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ABSTRACT

Emergent Simplicity in Mathematical Models for Morphogenesis

Siqi Liu

The simplicity of morphogenesis, manifested as collective shape changes, emerges from

complex biophysical regulations within a multicellular embryo. Constructing a spatio-

temporal atlas of mechanical stresses is central for understanding the emergence of this

simplicity. Developing a new mathematical theory for the static mechanics of three-

dimensional multicellular aggregates involving pressures and tensions, I present an image-

based approach of inferring forces with high accuracy and robustness. The underlying

attributes in the modeling imply the low-dimensionality of morphological geometry space,

and the mechanical flexibility of tension allocation. The ensuing mechanical atlas, within

the context of ascidian gastrulation, reveals the adiabatic nature of mechanical dynamics,

its dependencies on cell-cycle and cell-lineage, and the novel correlations and variations

in the spatio-temporal patterns.



4

Acknowledgements

Foremost, I would like to express my profound gratitude to my advisor, Professor

Madhav Mani. His role has not been confined merely to that of an advisor; he has

also been a remarkable teacher, an inspiring supervisor, and a steadfast friend. Working

alongside him has been an enriching and joyful journey. His wisdom has significantly

deepened my comprehension of science and broadened my academic perspectives.

I would also like to extend my heartfelt appreciation to my esteemed collaborators,

Professor Edwin Munro and Professor Patrick Lemaire. Their brilliance as biologists and

their hands-on assistance have been instrumental throughout my projects. Their teachings

have had an indelible impact on my academic growth and professional development.

Lastly, my sincere thanks go to my committee members, Professors Michael Miksis

and Petia Vlahovska. Their unwavering guidance throughout my PhD journey and their

invaluable academic insights have been pivotal. Their constructive critiques and sugges-

tions have shaped my research trajectory, enhancing my overall academic experience.

The successful completion of this thesis would not have been possible without the

mentorship, encouragement, and support of these remarkable individuals. I am fortunate

and honored to have had the opportunity to learn from and work with them.



5

Table of Contents

ABSTRACT 3

Acknowledgements 4

Table of Contents 5

List of Figures 8

Chapter 1. Introduction 11

1.1. Background 11

1.2. Research problem 15

1.3. Overview 19

Chapter 2. Model and Inference for Three-dimensional Cellular Aggregate 21

2.1. Background 21

2.2. Assumptions and models 22

2.3. Geometry in equilibrium 32

2.4. Analytical solutions of mechanics 44

2.5. Numerical scheme 59

2.6. Conclusion 65

Chapter 3. A mechanical atlas of ascidian gastrulation 68

3.1. Background 68



6

3.2. Geometry reconstruction of ascidian embryo 73

3.3. Patterns of mechanical atlas 78

3.4. Mechanical flexibility in ascidian embryogenesis 91

3.5. Conclusion 98

Chapter 4. Anisotropic Model for Three-dimensional Cellular Aggregate 100

4.1. Background 100

4.2. Anisotropic tension balance on Polyhedral tessellation 101

4.3. Anisotropic force balance on Ellipsoidal-Curved Polyhedral tessellation 111

4.4. Anisotropic force inference 120

Chapter 5. Dynamical model of embryo morphogenesis 122

5.1. Background 122

5.2. Dynamical model on 2d cellular lattice 123

5.3. Dynamical force inference method 126

5.4. Results on drosophila germ-band extension 128

5.5. Mechanical-feedback model based on myosin-driven contractility 130

Chapter 6. Discussion 134

6.1. Summary 134

6.2. Future 135

References 136

Appendix A. The MATLAB codes for numerical schemes 140

A.1. Force inference code 140



7

A.2. Synthetic analysis 143

Vita 146



8

List of Figures

2.1 Model and inference of three-dimensional cellular aggregate 22

2.2 Geometry components of three-dimensional cellular aggregate 24

2.3 Mechanical inputs and molecular basis of cellular aggregate 26

2.4 Force directions on faces and edges 27

2.5 Balance between mechanical forces 29

2.6 Mechanical inverse problem 31

2.7 Geometric constraints 34

2.8 Dependency among geometric constraints in Polyhedron tessellation 37

2.9 Dependency among geometric constraints in SCP tessellation 39

2.10 Generalized Weighted Voronoi tessellation in 2d 41

2.11 Divergence theorem in 3d and 2d 45

2.12 Mechanical duality in polygonal tessellation 46

2.13 Dual graph construction in CAP tessellation 47

2.14 Mechanical duality in CAP tessellation 49

2.15 Rescaled dual graph construction 50

2.16 Mechanical duality in Polyhedral tessellation 51

2.17 Mechanical duality in SCP tessellation 53



9

2.18 Two-cell example of mechanical zero-modes 56

2.19 Images of segmentation 60

2.20 Least-square fitting and synthetic 3d image 61

2.21 Precision and robustness 64

2.22 Summary of physical model and inference method 67

3.1 Developmental stages of ascidian embryo 69

3.2 Early gastrulation of ascidian embryo 70

3.3 Cell fates of ascidian gastrulation 72

3.4 Geometry reconstruction of ascidian embryo 73

3.5 Error distributions of geometry fitting 75

3.6 Improvement of fitting by re-segmentation 76

3.7 Mechanical atlas of ascidian gastrulation 80

3.8 Five groups of ascidian membranes 81

3.9 Reproducible pressure patterns in three embryos 82

3.10 Symmetries and asymmetries of ascidian mechanical patterns 83

3.11 Mechanical atlas of surface tensions in ascidian gastrulation 86

3.12 Correlations between pressures and membrane tensions 87

3.13 Mechanical atlas of line tensions in ascidian gastrulation 88

3.14 Correlations between pressures and line tensions 89

3.15 Lineage map of pressures in ascidian gastrulation 90



10

3.16 Cellular stress tensor 93

3.17 Flexibility in contractile stress 94

3.18 Von Mises shear stress 96

3.19 Lineage map of pressures relative to ectoderm 97

4.1 Anisotropic surface tension 103

4.2 Membrane anisotropy and cellular anisotropy tensors 106

4.3 Global anisotropy tensor of cellular aggregate 108

4.4 Anisotropic Young-Laplace relation 113

4.5 Analytical solution of anisotropic tension on ellipsoid 117

5.1 Dynamical model on 2d cellular lattice 125

5.2 Robustness of dynamical force inference method 128

5.3 Results on drosophila germ-band extension 129

5.4 Mechanical and geoemtry subspace 131



11

CHAPTER 1

Introduction

The immeasurable complexity at every level of the nature creates a tough mission for

understanding the world. Yet, it is intriguing to observe that the majority of natural sys-

tems exhibit remarkable organization and rarely descend into chaos. How does this order

materialize amidst such complexity? Mathematical modeling offers a powerful method for

navigating this complexity by simplifying objects and their interactions, effectively dis-

tilling their core features. In multi-component systems, we often observe the emergence

of collective behaviors among the components. Interestingly, this simplicity arises not

from the modeling process itself, but rather emerges from the intrinsic properties of the

mathematical structures in play. Such phenomena suggest that mathematical structures

may provide a gateway to understanding the emergent simplicity from the complex basis

of natural systems.

1.1. Background

1.1.1. Morphogenesis

This dissertation delves into the captivating domain of morphogenesis, a natural phenom-

enon that epitomizes the elegance of simplicity emerging from an intricate foundation.

Morphogenesis refers to the biological process that drives an organism or tissue to de-

velop its form and shape [1]. This process unfolds through local interactions across cellular

contacts by individual cells, guided by genetic and epigenetic information. The emergent
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phenomenon of the multi-cellular system is the consistent manifestation of well-structured

patterns and shapes across diverse organisms, demonstrating robustness essential for cur-

rent functionality and future growth. The biggest mystery in this field is how these cells

collectively collaborate to achieve the formation of organism shape and patterns, exem-

plifying ’group intelligence’ within the living system. This intriguing question draws the

attention of scientists from varied disciplines, including applied mathematicians, inspiring

them to delve into this subject to decipher this emergence.

There are numerous examples that illuminate this mystery of morphogenesis, one of

which is the process of gastrulation in an ascidian embryo. Gastrulation is a critical stage

in embryogenesis where the initial round-shape blastula is reorganized into a gastrula,

which forms the structure of the gut [2]. Ascidians, or sea squirts, have become model

organisms for studying this process due to their simple body plan and the highly repro-

ducible and stereotyped nature of their embryonic development [3]. During the early

stages of ascidian gastrulation, individual cells within the embryo engage in mechanical

interactions, causing a specific group of cells - the endoderm - to invaginate and become

enveloped by other cells [4]. This process results in the embryo taking on a distinctive

cup-like shape, setting the stage for gut formation and orchestrating the proper position-

ing of differentiated cells to evolve into functional organs. Yet, our understanding remains

limited regarding how individual cells cooperate to control and direct the embryo in such

a complex manner.

Another illustrative example is the germ-band extension in Drosophila melanogaster,

a well-known model organism commonly referred to as the fruit fly. This stage represents

a crucial developmental milestone in the fruit fly’s early life [5]. During the germ band
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extension stage, the individual cell mechanics facilitate intercalation, causing the epithe-

lium to elongate along the anterior-posterior axis while simultaneously narrowing along

the dorsal-ventral axis. This process ingeniously remodels a short and broad germ band

into a long and slender one, a transformative alteration of shape that is vital for the organ-

ism’s subsequent development. Many scientists are intensely studying this phenomenon

in attempt to comprehend how the collective behavior emerges from local interactions

between individual cells.

1.1.2. Forces in morphogenesis

For these processes of morphogenesis, we have learned a great deal about the molecular

machinery that regulates cell interactions [6, 7]. Furthermore, we have started to learn

how this machinery’s spatial and temporal regulation is orchestrated by programmed gene

expression [8, 9]. Yet, despite these biochemical signals, as stated in the aforementioned

examples, these ’controls’ must speak to the common language of mechanical forces to

directly cause cell shape changes, cell movements and cell rearrangements. There are

principally two types of mechanical forces at play: the adhesion that binds and arranges

cells [10], and the stress that induces cell shape changes [11]. In this dissertation, we

only focus on the stress, considering it as the primary interactions between cells.

Mechanical forces play a crucial role in morphogenesis, yet the molecular framework

facilitating cellular force generation is complex [6, 7]. Active forces within cells are pri-

marily driven by cytoskeletal cortices, a dynamic network of protein filaments [12]. Key

components of the cytoskeleton, such as actin filaments and microtubules, along with
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motor proteins like myosin, kinesin, and dynein, contribute fundamentally to this pro-

cess. For example, myosin motor proteins move along actin filaments, thereby generating

contractile forces within cells. Cellular forces are not only limited to active forces but

also include passive forces that arise from the intrinsic material properties of cells. For

instance, hydrostatic pressures stem from material properties that resist alterations in

cell volume [13]. Additionally, the viscosity is produced by the material properties that

resist movement relative to the substrate [14]. The intricate molecular basis of force

generation poses significant challenges when attempting to model the forces involved in

morphogenesis.

In addition to the intricacies inherent in the molecular basis of force generation, the

measurement of mechanical forces across time and space in developing embryos presents

a substantial challenge. To address this, a range of experimental methods have been cre-

ated to quantify forces in living embryos. One broad category of these techniques involves

the local exertion of force, such as via local mechanical indentation [15], micropipette

aspiration [16, 17], or optical/magnetic tweezers [18, 19]. Alternatively, local disruption

of mechanical continuity may be used, such as through laser ablation [20, 21]. These

interventions are coupled with measurements of subsequent deformations. A correspond-

ing category of methods is centered around the observation of ”force sensors”. These

could be molecular FRET sensors, liquid droplets, or elastic beads [22, 23], embedded

within force-producing tissue, with their deformations serving as indicators of internally

generated forces. Significantly, all these techniques necessitate the employment of math-

ematical models to deduce forces or material properties from observed displacements.

These methods have imparted invaluable knowledge regarding the mechanics of cell and
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tissue morphogenesis across various spatial and temporal scales [24]. However, their ap-

plication is predominantly invasive and/or allows for only sparse sampling at a limited

number of locations at a certain time, restricting their utility in charting spatiotemporal

patterns of forces pivotal to the collective mechanics of multicellular tissue morphogenesis.

Recent progress in imaging cell and tissue morphologies and deformations within liv-

ing embryos has fostered the development of a third class of force measurement, typically

referred to as image-based force inference methods [25, 26]. These methods leverage the

shapes of cells within a multicellular aggregate as sensors, utilizing microscopic observa-

tions of cell shape and deformation at the tissue-scale to deduce the forces at play. As

with the other approaches, image-based force inference method depend on physics-based

mathematical models that relate the shapes of cells within a tissue to the nature, orga-

nization, and magnitudes of the mechanical forces operating within individual cells and

across cell boundaries. The core concept is to address an inverse mechanics problem,

aiming to construct a mapping from images of living tissues – the geometries of cells and

cell-cell contacts – to the hidden variables such as tensions and pressures, which dictate

the mechanical state of a tissue. An essential advantage of image-based approaches is

their non-invasive nature, and they inherently present the opportunity to infer forces at

many simultaneously observed points within living embryos over time.

1.2. Research problem

1.2.1. Research aims

On the one hand, we aim to quantitatively understand the emergent collective phenom-

ena in morphogenesis, thereby unveiling the intrinsic mathematical properties concealed
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within the multi-cellular structure. On the other hand, we strive to investigate the me-

chanical foundation of this biophysical system, taking steps to measure and analyze the

magnitude of mechanical forces from real live-image data. Both objectives require the

construction of a physics-based mathematical model and the establishment of an force

inference method. This will form the core task of our research.

1.2.2. Current studies

Thus far, numerous mathematical models and inference methods have been developed to

achieve these research goals. The majority are designed for two-dimensional morphogen-

esis, primarily applied in the study of epithelial tissues.

The Vertex Model [27] is one of the widely employed approaches for simulating cellular

dynamics within two-dimensional epithelial tissue. This model represents a tissue as an

assembly of interconnected, non-overlapping polygons, where each polygon signifies a cell

and its vertices are mobile. The operative driving forces within the model are determined

by the derivative of the total elastic energy. These forces counterbalance the viscous

drag term, culminating in the differential equation governing the vertices’ movements.

Through the application of this equation, researchers can simulate vertex movement,

providing insights into cell movement and morphological alterations.

Building upon the principles of the Vertex Model, Chiou et al. [26] proposed an

inference method for a two-dimensional cellular lattice, referred to as the Mechanical

Inverse Method. This method primarily presumes that the cellular lattice is in mechanical

equilibrium, thereby negating the need for a drag term in the Vertex Model equation. Such

an assumption leads to a balance between membrane tensions and pressures at each vertex,
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giving rise to linear force equations. The coefficients of these equations are determined by

membrane directions and curvatures, which can be deduced from microscopic images. To

derive the forces, we employ the pseudo-inverse matrix to solve this linear problem. As

per experimental results, the Mechanical Inverse Method effectively reconstructs the force

patterns within epithelial tissues. Nevertheless, it does exhibit some inaccuracies due to

the matrix’s lack of full rank, which can compromise the robustness of the numerical

scheme.

In response to the issues identified in the Mechanical Inverse Method, Noll et al.

[28] conducted an in-depth analysis of equilibrium geometry, leading to the formulation

of the Active Tension Network Model. This model assumes uniform pressure across all

cells, with the membrane tensions serving as the primary determinant of cellular network

geometry. They discovered that polygons maintaining force balance must adhere to a

specific geometric constraint. This requirement positions the cellular lattice geometry

within the realm of Weighted Voronoi tessellations. They further identified an isogonal

mode in the balanced system, which unveils the underlying biological principles governing

cellular shape.

In addition to the Active Tension Network Model, Noll et al. [29] introduced an

image-based inference method known as the Variational Method of Stress Inference. This

approach accounts for differences in pressure between cells, consequently modeling the

two-dimensional cellular lattice as a Circular Arc Polygonal tessellation. Upon investiga-

tion of geometric constraints under mechanical equilibrium, they elucidated the dualities

between balanced geometry and force maps. To conduct the inference, they utilize the
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restricted geometry to fit the image data and solve analytically for the pressures and mem-

brane tensions. This method demonstrates superior accuracy and robustness compared

to the Mechanical Inverse Method when applied to Drosophila epithelial morphogenesis.

1.2.3. Challenges

While models and inference methods have been largely implemented in two dimensions,

it is increasingly apparent that embryos modulate cell and tissue morphology in a three-

dimensional context [30, 31, 32, 9]. In such scenarios, forces are patterned and exerted

in a three-dimensional manner. For instance, intracellular pressures counteract volume

change across any direction of the three dimensions. Similarly, in most embryonic tis-

sues, active contractile forces are structured along the cellular membrane surfaces and

tri-cellular junction lines, imposing varying types of stress on the multicellular system.

Furthermore, the independent regulation of active contractile forces along cell contact

surfaces and lines adds to the system’s complexity. Consideration of the anisotropy of

these forces in three-dimensional space qualitatively increases the complexity of mechan-

ical regulation compared to two-dimensional cases. These challenges render the use of

two-dimensional models and inference methods inadequate for attaining the research ob-

jectives, highlighting the necessity for more advanced three-dimensional approaches.

Given the rapid advances in imaging approaches that allow capturing high-resolution

data on cell boundaries in three-dimensional over time in living embryos [33, 8], both

the empirical and theoretical challenges have raised up concerning the quantification of

three-dimensional geometries from the these images. Mathematically, parameterizing a

three-dimensional geometry is a formidable task, coupled with the inherent difficulties
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in visualizing and conceptualizing three-dimensional objects along with their shapes and

adjacencies. This necessitates the utilization of sophisticated pure mathematical tools

to address these problems. From a physical standpoint, it remains unclear whether the

inverse mechanical problem in three dimensions is a well-defined mathematical problem

that allows for the inference of mechanical unknowns from geometric knowns. This level

of uncertainty presents a significant challenge in our pursuit to understand the mechanical

forces at play in embryonic development.

1.3. Overview

1.3.1. Outlines

In this dissertation, we describe the formulation, implementation, and application of a

robust approach to three-dimensional force inference that addresses these challenges.

Chapter 2 lays the mathematical groundwork for the multicellular system in ques-

tion.It quantifies the geometry of closely-packed cellular clusters as three-dimensional tes-

sellations, and models the mechanical forces acting on this tessellation, including cellular

pressures, membrane surface tensions, and junctional line tensions. Employing the quasi-

static assumption, we construct the map and inverse map between mechanical and the

geometry spaces. We also develop a robust and precise numerical scheme to reconstruct

geometry from image data.

Chapter 3 applies the aforementioned force inference method and numerical scheme

to live images from the early ascidian gastrulation process. We create an atlas depicting

the spatio-temporal patterns of all three types of mechanical forces. By analyzing the
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mechanical data, we reinforce existing understandings of the design principles, encom-

passing the symmetries and asymmetries within embryo mechanic patterns. Moreover,

we uncover novel insights through the simplicity that emerges from the statistical prop-

erties of mechanics.

Beyond the basic model, Chapter 4 takes into account the anisotropy of mechanical

stresses, while Chapter 5 considers the dynamics. For both instances, we devise corre-

sponding force inference methods and unveil new principles derived from mathematical

models and the inference results on Drosophila germ band extension.

1.3.2. Outcomes

We present a novel, general physical theory of 3D multicellular systems along with a power-

ful tool for measuring forces within developing embryos. For the first time, we reconstruct

and visualize how an ascidian embryo operate the mechanics everywhere over time, pro-

viding biological insights into the regulatory origins of gastrulation. The universality of

our theory and tools lends them the potential to be applied across a broader spectrum of

morphologies, thereby aiding in the theoretical comprehension of the emergent simplicity

in general multi-component systems. When combined with current RNA-seq techniques,

our approach promises to significantly advance the long-term scientific goal of deciphering

the highly complex genotype-to-phenotype map, bringing us closer to a breakthrough in

the near future.
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CHAPTER 2

Model and Inference for Three-dimensional Cellular Aggregate

2.1. Background

As introduced in Chapter 1, there are many studies about mathematical models on

two-dimensional cellular lattice. These mathematical models provide the theories of how

mechanical forces control the two-dimensional geometry of cellular lattice. Further more,

these models provide the methods of solving the inverse problem: infer the values of

mechanical forces from the geometry given by the image data. The image of cellular

lattice usually shows the marked cell boundaries. After doing segmentation, the image is

processed to be a two-dimensional tessellation from which people can extract the geometry

information and do the force inference method.

In this Chapter, we focus on the model for three-dimensional close-packed cellular

aggregates in general. The goal is to establish the force inference method that can work

on any given three-dimensional segmented image. There are three steps to achieve this

goal:

• Build the model which includes the mathematical description of mechanics, ge-

ometry and the map from mechanical space to geometry space.

• Construct the method of the inverse problem: map the given geometry back to

mechanics.

• Set up a numerical scheme that can fit geometry parameters from image data.
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Figure 2.1. Model and inference of three-dimensional cellular aggregate

2.2. Assumptions and models

To build a mathematical model of this multi-cellular system, we made several as-

sumptions based on the current knowledge in biology. By these assumptions, we simplify

cellular aggregates to focus on the main features of geometry (2.2.1) - including cells,

membranes, junctions and vertices - and mechanical forces (2.2.2) - pressures, surface

tensions and line tensions. We then establish the relations between forces and geome-

try based on the assumption that the system is in mechanical equilibrium (2.2.3). After

building the mathematical model, we illustrate the mechanical inverse problem on the

permissible geometry of equilibrium (2.2.4).

2.2.1. Geometry of three-dimensional cellular aggregates

We assume that the main geometry features of three dimensional cellular aggregates

controlled by forces in this system are cell shapes. Since the cells are close packed, where

the cell shapes depend on the interfaces between neighboring cells, the cell positions and



23

adjacency are also necessary. In order to quantify the topology and geometry of the three

dimensional cellular aggregate, we model this system as a tessellation in three-dimensional

space.

The components of the three-dimensional tessellation are cells. Each cell occupies a

closed region in space, and all the cellular region don’t have intersection volume with each

other. This is based on the ground fact that cells have boundaries and don’t mix their

content with each other. We denote the cell indices by Greek letters: α, β, γ, ... We

define the cellular region Cα as a set of points r belong to cell α. We use r denoting the

position of a general point in space here and in the rest of the manuscript. The volume

of cell α is Vα. Specially, we define the background space as a ’cell’, denoted as C0. The

background cell is the only cell have infinite volume.

For the interface between two cell regions, we define it as a membrane face. In the

biology systems, the interface is composed by to two layer of cell membranes binding

together by adhesion proteins. We use Mαβ to denote the membrane face between cell

α and cell β. So Mαβ := Cα ∩ Cβ, is a set of common points belong to both cells. A

membrane face is a two dimensional manifold in 3d space and we ignore the thickness in

real biology system. The area of membrane face Mαβ is Aαβ.

The boundary of a membrane face is the common boundary among three cell regions,

we define it as a junctional edge. In real biology system, the adhesion proteins bind three

cell membranes together forming a junction. As shown in Figure 2.2, a junctional edge

is also a common edge for three membrane faces. We use Eαβγ to denote the junctional

edge of cell α, β and γ. So Eαβγ := Cα ∩Cβ ∩Cγ = Mαβ ∩ Fβγ ∩Mγα. A junctional edge

is a one dimensional line in 3d space, with the length Lαβγ. We should note that there is
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Figure 2.2. Geometry components of three-dimensional cellular aggregate

a special case that four or more cells have a common edge, like in the cubic tessellation.

But we don’t take this case include our model, and we treat this edge as two edges very

close to each other.

We define the intersections of four cells as a vertex. As shown in Figure 2.2, a vertex

is also a common end of four junctional edges, and it is a common point of six membrane

faces. We use rαβγδ to denote the position of the vertex of cell α, β, γ and δ. So

rαβγδ := Cα∩Cβ∩Cγ∩Cδ = Mαβ∩Mαγ∩Mαδ∩Mβγ∩Mβδ∩Mγδ = Eαβγ∩Eαβδ∩Eαγδ∩Eβγδ.

Again we don’t take the special case that a vertex corresponds to five or more cells in our

model.

The information including the positions, the shapes, and the volumes or areas of

cell regions, membrane faces, junctional edges and vertices provide us the topology and
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geometry of the three-dimensional cellular tessellation. Therefore we have modeled the

main geometry features of three-dimensional cellular aggregates.

2.2.2. Mechanical inputs in cellular aggregates

After modeling the geometry of three dimensional cellular aggregates, we need to model

the mechanical inputs in this system. Based on the well-understood biological obser-

vations, we consider three effective forms of mechanical stress, which correspond to the

geometry components - cells, membrane faces and junctional edges - in this system.

First, within each cell region, there exists a field of 3d mechanical stress which is the

effective pressure. While the dominant contribution to effective pressure is hydrostatic

effects associated with an incompressible fluid-filled cytoplasm, it may also include the

isotropic effects of other active cellular processes, such as cytoskeletal assembly and motor

activity. Regardless of its manifold and complex molecular origins, or factors that control

its magnitude, we consider the effective cellular pressure to be an isotropic stress and to

be homogeneous within each single cell volume. Therefore, we can use a single value Pα

to represent the effective pressure in cell α. The unit of cell pressure is ’force per area’.

As shown in Figure 2.4, for any cellular boundary face element dA of cell α, the effective

pressure provides a pushing force with magnitude PαdA and direction normal to the face

pointing outward the cell.

Second, within each membrane face, there is a field of 2d contractile mechanical stress,

which is the effective surface tension. A large body of work suggests that the key deter-

minants of surface tension in close packed tissues are contractile forces produced by the
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Figure 2.3. Mechanical inputs and molecular basis of cellular aggregate

cortical actomyosin cytoskeleton, working against a passive resistance of the cortex to de-

formation. Again, regardless of the complicated textures of the cytoskeleton, we consider

the effective surface tension spreading each membrane face to be an isotropic and homo-

geneous stress. Therefore, we can use a single value Tαβ denoting the effective surface

tension on membrane Mαβ. The unit of surface tension is ’force per length’. As shown in

Figure 2.4, for any membrane boundary edge element dL of membrane Mαβ, the effective

surface tension provides a pulling force, which has magnitude of TαβdL. The direction

of the pulling force is normal to the edge and tangent to the membrane face, pointing

inward the membrane.

Finally, along each junctional edge, there exist a set of 1d contractile forces, which

is the effective line tension. The key determinant of line tensions along cell contacts is
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Figure 2.4. Force directions on faces and edges

thought to be contractile forces produced by actomyosin networks that assemble adjacent

to cell-cell contact lines. Distinct from the common physical models for soap bubble

foams where no line tension exists, there is abundant evidence that a separate mechanism

in cellular aggregate controls such 1d contractility independently. We consider the line

tension to be homogeneous along each junctional edge Eαβγ, which allow us to use a single

value Fαβγ for representation. The unit of line tension is just the force unit. As shown

in Figure 2.4, at the end vertex of the junctional edge, the force direction is given as the

tangential vector toward the line.

In summary, the effective cellular pressures, surface tensions and line tensions con-

sist the mechanical inputs in the system of cellular aggregates. Each of the effective

stress within a single geometric component is simplified to be homogeneous and isotropic,

represented by a single value of magnitude.
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2.2.3. Balance between mechanical forces

In order to model the relations between mechanical forces and geometry, we make an im-

portant assumption of force balance based on some experimental facts. First, in a variety

of different tissues, the response of shape changing to laser ablation is rapid, which usually

takes tens of seconds or less. Comparing to the timescale of morphogenesis, which usually

take minutes to hours, it suggests that the mechanical forces are in static equilibrium with

each other on these longer timescale. Therefore, the dynamics of morphogenesis can be

modeled as a quasi-static process. Second, when the cells probe rapid local active forces

to the cytoskeleton, the elastic responses at short timescale are dissipated by cytoskeletal

remodeling and turnover at longer timescale. This dissipation results in a fluid-like mate-

rial properties of cytoskeleton, meaning that there is no strain response in this mechanical

system. Taken together, we assume the cellular aggregate is under a mechanical stress

field with zero net force everywhere. The mechanical forces in the system are balanced

with each other.

With this force balance assumption, we can mathematically express the relations be-

tween mechanical inputs and geometry. First, on each membrane face Mαβ, we consider

the small curved face element square dA with the edge length dL. As shown in Figure

2.5, the cellular pressures Pα and Pβ on both sides apply two pushing forces PαdA and

PβdA on the face element with opposite normal direction. On the other hand, the sur-

face tension Tαβ applies on the four edges giving the pulling forces of magnitude TαβdL.

Denoting the curvatures on these two orthogonal directions of the surface as κ1 and κ2,

the net force of the four tension contractile is TαβdLκ1dL + TαβdLκ2dL, which is also

in normal direction. Simplifying the balance of pressures and surface tension in normal
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direction, we get the following equation, which is the well-known Young-Laplace equation:

(2.1) |Pα − Pβ| = 2TαβHαβ,

where Hαβ = (κ1 + κ2)/2 is the mean curvature of the membrane face. Due to the

simplification that pressures and tension are isotropic and homogeneous, the membrane

face Mαβ has a constant mean curvature. Therefore, the shape of the membrane face

must be a section of sphere or a flat plane.

Figure 2.5. Balance between mechanical forces

In a physically and mathematically analogous way, we can mathematicalize the force

balance on each junctional edge Eαβγ. Consider the line element dL shown in Figure

2.5, the three corresponding membrane surface tensions - Tαβ, Tβγ and Tγα - give three

contractile forces along the curved line: TαβdLn̂1, TβγdLn̂2 and TγαdLn̂3. Here n̂1, n̂2,

n̂3 are unit vectors orthogonal to dL in the tangential plane of membrane Mαβ, Mβγ,
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Mγα, respectively. At the two ends of dL, the line tension force Fαβγ also applies on the

edge along the tangential direction t̂. Thus, the junctional balance of force is described

by a one-dimensional Young-Laplace equation:

(2.2) Tαβn̂1 + Tβγn̂2 + Tγαn̂3 = −Fαβγκαβγ,

where καβγ = dt̂/dL is the curvature vector of the junctional edge. Again, the assumption

that line tension is homogeneous along a given junctional edge implies that only edges of

constant curvature, i.e. sections of circles (or straight lines), are permissible. With this

constraint, the curvature vector καβγ is uniquely defined as the vector of constant length

pointing towards the center of the circle.

Finally, as shown in Figure 2.5, the four line tensions junctional edge produce forces

- Fαβγ t̂1, Fαβδ t̂2, Fαγδ t̂3, Fβγδ t̂4 - at a vertex rαβγδ, along the tangent direction of edges.

The assumption that all mechanical forces are in static balance with one another implies

that these forces must sum to zero:

(2.3) Fαβγ t̂1 + Fαβδ t̂2 + Fαγδ t̂3 + Fβγδ t̂4 = 0.

Here, t̂1, t̂2, t̂3 and t̂4 are the unit vectors tangent to edge Eαβγ, Eαβδ, Eαγδ and Eβγδ,

respectively.

In summary, equations (2.1)-(2.3) constitute the physical rules for compact 3D cellular

aggregates at quasi-static mechanical equilibrium.
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Figure 2.6. Mechanical inverse problem

2.2.4. The mechanical inverse problem

Based on the simplifications and assumptions, we construct a model that quantifies the

mechanical inputs and the multi-cellular geometries. The model also describes how the

mechanical forces govern the shapes of cellular aggregates by balancing with each other.

Mathematically, we define a map f : M → G from the mechanics space M to the

geometry space G. For the domain M of isotropic and homogeneous stresses, the range of

function f(M) is subset of G. Physically, f(M) is the subspace of permissible geometry

under equilibrium, where membrane faces are flat or spherically curved and junctional

edges are straight lines or circular arcs. In the most special case, flat surfaces and straight

edges imply the shapes of the cells to be polyhedrons, thus the tessellation is polyhedral
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tessellation. In the general case, the shape of cells are ’polyhedrons’ with spherically

curved faces, thus are called Spherically-curved polyhedral (SCP) tessellation. Therefore,

f(M) is the space of polyhedral or SCP tessellations.

Our goal is the inverse problem of the mechanical map: given the geometric quantities

from the microscopic 3d image data, how can we infer the mechanical magnitudes of

cellular pressures, membrane tensions and line tensions from the force balance relations?

Mathematically, given the geometry parameters in f(M), how to solve the equations (2.1)-

(2.3) for solutions of Pα, Tαβ and Fαβγ in mechanical space M? Two more fundamental

questions are: a) Does the solution exist or when does it exist? b) Is the solution unique?

These require more detailed investigation on this model in the following sections.

2.3. Geometry in equilibrium

We have modeled the map from mechanics to geometry, and noticed that the geometry

under equilibrium is restricted to Polyhedral tessellation or Spherically-curved Polyhedral

(SCP) tessellation. Before mapping back from geometry to mechanics, we need to first

parameterize Polyhedral tessellation and SCP tessellation. However, the ordinary param-

eters such as vertex positions and surface curvatures are dependent in the two classes of

tessellation. There exist intrinsic geometric constraints among the ordinary shape param-

eters (2.3.2). Finding the independent geometry parameters allows us to: a) fit the image

to the permissible tessellations under mechanical equilibrium; b) construct the inverse

map to mechanics and investigate the existence and uniqueness of it.

In order to find the independent geometry parameters, we compute how many degrees

of freedom under geometric constraints for a Polyhedral tessellation (2.3.2) or a SCP
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tessellation (2.3.3) with a certain number of cells. Then according to the dimensionality

and the geometry constraints, we use Generalize Weighted Voronoi (GWV) tessellation

to parameterize Polyhedral and SCP tessellations (2.3.4).

2.3.1. Geometric constraints

We realize that equations (2.1)-(2.3) are linear equations of the unknowns - Pα, Tαβ and

Fαβγ. The coefficients of the system are geometric quantities - Hαβ, καβγ, n̂i and t̂i. In

Polyhedral or SCP tessellation, these geometric quantities can be determined by ordinary

parameters: vertex positions ri, face centroid and radii ραβ, Rαβ, or face normals m̂αβ (if

flat). However, these ordinary parameters are not independent with each other. So we

first illustrate and quantify the geometric constraints in the system.

In Polygonal tessellation where Hαβ = 0 and καβγ = 0, the ordinary parameters are

vertex positions ri and face normals m̂αβ. Using these parameter, as shown in Figure 2.7,

the force directions in equations are given as t̂1 = (r1 − r0)/|r1 − r0| and n̂1 = m̂αβ × t̂1.

However, we know that three points in space can determine a flat face, but in Polygonal

tessellations most faces have more than three vertices, thus they are constrained. We can

describe the dependence of ordinary parameters ri and m̂αβ as

(2.4) (r1 − r0) · m̂αβ = 0.

We will count the total number of such constraints in 2.3.2 and find out the independent

parameters in 2.3.4.

In SCP tessellation, the ordinary parameters are vertex positions ri and face centroids

and radii ραβ, Rαβ. There are two kinds of dependence among these ordinary parameters.
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Figure 2.7. Geometric constraints

The trivial geometric constraint is

(2.5) |ri − ραβ| = Rαβ.

Consider an edge - a circular arc, it is an intersection of three spheres as shown in Figure

2.7. So the central axis of the circular arc must go through all three corresponding

centroids. Thus the three centroid are co-linear. For ραβ, ρβγ and ργα, this geometric

constraint is given by

(2.6) ραβ − ρβγ = χαβγ(ραβ − ργα),

where χαβγ is the ratio. We will count the total number of constraints (2.5) and (2.6) in

2.3.3 and find out the independent parameters in 2.3.4.
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2.3.2. Dimensionality of Polyhedral tessellation

Before doing the counting of the number of constraints and the degrees of freedom, let us

setup the notations of the numbers and their relations as the following claim.

Claim: We use NC , NF , NE, NV to denote the number of cells, membrane faces,

junctional edges and vertices, respectively. There are two relations among these number

in Polyhedral or SCP tessellation:

(2.7) NE = 2NV ,

and

(2.8) NF −NV = NC .

Proof: By the fact that each edge has two vertices and each vertex has four edges,

which gives 2NE = 4NV . Then the first relation (2.7) can be directly derived. According

to Euler’s formula, for each polyhedron cell α we have

(2.9) n
(α)
F + n

(α)
V − n

(α)
E = 2,

where n
(α)
F , n

(α)
V and n

(α)
E denoting the face, edge and vertex numbers for one cell. We

then sum the NC Euler relation across all cells:

(2.10)
∑
α

n
(α)
F +

∑
α

n
(α)
V −

∑
α

n
(α)
E = 2NC .

In this summation, each face counts twice,
∑

α n
(α)
F = 2NF ; each edge counts 3 times,∑

α n
(α)
E = 3NE; each vertex counts 4 times,

∑
α n

(α)
V = 4NV . We apply these relations
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onto (2.10), giving

(2.11) 2NF + 4NV − 3NE = 2NC .

Using the substitution (2.7) in (2.11), we derive the second relation between the numbers

as (2.8). □

Claim: For NC cells, the dimensionality of Polyhedron tessellation is 4NC .

Proof: Consider the ordinary parameters of Polyhedron tessellation, ri and m̂αβ. The

total degrees of them are 3NV + 2NF , because a vertex position is three-dimensional and

a face normal is a three-dimensional vector of unit length. Then consider the geometric

constraint (2.4) for each edge and face, there are 3NE constraints in total because each

edge corresponds to three faces. However, these constraints are not independent. For each

face, the last edge that close the face can automatically satisfy the geometric constraint,

as shown in Figure 2.8. For each cell, there is one additional dependency among these

constraints according to the Lemma in next paragraph. So the number of independent

geometric constraints is 3NE −NF −NC . Therefore, using the relations (2.7) and (2.8),

a Polyhedral tessellation has

(2.12) (3NV + 2NF )− (3NE −NF −NC) = 3(NF −NV ) +NC = 4NC

degrees of freedom. □

Lemma: For a polyhedral cell α (that constraints of its faces and edges are already

satisfied), the geometric constraints (2.4) between neighbor faces and neighbor edges have

one dependency. As shown in Figure 2.8, such constraints are in the form as t̂βγδ · m̂βγ

where t̂βγδ is start from cell α.
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Figure 2.8. Dependency among geometric constraints in Polyhedron tessellation

Proof of Lemma: The constraints of neighbor face normal m̂βγ and the three neigh-

bor edges can derive the following relation:

(2.13) (t̂βγδ × t̂βγϵ) · t̂αβγ = 0,

where t̂i denote the tangent direction of edges. Since t̂αβγ = m̂αβ × m̂αγ. Allowing us to

write the relation as

(2.14) (t̂βγδ × t̂βγϵ) · (m̂αβ × m̂αγ) = 0.

This can be derived as the following equation:

(2.15) (m̂αβ · t̂βγδ)(m̂αγ · t̂βγϵ) = (m̂αβ · t̂βγϵ)(m̂αγ · t̂βγδ).
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If we multiply all these equations together for neighbor cell pairs βγ, there is

(2.16)
∏
βγ

m̂αβ · t̂βγδ
m̂αβ · t̂βγϵ

m̂αγ · t̂βγϵ
m̂αγ · t̂βγδ

=
∏
β

(∏
γ

m̂αβ · t̂βγδ
m̂αβ · t̂βγϵ

)
= 1

The product in the brackets forms a loop, giving us

(2.17)
∏
β

(1) = 1

an identity. So these equations have one degree of dependency. Therefore, for each

cell, the geometric constraints (2.4) between neighbor faces and neighbor edges have one

dependency. □

2.3.3. Dimensionality of Spherically-curved polyhedron tessellation

In the similar way, we can compute the degrees of freedom of a SCP tessellation, with

three lemmas.

Claim: For NC cells, the dimensionality of SCP tessellation is 5NC .

Proof: Consider the ordinary parameters of SCP tessellation, ri, ραβ and Rαβ. The

total degrees of them are 3NV + 4NF . Then consider the geometric constraints (2.5) for

each vertex and face, there are 6NV constraints in total because each vertex corresponds

to six spherical faces. As for the co-linear constraints (2.6) of centroids, there are 2NE

constraints in total, because it is three-dimensional but the ratio χαβγ are free to choose.

However, both kinds of constraints are not independent. According to Lemma 1, for each

edge, there is one dependency between the constraints (2.5) and co-linear constraints

(2.6). According to Lemma 2 and Lemma 3, there is one dependency between the ratios

of co-linearity χαβγ at each vertex and on additional dependency for each cell. Thus
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there are NE +NV +NC dependency among 6NV + 2NE total geometric constraints. So

the number of independent geometric constraints is 5NV + NE − NC . Therefore, a SCP

tessellation has

(2.18) (3NV + 4NF )− (5NV +NE −NC) = 4NF − 4NV +NC = 5NC

degrees of freedom. □

Figure 2.9. Dependency among geometric constraints in SCP tessellation

Lemma 1: For an edge Eαβγ, the two ends of it are vertices r1 and r2, as shown in

the left panel of Figure 2.9. When |r1 − ραβ| = |r2 − ραβ| and |r1 − ρβγ| = |r2 − ρβγ|

are satisfied, |r1 − ργα| = |r2 − ργα| is satisfied automatically if ραβ, ρβγ and ργα are

co-linear. □

Lemma 2: At each vertex rαβγδ, the centroids of six corresponding faces are copla-

nar if they satisfy the co-linear constraints, as shown in the right panel of Figure 2.9.
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Suppose the first three co-linear constraints, corresponding to χβγα, χγδα and χδβα, are

satisfied. These three axes determine a plane, so ρβγ, ργδ and ρδβ can only move in plane.

This suggests that there ought to be one constraint instead of two for the last co-linear

constraint. The last constraint can be given by

(2.19) χβγαχγδαχδβα = 1,

according to Menelaus’ theorem. □

Lemma 3: For each cell, if we construct a product of all the Menelaus equations of

its vertices,

(2.20)
∏

rαβγδ∈α

χβγαχγδαχδβα =
∏

eαβγ∈α

χβγαχγβα = 1,

it gives us an identity. That is because χβγαχγβα = 1, and thus all left-hand-side terms

cancel each other. □

2.3.4. Generalized weighted Voronoi diagram

A Voronoi tessellation of NC cells in three-dimensional space is defined by C sites:

{qα}α=1,2,...,NC
. A cell region Cα is a set of points which are closer to qα than to other sites:

Cα = {r|dα(r) < di(r),∀i ̸= α}, and here dα(r) = |r − qα| is the Euclidean distance.

So the boundary Mαβ between any two neighboring cells is the perpendicular bisector of

two corresponding sites, Mαβ = {r|dα(r) = dβ(r)}, which is a flat plane. So the shape

of a cell is a polyhedron. Therefore, Voronoi tessellation is a subspace of the Polyhedral

tessellation space, whose dimensionality is 3NC . The left panel of Figure 2.10 shows the

two-dimensional case of Voronoi tessellation.
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Now, we can modify the definition of distance by subtracting (or adding) a parameter

θ2α to the squared Euclidean distance, d2α(r) = |r − qα|2 − θ2α. A cell region Cα is defined

in the same way: Cα = {r|dα(r) < di(r),∀i ̸= α}. We call this kind of tessellation as

Weighted Voronoi tessellation, where θα is the weight for each cell α. As we proved below,

cell shapes in Weighted Voronoi tessellation are polyhedrons. Since the dimensionality

of Weighted Voronoi tessellation space is 4NC , it is equivalent to the space of Polyhe-

dral tessellation. Therefore, we can use the independent parameters {qα, θα}α=1,2,...,NC

to parameterize Polyhedral tessellation. The middle panel of Figure 2.10 shows the two-

dimensional case of Weighted Voronoi tessellation.

Figure 2.10. Generalized Weighted Voronoi tessellation in 2d

Claim: Cell shapes in Weighted Voronoi tessellation are polyhedrons.

Proof: For any two points r1 and r2 at the two-cell boundary Mαβ satisfy

(2.21) |r1 − qα|2 − |r1 − qβ|2 = θ2α − θ2β = |r2 − qα|2 − |r2 − qβ|2.
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Algebraic simplification yields

(2.22) (r1 − r2) · (qα − qβ) = 0.

Thus r1 − r2 is perpendicular to qα − qβ. Since the two points are randomly chosen on

the boundary, we can derive that the boundary face is an orthogonal plane to the line

qαβ. Therefore, the shape of cells are polyhedral. □

Now, we can further modify the definition of distance by a multiplicative factor pα to

obtain d2α(r) = pα(|r− qα|2 − θ2α) and construct the tessellation in the same way. We call

such tessellation as Generalized Weighted Voronoi (GWV) tessellation, and we call pα as

the power of cell α. The dimensionality of GWV tessellation space is 5NC , determined

by independent parameters Ψ = {qα, θα, pα}α=1,2,...,NC
. As proved below, the shapes of

cell boundaries are spherical, thus a GWV tessellation is a SCP tessellation. Since the

dimensionalities of GWV and SCP are equal, there exists a one-on-one map between the

two space. Therefore, SCP tessellation can be parameterized by Ψ. The right panel of

Figure 2.10 shows the two-dimensional case of GWV tessellation.

Claim: The shape of any two-cell boundary is spherical.

Proof: Any point r at boundary Mαβ satisfies pα(|r−qα|2− θ2α) = pβ(|r−qβ|2− θ2β).

Multiplying this equation by (pα − pβ) and simplifying yields

p2α(r − qα)
2 + p2β(r − qβ)

2 − 2pαpβ(r − qα) · (r − qβ)

= pαpβ(qα − qβ)
2 + (pα − pβ)(pαθ

2
α − pβθ

2
β).

(2.23)
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The left hand side of the above equations is a square, while the right hand side is a

constant independent of r. So this equation can be further simplified as

(2.24) (pα − pβ)
2(r − pαqα − pβqβ

pα − pβ
)2 = const.

Defining

(2.25) ραβ =
pαqα − pβqβ

pα − pβ

and

(2.26) R2
αβ =

pαpβ(qα − qβ)
2 + (pα − pβ)(pαθ

2
α − pβθ

2
β)

(pα − pβ)2
.

the equation for r becomes |r− ραβ|2 = Rαβ, which describes a sphere with centroid ραβ

and radius Rαβ. So the shape of the boundary Mαβ is a spherical section. □

In summary, consider the intrinsic geometric constraints in Polyhedron tessellation or

SCP tessellation, the two types of tessellation have 4NC and 5NC degrees of freedom,

respectively. Polyhedron tessellations can be constructed by independent parameters of

Weighted Voronoi tessellation, and SCP tessellations can be constructed by independent

parameters of GWV tessellation.
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2.4. Analytical solutions of mechanics

We are now parameterize the permissible geometry in equilibrium by Generalized

Weighted Voronoi tessellation. The inverse problem is to infer the values of mechanical

inputs from the given geometry parameters. Instead of solving the linear equations (2.1)-

(2.3) directly, we introduce an inference method by constructing the mechanical dual

graph to get the analytical solution of mechanics in this section.

In order to understand the ideas of the inverse method, we first introduce the dual

graph in two-dimensional analogue (2.4.1). Then we generalized the idea to three dimen-

sional scenario (2.4.2). By this method, we solve out the analytical solutions of the force

balance equations. However, the solutions are not unique. There exist three mechanical

zero modes that can produce the same geometry (2.4.3).

2.4.1. Two-dimensional mechanical dual graph

For the two-dimensional analogue of inverse problem, this inference method was first

raised by Noll et al. [28, 29]. But here we state it in a different logic. This logic is based

on a mathematical fact of closed shapes, which can be derived from divergence theorem

in calculus.

Claim: For any closed three-dimensional shape V , the integral of the vector area n̂dS

over the closed shape surface ∂V is zero:

(2.27)

∮
∂V

n̂dS = 0.

Proof: According to the three-dimensional divergence theorem, for any vector of

matrix field F , there is
∮
∂V

(F · n̂)dS =
∫
V
(∇·F )dV . Taking F as the identical matrix I,
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Figure 2.11. Divergence theorem in 3d and 2d

we will get
∮
∂V

n̂dS =
∫
V
(∇ · I)dV . Since ∇ · I = 0, the right-hand-side of the equation

is zero. □

Corollary: For any closed two-dimensional shape A, the integral of the edge normal

vector n̂dl over the closed shape boundary ∂A is zero:

(2.28)

∮
∂A

n̂dl = 0.□

According to Noll [28], the polygon tessellation of cells under tension balance is

Weighted Voronoi tessellation. For any membrane Mαβ, the line connecting two cor-

responding Voronoi sites qα and qβ is perpendicular to the membrane. Therefore, we

call the triangular lattice formed by Voronoi sites is ’dual’ to the polygon tessellation.

As shown in Figure 2.12, consider the dual triangle of the vertex rαβγ and apply the
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Figure 2.12. Mechanical duality in polygonal tessellation

divergence theorem, we have

(2.29) qαβ t̂1 + qβγ t̂2 + qγαt̂3 = 0.

Here, t̂is are the tangent direction of edges, and equivalently they are normal directions

of dual lines. This equation have the same form and coefficients - the t̂is - as the tension

balance equation:

(2.30) Tαβ t̂1 + Tβγ t̂2 + Tγαt̂3 = 0.

Therefore, the value of membrane tension is proportional to the dual lattice length. Thus

we get the analytical solution of tensions:

(2.31) Tαβ = b ∗ qαβ.
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Here the undefined constant b represents the scale of tensions, and it will not affect the

tension balance.

Now let us consider the Circular Arc Polygon (CAP) tessellation of cells under ten-

sion balance and pressure difference. According to Noll [29], the geometry under equilib-

rium can be parameterized by two-dimensional Generalized Weighted Voronoi tessellation.

However, in this case, the lattice formed by Voronoi sites are not perpendicular to the

membranes since they are curved. So we construct the dual graph in another way. Con-

sider any point r on membrane Mαβ, the two corresponding dual points are defined as:

(2.32) q∗
α(r) = r + pα(qα − r),

and the same form for q∗
β(r).

Figure 2.13. Dual graph construction in CAP tessellation
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Claim: The dual line q∗αβ(r) with respect to the point r at membrane Mαβ is perpen-

dicular to the membrane at r, and the length is a constant along the membrane.

Proof: The center of the membrane circular arc is ραβ = (pαqα − pβqβ)/(pα − pβ).

Consider the vector q∗
α − q∗

β = pα(qα − r) − pβ(qβ − r) = (pα − pβ)(ραβ − r), it is

parallel to r − ρα. This parallel is equivalent to the perpendicularity between dual line

and membrane. On the other hand, from the equation we have q∗αβ = |pα − pβ|Rαβ. So

the length of dual line is a constant along the membrane. □

Therefore, the dual graph is as shown in Figure 2.13: At a vertex, three dual lines

which are perpendicular to the three membrane tangents form a dual triangle; along a

membrane, the dual line swipe a curved quadrilateral shape. Similar as the tension-only

case, applying divergence theorem to the dual triangle, we have

(2.33) q∗αβ t̂1 + q∗βγ t̂2 + q∗γαt̂3 = 0,

which corresponds to the tension balance equation. Thus we have the solution of tensions:

(2.34) Tαβ = b ∗ q∗αβ.

As for membranes, we apply the divergence theorem on the dual quadrilateral corre-

sponding to a membrane element dr and get:

(2.35) dq∗αn̂1 + dq∗βn̂2 + q∗αβ t̂1 + q∗αβ t̂2 = 0.

Here, dq∗α and dq∗β are the length which is swiped by r along dr; t̂1 and t̂2 are tangent

directions of the edge; n̂1 and n̂2 are normal directions of the edge. This has the same
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Figure 2.14. Mechanical duality in CAP tessellation

form and coefficients as the elemental pressure tension balance equation:

(2.36) −Pαdrn̂1 − Pβdrn̂2 + Tαβ t̂1 + Tαβ t̂2 = 0.

Therefore, the solution of pressure is

(2.37) Pα = −b
dq∗α
dr

= b(pα − 1).

However, we notice that the dual graph is not the unique choice. If we set the rescaled

dual points of r as q∗∗
α (r) = r+λpα(qα−r), by the free parameter λ, then the dual graph

is as shown in the right panel of Figure 2.15. Comparing to the previous dual graph,

the edge lengths of the quadrilateral have changed. Thus the solution of tensions and
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pressures are

Tαβ = bq∗∗αβ = bλq∗αβ,

Pα = b(λpα − 1) = bλpα − b.

(2.38)

Reset the constants (b, λ), we have the general form of analytical solution of mechanics:

Tαβ = b ∗ q∗αβ

Pα = a+ b ∗ pα.
(2.39)

The undefined constants (a, b) can be set as any value and will not affect the equilibrium.

The physical meaning of a is the background pressure and of b is the mechanical scale.

Figure 2.15. Rescaled dual graph construction

Consequently, by constructing the dual graph using the Voronoi parameters, we get

the analytical solutions of mechanics with undefined constants. And more importantly,

the dual graph present a way to visualize how mechanical inputs are balanced in the

two-dimensional multi-cellular system.
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2.4.2. Three-dimensional mechanical dual graph

Figure 2.16. Mechanical duality in Polyhedral tessellation

In three-dimensional case, we can construct the dual graph in the similar way. For the

polyhedral tessellation, the dual lattice is formed by directly connect the Voronoi sites.

For any membrane face Mαβ, the corresponding dual line qαβ is perpendicular to the face.

Thus at an edge Eαβγ, the three dual lines form a dual triangle, which is orthogonal to the

edge. Equivalently, the tangent direction of the junctional edge t̂1 is the normal direction

of the dual triangle. As shown in Figure 2.16, applying the two-dimensional divergence

theorem to this triangle, we get the equation qαβn̂1 + qβγn̂2 + qγαn̂3 = 0. Comparing to

the surface tension balance equation Tαβn̂1+Tβγn̂2+Tγαn̂3 = 0., the values of membrane
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surface tensions are proportional to the length of dual lines:

(2.40) Tαβ = b ∗ qαβ.

Here b is an undefined global constant, representing the scale of surface tensions. For

a vertex rαβγδ, the four dual triangles form a dual tetrahedron. Applying the three-

dimensional divergence theorem to the dual tetrahedron, we get

(2.41) Sαβγ t̂1 + Sαβδ t̂2 + Sαγδ t̂3 + Sβγδ t̂4 = 0.

Here the t̂i and Si are normal directions and areas of dual triangle.This equation have the

same form and coefficients - the t̂is - as line tension balance equation 2.3. Therefore, the

values of line tensions are proportional to the corresponding dual triangle ares:

(2.42) Fαβγ = c ∗ Sαβγ.

Here c is another global constant that represents the scale of line tensions. In summary,

(2.40) and (2.42) provide the analytical solutions of membrane and surface tensions given

by Voronoi parameters. We notice that line tension balance and surface tension balance

are decoupled with each other, thus the two scales (b, c) are decoupled in the solution.

Now, let us consider the SCP tessellation and construct its dual graph. As in two-

dimensional analogue, for any point r at a membrane Mαβ, the two corresponding dual

points q∗
α and q∗

β are given by equation (2.32). We have the same claim that the line

q∗αβ is perpendicular to the membrane face at r and the line is a constant along it, by

the same proof. Further more, for a junctional edge Eαβγ, the three dual lines form a
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Figure 2.17. Mechanical duality in SCP tessellation

dual triangle of area S∗
αβγ. Following the claim before, it is trivial to have the corollary

that the dual triangle is orthogonal to the junctional edge at r and the area is constant

along the junctional edge. The dual triangle swipe along the junctional edge forming a

triangular tube, and four of them meet at a vertex forming a tetrahedron. Applying the

three-dimensional divergence theorem to the tetrahedron, we get a similar equation as

(2.41):

(2.43) S∗
αβγ t̂1 + S∗

αβδ t̂2 + S∗
αγδ t̂3 + S∗

βγδ t̂4 = 0.
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Comparing to the line tension balance equation (2.3), the solution of line tensions in this

case is:

(2.44) Fαβγ = c ∗ S∗
αβγ.

On the other hand, consider the force balance at a junctional edge element dr, as

shown in the middle column of Figure 2.17, there is

(2.45) Fαβγ t̂1 + Fαβγ t̂2 + Tαβdrn̂1 + Tβγdrn̂2 + Tγαdrn̂3 = 0.

Here t̂1 and t̂2 are tangent directions of the edge at two ends. Applying the divergence

theorem to the corresponding elemental triangular tube, we have an equation with the

same form:

(2.46) S∗
αβγ t̂1 + S∗

αβγ t̂2 + q∗αβ
dq∗α + dq∗β

2
n̂1 + q∗βγ

dq∗β + dq∗γ
2

n̂2 + q∗γα
dq∗γ + dq∗α

2
n̂3 = 0.

Note that the lateral faces of the triangle tube are trapezoids because of the curved edge.

Comparing to (2.45), we have the expression of surface tension:

(2.47) Tαβ =
c

2
q∗αβ(

dq∗α
dr

+
dq∗β
dr

) =
c

2
q∗αβ(2− pα − pβ).

Additionally, on a membrane face element dr1×dr1 as shown in the right column of Figure

2.17, the elemental version of Young-Laplace equation (2.1) is given by:

(2.48) Tαβdr1n̂1 + Tαβdr1n̂2 + Tαβdr1n̂3 + Tαβdr1n̂4 − Pαdr
2
1m̂1 − Pβdr

2
1m̂2 = 0.
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As shown in the bottom right panel of Figure 2.17, the dual line q∗αβ swipe a shell with a

certain thickness along the membrane. Applying divergence theorem on the shell element,

we have

(2.49)
1

2
q∗αβ(dq

∗
α + dq∗β)(n̂1 + n̂2 + n̂3 + n̂4) + dq∗αdq

∗
αm̂1 + dq∗βdq

∗
βm̂2 = 0.

Comparing these two equations and applying (2.47), we could solve for the magnitude of

pressures:

(2.50) Pα = −c(pα − 1)2.

Using the similar trick as in two-dimension to rescale the dual graph, we can derive the

general form of analytical solutions of mechanics:

Fαβγ = cS∗
αβγ,

Tαβ =
1

2
(b− c(pα + pβ))q

∗
αβ,

Pα = a+ bpα − cp2α.

(2.51)

In the equation, the global constants (a, b, c) are undefined free parameters that have no

effect to the force balance of the system.

Here, we emphasize that the mechanical solution (2.51) is the central theoretical result

of our study. This result provides the inverse mapping from the geometry space to the

mechanical space analytically.
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2.4.3. Mechanical zero-modes

In the construction of dual graphs of three-dimensional SCP tessellation, we find out the

answer to the inverse problem of force inference. The analytical solutions (2.51) assure

the existence of the solutions of mechanical balance equations. However, the undefined

constants (a, b, c) imply that the mechanical solution for a given SCP geometry is not

unique. In another word, there exists three zero modes of mechanical inputs that can

form the same three-dimensional geometry of cellular aggregate.

Figure 2.18. Two-cell example of mechanical zero-modes

What are the physical meanings of these zero modes? As in two-dimensional scenario,

the constant a only appears in the pressure solution, which represents the background
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pressure of cells. By changing the value of a, the mechanical zero mode is that the

absolute value of pressures are changing, but the pressure differences are not affected,

thus the Young-Laplace equation will remain. It will not lose generality by setting a = 0.

In order to understand the physical meanings of b and c, let us consider a scenario that

there is no line tension in this system, which means c = 0. In this non-line-tension

scenario, the three surface tensions are balanced at any junctional edge, and the constant

b is the multiplier in the pressure and surface tension solutions. Thus the constant b can

be treated as the scale of surface tensions and pressures, which is the same case as in

two-dimensional CAP tessellation. It will not lose generality by setting b = 1. Then if

we set c > 0, the line tensions are added into the non-line-tension system. Because the

junctional edge are curved, the line tension produce an additional normal force which

requires the three membrane faces to subtract different amount of surface tensions to

keep this balance. As in Figure 2.17, since the junctional edge is curved to the direction

of high pressure, thus the membrane with high two-sides pressures is subtracting more.

Subsequently, to keep the balance between surface tensions and pressure difference, the

value of pressures are decreased by a certain value. Similarly, since the membrane is

curved to high pressure cells, higher pressure cells are subtracting more.

In order to visualize the effect of line tensions and to understand the meaning of the

constant c, let us consider a two-cell example as shown in Figure 2.18. To set the scene,

the two-cell system is defined by the following geometry parameters as: q1 = [1, 0, 0],

q2 = [−1, 0, 0], p1 = p2 = 1, θ1 = θ2 = 2. And also the background parameters:

q0 = [0, 0, 0], p0 = 0, θ0 = 0. This results in two spherical membranes and a flat membrane

in the middle. The centroids and radius are: ρ10 = q1, ρ20 = q2, R10 = R20 = 2; ρ12 = ∞,
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R12 = ∞. Now the forces can be inferred from these parameters. With the general setting

of parameters (a, b, c) = (0, 1, c), the force solution is:

P0 = 0,

P1 = P2 = 1− c,

T12 = 1− 2c,

T10 = T20 = 1− c,

F012 =
√
3c.

(2.52)

In this example, take c = 0 (non-line-tension scenario), then the three membrane tension

are equal T10 = T20 = T12 = 1. When considering a small amount of line tension (e.g

c = 0.1), we see the middle tension is lower than the other two membranes T10 = T20 > T12

so that the forces are balanced at edge.

In the example, we notice that the magnitude of the constant c cannot be too large,

so as to keep all mechanical values non-negative. In fact, in the model assumptions, non-

negative line tensions and surface tensions are both contractile stresses, while non-negative

pressures are expansive stresses. According to (2.51), if we have set (a, b) = (0, 1), non-

negative solution of line tension requires c ≥ 0. On the other hand, non-negative solution

of surface tension requires c < 1/(pα+pβ) for all membrane faces Mαβ. If so, the pressure

solution is assured to be non-negative, because c < 1/(pα + pβ) < 1/pα. Taking together,

the allowed range of c magnitude that can hold the assumptions is:

(2.53) 0 ≤ c ≤ 1

maxαβ(pα + pβ)
.
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In summary, two of the three zero modes are scaling factors of mechanics as in two-

dimensional scenario, the other zero mode provides an additional tuning by line ten-

sions to the non-line-tension scenario. This is an emergent flexibility of mechanics in

three-dimensional multi-cellular system, by which the relative mechanical values can be

different. However, this flexibility must be within a certain range.

2.5. Numerical scheme

We have constructed the inverse map from geometry parameters to the analytical

solutions of mechanics. But how can we get the geometry parameters from a three-

dimensional image of a cellular aggregate? To establish the numerical scheme, we first

introduce the segmentation of cellular aggregates in a three-dimensional image (2.5.1).

We use the membrane pixels in the image to do the least-square fitting (2.5.2), in order to

get the geometry parameters and reconstruct the closest SCP tessellation. We accomplish

this method by MATLAB code (2.5.3). By doing sensitivity analysis on synthetic image

data, we confirm the precision and robustness of our fitting scheme (2.5.4).

2.5.1. Three-dimensional image

Numerically, a three-dimensional image is a three-dimensional matrix in which each ele-

ment represents a pixel. In the segmented image of a cellular aggregate, the value of the

pixel is the index of the cell that the pixel belongs to. Usually the index 1 represents the

background. Sometimes the image includes the membranes, in which the membrane pixels

have the value 0, as shown in the left panel of Figure 2.19. We could label a membrane

pixel r(i) = (xi, yi, zi) as of membrane face Mαβ if the neighbor pixels have indices α and



60

β. A pixel can be labeled as more than on membrane faces if it is a boundary of more

than two cells. If the image does not include the membrane pixels, we could take the

intermediate pixel whose neighbor pixels have different indices as the membrane pixel, as

shown in the right panel of Figure 2.19 by purple nodes. Therefore, for each membrane

face Mαβ, there is a set of membrane pixel locations {r(i)
αβ = (xi, yi, zi)}. We will use these

membrane pixels to fit the geometry parameters.

Figure 2.19. Images of segmentation

2.5.2. Least-square fitting

Given the geometry parameters of GWV tessellation Ψ = {qα, θα, pα}α=1,2,...,NC
, we could

reconstruct the SCP geometry of the cellular aggregate. (Polyhedral tessellation is a

special case of SCP tessellation.) For a membrane Mαβ, the centroid ραβ(Ψ) and the
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radius Rαβ(Ψ) is reconstructed as (2.25) and (2.26). We then define the deviation of a

membrane pixel r
(i)
αβ from the reconstructed membrane sphere as

(2.54) ϵ
(i)
αβ = |r(i)

αβ − ραβ(Ψ)| −Rαβ(Ψ)

as shown if the left panel of Figure 2.20. In order to find the closest SCP tessellation

which has the smallest global deviations of all membrane pixels, we can recover the best-

fit geometric parameters Ψ by least-squares fitting. Specifically, we minimize the mean-

squared-deviation (MSD) function,

(2.55) E(Ψ) =
1

N

∑
Mαβ

nαβ∑
i=1

[
|r(i)

αβ − ραβ(Ψ)| −Rαβ(Ψ)
]2

,

where nαβ denotes the number of pixels belong to Mαβ and N denotes the total number

of pixels.

Figure 2.20. Least-square fitting and synthetic 3d image
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Our minimization statement falls into the class of nonlinear optimization problems,

requiring an educated initial guess for the desired parameters that takes advantage of

the properties of SCP tessellations. First, approximately, the Voronoi site qα provide

the information of cell’s location in SCP tessellation. So we take the cell centers - the

mean coordinate (x̄α, ȳα, z̄α) of all pixels with value α - in the image as the initial guess

of qα. Second, the Voronoi weight θα approximately provide the information of cell size.

So we take the cells’ length scales - the cubic root of the number of pixels with value α

- in the image as the initial guess of θα. Third, the Voronoi power pα is approximately

the cell’s pressure, which induces the membrane curvatures. According to the curvature

directions in the image, we can order the pressures from high to low, and set the initial

values of pα with this order. When applying the minimization, we should also constraint

the mean value of powers p̄ = 1, because the SCP tessellation is invariant to the scale of

power. In summary, these are the three ways of setting the initial guess in order for the

fast converging. Additional to these, specially, we set all the parameters for background

(q1, θ1, p1) as zeros, and fix them in minimization. The optimization algorithm we use in

code is interior-point algorithm.

2.5.3. Algorithm and codes

We accomplish the image processing and least-square fitting by the MATLAB code in

Appendix A.1. This code can also output the inferred mechanical values for any given

zero-mode (a, b, c). We illustrate the entire algorithm here:

• Read a three-dimensional image into a three-dimensional matrix.

• Extract the topological information by the cell adjacency in the matrix.
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• Sort out the coordinates of membrane pixels.

• Set up the MSD function with given membrane pixels and Ψ.

• Compute cell centers, cell volumes, and membrane curvatures and set the initial

values of Ψ.

• Use interior-point algorithm of minimizing MSD function to fit Ψ.

• Use inferred Ψ and input (a, b, c) to compute the analytical solutions of cellular

pressures, surface tensions and line tensions.

2.5.4. Precision and robustness

The minimized value of E(Ψ) is a global measure of the average deviation of the empir-

ically observed geometry and the best-fit SCP tessellation. We do not know how well

this fitting scheme can recover the geometry from the noisy real image data. However,

as we will demonstrate below, our approach provides a finer-grained spatial information

pertaining to the errors in our approximation.

Before applying our approach to a specific biological case, we first sought to assess the

robustness and precision of the data-fitting scheme when applied to a synthetic image,

where we have direct access to the underlying ground-truth. In order to generate the

synthetic image, we first setup the image size as 300 × 300 × 300. For NC ≈ 100 cells,

we set the random GWV parameters Ψ0 as the ground truth. The scale of weight and

the distance between sites are around 50. To give the value of each pixel in the three-

dimensional matrix, we compute the GWV distances dα(r) from a pixel r to all sites

qα and pick the shortest to assign the pixel with the cell index. Thus we construct the

synthetic segmented image as shown in the right panel of Figure 2.20. In stead of adding
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arbitrary noise to the segmentation, we sort out the membrane pixels and inject the

Gaussian noise in to the coordinates of these pixels.

Figure 2.21. Precision and robustness

We then use the noisy membrane pixel coordinates to apply the fitting scheme, to

assess the precision of the method. Our fitting scheme recovers a best-fit guess Ψ that

we can compare with Ψ∗, the ground truth. The results of this comparison report the

degree of mismatch, or error, between the parameters of the SCP tessellation inferred by

our scheme, relative to ground truth, as a function of the degree of noise injected into

the pixel coordinates. We quantify the injected noise as the square-root of the Gaussian

variance normalized by cell length scale, σ/
3
√
V̄ . As for the accuracy of the geometry

reconstruction, we measure the correlation coefficient ρ(Ψ∗,Ψ) between ground truth Ψ∗

and inferred Ψ as the quantity. As shown in the left panel of Figure 2.21, although the

inferred parameters of the SCP tessellation display varying degrees of susceptibility to
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noise, the fitting scheme recovers parameters with up to 99% accuracy with as much as

20% noise. We realize that the inference of powers pα has the worst accuracy.

To further assess the robustness of our numerical fitting scheme, we perform a sensitiv-

ity analysis, asking to what extent do the inferred parameters of a SCP tessellation vary

when we impose small perturbations of the data around some reference configuration. To

assess this mathematically, we analyse the eigenvalue distribution of the system’s linear

response. An inference scheme is robust when all its eigenvalues are smaller in magnitude

than 1, ensuring that no perturbations to the system can generate disproportionately large

deviations in the values of inferred parameters. In particular, at the minimum of the MSD

function, δE(Ψ, r) = 0, thus, for any ri, there must be δϵi = δ [|ri − ρi(Ψ)| −Ri(Ψ)] = 0.

This permits us to derive a local linear approximation,Kδr+MδΨ = 0, whereK = ∂ϵ/∂r

and M = ∂ϵ/∂Ψ are two matrices. As such, the relation between observed pixels pertur-

bation δr and geometric parameter deviation δΨ is given by δΨ = Lδr = (−M̃−1K)δr,

where M̃−1 is the pseudoinverse matrix of M . For synthetic data, we compute the eigen-

values λi of L and find they are all less than 1 in magnitude. The result in the right panel

of Figure 2.21 indicates that the fitting scheme is robust to noise.

2.6. Conclusion

In summary, in order to do force inference to the live-images of three-dimensional

cellular aggregates, we have done the following tasks in this chapter:

• In the model, we quantify the geometry of cellular aggregate as a tessellation in

3d space. On this tessellation, we model the extensive stress in cell volume as

pressure, and model the 2d and 1d contractile stress on cell boundaries and edges
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as surface tension and line tension. All the three kinds of forces are isotropic and

homogeneous within each cell, each membrane and each junctions, respectively.

By assuming the system under mechanical equilibrium, we map the forces to the

geometry through Young-Laplace equations and tension balance equations.

• The mapping confined the permissible geometry of tessellation to the class of

SCP tessellation. We count the dimensionality of such tessellation is 5NC for NC

cells, which can be parameterized by GWV parameters. Using these independent

parameters, we construct the inverse mapping from SCP tessellation space to the

solution space of mechanics. This inverse mapping is analytical but not unique,

because three undetermined parameters provide the zero modes of forces that

give out the same geometry.

• For any given segmented images, we set the numerical scheme of least-square

fitting to the membrane pixels with respect to GWV parameters. Verified by

synthetic images, the numerical scheme is accurate and robust to the noise in

segmentation. Combined with the analytical inverse mapping, this method enable

the force inference on the 3d image of cellular aggregates.

Empirically, these works provide a lot of utilization for physicist and biologist investi-

gating the multi-cellular system:

• It provides a useful tool that people can infer the forces of developing embryos

without invasion. Studies that need force data to understand biophysical mech-

anisms can benefit from it.

• The force equations provide the ability of simulating three-dimensional geometry

evolution. It can be used to check hypothesis and provide quantified evidence.
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Figure 2.22. Summary of physical model and inference method

• It also offers a simple tool of quantifying the three-dimensional geometries of

tessellations beyond the field of biology. Such tessellations are also shown in

many engineering problems and material science.

Theoretically, in the model that has been constructed, there are several non-trivial

consequences emerge from the mathematical structure of the multi-component system:

• In three-dimensional tessellations, the simple geometry - constant curvatures of

interfaces and edges - can induce the complex constrains between components.

This results in the low-dimensionality of the multi-cellular geometry space.

• The duality between geometry and mechanics implies the deep relations of these

two spaces. The subsequent zero modes of the equilibrium system imply the

increasing flexibility of mechanics when turning from 2d to 3d.
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CHAPTER 3

A mechanical atlas of ascidian gastrulation

3.1. Background

In Chapter 2, we introduced a force inference method for three dimensional cellular

aggregates and a numerical scheme of fitting geometric parameters from three-dimensional

image data. In this chapter, we apply the force inference method and numerical scheme

on a developmental process of ascidian embryo called gastrulation. We get the results of

geometry reconstruction, mechanical atlas and lineage maps. We also analyze the me-

chanical flexibility in this process and discover the biological principles of embryogenesis.

Before talking about results and analysis, let us introduce the biology system of as-

cidian gastrulation (3.1.1 & 3.1.2) and the techniques of 3d living image (3.1.3).

3.1.1. Ascidian embryo

Ascidian is a model organism of studying developmental process. In the first 3-4 hours

after fertilization, the zygote undergoes a series of rapid and highly synchronized cell divi-

sions called cleavages. Cleavage in ascidians is known for its highly predictable, invariant

pattern of cell divisions. By the 64-cell stage, each blastomere, or cell resulting from

division, has a predictable fate in terms of the tissues it will generate. During this stage,

embryo also establish the primary body axes (anterior-posterior and animal-vegetal). Cell

names are given according to their lineages and positions relative to the body axes.
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Figure 3.1. Developmental stages of ascidian embryo

More specifically, as shown in Figure 3.1, the first cell division gives the left half and

right half of the future body. The body plan is left-right symmetric until very later

stages of embryo development, thus the names of the pair cells are the same with the

left half labeled by ∗. Then the following two rounds of cells divisions decide two more

axes: cell names with letter A and B give embryo’s vegetal half of anterior and posterior

respectively; cell names with letter a and b give embryo’s animal half of anterior and

posterior respectively.

Following cleavage, the ascidian embryo will undergo gastrulation, a process that dra-

matically reshapes the embryo. The cells move and rearrange to form three germ layers:
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the ectoderm, mesoderm, and endoderm. This process forms a structure called the gas-

trula. Each cell has more specific cell fate during this stage. Specifically, the ectodermal

cells are all animal cells, will become future skin and nerve system; the endodermal cells

are A7.1 − 2, A7.5 and B7.1 − 2 in the vegetal half, will become future digest system

and other in-body organs; the other vegetal cells belong to mesoderm, will become future

muscle and blood.

3.1.2. Early gastrulation process

Figure 3.2. Early gastrulation of ascidian embryo
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Here we focus on the the early stages of gastrulation in which the ten endodermal

precursor cells (yellow in Figure 3.2) invaginate to form a large indentation on the vegetal

side of the embryo. Previous studies identified two distinct phases of endoderm invagi-

nation. The first phase is from 64-cell stage to 76-cell stage, while the mesodermal cells

are dividing. During this phase, the apices of endodermal cells constrict while the cells

remain columnar in shape. The second phase is from 76-cell stage to 112-cell stage, while

the ectodermal cells are divising. During this phase, the apices remain constricted, while

the cells shorten apico-basally, accompanied by bending of the endodermal cell sheet, a

process referred to as ”collared rounding”.

Accumulation of mono-phoshorylated (1P) myosin II on the apical surfaces of endo-

derm cells accompanies their apical constriction during phase 1, while collared rounding is

accompanied by the circumapical accumulation of di-phosphorylated (2P) myosin II, and

basolateral accumulation of 1P myosin II. 2D vertex models asserting patterns of surface

and line tensions consistent with the observed patterns of myosin II could recapitulate

the two phase kinematics of endoderm invagination, supporting the idea that lineage spe-

cific deployment of myosin II plays a central role in orchestrating these morphogenetic

dynamics. Although limited by its 2D perspective, this prior work provides a frame of

reference for evaluating the results of 3D force inference.

3.1.3. Live-image data

Recently, Guignard et al [8] combined confocal multiview light-sheet imaging and an al-

gorithm of image segmentation - called ASTEC - to reconstruct the boundaries of all

cells within the ascidian embryo at 2 minute intervals during early ascidian development
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Figure 3.3. Cell fates of ascidian gastrulation

with isotropic resolution. The digitized P.mammillate embryos constitute a quantitative

and dynamic atlas of cell positions, geometries, and ancestry over a large fraction of a

metazoan developmental program, which can be interactively explored through the Mor-

phoNet online morphological browser. These tools provide us the 3d live-image dataset

to the ascidian gastrulation process.

We work on three embryos from the dataset, taking out the timepoints from 64-cell

stage to 112-cell stage. One typical embryo with the highest quality have 34 timepoints

for early gastrulation: timepoints 1− 8 are 64-cell stage; 13− 18 belong to 76-cell stage;

24− 34 belong to 112-cell stage; the timepoints 9− 12 and 19− 23 are two rounds of cell

division. See the lineage maps of cell-fate in Figure 3.3.
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3.2. Geometry reconstruction of ascidian embryo

Using the numerical scheme, we are able to fit the geometry parameters of GWV

from three-dimensional live-image data of ascidian gastrulation. We then reconstruct the

geometry of SCP tessellation and infer the mechanical parameters across all time points

during gastrulation stage. We first assess the geometry reconstruction by analyzing the

fitting errors (3.2.1). We find large fitting errors during cell division and improve the

fitting results by re-segmenting the image (3.2.2). Despite these time points, we see small

fitting errors and make two consequent statements in 3.2.3: 1) It is possible to use low-

dimensional geometries describing the morphogenesis; 2) Ascidian gastrulation can be

simplified as a quasi-static process.

3.2.1. Assessment of geometry reconstruction

Figure 3.4. Geometry reconstruction of ascidian embryo
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In the left column of Figure 3.4, we show an original segmentation of ascidian embryo

at 64-cell stage in 3d view by the software ImageJ. The cross-sectional view of the same

embryo is shown as well. We then fit the GWV parameters Ψ from the image data, and

reconstruct the SCP geometry that best-fits the original image. To reconstruct the SCP

tessellation based on these parameters, we create a new 3d image with the same size and

resolution as the original image. We labeled every pixel r by the cell index α, which

has the shortest Voronoi distance d2α(r) among all cells. The reconstructed embryo is

presented in 3d view, and is presented in cross-sectional view in the middle column of

Figure 3.4. Qualitatively, upon visual inspection the geometries are well reconstructed. To

assess quantitatively the quality of geometry reconstruction, we visualize the local spatial

errors |ϵi| of every membrane pixels in the top right panel of Figure 3.4. After normalized

by the cell size (≈ 40 of pixel units), globally, the errors are observed to be small on

the order of a few percent. The largest systematic error in Figure 3.4, on the order of

10%−15%, is observed in the mirror-symmetric cells within the mesoderm lineage, whose

apical surface shapes clearly deviate from uniform curvature. Overlaying the outlines of

original cross-sectional image and the reconstruction provides further insights into the

nature of small errors within the bulk of the embryo (bottom right panel of Figure 3.4).

Taking together the fitting errors of all pixels, we make a histogram of error degrees

to visualize the distribution in Figure 3.5. As shown in the figure, it is close to Gaussian

distribution whose standard deviation is 4.3%. According to the results of synthetic

image, in which the membrane pixels are given Gaussian pixels, this deviation mean we

recovered the geometry with more than 99% accuracy.
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Figure 3.5. Error distributions of geometry fitting

These results highlight the precision within which an SCP tessellation approximates

the ascidian embryo at a single time point. To provide a more global assessment, we

mapped per-cell approximation errors onto the lineage of the ascidian embryo during

early gastrulation, organized by the degree of temporal progress (from 64 to 112 cells)

and germ layer, where the color displayed upon the lineage corresponds to the degree of

error, per cell (Figure 3.5). We realize that the large fitting errors appear at the cells

when they are about to divide. The time series data of standard deviation in Figure 3.5

also shows a wave of high average error degrees appear at cell division time points. The
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fail of the SCP approximation is because the dumbbell-like shapes of the cells just prior

to the computational identification of a new membrane in the segmentation protocol.

3.2.2. Improvement of fitting by re-segmentation

Figure 3.6. Improvement of fitting by re-segmentation

The failure of the fittings for the cells about to divide can be improved by re-segmentation

on the original image. In the top left panel of Figure 3.6, we highlight the cells of dumbbell-

like shapes at the time point of cell-division stage from 64-cell to 76-cell. In the top middle

panel of Figure 3.6, we present the fitting errors of apical membrane pixels. We notice that

the large errors are not only appears at the dumbbell-like cells, but also at their neighbor

cells, because our numerical scheme is global fitting. By comparing this image with the

image of subsequent time point, where these cells are segmented into two daughter cells,

we relabel the cell pixels by two new cell indices. The method is to compute the distances

from the pixel to both cells in next time point, then choose the shorter distance and label
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the pixel with corresponding new index. In the bottom left panel of Figure 3.6 we present

the re-segmented cells. Apply the numerical scheme onto the image of re-segmentation,

we observe much smaller fitting errors as shown in the bottom middle panel of Figure

3.6. Comparing the error distribution in the right column of Figure 3.6, the standard

deviation is largely reduced from 9% to 6%. This result is another evidence supporting

the accuracy of the model fit’s to the data.

3.2.3. Consequences of fitting results

These numerical data strongly support the argument that SCP tessellations accurately

approximate the time-evolving geometry of the ascidian embryo. We emphasize the dra-

matic reduction in the dimensionality of the geometric parameterization proposed here.

The original image of segmentation requires thousands of pixels to delineate the mem-

branes of each cell, and the 3D computational meshes employed to render the shape of

each cells employs hundreds of triangular meshes. In contrast, we have demonstrated

that with only five parameters per cell an SCP tessellation can provide a highly accu-

rate rendition of an entire embryo. This physically and biologically motivated geometric

description not only facilitates the inference of it’s mechanical configurations, but also pro-

vides a low-dimensional parameter space that can quantitatively describe morphogenetic

trajectories.

Recounting, the biological ingredients to the theory were that 1) isotropic and ho-

mogeneous cell pressures, and membrane and line tensions, are in 2) balance with each

other according to effective Young-Laplace relations at membranes and lines, and 3) that

the line tensions themselves are in a static balance with each other at each vertex. The
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unreasonable quality with which an observed embryonic geometry can be approximated

by an SCP tessellation provides strong support for the quality of biological and physical

ingredients into the theory. In particular, the quality of the fit to real data suggests the

emergence of mechanical simplicity from the manifest chemical and mechanical complex-

ities at shorter lengthscales and timescales.

Time-dependent scalar quantities of cell pressures, and membrane and line tensions,

which abide by effectively fluid-like balances of normal stresses at membranes and lines

are sufficient to represent the mechanical state. In addition to the support for material

simplifications, the quality of the data fits suggests that cells within the ascidian embryo

are close to a static equilibrium of forces. Deviations from this would introduce strong

velocity-dependent dissipative components to the stresses, resulting in geometries that

would be poorly approximated by SCP tessellations. The observed dynamics can thus

be considered the result of ”adiabatic” changes in the configuration of the mechanical

state, the morphogenetic timescale being much larger than the mechanical relaxational

timescales of the system. From a biological perspective, the observation that the entirety

of the embryo dynamically maintains such proximity to a static equilibrium makes a

theoretical prediction of feedback mechanisms that globally coordinate the generation

and regulation of forces to maintain this condition.

3.3. Patterns of mechanical atlas

After reconstructing the geometry of ascidian embryo during early gastrulation ac-

curately, we infer the mechanics from the geometric parameters by the method of dual
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graph. Given a choice of the zero mode, this inference allows us to construct the first me-

chanical atlas of all three kinds of mechanical inputs at any time point (3.1.1). Does the

spatio-temporal patterns of mechanics recover previous understanding of ascidian gastru-

lation? What are the new findings that disagree with or neglected by previous theory? In

order to answer these questions, we first visualize and quantitatively describe the overall

spatial patterns of symmetries and asymmetries (3.3.2). Then we visualize and quantita-

tively describe the spatial patterns of pressures (3.3.3) and tensions (3.3.4) in detail, and

analyze the correlations between them. We finally analyze the spatio-temporal patterns

via lineage maps (3.3.5), find out the cell-cycle dependent and independent features of

mechanical atlas.

3.3.1. Constructing and visualizing mechanical atlas and lineage maps

We have recovered the geometric parameters from 3d live-image of ascidian embryos from

64-cell stage to 112-cell stage. Base on these parameters, we find out the zero mode

parameters are restricted in the range of 0 ≤ c/b ≤ 0.1 to keep the stress positive. We

set a = 0 and b = 1 without loss of generality in spatial pattern, and we choose a median

value of c = 0.05 = cmax/2 to compute the values of pressures, surface tensions and line

tensions. The ambiguity associated with this specification of zero-mode c is discussed in

great detail later in this chapter. By coloring the cells, membrane faces and junctional

edges with corresponding magnitude of forces, we visualize the embryo in 3d using ImageJ.

In Figure 3.7, we pick up one time point from each stage (64-cell, 76-cell and 112-cell)

to present the three types of the mechanical atlas, because the patterns remain largely

constant in between rounds of cell divisions. Because the more heterogeneous patterns
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emerge on the vegetal side than on the animal side, we present vegetal views in Figure

3.7. Besides the visualization of apical mechanics, we also present the cross-sectional view

of pressures and surface tensions in the right column of Figure 3.7 with distinct color

scheme, in order to show the in-bulk patterns of embryos.

Figure 3.7. Mechanical atlas of ascidian gastrulation

To further present the detailed in-bulk patterns and overcome the limitations of

three-dimensional visualization, we separate the membranes into five groups based on

the double-layer structure of embryos. As shown in Figure 3.8, the embryo have a layer of
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animal cells and a layer of vegetal cells, thus there are two apical membrane groups. The

membranes between two animal cells belong to animal lateral group, while the membranes

between two vegetal cells belong to vegetal lateral group. In the middle, the membranes

between an animal cell and a vegetal cell belong to basal group. The junctions are sepa-

rated in a similar way. Therefore, from the same view angle as in Figure 3.7, we visualize

the in-bulk force patterns of these five groups in Figure 3.11 and Figure 3.13.

Figure 3.8. Five groups of ascidian membranes

In order to show the detailed temporal patterns, we construct the lineage maps of

mechanical forces in Figure 3.15. From top to bottom, each row of the lineage maps

represent a timepoint; and each node in the maps represent a cell with the color showing

the force value. The cells have been sorted according to germ layers, and by the relative

locations of cells along the anterior-posterior axis, within each germ layer. When investi-

gating temporal patterns, we should determine the mechanical scale for each timepoint.

In another word, we need to set the zero mode parameter b of each timepoint to normal-

ized mechanical values. In Figure 3.15, the total volume energy EV =
∑

α PαVα is set to

be fixed over time, and the values of b are set accordingly. The ambiguity associated with

this specification of zero-mode b is discussed in great detail later in this chapter as well.
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Figure 3.9. Reproducible pressure patterns in three embryos

Although we choose the certain values of zero-modes, the spatio-temporal patterns of

mechanics are highly producible across three different embryos. This qualitative results

provide another evidence for the robustness of our force inference method. Additionally,

the continuity of mechanical states with respect to subsequent timepoints also give us the

confidence in the biological relevance, accuracy and robustness of our mechanical atlas of

ascidian gastrulation.
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3.3.2. Symmetries and asymmetries of ascidian mechanical patterns

At this stage of ascidian development the embryo is expected to display symmetry about

its left-right axis. The mechanical atlas makes manifest the mechanical symmetries in

both cellular pressures and membrane/line tensions. While there may be slight variations

in magnitude between the left and right halves - for example at 112-cell stage, where the

right B7.1-2 and B8.7-8 cells demonstrate higher pressures and apical membrane tensions

than the left counterparts - the regions with relatively high force value are approximately

identical. The panel A in Figure 3.10 quantifies the degree of mechanical symmetry the

atlas predicts.

Figure 3.10. Symmetries and asymmetries of ascidian mechanical patterns
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The transcriptomic asymmetry in the ascidian embryo, with respect to the anterior-

posterior and animal-vegetal axes, is established very early in development, specifically

during the 4-cell to 16-cell stage. This initial establishment of asymmetry is attributed

to the graded distribution of maternal proteins, as well as the localization of maternal

mRNAs, like macho-1, in the posterior animal regions. These asymmetric influences

continue to be prominent throughout the later stages of development, extending into

gastrulation, thereby resulting in varied cell fates across different regions of the embryo.

Our mechanical atlas reflects these asymmetries: at the 64-cell stage, a distinct gradient

of mechanical forces from posterior to anterior is evident, as illustrated in the first row

of Figure 3.7 and quantified in the panel B of Figure 3.10. As development progresses

from the 76-cell to the 112-cell stage, the posterior portion of the embryo continues to

exhibit elevated pressures and apical tensions, as presented in the second and third rows

of Figure 3.7. Furthermore, the asymmetry between the animal and vegetal layers of cells

becomes increasingly manifest when we observe the changes in pressures and membrane

tensions in the cross-sectional views presented in the last column of Figure 3.7. At the

64-cell stage, vegetal cells exhibit relatively lower pressures and tensions, but this changes

as development progresses to the 76 and 112-cell stages. At these later stages, the vegetal

cells display noticeably higher pressures and membrane tensions when compared to their

animal counterparts, as quantified in the panel C of Figure 3.10.

Consequently, we observed the symmetry in left-right mechanical pattern, and the

asymmetries in anterior-posterior and vegetal-animal axis. These align with and reinforce

prior findings in the field of ascidian development, reflect the symmetric and asymmetric

natures of the embryo. Taken together with the quality of the model’s fit to the data, its
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temporal robustness, reproducibility across embryos, these observations give us confidence

in the biological relevance, accuracy and robustness of our mechanical atlas of ascidian

gastrulation.

3.3.3. Pressure heterogeneity

As the vegetal-animal asymmetry of mechanics arise from 76-cell stage to 112-cell stage,

more complex patterns beyond a/symmetries are shown in vegetal cells. These patterns

are related to germ layers and cell fates in Figure 3.3. In reference to the left column of

Figure 3.7, during 76-cell stage, endoderm cells (A7.1−2, A7.5, B7.1−2) exhibit compar-

atively lower pressures than mesoderm cells. In the anterior region, the mesoderm cells

(A8.5− 8, A8.13− 16) - notochord and neural plate cell fates - begin to generate elevated

pressures. In conjunction with the consistently high mechanical values in the posterior

mesoderm cells, these cells collectively form a ring of heightened pressure encompass-

ing the lower-pressure endoderm. This pattern relates to the flat side of the hemisphere

shape of the embryo at 76-cell stage. As the development progresses to the 112-cell stage,

endoderm cells start to increase their pressure generation, a mechanical transformation

aligning with the invaginating morphological configuration of the embryo.

3.3.4. Surface and line tension pattern

The heterogeneities in cellular pressures are found to have a direct relationship with the

configurations of surface tension and line tension. To depict this relationship, we present

the full mechanical atlas of surface tensions in Figure 3.11 and line tensions in Figure

3.13. Our investigation elucidates three key ways in which surface tensions are associated
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Figure 3.11. Mechanical atlas of surface tensions in ascidian gastrulation

with cellular pressures. First, apical membrane tensions display a direct correlation with

cellular pressures, an association derived from the similar curvatures across all apical

membranes, as quantified in the panel A of Figure 3.12. Second, the surface tensions

of lateral membranes are correlated with the mean cellular pressures on both sides, as

quantified in the panel B of Figure 3.12. Third, The surface tensions of basal membranes

are correlated with the corresponding cellular pressures on the vegetal side - see panel C

of Figure 3.12. Beyond these correlations, it is noteworthy that for most of the vegetal

cells, the lateral membranes generally exhibit lower surface tensions than those of apical

and basal membranes. This observation contrasts with the measurement of myosin motor

activities, especially for the endodermal cells at 112-cell stage.
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Figure 3.12. Correlations between pressures and membrane tensions

The relationship between pressures and line tensions follows similar rules as those for

surface tensions. For apical junctions, which are formed by two cells, it is observed that

high line tensions manifest at the boundaries of two high-pressure cells. The panel A of

Figure 3.14 quantify the correlation between apical line tension and the mean pressure of

the corresponding two cells. As for lateral and basal junctions, which are formed by three

cells, high line tensions emerge when at least two of the corresponding three cells exhibit

high pressures - see panel B of Figure 3.14. For instance, at 112-cell stage as shown in the

panel C in Figure 3.14, basal junctions can be separate into to subgroups: the junctions

formed by two vegetal cells and one animal cell, and the junctions formed by one vegetal
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cell and two animal cells. Notebly, the line tensions in the first subgroup is higher than

the second subgroup. In summary, the junctions formed by two or three high-pressure

cells generally exhibit high line tensions, while the junctions formed by only one or zero

high-pressure cell typically exhibit low line tensions.

Figure 3.13. Mechanical atlas of line tensions in ascidian gastrulation

Consequently, our mechanical atlas reveals that you must account for significant pat-

terned heterogeneities in cell pressures to explain the observed geometries through the

process of gastrulation. The configurations of surface tensions and line tensions are highly

correlated with the pressure heterogeneities. These observations highlight the importance

of developing new approaches to measuring the mechanical stress state of an embryo that

go beyond a focus on the forces generated by the actomyosin cytoskeleton.
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Figure 3.14. Correlations between pressures and line tensions

3.3.5. Lineage map

A virtue of the stereotyped lineage of ascidian embryos is that we can display the mechan-

ical data on the invariant lineage maps. In Figure 3.15 we can see the time-dependent

trajectories of pressures in cells. The lineage view of the mechanical data makes appar-

ent the very strong lineage-dependent patterns, with only the mesoderm displaying an

increase in pressures prior to the 112-cell stage, and the ectoderm never showing a sig-

nificant change in its pressure distributions. Furthermore, at the 112-cell stage when the
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embryo begins to invaginate, there is a clear anterior-posterior gradient in cell pressures

within the mesodermal layer of cells.

Figure 3.15. Lineage map of pressures in ascidian gastrulation

The lineage view of the mechanical data does also make manifest both cell-cycle de-

pendent and independent patterns. Both the pressure and apical stress data reveals two

phases of mechanical activity. A first, coupled to the wave of divisions in the mesoderm

that transforms the embryo from the 64- to 76-cell stage, and a second wave within the

112-cell stage that appears decoupled from the cell cycle. The first phase of mechanical

activity is initiated by the division of a mother cell, transiently retaining high pressures

in the daughters, eventually dissipating just before the division of ectodermal cells. Both

single-cell and tissue-based studies of cell divisions suggest a transient alteration in the lo-

cal mechanical environment, and it is reassuring that our mechanical atlas makes manifest

this anticipated feature.
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The second phase of mechanical activity appears independent of any wave of cell divi-

sions in the embryo, and is when the embryo begins to significantly alter its morphology.

It is at this phase that clear anterior-posterior and animal-vegetal asymmetries in the

mechanical atlas are manifest. Integrating all this data and distilling a mechanical logic

is made challenging by the empirical observation that since the system is arguably close

to a static equilibrium at all times the outward pushing cell pressures and contracting

membrane and line elements must be in balance. Thus, the correlations apparent within

the lineage maps between, say, cell pressures and apical stresses are both anticipated and

confounding. Fortunately, our present theory of mechanics suggests a principled approach

to integrating this complex data so as to reveal the independent mechanical features at a

cell-by-cell basis.

3.4. Mechanical flexibility in ascidian embryogenesis

Although we have shown many known and novel patterns in mechanical atlas and

lineage maps, it is still not clear whether those patterns is conserved with respect to the

mechanical zero-modes. In order to investigate the mechanical flexibility, we introduce the

concept of cellular stress tensor that represents regional average stress (3.4.1). In this point

of view, the spatial patterns of contractile stresses are invariant with respect to the third

zero-mode (3.4.2). The cellular stress tensor also allows us to investigate the patterns of

shear forces and figure out the flexibility (3.4.3). We also discussed the temporal flexibility

with respect to the second zero-modes that corresponds to the mechanical scales (3.4.4).
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3.4.1. Cellular stress tensor

Elementally, different values of mechanical inputs can balance at the same geometry;

globally, the total expansive stresses and contractile stresses must sum to zero in spite

of the choice of zero mode. Here we introduce the concept of cellular stress tensor to

show the invariance of stress under zero-modes. Inside cells, the cell volume is under an

isotropic 3D pushing stress tensor σV = PαI3 (where I3 denotes the identical matrix),

which is sourced by the pressure we measure. Over a membrane, surface tension cause an

in-plane isotropic pulling stress tensor σS = −TαβI2 (where I2 is in-plane projection of

identical matrix). Along each edge, line tension generate a tangential pulling stress tensor

σL = −FαβγI1 (where I1 is one-dimensional projection of identical matrix). Accounting

for all of these, the average stress over a region of volume V is

(3.1) σ̄ =

[∑
α

∫
PαI3dV −

∑
αβ

∫
TαβI2dA−

∑
αβγ

∫
FαβγI1dL

]
/V.

For convenience, we pick the animal-vegetal (AV), left-right (LR) and anterior-posterior

(AP) axes as our orthogonal 3D coordinate system. One of the principle consequences is

that the average stress over the entire embryo must be zero according to Newton’s third

law. This result can be verified by the numerical computations.

For any single cell, we can integrate all the data within it, and on its membrane

surfaces and junctional edges into a single 3 × 3 cell-based tensor, which is denoted as

cellular stress tensor:

(3.2) σα =

[
PαVα −

∑
αβ

1

2

∫
TαβI2dA−

∑
αβγ

1

3

∫
FαβγI1dL

]
/Vα.



93

Figure 3.16. Cellular stress tensor

Note that one membrane stress is shared by two cells and one line stress is shared by three

cells. This tensor is symmetric by construction, and the scaling by the volume of the cell

ensures that the tensor itself is an intensive quantity, whose magnitude is independent of

the size of the system.

We then investigate how the pattern of cellular stress tensors is affected by zero-mode

parameter c. In Figure 3.16, the numerical comparison shows that for high and low values

of c, the trace of cellular stress tensors are highly correlate. This invariance implies that

the flexibility of cells generating overall stresses.
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3.4.2. Flexibility in contractile stress

We then consider the contractile stresses with respect to membranes. Since the surface

tensions and line tensions provide contractile forces to the multicellular system, we could

compute the total contractile stress over a membrane:

(3.3) σαβ =

[∫
TαβI2dA+

∑
γ

1

3

∫
FαβγI1dL

]
/Aα.

Note that the line stress is sheared by three membranes. In Figure 3.17, it shows the

different patterns of surface tensions and line tensions with respect to the zero-mode

parameter c at 76-cell stage of ascidian embyro. However, computing the contractile

stress tensors, as shown in Figure 3.17, the spatial patterns are invariant with respect to

the mechanical zero mode.

Figure 3.17. Flexibility in contractile stress
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The invariance of the contractile stresses provide another mechanical flexibility to the

multicellular system. The ascidian cells are able to allocate the force generation on edges

and membranes, without affecting the regional contractile and global balance. In fact, this

flexibility is observed in the molecular measurements of ascidian gastrulation. According

to Sherrard et al. [32], at the early 112-cell stage, myosin motors are reallocated from

membrane cortices to the junctions, for the purpose of maintaining the apical contractility.

3.4.3. Flexibility in shear stress

Cellular and membrane stress tensor give us the quantitative tools of understanding me-

chanical flexibility. Perhaps more importantly, constructing a principled quantity such

as the cell-based stress tensor allows for the correct conglomeration of the, geometry-

dependent, membrane and junctional tensions that can produce shear stresses on the cell.

A simple way to see these patterns is to decompose the stress tensor, per cell, into its hy-

drostatic and deviatoric (its traceless part, which causes shape change) components. The

second characteristic of the deviatoric matrix, J2, is related to a scalar quantity termed

the von Mises Stress, σVM =
√
3J2, which is a cell-based scalar measure of the extent of

shear stresses in the system. Computationally, for a stress tensor σ,

(3.4) J2 =
1

2
tr(σ2)− 1

6
tr(σ)2.

We heatmap the variation of σVM on the lineage diagram of the embryo, and present

its spatial patterns from an animal and vegetal view at the 112-cell stage stage in Figure

3.18. The pattern of the von Mises stress in Figure 3.18 are manifestly distinct from

either of the patterns seen in Figure 3.15. This is naturally expected since the pressure
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Figure 3.18. Von Mises shear stress

(hydrostatic) and deviatoric contributions to overall stress are independent. Contrasting

previously observed patterns, ectodermal cells experience shear stress. To gain a more

physical sense of the pattern we visualize the von Mises stress on the embryo in Figure

3.18. One can clearly observe patterns, including the high levels of von Mises stress in

the posterior mesodermal lineage.
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3.4.4. Flexibility in temporal patterns

The adiabatic nature of ascidian embryogenesis physically provides the flexibility of tem-

poral regulations with respect to mechanical scale. For example, the curvature of a mem-

brane can be produced by either increasing the cellular pressure in one side or decreasing

the cellular pressure in the other side. Such phenomenon is presented in the lineage maps

by the choice of the zero-mode parameter b. In order to determine this scale factor, we

have to add another assumption of conservation in the system. In the current lineage

maps shown in Figure 3.15, we suppose the total hydrostatic energy of cell volume to be

conserved:

(3.5) E =
∑
α

PαVα = const.

Figure 3.19. Lineage map of pressures relative to ectoderm
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In the similar way, we can assume the conservation of total elastic energy, or the

conservation of total contractile energy. The another types of scale determination based

on the biological assumptions. For example, in Figure 3.19, we assume the inactivity of

the ectodermal cells over time and the mechanical values of the active cells is relative to

the average pressure of ectoderm. Consequently, additional physical measurement needs

to be implemented to determine the scale factors, in order for the mechanical inference of

a dynamical system.

3.5. Conclusion

In this chapter, we apply the force inference method on the gastrulation process of

ascidian embryo, and then analyze the fitting results and the mechanical patterns. For the

first time in this field, we construct the three dimensional mechanical atlas that will broad

the view angles for embryogenesis. The consequences provide the important perspectives

to both the physics of the shape regulation and the biological design principles of embryo.

• The precision of the geometry fittings, the reproducibility across embryos and

the reconstruction of symmetric and asymmetric mechanical patterns give the

confidence for the accuracy of the force inference scheme. We could apply this

force inference scheme to other model organisms, in order to understand more

general mechanical principles.

• The fitting error distributions in both space and time further confirm the low-

dimensionality representation of embryo geometry. It will benefit the studies that

investigate the developmental trajectories in three dimensions by the simplifica-

tion of the geometric description.
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• The symmetries and asymmetries patterns of mechanics offers another evidence

for the axis establishment in the ascidian body plan. Collaborating with the ge-

netic evidence and chemical evidence, deeper understanding of this fundamental

regulatory will be possible.

• The pressure heterogeneities corresponding to the germ layers implies the dif-

ferent genetic regulations for force generation by zygotic genes. This biological

insight will inspire ascidian geneticists to hypothesize and experiment on mutant

embryos. It will further inspire the biomedical scientists who work on genetic

engineering.

• The mechanical activity in the ring of mesodermal cells during gastrulation pro-

vides a novel physical insight on invagination. For some morphological or physi-

ological process, the tissue around the invaginating region is likely to be stiff, so

that the cell movements are able to happen on a rigid framework.

• The correlations between tensions and pressures imply the underlying biophysical

principles that the co-regulation of cortical dynamics and hydrostatic states.

• The mechanical flexibility in both spatial and temporal aspects resolves the ques-

tions from previous observations of molecular reallocation.
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CHAPTER 4

Anisotropic Model for Three-dimensional Cellular Aggregate

4.1. Background

In previous chapters, we construct the force inference method and apply it onto ascid-

ian image data. However, in the models, we only consider the isotropic stresses, especially

we assume the membrane surface tension to be isotropic. However, there is increasingly

more experiment evidences that the cytoskelekon forms anisotropic cortical networks along

the membrane faces. Some of the studies shows the importance of such anisotropy in cer-

tain developmental progresses [34]. Therefore, we are motivated to generalize the model,

considering the anisotropic effect in the three-dimensional cellular aggregates.

Although the anisotropic effects of mechanical stress are discovered in many morpho-

logical processes, few mathematical models are established to quantitatively investigate

how embryo operate the effects collectively. Even in the physics points of view, it is

not fully comprehended how the anisotropic surface tension could balance with pressure

difference. In our model, the simplicity in geometry partly comes from the isotropic

assumption, so the anisotropic effects is apparently cause complexity in the geometric

representation of the cellular aggregates.

Here in this chapter, we incorporate the anisotropic surface tensions into the mechani-

cal model. To be simple, we focus on the scenario that only surface tensions and pressures

equipped in the system, but no line tensions on the junctional edges. We get some primary
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consequences from this model, and discuss the idea of force inference for simple biology

examples.

4.2. Anisotropic tension balance on Polyhedral tessellation

In order to investigate anisotropic force balance in a cellular aggregate, we start from

the special case that there is no pressure difference but only anisotropic surface tensions.

In this multi-cellular system under equilibrium, the geometry is Polyhedral tessellation

which we have already parameterized and understood the intrinsic constraints.

We first take a look at the effects of anisotropic surface tension on membranes and

edges (4.2.1). Then we take use of the dual graph and introduce the membrane anisotropy

to simplify the force parameters (4.2.2). We analyze the relations among these membrane

anisotropies within a single cell (4.2.3) and in cellular aggregate (4.2.4). Consequently, we

discover the simplicity of anisotropic tension solutions in this complex mechanical system

of equilibrium (4.2.5).

4.2.1. Anisotropic surface tension

An anisotropic surface tension is an in-plane symmetric stress tensor. For a flat polygonal

membrane face Mαβ, suppose (̂i, ĵ, k̂) are three orthogonal unit vectors, where î and ĵ are

in-plane vectors and k̂ is the face normal. The anisotropic tension Tαβ can be expressed

as

(4.1) Tαβ = σ1î⊗ î+ τ î⊗ ĵ + τ ĵ ⊗ î+ σ2ĵ ⊗ ĵ.
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Or we can use the eigenvalues σ(1), σ(2) and eigenvectors ê1, ê2 to write as

(4.2) Tαβ = σ(1)ê1 ⊗ ê1 + σ(2)ê2 ⊗ ê2.

On an edge of the polygonal membrane, suppose the tangent is t̂ and the in-plane

normal is n̂, as shown in Figure 4.1. Then the traction force applied on this edge by

surface tension is

(4.3) F = Tαβ · n̂.

Since the surface tension is anisotropic, this traction force is not guaranteed to be per-

pendicular to the edge as in previous chapters. Specifically, the traction forces in normal

direction and tangential direction are

F (n) = F · n̂ = Tαβ : (n̂⊗ n̂),

F (t) = F · t̂ = Tαβ : (n̂⊗ t̂).

(4.4)

As shown in Figure 4.1, a surface tension applies different normal traction forces on

different edges, which is between the eigenvalues of Tαβ. And the shear force F (t) is not

zero on the edge.

Consider the anisotropic tension balance at the edge Eαβγ, now it is more complex

than isotropic scenario. As shown in Figure 4.1, let us denote the three in-plane normal

directions as n̂αβ,γ, n̂βγ,α and n̂γα,β. So the balance relation between three traction forces

is

(4.5) Tαβ · n̂αβ,γ + Tβγ · n̂βγ,α + Tγα · n̂γα,β = 0.
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Figure 4.1. Anisotropic surface tension

It can be decomposed into the normal force balance

(4.6) F
(n)
αβ,γn̂αβ,γ + F

(n)
βγ,αn̂βγ,α + F

(n)
γα,βn̂γα,β = 0

and shear force balance

(4.7) F
(t)
αβ,γ + F

(t)
βγ,α + F

(t)
γα,β = 0.

The balance is illustrate in Figure 4.1.

For a cellular aggregate in equilibrium, the force inference problem is: can we infer the

anisotropic surface tensions from given the geometric parameters of Polyhedral tessella-

tion? In this problem, the total number of unknowns are 3NF because each surface tension

Tαβ need three values σ1, σ2, τ to be defined. The total number of balance equations is

3NE. Fortunately, the dual graph of Polyhedral tessellation is still useful for this scenario.
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We will demonstrate in the following sections that there exist analytical solutions to this

inverse problem.

4.2.2. Membrane anisotropy tensor

We know that the dimensionality of Polyhedral tessellation is 4NC , which can be param-

eterized by Weighted Voronoi {qα, θα}α=1,2,...,NC
. For isotropic surface tension balance on

an edge Eαβγ, using the divergence theorem on the dual triangle, we get the solutions of

tension Tαβ are proportional to qαβ. In the solution Tαβ = b ∗ qαβ, the free parameter b is

a global constant.

Although in anisotropic scenario the dual triangle cannot directly relate to the traction

force balance (4.5), it relates to the composition of normal force balance (4.6). Therefore,

the solution to this normal equation is

F
(n)
αβ,γ = bαβγ ∗ qαβ,

F
(n)
βγ,α = bαβγ ∗ qβγ,

F
(n)
γα,β = bαβγ ∗ qγα.

(4.8)

Here bαβγ is the coefficient for edge Eαβγ. Because an anisotropic surface tension applies

different normal traction force on different edges, the coefficient is also different for dif-

ferent edges. However, these coefficients bαβγ of edges for one membrane Mαβ is related.

Given an in-plane tensor Bαβ, the coefficient can be given as

(4.9) bαβγ = Bαβ : (n̂αβ,γ ⊗ n̂αβ,γ).
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We call this tensor Bαβ as membrane anisotropy tensor (MAT). The relation of surface

tension and MAT is given as

(4.10) Tαβ = qαβBαβ.

Therefore, the mechanical inverse problem becomes solving MAT Bαβ for each membrane

under the equations

(4.11) Bαβ : (n̂αβ,γ ⊗ n̂αβ,γ) = Bβγ : (n̂βγ,α ⊗ n̂βγ,α) = Bγα : (n̂γα,β ⊗ n̂γα,β)

for each edge Eαβγ. Actually, the coefficient equivalence (4.11) is another version of normal

force balance (4.6). As for the shear force balance (4.7), it can be given as

(4.12) qαβBαβ : (n̂αβ,γ ⊗ t̂αβ,γ) + qβγBβγ : (n̂βγ,α ⊗ t̂βγ,α) + qγαBγα : (n̂γα,β ⊗ t̂γα,β) = 0

4.2.3. Cellular anisotropy tensor

Now let us consider the MATs Bαβ on a single polyhedral cell α as shown in figure. We

can count the degrees of freedom of these MATs under the coefficient equivalence (4.11)

on one polyhedron.

Claim: The MATs under the coefficient equivalence Bαβ : (n̂αβ,γ ⊗ n̂αβ,γ) = Bγα :

(n̂γα,β ⊗ n̂γα,β) on one polyhedron α have 6 degrees of freedom.

Proof: Suppose the polyhedron have n
(α)
F faces, n

(α)
E edges and n

(α)
V vertices. We know

the Euler’s rule is n
(α)
F + n

(α)
V − n

(α)
E = 2, and each vertex has three edges in a polygon
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3n
(α)
V = 2n

(α)
E . From the two relations we get

(4.13) n
(α)
E = 3n

(α)
F − 6.

Each MAT has 3 degrees of freedom, thus in total there are 3n
(α)
F degrees of freedom. For

each edge there is 1 relation, thus there are in total n
(α)
E constraints to 3n

(α)
F parameters.

Therefore, for one polyhedron, the MATs have 3n
(α)
F − n

(α)
E = 6 degrees of freedom. □

Figure 4.2. Membrane anisotropy and cellular anisotropy tensors

We know that a three-dimensional symmetric tensor has 6 degrees of freedom. So we

hypothesis that there exists a tensor Cα for a polyhedral cell α, such that each MAT Bαβ

is a certain ’projection’ of Cα to the face Mαβ. By analyzing some special cases, we guess

out and prove the projecting operations as the following claim.
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Claim: If we project a three-dimensional symmetric tensor Cα to each face in a

polyhedron as

(4.14) Bαβ = −m̂αβ ×Cα × m̂αβ,

then these projected tensorsBαβ satisfy the coefficient equivalenceBαβ : (n̂αβ,γ⊗n̂αβ,γ) =

Bγα : (n̂γα,β ⊗ n̂γα,β). Here m̂αβ denotes the face normal.

Proof: As shown in Figure 4.2, using the relation m̂αβ×n̂αβ,γ = t̂αβγ, we can simplify

the left-hand-side coefficient as

Bαβ : (n̂αβ,γ ⊗ n̂αβ,γ) = −((m̂αβ ×Cα)× m̂αβ · n̂αβ,γ) · n̂αβ,γ

= −((m̂αβ × n̂αβ,γ) · (m̂αβ ×Cα)) · n̂αβ,γ

= −t̂αβγ · ((m̂αβ ×Cα) · n̂αβ,γ)

= t̂αβγ · ((m̂αβ × n̂αβ,γ) ·Cα)

= Cα : (t̂αβγ ⊗ t̂αβγ).

(4.15)

In the similar way, we can derive the right-hand-side coefficient as Bγα : (n̂γα,β⊗ n̂γα,β) =

Cα : (t̂αβγ ⊗ t̂αβγ), which is equal to left-hand-side. □

Therefore, we confirm the hypothesis that each MAT of a polyhedron α can be ex-

pressed as the projection of a tensor Cα. We call the tensor Cα as cellular anisotropy

tensor (CAT).
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4.2.4. Global anisotropy tensor of cellular aggregate

We then consider the Polyhedral tessellation and investigate the relations among the

CATs of all cells. For any MAT Bαβ, it is both a projection of Cα and a projection of

Cβ. So for any adjacent cell pair α and β, there is

(4.16) m̂αβ ×Cα × m̂αβ = m̂αβ ×Cβ × m̂αβ.

Additional to this, we also have the shear force balance equations (4.7), in which Bαβ can

be substituted by Cα terms. As shown in Figure 4.3, at a vertex rαβγδ formed by four

cells, we have construct the relations between the four CATs.

Figure 4.3. Global anisotropy tensor of cellular aggregate
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Claim: For a vertex rαβγδ, the four CATs Cα,Cβ,Cγ,Cδ satisfying the projection

equivalence (4.16) and shear force balance (4.7) implies

(4.17) Cα = Cβ = Cγ = Cδ.

Lemma: The degrees of freedom for these four CATs is 6.

Proof of Lemma: Each CAT has 6 degrees of freedom, thus there are 24 degrees of

freedom in total. Then consider the constraints on these degrees. Each equation (4.16)

provides three constraints, which can be written equivalently as

Cα : (t̂αβγ ⊗ t̂αβγ) = Cβ : (t̂αβγ ⊗ t̂αβγ),

Cα : (t̂αβδ ⊗ t̂αβδ) = Cβ : (t̂αβδ ⊗ t̂αβδ),

Cα : (t̂αβγ ⊗ t̂αβδ) = Cβ : (t̂αβγ ⊗ t̂αβδ).

(4.18)

So there are 18 constraints in total since there are 6 such equations (4.16). However, it is

obviously to notice that Cα : (t̂αβγ ⊗ t̂αβγ) = Cβ : (t̂αβγ ⊗ t̂αβγ) and Cβ : (t̂αβγ ⊗ t̂αβγ) =

Cγ : (t̂αβγ ⊗ t̂αβγ) can derive Cα : (t̂αβγ ⊗ t̂αβγ) = Cγ : (t̂αβγ ⊗ t̂αβγ). Therefore, for each

edge there is one dependency between these 18 constraints. So there are 18 − 4 = 14

independent constraints of equations (4.16). Plus the additional 4 shear force balance

constraints, the four CATs’ degrees of freedom under constraints are 24− 14− 4 = 6. □

Proof of Claim: According to the Lemma, the four CATs has 6 degrees of freedom.

We only need to proof that the 6 degrees is for a global symmetric tensor C, and check

whether Cα = Cβ = Cγ = Cδ = C can satisfy all the constraints.
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It is trivial that equations (4.16) are satisfied. As for the shear force balance (4.7), we

need use CAT to express the shear force:

F
(t)
αβ,γ = qαβBαβ : (n̂αβ,γ ⊗ t̂αβγ)

= −qαβC : .(t̂αβγ ⊗ n̂αβ,γ).

(4.19)

Therefore the equation (4.12) is equivalent to

(4.20) (C · t̂αβγ) · (qαβn̂αβ,γ + qβγn̂βγ,α + qγαn̂γα,β) = 0.

This is true because the second bracket is exactly the dual triangle equation. So we have

proved that the four CATs to be equal will satisfy all the force balance equations at the

edges. □

The equivalence of CATs (4.17) implies that for a cellular aggregate, there exist a

global anisotropy tensor C that equals to every CAT. Consequently, in a cellular aggre-

gate, the anisotropic surface tension of membrane Mαβ is

(4.21) Tαβ = −qαβ(m̂αβ ×C × m̂αβ),

which can satisfy the tension balance on edges. When C = bI is an isotropic tensor, then

the system is degenerated to scenario of isotropic surface tensions.

4.2.5. Conclusion

An anisotropic surface tension is an in-plane stress tensor. It applies different normal

forces and shear forces on different edges. A cellular aggregate in equilibrium is the

Polyhedron tessellation that normal forces and shear forces are balanced at each edge. By
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investigating this multi-cellular system, we discover the analytical solutions of anisotropic

tensions and the free parameters.

Roughly speaking, though we allow the surface tension to be anisotropic, the mag-

nitudes of tensions are still as in isotropic scenario. Although we allow each membrane

surface tension has its own anisotropy, every membrane anisotropy is the projection to

a global anisotropy tensor. Those consequences are the emergent simplicity from the

complex system.

4.3. Anisotropic force balance on Ellipsoidal-Curved Polyhedral tessellation

After the theoretical analysis of anisotropic force balance on the cellular aggregates

with uniform pressure, we start to generalize the theory into non-uniform pressure sce-

nario. We first set up the mechanics in this system, including isotropic hydrostatic pres-

sures and in-homogeneous and anisotropic surface tensions (4.3.1). We then consider the

pressure-tension balance on membranes, find out the analytical solutions of anisotropic

Young-Laplace relations on ellipsoidal interfaces (4.3.2). Then we investigate the tension

balance on edges within a special class of Ellipsoidal-Curved Polyhedral tessellation (4.3.3

and 4.3.4). Consequently, we discover new emergent simplicity when we introduce more

complexities into the system (4.3.5).

4.3.1. Assumptions

In the cellular aggregate, the intracellular pushing stress comes from the hydrostatic

pressure within cell. Therefore, the cellular pressure should still be treated as an isotropic

stress. Inside each cell volume, the stress balance requires the magnitude of pressure to be
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homogeneous, thus we use one scalar number Pα to represent it. However, the pressures

of different cells are set to be different in this system.

Pressure difference in two sides of a membrane cause the curvature of it. In this model,

we assume that the surface tension on the membrane to be anisotropic. However, this

assumption does not induce the homogeneity of tensions on a curved membrane. More

fundamentally, it is not a well-defined concept of homogeneity, because the tension is an

in-plane tensor yet the tangential planes are different at different points of a curved face.

But we still require the continuity of the tensor within the faces, in order to satisfy local

in-plane tension balance on a smooth surface.

4.3.2. Anisotropic Young-Laplace relation

The Young-Laplace relation between pressure difference and anisotropic surface tensions

can be derived using differential geometry knowledge [35, 36, 37]. We state the result

here:

(4.22) (Pα − Pβ)m̂ = −∇S · Tαβ.

In equation (4.22), m̂ represent the face normal, as shown in Figure 4.4. Tαβ is a sur-

face stress tensor field which can be anisotropic and in-homogeneous. ∇S represent the

surface derivative. This equation is in vector form, since the tangent force balance is not

guaranteed as in isotropic scenario. The normal direction of the equation (4.22) can be

expressed as

(4.23) Pα − Pβ =
T11

R1

+
T22

R2

,
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where R1 and R2 are the principal radii of curvature, T11 and T22 are the stress components

at these two principle directions.

Figure 4.4. Anisotropic Young-Laplace relation

It is a pure mathematical question to find all possible solutions of surface shapes and

stress tensor fields. But here we only introduce an analytical solution to this anisotropic

Young-Laplace equation (4.22) on ellipsoids.

Claim: On an ellipsoid r = axî + byĵ + czk̂ with x2 + y2 + z2 = 1, the solution of

stress tensor field that satisfy (4.22) is

(4.24) Tαβ =
Pα − Pβ

2
σ =

Pα − Pβ

2l
[Au⊗ u+Bv ⊗ v + Cw ⊗w] .
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Here the vectors u,v,w are

u = zbĵ − yck̂,

v = xck̂ − zâi,

w = yâi− xbĵ,

(4.25)

the coefficients A,B,C are

A =
1

b2
+

1

c2
− 1

a2
,

B =
1

c2
+

1

a2
− 1

b2
,

C =
1

a2
+

1

b2
− 1

c2
,

(4.26)

and the length scale l is

(4.27) l =

√
x2

a2
+

y2

b2
+

z2

c2
.

Proof: We introduce some preliminary facts before the proof. First, the surface

normal of the ellipsoid at r = axî+ byĵ + czk̂ is

(4.28) m̂ =
x

al
î+

y

bl
ĵ +

z

cl
k̂.

It is easy to check

(4.29) m̂ · u = m̂ · v = m̂ ·w = 0.

So u,v,w are all tangent directions of ellipsoid, thus the solution (4.24) is a stress tensor

in the tangential plane.
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The directional derivatives are defined as

(4.30) ∇ = (
∂

∂r1
,
∂

∂r2
,
∂

∂r3
) = (

1

a

∂

∂x
,
1

b

∂

∂y
,
1

c

∂

∂z
).

The surface divergence of any vector field τ is defined as

(4.31) ∇S · τ = ∇ · τ −∇τ : (m̂⊗ m̂).

The surface divergence of a tensor field σ is a vector field ∇S · σ that each component is

defined as

(4.32) (∇S · σ) · î = ∇S · (σT · î).

And this equation is the same for component on ĵ and k̂ direction.

Now, the Young-Laplace equation (4.22) is equivalent to 2lm̂ = ∇S · σ. Proving this

is equivalent to prove

(4.33) −2x

al
= ∇S · (σT · î).

Since u · î = 0, v · î = −za, u · î = ya, we have

(4.34) σT · î = σ · î = 1

l
(−Bazv + Cayw).

Therefore, the surface divergence of this vector field is

(4.35) ∇S · (σT · î) = −Ba∇S ·
(zv

l

)
+ Ca∇S ·

(yw
l

)
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Let us first compute ∇(zv/l) using (4.25), (4.27), (4.30) as following:

∇
(zv

l

)
=

1

l
∇(zv) + zv ⊗∇1

l

=
1

l


0 0 −2az/c

0 0 0

cz/a 0 x

−


−az2

0

czx


[

x
a3l3

y
b3l3

z
c3l3

]
.

(4.36)

So the divergence ∇ · (zv/l) is the trace of matrix:

(4.37) ∇ ·
(zv

l

)
=

x

l
− z2x

l3

(
1

c2
− 1

a2

)
.

It is not hard to compute the tensor component at normal direction:

(4.38)
(
∇zv

l

)
: (m̂⊗ m̂) =

z2x

l3

(
1

a2
− 1

c2

)
.

Thus according to the definition of surface divergence (4.31), we have

(4.39) ∇S ·
(zv

l

)
= ∇ ·

(zv
l

)
−
(
∇zv

l

)
: (m̂⊗ m̂) =

x

l
.

In the similar way, we compute

(4.40) ∇S ·
(yw

l

)
= −x

l
.

Therefore, take (4.39) and (4.40) into equation (4.35), we have

(4.41) ∇S · (σT · î) = −Ba
x

l
+ Ca

(
−x

l

)
= −2x

al
,
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which is the equation (4.33) we intend to prove. Therefore, the tensor field Tαβ = (Pα −

Pβ)σ/2 is the solution to Young-Laplace equation. □

Figure 4.5. Analytical solution of anisotropic tension on ellipsoid

In Figure 4.5, we present the analytical solution of anisotropic tension on an ellipsoid.

Three values are needed to fully represent an in-plane stress tensor: the trace of the

tensor matrix, which is shown by color in Figure 4.5 to present the overall magnitude of

the stress; the larger principle direction of the tensor matrix, which is shown by the short

lines in Figure 4.5 present the anisotropic direction; the ratio of two eigenvalues of the

tensor matrix, which is shown by the length of the short lines in Figure 4.5, to present

the amount of anisotropy.
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4.3.3. Ellipsoidal-Curved Polyhedral tessellation

It is a hard pure mathematical question that what is the possible 3d tessellation that is

tilling by sections of ellipsoids. First, it is not assured that the interaction line of two

ellipsoids is an elliptical curve. Thus it is further complicated to figure out the geometric

constraints of the ellipsoids in the tessellation, since each curved edge is the common

intersection of three ellipsoids. Second, if we only consider the tessellations that all edges

are elliptical, it is still hard to parameterize the space of possible tessellations. Third, even

if we can parameterize all the ellipsoid tessellations, it is not easy to verify the tension

balance relations on every edge.

Here we only consider the Ellipsoidal-Curved Polyhedral tessellations that generalized

from SCP tessellations. In this special class of tessellations, every ellipsoid section is

’stretched’ by the corresponding sphere section in SCP tessellation. The ’stretchiness’

can be given by a three-dimensional symmetric tensor S. A point r on a sphere is thus

moved to a new position S ·r. We also require the same stretch tensor S for every sphere

section in SCP tessellation, in order to avoid mismatch of the edge interaction of three

ellipsoids.

4.3.4. Tension balance on elliptical edges

Now the question is, could the three anisotropic surface tensions can be balanced on the

elliptical edge in such Ellipsoidal-Curved Polyhedral tessellation? In order to answer this

question, we will use the ideas of CAT and MAT in Polyhedral tessellation.

For a spherical membrane Mαβ in SCP tessellation, there is a local dual line q∗
αβ(r)

with respect to any point r = Rxî + Ryĵ + Rzk̂ on the sphere. Now, if we ’stretch’
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the sphere by S = âi ⊗ î + bĵ ⊗ ĵ + ck̂ ⊗ k̂, then the dual line will be stretched by

S−1 = a−1î⊗ î+ b−1ĵ⊗ ĵ + c−1k̂⊗ k̂. After this stretching, the direction of the dual line

change from the sphere normal m̂ = xî+yĵ+zk̂ to the ellipse normal m̂ = x
al
î+ y

bl
ĵ+ z

cl
k̂,

and the length of the dual line change to q∗αβl. Here the length scale l is defined as in

(4.27).

Suppose the cellular pressure maintains previous value after stretching, then at the

new point r = Raxî+Rbyĵ +Rczk̂ on the ellipse, the tension becomes

(4.42) Tαβ = q∗αβlBαβ = q∗αβl

[
A

l2
u⊗ u+

B

l2
v ⊗ v +

C

l2
w ⊗w

]
,

where A,B,C and u,v,w is as defined in (4.26) and (4.25). Here the tensor Bαβ is the

MAT as in the Polyhedral tessellation scenario. We realize that this tensor is a projection

of a three-dimensional tensor:

(4.43) Bαβ = −m̂×C0 × m̂,

with the definition

(4.44) C0 = b2c2Aî⊗ î+ c2a2Bĵ ⊗ ĵ + a2b2Ck̂ ⊗ k̂.

We notice that the tensor C0 is a global CAT as in Polyhedral tessellation scenario.

Therefore, the tension balance on the elliptical edge is easy to get. At a point on edge

Eαβγ, let us consider the three tangential planes with respect to the three ellipsoids. For

these three planes, the three corresponding stretched dual lines - q∗αβlαβm̂αβ, q
∗
βγlβγm̂βγ

and q∗γαlγαm̂γα - can form a dual triangle. The three anisotropic tensions that in the three



120

planes are q∗αβlαβBαβ, q
∗
βγlβγBβγ and q∗γαlγαBγα, respectively. Following the same proving

steps as in the Polyhedral tessellation scenario, since the MATs - Bαβ, Bβγ and Bγα - are

projections of the global tensor C0, the normal tension balance and shear force balance

are satisfied.

4.3.5. Conclusion

We emphasize here that we only consider a special class of the possible geometry of cellular

aggregates that anisotropic surface tensions and pressure differences and be balanced.

Even though, we discover the simplicity emerge from the complex setups. The anisotropic

surface tensions are allowed to be in-homogeneous on curved membranes, which induces

a lot of complexity since we cannot use countable number of parameters to describe it.

However, to balance with pressure differences, the solution of the tension anisotropy is

the projection of a global tensor that defined by the eccentricity of the ellipsoid. More

surprisingly, such anisotropy conserves the tension balance on elliptical edges.

4.4. Anisotropic force inference

The theoretical results on the multicellular system with anisotropic tensions enable

the possibility of constructing a force inference method. However, many mathematical

assumptions need to be verified before we develop the techniques, the most important one

of which is the ellipsoidal shapes of the membrane. Here we only discuss the central ideas

of reconstructing the eccentricity of membrane faces.

We have constructed the analytical inverse mapping from Ellipsoidal-Curved Polyhe-

dral (ECP) tessellation to the values of anisotropic tensions and pressures. To do the
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force inference, we only need to reconstruct the geometry parameters of ECP tessellation

from the three-dimensional images. Since an ECP tessellation is stretched from a SCP

tessellation, the parameters we are going to fit is the SCP parameters Ψ and the stretch-

iness S. Inversely, a ECP tessellation can be stretched back to SCP tessellation by S−1,

and then we can do the least-square fitting on the SCP tessellation. The loss function

can be written as following:

(4.45) E(Ψ,S) =
1

N

∑
Mαβ

nαβ∑
i=1

[
|S−1 · r(i)

αβ − ραβ(Ψ)| −Rαβ(Ψ)
]2

.

The initial guess of the symmetric tensor S can be set as identical matrix I3, and the

trace of S should be constrained.

In the future, we will apply the least-square fitting method onto the synthetic image

data and real live-images to verify the accuracy and sensitivity of it.
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CHAPTER 5

Dynamical model of embryo morphogenesis

5.1. Background

In previous chapters, the most important assumption we made when building the me-

chanical models is the mechanical equilibrium. This assumption comes from the observa-

tion of laser ablation experiment, where we discover the timescale of mechanical response

is much smaller than the timescale of developmental movement. By this assumption, we

are able to decouple the geometry and mechanics, and build the force balance equations

which map a mechanical state to a certain geometric state.

However, in some morphogenesis processes that cellular movement is fast, such as

germ-band extension process in drosophila embryos, the dynamical effects of movement

cannot be neglected. In the physical aspects, the tissues in development are viscoelastic

materials. When the timescale of movement speed is relatively large, the system is likely

to perform as fluid rather than solid. In this case, the passive forces like viscosity need to

be included into the model, and thus should be considered in the force inference method.

In fact, the studies of dynamical force inference started before the static inference

method. In these studies [38], we take a video instead of an image at a certain timepoint

to do the inference. However, these methods do not notice the fact that cellular geometry

is close to the equilibrium, thus the inverse mapping is very sensitive. In this chapter, we

take use of the theoretical consequences in static force inference and construct a robust
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method of dynamical force inference. In order to build the fundamental ideas and avoid

the challenges in three dimensions, we only discuss the dynamics in two-dimensional

cellular lattice.

5.2. Dynamical model on 2d cellular lattice

The geometry of two-dimensional cellular lattice is commonly quantified as a polygonal

tessellation. In the similar way as in three-dimensional cases, we denote the polygonal

shapes as cell Cα, denote the boundary edges between two cells as membranes Mαβ, and

denote the vertices where three cells meet as rαβγ.

As for modeling the mechanics, we assume the cellular pressures to be uniform across

the two-dimensional lattice, and only consider the tensions on the membrane. Therefore,

we do not consider the curvatures of membranes, the shape of each cell is a polygon whose

edges are straight lines. We denote the membrane tension at Mαβ as Tαβ, and the force

direction is along the membrane from one vertex to another vertex.

As for the dynamics, we assume the movement of cells causes the resistance that is

applying on the vertices. The resistance is proportional to the velocity of a vertex rαβγ,

is given by

(5.1) F
(r)
αβγ = −µ

drαβγ
dt

.

Here the parameter µ is a global constant representing the viscosity or fraction factor. In

biological point of view, the resistance of epithelial cells comes from the relative movement

to the basal substance.
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Therefore, for each vertex, we can build the mechanical relations between active forces

- membrane tensions - and passive forces - vertex resistance. The equation is given as

(5.2) Tαβ t̂αβ + Tβγ t̂βγ + Tγαt̂γα = µ
drαβγ
dt

.

Here the unit vectors t̂αβ represent the membrane directions.

This dynamical model is coupling the geometric information (edge angles), the me-

chanical information (membrane tensions) and the kinetic information (vertex move-

ments), and is of a collective system, the cellular array. Although the topological infor-

mation and its transformation is also important during embryogenesis, we mainly focus

on the tissue’s mechanical states where topology takes only small role on that. We simply

assume the topology information is given and not change over the timepoints we inves-

tigate. For the a multicellular system, the dynamical equation (5.2) can be written in

matrix form:

(5.3) GT = f.

Here T = [Tαβ, Tαγ, ...]
t is the 1d matrix of tensions, and f = [f1x, f1y, f2x, f2y, ...]

t is the

friction matrix. The 2D geometry matrix G = G(r) includes the information of edge

angles, and is defined by vertex locations r. The system is a linear mechanical relation.

Our first interest to the dynamical system is the equilibrium states, also known as the

fixed points of dynamical equations. This happens when the right-hand-side of equation

(5.3) is 0, which is what we discussed in previous chapters. Noll et al’s work [28] has

shown that under this circumstance, neither the geometry and the mechanical state is
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Figure 5.1. Dynamical model on 2d cellular lattice

free to choose. Here we re-illustrate the observations from counting the dimensionality of

geometry space and mechanical space.

We use NC , NE and NV denoting the number of cells, edges and vertices, respectively.

Euler’s topology rule tells us NC +NV −NE = 1 in two dimensions. Besides, since each

vertex is an end of three edges, there should be 2NE = 3NV . The two relations point out

that NV ≈ 2NC and NE ≈ 3NC when the right-hand-side 1 is neglected for large number

of cells NC . Obviously, the polygonal tessellation is fully defined by the vertex locations

once the topology information is given, thus the dimensionality is 2NV = 4NC . As for

the mechanical space, each membrane has a value of tension, thus the dimensionality is

NE = 3NC .
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If three tensions are balanced at a vertex, the ratio of tensions is given by the edge

angles:

(5.4)
Tαβ

sinϕi,γ

=
Tβγ

sinϕi,α

=
Tγα

sinϕi,β

.

Here the angles are as shown in the right panel of Figure 5.1. Under equilibrium, while

tension balance is satisfied everywhere, consider the vertices around one cell Cα, the edge

angles must satisfy

(5.5)
∏
i∈α

sinϕi,γ

sinϕi,β

=
∏
i∈α

Tαβ

Tαγ

= 1.

It sets a constraint to the edge angles around each cell. So there are NC constraints

in total, thus the geometry subspace of equilibrium is 3NC dimensional. As discussed

in three-dimensional scenario, the subspace can be parameterized by weighted Voronoi

tessellation, where the parameters are Ψ = {qα, θα}α=1,2,...,NC
. There are also dualities

between geometry and mechanics, and we realize that the corresponding dual networks

of have 2NC degrees of freedom.

5.3. Dynamical force inference method

As we illustrate, the dynamical model is coupling the geometric information, the

mechanical information and the kinetic information. While the geometric and kinetic

information are easily measured from the video of imaging cell boundary markers, there is

no direct and non-invasive measurement on membrane tension. Although all the geometric

and kinetic information can be measured by image analysis, the measurement errors will

increase the rank of the geometry matrix G, thus make the linear system unsolvable.
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For a general linear problem Ax = b, the classic method of solving for the best fitted

solution is to minimize ||Ax − b||. The solution is x = Ã
−1
b, where Ã

−1
is the pseudo-

inverse matrix of A. This method is proved not robust in equilibrium force inference, in

which case b = 0. Physically speaking, in this method we trust the geometry measurement

A and try to minimize velocity noise. The idea of increasing the robustness of equilibrium

force inference is to find the closest equilibrium geometry to the measurement. In algebra,

we try to find the best fitted matrix A∗ which guarantee the existence of exact solution

of A∗x = 0. The definition of ’distance’ is the deviation of vertex location. The observed

geometry matrix is A0 = A(r), while the best fitted matrix is A∗ = A(r+ ϵ), denoting Aϵ.

Let’s generalize the idea to dynamic force inference. We try to find the closest geometry

and velocity A∗ and b∗ that there exists exact solution of A∗x = b∗. Similarly, A∗ = Aϵ

and b∗ = b + ξ. The ’distance’ is the combined deviation of geometry and velocity,

E = |ϵ|2 + |ξ|2. For a given ϵ, the smallest ξ is reached when x = Ãϵ
−1
b. Therefore, we

can just minimize the distance as a function of ϵ:

(5.6) E(ϵ) = |ϵ|2 + |ξ|2 = |ϵ|2 + |Aϵ(Ãϵ
−1
b)− b|2.

In the MATLAB code, we use minimization function fminunc to get A∗. Besides, we

should normalize ϵ and ξ by the scale of membrane length r̄ and the scale of friction f̄ .

Besides, in order to have a better convergence rate, we constrain the geometry deviation

ϵ such that keeps the edge angles in (0, π).

In order to investigate the robustness, we take use of a two-dimensional vertex model

to simulate the epithelial tissue dynamics generating synthetic data. We add Gaussian

noise on both geometry information and velocity information of the synthetic data, then
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Figure 5.2. Robustness of dynamical force inference method

infer the forces based on the noisy ’measurements’. Comparing to the Matrix Inverse

method, the solution by the perturbation method has less error. The fitting results are

shown in Figure 5.2.

5.4. Results on drosophila germ-band extension

We then apply the dynamical force inference method onto the videos of drosophila

germ-band extension. By image analysis on the video, we take the membrane geometries

in the middle where the cell boundaries are well-segmented. We take the pixels that

belong to three different cells as the vertex positions. From two subsequent images, we
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could measure the velocities of the vertices. Based on the geometry information and

kinetic information, we could apply the dynamical force inference method to measure the

mechanical patterns.

Figure 5.3. Results on drosophila germ-band extension
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Before applying the dynamical force inference, we first investigate the geometry of

cellular lattice. In the top panel of Figure 5.3, we first show the fitting results of the equi-

librium geometry, which is the subspace of general polygonal tessellations. The spatial-

temporal fitting error distribution of the static geometry is less than 3%, from which we

could confirm the small deviations between equilibrium tessellation to the observed tissue

geometry.

In the bottom panel of Figure 5.3, we show the dynamical force inference results that

provide the dynamical value of tension for each membrane. The tension pattern shows

apparent anisotropy in vertical directions. This result implies that the membrane tensions

along dorsal-ventral axis is higher than the membrane tensions along the anterior-posterior

axis. This results meet to the known mechanisms in drosophila molecular data, which is

an evidence that verifies our force inference method.

5.5. Mechanical-feedback model based on myosin-driven contractility

The quasi-static nature of germ-band extension in Drosophila indicates that some

mechanical feedback always drives the system back to equilibrium. Given a mechanical

state in the equilibrium subspace, equation (5.2) will drive the geometry state to its

corresponding geometry equilibrium. However, if the given mechanical state is away from

the 2NC dimensional equilibrium subspace, the system will keep moving forever. So there

must be some mechanical regulator that determines membrane tensions, and it must

depend on the geometry information.

In microscopical view, the membrane tension comes from the actomyosin bundles along

the cell boundary. Here we introduce the membrane ’rest length’ lij of the underlying
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actomyosin filament and assume a simple elastic form:

(5.7) Tij = K(rij − lij),

where the constant K is the elastic module and rij = |r⃗i − r⃗j| is the edge length. Under

this model, for a given set of rest lengths l, the dynamical system is going to converge

to a geometry where the elastic energy function El(r) =
∑

ij
1
2
K(rij − lij)

2 reach to its

minimum. We claim that the minimum exists since El(r) is non-negative, and also that

the minimum is unique because the dimensionality of rest length space isNF = 3NC , which

is equal to the dimensionality of equilibrium subspace. The corresponding fixed points

of geometry and mechanics are r∗ = r∗(l) and T ∗ = T ∗(l), which cannot be analytically

expressed. Therefore, the rest length l is a latent coordinate of the equilibrium subspace.

Figure 5.4. Mechanical and geoemtry subspace
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However, the rest length is also a dynamical variable which is regulated by the myosin

level mij on the membrane:

(5.8) l−1
ij

dlij
dt

= τ−1
l W

(
Tij

mijaTS

)
.

The ’walking kernel’ W (x) determines the pace of myosin contracting the actin bundle,

which is based on single-molecule experiments. While the load per myosin motor Tij/amij

reaches to the ’stall force’ TS, the actin bundle will stay at the its current length. For

simplicity, the linearization of the equation around this fixed point can be expressed as

(5.9) l−1
ij

dlij
dt

= α

(
Tij

βmij

− 1

)
.

Additional to this dynamical model, we introduce a molecular information, the myosin

density m, which is encoded by genes. This system will reach to equilibrium while T ∗ =

βm∗, i.e. the tensions are proportional to the myosin density. Because T ∗ is in 2NC

subspace, the equilibrium myosin m∗ should also be in 2NC subspace of a F = 3NC space.

This indicates the myosin density is changable, and further there should be a feedback

regulatory. One hypothesis on myosin feedback model is that myosin recruitment depends

on the strain rate of rest length:

(5.10) m−1
ij

dmij

dt
= γl−1

ij

dlij
dt

,

where γ represents the recruitment rate. We assume the recruitment is slower than

both mechanical relaxation and actomyosin contractile. We realize that this formula

is analytically solvable. The solution is mij = λijl
γ
ij with the coefficient λij determined by
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the initial state. And thus the stationary is reached when T ∗ = βΛl∗γ. Here Λ denotes the

coefficient matrix with only diagonal elements λ. Recall that we already have T ∗ = T ∗(l∗),

thus the fixed point of l∗ is at the solution of x for T ∗(x) = βΛxγ. The solution exists

and uniquely depends on λ, which has 3NC dimensionality.
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CHAPTER 6

Discussion

6.1. Summary

The phenomena in morphogenesis is always simple that the cells seem to have group

intelligence. But this simplicity is built on complex mechanisms in every level of biology.

This big mystery is waiting for in-depth understanding from many aspects.

We aim to solve this mystery in morphogenesis from the aspect of mathematical mod-

eling. We believe the keystone between complexity and simplicity is mechanics, thus we

build the force inference methods to construct the mechanical atlas for embryos. We utilize

the current advances in imaging techniques, applying the novel mathematical knowledge

to parameterize the geometries in low-dimensional space and analytically solve the inverse

problems. For the first time, we are able to know the 3d embryo mechanics spatially and

temporally that cause the simple collective behavior.

On the other hand, in the context of ascidian gastrulation, we deepen our under-

standing of the complex foundations that produce the mechanical patterns. By the col-

laborations of biophysical mechanisms (cortical dynamics and hydrostatic states) and

biochemical mechanisms (molecular and chemical gradient), at genetic level (cell-fate),

molecular level (myosin reallocation) and cellular level (cell-cycle), the embryo makes a

well-organized system that accomplishes the higher-level task.
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6.2. Future

Apart from the theoretical tools and the biological insights that is provide in our study,

the idea of bridging genotype to phenotype via mechanics is also worth exploring for other

topics in developmental biology.

For a broader context of biology, there still remain many mysteries of observed emer-

gent simplicity in every level. In evolution, simple trajectories emerge from the complex

individual physiology and complex environmental selection. In ecology, simple succes-

sions emerge from the complex interactions between species and the complex interactions

between life and environment. Those questions are also wait for in-depth understanding

by us.
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APPENDIX A

The MATLAB codes for numerical schemes

A.1. Force inference code

function Psi = force_inference(Cdat ,Fdat ,Psi ,lmt)

%FORCE_INFERENCE Infer Voronoi parameters by minimizing error

function

% Cdat - Cellular information

% Fdat - Face information

% Psi - Voronoi parameters (power , weight , site)

% lmt - Limitation of minimizing

cellnum = length(Cdat) -1;

check_real = isreal(error_function(Psi ,Fdat));

while ~check_real

Psi = Psi.* random('Normal ' ,1,0.001,cellnum ,5);

check_real = isreal(error_function(Psi ,Fdat));

end

pp = Psi(:,1);

Psi(:,1) = pp/mean(pp);
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%% minimize error function

ef = @(psi)error_function(psi ,Fdat);

options1 = optimoptions (@fmincon ,'Display ','iter','

MaxFunctionEvaluations ',2e5,'ObjectiveLimit ',lmt);

Aeq = [ones(1,cellnum),zeros(1,cellnum *4)];

beq = cellnum;

lb = zeros (5* cellnum ,1);

ub = [5* ones(cellnum ,1) ;100* ones(cellnum ,1) ;300* ones(cellnum

*3,1)];

Psi = fmincon(ef,Psi ,[],[],Aeq ,beq ,lb,ub ,[], options1);

end

%%%%%%%%%%%%%%%%%%%%%%%%%%

function error = error_function(psi ,Fdat)

psi = [0,0,0,0,0;psi];

error = 0;

pxn = 0;
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for ii=1: length(Fdat)

px = Fdat(ii).Pixels;

c1 = Fdat(ii).Cells (1);

c2 = Fdat(ii).Cells (2);

p1 = psi(c1 ,1);

p2 = psi(c2 ,1);

q1 = psi(c1 ,3:5);

q2 = psi(c2 ,3:5);

t1 = psi(c1 ,2);

t2 = psi(c2 ,2);

rho = (p1*q1-p2*q2)/(p1-p2);

r = sqrt(p1*p2*(q1-q2)*(q1 -q2) '/(p1 -p2)^2+(p1*t1^2-p2*t2

^2)/(p1 -p2));

ww = px-ones(size(px ,1) ,1)*rho;

dd = sqrt(sum(ww.^2,2));

error = error+sum((dd-r).^2);

pxn = pxn+size(px ,1);

end

error = error/pxn;

end
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A.2. Synthetic analysis

function ev = sensitivity_analysis(Cdat ,Fdat)

%SENSITIVITY_ANALYSIS compute the eigenvalues of the inverse

matrix

% Cdat - Cellular information

% Fdat - Face information

% ev - Eigenvalues of inverse matrix

%% compute matrix size

nofc=length(Cdat) -1;

nofp =0;

nm=zeros(length(Fdat)+1);

for ii=1: length(Fdat)

nofp=nofp+size(Fdat(ii).PixelN ,1);

nm(ii+1)=nofp;

end

M=zeros(nofp ,nofc *5);

K=zeros(nofp ,3);

%% set up the matrix and inverse
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for ii=1: length(Fdat)

px=Fdat(ii).PixelN;

c1=Fdat(ii).Cells (1);

c2=Fdat(ii).Cells (2);

p1=Cdat(c1).Power;

p2=Cdat(c2).Power;

t1=Cdat(c1).Weight;

t2=Cdat(c2).Weight;

q1=Cdat(c1).Dual;

q2=Cdat(c2).Dual;

rho=(p1*q1-p2*q2)/(p1-p2);

R=sqrt(p1*p2*(q1-q2)*(q1 -q2) '/(p1 -p2)^2+(p1*t1^2-p2*t2^2)

/(p1-p2));

ni=px-rho;

rr=sqrt(sum(ni.^2,2))*ones (1,3);

ni=(px-rho)./rr;

c1=c1 -1;

c2=c2 -1;

if c1 >0

dq=p1*ni/(p1 -p2)+p1*p2*(q1-q2)/(2*R*(p1-p2)^2);

dt=p1*t1/(R*(p1-p2));
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dp=-p2*ni*(q1 '-q2 ')/(p1 -p2)^2-p2*((t1^2-t2^2)*(p1-p2)

+(p1+p2)*(q1 -q2)*(q1'-q2 '))/(2*R*(p1-p2)^3);

M(nm(ii)+1:nm(ii+1) ,5*c1 -4)=dp;

M(nm(ii)+1:nm(ii+1) ,5*c1 -3)=dt;

M(nm(ii)+1:nm(ii+1) ,5*c1 -2:5*c1)=dq;

end

dq=p2*ni/(p2 -p1)+p1*p2*(q2-q1)/(2*R*(p2-p1)^2);

dt=p2*t2/(R*(p2-p1));

dp=-p1*ni*(q2 '-q1 ')/(p2 -p1)^2-p1*((t2^2-t1^2)*(p2-p1)+(p1

+p2)*(q1-q2)*(q1 '-q2 '))/(2*R*(p2-p1)^3);

M(nm(ii)+1:nm(ii+1) ,5*c2 -4)=dp;

M(nm(ii)+1:nm(ii+1) ,5*c2 -3)=dt;

M(nm(ii)+1:nm(ii+1) ,5*c2 -2:5*c2)=dq;

K(nm(ii)+1:nm(ii+1) ,:)=ni;

end

ev = 1./svd(M);

end
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