moduli

7.1. Definition of Moduli Problem

First, we review a direct generalization/rephrasing of the approach taken by Ma-

howald and Stojanoswka using explicit curve equations. Note that the Artin-Schreier

curve splits as xp−1 = yp−y = y(y−1) · · · (y−(p−1)). We consider a moduli functor of

curves of the form xp−1 = (y− e0) · · · (y− ep−1), and then we consider a moduli functor

of curves of this form with marked points (the roots of the polynomial). The former

we refer to as F unord and the latter as F ord. Considering both of these moduli functors

allows us to work with schemes more freely.

The curve associated to a generalized Artin-Schreier curve over an algebraically

closed field has the following property: X is smooth if the discriminant of f(x) has no

repeated roots. Morever, Artin-Schreier curves cannot have isomorphic presentations

if they are themselves not isomorphic. Thus, we inject into the open sub-scheme with

∆ inverted.

The moduli functors corepresent the moduli stack of curves of the indicated, meaning

maps from S into the stack M are the same as hitting S with the following functor.

Remark. These functors are more generally defined for Z[ 1
p−1

]-schemes, but here

for the sake of relation to topology, we use Z(p)-schemes.

Definition 7.1.1. We consider a moduli functor F defined as follows
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F : Z(p) − Sch −→ Grpd

R 7−→ objects :


(X,R)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X is a nonsingular family of curves over R

whose affine expression is

xp−1 = yp + a1y
p−1 + · · ·+ ap−1y + ap.;

where the discriminant is invertible .


.

morphisms :

α : X(x, y) 7→ X(α(x, y))

∣∣∣∣∣∣∣ α :
x

y
7→

µ−px

µ−p−1y + c

 .

Lemma 7.1.2. Let Y := SpecZ(p)[a1, ..., ap][∆
−1], where ∆ is the discriminant of

fa(x) = xp+a1x
p−1 + ...+ap−1x+ap, and G is the group scheme Spec(Z(p)[µ

±, c]). The

associated stack M to the moduli functor F is equivalent to the quotient stack

M = EG×G Y ' Y//G.

The algebraic stack M is smooth and of dimension p− 2 over Z(p)

Proof. To show this is the associated quotient stack, we follow (? ) Chapter

4, Exemple (4.6.1). We first express the isomorphism of the objects as sets F (S) '

HomZ(p)−Alg(Y, S). Let ψ ∈ HomZ(p)−Alg(Y, S), then ψ : (a1, ..., ap) 7→ (ψ(a1), ..., ψ(ap))

where ψ(ai) ∈ S are all nonequal. For curves of this form, it is sufficient for the

discriminant to be a unit for the curve to be nonsingular. This uniquely specifies a

curve of the form xp−1 = yp + a1y
p−1 + ...+ ap−1y + ap with no singularities as desired.

The action groupoid Y//G has isomorphisms when two curves differ by an action

of G, which coincides with the definition of the morphisms in the moduli functor F .



85

Further, we have that

EG×G Y ' Y//G.

This is because for G a group scheme acting on a scheme Y , we consider the principle

G-bundle EG over BG and take a homotopy pullback of the action groupoid projection

p : Y//G→ BG along the identity morphism id : BG→ BG.

EG×G Y Y//G

BG BG

p

id

�

Definition 7.1.3. We consider a moduli functor F unord defined as follows

F unord : Z(p)− Sch −→ Grpd

R 7−→ objects :


(X,R)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X is a nonsingular family of curves over R

whose affine expression is

xp−1 = (y − y0)(y − y1) · · · (y − yp−1);

where y0, · · · yp−1 are non-equal elements ofR.


.

morphisms :

α : X(x, y) 7→ X(α(x, y))

∣∣∣∣∣∣∣ α :
x

y
7→

µ−px

µ−p−1y + c

 .

Definition 7.1.4. We may also defined the corresponding moduli functor F ord,

F ord : Z[
1

p− 1
]− Sch −→ Grpd
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R 7−→ objects :



(X,R)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

X is a nonsingular family of curves over R

whose affine expression is

xp−1 = (y − y0)(y − y1)(y − y2) · · · (y − yp−1);

where y0, · · · yp−1 are non-equal elements of R

P is the following ordered set of marked points on X,

P := ([0 : y0 : 1], [0 : y1 : 1], · · · , [0 : yp−1 : 1]).



.

morphisms :

α : X(x, y) 7→ X(α(x, y))

∣∣∣∣∣∣∣ α :
x

y
7→

µ−px

µ−p−1y + c

 .

This moduli functor should be thought of as the analogue of the moduli stack of

curves with level structure.

The morphisms in the image of both of these moduli functors F (S) can be thought

of quite naturally as the following commutative diagram, that is, as an element of the

automorphism groupoid defined in 1.1.5. Any two curves with a map between them are

of the form β∗X → X.

β∗X X

S S

α

β

For a more explicit note, given R and α as above,

β(R) := ([−µp−1(y0 − c) : 0 : 1], [µp−1(y1 − c) : 0 : 1], · · · , [µp−1(yp−1 − c) : 0 : 1]).

Note that both of these moduli spaces can be recast as local deformation spaces,

by changing the source category to be Artk, and adding the datum that our curves

xp−1 = (y−e0)(y−e1) · · · (y−ep−1) must in fact reduce to xp−1 = y(y−1) · · · (y−(p−1)).
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Lemma 7.1.5. Let G be Spec(Z(p)[µ
±, c]), and Y := SpecZ(p)[r2, ..., rp−1][∆−1], where

∆ is the discriminant of f(y) = y(y − 1)(y − r2) . . . (y − rp−1).

The moduli functor F unord is represented by

M = EG×G Y ' Y//G

and is smooth and of dimension p− 2 over Z(p). In other words,

M'Munord.

Proof. If the discriminant is invertible there is always an étale extension R → S

such that yp + a1y
p + · · ·+ ap−1y + ap splits over S.

�

Let si be the ith symmetric polynomial in the variables rj.

Corollary 7.1.6. Let

B := (Z(p)[r0, ..., rp−1][∆−1])Σp = Z(p)[s0, ..., sp−1],

and let G := Spec(Z(p)[µ
±, c]). The moduli functor F ord is represented by

Mord ' E(Gm oGa)×G SpecB

Further,

Mord ' EGm ×Gm SpecZ(p)[λ1, λ2, ..., λp−1][∆±]

' Spec(Z(p)[
λ2

λ1

, · · · λp−1

λ1

][∆±])
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and is smooth and affine of dimension p− 2 over Z(p).

7.2. Comparison to Hurwitz Perspective and Discussion of Group Action

We note here that Mord → Munord is a Σp Galois cover. In fact, they correspond

exactly to the ordered and unordered configuration spaces of points in P1.

M ord (
∏p−1

i=0 (P1 −∆)//Gm oGa

Munord (Pn −∆)//Gm oGa

Σp

∼

Σp

∼

Definition 7.2.1. Let X : Spec(Fq) → M classify yp − y = xp−1. Let Aut(X) be

the algebraic group R 7→ Aut(X/R); here R is an Fp-algebra. In other words, we define

the group scheme Aut(X) as the functor which assigns to R ∈ Pro(Artk) the morphisms

of Spec(R) over M; that is, diagrams of the following form.

SpecR

M.

SpecR

X

'

X

Lemma 7.2.2. There is a closed immersion of algebraic groups H := Aut(X) →

Gm oGa =: G.

Proof. Since M is a stack, a diagram such as the one in 7.2.1 is specified by a

morphism X ' X in the groupoid M(R) from R to itself. �

The map Spec k →Munord factors as follows, where H := Aut(X),

Spec(k) Munord ' EG×G SpecB

BH ' EH ×H SpecFq

.
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We base change from Z(p) to Z(p)[ζ] where ζ is a (p − 1)st root of unity, so that

Aut(X) = H remains consistent. We may identify H with the normalizer of Z/p inside

of Σp, and get the following pullback diagram.

Lemma 7.2.3.

Σp × Spec(k) Σp/H × Spec(k) Mord

Spec(k) BH Munord

Σp

Let ρ denote the reduced regular representatation of Z/p, ρ : ker(W (k)[Z/p] →

W (k)). This has a natural action of Aut(Z/p) ' Z/(p − 1), so we may consider it to

be a Z/po Z/(p− 1) representation.

Corollary 7.2.4. The ring Λ representing M ord is Sym(ρ)[∆−1] as a Z/poZ/(p− 1)-

representation.

Proof. This follows from the identification of Autk(X) with a subset of Σp given

by Lemma 7.2.3, the inversion of ∆ ensures the curves are smooth. We spell this out

explicitly. We will show that two things are equivalent by computing both and seeing

that they are the same. First, let us present Sym(ρ) explicitly as a Z/p-representation.

This looks like:

W (k)[d0, d1, · · · , dp−1]
ε−→ W (k)

di 7→ 1
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The kernel of ε is generated by δi := di − d0. Let σ be the generator of Z/p. It acts

as follows (the subscripts are considered mod p):

σ(δi) := σ(di − d0) = di+1 − d1 = δi+1 − δ1

σ(δp−1) := σ(dp−1 − d0) = d0 − d1 = −δ1.

This is the reduced regular representation ρ.

It remains to observe in our Λ how λi are acted on by σ. The original coordinates

of the curve are:

xp−1 = (y − e0)(y − e1) · · · (y − ep−1)

= y(y − (e1 − e0)) · · · (y − (ep−1 − e0))

:= y(y − λ1) · · · (y − λp−1)

Thus, the action that sends ei 7→ ei+1, where the subscripts are considered mod p,

σ(λi) := σ(ei − e0) = ei+1 − e1 = λi+1 − λ1

σ(λp−1) := σ(ep−1 − e0) = e0 − e1 = −λ1.

Looks familiar! They are the same. �

Remark. The regular representation of Z/p would come from the ring representing

the moduli stack of curves of the form xp−1 = (y − e1) · · · (y − ep−2) without modding

out by the additive action Ga which normalizes one of the roots to 0. When we mod

out by Ga, we get the reduced representation as seen above.



91

7.3. Action on Special Fiber Lifts to Entire Stack

We wish to show that our global moduli stackM satisfies the conditions of modelling

the Lubin-Tate action. This section is devoted to showing that [X] : Spec k → M

models G ' Z/p o Z/(p − 1) ' NΣp(Z/p), where the curve X is the Artin-Schreier

curve of the form yp − y = xp−1 discussed in detail in Section 3.

We know from Thereom 4.2.1 that Autk(X) contains G, it remains to construct a

lift of that action to all of M. This section is devoted to doing so explicitly.

Definition 7.3.1. We define the order of a group element (α, β) ∈ Aut(U ,M) to

be the number of precompositions until the identity is reached, on top and bottom.

(β ◦ · · · ◦ β)∗U (β ◦ β)∗U β∗U U

M M M M

(β◦···◦β)∗α β∗α α

β◦···◦β β β

Theorem 7.3.2. Let k = Fpp−1, and let X be the Artin-Schreier curve with affine

equation yp − y = xp−1. Then, [X] : Spec k →M models G ' Z/po Z/(p− 1)2.

Proof. By calculation, the general form of α : β∗U → U is α(x, y) = (v−px, v−(p−1)y+

c). Let’s look this map acting on a fixed fiber. Let’s look at the fiber with ordered

roots ([0 : 0 : 1], [1 : 0 : 1], ..., [rp−1 : 0 : 1]) which we abbreviate as (0, 1, · · · , rp−1). The

action is then:

α(x, y) =

x 7→ v−(p−1)x+ c

y 7→ v−py

 : {C : xp−1 = y(y − 1)(y − r2) · · · (y − rp)}

7→ {C ′ : xp−1 = y(y − 1)(y − r′2) · · · (y − r′p)}



92

β : (0, 1, ..., rp−1) 7→(β(Σ(0)), ..., β(Σ(rp−1))) =: (r′0, ..., r
′
p−1),

= (−vp−1c, vp−1(1− c), ..., vp−1(rp−1 − c))

where Σ is an element of Z/p o Z/(p− 1)2 sitting inside of the symmetric group on

p-elements.

To find a lift of a symmetric group element σ ∈ G ' Autk(C) ' NΣp(Z/p), we are

reduced to solving the following:

β ◦ σ



0

1

r2

...

rp−1


=



−vp−1c

vp−1(1− c)

vp−1(r2 − c)
...

vp−1(rp−1 − c)


.

For example, for a fixed order p symmetric group element, say σ := (23 · · · p1) ∈ Σp,

we must solve:

βσ



1

r2

...

rp−1

0


=



−vp−1c

vp−1(1− c)

vp−1(r2 − c)
...

vp−1(rp−1 − c)


,

which may be more simply put as:
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βσ


1

ri

0

 =


−vp−1c

vp−1(ri+1 − c)

vp−1(rp−1 − c)

 .

Solving this, we find βσ(ri) := rp−1−ri−1

rp−1
, and ασ(y) = v−(p−1)y+ c = −rp−1y+ rp−1. We

take the convention that r0 = 0, and r1 = 1, and the indexes of the ri are considered

mod p.

Remark. This morphism βσ is indeed of order p by calculation, which one can see

by looking at the form of the jth composition:

(βσ)j(ri) =
rp−j − ri−j
rp−j − rp−j+1

.

For a nice sanity check, we can also see if ασ(x, y) ≡ (y, x + (p − 1)) mod (p, ri − i).

Indeed, rp−1 ≡ (p − 1), and −rp−1 ≡ 1. For context in our earlier categorical setup,

γ(σ) is the pair (ασ, βσ).

To find a lift of the order (p− 1)2 element, we must solve the system:

τ



rp−1

r2

...

rp−2


=



vp−1

vp−1r2

...

vp−1rp−1


,

which may be simplified to:

τ

1

ri

 =

 vp−1r2

vp−1ri+1

 .

Solving this, we find βτ (ri) = ri+1

r2
, and ατ (x, y) = ((r2)p/(p−1)y, r2x). �
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Remark. Let’s look at ατ (x, y) mod (p, ri − i). Firstly, r2 ≡ 2, and 2(p−1) ≡ 1

mod p. Thus, we may consider 2 as a p− 1th root of unity, and we could denote it as

ζp−1, where ζ is a (p− 1)2 root of unity. In other words:

ατ (x, y) ≡ (ζpx, ζp−1y) mod (p, ri − i).
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CHAPTER 8

Universality of 1-d Component

The other condition we need to check to see if our stack satisfies the condition of

Theorem 2.0.3 is that of deformed h-splitting. We must compare the formal group law

that results from the construction outlined in Theorem 2.0.3 applied to our curve [X]

in the stack Mord.

To do this, we first must first determine the invariant differential of the formal group

law F1 that comes up from the construction in Lemma 8.0.4, and then compare the

invariant differential of F1 with a universal one, and it suffices to show they agree up

to a unit and mod I2.

The generators of LT as discussed in Theorem (Lubin-Tate) are u1, ..., uh−1. These

ui come from a universal p-typical formal group. The p-series of this formal group is

[p]u(x) = u1x
p +u u2x

p2 +u · · · .

We now set up some lemmas to express a recongition result which allows us to show

that a given formal group law is universal.

Lemma 8.0.1. Let F be a formal group law over a Z(p)-algebra with invariant differ-

ential

ηF = (x+ a1x
2 + · · · )dx = (

∑
ai−1x

i)dx.
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Then there is an isomorphism e : F → G of formal group laws so that G is p-typical

and

ηG = (
∑
j

apj−1x
pj)dx.

Proof. The isomorphism e is the Cartier idempotent. See the discussion follow-

ing Definition A.1.22 of Ravenel’s Green Book, especially (A2.1.24). The invariant

differential is the derivative of the logarithm. �

Lemma 8.0.2. Let F be a p-typical formal group law over a Z(p)-algebra and with

invariant differential

ηF = (
∑
j

apj−1x
pj)dx.

Then the p-series of F can be written

[p]F (x) = x+F v1x
p +F v2x

p2 +F · · ·

with

apj−1 =

j∑
i=0

pj−iapi−1v
pi

j−i

Proof. This follows from (A2.2.22) and (A2.2.4) of Ravenel, once we note pi`i =

api−1. This follows Theorem A2.1.27, right before part (d). �

This implies (up to a unit in Z(p))

vj ≡ pj−1apj−1 modulo (v1, . . . , vj−1).

We now discuss the recognition result. Let R = W (Fq)[[u1, . . . , un−1]] and let F be a

formal group law over R. We may assume F is p-typical. Write vi for vi(F ) and v0 = p

Then F is a universal deformation if and only if the vi form a regular sequence, the
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ideal (p, v1, . . . , vn−1) is the maximal ideal and vn is unit. We thus have the following

result.

Proposition. Let F be a p-typical formal group law over a R and with invariant

differential

ηF = (
∑
j

apj−1x
pj)dx.

Let a0 = p. Suppose

(1) the apj−1 form a regular sequence;

(2) modulo (ap−1, . . . , apj−1), the coefficient apj−1 is not divisible by pj; and,

(3) (p, ap−1, . . . , apn−1) = R.

Then F is a universal deformation.

Theorem 8.0.3. The formal group law f1 has universal h-splitting for h = p− 1.

Proof. Our formal group law is defined by formally integrating a differential ω(z).

The next three lemmas/propositions sets up the coordinates (Lemma 4.3.1), splits the

formal group law (Theorem 4.6.2), isolates ω(z) (Lemma 4.6.1), and finally presents

ω(z) in such a way that its easier to compare to the universal holomorphic differential.

�

Corollary 8.0.4. Let J be the Jacobian of the universal curve with p marked points

over Munord. The invariant differential spanning the one dimensional idempotent piece

of J is ω(x) := xp−3dx = zdz.

Proof. Follows from Lemma 4.3.1 and Lemma 4.6.2. The same splitting occurs in

char 0 since the action by Z/(p− 1) is coprime to p. �

We now proceed with the comparison. We take U , the universal curve with p marked

points over Mord, and we consider the symmetrization:
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yp−1 = x(x− 1)(x− r2) · · · (x− rp−1)

= xp + u1x
p−1 + ...+ up−2x

2 − (1 + u1 + ...+ up−2)x.

We call these ui as they will end up playing the role of ui in the sense of the

coordinates of the universal formal group.

Remark (Rephrasing). We take U , the universal curve with p marked points over

Spf A, defined in Section 7. As a matter of convenience in this section, we change

coordinates to the symmetrization of the marked points. We forget the marked points.

In other words, we consider the etale map

Ap−2 s−→ SymAp−2

which takes an ordered tuple of points (1, 2, ..., p− 2) to a divisor [1] + [2] + ...+ [p− 2].

We may also think of this as sending ri to ui := (−1)isi(r2, ..., rp−1), where si is the ith

elementary symmetric polynomial.

Lemma 8.0.5. We may express ω(z) from Corollary 8.0.4 as a geometric series

ω(z) =
1

1− (
∑

i=1p−1 iuizp−iwi−1 + (p− 1)bzwp−2)
.

Proof. We allow ourselves new coordinates, z = x
y
, and w = 1

y
. Our curve is

yp−1 = xp + u1x
p−1 + ...+ up−2x

2 + bx,
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or after coordinate change,

w = zp + u1wz
p−1 + ...+ up−2w

p−2z2 + bwp−1z.

Next, we differentiate ω := ω(z) with respect to z, and get ω′ = w′f + g, where,

f := u1z
p−1 + 2u2wz

p−2 + ...+ (p− 2)u2w
p−3z2 + (p− 1)bwp−1

g := pzp−1 + (p− 1)wzp−2 + ...+ 2up−2w
p−2z + bwp−1

By assumption, the logarithm of f1 is generated by the integral of dx
y

= (1− z
w
w′)dz.

Now, 1− z
w
w′ = 1− z

w
1

1−f = w(1−f)−zg
w(1−f)

.

Then,

ω(1− f) = ω − u1wz
p−1 − 2u2w

2zp−1 − ...− (p− 2)u2w
p−2z2 − (p− 1)bwp−1

−gz = −pzp−1 − (p− 1)wzp−1 − (p− 2)u2w
2zp−1 − ...− 2u2w

p−2z2 − bwp−1z

Thus, w(1− f)− gz = w − pw, or

1− z

w
w′ =

1− p
1− f

.

�

Corollary 8.0.6. ((8), Section 25) ω(z) is strictly isomorphic to the invariant differ-

ential associated to a universal formal group of height h = p− 1.
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CHAPTER 9

Cohomology Calculation for h = p− 1

We start with the results.

Theorem 9.0.1. The Tate cohomology of the G-module Λ = Sym(ρ)[∆±] is:

Ĥ∗(G,Λ) ' Zp[α, β,∆±1]/α2,

where

|α| = (1, 2(p− 1)), |β| = (2, 2p(p− 1)), and |∆| = (0, 2p(p− 1)2).

We restate this in the notation that naturally arises from the computation:

Theorem 9.0.2. Denote by R the graded ring Z/p[c, b±(p−1), dp−1]/(c2). Then, the Tate

cohomology of the Γ-module Λ is:

Ĥ∗(Γ,Λ) ' R⊕Rbd.

The element b(p−1) is in degree (2(p− 1), 0), dp−1 is in degree (0, p(p− 1)2), and c is in

degree (1, (p− 1)).

Remark. The classes c and bd represent α and β in the homotopy groups of spheres,

up to a unit. That is why we notate them as such in Theorem 9.0.1

9.1. Setting up the Short Exact Sequence

Let R be a Zp-algebra. There is an action of G = Cp o Cp−1 ' (Fp,+) o (F∗p,×)

on the group ring R[Fp] ' R[t]/(tp − 1) by (c,m) · tx 7→ tc+mx. Let σ := (1, 1) be the
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element of order p in G. If a ∈ F×p is an element of order (p − 1), then, let τ := (0, a)

be the corresponding element of order p− 1.

Let Λ0 := ker(f : R[Cpk ] → R[Cpk−1 ]). We wish to compute the Cp-cohomology of

Λ := Sym(ker(f : R[Cpk ] → R[Cpk−1 ])). One would think that the most natural short

exact sequence to use would be the exact sequence

ker f → R[Cp]
f−→ R,

this naturally inherits a Cp o Cp−1-action from R[Cp]. Unfortunately, it breaks when

we apply Sym, that is, the map Sym(ker f) → Sym(R[Cp]) is no longer an injection.

The kernel of Sym(f) is also not equal to Sym(ker f).

We have to be a bit more creative to construct an exact sequence. Let A :=

Sym(R[Cp]), we consider the element s1 := 1 + σ+ · · ·+ σp−1 in A. Then, let V be the

R-submodule generated by s1, and let I be the ideal in A generated by s1. Note that

Λ ' A/I.

The short exact sequence we will be working with is thus:

0→ I 7→ A 7→ A/I → 0.

9.2. Calculating using SES

We’re all set up now to calculate cohomology. Firstly, we’ll need a short exact

sequence. We take the map f from above of G-representations and extend and complete

it to a map of graded G-algebras over Zp:

Sym(f) : A→ Λ,

where Λ := Sym(Λ0), and A := Sym(A0).
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We may consider A ' Zp[x0, x1, ..., xp−1], where xi := σi ⊗ y. The kernel of Sym(f)

is generated by s1 := x0 + · · ·+ xp−1 since 1 + σ+ σ2 + ...+ σp−1 = 0, and σ(xi) = xi+1.

So we get a short exact sequence:

0→ As1 → A→ Λ→ 0.

We will compute the cohomology of A and As1 to compute the cohomology of Λ.

The orbit of each monomial of A under σ is free except for sp := x0 · · ·xp−1 which is

fixed (thus the orbit is trivial), and its corresponding cohomology class d lies in degree

(0, p(p− 1)). Therefore, A splits as a sum of a G-module F with a free Cp-action and

Zp[sp] which has trivial Cp-action,

F ⊕ Z[sp]

.

Next, we take the ring map from Z → A, this gives a map from H∗(Cp,Z) to

H∗(Cp, A). Recall that H∗(Cp,Z) =



Z if ∗ = 0

Z/p if ∗ even

0 if ∗ odd

, i.e., H∗(Cp,Z) ' Z ⊕ Z/p〈b〉,

where b has bidegree (2, 0). Let N : A→ H0(Cp, A) be the norm map. Then, we have

an exact sequence

A
N−→ H0(Cp, A)→ Z/p[b, d]→ 0.

The Tate cohomology of A is then

Ĥ∗(Cp, A) ' H∗(Cp, A)[b−1] ' Z/p[b±, d].
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Let b̃ := s1b, and d̃ := s1d. Similarly, the Tate cohomology of As1 is Ĥ∗(Cp, As1) '

Z/p[̃b±, d̃].

From our short exact sequence we get a long exact sequence, which is zero at the

ends for degree reasons:

0→ Ĥ2k−1(Cp,Λ)→ Ĥ2k(Cp, As1)→ Ĥ2k(Cp, A)→ Ĥ2k(Cp,Λ)→ 0.

The middle map in this long exact sequence is zero, because it is induced by multi-

plication by s1, which is in the image of the additive norm on A, and norms are modded

out by Tate cohomology.

It follows that

Ĥ∗(Cp,Λ) ' Z/p[b±1, c, d]

where c is the element of bidegree (1, (p− 1)) which maps to b̃ ∈ Ĥ2(Cp, As1).

Let us now examine the invariants of the Cp−1-action on Ĥ∗(Cp, A).

Lemma 9.2.1. Ĥ∗(Cp o C(p−1)2 ,Λ) ' Ĥ∗(Cp o C(p−1),Λ) ' Ĥ∗(Cp,Λ)C(p−1)

Proof. Since the action of C(p−1)2 on Cp factors through Cp−1, which is prime to

p. Since the action of all x(p−1) ∈ C(p−1)2 is trivial on Cp, H
∗(G,Λ) ' H∗(Cp,Λ)Cp−1 '

H∗(Cp,Λ).. �

Lemma 9.2.2. The action of a generator τ ∈ Cp−1 on Ĥ∗(Cp, A) ' Z/p[b±1d] is as

follows:

τ : b 7→ ζ−1b

d 7→ ζd
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Proof. Let a be a chosen primitive root of Z/p. Let ζ be a p− 1 root of unity. We

begin with b the generator of H2(Cp, A).

Recall that H1(Cp,Z) ' Cp, here τ acts by multiplication by a.

Then, H1(Cp,Z/p) ' Hom(H1(Cp,Z),Z/p)). The dual of the action by the 1x1

matrix a, is the 1x1 matrix a again, it still acts by a. Via the Bockstein map,

H1(Cp,Z/p) ' H2(Cp,Z). Thus, τ(b) = ab.

We now examine how τ acts on d = x0x1 · · ·xp−1. Note that τ acts on xi := σi ⊗ y.

τ(xi) := τ(σi ⊗ y)

= τ(σi)⊗ y

= σia ⊗ τ(y)

= σia ⊗ ζy

= ζ(σia ⊗ y) = ζxia

Therefore, τ(d) = ζp(
∏

a xia) = ζd. Lastly, in order for Y to be a basis which spans

Λ as a p− 1 Zp-module, |ζ| := a−1. �

Lemma 9.2.3. The action of a generator τ ∈ Cp−1 on Ĥ∗(Cp, s1A) ' Z/p[̃b±1, d̃] is as

follows:

τ : b̃ 7→ b̃

d̃ 7→ ζ2d̃
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Proof.

τ : b̃ = s1b 7→ (ζs1)(ζ−1b) = b̃

d̃ = s1d 7→ (ζs1)(ζd) = ζ2d̃.

�

The last step is to connect the cohomology of A and s1A together. Let c be the

element in bidegree (1, (p − 1)) which maps to b̃ ∈ Ĥ2(Cp, As1) equivariantly. Thus,

the action is the same as that of b̃, that is:

τ : c 7→ c.

Finally, this concludes the proof.
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