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ABSTRACT

Solution of Inverse Problem using Learning

Qiqin Dai

In this dissertation, we start with the dictionary learning (DL) based single-frame super-

resolution (SR) problem, where low resolution (LR) input frames are super-resolved to high

resolution (HR) output frames. We propose to extend the previous single-frame SR methods

to multiple-frames, i.e., estimating single HR output frame by multiple LR input frames,

utilizing DL and motion estimation. Specifically, we adopt the use of bilevel dictionary

learning which has been used for single-frame SR. It is extended to multiple frames by using

motion estimation with sub-pixel accuracy. By simultaneously solving for a batch of patches

from multiple frames, the proposed multiple-frame SR algorithms improve over single-frame

SR. We then propose to unfold the iteration process in the LASSO solver to a feed-forward

neural network and utilize KKT condition to refine the solution. The X-Ray fluorescence

(XRF) image SR method is then investigated to address the trade-off between the spatial

resolution of an XRF scan and the Signal-to-Noise Ratio (SNR) of each pixel’s spectra. We

propose to fuse an LR XRF image and a conventional HR RGB image into a product of HR

XRF image. By learning the mapping from RGB signal to XRF signal, the LR XRF image is

super-resolved to have the same spatial resolution as the HR RGB image. Finally, the XRF
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image inpainting problem with adaptive sampling mask is investigated. A Convolutional

Neural Network (CNN) is trained to generate adaptive binary sampling mask according to

the RGB image. Then the XRF scanner scans a subset of the whole pixels according to the

binary sampling mask, to speedup the scanning process. The sub-sampled XRF image is

fused with the RGB image to reconstruct the full-sampled XRF image.
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CHAPTER 1

Introduction

The inverse problem is defined by a mapping between objects of interest, which is called

parameters, and acquired information about these objects, which is called data or measure-

ment. The mapping, or forward problem, is called the measurement operator (MO), denoted

by M . The MO maps the parameter x to the measurement y, by

y = M(x). (1.1)

Solving the inverse problem amounts to finding the parameters x based on the measurements

y such that Equation 1.1 holds. Due to the lack of sufficient information in the measurements,

solutions to inverse problems are usually non-unique and thus difficult to estimate. Priori

knowledge of the parameters is usually needed to tackle the inherent ambiguity of inverse

problems solutions.

In this dissertation, we formulate solutions to multiple-frame video super-resolution (SR),

fast sparse coding inference, X-Ray Fluorescence (XRF) image SR, XRF image inpainting

and adaptive sampling mask design using learning techniques to exploit the priori knowledge,

instead of using human defined priori. For multiple-frame video SR, dictionary learning

technique is applied to learn the non-linear mapping from low-resolution (LR) image patches

to high-resolution (HR) image patches from large set of LR / HR training image patches.

For XRF image SR, because there is not enough training data to find the mapping from

LR XRF images to HR XRF images, instead, we utilize an HR conventional RGB image
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as a SR guidance and learn the non-linear mapping from RGB spectrum to XRF spectrum.

For XRF image inpainting, again there is not enough training data to learn the mapping

from sub-sampled XRF images to full-sampled XRF images, so a conventional RGB image

is utilized as an inpainting guidance and the non-linear mapping from RGB spectrum to

XRF spectrum is learned. For the adaptive sampling mask generation, we propose to train

the mask generation CNN along with the inpainting deep neural network, exploiting the

adaptive sampling mask strategy through a pure data driven process.

1.1. Multiple-Frame Video Super-Resolution

Video super-resolution, namely estimating the high-resolution (HR) frames from low-

resolution (LR) input sequences, has become one of the fundamental problems in image

and video processing and has been extensively studied for decades. With the popularity of

high-definition display devices, such as High-definition television (HDTV), or even Ultra-

high-definition television (UHDTV), on the market, there is an avid demand for transferring

LR videos into HR videos so that they are displayed on high resolution TV screens.

Figure 1.1 shows the degradation model relating the HR sequence to the LR sequence

which is the input to the SR algorithms. The HR frames Ihk are of size LN1 × LN2 and

the degraded LR frames Ĩ lk are of size N1 × N2, where L represents the down-sampling

factor. The original multiple HR frames are related through warping based on the motion

fields. The HR frames are smoothed with a blur kernel, down-sampled and contaminated by

additive Gaussian noise to generate the observed LR frames. The degradation model of the

kth frame is therefore given by

Ĩ lk = DBIhk + εk, (1.2)
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Figure 1.1. Degradation and SR model. The original HR video frames are
related to each other by motion fields. The HR sequence is then degraded to
generate the observed sequence according to Equation (1.2). Our proposed
dictionary based video SR algorithm estimates the HR sequence, as well as
the motion field.

where Ihk and Ĩ lk are the HR and LR frames, respectively, written in lexicographical notation

as vectors, B represents the blur matrix, D is the down-sampling matrix and εk represents

the Gaussian noise vector. Although Equation (1.2) provides the relationship between the

kth HR and LR frames, we can find the relationship between any two frames Ĩ li and Ihk via

the motion model. In that sense, Equation (1.2) can be extended to

Ĩ lk = DBC(di,k)I
h
i + εi,k, (1.3)

where C(di,k) is the warping matrix generated by the motion vectors di,k, mapping frame i

into frame k, and εi,k captures both the mis-registration error and the Gaussian noise. For

i = k, Equation (1.3) turns into Equation (1.2), since C(di,k) becomes the identity operator.

Equation (1.3) provides the additional observations for the LR frame Ĩ lk, for various values

of i 6= k. The objective of the multiple frame SR algorithm is to operate on the observed

multiple LR frames Ĩ lk provided by Equation (1.3) for various values of i and obtain an

estimate of the HR frame Ihk .
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1.2. Learning Fast Approximations of Sparse Coding

Sparse coding (SC) is the problem of representing input signal as a linear combination

of a small set of basis signals [40], where the weights associated with the basis signals are

called sparse coefficients. Proven to be both robust to noise and useful in extracting high

level features, SC has gained popularity over the last decade and benefits a wide range of

signal processing applications, such as classification [114], clustering [24], compression [20],

super-resolution [117] and denoising [41].

We are particularly interested in the `1-based sparse approximation problem, which is

also called the LASSO problem [103]. The inference problem of sparse coding is, for a given

input vector x ∈ Rn, to find the optimal sparse code vector z ∈ Rm that minimizes an

energy function that combines the squared `2 norm of the reconstruction error and an `1

norm sparsity penalty on the code, that is,

z∗ = arg min
z
‖x−Dz‖2

2 + λ ‖z‖1 , (1.4)

where D is n×m dictionary matrix whose columns are the basis vectors and λ is a coefficient

controlling the sparsity penalty.

A major problem with `1-based sparse coding is that the inference algorithm is usually

computational expensive, making it impractical for real-time applications. For example, for

image compression, given an input image, the inference algorithm needs to compute the

sparse coefficients for every patch in the image. Therefore, numerous efforts have been de-

voted to seeking efficient sparse coding solvers [11,31,49,68,69,79,107,115]. However, the

optimization is still carried out iteratively with these algorithms, therefore the computation

is still considerable.
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1.3. XRF Image Super-Resolution

Over the last few years, X-Ray fluorescence (XRF) laboratory-based systems have evolved

to lightweight and portable instruments thanks to technological advancements in both X-

Ray generation and detection. Spatially resolved elemental information can be provided

by scanning the surface of the sample with a focused or collimated X-ray beam of (sub)

millimeter dimensions and analyzing the emitted fluorescence radiation, in a nondestructive

in-situ fashion entitled Macro X-Ray Fluoresence (MA-XRF). The new generations of XRF

spectrometers are used in the Cultural Heritage field to study the technology of manufacture,

provenance, authenticity, etc, of works of art. Because of their fast non-invasive set up, we

are able to study of large, fragile and location inaccessible art objects and archaeological

collections. In particular, XRF has been extensively used to investigate historical paintings,

by capturing the elemental distribution images of their complex layered structure. This

method reveals the painting history from the artist creation to restoration processes [4,7].

As with other imaging techniques, high spatial resolution and high Signal-to-Noise Ratio

(SNR) are desirable for XRF scanning systems. However, the acquisition time is usually

limited resulting in a compromise between dwell time, spatial resolution, and desired image

quality. In the case of scanning large scale mappings, a choice may be made to reduce the

dwell time and increase the step size, resulting in low SNR XRF spectra and low spatial

resolution XRF images.

An example of an XRF scan is shown in Figure 1.4 (a). Channel 636 corresponding to

Cr Ka elemental X-Ray lines was extracted from a scan of Vincent Van Gogh’s “Bedroom”

painted in 1889 (housed at The Art Institute of Chicago, acc # 1926.417). The image is color

coded for better visibility. This is an image out of 4096 channels that were simultaneously
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Figure 1.2. (a) XRF map showing the distribution of Cr Ka on a section of
the ”Bedroom”, by Vincent Van Gogh, The Art Institute of Chicago, and (b)
the automatic registration of 10 maps layered on top of the original resolution
RGB image.

acquired by a Bruker M6 scanning energy dispersive XRF instrument. The image has a low

resolution (LR) of 96× 85 pixels, yet still took 1− 2 hour to acquire it. Given the fact that

the paining has dimensions 73.6 × 92.3 cm, at least 10 such patches are needed to capture

the whole painting. Much higher resolution would be desirable for didactic purposes to show

curators, conservators, and the general public. This makes the acquisition process highly

impractical and therefore impedes the use of XRF scanning instruments as high resolution

widefield imaging devices. In Figure 1.4 (b) we also show an automatic registration of all 10

averaged XRF maps (across all channels) layered on top of the original RGB image.

1.4. XRF Image Inpainting

As illustrated in Section 1.3, XRF imaging techniques are popular these days and as

with other imaging techniques, high spatial resolution and hight quality spectra is desirable

for XRF scanning systems. However, the acquisition time is usually limited resulting in a

compromise between dwell time, spatial resolution, and desired image quality. In the case of
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Figure 1.3. XRF images have high spectral resolution but low spatial resolu-
tion, whereas the opposite is true for conventional RGB images. The LR XRF
image and the HR RGB image are fused to obtain an HR XRF image.

scanning large scale mappings, a choice may be made to reduce the dwell time and increase

the step size, resulting in noisy XRF spectra and low spatial resolution XRF images.

An example of an XRF scan is shown in Figure 1.4 (a). Channel #582−602 corresponding

to Pb Lη XRF emission line was extracted from a scan of Jan Davidsz. de Heem’s “Bloemen

en insecten” painted in 1645 (housed at Koninklijk Museum voor Schone Kunsten (KMKSA)

Antwerp). The image is color coded for better visibility. This XRF image was collected by

a home-built XRF spectrometer (courtesy of Prof. Koen Janssens), with 2048 channels in

spectrum, and spatial resolution 680× 580 pixels. This scan has a relative short dwell time,
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(a) (b)

Figure 1.4. (a) XRF map showing the distribution of Pb Lη XRF emission
line (channel #582 - 602) of the “Bloemen en insecten” (ca 1645), by Jan
Davidsz. de Heem, in the collection of Koninklijk Museum voor Schone Kun-
sten (KMKSA) Antwerp and (b) the HR RGB image.

resulting in low Signal-to-Noise Ratio (SNR), yet it still took 18 hours to acquire it. Many

other XRF scanners with longer dwell time or slower scanning speed will need a longer

acquisition time. Faster scanning speed will be desirable for promoting the popularity of

the XRF scanning technique, since the slow acquisition process impedes the use of XRF

scanning instruments as high resolution widefield imaging devices. The RGB image of the

painting of resolution 680× 580 pixels is shown in Figure 1.4 (b).

Image inpainting [13, 14, 27] is the process of recovering missing pixels in images. The

XRF images are acquired through a raster scan process. We could therefore speed the

scanning process up by skipping pixels and then utilizing an image inpainting technique to

reconstruct the missing pixels. If we are to skip 80% of the pixels during acquisition (a 5x

speedup), we could use a random sampling mask (shown in Figure 1.5 (a)) or we could design

one utilizing the available RGB image (shown in Figure 1.5 (b)). The idea of the adaptive

binary sampling mask is based on the assumption that the XRF image is highly correlated
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(a) (b)

Figure 1.5. (a) Random binary sampling mask that skips 80% pixels and (b)
Adaptive binary sampling mask that skips 80% pixels based on the input RGB
images in Fig 1.4 (b).

with the RGB image. We would like to allocate more pixels to the informative parts of the

image, such as high frequency textures, sharp edges and high contrast details, and spend

fewer pixels for the non-informative parts of the image.

1.5. Outline of the Dissertation

In this dissertation we focus on solving the multiple-frame video SR problem, the fast

sparse coding inference problem, the XRF image SR problem and the XRF Image Inpainting

problem. We will make extensive use of the learning techniques throughout this Dissertation.

The rest of this Dissertation is outlined as follows:

• In Chapter 2, we provide related work on multiple-frame video SR, fast sparse coding

inference, XRF image SR and XRF image inpainting.

• In Chapter 3, we propose two multiple-frame super-resolution (SR) algorithms based

on dictionary learning and motion estimation. First, we adopt the use of video

bilevel dictionary learning which has been used for single-frame SR. It is extended
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Figure 1.6. The proposed pipeline for the XRF image inpainting utilizing adap-
tive sampling mask. The binary adaptive sampling mask is generated based
on the RGB image of the scan target. Then the XRF scanner sampled the
target objected based on the binary sampling mask. Finally, the sub-sampled
XRF image and the RGB image are fused to reconstruct the full-sampled XRF
image.

to multiple frames by using motion estimation with sub-pixel accuracy. We propose

a batch and a temporally recursive multi-frame SR algorithm, which improve over

single frame SR. Finally, we propose a novel dictionary learning algorithm utilizing

consecutive video frames, rather than still images or individual video frames, which

further improves the performance of the video SR algorithms. Extensive experimen-

tal comparisons with state-of-the-art SR algorithms verify the effectiveness of our

proposed multiple-frame video SR approach.
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• In Chapter 4, we propose a KKT condition refined deep `1 encoder framework. We

first adopt the use of neural networks as in previous works of fast approximations

of sparse coding. The support of the sparse coefficients estimated by the neural

networks is then utilized to retrieve the support of the final sparse coefficients.

Finally the KKT condition is applied to obtain an accurate solution to the original

`1-based sparse approximation problem. The additional support retrieval and KKT

condition refinement are implemented in an efficient way. Extensive experimental

comparisons with the previous fast neural networks approach verify the effectiveness

of our proposed KKT condition refined `1 encoder framework.

• In Chapter 5, we propose an XRF image super-resolution method to address this

trade-off, thus obtaining a high spatial resolution XRF scan with high SNR. We fuse

a low resolution XRF image and a conventional RGB high-resolution image into a

product of both high spatial and high spectral resolution XRF image. There is no

guarantee of a one to one mapping between XRF spectrum and RGB color since,

for instance, paintings with hidden layers cannot be detected in visible but can in

X-ray wavelengths. We separate the XRF image into the visible and non-visible

components. The spatial resolution of the visible component is increased utilizing

the high-resolution RGB image while the spatial resolution of the non-visible com-

ponent is increased using a total variation super-resolution method. Finally, the

visible and non-visible components are combined to obtain the final result.

• In Chapter 6, we propose an XRF image inpainting approach to address the issue of

long scanning time, thus speeding up the scanning process while still maintaining the

possibility to reconstruct a high quality XRF image. The RGB image of the scanning

target is utilized to generate the adaptive sampling mask. The XRF scanner is
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then driven according to the adaptive sampling mask to scan a subset of the total

image pixels. Finally we inpaint the scanned XRF image by fusing the RGB image

to reconstruct the full scan XRF image. There is no guarantee of an one to one

mapping between XRF spectrum and RGB color image since, for instance, paintings

with hidden layers cannot be detected in the visible RGB image of the painting but

can in XRF wavelengths. We separate the XRF image into its visible and non-visible

components. The reconstruction of the visible component is achieved utilizing the

RGB image while the reconstruction of the non-visible component is achieved using

a total variation inpainting method. Finally, the visible and non-visible components

are combined to obtain the final result.

• Finally we draw conclusion remarks in Chapter 7.
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CHAPTER 2

Related Work

In this chapter we provide related literature on multiple-frame video SR, fast sparse

coding inference, XRF image SR and XRF image inpainting.

2.1. Multiple-Frame Video Super-Resolution

SR techniques have been extensively studied in the literature. Detailed literature re-

views of this topic can be found in [18, 60, 83, 85]. With one class of approaches multiple

observations are used in increasing the resolution of one image, as described in Equation

(1.3). Such multiple observations can be due to global sub-pixel motion between the camera

and the scene or due to the dynamics of the scene, i.e., the sub-pixel motion of individual

objects in the scene. In the former case either multiple still cameras or one still camera

which changes its position are used. The motion vectors di,k in this case are constant for the

whole frame but they typically represent more complicated motions than simple translation,

such as rotation (e.g., [105]). In the latter case, one video camera is typically used, which

might move as well resulting in global shifts amongst frames, but the additional information

about the frame to be super-resolved is provided by the motion of objects, as is depicted in

the neighboring frames. This is the case of video SR considered in this paper, in which case

the motion vectors di,k in Equation (1.3) depend on the pixel location. In designing video

SR algorithms, the degradation matrix B is either considered known or is estimated from

the data, along with the motion vectors di,k, the original HR frames, and the noise level,
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either simultaneously [12,73,92,93], or sequentially [94,102]. Recently, Hung et al. [53]

proposed a method based on codebooks derived from key-frames and achieved good SR per-

formance on compressed videos. Zhou et al. [126] proposed to retrieve high-frequency details

from complementary multi-frames by non-uniform interpolation, depending on registered LR

frames with sub-pixel accuracy. They further improved the SR performance in [125] when

the number of LR inputs is small by taking advantage of nonlocal self-similarity to fit local

surfaces. Liu et al. [73, 74] proposed to estimate the blur kernel, noise level, motion field

and HR frames jointly by Maximum-a-Posteriori (MAP) inference. Ma et al. [77] presented

an algorithm that extended the same idea to handle motion blur. Liao et al. [71] proposed

to apply a traditional multi-frame SR method [42] to obtain SR drafts with different motion

estimation parameters, and then to combine the SR drafts through a deep convolutional

neural network (CNN).

Another class of SR approaches is represented by single frame SR, where a single obser-

vation is used to increase the resolution of one frame. Due to the limited LR information,

example-based or learning approaches, such as dictionary learning (DL) approaches [97,108,

117–120], showed recently promising single frame SR performance. These methods learn the

non-linear mapping from an LR frame to the corresponding HR frame through an HR/LR

training data set in the training phase and apply the learned non-linear mapping to an LR

observation in the testing phase. DL approaches have also been utilized for deblurring [82]

and denoising of images and image sequences [41,88]. For the SR of a still image using dic-

tionary techniques, typically only one observation of an LR image is utilized. The mapping

from an LR to an HR image, as depicted by Equation (1.2) is learned during training and

is captured by the structures of two coupled, LR and HR, dictionaries. No explicit use of

the degradation matrix B is made during the sparse coding based reconstruction of the HR
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frame. Some methods [117–120] might include a back-projection step, thus using matrix B,

as a final refinement step. However, based on our knowledge, the first work reported in the

literature on the application of DL to video SR is the work in [97]. According to it, block-

based motion estimation is performed among input LR keyframes and DL is only applied

for single-frame SR when the motion compensation error is larger than a threshold. The

approach reported in [97] however does not provide sub-pixel precision in motion estimation

and does not utilize any of the advanced DL techniques. Later the work in [70] utilized the

semi-coupled DL technique [108] to super-resolve each LR frame individually and performed

a weighted fusion of the super-resolved HR frames by nonlocal similarity match [46]. How-

ever, the nonlocal similarity match is also block-based and do not fully exploit the sub-pixel

shift information. Also the initial HR frames estimation by the semi-coupled DL and patch

similarity match are performed sequentially, so the reconstruction error by the semi-coupled

DL SR will not be minimized in the later SR steps.

2.2. Fast Sparse Coding Inference

With the development of deep learning, neural networks have been applied to approx-

imate the solution of sparse coefficients [48, 51, 61, 109]. In [48], the original Iterative

Shrinkage and Thresholding Algorithm (ISTA) [11,31] is unfolded to a feed-forward neural

network, called LISTA (Learned ISTA). In the training phase, the LISTA network parame-

ters are optimized to produce the closest sparse coefficients to the original ISTA algorithm.

In the testing phase, fast inference is obtained by this feed-forward neural network.

However, good reconstruction accuracy is not guaranteed by LISTA [48], because the

sparse coefficients estimated by LISTA are not the optimal solutions and usually do not

satisfy the KKT condition [66] of the original `1-based sparse approximation problem. So
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for applications such as image compression [20], where the reconstruction accuracy is crucial,

its performance will be questionable.

2.3. XRF Image Super-Resolution

While there is a large body of work on SR for either conventional RGB images [9, 34,

100, 117, 118] or hyperspectral images [1, 2, 35, 50, 62, 67, 112], little work has been done

for SR on XRF images. XRF SR poses a particular challenge because the acquired spectrum

signal usually has low SNR. In addition, correlations among spectral channels need to be

preserved for the interpolated pixels. Finally, the large number of channels (4096 channels in

Fig. 1.4) leads to a computation challenge, since super-resolving each channel slice by slice

is computational expensive.

In our previous work on XRF image SR [28], a Dictionary Learning (DL) technique [40]

with spatial smoothness constraint was applied to reduce the number of channels to be

super-resolved by traditional SR methods. The performance was limited since SR based on

the LR XRF image is rather challenging.

The low spatial resolution limitations of hyperspectral images have led researchers in

image processing and remote sensing to attempt to fuse them with conventional high spatial

resolution RGB images. This image fusion [110] style SR can be seen as a generalization of

pan-sharpening [5,47], which enhances an LR color image by fusing it with a single-channel

black-and-white (“panchromatic”) image of higher resolution. Recently, matrix factorization

has played an important role in enhancing the spatial resolution of hyperspectral imaging

systems [1, 35, 62, 67]. In [62], a sparse matrix factorization technique was proposed to

decompose the LR hyperspectral image into a dictionary of basis vector and a set of sparse

coefficients. The HR hyperspectral image was then reconstructed using the learned basis and
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sparse coefficients computed from the HR RGB image. The SR performance is improved

by imposing spatio-spectral sparsity [1], physical constraints [67] and structural prior [35].

Bayesian approaches [50, 112] impose additional priors on the distribution of the image

intensities and apply MAP inference. Non-parametric Bayesian dictionary learning is applied

in [2] to obtain a spectral basis, and then obtain the HR image with Bayesian sparse coding.

In all these hyperspectral image SR methods [1,2,35,50,62,67,112], because the RGB

spectrum is contained within the hyperspectral spectrum, the transformation from the hy-

perspectral signal to the RGB signal is linear and known. However, in XRF imaging, because

the RGB spectrum (400 nm - 700 nm) is outside the XRF spectrum (0.03 nm - 6 nm, i.e., 0.2

KeV - 40 KeV), there is no direct transformation from the XRF signal to the RGB signal.

Also the hidden part of the scanning object will be captured in the XRF image [3], while

absent in the RGB image. According to our knowledge, no work has been done on XRF

image SR, by modeling the input LR image as a combination of the visible and non-visible

components, and increasing the spatial resolution of the visible component and non-visible

component by fusing an HR conventional RGB image with implicit spectral transformation

and using a standard total variation SR method, respectively. The physically grounded un-

mixing constraints in [67] on endmembers and abundances are extended in this paper to

model the implicit transformation between the XRF spectrum and the RGB spectrum, as

well as the visible / non-visible separation.

2.4. XRF Image Inpainting

Irregular sampling techniques have long been studied in the image processing and com-

puter graphics fields to achieve compact representation of images. Such irregular sampling

techniques, such as stochastic sampling [26], may have better anti-aliasing performance
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compared with uniform sampling intervals if frequencies greater than the Nyquist limit are

present. Further performance improvement can be obtained if the sampling distribution

is not only irregular but also adaptive to the signal itself. The limited samples should be

concentrated in those rich in detail parts of the image, so as to simulate human vision [98].

Several works have been reported in the literature on adaptive sampling techniques. An

early significant work in this direction is made by Eldar et al. [43]. A farthest point strategy

is proposed which permits progressive and adaptive sampling of an image. Later Rajesh et

al. [89] proposed a progressive image sampling technique inspired by the lifting scheme of

wavelet generation. A similar method is developed by Demaret et al. [32] by utilizing an

adaptive thinning algorithm. Ramponi et al. [91] developed an irregular sampling method

based on a measure of the local sample skewness. Lin et al. [72] viewed grey scale images

as manifolds with density and sampled them according to the generalized Ricci curvature.

Liu et al. [75] proposed an adaptive progressive image acquisition algorithm based on kernel

construction.

Most of these irregular sampling and adaptive sampling techniques [26,32,43,72,75,89,

91], need their own specific reconstruction algorithm to reconstruct the full sampled signal.

Furthermore, all these sampling techniques are model based approaches, relying on pre-

defined priors and according to our knowledge, no work has been done on utilizing machine

learning techniques to design the adaptive sampling mask.

Inspired by the recent successes of convolutional neural networks (CNNs) [65,101] in high

level computer vision tasks, deep neural networks (DNNs) emerged in addressing low level

computer vision tasks as well [21,34,45,54,55,59,86,96,106,113,121]. For the task of im-

age inpainting, Pathak et al. [86] presented an auto-encoder to perform context-based image

inpainting. The inpainting performance is improved by introducing perceptual loss [121] and
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on-demand learning [45]. Iliadis et al. [54] utilized a deep-fully-connected networks for video

compressive sensing while also learning an optimal binary sampling mask [55]. However, the

learned optimal binary sampling mask is not adaptive to the input video signals. According

to our knowledge, no work has been made on generating the adaptive binary sampling mask

for the image inpainting problem using deep learning.

While there is a large body of work on inpainting conventional RGB images [13, 14,

27, 44, 45, 86, 95, 121, 127], very little work has appeared in the literature on inpainting

XRF images [13], and no work on fusing a conventional RGB image during the inpainting

process. XRF image inpainting poses a particular challenge because the acquired spectrum

signal usually has low SNR. In addition, the correlation among spectral channels needs to

be preserved for the inpainted pixels. Finally, the large number of channels (2048 channels

or 20 element maps in Figure 1.4) leads to a computational challenge, since inpainting each

channel or element map slice by slice is computational expensive. In our previous work

on spatial-spectral representation for XRF image super-resolution [29], the input LR XRF

image is fused with an HR conventional RGB image to obtain an HR XRF output image. In

detail, a linear mixing model [80,87] is applied to model the XRF spectrum of each pixel.

The XRF signal is also modeled as a combination of the visible signal and the non-visible

signal, because the hidden part of the painting is not visible in the conventional RGB image,

while it can be captured in the XRF image [3], in other words, there is no direct one-to-one

mapping between the visible RGB spectrum and the XRF spectrum. The spatial resolution

of the visible component XRF signal is increased by fusing an HR conventional RGB image

while the spatial resolution of the non-visible part is increased by using a standard total

variation regularizer [8, 81]. The proposed XRF image inpainting algorithm by fusing an
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HR conventional RGB image can be regarded as an extension of our previous XRF SR

approach.
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CHAPTER 3

Sparse Representation Based Multiple Frame Video

Super-Resolution

3.1. Introduction

In this chapter, we propose an approach for video SR, according to which multiple LR

observations of an HR video frame are utilized according to Equation (1.3) for both designing

coupled dictionaries connecting the sparse representation of LR and HR image frames, as

well as for reconstructing an HR frame. We borrow two ideas from single frame SR, namely,

bilevel coupled dictionary [117–120] and multiple-dictionaries [37, 108], to be explained

later. We incorporate them into a multiple frame SR framework, according to which the

non-redundant information contained in LR frames which are typically related by sub-pixel

shifts among them is utilized to generate an HR frame. We propose a multiple dictionary

multiple frame video SR algorithm utilizing sub-pixel accurate motion estimation. With

our proposed SR approach, the estimated optical flow is utilized to obtain multiple frame

high accuracy registration and an HR frame is reconstructed from multiple LR frames. The

moving parts in a scene can be super-resolved by the sub-pixel shift information while for

the stationary parts, the SNR improves due to the multiple observation of the same scene.

As far as registration error is concerned, we address it by adapting the weight parameter

that enforces the similarity of multiple LR observations, so that our proposed algorithm has

the ability to move between single frame bilevel coupled dictionary [117,118] SR approach

and multi-frame SR approach, and perform at least as good as any of these two approaches.
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The multiple frame SR performance is further improved by training dictionaries from

consecutive video frames. Most dictionary learning techniques [41,82,88,90,97,108,119,

120,124] use still images or individual video frames to train the dictionaries. However, this

causes an inconsistency in multiple frame SR since we are super-resolving videos while the

dictionaries are trained from still images. The proposed training from videos incorporates

temporal information into the dictionaries, and makes the training and testing phases consis-

tent. Although as a result the training phase becomes more complicated, the testing phase

remains the same.

Because our proposed SR method is a learning method, we do not explicitly model and

estimate the blur kernel (matrix B in Equation (1.3)) in the sparse coding reconstruction

of the HR frame in the SR testing phase. Clearly, in the training phase, the HR and

LR patch pairs carry the blur information which will be incorporated into the resulting

trained HR and LR dictionary pairs. To handle the potential mismatch of the blur kernel

in training and testing phase, an idea similar to the one in [82] can be applied. Multiple

blurred and downsampled versions of the same HR video will be used to train LH/HR

dictionary pairs (assume there are N such pairs). All such dictionary pairs will then be used

to reconstruct N HR videos from one LR observation during testing. A decision criterion

can be adopted to decide which reconstruction is the preferred one. For example, from the N

HR reconstructions N LR observations can be generated using the N different blur kernels.

All these N LR generated observations will be compared against the actual observation and

the one with the smallest error (say the kth one) will determined which HR reconstruction

(the kth one) will be chosen. This way a blur identification is indirectly performed.

Based on the results reported in the literature [18, 85], the quality of the multiple-

frame SR critically depends on the accuracy of the motion estimates. The two important
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characteristics of the motion field are that 1) it should have sub-pixel accuracy and 2) it

should be dense. There is a plethora of techniques in the literature for estimating a dense

motion field [10,52]. Optical flow techniques assume that the optical flow is preserved over

time. This information is utilized to form the optical flow equation connecting spatial and

temporal gradients. More recent optical flow algorithms [39,99] use a variational coarse-to-

fine framework to handle large displacements.

In-depth and comprehensive experiments demonstrate that our proposed SR framework

outperforms the state-of-the-art super resolution frameworks, such as, NE+NNLS [15],

NE+LLE [23], ANR [104], SR-CNN [34], Enhancer [57] and Bayesian [73] on UHD (4K)

sequences.

Our main contributions lie in the following three aspects:

• We extended the bilevel coupled dictionary learning based single frame SR method

[117,118] from a single dictionary to multiple dictionaries (Section 3.2.1).

• We extended the bilevel coupled dictionary learning based single frame SR method

[117,118] from a single frame to multiple frames by developing two approaches: a

batch approach and a recursive approach (Section 3.2.2 3.2.3).

• We proposed and developed an approach for training the dictionaries from consec-

utive video frames instead from individual still images (Section 3.3).

This paper is an extension of our previous work [30]. The extension and additional

contributions lie in the following aspects:

• We proposed a recursive multiple frame video super-resolution algorithm in Section

3.2.3 and the corresponding algorithm for training dictionaries from videos in Section

3.3.2.
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• We utilized an adaptive weight parameter which depends on the mis-registration

error (Equation 3.7).

• We introduced an iteration between motion estimation and HR frame estimation

for both the batch approach and recursive approach.

• We illustrated a detailed algorithm for training dictionaries from videos.

• We introduced multiple SR steps for large upscale factors.

• We included more comprehensive experimental results.

The rest of the chapter is organized as follows. Section 3.2 presents our proposed dictio-

nary based multiple-frame SR framework. Section 3.3 illustrates a novel dictionary training

strategy, that of training from videos. Section 3.4 provides experimental results, and finally

conclusions are drawn in Section 3.5.

3.2. Dictionary Based Multiple-Frame Super-Resolution Approach

Given the LR image sequence {I l1, . . . , I lk, . . . }, the goal of SR is to estimate the HR

sequence {Ih1 , . . . , Ihk , . . . }. Since each frame is primarily correlated with its neighbors and

to also reduce computation, when we are super-resolving the kth frame Ihk , only the adja-

cent (M + N) frames I lk−M , . . . , I
l
k+N are used. Clearly when N = 0, causal processing is

performed.

In this section, we introduce two approaches to find the sparse representation of an LR

patch yk by incorporating motion information from the neighboring frames, namely, the batch

approach and the temporally recursive approach. The core idea of these two approaches orig-

inates from the fact that image registration through motion compensation provides multiple

observations of the same scene, enabling the SR algorithm to take advantage of the details

lost in the kth frame but present in past or future frames. For simplicity the super-resolution
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framework will be derived for gray-scale images; however, it can be easily extended to handle

color image.

3.2.1. Multiple Bilevel Dictionary Learning

The first task we address is the coupled learning of high and low resolution dictionaries

over a large database of training HR images. Each HR image Ihj in the training database is

degraded by blur and noise and down-sampled, according to Equation (1.2), resulting in the

corresponding LR image Ĩ lj. Each LR image Ĩ lj is up-sampled using bicubic interpolation to

become I lj, so that Ihj and I lj have the same size. In the remaining part of the paper, when

dealing with LR frames, we refer to I lj, which is the bicubically interpolated LR frame Ĩ lj.

Ihj and I lj are then divided into patches of size W ×W ; the corresponding ith patches out of

L total patches are lexicographically ordered to form vectors xi and yi, respectively. In the

dictionary learning phase, we aim at finding HR and LR dictionaries Dh and Dl such that

the sparse representation of any HR patch over Dh is identical to that of the corresponding

LR patch over Dl. In order to do so, Yang et al. [117,118] formulated the following bilevel

optimization problem

min
Dh,Dl

L∑
i=1

∥∥xi −Dhzi
∥∥2

2

s.t. zi = arg min
αi

∥∥Fyi − FDlαi
∥∥2

2
+ λ

∥∥αi∥∥
1∥∥Dh(:, k)

∥∥
2
≤ 1,

∥∥Dl(:, k)
∥∥

2
≤ 1, ∀k,

(3.1)

where αi contains the sparse representation of the ith HR/LR patch, ‖.‖2 and ‖.‖1 represent

the l2 and the l1 vector norms, respectively, λ is the regularization parameter which controls

the sparsity of the sparse coefficient ai, F is a linear operator which extracts features of the
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LR patches, and
∥∥Dh(:, k)

∥∥ and
∥∥Dl(:, k)

∥∥ indicate the kth column of matrices Dh and Dl,

respectively.

In the testing phase, given an observed LR patch y, we first solve the following LASSO

problem

z = arg min
α

∥∥Fy − FDlα
∥∥2

2
+ λ ‖α‖1 , (3.2)

and then the sparse coefficient z is applied to the HR dictionary Dh to obtain the HR patch

x corresponding to y, that is,

x = Dhz. (3.3)

With the bilevel dictionary learning technique, in the training phase, when updating the

sparse coefficient zi in the so referred to as the lower level, the optimization is consistent with

the optimization in the testing phase (Equation (3.2)), thus guaranteeing good reconstruction

accuracy. Improved SR results have been reported with this bilevel formulation in [117,118]

compared to the previous formulation in [119,120].

Because of the diverse structures and textures in images of different styles, using a general

coupled dictionary is often not good enough to super-resolve all variations in image patches.

Considering the fact that image patches, according to their appearance, can be classified

into different categories (such as textures, flat regions, edges, etc.), we train a coupled

dictionary for each such category. The heuristic clustering strategy in [108] is integrated in

our framework. More specifically, K-Means clustering is performed on sampled LR training

patches y after applying the feature filter F . Let yic be the ith LR training patch belonging

to cluster c, which has in total Lc patches, and xic its corresponding HR training patch. The

coupled dictionary (Dl
c D

h
c ) is then trained on {xic, yic}

Lc

i=1 based on Equation (3.1).
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After learning the C coupled dictionaries {(Dl
1 D

h
1 ), . . . , (Dl

C Dh
C)}, during the testing

phase, for a sample LR patch y, the most appropriate dictionary c∗ is determined via

c∗ = arg min
c=1...C

‖Oc − Fy‖2
2 , (3.4)

where Oc is the centroid of the columns of the cth LR dictionary. Here, the Euclidean distance

between the centroid and the LR patch is used as the similarity measure. The best dictionary

pair (Dl
c∗ D

h
c∗) is then used to find the HR version of y (denoted by x) by solving Equation

(3.2).

3.2.2. A Batch Multiple Frame Video Super-Resolution Algorithm

A dictionary based batch multiple-frame video SR algorithm is shown in Fig. 3.1 (when

M = N = 1). The three consecutive LR frames are shown in pink while the HR frame

corresponding to the middle LR frame is depicted in green. We want to fill in the patch xk

which is the HR version of the patch yk in the kth frame, by combining information from

patch yk, the motion compensated patches yMC
k−M

, . . . , yMC
k−1, y

MC
k+1, . . . , y

MC
k+N

and the pre-trained

multiple coupled dictionaries (Dl
c D

h
c ).

With this approach, we alternate optimizing for the motion field and the HR frames Ihk .

In the first iteration, the motion field is estimated based on the LR input frames
{
I lk+j

}j=N

j=−M
.

The optical flow method in [39] is applied to obtain the motion field with sub-pixel accuracy.

Then the motion compensated versions of yk are computed according to the motion field in

the past and future frames, denoted by
{
yMC
k+j

}j=N,j 6=0

j=−M
. To super-resolve yk in the kth frame,

the most appropriate LR dictionary indexed by c∗, out of the C possible choices, is found

via Equation (3.4). Then the best dictionary pair (Dl
c∗ D

h
c∗) is picked to find the HR version
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Figure 3.1. Batch approach (the figure is depicted for the case M = N = 1).

of yk according to

min
αk,α

MC
k+j ,

j=−M,...,N,j 6=0

∥∥Fyk − FDl
c∗αk

∥∥2

2
+

N∑
j=−M,j 6=0

∥∥FyMC

k+j − FDl
c∗α

MC

k+j

∥∥2

2

+λ(‖αk‖1 +
N∑

j=−M,j 6=0

∥∥αMC

k+j

∥∥
1
) +

N∑
j=−M,j 6=0

γj
∥∥Dh

c∗αk −Dh
c∗α

MC

k+j

∥∥2

2

(3.5)

xk = Dh
c∗αk, (3.6)
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where αMC
k+j is the sparse representation of yMC

k+j. The first two terms in Equation (3.5) ensure

the fidelity to the LR observations (similar to Equation (3.2)). The middle two terms are l1

regularizers promoting the sparse representation of the LR patches by the LR dictionaries

and the last term enforces the similarity of the reconstructed HR patches from past and

future frames to the current frame. Only αk is used in Equation (3.6) to reconstruct the HR

patch in the current frame. The regularization parameter λ is chosen experimentally, while

the choice of the γj’s is described below.

After the reconstruction of the HR frames
{
Ihk+j

}j=N

j=−M
in the first iteration, we update

the motion field based on these HR frames by applying the optical flow algorithm in [39],

since it typically results in a higher accuracy motion field than the one resulting by using

the LR frames
{
I lk+j

}j=N

j=−M
. We can alternate updating the motion field and the HR frames{

Ihk+j

}j=N

j=−M
until convergence.

An important point to be taken into account is that the desired accuracy on motion

estimation will not be reached if images have a lot of aliasing. Notice that the mis-

registration error between yk and yMC
k+j, i.e., e(k, k + j) =

∥∥yk − yMC
k+j

∥∥
2
, is proportional to∥∥Dh

c∗αk −Dh
c∗α

MC
k+j

∥∥
2
. Therefore, γj in Equation (3.5) should be small when e(k, k+ j) is rel-

atively large, and vice versa, in other words they are inversely proportional. The exponential

function of the mis-registration is applied here to formalize this relationship, as in [84],

γj = β1 · exp(−β2 · e(k, k + j)2), (3.7)



37

where β1 and β2 are adjusted experimentally. If the registration error is large, γj will be-

come small and the proposed method in Equation (3.5) degenerates to a single frame super-

resolution method, since we weakly enforce the similarity of the reconstructed HR patches

in the temporal domain.

3.2.3. A Recursive Multiple Frame Video Super-Resolution Algorithm

In this section, we propose a novel temporally recursive algorithm for dictionary-based

multiple-frame video SR. By using information from already super-resolved frames in the

past, the recursive method provides efficient computation, reduced storage, high quality

super-resolution results and no delay in processing.

As depicted in Figure (3.2), with the recursive approach, unlike the batch approach, only

past frames are used in order to super-resolve yk. This way the algorithm is temporally causal

therefore there is no delay by waiting for future LR frames prior to super-resolving the current

one. Because neighboring frames exhibit redundant information, using HR information from

previously super-resolved frames can improve the quality of the current SR frame.

Given an LR patch yk in the kth frame, the most suitable LR dictionary indexed by c∗ is

first found via Equation (3.4). Like the iteration estimation process of the HR frames and

motion field in the batch approach (Section 3.2.2), in the first iteration, the motion field is

estimated by the optical flow method in [39] with sub-pixel accuracy based on the LR frames{
I lk−j

}j=N

j=0
. Motion compensated versions of yk

({
yMC
k−j
}j=N

j=1

)
are then found according to the

motion field. Subsequently, their corresponding HR patches
({
xMC
k−j
}j=N

j=1

)
are determined
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Figure 3.2. The recursive approach, (the figure is depicted for the case N = 2).

by the motion field as well and substituted into the following temporally recursive model

min
αk

∥∥Fyk − FDl
c∗αk

∥∥2

2
+ λ ‖αk‖1 +

N∑
j=1

γj
∥∥Dh

c∗αk − xMC

k−j
∥∥2

2
(3.8)

The first term in the above equation ensures the fidelity to the data, i.e., the current LR

observations, while the second term promotes the sparsity of the solution αk. The last term

enforces the similarity between the reconstructed HR patches of the current frame (Dh
c∗αk)

and the previous reconstructed HR patches
({
xMC
k−j
}j=N

j=1

)
. Also γj is selected adaptively

according to Equation (3.7). Similarly to the batch approach, the corresponding HR patch
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xk is obtained according to Equation (3.6). The reconstruction error will not propagate to

future frames due to this adaptive weight. Assume that frame Ihk has large reconstruction

error in a certain region. Its motion compensated patches to frame (k + 1) will have large

registration error, in which case γj will be small and Equation (3.8) will degenerate to

a single frame super-resolution method. The reconstructed frame Ihk+1 will have smaller

reconstruction error and will provide helpful HR information to reconstruct frame (k + 2),

and so on.

Similarly to the batch approach, after the reconstruction of the HR frame Ihk in the first

iteration, a more accurate motion field can be estimated based on the HR frames
{
Ihk−j

}j=N

j=0

by applying the optical flow algorithm in [39]. The motion field and the HR frames
{
Ihk−j

}j=N

j=0

are updated in an alternate fashion until convergence.

Unlike the batch approach, with the use of motion compensated HR patches
({
xMC
k−j
}j=N

j=1

)
from the super-resolved previous HR frames, only the coefficients αk of the patches in the

current frame are estimated, which significantly reduces both storage and computation.

3.3. Training Dictionaries from Videos

Typically, for the dictionary learning process, all training patches are sampled from still

images or individual video frames. This causes some inconsistency in training and testing,

since clearly we are trying to super-resolve videos while the dictionaries are trained from still

images. Also the optimizations for training (Equation (3.1)) and testing (Equation (3.5) or

Equation (3.8)) are not consistent.

We therefore propose two new dictionary training algorithms based on consecutive video

frames and motion estimation for both the batch and recursive approaches. Both algorithms
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are applied to each cluster (Section 3.2.1) separately, so in the following equation we omit

the dependency on a particular cluster for simplifying the notation.

3.3.1. Video Training for the Batch Approach

As shown in Figure (3.3), during training, a number of consecutive video frames from the

training videos are used. In the kth training video sequence of total Ls video sequences, the

original HR frames,
{
Ihk+j

}j=N

j=−M
, are degraded to obtain the LR frames

{
I lk+j

}j=N

j=−M
. Motion

estimation is then performed utilizing the (M + N + 1) frames to find the corresponding

patches
{
yMC
k+j

}j=N,j 6=0

j=−M

({
xMC
k+j

}j=N,j 6=0

j=−M

)
of yk (xk) in the past and future frames. Let Lp be

the number of sampled patches in each scene. The coupled dictionary (Dl Dh) for the batch

multiple-frame video SR approach is then trained on

{{
xik, y

i
k,
{
yi MC
k+j

}j=N,j 6=0

j=−M

}i=Lp

i=1

}k=Ls

k=1

according to the bilevel dictionary learning in Equation (3.9) above.
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Figure 3.3. Batch approach: training from consecutive frames when M = N = 1.
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min
Dh,Dl

Ls∑
k=1

Lp∑
i=1

∥∥xik −Dhzik
∥∥2

2

s.t. zik, z
i MC

k+j
j=−M,...,N,j 6=0

= arg min
αi
k,α

i MC
k+j ,

j=−M,...,N,j 6=0

∥∥Fyik − FDlαik
∥∥2

2
+

N∑
j=−M,j 6=0

∥∥Fyi MC

k+j − FDlαi MC

k+j

∥∥2

2

+λ(‖αik‖1 +
N∑

j=−M,j 6=0

∥∥αi MC

k+j

∥∥
1
) +

N∑
j=−M,j 6=0

γj
∥∥Dhαik −Dhαi MC

k+j

∥∥2

2

∥∥Dh(:, k)
∥∥

2
≤ 1,

∥∥Dl(:, k)
∥∥

2
≤ 1, ∀k

(3.9)

The objective function in Equation (3.9) is highly nonlinear and nonconvex. Similarly

to [117,118], we alternate optimizations over Dh, Dl and
(
zik
{
zi MC
k+j

}j=N,j 6=0

j=−M

)
while keep-

ing the remaining of the terms fixed. When Dh and Dl are fixed, the optimization over(
zik
{
zi MC
k+j

}j=N,j 6=0

j=−M

)
becomes a standard LASSO problem as reformulated in Equation (3.10).

When
(
zik
{
zi MC
k+j

}j=N,j 6=0

j=−M

)
and Dh are fixed, the optimization over Dl is reduced to

min
Dl

Ls∑
k=1

Lp∑
i=1

(∥∥Fyik − FDlzik
∥∥2

2

+
N∑

j=−M,j 6=0

∥∥yi MC

k+j − FDlzi MC

k+j

∥∥2

2

)
s.t.

∥∥Dl(:, k)
∥∥

2
≤ 1, ∀k,

(3.13)

min
zi MC
k−M

,··· ,zi
k
,··· ,zi MC

k+N

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



FDl

. . .

FDl

. . .

FDl

−γ−MD
h γ−MD

h

. . .
...

. . .

γND
h −γND

h





zi MC
k−M

...
zik
...

zi MC
k+N


−



Fyi MC
k−M

...
Fyik

...
Fyi MC

k+N

0
...
0



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+λ

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



zi MC
k−M

...
zik
...

zi MC
k+N



∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
1

(3.10)
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which is a quadratically constrained quadratic program (QCQP) [19] that can be efficiently

optimized using conjugate gradient descent [68]. The l2 norm constraint can be satisfied by

simply projecting each column onto the unit ball at each iteration according to Equation

(3.14), that is,

Dl(:, k) =
Dl(:, k)

max (1, ‖Dl(:, k)‖2)
. (3.14)

Finally, when we fix
(
zik
{
zi MC
k+j

}j=N,j 6=0

j=−M

)
and Dl, by collecting terms containing Dh in

both upper and lower levels, the optimization over Dh becomes

min
Dh

Ls∑
k=1

Lp∑
i=1

(∥∥xik −Dhzik
∥∥2

2
+

N∑
j=−M,j 6=0

γj
∥∥Dh(zik − zi MC

k+j )
∥∥2

2

)
s.t.

∥∥Dh(:, k)
∥∥

2
≤ 1, ∀k,

(3.15)

which is also a QCQP [19] and can be optimized by conjugate gradient descent [68]. The

projection to the unit ball becomes

Dh(:, k) =
Dh(:, k)

max (1, ‖Dh(:, k)‖2)
. (3.16)

Algorithm 1 summarizes the complete procedure of our coupled dictionary learning al-

gorithm for sequential video training.

Notice that the lower level optimization of Equation (3.9) in the training phase is consis-

tent with the optimization in the testing phase of multiple-frame sequential SR in Equation

(3.5). Therefore the training and testing phases are consistent and the accuracy in sequen-

tially reconstructing one frame from multiple frames is guaranteed.
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Algorithm 1. Coupled dictionary learning: training from video for batch approach

input: training patch sets{{
xik, y

i
k,
{
yi MC
k+j

}j=N,j 6=0

j=−M

}i=Lp

i=1

}k=Ls

k=1

1: Initialization: initialize Dl(0) and Dh(0) by Equation (3.1) based on
{
{xik, yik}

i=Lp

i=1

}k=Ls

k=1
,

n = 0
2: repeat

3: Update
(
zik,
{
zi MC
k+j

}j=N,j 6=0

j=−M

)
according to Equation (3.10);

4: Update Dl(n+1) from Dl(n) according to Equation (3.13);
5: Project the columns of Dl(n+1) onto the unit ball according to Equation (3.14);
6: Update Dh(n+1) from Dh(n) according to Equation (3.15);
7: Project the columns of Dh(n+1) onto the unit ball according to Equation (3.16);
8: n=n+1;
9: until convergence
output: coupled dictionaries Dl(n) and Dh(n).

To train multiple dictionaries, Algorithm 1 is applied to each cluster separately. Feature

filter F is applied on the LR patch yik to cluster each training patch set
{
xik, y

i
k,
{
yi MC
k+j

}j=N,j 6=0

j=−M

}
.

3.3.2. Video Training for the Recursive Approach

Similarly to Section 3.3.1, a number of consecutive video frames are used in the training

phase, as depicted in Figure (3.4). The original HR frames
{
Ihk−j

}j=N

j=0
, are degraded to obtain

the LR frames
{
I lk−j

}j=N

j=0
. The backwards corresponding patches

{
yi MC
k−j

}j=N

j=1

({
xi MC
k−j

}j=N

j=1

)
to yik (xik) are obtained by motion estimation, performed on the LR frames. Let yik be the

ith LR training patch, xik the corresponding HR training patch to (yik) and xi MC
k−j the motion

compensated patch of xik in the (k − j)th HR frame. We then train the coupled dictionary

(Dl Dh) for the recursive multiple-frame approach based on

{{
yik,
{
xi MC
k−j

}j=N

j=1
, xik

}i=Lp

i=1

}k=Ls

k=1

by the following bilevel optimization
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min
Dh,Dl

Ls∑
k=1

Lp∑
i=1

∥∥xik −Dhzik
∥∥2

2

s.t. zik = arg min
αi
k

∥∥Fyik − FDlzik
∥∥2

2
+ λ

∥∥zik∥∥1

+
N∑
j=1

γj
∥∥xi MC

k−i −Dhzik
∥∥2

2∥∥Dh(:, k)
∥∥

2
≤ 1,

∥∥Dl(:, k)
∥∥

2
≤ 1, ∀k.

(3.17)

The optimization strategy from Section 3.3.1 can be applied here by alternating opti-

mization over Dl, zik, and Dl. When Dh and Dl are fixed, optimizing over zik is a standard

LASSO problem

ykyk
MC
−1

Ik
lIk

l
−1

xk

Ik
h

yk
MC
−2

Ik
l
−2

Ik
h
−1Ik

h
−2

xk
MC
−1

xk
MC
−2

Figure 3.4. Recursive approach: training from consecutive frames when N = 2.
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min
zik

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



Fyik

γ1x
i MC
k−1

...

γNx
i MC
k−N


−



FDl

γ1D
h

...

γND
h


zik

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥

2

2

+ λ
∥∥zik∥∥1

. (3.18)

In the next step, by fixing Dh and zik, the optimization over Dl is reduced to

min
Dl

Ls∑
k=1

Lp∑
i=1

∥∥Fyik − FDlzik
∥∥2

2

s.t.
∥∥Dl(:, k)

∥∥
2
≤ 1, ∀k,

(3.19)

which can be carried out by conjugate gradient descent [68] followed by projection onto the

unit ball (Equation (3.14)).

Finally, the optimization over Dh is carried out by fixing Dl and zik, and solving the

following QCQP problem

min
Dh

Ls∑
k=1

Lp∑
i=1

(∥∥xik −Dhzik
∥∥2

2
+

N∑
j=1

γj
∥∥xi MC

k−j −Dhzik
∥∥2

2

)
s.t.

∥∥Dh(:, k)
∥∥

2
≤ 1, ∀k,

(3.20)

and then projecting onto the unit ball (Equation (3.14)).

The iterative procedure of the coupled dictionary learning algorithm for recursive video

training is summarized in Algorithm 2.

Algorithm 2 can be applied on each cluster separately to train multiple dictionaries. Fea-

ture filter F on the LR patch yik is utilized to cluster each training patch set
{
yik,{xi MC

k−j }
j=N

j=1
,xik

}
.
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Algorithm 2. Coupled dictionary learning: train from video for recursive approach

input: training patch sets{{
yik,
{
xi MC
k−j

}j=N

j=1
, xik

}i=Lp

i=1

}k=Ls

k=1

1: Initialization: initialize Dl(0) and Dh(0) by Equation (3.1) based on
{
{yik, xik}

i=Lp

i=1

}k=Ls

k=1
,

n = 0
2: repeat
3: Update zik according to Equation (3.18);
4: Update Dl(n+1) from Dl(n) according to Equation (3.19);
5: Project the columns of Dl(n+1) onto the unit ball according to Equation (3.14);
6: Update Dh(n+1) from Dh(n) according to Equation (3.20);
7: Project the columns of Dh(n+1) onto the unit ball according to Equation (3.16);
8: n=n+1;
9: until convergence
output: coupled dictionaries Dl(n) and Dh(n).

3.4. Experimental Results

Our two proposed algorithms extend the bilevel dictionary learning [117, 118] in two

aspects: from single dictionary to multiple dictionaries and from single frame to multiple

frames. We first show that each extension is beneficial by comparing the SR performances of

single dictionary single frame SR (Bilevel), multiple dictionaries single frame SR (MDSF),

single dictionary multiple frames SR (SDMF-B for the batch approach, SDMF-R for the re-

cursive approach), multiple dictionary multiple frames SR (MDMF-B for the batch approach,

MDMF-R for the recursive approach) and MDMF-B/MDMF-R with the proposed video

training (MDMF-B-VT/MDMF-R-VT). We also compare the performance of the proposed

algorithm with state-of-the-art video SR algorithms, such as Enhancer [57], Bayesian [73],

Bayesian-MB [77] and DraftCNN [71].
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3.4.1. Implementation Details

We performed an extensive set of experiments utilizing frames of a 4K video database [56].

There is a high demand of upscaling videos of low resolutions to 4K resolution (2160×3840)

these days due the proliferation of 4K monitors. Upscaling of 1080P (1080× 1920) or 540P

(540× 960) resolution to 4K videos is a representative example used in this paper, resulting

in an upscale factor of 2 and 4, respectively. In detail, for upscale factor 2, there are

in total 57 scenes in the 4K video database [56]. LR (1080 × 1920) frames result from the

degradation of the original HR (2160×3840) frames by the Matlab function “imresize”, which

is experimentally found to represent a Gaussian blur kernel with variance approximately

equal to 0.4, thus specifying the B matrix in Equation (1.2). 50 scenes are used for training

and 7 for testing. In the training phase of these experiments, 800,000 patch sets are sampled

from the center frame and the motion compensated neighboring frames for training the

dictionary from videos, while the same 800,000 patches in center frames are used for training

the dictionary from images. The patch size is 5 × 5 and no feature filter F is applied to

the LR patches. The reason for not doing so is that we verified experimentally that by

using for example four high-pass filters, as was done in [117, 118], does not provide any

sizeable advantage. In addition, four high-pass filter will increase the dimension of the LR

dictionary atoms by a factor of four, thus increasing considerably the required computation.

λ is chosen to be 0.02 by a parameter traversing experiment, as shown in Figure (3.5). β1

and β2 are chosen to be equal to 0.2 and 1
3×max(e(k,k+j))

according to the convexity criteria

in [84], respectively. Every dictionary for the SDSF, SDMF-B, and SDMF-R approaches

has 512 atoms and the dictionary for the MDSF, MDMF-B and MDMF-R approaches has

8 subdictionaries with 512 atoms each. For the multiple-dictionary methods in the testing
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phase, we solve the LASSO problem with only one sub-dictionary and the computation for

assigning patches to each cluster (Equation (3.4)) is negligible, therefore the comparison is

fair.

10-4 10-3 10-2 10-1 100

λ

34

35

36

37

38

39

40

41
PS

N
R

Figure 3.5. λ is traversed to find its optimal value. For each tested λ, we
perform the multiple frame SR according to Equation (3.5) and compute its
corresponding PSNR value.

In the testing phase of upscale factor 2, 6 consecutive video frames are super-resolved by

each method. 5× 5 patches are extracted with overlap of 4 pixels between adjacent patches.

The multiple estimates of the same pixel from different overlapping patches are averaged to

obtain the final result. For those multiple-frame batch SR methods, the current LR frame,

together with one LR backward and one LR forward frames (i.e., M = N = 1), are utilized

to estimate the current frame. For those multiple-frame recursive SR methods, the current

LR frame, together with two LR/HR super-resolved backward frames (i.e., N = 2) are used

to estimate the current frame. We tested a number of optical flow estimation algorithm [10].

Based on their comparison we are using the method in [39] in all reported experiments.

For an upscale scale factor of 4, similarly to [117], we found experimentally that utilizing

the trained coupled dictionaries for an upscale factor of 2 and upscaling the frames twice
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with an upscale factor of 2 in each step provides better SR results than training and testing

directly with an upscale factor of 4.

For color video frames, we apply our video SR algorithm to the luminance channel only,

since humans are more sensitive to illumination changes. The color layers (Cb, Cr) are

upscaled using bicubic interpolation. The results of the various methods are evaluated in

terms of PSNR (peak signal-to-noise ratio) and SSIM [111] on the luminance channel.

3.4.2. Effect of the Proposed Extensions

Our two proposed methods are based on the bilevel dictionary learning [117,118], which is

a single dictionary single frame SR method. Since our methods extend it to use multiple

dictionaries and multiple frames, we perform a controlled experiment for each extension here

to show that the proposed extensions are effective. All multiple-frame SR methods utilize

one iteration in updating the motion field and HR frames, since the effect of iteratively

updating motion fields and HR frames will be discussed in Section 3.4.3.

Bicubic Bilevel SDMF-B SDMF-R MDSF MDMF-B MDMF-R MDMF-B-VT MDMF-R-VT
Scene 2 45.27 46.12 46.81 46.41 46.79 47.66 46.86 48.14 47.41
Scene 8 38.18 39.94 40.08 40.32 40.34 40.59 40.60 40.98 41.05
Scene 18 41.43 43.04 43.41 43.69 43.37 43.92 44.19 44.32 44.46
Scene 25 44.40 46.69 47.52 47.68 47.37 48.45 47.83 49.19 48.59
Scene 33 40.22 42.95 43.08 43.55 43.27 43.68 44.05 44.49 44.48
Scene 45 42.43 43.72 44.07 44.18 44.05 44.49 44.28 44.60 44.62
Scene 48 33.90 36.10 36.20 35.66 36.55 36.67 36.07 36.91 36.64

Table 3.1. PSNR values (in dB) of the SR frame for various methods and test
scenes (best results are shown in bold)

Table 3.1 shows the peak signal-to-noise ratio (PSNR) of the SR frames in dB (the dB

values are averaged over 6 testing frames) for various algorithms and test sequences. The

best results are shown in bold. From these experiments it is concluded that DL based

multiple-frame SR methods (SDMF-B, SDMF-R, MDMF-B, MDMF-R) outperform single
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LR/HR dictionary pair trained by Equation (3.1)

(a) Dl (b) Dh

LR/HR dictionary pair trained by Algorithm 1

(c) Dl (d) Dh

LR/HR dictionary pair trained by Algorithm 2

(e) Dl (f) Dh

Figure 3.6. Atoms of LR/HR dictionary pairs trained by three different dic-
tionary learning algorithms. Each 5 × 5 atom is upscaled by a factor of 6 by
bicubic interpolation for better visualization.

frame SR (Bilevel, MDSF). We can also see that multiple-dictionary SR methods perform

better than single-dictionary SR methods, by comparing results of SDMF-B with MDMF-B
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Bicubic MDSF
MDMF-B-VT MDMF-R-VT

Iter=1 Iter=2 Convergence Iter=1 Iter=2 Convergence
Scene 2 45.27 46.79 48.14 48.24 48.26 47.41 47.98 48.11
Scene 8 38.18 40.34 40.98 41.43 41.62 41.05 41.53 41.72
Scene 18 41.43 43.37 44.32 44.66 44.73 44.46 44.85 44.94
Scene 25 44.40 47.37 49.19 49.56 49.57 48.59 49.57 49.68
Scene 33 40.22 43.27 44.49 45.19 45.33 44.48 45.30 45.44
Scene 45 42.43 44.05 44.60 44.73 44.76 44.62 44.86 44.91
Scene 48 33.90 36.55 36.91 37.43 37.56 36.64 37.16 37.31

Table 3.2. PSNR values (in dB) of the SR frame for various methods, iterations
and scenes.

and SDMF-R with MDMF-R. Finally, the proposed training dictionaries from video algo-

rithms (Algorithm 1 and Algorithm 2), MDMF-B-VT and MDMF-R-VT, further improve

the SR results over MDMF-B and MDMF-R.

We show in Figure (3.6) LR and HR dictionary atoms resulting from the various dic-

tionary training approaches we have considered. 18 atoms from the Dl dictionary and the

corresponding atoms in the Dh dictionary trained according to Equation (3.1) are shown

respectively in Figure (3.6a) and (3.6b). The same 18 LR/HR atom pairs resulting from

Algorithm 1 and Algorithm 2 are shown respectively in Figures (3.6c), ( 3.6d) and (3.6e),

(3.6f). Notice that dictionaries Dl and Dh trained from Equation (3.1) is the initializations

of Dl and Dh for Algorithms 1 and 2. As shown in Figure (3.6), sharper HR atoms result

in general from our proposed training Algorithms 1 and 2 (compare Figure (3.6b), (3.6d)

and (3.6f)).

In conclusion, our proposed multiple frames SR, utilizing multiple dictionaries and train-

ing dictionaries from videos are effective individually and their benefits in SR are cummula-

tive, as the proposed MDMF-B-VT and MDMF-R-VT algorithms provide best SR results.
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3.4.3. Effect of Iteration

The proposed batch approach (Section 3.2.2) and recursive approach (Section 3.3.2) by

alternating optimizations update the motion fields and reconstructed HR frames Ih. To

demonstrate the convergence of the iteration process, we calculate the normalized error∥∥Ihp+1 − Ihp
∥∥2

F
/
∥∥Ihp+1

∥∥2

F
(Ihp is the reconstructed HR frame at the pth iteration) at each itera-

tion. This normalized error is shown in Figure (3.7) (left) for the batch approach (MDMF-

B-VT) for two of the experiments, and the corresponding PSNR is in Figure (3.7) (right).

As shown in Figure (3.7), the iteration process converges fast. Similar results are also ob-

served with the recursive approach. In all experiments, we terminate the iteration when the

normalized error is below the threshold of 5× 10−7.

We visualize the reconstruction error maps of a cropped region of the 6th frame in scene 48

in Figure (3.8), which has a global panning motion of the background with the local motion

Iteration
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PS
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(d

B)

35.0

37.5

40.0

42.5

45.0

47.5

50.0

Scene 25
Scene 48

Iteration
1 2 3 4 5 6 7 8 9 10

N
or

m
al

iz
ed

 E
rr

or

10 -8

10 -6

10 -4

10 -2

10 0

Scene 25
Scene 48

Figure 3.7. The iteration process of the batch approach. The normalized error∥∥Ihp+1 − Ihp
∥∥2

F
/
∥∥Ihp+1

∥∥2

F
of Scenes 25 and Scene 48 as a function of iteration is

shown in the left image and the corresponding PSNR values are shown in the
right image.



53

of the foreground. From the heat maps, the reconstruction error in the background texture

region decreases as the iteration progresses, also the error in the handle in the foreground

almost disappears at the final result.

More interestingly, as shown in Table 3.2, we observe that although the batch SR algo-

rithm outperforms the recursive SR algorithm at iteration 1, their performance is comparable

in the final iteration, illustrating that the batch approach is more robust to errors in motion

estimation and that both approaches have similar performance when motion estimation is

precise.

The groundtruth HR image

Reconstruction error maps of MDMF-B-VT

Iter=1 Iter=2 Convergence

Reconstruction error maps of MDMF-R-VT

Iter=1 Iter=2 Convergence

Figure 3.8. Reconstruction error maps of a cropped region in scene 48, with
different iteration number.
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Video Bicubic Bilevel [117,118] NE+NNLS [15] NE+LLE [23] ANR [104]

Scene 2
44.87 46.88 46.85 46.53 46.91
0.9830 0.9879 0.9851 0.9834 0.9857

Scene 8
38.05 39.95 40.04 41.08 40.27
0.9738 0.9842 0.9824 0.9817 0.9832

Scene 18
40.81 43.31 43.18 43.28 43.45
0.9738 0.9849 0.9820 0.9816 0.9833

Scene 25
44.31 47.44 46.69 47.38 47.85
0.9917 0.9961 0.9938 0.9936 0.9952

Scene 33
39.42 42.81 42.70 43.37 43.59
0.9786 0.9904 0.9879 0.9889 0.9902

Scene 45
42.23 44.11 43.62 43.89 44.11
0.9718 0.9810 0.9772 0.9776 0.9791

Scene 48
33.81 36.05 35.78 36.24 36.39
0.9668 0.9808 0.9774 0.9785 0.9799

Average
40.50 42.94 42.69 43.11 43.22
0.9771 0.9865 0.9837 0.9836 0.9851

Video SR-CNN [34] Enhancer [57] Bayesian [73] MDMF-B-VT MDMF-R-VT

Scene 2
47.41 46.10 46.23 48.26 48.11
0.9859 0.9854 0.9874 0.9882 0.9882

Scene 8
41.08 39.42 39.73 41.62 41.65
0.9852 0.9823 0.9828 0.9884 0.9882

Scene 18
43.94 42.93 43.16 44.74 45.04
0.9844 0.9844 0.9842 0.9877 0.9884

Scene 25
48.29 46.17 46.36 49.57 49.07
0.9955 0.9938 0.9954 0.9970 0.9967

Scene 33
43.83 43.05 42.65 45.33 45.11
0.9907 0.9908 0.9900 0.9937 0.9938

Scene 45
44.32 43.11 43.59 44.76 44.84
0.9797 0.9764 0.9790 0.9812 0.9823

Scene 48
37.48 35.24 35.27 37.57 36.89
0.9826 0.9751 0.9770 0.9846 0.9821

Average
43.76 42.29 42.43 44.55 44.39
0.9863 0.9840 0.9851 0.9887 0.9885

Table 3.3. PSNR values (in dB, top) and SSIM values (bottom) of experimen-
tal results comparing our proposed methods with the state-of-the-art methods
for upscale factor 2 (best results are shown in bold).

3.4.4. Comparison with State-of-the-Art Results

In the previous Sections 3.4.2 and 3.4.3, we show that our extensions of single frame bilevel

SR methods [117, 118] are effective and the iterative updates of the motion field and HR

frames improve the SR performance. Here we compare our proposed methods, MDMF-B-

VT and MDMF-R-VT, with other state-of-the-art methods, including Bayesian [73] and
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Video Bicubic Bilevel [117,118] NE+NNLS [15] NE+LLE [23] ANR [104]

Scene 2
39.58 40.50 41.32 41.12 41.32
0.9648 0.9662 0.9691 0.9675 0.9691

Scene 8
32.13 32.46 33.00 32.95 32.81
0.9013 0.9099 0.9145 0.9187 0.9107

Scene 18
35.65 36.37 36.76 36.82 36.76
0.9122 0.9209 0.9243 0.9249 0.9243

Scene 25
36.10 37.02 37.90 37.78 37.49
0.9515 0.9546 0.9622 0.9607 0.9587

Scene 33
32.15 33.44 33.79 33.94 34.00
0.8899 0.9140 0.9157 0.9188 0.9206

Scene 45
36.13 36.71 37.12 37.27 37.35
0.9101 0.9155 0.9193 0.9211 0.9226

Scene 48
27.25 28.03 28.04 28.20 28.26
0.8514 0.8730 0.8710 0.8757 0.8780

Average
34.14 34.93 35.42 35.44 35.43
0.9116 0.9220 0.9252 0.9268 0.9263

Video SR-CNN [34] Enhancer [57] Bayesian [73] MDMF-B-VT MDMF-R-VT

Scene 2
43.17 40.62 39.18 43.48 42.90
0.9703 0.9695 0.9660 0.9737 0.9740

Scene 8
33.40 32.09 31.73 33.48 33.42
0.9198 0.9121 0.8972 0.9266 0.9250

Scene 18
37.50 36.44 35.70 37.68 37.65
0.9280 0.9308 0.9183 0.9331 0.9341

Scene 25
38.35 37.44 35.34 39.03 38.75
0.9633 0.9621 0.9473 0.9702 0.9687

Scene 33
34.57 34.67 32.14 34.92 34.86
0.9230 0.9304 0.8945 0.9363 0.9374

Scene 45
37.90 37.15 35.76 38.42 38.10
0.9253 0.9267 0.9083 0.9340 0.9316

Scene 48
28.73 27.75 26.76 28.75 28.49
0.8883 0.8679 0.8393 0.8921 0.8842

Average
36.23 35.17 33.80 36.54 36.31
0.9311 0.9285 0.9101 0.9380 0.9364

Table 3.4. PSNR values (in dB, top) and SSIM values (bottom) of experimen-
tal results comparing our proposed methods with the state-of-the-art methods
for upscale factor 4 (best results are shown in bold).

a commercial software Enhancer [57], and six single frame SR methods including Bicubic,

Bilevel [117, 118], NE+NNLS [15], NE+LLE [23], ANR [104] and SR-CNN [34]. Two

more state-of-the-art methods [71,77] will be compared in Section 3.4.5 with smaller spatial

resolution because their implementation is extremely slow on 4K resolution.

According to Table 3.3 and Table 3.4, our proposed approaches (MDMF-B-VT and

MDMF-R-VT) provide the best SR performance compared to all other methods for both
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upscale factors of 2 and 4, demonstrating the effectiveness of the proposed algorithms. Al-

though the Bayesian SR method [73] evaluates the blur kernel, noise level and super-resolved

frames simultaneously, it requires the motion compensation of 30 consecutive frames in the

backward and forward directions, which is computationally infeasible with 4K videos because

of the memory and computational limitations. When we drop the consecutive frames from

30 to 3, the SR performance of [73] is not as good as ours. In Figure (3.9), we compare the

visual quality of our upscaled images with the result produced by several recent state-of-the-

art SR methods. We notice that all these SR methods produce sharper images than bicubic

interpolation, however artifacts are introduced. Next we notice that our proposed method

has fewer artifacts and shaper edges compared to all other methods.

3.4.5. Robustness to noise

In this section, we evaluate the noise robustness of different SR algorithms by adding Gauss-

ian noise to the LR input frames. The center regions (480× 640) of the original 4K frames

are utilized as the HR ground truth, in order to compare with two more state-of-the-art

video SR methods, Bayesian-MB [77] and DraftCNN [71]. The LR input frames (240×320)

are obtained by spatially downsampling the HR frames by a factor of 2 and adding white

Gaussian noise with variance 0.001. Different SR methods are applied to increase the spa-

tial resolution by a factor of 2. We also show the experimental results with no additional

Gaussian noise (noise variance 0).

As shown in Table 3.5, the SR performance of all methods is reduced when noise

is added, as expected. The HR dictionaries for the dictionary learning based methods,

Bilevel [117,118], MDMF-B-VT and MDMF-R-VT, are trained with noise free HR frames,

so the reconstructed HR frames naturally contain less noise. The sparse coding problem
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in SR testing phase is also proven to be robust to noise [36], so better SR performance is

obtained by the dictionary learning based methods (Bilevel [117, 118], MDMF-B-VT and

MDMF-R-VT). By comparing the SR results of Bilevel [117, 118] with MDMF-B-VT and

MDMF-R-VT, we found out that better SR performance is obtained by utilizing multiple

LR noisy input frames. The proposed MDMF-B-VT consistently outperforms MDMF-R-VT,

since it estimates the sparse coefficients of 3 noisy LR patches simultaneously.

The average computation time for all SR algorithms to super-resolve 1 frame is also

shown in Table 3.5. All experiments except Enhancer and Bayesian-MB are performed on a

Linux workstation with an Intel Xeon E5-2630 processor with 2.4GHz and 64 GB RAM. The

Enhancer and the Bayesian-MB algorithm were only available for the Windows operating

system and were tested on a different workstation with Intel i7-6820 processor with 2.70GHz

and 16 GB RAM. Notice that our proposed methods MDMF-B-VT and MDMF-R-VT can

be sped up by a factor of 4 approximately if we only apply 1 iteration instead of 4 iterations.

For MDMF-B-VT, the motion estimation takes 21.5s and the sparse coefficients inference

of Equation (3.5) takes 14.4s on average for one iteration. For MDMF-R-VT, the motion

estimation takes 22.1s and the sparse coefficients inference of Equation (3.8) takes 9.1s on

average for one iteration. So our proposed methods can be further sped up by utilizing faster

motion estimation methods and sparse coefficients inference algorithms.

We visually compare the SR results of our proposed methods with several other state-

of-the-art SR methods, when white Gaussian noise with variance 0.001 is added to the LR

input frames. We notice that the dictionary learning based methods, Bilevel [117, 118],

MDMF-B-VT and MDMF-R-VT, outperform others in suppressing the noise. The proposed

MDMF-B-VT algorithm provides the sharpest HR frame with few artifacts.
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The temporal continuity between adjacent super-resolved HR frames is compared in Fig-

ure (3.11) by visualizing the motion compensation error of two adjacent super-resolved HR

frames by different SR algorithms. The optical flow estimation method in [39] is applied to

estimate the motion field between two adjacent super-resolved HR frames, and the second

frame is warped to the first one according to the computed motion field. The difference

between the first frame and the warped second frame is visualized to compare the temporal

smoothness of different SR algorithms. The main idea behind this is that if two adjacent

super-resolved frames are temporally smooth, then an accurate motion field can be estimated

and the resulting motion compensated difference will be small. In quantifying this difference

we compute the RMSE (Root-Mean-Square Error). The smoothness of the motion field is of

course also indicative of the temporal continuity between adjacent frames. One can imagine

situations where the RMSE of the displaced frame difference is small but the motion field

exhibits large variations. We therefore also compute the Total Variation (TV) of the esti-

mated motion field vectors, in both the horizontal (VxTV) and vertical (VyTV) directions.

In comparing the temporal smoothness of video frames, both the RMSE of the displaced

frame difference and the TV of the motion field should be taken into account; the smaller

such measures the higher the temporal smoothness. As shown in Figure (3.11), our proposed

MDMF-B-VT method produces the smallest RMSE on the motion compensation error, as

well as the smallest TV on the motion vector, demonstrating that it better explores the

spatio-temporal correlation of consecutive frames. Notice that our proposed MDMF-R-VT

method produces the second smallest RMSE on the motion compensation error while have

larger TV on the motion vector compared to Bilevel [117,118], so its temporal smoothness

is similar to Bilevel [117, 118]. However, its SR performance is still 2.3 dB better than

Bilevel [117,118] on average according to Table 3.5. It is also interesting to point out that
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according to Table V, the single frame SR method SRCNN [34] outperforms the multiple

frame SR method Enhancer [57] in terms of the averaged single frame PSNR and SSIM

metrics, while Enhancer [57] has smaller motion compensation error of adjacent frames ac-

cording to Figure (3.11), illustrating that multiple frame SR methods provide an advantage

in terms of the temporal smoothness of the super-resolved HR frames.

Video Bicubic Bilevel [117,118] NE+NNLS [15] NE+LLE [23] ANR [104] SR-CNN [34]
Noise Variance 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001

Scene 2
45.53 32.68 47.78 37.51 46.57 33.31 46.66 32.85 47.16 32.91 46.67 36.13
0.9806 0.7085 0.9875 0.8920 0.9843 0.7377 0.9833 0.7144 0.9854 0.7180 0.9835 0.8499

Scene 8
35.01 31.60 36.80 33.49 37.11 32.01 37.22 31.70 37.17 31.72 38.29 32.75
0.9424 0.7462 0.9645 0.8708 0.9640 0.7728 0.9643 0.7550 0.9655 0.7578 0.9686 0.8401

Scene 18
41.65 32.38 44.72 36.68 44.22 33.18 44.53 32.74 44.89 32.80 44.65 35.48
0.9780 0.7168 0.9902 0.8949 0.9876 0.7530 0.9874 0.7311 0.9892 0.7345 0.9873 0.8546

Scene 25
43.94 32.47 47.60 37.21 46.05 33.31 47.26 32.93 47.87 32.97 46.87 35.96
0.9917 0.7246 0.9971 0.9090 0.9952 0.7628 0.9947 0.7416 0.9966 0.7447 0.9935 0.8698

Scene 33
35.94 31.97 39.65 34.62 40.46 32.85 41.21 32.58 41.36 32.60 40.88 33.27
0.9606 0.7941 0.9839 0.9054 0.9809 0.8237 0.9830 0.8093 0.9842 0.8113 0.9834 0.8792

Scene 45
44.60 33.26 46.99 37.55 46.24 33.87 46.63 33.50 47.08 33.55 46.57 36.44
0.9850 0.7584 0.9912 0.9092 0.9889 0.7808 0.9885 0.7613 0.9904 0.7647 0.9887 0.8768

Scene 48
34.96 31.62 36.88 33.47 36.74 31.98 37.25 31.84 37.38 31.89 38.39 32.77
0.9660 0.7921 0.9788 0.9059 0.9764 0.8165 0.9782 0.8024 0.9796 0.8048 0.9809 0.8806

Average
40.23 32.28 42.92 35.79 42.48 32.93 42.97 32.59 43.27 32.63 43.19 34.69
0.9720 0.7487 0.9847 0.8982 0.9825 0.7782 0.9828 0.7593 0.9844 0.7622 0.9837 0.8644

Computation time - 15.0 s 75.9 s 13.1 s 1.5 s 2.6 s

Video Enhancer [57] Bayesian [73] Bayesian-MB [77] DraftCNN [71] MDMF-B-VT MDMF-R-VT
Noise Variance 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001 0 0.001

Scene 2
46.91 33.95 45.34 30.26 43.95 32.56 47.94 32.88 47.94 40.55 47.91 40.13
0.9849 0.7597 0.9821 0.5983 0.9836 0.7044 0.9880 0.7150 0.9877 0.9539 0.9875 0.9414

Scene 8
36.68 32.23 36.25 29.08 36.72 31.35 37.43 31.70 38.80 35.61 38.59 35.10
0.9632 0.7875 0.9645 0.6528 0.9632 0.7448 0.9671 0.7556 0.9733 0.9314 0.9734 0.9209

Scene 18
45.41 33.77 42.69 29.74 42.17 32.37 45.80 32.80 46.68 39.47 46.39 38.95
0.9909 0.7743 0.9879 0.5981 0.9859 0.7188 0.9919 0.7321 0.9929 0.9581 0.9926 0.9457

Scene 25
46.53 33.92 44.38 29.73 42.96 32.47 46.41 32.88 49.40 39.99 50.13 39.85
0.9952 0.7828 0.9953 0.6112 0.9926 0.7284 0.9962 0.7395 0.9978 0.9690 0.9981 0.9584

Scene 33
39.53 32.97 38.29 29.40 38.26 31.73 39.03 32.08 42.79 36.39 41.19 34.77
0.9832 0.8312 0.9792 0.7108 0.9782 0.7903 0.9846 0.7972 0.9896 0.9488 0.9870 0.9293

Scene 45
46.08 34.58 44.26 31.28 44.76 33.23 47.35 33.45 47.61 40.10 47.76 39.67
0.9884 0.8075 0.9868 0.6645 0.9878 0.7531 0.9913 0.7603 0.9918 0.9564 0.9918 0.9480

Scene 48
35.95 32.18 35.67 29.23 35.39 30.95 36.34 31.52 38.10 34.44 37.35 32.93
0.9692 0.8278 0.9755 0.7141 0.9637 0.7779 0.9745 0.7960 0.9820 0.9416 0.9784 0.9170

Average
42.44 33.37 40.98 29.82 40.60 32.09 42.90 32.47 44.47 38.08 44.19 37.34
0.9821 0.7958 0.9816 0.6500 0.9793 0.7454 0.9848 0.7565 0.9879 0.9513 0.9870 0.9372

Computation time 1.7 s 114.2 s 76.0 s 2165.7 s 159.3 s 115.5 s

Table 3.5. PSNR values (in dB, top) and SSIM values (bottom) of experimen-
tal results comparing our proposed methods with the state-of-the-art methods
(best results are shown in bold) under different noise conditions.
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3.5. Conclusion

In this paper we presented two novel video SR frameworks, the batch approach and

the recursive approach, based on dictionary learning and motion estimation. According to

them, the HR patches are estimated from multiple corresponding LR patches or previously

super-resolved HR patches in multiple frames, making the dictionary-based reconstruction

algorithm more accurate. The dictionary training algorithms that utilize multiple frames of

the training videos further improved the SR performance by making the training and testing

phases consistent. We performed experiments with 4K videos and showed that our methods

outperform the state-of-the-art algorithms, based either on quantitative analysis or visual

comparison.
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Figure 3.9. Visual Comparison of SR results. Column left to right is scene 8, scene 25, scene
33 and scene 48, respectively. Row top to bottom is Bicubic, Bilevel [117, 118], Enhancer [57],
Bayesian [73], proposed MDMF-B-VT and proposed MDMF-R-VT, respectively. Our proposed
algorithms can generate natural-looking frames without noticeable visual artifacts. Because the
testing frames have high resolution, results are better viewed in zoomed PDF.
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SRCNN [34] Enhancer [57] Bayesian-MB [77] DraftCNN [71]

Bilevel [117,118] MDMF-B-VT MDMF-R-VT Ground Truth

SRCNN [34] Enhancer [57] Bayesian-MB [77] DraftCNN [71]

Bilevel [117,118] MDMF-B-VT MDMF-R-VT Ground Truth

Figure 3.10. Visual Comparison of SR results of different SR methods when
Gaussian noise variance equals to 0.001. Our proposed algorithms suppress
the noise and generate the closest HR frames to the Ground Truth HR frames.
Readers are suggested to zoom in to see the details.
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SRCNN [34] Enhancer [57] Bayesian-MB [77] DraftCNN [71]
RMSE: 0.1084 RMSE: 0.1073 RMSE: 0.1468 RMSE: 0.1281
VxTV: 35240.6 VxTV: 37907.7 VxTV: 210266.1 VxTV: 59308.5
VyTV: 27073.5 VyTV: 42025.1 VyTV: 220245.7 VyTV: 53401.2

Bilevel [117,118] MDMF-B-VT MDMF-R-VT Ground Truth
RMSE: 0.0845 RMSE: 0.0787 RMSE: 0.0814 RMSE: 0.0264
VxTV: 20862.6 VxTV: 20471.6 VxTV: 22754.3 VyTV: 6237.9
VyTV: 12951.4 VyTV: 12364.3 VyTV: 16680.6 VyTV: 1633.8

SRCNN [34] Enhancer [57] Bayesian-MB [77] DraftCNN [71]
RMSE: 0.1318 RMSE: 0.1266 RMSE: 0.1595 RMSE: 0.1475

VxTV: 400892.2 VxTV: 389043.0 VxTV: 449428.4 VxTV: 442140.5
VyTV: 320158.6 VyTV: 308465.1 VyTV: 381880.5 VyTV: 364788.1

Bilevel [117,118] MDMF-B-VT MDMF-R-VT Ground Truth
RMSE: 0.1116 RMSE: 0.1057 RMSE: 0.1094 RMSE: 0.0786

VxTV: 365505.3 VxTV: 354327.8 VxTV: 366518.0 VxTV: 329150.0
VyTV: 280718.4 VyTV: 270961.0 VyTV: 283005.0 VyTV: 227314.7

Figure 3.11. Visual Comparison of the motion compensation error of the SR
results by different SR methods when Gaussian noise variance equals to 0.001.
Our proposed algorithms have the smallest motion compensation error from
both the error head map and RMSE metric, illustrating the advantages in
temporal smoothness of the super-resolved frames.
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CHAPTER 4

KKT Condition Refined Deep `1 Encoders

4.1. Introduction

In this chapter, we propose a KKT condition refined Learned ISTA (KKT-LISTA) frame-

work. First we utilize the LISTA network to have an initial estimate of the position (sup-

port) and sign of the non-zero coefficients. The support is then refined by nearest neigh-

bor retrieval from the support bank computed by the original ISTA algorithm. Finally

the KKT condition with the known support is utilized to obtain accurate sparse coeffi-

cients. The additional computation for support retrieval and KKT refinement is acceptable

so we still hold a computation advantage compared to those iterative optimization algo-

rithms [11,31,49,68,69,79,107,115]. In-depth and comprehensive experiments prove that

our proposed KKT-LISTA outperforms the original LISTA in both optimization accuracy

and applicability.

4.2. Neural Network Implementation of Sparse Coding

ISTA [11,31,107] is a popular algorithm for sparse code inference. To solve the problem

in Equation (1.4), ISTA performs the following iteration until convergence

z(k + 1) = hθ(Wx+ Sz(k)) z(0) = 0, (4.1)
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W

S

+x z

Figure 4.1. Block diagram of the ISTA algorithm for sparse coding.

where W = 1
L
DT , L is an upper bound on the largest eigenvalue of DTD, S = I − 1

L
DTD,

and the shrinkage function hθ is defined as [hθ(Y )]i = sign(Yi)(|Yi|−θi)+. In standard ISTA,

all thresholds are set to θi = λ/L. This iteration process is illustrated in Figure (4.1).

In [48], the iteration process of ISTA is unfolded into a feed-forward neural network,

called LISTA, with finite layers. As demonstrated in Figure (4.2), LISTA was proposed

to efficiently approximate the sparse coefficients z of the input signal x as it would be

estimated by solving Equation (1.4) for a given dictionary D. The network has a finite

number of recurrent stages, each of which updates the intermediate sparse code according

to Equation (4.1). Different from the ISTA algorithm, the network parameters W , S and

thresholds θ are learned from training data using a back-propagation algorithm, instead of

directly determined by D and λ. In the training phase, the following energy function is

minimized

W

S +

x

zS + S +

Figure 4.2. LISTA diagram.
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Figure 4.3. LISTA diagram.

1

N

N∑
j=1

‖L(xj,W, S, θ)− zgtj ‖2
2 (4.2)

where xj is the jth training signal, zgtj is its corresponding sparse coefficients solved by the

ISTA algorithm, L(xj,W, S, θ) is the LISTA network function, and N is the total number

of training signals. In the testing phase, an approximation of the sparse coefficients can be

obtained with a fixed number of recurrent stages.

However, although znetj = L(xj,W, S, θ) is a moderate approximation to zgtj , the recon-

struction accuracy ( 1
N

∑N
j=1 ‖Dznetj − xj‖2

2) is usually low. As shown in Figure (4.3), as

iteration increases during training, the reconstruction error is not minimized even though

the coefficient error 1
N

∑N
j=1 ‖znetj −z

gt
j ‖2

2 is decreasing. So for tasks such as image restoration,

denoising and compression, where the reconstruction accuracy is important, the performance

of LISTA networks will not be satisfactory.
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4.3. KKT Condition Refined Deep `1 Encoders

Since the origin LISTA network will not provide accurate sparse coefficients, we propose

to utilize the KKT condition of the original problem (Equation (1.4)) to refine the sparse

coefficients. The KKT conditions could be obtained by taking the derivative of Equation

(1.4) with respect to z. This tell us that any SC solution ẑ must satisfy

DT (x−Dẑ) = λs, (4.3)

where s = ∂ ‖ẑ‖1, a subgradient of the `1 norm evaluated at ẑ, which equals

si =



+1, ẑi > 0

−1, ẑi < 0

[−1,+1], ẑi = 0

i = 1, ...,m, (4.4)

where ẑi is the ith element of ẑ.

We then define the non-zero coefficients set, which is the set of index of the non-zero

coefficients of ẑ, that is,

E = {i ∈ {1, ..., n} : ẑi 6= 0}. (4.5)

If DE, the part of the dictionary corresponding to the set E, has full column rank (i.e., the

basis vectors corresponding to the non-zero coefficients set are linearly independent), there

is an unique SC solution satisfying



68

LISTA
Network

p bank

KKT
Condition

Figure 4.4. Block diagram of the proposed KKT-LISTA.

ẑE = (DT
EDE)−1(DT

Ex− λsE),

ẑ−E = 0.
(4.6)

If we know the non-zero coefficients set E (position of non-zero coefficients) and sE (sign

of non-zero coefficients), the sparse coefficients ẑ (both ẑE and ẑ−E) can be solved in closed

form by Equation (4.6). The column dimension of matrix DE equals to the number of non-

zero coefficients, which is usually small, so the computation of (DT
EDE)−1 is fast. Here we

define an m× 1 support indicator vector p to incorporate both the position and sign of the

non-zero coefficients of z

pi =



+1, zi > 0

−1, zi < 0

0, zi = 0

i = 1, ...,m. (4.7)

Although the sparse coefficients znet estimated by the LISTA network usually do not

satisfy the KKT condition (Equation (4.6)), they provide a moderate estimation of the

position of non-zero coefficients and their signs, in other words, pnet computed from znet is

close to pgt computed from zgt. The algorithm that directly applies the position and sign of

the non-zero coefficients of znet to the KKT condition is named R-KKT-LISTA.
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The closed form solution (Equation (4.6)) by the KKT condition depends entirely on

the support indicator vector p, so a better estimation of p will result in a better solution.

pnet estimated by the LISTA network can be improved by a simple retrieval step. Let

pgtj , j = 1, ...,M (p bank) be the support indicator vector computed from M total sparse

coefficients zgtj , j = 1, ...,M . During retrieval, Locality-Sensitive Hashing (LSH) [6] can

be applied to find the closet prt vector to pnet in Hamming distance from the p bank in

O(1) time. The retrieved prt outperforms pnet because it is computed by the original ISTA

algorithm [11], instead of the fast approximation LISTA [48], so a more accurate solution

can be computed by the KKT condition (Equation (4.6)).

The proposed pipeline of KKT-LISTA is summarized in Figure (4.4); given an input signal

x, the LISTA network is first applied to obtain the initial estimation of the sparse coefficient

znet. Then the support indicator vector pnet is computed, and the nearest neighbor of pnet

among the p bank is retrieved. Finally the KKT condition is applied to compute the exact

sparse coefficients z. One should notice that we are not seeking to produce an approximate

sparse code for all possible input signals, but only for input signals which have the same

distribution as our training signals. In the LISTA network training and the closest support

retrieval step, we are concentrated on the solution of restricted problem of interest, not the

general problem. However, by collecting large enough training data, which is consistent to

the testing data, good sparse coefficients inference performance can be obtained.

4.4. Experimental Results

In this section, the methods ISTA, LISTA, R-KKT-LISTA and the proposed KKT-LISTA

are compared on the original `1 sparse coding problem, as well as the image compression

problem.
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4.4.1. `1 sparse coding problem

m = 25
Methods ‖x−Dz‖22 ‖z‖1 ‖x−Dz‖22 + λ‖z‖1 time(s)
LISTA 0.0447 (0.0154) 1.26 (-0.04) 0.120 (0.013) 0.09

R-KKT-LISTA 0.0504 (0.0211) 4.65 (3.35) 0.330 (0.223) 0.17
KKT-LISTA 0.0332 (0.0039) 1.46 (0.16) 0.119 (0.012) 0.19

ISTA 0.0293 1.30 0.107 6.52

m = 50
Methods ‖x−Dz‖22 ‖z‖1 ‖x−Dz‖22 + λ‖z‖1 time(s)
LISTA 0.0433 (0.0231) 1.17 (-0.07) 0.113 (0.019) 0.09

R-KKT-LISTA 0.0289 (0.0087) 3.28 (2.04) 0.226 (0.132) 0.20
KKT-LISTA 0.0265 (0.0063) 1.39 (0.15) 0.110 (0.016) 0.23

ISTA 0.0202 1.24 0.094 7.09

m = 100
Methods ‖x−Dz‖22 ‖z‖1 ‖x−Dz‖22 + λ‖z‖1 time(s)
LISTA 0.0449 (0.0296) 1.09 (-0.09) 0.110 (0.024) 0.11

R-KKT-LISTA 0.0201 (0.0048) 1.67 (0.49) 0.120 (0.034) 0.26
KKT-LISTA 0.0241 (0.0088) 1.34 (0.16) 0.104 (0.018) 0.28

ISTA 0.0153 1.18 0.086 7.68

Table 4.1. Experimental result comparing different methods in reconstruction
error, `1 error and overall error.

In this experiment we compare the performance of different methods on solving the

original `1 sparse coding problem. The training data-set consists of 100,000 image patches

of size 5 × 5 pixels, randomly selected from the Myanmar 4K Footage Database [56]. The

testing data-set consists of 1,000 different image patches sampled from the same database.

The patches with small standard deviation were discarded. λ = 0.06 is used in Equation

(1.4).

In the training phase, the dictionary is first trained by the method in [79]. We consid-

ered three cases, one with m = 25 (complete dictionary), another with m = 50 (2 times
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(a). 31.91 dB in PSNR. (b). 32.94 dB in PSNR.

Figure 4.5. Reconstruction of LISTA (a) and KKT-LISTA (b) encoded images.

over-complete dictionary) and the third with m = 100 (4 times over-complete dictionary).

After the dictionaries are trained, the ground truth sparse coefficient zgt is solved by ISTA.

The three layer LISTA networks are trained according to the back propagation process as

illustrated in [48] until convergence. The p bank is composed of 100,000 pgt vectors com-

puted from zgt. The LSH data structure is created by the E2LSH [6] method for fast nearest

neighbor retrieval. We found experimentally that larger p bank size than 100,000 has little

benefits to performance while consumes more memory on the LSH data structure.

In the testing phase, z is estimated according to our proposed framework in Figure (4.4).

We also compute the sparse coefficients estimate by the R-KKT-LISTA method (without

the support indicator vector refinement) for comparison.

The statistics of the mean reconstruction error (‖x−Dz‖2
2), the mean `1 sparsity penalty

(‖z‖1), the mean overall energy ( ‖x−Dz‖2
2+λ‖z‖1) and computation time over 1,000 testing

signals are shown in Table (4.1). The difference between those approximation methods and

the ground truth ISTA is shown in brackets. Compared to LISTA, our proposed KKT-LISTA



72

significantly decreases the reconstruction error ‖x−Dz‖2
2, which is important for such tasks

as signal restoration. The overall energy is also decreased, by comparing the difference

between LISTA and ISTA to the difference between KKT-LISTA and ISTA, the difference

decreases from 0.013 to 0.012 (7.7%) when m = 25, from 0.019 to 0.016 (15.8%) when

m = 50, from 0.024 to 0.018 (25.0%) when m = 100, respectively. By examining the results

of R-KKT-LISTA, we found out that without the support indicator vector retrieval step, the

application of the KKT condition refinement will not have smaller overall error compared

to LISTA. As for the computation time, our proposed KKT-LISTA approximately doubles

the computation time of LISTA, because of the additional p bank retrieval step and the

computation of Equation (4.6). However, it is still much faster than ISTA by approximately

30 times.

4.4.2. Application to Image Compression

Compression of still images is an active and matured field of research. By SC, the original

signal can be represented efficiently by the sparse coefficients under some given basis. By

storing the non-zero coefficients, the original signal can be compressed. The proposed KKT-

LISTA sparse coefficients inference algorithm can be applied to speed up the encoding phase.

In this experiment, our proposed KKT-LISTA is compared with LISTA in terms of the

quality of the reconstructed image.

In the encoding phase, the image is broken into 5× 5 patches with 1 pixel overlap with

the adjacent patches. For each patch, the sparse coefficients are inferred by the proposed

KKT-LISTA, as well as LISTA for comparison. The KKT-LISTA framework and LISTA

networks are the same as the ones in Section 4.4.1 with m = 100. In the decoding phase, the
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dictionary trained in Section 4.4.1 for m = 100 is applied to reconstruct each image patch,

x = Dz. The overlapping pixels are averaged to produce the final results.

As shown in Figure 4.5(a) and Figure 4.5(b), the proposed KKT-LISTA outperforms

LISTA in terms of both visual quality and quantitative PSNR (Peak Signal to Noise Ratio

).

4.5. Conclusion

In this paper, we present a KKT condition refined LISTA framework to solve the `1-based

sparse approximation problem. The support of the sparse coefficients is initially estimated

by the LISTA network and refined by nearest neighbor retrieval. Finally the KKT condition

is applied to solve the accurate sparse coefficients. Experimental results show that our

proposed framework results in both smaller reconstruction error and overall energy for the

`1-based sparse approximation problem.
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CHAPTER 5

Spatial-Spectral Representation for X-Ray Fluorescence Image

Super-Resolution

5.1. Introduction

In this chapter, we propose a super-resolution (SR) approach to obtain high resolution

(HR) XRF images, with the aid of a conventional HR RGB image, as shown in Fig. 1.3.

Our proposed XRF image SR algorithm can also be applied to spectral images obtained by

any other raster scanning methods, such as Scanning Electron Microscope (SEM), Energy

Dispersive Spectroscopy (EDS) and Wavelength Dispersive Spectroscopy (WDS). We model

the spectrum of each pixel using a linear mixing model [80, 87]. Since there is no direct

one-to-one mapping between the visible RGB spectrum and the XRF spectrum, because

the hidden part of the paining is not visible in the conventional RGB image, but it can

be captured in the XRF image [3], we model the XRF signal as a combination of the

visible signal (on the surface) and the non-visible signal (hidden under surface), as shown in

Fig. 5.1. For super-resolving the visible XRF signal we follow a similar approach to previous

research in [1,2,35,50,62,67,112]. A coupled XRF-RGB dictionary is learned to explore

the correlation between XRF and RGB signals. The RGB dictionary is applied to obtain

the sparse representation of the HR RGB input image, resulting in an HR coefficient map.

Then the XRF dictionary is applied on the HR coefficient map to reconstruct the HR XRF

image. For the non-visible part, we increase its spatial resolution using a standard total

variation regularizer [8, 81]. Finally, the HR visible and the HR non-visible XRF signals
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are combined to obtain the final HR XRF result. We do not explicitly separate the input

LR XRF image into visible and non-visible parts in advance. Instead, we formulate the

whole SR problem as an optimization problem. By alternatively optimizing over the coupled

XRF-RGB dictionary and the visible / non-visible HR coefficient maps, the fidelity of the

estimated HR output to both the LR XRF and HR RGB input signals is improved, thus

resulting in a better SR output. Both synthetic and real experiments show the effectiveness

of our proposed method, in terms of reconstruction error and visual sharpness of the SR

result, compared to other methods, such as bicubic interpolation, the total variation only

SR method [8,81] and hyperspectral image SR methods [1,35,67].

The paper is organized as follows. We formulate the XRF image SR problem in Sec-

tion 5.2, while the proposed method is described in Section 5.3. In Section 5.4, we provide

the experimental results with both synthetic data and real data to evaluate the approach.

The paper is concluded in Section 5.5.

5.2. Problem Formulation

As shown in Fig. 5.1, we are seeking the estimation of an HR XRF image Ȳ ∈ RW×H×B

that has both high spatial and high spectral resolution, with W , H and B the image width,

image height and number of spectral bands, respectively. We have two inputs: an LR XRF

image X̄ ∈ Rw×h×B with lower spatial resolution w × h, w � W and h � H; and a

conventional HR RGB image Ī ∈ RW×H×b with high spatial resolution, but a small number

of spectral bands, b� B. The input LR XRF image X̄ can be separated into two parts: the

visible component X̄v ∈ Rw×h×B and the non-visible component X̄nv ∈ Rw×h×B. We propose

to estimate the HR visible component Ȳv ∈ RW×H×B by fusing the conventional HR RGB
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Figure 5.1. Proposed pipeline of spatial-spectral representation for X-ray fluo-
rescence image super-resolution. The visible component of input XRF image is
fused with the input RGB image to obtain the visible component of HR XRF
image. The non-visible component of the input XRF image is super-resolved
to obtain the non-visible component of HR XRF image. The HR visible and
non-visible component of output XRF image are combined to obtain the final
output.

input image Ī with the visible component of the input LR XRF image X̄v and estimate the

HR non-visible component Ȳnv ∈ RW×H×B by using standard total variation SR methods.
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To simplify notation, the images cubes are written as matrices, i.e. all pixels of an image

are concatenated, such that every column of the matrix corresponds to the spectral response

at a given pixel, and every row corresponds to the lexicographically ordered image in a

specific spectral band. Accordingly, the image cubes are written as Y ∈ RB×Nh , X ∈ RB×Nl ,

I ∈ Rb×Nh , Xv ∈ RB×Nl , Xnv ∈ RB×Nl , Yv ∈ RB×Nh and Ynv ∈ RB×Nh , where Nh = W ×H

and Nl = w × h. We therefore have

X = Xv +Xnv, (5.1)

Y = Yv + Ynv, (5.2)

according to the visible / non-visible component separation model as shown in Fig. 5.1.

Let us denote by yv ∈ RB and ynv ∈ RB the one-dimensional spectra at a given spatial

location of Ȳv and Ȳnv, that is, representing a column of Yv and Ynv, according to the linear

mixing model [16,63], they can be described as

yv =
M∑
j=1

dxrfv,j αv,j, Yv = Dxrf
v Av, (5.3)

ynv =
M∑
j=1

dxrfnv,jαnv,j, Ynv = Dxrf
nv Anv, (5.4)

where dxrfv,j and dxrfnv,j represent respectively the endmembers for the visible and non-visible

components, then Dxrf
v ≡ [dxrfv 1 , d

xrf
v 2 , . . . , d

xrf
v M ] ∈ RB×M , Dxrf

nv ≡ [dxrfnv 1, d
xrf
nv 2, . . . , d

xrf
nv M ] ∈

RB×M . αv,j and αnv,j are the corresponding per-pixel abundances. Equation 5.3 holds for a

specific column yv of matrix Yv (say the kth column). We take the corresponding αv,j,j=1,...,M
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and stack them into a M × 1 column vector, this vector then becomes the kth column of

the matrix Av ∈ RM×Nh . In a similar manner we construct matrix Anv ∈ RM×Nh . The

endmembers Dxrf
v and Dxrf

nv act as a basis dictionary to represent Yv and Ynv in a lower-

dimensional space RM and rank{Yv} ≤M, rank{Ynv} ≤M .

The visible and non-visible components of the input LR XRF image Xv and Xnv, respec-

tively, are a spatially downsampled version of Yv and Ynv, respectively, that is

Xv = YvS = Dxrf
v AvS, (5.5)

Xnv = YnvS = Dxrf
nv AnvS, (5.6)

where S ∈ RNh×Nl is the downsampling operator that describes the spatial degradation from

HR to LR.

Similarly, the HR conventional RGB image I can be described by the linear mixing

model [16,63],

I = DrgbAv, (5.7)

where Drgb ∈ Rb×M is the RGB dictionary. Notice that the same abundances matrix Av

is used in Equations 5.3 and 5.5. This is because the visible component of the scanning

object is captured by both the XRF and the conventional RGB images. The matrix Av

encompasses the spectral correlation between the visible component of the XRF and the

conventional RGB images.

The physically grounded constraints in [67] are shown to be effective, so we propose to

impose similar constraints, by making full use of the fact that the XRF endmembers are XRF
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spectra of individual materials, and the abundances are proportions of those endmembers.

Consequently, they are subject to the following constraints:

0 ≤ Dxrf
v,ij ≤ 1,∀i, j (5.8a)

0 ≤ Dxrf
nv,ij ≤ 1, ∀i, j (5.8b)

0 ≤ Drgb
ij ≤ 1, ∀i, j (5.8c)

Av,ij ≥ 0,∀i, j (5.8d)

Anv,ij ≥ 0,∀i, j (5.8e)

1T(Av + Anv) = 1T, (5.8f)

where Dxrf
v,ij , D

xrf
nv,ij, D

rgb
ij , Av,ij and Anv,ij are the (i, j) elements of matrices Dxrf

v , Dxrf
nv , Drgb,

Av and Anv, respectively, 1T demotes a row vector of 1’s compatible with the dimensions

of Av and Anv. Equations 5.8a, 5.8b and 5.8c enforce the non-negative, bounded spectrum

constraints on endmembers, Equations 3.6d and 3.6e, enforce the non-negative constraints on

abundances, and Equation 5.8e enforces the visible component abundances and non-visible

component abundances for every pixel to sum up to one.

5.3. Proposed Solution

In order to solve the XRF image SR problem, we need to estimate Av, Anv, D
rgb, Dxrf

v

and Dxrf
nv simultaneously. Utilizing Equations 5.1, 5.5, 5.6, 5.7 and 5.8, we can form the

following constrained least-squares problem:
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min
Av ,Anv ,Drgb,

Dxrf
v ,Dxrf

nv

‖X −Dxrf
v AvS −Dxrf

nv AnvS‖2
F

+ ‖I −DrgbAv‖2
F + λ‖∇(Dxrf

nv Anv)‖2
F

(5.9a)

s.t. 0 ≤ Dxrf
v ij ≤ 1,∀i, j (5.9b)

0 ≤ Dxrf
nv ij ≤ 1,∀i, j (5.9c)

0 ≤ Drgb
ij ≤ 1,∀i, j (5.9d)

Av ij ≥ 0,∀i, j (5.9e)

Anv ij ≥ 0,∀i, j (5.9f)

1T(Av + Anv) = 1T, (5.9g)

‖Av + Anv‖0 ≤ s, (5.9h)

with ‖ · ‖F denoting the Frobenius norm, and ‖ · ‖0 the `0 norm, i.e., the number of non-zero

elements of the given matrix. The first term in Equation 5.9a represents a measure of the

fidelity of the observed XRF data X, the second term the fidelity to the observed RGB image

I and the third term in Equation 5.9a is the total variation (TV) regularizer. It is defined

as

‖∇(Dxrf
nv Anv)‖2

F

=
H−1∑
i=1

W−1∑
j=1

‖Dxrf
nv Ānv(i, j, :)−Dxrf

nv Ānv(i+ 1, j, :)‖2
2

+‖Dxrf
nv Ānv(i, j, :)−Dxrf

nv Ānv(i, j + 1, :)‖2
2

= ‖Dxrf
nv AnvG‖2

F

(5.10)
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where Ānv ∈ RW×H×M is the 3D volume version of Anv and Ānv(i, j, :) ∈ RM is the non-

visible component abundance of pixel (i, j). G ∈ RNh×((W−1)(H−1)) is the horizontal/vertical

first order difference operator. To estimate the HR visible component abundance Av, the

HR RGB image I can provide spatial details. However, to estimate the HR non-visible

component abundance Anv, there is no additional spatial information, so we need the TV

regularizer (Equation 5.10) to impose spatial smoothness on the non-visible component. The

TV regularizer parameter λ controls the spatial smoothness of the reconstructed non-visible

component, Ynv = Dxrf
nv Anv.

The constraint Equations 5.9e, 5.9f, 5.9g together restrict the abundances of visible and

non-visible components, and also act as a sparsity prior on the per-pixel abundances, since

they bound the `1 norm of the combined abundances (Av + Anv) to be 1 for all pixels. The

last constraint Equation 5.9h is an optional constraint, which further enforces the sparsity

of the combined abundance (Av + Anv).

The optimization in Equation 5.9 is non-convex and difficult to solve if we optimize

over all the parameters Av, Anv, D
rgb, Dxrf

v and Dxrf
nv directly. We found it effective to

alternatively optimize over these parameters. Also because Equation 5.9 is highly non-

convex, good initialization is needed to start the local optimization. A similar approach

as the coupled dictionary learning technique in [119,120] is applied here to initialize these

parameters.

5.3.1. Initialization

Let I l ∈ Rb×Nl and Alv ∈ RM×Nl be the spatially downsampled RGB image I and visible

component abundance Av, we have
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I l = IS, (5.11)

Alv = AvS. (5.12)

Then the coupled dictionary learning technique in [119,120] can be utilized to initialize

Drgb and Dxrf
v by

min
Drgb,Dxrf

v

‖I l −DrgbAlv‖2
F + ‖X −Dxrf

v Alv‖2
F

+β

Nl∑
k=1

‖Alv(:, k)‖1,

s.t. ‖Drgb(:, k)‖2 ≤ 1,∀k,

‖Dxrf
v (:, k)‖2 ≤ 1,∀k,

(5.13)

where ‖ · ‖1 is the `1 vector norm, parameter β control the sparseness of the coefficients in

Alv A
l
v(:, k), Drgb(:, k) and Dxrf

v (:, k) denote the kth column of matrix Alv, D
rgb, and Dxrf

v ,

respectively. Details of the optimization can be found in [119, 120]. Drgb and Dxrf
v are

initialized using Equation 5.13 and Dxrf
nv is initialized to be equal to Dxrf

v . Av is initialized

by upsampling Alv computed in Equation 5.13, while Anv is set to be zero at initialization.

5.3.2. Optimization Scheme

We propose to alternatively optimize over all the parameters in Equation 5.9a. First we

optimize over Av and Anv by fixing all other parameters,
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min
Av ,Anv

‖X −Dxrf
v AvS −Dxrf

nv AnvS‖2
F

+‖I −DrgbAv‖2
F + λ‖∇(Dxrf

nv Anv)‖2
F

s.t. Av ij ≥ 0,∀i, j

Anv ij ≥ 0,∀i, j

1T(Av + Anv) = 1T,

‖Av + Anv‖0 ≤ s.

(5.14)

PALM (proximal alternating linearized minimization) algorithm [17] is utilized to op-

timize over Av and Anv by a projected gradient descent method. For Equation 5.14, the

following three steps are iterated for q = 1, 2, . . . until convergence:

V q
v = Aq−1

v − 1

dv
DrgbT (DrgbAq−1

v − I) (5.15a)

V q
nv = Aq−1

nv

− 1

dnv
(Dxrf

nv

T
(Dxrf

nv A
q−1
nv S − (X −Dxrf

v Aq−1
v S))ST

+ λDxrf
nv

T
Dxrf
nv AnvGG

T )

(5.15b)

{Aqv, Aqnv} = proxAv ,Anv(V q
v , V

q
nv), (5.15c)

where d1 = γ1‖DrgbDrgbT‖F , d2 = γ2‖Dxrf
nv D

xrf
nv

T‖F are non-zero step size constants, and

proxAv ,Anv is the proximal operator that project V q
v , V

q
nv onto the constraints of Equation 5.14.

The proximal projection is computational inexpensive because it just sets negative entries of

V q
v and V q

nv to zero and scales every column of V q
v and V q

nv simultaneously to equal one in `1

norm. Notice that in Equation 5.15a, only the gradient of the second term in Equation 5.14
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is utilized to update V q
v , because we want the visible component coefficients Av to be deter-

mined by the RGB image I only, instead of being determined jointly by the RGB image I

and the XRF image X.

Second, we optimize over Drgb solving the following constrained least-squares problem:

min
Drgb

‖I −DrgbAv‖2
F

s.t. 0 ≤ Drgb
ij ≤ 1,∀i, j.

(5.16)

Likewise, Equation 5.16 is minimized by iterating the following steps until convergence:

Eq = Drgbq−1 − 1

drgb
(Drgbq−1

Av − I)Av
T (5.17a)

Drgbq = proxDrgb(Eq), (5.17b)

with drgb = γ3‖AvAvT‖F again a non-zero step size constant and proxDrgb the proximal

operator that projects Eq onto the constraint of Equation 5.16. The proximal operator this

time is also computationally inexpensive since it just truncates the entries of Eq to 0 from

below and to 1 from above.

Similarly, Dxrf
v is then optimized by solving

min
Dxrf

v

‖(X −Dxrf
nv AnvS)−Dxrf

v AvS‖2
F

s.t. 0 ≤ Dxrf
v ij ≤ 1,∀i, j,

(5.18)

using the following iteration steps:
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U q = Dxrf
v

q−1

− 1

dxrfv

(Dxrf
v

q−1
AvS − (X −Dxrf

nv AnvS))STAv
T

(5.19a)

Dxrf
v

q
= proxDxrf

v
(U q), (5.19b)

where dxrfv = γ4‖AvAvT‖F is the non-zero step size constant and proxDxrf
v

is the proximal

operator which project U q onto the constraints of Equation 5.18. It is the same as the

proximal operator in Equation 5.17b.

Finally, we optimize Dxrf
nv by solving the following problem,

min
Dxrf

nv

‖(X −Dxrf
v AvS)−Dxrf

nv AnvS‖2
F

+λ‖∇(Dxrf
nv Anv)‖2

F

s.t. 0 ≤ Dxrf
nv ij ≤ 1,∀i, j.

(5.20)

Likewise, the following two steps are iterated until convergence:

Lq = Dxrf
nv

q−1

− 1

dxrfnv

(Dxrf
nv

q−1
AnvS − (X −Dxrf

v AvS))STAnv
T

− λDxrf
nv AnvGG

TAnv
T

(5.21a)

Dxrf
nv

q
= proxDxrf

nv
(Lq), (5.21b)

where dxrfnv = γ5‖AnvAnvT‖F again is a non-zero step size constant, proxDxrf
nv

is the proximal

operator projecting Lq onto the constraints of Equation 5.20, which is the same proximal
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operator as the ones in Equations 5.17b and 5.19b. The complete optimization scheme is

illustrated in Algorithm 3. According to Equations 5.2, 5.3, 5.4, the HR XRF output image

Y can be computed by

Y = Yv + Ynv = Dxrf
v Av +Dxrf

nv Anv. (5.22)

Algorithm 3. Proposed Optimization Scheme of Equation 5.9

input: LR XRF image X, HR conventional RGB image I.

1: Initialize Drgb(0)
, Dxrf

v
(0)

and Alv
(0)

by Equation (5.13);

Initialize Dxrf
nv

(0)
= Dxrf

v
(0)

;

Initialize Av
(0) by upsampling Alv

(0)
;

Initialize Anv
(0) = 0;

n = 0;
2: repeat
3: Estimate Av

(n+1) and Anv
(n+1) with Equation 5.15;

4: Estimate Drgb(n+1)
with Equation 5.17;

5: Estimate Dxrf
v

(n+1)
with Equation 5.19;

6: Estimate Dxrf
nv

(n+1)
with Equation 5.21;

7: n=n+1;
8: until convergence
output: HR XRF image

Y = Dxrf
v Av +Dxrf

nv Anv.

5.4. Experimental Results

To verify the performance of our proposed SR method, we have performed extensive

experiments on both synthetic and real XRF images. The basic parameters of the proposed

SR method are set as follows: the number of atoms in the dictionaries Drgb, Dxrf
nv and Dxrf

v

is M = 50 for synthetic experiments and M = 200 for real experiments; γ1 = γ2 = γ3 =

γ4 = γ5 = 1.01, which only affects the speed of convergence; parameter β in Equation 5.13
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is set to 0.02 and λ in Equation 5.9 is set to 0.1. The optional constraint in Equation 5.9h

is not applied here.

5.4.1. Error Metrics

As a primary error metric we use, the root mean squared error (RMSE) between the esti-

mated HR XRF image Y and the ground truth image Y gt is computed

RMSE =

√
‖Y − Y gt‖2

F

BNh

. (5.23)

The peak-signal-to-noise ratio (PSNR) is reported as well,

PSNR = 20 log10

max(Y gt)

RMSE
, (5.24)

where max(Y gt) denoting the maximum entry of Y gt.

The spectral angle mapper (SAM, [122]) in degrees is also utilized, which is defined as

the angle in RB between an estimated pixel and the ground truth pixel, averaged over the

whole image,

SAM =
1

Nh

Nh∑
j=1

arccos
Y (:, j)TY gt(:, j)

‖Y (:, j)‖2‖Y gt(:, j)‖2

. (5.25)

5.4.2. Comparison Methods

In order to compare over results with the hyperspectral image SR method GSOMP [1],

CSUSR [67] and NSSR [35], the linear degradation matrix P mapping the XRF spectrum

to its corresponding RGB representation needs to be estimated first. Since these methods

do not estimate this linear transformation,
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I l = PX, (5.26)

where I l ∈ Rb×Nl is defined in Equation 5.11 and X ∈ RB×Nl is the input LR XRF image.

Although this linear transformation model does not hold for XRF and its corresponding RGB

images, we are trying to find the best approximation P so that we can apply the mentioned

above hyperspectral image SR methods. The best approximation P can be computed by the

following least-squares problem

min
P
‖PX − I l‖2

F . (5.27)

The Trust-Region-Reflective Least Squares algorithm [25] can be utilized to estimate P .

Besides the above mentioned hyperspectral image SR methods, we also propose two

baseline methods to compare against, since SR for XRF images is still an open problem.

Baseline method #1 only uses LR XRF image as input, increasing its spatial resolution by

the same TV regularizer as in Equation 5.9, by solving

min
A,Dxrf

‖X −DxrfAS‖2
F + λ‖∇(DxrfA)‖2

F (5.28a)

s.t. 0 ≤ Dxrf
ij ≤ 1,∀i, j (5.28b)

Aij ≥ 0, ∀i, j (5.28c)

1TA = 1T, (5.28d)

‖A‖0 ≤ s, (5.28e)
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which is a special case of the proposed optimization problem in Equation 5.9. A detailed

optimization scheme can be found in Appendix A.1. After solving for Dxrf and A, the HR

output XRF image Y can be reconstructed by

Y = DxrfA. (5.29)

Baseline method #2 does not model the input LR XRF image as a combination of visible

and non-visible components, and increases its spatial resolution with a conventional HR RGB

image, by solving

min
A,Dxrf ,Drgb

‖I −DrgbA‖2
F + ‖X −DxrfAS‖2

F (5.30a)

s.t. 0 ≤ Dxrf
ij ≤ 1,∀i, j (5.30b)

0 ≤ Drgb
ij ≤ 1,∀i, j (5.30c)

Aij ≥ 0,∀i, j (5.30d)

1TA = 1T, (5.30e)

‖A‖0 ≤ s, (5.30f)

which is also a special case of the proposed optimization problem in Equation 5.9. Detailed

optimization scheme can be found in Appendix A.2. After solving for Drgb, Dxrf and A, the

HR output XRF image Y can be reconstructed by Equation 5.29.
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Figure 5.2. Three noise free spectra used to synthesize the HR XRF image.
Spectra # 2 and # 3 are shifted vertically (by 0.01 and 0.02, respectively) for
visualization purposes.

5.4.3. Synthetic Experiments

We compare the SR results for different methods with a synthetic experiment first. We

combined 3 noise free spectra with a significant amount of spectral overlap (1024 × 1),

an HR airforce target image (345 × 490 × 3) as the visible image and a rectangle image

(345 × 490 × 3) as the non-visible image to simulate the ground truth HR XRF image Y gt

(345 × 490 × 1024). The 3 noise free spectra, HR airforce target image and the rectangle

image are shown in Figs. 5.2, 5.3 (a) and 5.3 (b), respectively. In detail, we assume that

the yellow foreground of the airforce target image corresponds to spectrum # 1, the blue

background of the airforce image corresponds to spectrum #2 and the white foreground of

the rectangle image corresponds to spectrum #3. The LR XRF image X (69 × 98 × 1024)
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was obtained by spatially down-sampling Y gt by a factor of 5 in each dimension and adding

Gaussian noise to it with SNR 35dB.

(a) (b)

Figure 5.3. (a) The airforce image is utilized as the visible component. (b)
The rectangle image is utilized as the non-visible component.

The RMSE, PSNR and SAM metrics were computed between the SR results of different

methods described in Section 5.4.2 and the HR ground truth Y gt. The default parameters of

methods GSOMP [1], CSUSR [67] and NSSR [35] in their original paper were applied in our

synthetic experiments. Optimal parameter λ of Baseline #1 method (Equation 5.28) and the

proposed method (Equation 5.9) was found experimentally. To make fair comparisons, the

number of atoms in the dictionary is set to be 50 for all methods (GSOMP [1], CSUSR [67],

NSSR [35], Baseline # 2 and the proposed method) that utilize dictionaries. As shown in

Table 5.1, our proposed method has the smallest RMSE, highest PSNR and smallest SAM.

By comparing Baseline #1 method with the proposed method, the benefit of utilizing an

HR RGB image can be validated. By comparing Baseline #2 method with the proposed

method, it can be seen that a better and more realistic model that assumes the XRF signal is

a combination of visible component and non-visible component is beneficial to obtain better

SR results. The traditional hyperspectral image SR methods (GSOMP [1], CSUSR [67]

and NSSR [35]) rely on an accurate linear degradation model from hyperspectral to RGB
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signals. When the degradation model is not accurate, their performance is inferior to our

proposed method. Baseline #2 can be considered an extension of CSUSR [67], in that we

learn the coupled RGB and XRF dictionaries simultaneously and we do not utilize the linear

degradation model, which is a more flexible approach and produces better SR performance

than CSUSR [67].

Metric GSOMP [1] CSUSR [67] NSSR [35] Baseline #1 Baseline #2 Proposed
RMSE 3.42 0.70 3.85 2.03 0.59 0.50
PSNR 37.51 51.36 36.46 42.03 52.83 54.12
SAM 22.78 3.19 18.46 8.38 2.10 2.00

Table 5.1. Experimental results on synthetic data comparing different SR
methods discussed in Section 5.4.2 in terms of RMSE, PSNR and SAM. Best
results are shown in bold.
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Figure 5.4. The average PSNR curves as a function of the channels of the
spectral bands for the SR method.

Fig. 5.4 shows the average PSNR curves as a function of the channels of the spectral

bands for the test methods. It can be seen that the hyperspectral SR methods GSOMP [1]

and NSSR [35] produce inferior SNR over all spectral channels. All other methods perform

well for spectral bands outside the range [100 400] and our proposed method constantly

outperforms all other methods. For spectral bands in the range [100 400], both methods’
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performance decreases because of the overlapping spectra, as shown in Fig. 5.2. Notice

that Baseline #1 slightly outperforms the proposed method around channel #200, which

is because there is a peak for both the non-visible (Spectrum #3 in Fig. 5.2) and visible

component spectrum (Spectrum #1 in Fig. 5.2) around channel #200. The proposed method

makes errors in separating these two peaks, resulting in worse performance than Baseline

#1 which avoids explicit visible/non-visible decomposition.

We compare the visual quality of different SR methods on the region of interest of channel

# 210 - 230 in Fig. 5.5. Because GSOMP, CSUR, and NSSR hyperspectral image SR

methods [1,35,67] rely on an accurate linear degradation model from hyperspectral to RGB

signals, SR results are poor. Baseline method #1 did not utilize the HR RGB image in SR

and so failed to reconstruct fine details. Baseline method #2 assumes one-to-one mapping

between RGB and XRF signals, thus it produced artifacts in the region where the visible

and non-visible components overlap. Our proposed method produced the SR result closest

to ground truth. Notice that the non-visible component (rectangle) is more blurry than the

visible component (airforce target), since it is super-resolved by a TV regularizer and does

not use any HR RGB image information.

5.4.4. Real Experiments

For our first real experiment, the real data was collected by a Bruker M6 scanning energy

dispersive XRF instrument, with 4096 channels in spectrum. Studies from XRF image #3

scanned from Vincent Van Gogh’s “Bedroom” (Fig. 1.4) are presented here. The HR RGB

image is aligned to the LR XRF image utilizing feature points matching.
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We first validated that the proposed method in Equation (5.9) can accurately represent

the XRF spectrum, and that the reconstructed spectral signal has a higher SNR compared

to the original spectral signal.

As shown in Fig. 5.6, our proposed approach provides accurate reconstruction of the

original signal. The XRF dictionary is trained from all spectral signals of the XRF image

based on minimizing the Euclidean distance between the reconstructed and the original

signals. As a result, noise is reduced, and the reconstructed signal has higher SNR compared

to the original signal.

For our first real experiment, HR ground truth was not available to assess the quality of

the reconstructed HR XRF images. This is because all XRF maps we had access to were

low resolution and noisy. We compare the visual quality of different SR methods on the

region of interest of channel # 611 - 657, corresponding to CrK XRF peak, in Fig. 5.7.

Hyperspectral SR method GSOMP [1] produced a noisy output in (c), because it relies on

an accurate degradation model from XRF signal to RGB signal. Hyperspectral SR methods

CSUSR [67] and NSSR [35] update the XRF dictionary to ensure the fidelity to LR input,

so they produce less noise as compared to GSOMP [1]. However, they either create non

existing content in (d) or lose existing content in (e), in the towel regions. Baseline method

#1 creates a blurry SR result, since it does not utilize an HR RGB image. Also it fails to

resolve the fine detail in the towel region. Baseline method #2 produced visually satisfactory

SR results, but failed to reconstruct the line between the wall and the floor. This is because

of the one-to-one mapping assumption incorrectly maps brown pixels in the table and the

line between the wall and the floor to the same XRF spectra. Our proposed method in (h)

produces both a visually satisfactory result as well as strong similarity with the original LR

input (a).
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For our second real experiment, the real data was collected by a home-built X-ray fluo-

rescence spectrometer (courtesy of Prof. Koen Janssens), with 2048 channels in spectrum.

Studies from XRF image scanned from Jan Davidsz. de Heem’s “Bloemen en insecten” (ca

1645), in the collection of Koninklijk Museum voor Schone Kunsten (KMKSA) Antwerp, are

presented here. The original XRF image has dimension 680× 580× 2048. We first spatially

downsample the original XRF image by factor 5 and obtain the input LR XRF image with

dimension 136× 116× 2048. Then different SR methods are applied to increase the spatial

resolution of the LR XRF image by factor 5. Notice that because the original HR XRF image

is noisy and blurry, it is different from the HR ground truth. However, we can still use it as

a reference to compute the RMSE, PSNR and SAM metrics to quantitatively compare the

performance of different SR methods. We can also use it as a reference to visually compare

different SR results with the original HR XRF image.

As shown in Table 5.2, our proposed method provides the closest reconstruction compared

to all other methods. The traditional hyperspectral image SR methods (GSOMP [1] and

NSSR [35]) produce considerably greater reconstruction error. Baseline #2 does not assume

linear transformation model from XRF spectrum to RGB and updates the XRF and RGB

endmembers simultaneously, resulting in better SR results. Baseline method #1 produces

SR results more similar to the original HR XRF image compared to Baseline method #2,

since both SR results of Baseline method #1 and the original HR XRF image are blurry.

Metric GSOMP [1] CSUSR [67] NSSR [35] Baseline #1 Baseline #2 Proposed
RMSE 75.18 70.20 79.72 70.35 70.43 69.83
PSNR 42.70 55.66 49.70 56.06 54.93 56.19
SAM 32.60 12.30 25.81 11.60 12.98 11.32

Table 5.2. Experimental results on “Bloemen en insecten” comparing different
SR methods discussed in Section 5.4.2 in terms of RMSE, PSNR and SAM.
Best results are shown in bold.
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Finally, our proposed method produces a result most similar to the input HR XRF image,

demonstrating the effectiveness of our proposed method.

The visual quality of different SR methods on the region of interest of channel #582

- 602, corresponding to Pb Lη XRF emission line, is compared in Fig. 5.8. Notice that

the two long rectangles in the origin HR XRF image (h) are the stretcher bars under the

canvas, which is not visible on the RGB image. Hyperspectral SR methods CSUSR [67]

and GSOMP [1] in (c) and (d) produce noisy results and produce visible artifacts in many

regions again. Baseline method #1 in (e) improves SNR compared to the origin HR XRF

image. However, its SR result is blurry and fails to resolve the details on the flowers. Baseline

method #2 in (f) utilizes HR RGB image as input, so its SR result is sharp and many details

are resolved. However, because it does not model the non-visible component of the XRF

image, it fails to precisely reconstruct the two hidden stretcher bars. Also when compared to

the origin HR XRF image (h), it produces many artifacts, such as the textures of the flower

in the middle, edges and stems. Our proposed method in (g) successfully reconstructs the

non-visible stretcher bars. The reconstructed stretcher bars are blurry compared to other

objects, because it does not utilize any information from the HR RGB image. More details

are resolved by our proposed method. When compared to the origin HR image (h), we can

conclude that those resolved details have high fidelity to the original HR image (h). The

SNR is also improved by our proposed method.

5.5. Conclusion

In this paper we presented a novel XRF image SR framework based on fusing an HR

conventional RGB image. The XRF spectrum of each pixel is represented by an endmembers

dictionary, as well as the RGB spectrum. We also decomposed the input LR XRF image
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into visible and non-visible components, making it possible to find the non-linear mapping

from RGB spectrum to XRF spectrum. The non-visible component is super-resolved using

a standard total variation regularizer. The HR visible XRF component and HR non-visible

XRF component are combined to obtain the final HR XRF image. Both synthetic and

real experiments show the effectiveness of our proposed method. Due to the extreme high

spectral dimensions of the problem, the proposed algorithm is computationally demanding.

Our future work includes its speedup with the use of parallel computation. We also plan to

mount an HR RGB camera on the XRF scanner and calibrate the relative position of the

XRF beam and the HR RGB camera, so that we can capture the HR RGB image and LR

XRF image simultaneously and have accurate alignment of these two signals.
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(a) LR Inputs (b) GSOMP

(c) CSUSR (d) NSSR

(e) Baseline #1 (f) Baseline #2

(g) Proposed Method (h) HR Ground Truth

Figure 5.5. Visualization of the SR result of the synthetic experiment. Region of interest of
channel #210 - 230 is selected. (a) is the LR input XRF image. (b), (c), (d), (e), (f), (g) are the SR
result of GSOMP [1], CSUSR [67], NSSR [35], Baseline #1, Baseline #2 and proposed method,
respectively. (h) is the HR ground truth image.
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Figure 5.6. The reconstruction of a spectrum using our proposed method. The
reconstructed spectrum is shifted vertically (100 counts) for visualization pur-
poses.
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(a) LR XRF Input (b) HR RGB Input

(c) GSOMP (d) CSUSR

(e) NSSR (f) Baseline #1

(g) Baseline #2 (h) Proposed Method

Figure 5.7. Visualization of the SR result of the real experiment on the “Bedroom”. Region of
interest of related to CrK peak (channel #611 - 657) is selected. (a) is the LR input XRF image
and (b) is the HR input RGB image. (c), (d), (e), (f), (g), (h) are the SR result of GSOMP [1],
CSUSR [67], NSSR [35], Baseline #1, Baseline #2 and proposed method, respectively.
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(a) LR Input (b) HR RGB Image

(c) CSUSR (d) GSOMP

(e) Baseline #1 (f) Baseline #2

(g) Proposed Method (h) Original HR XRF Image

Figure 5.8. Visualization of the SR result of the DeHeem real experiment on the “Bloemen en
insecten”. Region of interest of related to Pb Lη XRF emission line (channel #582 - 602) is selected.
(a) is the LR input XRF image and (b) is the HR input RGB image. (c), (d), (e), (f), (g) are the SR
result of CSUSR [67], GSOMP [1], Baseline #1, Baseline #2 and proposed method, respectively.
(h) is the original HR XRF image. Readers are suggested to zoom in in order to compare the details
of different results.
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CHAPTER 6

X-Ray Fluorescence Image Inpainting Utilizing Adaptive

Sampling Mask

6.1. Introduction

In this chapter, we propose an image inpainting approach to speedup the acquisition time

of the XRF images, with the aid of a conventional RGB image, as shown in Figure 1.6. The

proposed XRF image inpainting algorithm can also be applied to spectral images obtained by

any other raster scanning processes, such as Sanning Electron Microscope (SEM), Energy

Dispersive Spectroscopy (EDS) sand Wavelength Dispersive Spectroscopy (WDS). First,

the conventional RGB image of the scanning target is applied to generate the adaptive

sampling mask. Then the XRF scanner will scan the corresponding pixels according to

the binary sampling mask. The speedup in acquisition is achieved since many pixels will

be skipped during the acquisition process. Finally, the subsampled XRF image is fused

with the conventional RGB image to reconstruct the full scan XRF image, as an image

inpainting algorithm. For the fusion based XRF image inpainting algorithm, similar to our

previous super-resolution (SR) approach [28,29], we model the spectrum of each pixel using

a linear mixing model [80,87]. Because the hidden part of the paining is not visible in the

conventional RGB image, but it can be captured in the XRF image [3], there is no direct

one-to-one mapping between the visible RGB spectrum and the XRF spectrum. We model

the XRF signal as a combination of the visible signal (on the surface) and the non-visible

signal (hidden under surface), as shown in Figure 6.1. To inpaint the visible component XRF
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signal, we follow a similar approach in hyper-spectral image SR [1,2,35,50,62,67,112]. A

coupled XRF-RGB dictionary pair is learned to explore the correlation between XRF and

RGB signals. The RGB dictionary is then applied to obtain the sparse representation of the

RGB input image, resulting in a full-sampled coefficient map. Then the XRF dictionary could

be applied on the full-sampled coefficient map to reconstruct the XRF image. Different from

those hyperspectral image SR approaches, we experimentally found that for the inpainting

problem, a spatial adaptive total variation regularizer [8, 81] is needed to produce smooth

XRF output image. For the non-visible part, we inpaint its missing pixels using a standard

total variation regularizer. Finally, the reconstructed visible and non-visible XRF signals

are combined to obtain the final XRF reconstruction result. The input subsampled XRF

image is not explicitly separated into visible and non-visible parts in advance. Instead,

the whole inpainting problem is formulated as an optimization problem. By alternatively

optimizing over the coupled XRF-RGB dictionary and the visible / non-visible full-sampled

coefficient maps, the fidelity of the estimated full-sampled output to both the subsampled

XRF and RGB input signals is improved, thus resulting in a better inpainting output. Both

synthetic and real experiments show the effectiveness of our proposed method, in terms

of both reconstruction error and visual quality of the inpainting result, compared to other

methods [44,95,127].

This chapter is organized as follows. We introduce the adaptive sampling mask design in

Section 6.2. We describe the XRF image inpainting problem in Section 6.3. In Section 6.4,

we provide the experimental results with both synthetic data and real data to evaluate the

approach. The paper is concluded in Section 6.5.
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Figure 6.1. Proposed pipeline of XRF image inpainting. The visible compo-
nent of the input subsampled XRF image is fused with the input RGB image to
obtain the visible component of the reconstructed XRF image. The non-visible
component of the input XRF image is super-resolved to obtain the non-visible
component of the reconstructed XRF image. The reconstructed visible and
non-visible component of output XRF image are combined to obtain the final
output.
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6.2. Adaptive Sampling Mask Generation utilizing Convolutional Neural

Network

In this section, we present our proposed adaptive sampling mask generation using a

CNN, in other words, we describe the details of the “Sampling Mask Generation” block in

Figure 1.6. We first formulate the problem of adaptive sampling mask design, followed by

the presentation of the overall network architecture consisting of both the inpainting network

and the mask generation network.

6.2.1. Problem Formulation

NetM NetE

z m z’ z

Figure 6.2. Pipeline for adaptive sampling mask generation utilizing CNN.

As shown in Figure 6.2, we denote by z an input original image. Our mask generation

network NetM produces a binary sampling mask m = NetM(z, c), where c ∈ [0 1] is the

predefined sampling percentage. The entries of m are equal to 1 for the sampled pixles and

0 otherwise. The corrupted image z′ is obtained by

z′ = z �m = z �NetM(z, c), (6.1)

where � is the element-wise product operation. The reconstructed image z̄ is obtained

by the inpainting network NetE,
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z̄ = NetE(z′) = NetE(z �NetM(z, c)). (6.2)

The overall pipeline is shown in Figure 6.2. We could regard the whole pipeline (Equa-

tion 6.2) as one network, with input z and output z̄, and perform an end to end training. If

we simultaneously optimize the mask generation network NetM and the inpainting network

NetE according to the following loss function,

L(z) = ‖z − z̄‖2 = ‖z −NetE(z �NetM(z, c))‖2, (6.3)

NetM will perform an optimized adaptive sampling strategy according to the input image,

and NetE will also perform optimized image inpainting. After the mask has been gener-

ated by the network NetM , we can replace the inpainting network NetE with other image

inpainting algorithms. The detailed network architecture of NetE and NetM are discussed

in the following two subsections 6.2.2 and 6.2.3, respectively.

6.2.2. Deep Learning Network Architecture for Inpainting Network
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Figure 6.3. Network architecture for the image inpainting network (NetE).
The inpainting framework is an autoencoder network with the encoder and
decoder connected by a channel-wise fully-connected layer.

The network architecture in [45] is used for the inpainting network, as shown in Fig-

ure 6.3. The network is an encoder-decoder pipeline. The encoder takes a corrupted image
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z′ of size 64 × 64 as input and encodes it in the latent feature space. The decoder takes

the feature representation and outputs the resorted image z̄ = NetE(z′). The encoder and

decoder are connected through a channel-wise fully-connected layer. For the encoder, four

convolutional layers are utilized. A batch normalization layer [58] is placed after each convo-

lutional layer to accelerate the training speed and stabilize the learning process. The Leaky

Rectified Linear Unit (LeakyReLU) activation [78,116] is used in all layers in the encoder.

The convolutional layers in the encoder only connect all the feature map together, but

there are no direct connections among different locations within each specific feature map.

Fully-connected layers are then applied to handle this information propagation. To reduce

the number of parameters in the fully connected layers, a channel-wise fully-connected layer

is used to connect the encoder and decoder, as in [86]. The channel-wise fully connected

layer is designed to only propagate information within activations of each feature map. This

significantly reduces the number of parameters in the network and accelerates the training

process.

The decoder consists of four deconvolutional layers [38,76,123], each of which is followed

by a rectified linear unit (ReLU) activation except the output layer. Tanh function is used in

the output layer to restrict the pixel range of the output image. The series of up-convolutions

and non-linearities conducts a non-linear weighted upsampling of the feature produced by

the encoder and generates a higher resolution image of the target size (64× 64).

6.2.3. Deep Learning Network Architecture for Mask Generation Network

According to our knowledge, no prior work has been reported on generating the adaptive

binary sampling mask utilizing CNN. The desired mask generation network NetM should

satisfy the following criteria:
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Figure 6.4. Network architecture for the mask generation network (NetM).
Three layers of convolution are used to estimate the binary sampling mask.

• The output image should have the same spatial resolution as the input image.

• The network architecture should be fully convolutional to handle arbitrary input

sizes.

• The output image should be binary.

• The output image should have a certain percentage c of 1’s.

A network architecture similar to SRCNN [34] is applied here, as shown in Figure 6.4.

The network NetM consists of three convolutional layers, to handle an arbitrary input size.

To keep the spatial dimensions at each layers the same, the images are paded with zeros.

Each convolutional layer is followed by a ReLU activation except the output layer.

Let us denote by Lij the (i, j)th element of L which is mapped to the range [0 1] with

mean value equal to c, by the mapping F defined as

Dij = F (Lij) =


c+ c× tanh(Lij − L̄), if c ≤ 0.5

c+ (1− c)× tanh(Lij − L̄), if c > 0.5

, (6.4)
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where Dij is the (i, j)th element of matrix D ∈ R2, and L̄ is the mean of L. Then Dij ∈ [0 1]

and the mean value of D, denoted by D, will be approximately equal to c if the distribution

of L is symmetric with respect to L̄ (D ≈ c). Then the Bernoulli distribution Ber() is

applied to the binarization of the values of D, that is,

Bij = Ber(Dij) =


1, p = Dij

0, p = 1−Dij

, (6.5)

Notice that

B ≈ 1

N

N∑
i=1

N∑
j=1

E(Bij) =
1

N

N∑
i=1

N∑
j=1

Dij = c, (6.6)

whereN2 is the total number of pixels of L and E(Bij) is the expected value ofBij. Therefore,

B is binary matrix with mean value equal to c, implying that it has c percent of 1s.

Since applying the function Ber(F (·)) on the input L will make the output of the network

be binary and have c percent of 1s, we then make it the last layer activation function.

Notice that function Ber(D) is not continuous and its derivatives do not exist, making the

back propagation optimization during training impractical. We use its expected value D to

approximate it during training and apply the original function Ber(D) during testing.

6.3. Spatial-Spectral Representation for X-Ray Fluorescence Image Inpainting

In this section, we propose the XRF image inpainting algorithm by fusing with it a

conventional RGB image, providing the details of the “Proposed Inpainting Algorithm”

block in Figure 1.6. The proposed fusion style inpainting approach has similarities with

our previous fusion style SR approach [29]. We first formulate the XRF image inpainting

problem, then demonstrate our proposed solution to this inpainting problem.
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6.3.1. Problem Formulation

As shown in Figure 6.1, we are seeking the estimation of a reconstructed XRF image Ȳ ∈

RW×H×B that is full-sampled, with W , H and B the image width, height and number of

spectral bands, respectively. We have two inputs: a sub-sampled XRF image X̄ ∈ RW×H×B

with the known binary sampling mask S̄ ∈ RW×H . X(i, j, :) is equal to the zero vector if

not sampled, i.e., corresponding to S(i, j) = 0; and a conventional RGB image Ī ∈ RW×H×b

with the same spatial resolution as the target XRF image Ȳ , but a small number (equal

to 3) of spectral bands, b � B. The input sub-sampled XRF image X̄ can be separated

into two parts: the visible component X̄v ∈ RW×H×B and the non-visible component X̄nv ∈

RW×H×B, with the same binary sampling mask S̄ as X̄. We propose to estimate the fully

sampled visible component Ȳ ∈ RW×H×B by fusing the conventional RGB image Ī with the

visible component of the input sub-sampled XRF image X̄v and the fully sampled non-visible

component Ȳnv ∈ RW×H×B by using standard total variation inpainting methods.

To simplify notation, the image cubes are written as matrices, i.e., all pixels of an image

are concatenated, such that every column of the matrix corresponds to the spectral response

at a given pixel, and every row corresponds to a lexicographically ordered spectral band.

Those un-sampled pixels are skipped in this matrix representation. Accordingly, the image

cubes are written as Y ∈ RB×Nh , X ∈ RB×Ns , I ∈ Rb×Nh , Xv ∈ RB×Ns , Xnv ∈ RB×Ns ,

Yv ∈ RB×Nh , Ynv ∈ RB×Nh , where Nh = W × H and Ns = W × H × c is the number of

sampled XRF pixels. We therefore have

X = Xv +Xnv, (6.7)



111

Y = Yv + Ynv, (6.8)

according to the visible / non-visible component separation models as shown in Figure 6.1.

Let us denote by yv ∈ RB and ynv ∈ RB the one-dimensional spectra at a given spatial

location of Ȳv and Ȳnv, respectively. That is, a column of Yv and Ynv is represented , according

to the linear mixing model [16,63], described as

yv =
M∑
j=1

dxrfv,j αv,j, Yv = Dxrf
v Av, (6.9)

ynv =
M∑
j=1

dxrfnv,jαnv,j, Ynv = Dxrf
nv Anv, (6.10)

where dxrfv,j and dxrfnv,j are column vectors representing respectively the endmembers for

the visible and non-visible components, M is the total number of endmembers, Dxrf
v ≡

[dxrfv 1 , d
xrf
v 2 , . . . , d

xrf
v M ] ∈ RB×M , Dxrf

nv ≡ [dxrfnv 1, d
xrf
nv 2, . . . , d

xrf
nv M ] ∈ RB×M , and αv,j and αnv,j

are the corresponding per-pixel abundances. Equation 6.8 holds for a specific column yv

of matrix Yv (say the kth column). We take the corresponding αv,j,j=1,...,M and stack them

into an M × 1 column vector. This vector then becomes the kth column of the matrix

Av ∈ RM×Nh . In a similar manner we construct matrix Anv ∈ RM×Nh . The endmembers

Dxrf
v and Dxrf

nv act as basis dictionaries representing Yv and Ynv in a lower-dimensional space

RM , with rank{Yv} ≤M,and rank{Ynv} ≤M .

The visible Xv and non-visible Xnv components of the input sub-sampled XRF image

are spatially sub-sampled versions of Yv and Ynv, respectively, that is

Xv = YvS = Dxrf
v AvS, (6.11)
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Xnv = YnvS = Dxrf
nv AnvS, (6.12)

where S ∈ RNh×Ns is the sub-sampling operator that describes the spatial degradation from

the fully sampled XRF image to the sub-sampled XRF image.

Similarly, the input RGB image I can be described by the linear mixing model [16,63],

I = DrgbAv, (6.13)

where Drgb ∈ Rb×M is the RGB dictionary. Notice that the same abundance matrix Av is

used in Equations 6.9 and 6.11. This is because the visible component of the scanning object

is captured by both the XRF and the conventional RGB images. Matrix Av encompasses

the spectral correlation between the visible component of the XRF and the RGB images.

The physically grounded constraints in [67] are shown to be effective in our previous

work [29], so we propose to impose similar constraints, by making full use of the fact that

the XRF endmembers are XRF spectra of individual materials, and the abundances are pro-

portions of those endmembers. Consequently, they are subject to the following constraints:
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0 ≤ Dxrf
v,ij ≤ 1,∀i, j (6.14a)

0 ≤ Dxrf
nv,ij ≤ 1, ∀i, j (6.14b)

0 ≤ Drgb
ij ≤ 1, ∀i, j (6.14c)

Av,ij ≥ 0,∀i, j (6.14d)

Anv,ij ≥ 0,∀i, j (6.14e)

1T(Av + Anv) = 1T, (6.14f)

where Dxrf
v,ij , D

xrf
nv,ij, D

rgb
ij , Av,ij and Anv,ij are the (i, j) elements of matrices Dxrf

v , Dxrf
nv , Drgb,

Av and Anv, respectively, 1T demotes a row vector of 1’s compatible with the dimensions of

Av and Anv. Equations 6.14a, 6.14b and 6.14c enforce the non-negative, bounded spectrum

constraints on endmembers, Equations 6.14d and 6.14e, enforce the non-negative constraints

on abundances, and Equation 6.14e enforces the constraint that the visible component abun-

dances and non-visible component abundances for every pixel sum up to one.

6.3.2. Proposed Solution

To solve the XRF image inpainting problem, we need to estimate Av, Anv, D
rgb, Dxrf

v and

Dxrf
nv simultaneously. Utilizing Equations 6.7, 6.11, 6.12, 6.13 and 6.14, we can formulate

the following constrained least-squares problem:
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min
Av ,Anv ,Drgb,

Dxrf
v ,Dxrf

nv

‖X −Dxrf
v AvS −Dxrf

nv AnvS‖2
F

+ γ‖∇I(D
xrf
v Av)‖2

F + λ‖∇(Dxrf
nv Anv)‖2

F

+ ‖I −DrgbAv‖2
F

(6.15a)

s.t. 0 ≤ Dxrf
v ij ≤ 1,∀i, j (6.15b)

0 ≤ Dxrf
nv ij ≤ 1,∀i, j (6.15c)

0 ≤ Drgb
ij ≤ 1, ∀i, j (6.15d)

Av ij ≥ 0,∀i, j (6.15e)

Anv ij ≥ 0,∀i, j (6.15f)

1T(Av + Anv) = 1T, (6.15g)

‖Av + Anv‖0 ≤ s, (6.15h)

with ‖ · ‖F denoting the Frobenius norm, and ‖ · ‖0 the `0 norm, i.e., the number of non-zero

elements of the given matrix. The first term in Equation 6.15a represents a measure of

the fidelity to the sub-sampled XRF data X, the second term is the total variation (TV)

regularizer of the visible component, the third term is the TV regularizer of the non-visible

component and the last term is the fidelity to the observed RGB image I. The TV regularizer

of the visible component ∇I(D
xrf
v Av) is defined as
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‖∇I(D
xrf
v Av)‖2

F

=
H−1∑
i=1

W−1∑
j=1

wdowni,j ‖Dxrf
v Āv(i, j, :)−Dxrf

v Āv(i+ 1, j, :)‖2
2

+wrighti,j ‖Dxrf
v Āv(i, j, :)−Dxrf

v Āv(i, j + 1, :)‖2
2

= ‖Dxrf
v AvP (I)‖2

F

(6.16)

where Āv ∈ RW×H×M is the 3D volume version of Av and Āv(i, j, :) ∈ RM is the non-visible

component abundance of pixel (i, j). wdowni,j and wrighti,j are the adaptive TV weights in the

vertical and horizontal directions, respectively, that is,

wdowni,j = e−α‖Ī(i,j,:)−Ī(i+1,j,:)‖22 , (6.17)

wrighti,j = e−α‖Ī(i,j,:)−Ī(i,j+1,:)‖22 , (6.18)

where Ī(i, j, :) is the RBG image pixel at position (i, j). P (I) ∈ RNh×((W−1)(H−1)) in Equa-

tion 6.16 is the adaptive horizontal/vertical first order difference operator, determined by

the input RGB image I, according to Equation 6.17, 6.18. Equations 6.17, 6.18 indicate that

the TV regularizer of the visible component is adaptive to the conventional RGB image Ī.

When the difference between two adjacent RGB pixels is small, a strong spatial smoothness

constraint is placed on their corresponding XRF pixels, and vice versa. This adaptive TV

regularizer is one of the main differences between this fusion based XRF image inpainting

algorithm and our previous fusion based XRF image SR algorithm [29]. We found out that

such TV regularizer on the visible component is essential for the inpainting problem, oth-

erwise the inpainting results are not satisfactory. For the SR approach, we do not need

such a TV regularizer on the visible component. The SR degradation model assumes that
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the LR measured XRF image is a weighted sum of all the pixels in the target HR XRF

image, so there is an implicit spatial smoothness constraint imposed by the LR XRF image.

However, for the XRF image inpainting problem, we sub-sample the XRF image to obtain

the measurement, so that many pixels are not sampled at all, making the reconstruction

more difficult than for the SR problem. Also the mapping from RGB to XRF pixels is one

to many, meaning that utilizing the RGB image can not guarantee a spatially smooth XRF

reconstruction.

To estimate the HR visible component abundance Av, the HR RGB image I can provide

details in the spatial domain. However, to estimate the HR non-visible component abundance

Anv, there is no additional spatial information, so we need the TV regularizer (Equation 6.19)

to impose spatial smoothness on the non-visible component. The TV regularizer for the non-

visible component ∇(Dxrf
nv Anv) in Equation 6.15 is defined as

‖∇(Dxrf
nv Anv)‖2

F

=
H−1∑
i=1

W−1∑
j=1

‖Dxrf
nv Ānv(i, j, :)−Dxrf

nv Ānv(i+ 1, j, :)‖2
2

+‖Dxrf
nv Ānv(i, j, :)−Dxrf

nv Ānv(i, j + 1, :)‖2
2

= ‖Dxrf
nv AnvQ‖2

F ,

(6.19)

where Ānv ∈ RW×H×M is the 3D volume version of Anv and Ānv(i, j, :) ∈ RM is the non-

visible component abundance of pixel (i, j). Q ∈ RNh×((W−1)(H−1)) is the horizontal/vertical

first order difference operator. There is no additional spatial information to estimate the

non-visible component abundance Anv of the full sampled XRF image, so an homogeneous

TV regularizer (Equation 6.9) is imposed. The TV regularization parameters γ and λ in
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Equation 6.15 control the spatial smoothness of the reconstructed visible and non-visible

components, respectively.

The constraint Equations 6.15e, 6.15f, 6.15g together restrict the abundances of visible

and non-visible components, and also act as a sparsity prior on the per-pixel abundances,

since they bound the `1 norm of the combined abundances (Av +Anv) to be 1 for all pixels.

The last constraint Equation 6.15h is an optional constraint, which further enforces the

sparsity of the combined abundance (Av + Anv).

The optimization in Equation 6.15 is non-convex and difficult to carry out if we are to

optimize over all the parameters Av, Anv, D
rgb, Dxrf

v and Dxrf
nv directly. We found it effective

to alternatively optimize over these parameters. Also because Equation 6.15 is highly non-

convex, good initialization is needed. A similar approach to the coupled dictionary learning

technique in [119,120] is applied here to initialize these parameters.

6.3.2.1. Initialization. Let Y (0) ∈ RB×Nh be the initialization of Y . Such initialization

can be obtained by utilizing some standard image inpainting algorithms [44,127] to inpaint

the sub-sampled XRF image slice by slice. Then the coupled dictionary learning technique

in [119,120] can be utilized to initialize Drgb and Dxrf
v by

min
Drgb,Dxrf

v

‖I −DrgbAv‖2
F + ‖Y (0) −Dxrf

v Av‖2
F

+η

Nl∑
k=1

‖Av(:, k)‖1,

s.t. ‖Drgb(:, k)‖2 ≤ 1,∀k,

‖Dxrf
v (:, k)‖2 ≤ 1,∀k,

(6.20)

where ‖ · ‖1 is the `1 vector norm, parameter β controls the sparseness of the coefficients in

Av, Av(:,k), Drgb(:, k) and Dxrf
v (:, k) denote the kth column of matrices Av, D

rgb, and Dxrf
v ,
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respectively. Details of the optimization can be found in [119, 120]. Drgb and Dxrf
v are

initialized using Equation 6.20 and Dxrf
nv is initialized to be equal to Dxrf

v . Av is initialized

by Equation 6.20 as well, while Anv is set equal to zero at initialization.

6.3.2.2. Optimization Scheme. We propose to alternatively optimize over all the param-

eters in Equation 6.8a. First we optimize over Av and Anv by fixing all other parameters,

min
Av ,Anv

‖X −Dxrf
v AvS −Dxrf

nv AnvS‖2
F

+γ‖∇I(D
xrf
v Av)‖2

F + λ‖∇(Dxrf
nv Anv)‖2

F

+‖I −DrgbAv‖2
F

s.t. Av ij ≥ 0,∀i, j

Anv ij ≥ 0, ∀i, j

1T(Av + Anv) = 1T,

‖Av + Anv‖0 ≤ s.

(6.21)

PALM (proximal alternating linearized minimization) algorithm [17] is utilized to op-

timize over Av and Anv by a projected gradient descent method. For Equation 6.21, the

following three steps are iterated for q = 1, 2, . . . until convergence:

V q
v = Aq−1

v − 1

dv
DrgbT (DrgbAq−1

v − I) (6.22a)

V q
nv = Aq−1

nv

− 1

dnv
(Dxrf

nv

T
(Dxrf

nv A
q−1
nv S − (X −Dxrf

v Aq−1
v S))ST

+ λDxrf
nv

T
Dxrf
nv AnvQQ

T )

(6.22b)

{Aqv, Aqnv} = proxAv ,Anv(V q
v , V

q
nv), (6.22c)
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where d1 = β1‖DrgbDrgbT‖F , d2 = β2‖Dxrf
nv D

xrf
nv

T‖F are non-zero step size constants, and

proxAv ,Anv is the proximal operator that project V q
v , V

q
nv onto the constraints of Equation 6.21.

The proximal projection is computational inexpensive because it just sets negative entries

of V q
v and V q

nv to zero and scales every column of V q
v and V q

nv simultaneously to equal one

in `1 norm. Notice that in Equation 6.22a, only the gradient of the second term in Equa-

tion 6.13 is utilized to update V q
v , because we want the visible component coefficients Av to

be determined by the RGB image I only, instead of being determined jointly by the RGB

image I and the XRF image X, to obtain spatially sharp estimation of the visible component

coefficient Av.

Second, we optimize over Drgb solving the following constrained least-squares problem:

min
Drgb

‖I −DrgbAv‖2
F

s.t. 0 ≤ Drgb
ij ≤ 1,∀i, j.

(6.23)

Likewise, Equation 6.23 is minimized by iterating the following steps until convergence:

Eq = Drgbq−1 − 1

drgb
(Drgbq−1

Av − I)Av
T (6.24a)

Drgbq = proxDrgb(Eq), (6.24b)

with drgb = β3‖AvAvT‖F again a non-zero step size constant and proxDrgb the proximal

operator that projects Eq onto the constraint of Equation 6.23. The proximal operator this

time is also computationally inexpensive since it just truncates the entries of Eq to 0 from

below and to 1 from above.

Similarly, Dxrf
v is then optimized by solving
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min
Dxrf

v

‖(X −Dxrf
nv AnvS)−Dxrf

v AvS‖2
F

+γ‖∇I(D
xrf
v Av)‖2

F

s.t. 0 ≤ Dxrf
v ij ≤ 1, ∀i, j,

(6.25)

using the following iteration steps:

U q = Dxrf
v

q−1

− 1

dxrfv

(Dxrf
v

q−1
AvS − (X −Dxrf

nv AnvS))STAv
T

− γDxrf
v AvP (I)P (I)TAv

T

(6.26a)

Dxrf
v

q
= proxDxrf

v
(U q), (6.26b)

where dxrfv = β4‖AvAvT‖F is the non-zero step size constant and proxDxrf
v

is the proximal

operator which project U q onto the constraints of Equation 6.17. It is the same as the

proximal operator in Equation 6.24b.

Finally, we optimize Dxrf
nv by solving the following problem,

min
Dxrf

nv

‖(X −Dxrf
v AvS)−Dxrf

nv AnvS‖2
F

+λ‖∇(Dxrf
nv Anv)‖2

F

s.t. 0 ≤ Dxrf
nv ij ≤ 1,∀i, j.

(6.27)

Likewise, the following two steps are iterated until convergence:
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Lq = Dxrf
nv

q−1

− 1

dxrfnv

(Dxrf
nv

q−1
AnvS − (X −Dxrf

v AvS))STAnv
T

− λDxrf
nv AnvQQ

TAnv
T

(6.28a)

Dxrf
nv

q
= proxDxrf

nv
(Lq), (6.28b)

where dxrfnv = β5‖AnvAnvT‖F again is a non-zero step size constant, proxDxrf
nv

is the proximal

operator projecting Lq onto the constraints of Equation 6.19, which is the same proximal

operator as the ones in Equations 6.16b and 6.18b. The complete optimization scheme is

illustrated in Algorithm 4. According to Equations 6.8, 6.9, 6.10, the reconstructed full-

sampled XRF output image Y can be computed by

Y = Yv + Ynv = Dxrf
v Av +Dxrf

nv Anv. (6.29)

6.4. Experimental Results

In the experimental results section, we will first show the advantages of our proposed

adaptive sampling mask generation CNN in RGB image inpainting task, followed by the

performance of the proposed fusion based XRF inpainting algorithm in XRF image inpainting

task.

6.4.1. Adaptive Sampling Mask for RGB Image Inpainting

For the RGB image inpainting task, we show the benefits of our proposed adaptive sampling

mask, compared to the random sampling mask.
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Algorithm 4. Proposed Optimization Scheme of Equation 6.15

input: Sub-sampled XRF image X, A conventional RGB image I.
1: Initialize Y (0) by inpainting X slice by slice;

Initialize Drgb(0)
, Dxrf

v
(0)

and Av
(0) by Equation 6.20;

Initialize Dxrf
nv

(0)
= Dxrf

v
(0)

;
Initialize Anv

(0) = 0;
n = 0;

2: repeat
3: Estimate Av

(n+1) and Anv
(n+1) with Equation 6.21;

4: Estimate Drgb(n+1)
with Equation 6.23;

5: Estimate Dxrf
v

(n+1)
with Equation 6.25;

6: Estimate Dxrf
nv

(n+1)
with Equation 6.27;

7: n=n+1;
8: until convergence
output: Full-sampled XRF image

Y = Dxrf
v Av +Dxrf

nv Anv.

6.4.1.1. Datasets. To train our proposed adaptive sampling mask generation CNN in Sec-

tion 6.2, ImageNet [33] database, without any of the accompanying labels, is used. We

randomly select 1, 000, 000, 100 and 100 images as the training, validation and test set, re-

spectively. All the images are selected randomly among all categorizes, to capture as diverse

image structures as possible. All the images are cropped to have spatial resolution 64× 64.

6.4.1.2. Implementation Details. Our proposed adaptive sampling mask generation CNN

(Section 6.2) is implemented in Torch. ADAM [64] is applied as the stochastic gradient de-

scent solver for optimization. We use the same hyper-parameters suggest in [45] and batch

size equal to 100 during the training. We pick c = 0.2 for the sampling percentage parameter.

A 20% sampling percentage roughly speedup the XRF image scanning procedure by a factor

of 5. 400 epochs are applied during the training process.

In the training, we first initialize the inpainting network NetE according to [45]. Random

sampling mask with c = 0.2 is utilized to corrupt the input RGB image. The mask generation
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network NetM is initialized randomly. We then train the whole network architecture in

Figure 6.2. The learning rate of the mask generation network NetM is set to be 0.0002

during training. The learning rate of the inpainting network NetE is set to be 0, i.e., we fix

NetE when training NetM . If we optimize NetM and NetE simultaneously, although the

whole network structure in Figure 6.2 will become optimal in reconstructing the input image

z, NetM and NetE will be coupled with each other. Notice that the channel-wise fully

connected layer in NetE (Figure 6.3) is able to learn the high-level feature mapping, making

NetE be able to perform semantic image inpainting. However, we would like to utilize other

general image inpainting algorithms to perform the inpainting reconstruction, not onlyNetE,

and to make the adaptive sampling mask be general to as many image inpainting algorithms

as possible. By fixing NetE, which is pre-trained by random sampling masks, NetM is

then constrained to be optimized to general image inpainting problem instead of semantic

image inpainting problem. Better adaptive sampling mask generation CNN for general image

inpainting problem could be trained by utilizing this training procedure.

6.4.1.3. Performance on ImageNet Testing Images. To compare our adaptive sam-

pling mask with the random sampling mask, we apply both sampling to corrupt those 100

testing images from ImageNet database. The sampling rate is c = 0.2 for both sampling

masks. For image inpainting algorithms, NetE Inpainting [45], Harmonic Inpainting [22],

Mumford-Shah Inpainting [44] and BPFA inpainting [127], are used to reconstruct the full-

sampled RGB images.

The average PSNR and the average SSIM [111] metric over all 100 test images are

shown in Figure 6.5 and Figure 6.6, respectively. First, we observe that the adaptive sam-

pling mask outperform random sampling mask consistently over all inpainting reconstruction
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Figure 6.5. Average PSNR over all 100 test images from ImageNet database
for several inpainting methods between random sampling mask and adaptive
sampling mask.

algorithm by around 1 dB in PSNR and 0.02 in SSIM, showing the effectiveness of our pro-

posed adaptive sampling mask generation network. Furthermore, we observe that the DNN

based inpainting network NetE demonstrates the highest PSNR and SSIM values and the

largest improvement from random sampling to adaptive sampling among all the inpainting

algorithms.

The visual quality comparison of the adaptive sampling mask and random sampling mask

is shown in Figure 6.7. 3 test images are picked from the total 100 image testing set. The

advantages of the proposed adaptive sampling mask over the random sampling mask can

be observed by comparing the reconstruction results of the same inpainting algorithm over

these two sampling strategies. For the test image #39, the adaptive sampling mask are able

to capture the white dots in the red hat, resulting accurate reconstruction results of those

white dots. In test image #89, adaptive sampling mask spends more sampling pixels in the



125

NetE Harmonic Mumford-Shah BPFA
0.7

0.72

0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

A
ve

ra
ge

 S
SI

M

Random Sampling Mask
Adaptive Sampling Mask

Figure 6.6. Average SSIM over all 100 test images from ImageNet database
for several inpainting methods between random sampling mask and adaptive
sampling mask.

high-frequency foreground object, resulting a better reconstruction of the foreground object.

The reconstruction of the low-frequency background object is not as good as the random

sampling mask since the number of the sampled pixels in background area is small. In test

image #91, the adaptive sampling mask samples densely on the contour of the bird, resulting

better reconstruction result of the contour. The advantages of the adaptive sampling mask

over random sampling mask is consistent over all the inpainting reconstruction algorithms.

6.4.1.4. Performance on Painting Images. We also tested our proposed adaptive sam-

pling mask on painting images. As shown in Figure 6.8 (a) and Figure 6.9 (b), two RGB

images of the painting “Bloemen en insecten” and the part of the painting “Bedroom” are

tested. The “Bloemen en insecten” image has spatial resolution 580 × 680 and part of the

“Bedroom” image has spatial resolution 475 × 475. Random sampling mask and adaptive

sampling mask is generated, as shown in Figure 6.8(b), Figure 6.9 (b) and Figure 6.8(c),
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#89 Adaptive

Random

#91 Adaptive

Random

Figure 6.7. Visual Comparison of the reconstructed images using adaptive
sampling mask and random sampling mask. The first column is the input test
image and the second column is the sampling mask, either adaptive or random,
the third column is the sampled image obtained by the sampling mask and the
rest columns are the reconstruction result of NetE Inpainting [45], Harmonic
Inpainting [22], Mumford-Shah Inpainting [44] and BPFA inpainting [127],
respectively.

Figure 6.9 (c). Harmonic Inpainting [22], Mumford-Shah Inpainting [44] algorithms are

utilized to reconstructed the sampled RGB images, and the reconstruction results are shown

in Figure 6.8 (d)-(g) and Figure 6.9 (d)-(g), with the PSNR values. NetE Inpainting [45] is
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not applied here for the inpainting reconstruction because NetE is trained to inpaint RGB

images with spatial resolution 64×64. The network structure shown in Figure 6.3 is not fully

convolutional as there is the channel-wise fully connected layer in the middle. BPFA [127]

inpainting is not applied here for the inpainting reconstruction because the algorithm is ex-

tremely slow on large scale images. By comparing the column of random sampling and the

column of adaptive sampling, it can be concluded that our proposed adaptive sampling mask

outperform the random sampling mask, in both visual quality of the reconstructed images

and the PSNR values.

6.4.2. Adaptive Sampling Mask for X-Ray Fluorescence Image Inpainting

In the previous section (Section 6.4.1), we demonstrate the effectiveness of our proposed

adaptive sampling mask in RGB image inpainting problem. To further verify the performance

of the adaptive sampling mask and evaluate the performance of our proposed fusion based

inpainting algorithm (Section 6.3), we have performed experiments on both synthetic and

real XRF images. The basic parameters of the proposed SR method are set as follows: the

number of atoms in the dictionaries Drgb, Dxrf
nv and Dxrf

v is M = 50 for synthetic experiments

and M = 200 for real experiments; β1 = β2 = β3 = β4 = β5 = 1.01, which only affects the

speed of convergence; parameter λ and γ in Equation 6.15 are set to be 0.1; parameter α in

Equation 6.17 and Equation 6.18 is set to be 16 and η in Equation 6.20 is set to be 0.02.

The optional constraint in Equation 6.15h is not applied here.

6.4.2.1. Error Metrics. As a primary error metric we use, the root mean squared error

(RMSE) between the estimated full-sampled XRF image Y and the ground truth image Y gt

is computed Harmonic Inpainting [22], Mumford-Shah Inpainting [44] and BPFA inpaint-

ing [127]. Notice that to inpaint all the channels in the sub-sampled XRF image,
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RMSE =

√
‖Y − Y gt‖2

F

BNh

. (6.30)

The peak-signal-to-noise ratio (PSNR) is reported as well,

PSNR = 20 log10

max(Y gt)

RMSE
, (6.31)

where max(Y gt) denoting the maximum entry of Y gt.

The spectral angle mapper (SAM, [122]) in degrees is also utilized, which is defined as

the angle in RB between an estimated pixel and the ground truth pixel, averaged over the

whole image,

SAM =
1

Nh

Nh∑
j=1

arccos
Y (:, j)TY gt(:, j)

‖Y (:, j)‖2‖Y gt(:, j)‖2

. (6.32)

6.4.2.2. Comparison Methods. According to our knowledge, no work has been done on

solving XRF (or Hyperspectral) image inpainting problem by fusing a conventional RGB

image. So we can only compare with those traditional image inpainting algorithms, such

as Harmonic Inpainting [22], Mumford-Shah Inpainting [44] and BPFA inpainting [127].

Harmonic Inpainting and Mumford-Shah inpainting methods are for image inpainting so we

have to inpaint the XRF image channel by channel. BPFA inpainting [127] is able to inpaint

multiple channels simultaneously.

6.4.2.3. Synthetic Experiment. We evaluate the inpainting results for different methods

with a synthetic experiment first. We combined 3 noise free spectra with a significant amount

of spectral overlap (50×1), an airforce target image (345×490×3) as the visible image and

a rectangle image (345× 490× 3) as the non-visible image to simulate the ground truth HR

XRF image Y gt (345× 490× 1024). The 3 noise free spectra, the airforce target image and
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the rectangle image are shown in Figs. 6.10, 6.11 (a) and 6.11 (b), respectively. In detail,

we assume that the yellow foreground of the airforce target image corresponds to spectrum

# 1, the blue background of the airforce image corresponds to spectrum #2 and the white

foreground of the rectangle image corresponds to spectrum #3. The sampling rate c is set

to be 0.2 for the inpainting problem. The adaptive sampling mask is generated according to

the RGB image in Figure 6.11 (a). Mumford-Shah Inpainting algorithm [44] is utilized to

initialize the reconstruction slice by slice.

The RMSE, PSNR and SAM metrics were computed between the inpainting results

of different inpainting algorithms, under either random sampling mask or adaptive sam-

pling mask. The default parameters of methods Harmonic Inpainting [22], Mumford-Shah

Inpainting [44] and BPFA inpainting [127] in their original paper were applied in our syn-

thetic experiments. As shown in Table 6.1, our proposed fusion inpainting method with

adaptive sampling has the smallest RMSE, highest PSNR and smallest SAM. By comparing

the reconstruction performance of the same inpainting algorithm with different sampling

strategies, it can been seen that adaptive sampling usually outperforms random sampling.

By comparing the reconstruction performance of the same sampling strategy with different

inpainting algorithms, our proposed fusion based inpainting algorithm outperforms all the

other inpainting algorithms. It can also be observed that the advantages of the adaptive

sampling and the fusion based inpainting are additive, as the combination of the adaptive

sampling and the fusion style inpainting has the best reconstruction performance.

We further validate the effectiveness of our proposed fusion based inpainting algorithm

in Figure 6.12. The iteration process of the reconstructed full-sampled XRF image with

respect to RMSE of both random sampling and adaptive sampling is shown here. Since

Mumford-Shah inpainting [44] algorithm is used as initialization, we visualize its RMSE
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Metric
Harmonic
Random

Harmonic
Adaptive

BPFA
Random

BPFA
Adaptive

Mumford-Shah
Random

Mumford-Shah
Adaptive

Proposed
Random

Proposed
Adaptive

RMSE 0.1166 0.1006 0.3334 0.3409 0.1107 0.0945 0.0981 0.0808

PSNR 18.67 19.94 15.44 15.94 19.11 20.49 20.17 30.43

SAM 5.55 4.74 33.91 36.83 4.50 3.68 4.63 3.89

Table 6.1. Experimental results on synthetic data comparing different inpaint-
ing methods, under both random and adaptive sampling strategies, discussed
in Section 6.4.2.2 in terms of RMSE, PSNR and SAM. Best results are shown
in bold.

as dashed horizontal lines, as baseline. It can be seen that for both random sampling and

adaptive sampling, the proposed fusion based inpainting algorithm has smaller RMSE as the

number of iteration increases. The RGB image of the inpainting target provides positive

contribution to the inpainting reconstruction, according to our formulation in Section 6.3.

Again, the adaptive sampling strategy has advantages over random sampling strategy, for

both Mumford-Shah inpainting [44] algorithm and our proposed fusion based inpainting

algorithm.

We compare the visual quality of different inpainting methods under both random sam-

pling mask and adaptive sampling mask on the channel #6 in Figure 6.13. Because Harmonic

Inpainting [22], Mumford-Shah Inpainting [44] and BPFA inpainting [127] do not utilize

RGB image as guidance during the inpainting reconstruction, their inpainting results are not

as sharp as our proposed fusion based inpainting algorithm. The appropriate reconstruc-

tion of the non-visible component of Figure 6.13 (i) and (j) shows that our proposed fusion

based inpainting algorithm is able to handle hidden part of the scanning objects. Detailed

validation on the non-visible component modeling can be found in [29]. Notice that the

non-visible component in Figure 6.13 (i) and (j) is more blurry than the visible component

(airforce target), since it is reconstructed by a TV regularizer and does not use any RGB

image information. The sampling mask is not optimized for the non-visible component in
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Figure 6.13 (j) as well. Notice that in Figure 6.13 (b), dense sampling pixels are applied

on the high frequency region of the visible components, and the non-visible component are

sampled sparsely.

6.4.2.4. Real Experiment. For our second real experiment, the real data was collected

by a home-built X-ray fluorescence spectrometer (courtesy of Prof. Koen Janssens), with

2048 channels in spectrum. Studies from XRF image scanned from Jan Davidsz. de Heem’s

“Bloemen en insecten” (ca 1645), in the collection of Koninklijk Museum voor Schone Kun-

sten (KMKSA) Antwerp, are presented here. We utilize the super-resolved XRF image in

our previous work [29] as the ground truth. The ground truth XRF image has dimension

680 × 580 × 2048. We first extract 20 region of interest (ROI) spectrally and work on the

extracted 20 XRF ROI, to decrease the spectral dimension from 2048 to 20. We have to de-

crease the spectral dimension so as to compare with other inpainting algorithms, since some

algorithm [22,44] reconstruct the sub-sampled XRF image slice by slice and large spectral

dimension will make the computational time very long. The sampling ratio c is set to be

0.2 again. Both random sampling strategy and adaptive sampling strategy are applied and

analyzed. Then different inpainting methods are applied to reconstruct those sub-sampled

XRF image.

Metric
Harmonic
Random

Harmonic
Adaptive

BPFA
Random

BPFA
Adaptive

Mumford-Shah
Random

Mumford-Shah
Adaptive

Proposed
Random

Proposed
Adaptive

RMSE 0.0195 0.0193 0.0176 0.0221 0.0184 0.0179 0.0168 0.0160

PSNR 34.19 34.30 35.29 33.56 34.70 34.93 35.48 42.61

SAM 2.18 2.29 2.01 2.26 1.99 1.92 1.81 1.79

Table 6.2. Experimental results on the “Bloemen en insecten” data compar-
ing different inpainting methods, under both random and adaptive sampling
strategies, discussed in Section 6.4.2.2 in terms of RMSE, PSNR and SAM.
Best results are shown in bold.
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As shown in Table 6.2, our proposed fusion based inpainting algorithm with the proposed

adaptive sampling mask provides the closest reconstruction to the ground truth XRF image

compared to all other methods. Our proposed algorithm utilize a conventional RGB image

as guidance, which is full-sampled and has high contrast (Figure 6.8 (a)), resulting a better

inpainting performance. By comparing the difference between column “Mumford-Shah Ran-

dom” and column “Proposed Random”, and the difference between column “Mumford-Shah

Adaptive” and column “Proposed Adaptive”, it can be concluded that the benefit gained by

our proposed fusion based inpainting is large when the adaptive sampling mask is applied.

For example, there is a 0.78dB improvement in PSNR by applying our proposed fusion based

inpainting when random sampling mask is applied, while there is a 7.68dB improvement in

PSNR when adaptive sampling mask is applied. This is because the adaptive sampling

mask sampled the XRF image efficiently for the visible component and the fusion inpainting

propagate the measured XRF pixels properly.

The iteration process of our proposed fusion inpainting algorithm, similar to Figure 6.12,

is shown in Figure 6.14. Notice that at the beginning iterations of our proposed fusion

inpainting algorithm, the RMSE is higher than the Mumford-Shah inpainting algorithm.

This is because we decompose the inpainting result of Mumford-Shah inpainting algorithm

by sparse representation, according to Equation 6.20. Due to complexity of the “Bloemen

en insecten” data, we loose some accuracy at the first few iterations. However, with the

iteration going on, the RMSE of both random sampling and adaptive sampling decreases

and becomes smaller than the RMSE of Mumford-Shah inpainting algorithm.

The visual quality of different inpainting algorithms and sampling strategies on channel

#16, corresponding to Pb Lη XRF emission line, is compared in Figure 6.15. The adaptive

sampling mask is generated according to the RGB image in Figure 6.8 (a). The same random
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and adaptive sampling masks as the sampling masks in Figure 6.8 (b) and Figure 6.8 (c)

are applied here. Notice that the two long rectangles in the ground truth XRF image

Figure 6.15 (a) are the stretcher bars under the canvas, which is not visible on the RGB

image. The reconstruction results (c) (e) (g) of both Harmonic Inpainting [22], Mumford-

Shah Inpainting [44] and BPFA inpainting [127] based on the adaptive sampling mask

are sharper than those results (b) (d) (f) based on the random sampling mask. This is

because the majority of the XRF signal in the “Bloemen en insecten” data have correlation

to the RGB signal, and the adaptive sampling mask, which is optimal to the RGB image,

would also be optimal to the visible component of the XRF signal. The proposed fusion

inpainting algorithm further improves the contrast and resolves more fine details in (i). The

reconstructed stretcher bars in all cases are blurry compared to other objects, because it does

not utilize any information from the RGB image, both in sampling and inpainting. When

compared to the ground truth image (a), we can conclude that those resolved details have

high fidelity to the ground truth image (a).

6.5. Conclusion

In this paper we presented a novel adaptive sampling mask generation algorithm based

on CNN and a novel XRF image inpainting framework based on fusing a conventional RGB

image. For the adaptive sampling mask generation, we trained the mask generation network

NetM along with the inpainting network NetE, to obtain optimal binary sampling mask

based on the input RGB image. For the fusion based XRF image inpainting algorithm, the

XRF spectrum of each pixel is represented by an endmembers dictionary, as well as the RGB

spectrum. The input sub-sampled XRF image is decomposed into visible and non-visible

components, making it possible to find the non-linear mapping from RGB spectrum to XRF
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spectrum. Total variation regularizer is applied on both visible and non-visible compo-

nents, to ensure the spatial smoothness of the reconstructed XRF image. The reconstructed

full-sampled visible XRF component and the full-sampled non-visible XRF component are

combined to obtain the final full-sampled XRF image. Both synthetic and real experiments

show the effectiveness of our proposed methods.
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(a) Original RGB Image

(b) Random Sampling Mask (c) Adaptive Sampling Mask

(d) Harmonic Reconstruction

of Randomly Sampled Image
PSNR: 26.60 dB

(e) Harmonic Reconstruction

of Adaptively Sampled Image
PSNR: 28.37 dB

(f) Mumford-Shah Reconstruction

of Randomly Sampled Image
PSNR: 26.97 dB

(g) Mumford-Shah Reconstruction

of Adaptively Sampled Image
PSNR: 29.05 dB

Figure 6.8. Visualization of the Inpainting result of the “Bloemen en insecten” painting. (a)
is the original RGB image. (b) and (c) is the random sampling mask and the adaptive sampling
mask, respectively. (d) and (f) is the reconstruction results of the randomly sampled image, using
Harmonic and Mumford-Shah inpainting algorithms. (e) and (g) is the reconstruction results of the
adaptively sampled image, using Harmonic and Mumford-Shah inpainting algorithms. Readers are
suggested to zoom in in order to compare the details of different results.
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(a) Original RGB Image

(b) Random Sampling Mask (c) Adaptive Sampling Mask

(d) Harmonic Reconstruction

of Randomly Sampled Image
PSNR: 25.42 dB

(e) Harmonic Reconstruction

of Adaptively Sampled Image
PSNR: 26.00 dB

(f) Mumford-Shah Reconstruction

of Randomly Sampled Image
PSNR: 25.79 dB

(g) Mumford-Shah Reconstruction

of Adaptively Sampled Image
PSNR: 26.53 dB

Figure 6.9. Visualization of the Inpainting result of part of the “Bedroom” painting. (a) is
the original RGB image. (b) and (c) is the random sampling mask and the adaptive sampling
mask, respectively. (d) and (f) is the reconstruction results of the randomly sampled image, using
Harmonic and Mumford-Shah inpainting algorithms. (e) and (g) is the reconstruction results of the
adaptively sampled image, using Harmonic and Mumford-Shah inpainting algorithms. Readers are
suggested to zoom in in order to compare the details of different results.
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Figure 6.10. Three noise free spectra used to synthesize the full-sampled XRF
image. Spectra # 2 and # 3 are shifted vertically (by 0.01 and 0.02, respec-
tively) for visualization purposes.
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Figure 6.11. (a) The airforce image is utilized as the visible component. (b)
The rectangle image is utilized as the non-visible component.
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Figure 6.12. The iteration process of our proposed fusion based inpainting al-
gorithm on the synthetic data. Mumford-Shah inpainting algorithm is utilized
as initialization of our proposed algorithm. The iteration process of both ran-
dom sampling and adaptive sampling shows that our proposed fusion based
inpainting algorithm minimize the RMSE during the iteration.
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(a) Random Sampling Mask (b) Adaptive Sampling Mask

(c) Harmonic Reconstruction

Random Sampling

(d) Harmonic Reconstruction

Adaptive Sampling

(e) BPFA Reconstruction

Random Sampling

(f) BPFA Reconstruction

Adaptive Sampling

(g) Mumford-Shah Reconstruction

Random Sampling

(h) Mumford-Shah Reconstruction

Adaptive Sampling

(i) Proposed Reconstruction

Random Sampling

(j) Proposed Reconstruction

Adaptive Sampling

Figure 6.13. Visualization of the Inpainting result of the synthetic experiment. Channel #6
is selected. (a) is the random sampling mask. (b) is the adaptive sampling mask. (c)-(j) are the
reconstruction results of different inpainting algorithms, for both randomly sampled XRF image
and adaptively sampled XRF image. Readers are suggested to zoom in in order to compare the
details of different results.
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Figure 6.14. The iteration process of our proposed fusion inpainting algorithm
on the “Bloemen en insecten” data. Mumford-Shah inpainting algorithm is
utilized as initialization of our proposed algorithm. The iteration process of
both random sampling and adaptive sampling shows that our proposed fusion
inpainting algorithm minimize the RMSE during the iteration.
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(a) Ground Truth XRF Image

(b) Harmonic Reconstruction

Random Sampling

(c) Harmonic Reconstruction

Adaptive Sampling

(d) BPFA Reconstruction

Random Sampling

(e) BPFA Reconstruction

Adaptive Sampling

(f) Mumford-Shah Reconstruction

Random Sampling

(g) Mumford-Shah Reconstruction

Adaptive Sampling

(h) Proposed Reconstruction

Random Sampling

(i) Proposed Reconstruction

Adaptive Sampling

Figure 6.15. Visualization of the Inpainting result on the “Bloemen en insecten” data. Channel
#16 related to Pb Lη XRF emission line is selected. (a) is the ground truth XRF image. The
random and adaptive sampling masks are the same as the sampling masks in Figure 6.8 (b) and
Figure 6.8 (c), respectively. (b)-(i) are the reconstruction results of different inpainting algorithms,
for both randomly sampled XRF image and adaptively sampled XRF image. Readers are suggested
to zoom in in order to compare the details of different results.



142

CHAPTER 7

Conclusions

In this dissertation we started with the inverse problem. We introduced the multiple-

frame video super-resolution problem, the fast sparse coding inference problem, the X-Ray

Fluorescence image super-resolution problem and the X-Ray Fluorescence image inpainting

problem. Several related works were discussed. The previous coupled-dictionary learning

based single-frame image super-resolution methods were then extended to multiple-frame,

utilizing motion estimation by optical flow algorithms. We also extended previous work from

single dictionary to multiple dictionaries. Improvement on the objective and subjective qual-

ity assessment has also been presented, showing the effectiveness of our proposed algorithm.

We then propose to use deep network to speedup the sparse coding inference process with

the KKT condition. We then proceeded to the X-Ray Fluorescence image super-resolution

problem. Because there is not enough data to learning the priori knowledge, we proposed to

fuse the low-resolution input X-Ray Fluorescent image with a high-resolution conventional

RGB image. The nonlinear mapping from RGB spectrum to X-Ray Fluorescence spectrum

is learned, by modeling the input X-Ray Fluorescence image as a combination of visible

component and non-visible component. Both synthetic and real experiment show the effec-

tiveness of our proposed method. Finally, we proposed to the X-Ray Fluorescence image

inpainting problem. CNN is utilized to obtain the adaptive sampling mask based on the

RGB image of the scanning object. The adaptively sub-sampled is then fused with a con-

ventional RGB image to reconstruct the full-sampled XRF image. Extensive experimental
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results demonstrated the effectiveness of our proposed adaptive sampling strategy and fusion

based inpainting algorithm.
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[17] Jérôme Bolte, Shoham Sabach, and Marc Teboulle. Proximal alternating linearized
minimization for nonconvex and nonsmooth problems. Mathematical Programming,
146(1-2):459–494, 2014.



146

[18] Sean Borman and Robert L Stevenson. Super-resolution from image sequences-a re-
view. In Circuits and Systems, Midwest Symposium on, pages 374–374. IEEE Computer
Society, 1998.

[19] Stephen Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university
press, 2004.

[20] Ori Bryt and Michael Elad. Compression of facial images using the k-svd algorithm.
Journal of Visual Communication and Image Representation, 19(4):270–282, 2008.

[21] Harold C Burger, Christian J Schuler, and Stefan Harmeling. Image denoising: Can
plain neural networks compete with bm3d? In Computer Vision and Pattern Recogni-
tion (CVPR), 2012 IEEE Conference on, pages 2392–2399. IEEE, 2012.

[22] Tony F Chan and Jianhong Shen. Nontexture inpainting by curvature-driven diffusions.
Journal of Visual Communication and Image Representation, 12(4):436–449, 2001.

[23] Hong Chang, Dit-Yan Yeung, and Yimin Xiong. Super-resolution through neighbor
embedding. In Computer Vision and Pattern Recognition, 2004. CVPR 2004. Proceed-
ings of the 2004 IEEE Computer Society Conference on, volume 1, pages I–I. IEEE,
2004.

[24] Bin Cheng, Jianchao Yang, Shuicheng Yan, Yun Fu, and Thomas S Huang. Learning
with-graph for image analysis. Image Processing, IEEE Transactions on, 19(4):858–
866, 2010.

[25] Thomas F Coleman and Yuying Li. A reflective newton method for minimizing a
quadratic function subject to bounds on some of the variables. SIAM Journal on Op-
timization, 6(4):1040–1058, 1996.

[26] Robert L Cook. Stochastic sampling in computer graphics. ACM Transactions on
Graphics (TOG), 5(1):51–72, 1986.
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APPENDIX A

Appendices

A.1. Optimization scheme for Baseline #1

Let Al ∈ RM×Nl be the spatially downsampled abundance A. The dictionary learning

technique in [79] can be applied to initialize Dxrf and Al by solving

min
Dxrf ,Al

‖X −DxrfAl‖2
F + β

∑Nl

k=1 ‖Al(:, k)‖1,

s.t. ‖Dxrf (:, k)‖2 ≤ 1,∀k.
(A.1)

Dxrf is initialized using Equation A.1 and A is initialized by upsampling Al computed in

Equation A.1.

Similar to the optimization scheme of our proposed method (Equation 5.14), Equa-

tion 5.28 can be alternatively optimized. First we optimize over A by fixing Dxrf ,

min
A
‖X −DxrfAS‖2

F + λ‖∇(DxrfA)‖2
F (A.2a)

s.t. Aij ≥ 0, ∀i, j (A.2b)

1TA = 1T, (A.2c)

‖A‖0 ≤ s, (A.2d)

PALM is utilized to optimize over A. For Equation A.2, the following two steps are iterated

until convergence:
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V q = Aq−1

− 1

d
(Dxrf T (DxrfAq−1S −X)ST

+ λDxrf TDxrfAGGT )

(A.3a)

Aq = proxA(V q), (A.3b)

where d2 = γ2‖DxrfDxrf T‖F are non-zero step size constants, and proxA is the proximal

operator that project V q onto the constraints of Equation A.2.

We then optimize over Dxrf solving the following constrained least-squares problem:

min
Dxrf

‖X −DxrfAS‖2
F

s.t. 0 ≤ Dxrf
ij ≤ 1,∀i, j,

(A.4)

using the following iteration steps:

U q = Dxrf q−1

− 1

dxrf
(Dxrf q−1

AS −X)STAT
(A.5a)

Dxrf q = proxDxrf (U q), (A.5b)

where dxrf = γ4‖AAT‖F is the non-zero step size constant and proxDxrf is the proximal

operator which project U q onto the constraints of Equation A.4.

The complete optimization scheme is demonstrated in Algorithm 5.
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Algorithm 5. Proposed Optimization Scheme of Equation 5.28

input: LR XRF image X.

1: Initialize Dxrf (0)
and Al

(0)
by Equation (A.1);

Initialize A(0) by upsampling Al
(0)

;
n = 0;

2: repeat
3: Estimate A(n+1) with Equation A.3;

4: Estimate Dxrf (n+1)
with Equation A.6;

5: n=n+1;
6: until convergence
output: HR XRF image

Y = DxrfA.

A.2. Optimization scheme for Baseline #2

For Equation 5.30, A, Dxrf and Drgb can be initialized by Equation 5.13. We then

alternatively optimize the unknowns in Equation 5.30. We first update A based on the RGB

image by fixing all other parameters,

min
A
‖I −DrgbA‖2

F (A.6a)

s.t. Aij ≥ 0,∀i, j (A.6b)

1TA = 1T, (A.6c)

‖A‖0 ≤ s, (A.6d)

utilizing the following iteration steps:
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V q = Aq−1 − 1

d
DrgbT (DrgbAq−1 − I) (A.7a)

Aq = proxA(V q), (A.7b)

where d = γ1‖DrgbDrgbT‖F is non-zero step size constants, and proxA is the proximal oper-

ator that project V q onto the constraints of Equation A.6.

We then update Drgb

min
Drgb

‖I −DrgbA‖2
F

s.t. 0 ≤ Drgb
ij ≤ 1,∀i, j.

(A.8)

by the following iteration steps:

Eq = Drgbq−1 − 1

drgb
(Drgbq−1

A− I)AT (A.9a)

Drgbq = proxDrgb(Eq), (A.9b)

with drgb = γ3‖AAT‖F again a non-zero step size constant and proxDrgb the proximal operator

that projects Eq onto the constraint of Equation A.8.

Finally we update Dxrf

min
Dxrf

‖X −DxrfAS‖2
F

s.t. 0 ≤ Dxrf
ij ≤ 1,∀i, j,

(A.10)

using the following iteration steps:
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U q = Dxrf q−1 − 1

dxrf
(Dxrf q−1

AS −X)STAT (A.11a)

Dxrf q = proxDxrf (U q), (A.11b)

where dxrf = γ4‖AAT‖F is the non-zero step size constant and proxDxrf is the proximal

operator which project U q onto the constraints of Equation A.10.

The complete optimization scheme is summarized in Algorithm 6.

Algorithm 6. Proposed Optimization Scheme of Equation 5.30

input: LR XRF image X, HR conventional RGB image I.

1: Initialize Drgb(0)
, Dxrf (0)

and Al
(0)

by Equation (5.13);

Initialize A(0) by upsampling Al
(0)

;
n = 0;

2: repeat
3: Estimate A(n+1) with Equation A.7;

4: Estimate Drgb(n+1)
with Equation A.9;

5: Estimate Dxrf (n+1)
with Equation A.11;

6: n=n+1;
7: until convergence
output: HR XRF image

Y = DxrfA.
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