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ABSTRACT

Generation in Geometric Derived Categories

Yaroslav Khromenkov

The main topic of this thesis is generation in derived categories of coherent sheaves

on smooth projective varieties. We develop a new approach that allows us to give a

new proof of a recent result by Olander that powers of an ample line bundle generate

the bounded derived category of coherent sheaves on a smooth projective variety X of

dimension n in n steps, we also provide an effective bound on the power of the ample

line bundle needed to generate the bounded derived category of coherent sheaves on X

in 2n - 1 steps. We also show that for a smooth projective toric variety X of dimension

n over an arbitrary algebraically closed field, the Rouquier dimension of the bounded

derived category of coherent sheaves on X is less or equal than 2n - 1. We also study

derived categories of coherent D-modules on smooth projective varieties. We describe the

subcategory of proper objects in the bounded derived category of coherent D-modules on

a smooth projective variety X, and as a consequence we obtain that several geometric

invariants of X are determined by the bounded derived category of coherent D-modules

on X.
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CHAPTER 1

Introduction

Our main focus in this thesis is the study of the bounded derived category of coherent

sheaves on a smooth projective variety. Bondal and Van den Bergh defined the notion

of strong generator in a triangulated category. Informally, an object G in a triangulated

category T is called a strong generator if there is a constant k such that every object

F • ∈ T can be constructed from G using no more than k cones. Rouquier introduces

the notion of dimension for an abstract triangulated category T as the smallest number

n such that there is a strong generator G ∈ T that generates T in n steps. One can

think of the Rouquier dimension for triangulated categories as an analogue of the global

dimension for abelian categories. Orlov conjectured that the Rouquier dimension of the

derived category of coherent sheaves on a smooth projective variety X is equal to the

dimension of X.

We prove several results on generation in derived categories of coherent sheaves on a

smooth projective variety related to the Rouquier dimension and Orlov’s conjecture. Our

main tool is the study of the obstruction morphism that arises from a resolution of the

structure sheaf of the diagonal sheaf O∆. Existence of a short resolution of O∆ by external

products of sheaves is a common way of proving bounds on the Rouquier dimension of X.

However, we use a different approach that does not require as much from the resolution.

In the second chapter we remind several technical lemmas on derived categories of coher-

ent sheaves and generation in triangulated categories.
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In the third chapter for a fixed resolution of the diagonal sheaf by external products of

sheaves and a fixed natural number k we define the obstruction morphism ϕC •,k for every

object C • ∈ Db
coh(X), which is an element of a vector space that we call the obstruction

space of C •. We show how to generate C • in 2 dimX − k steps given that ϕC •,k vanishes.

After that we construct several classes of coherent sheaves for which the vanishing of the

obstruction morphism is easy to prove due to the vanishing of the obstruction space. Then

we give a criterion for when an extension of two objects with the vanishing obstruction

morphism results in an object with the vanishing obstruction morphism. This result will

allow us to show that sometimes the vanishing of the obstuction morphism of a complex

follows from the vanishing of the obstruction morphisms of all of its cohomology sheaves.

In the final section of the third chapter we prove that powers of a fixed ample line bundle

generate Db
coh(X) in dimX steps, one can think of this theorem as a weaker version of

Orlov’s conjecture, where a countable collection of objects is allowed to be a generating

set (instead of a finite collection in the classical case). This result was recently proved by

Olander [17] using a different method.

In the fourth chapter we give a criterion for the vanishing of the obstruction morphism

of a sheaf F in terms of the properties of the Harder-Narasimhan filtration of F . We

show that the required property is satisfied for pullbacks of F if we take a finite polarized

endomorphism of sufficiently high degree. This allows us to prove that the Rouquier di-

mension of a toric variety X is less or equal than 2 dimX−1. Recently it was shown that

a better bound of 2 dimX − 3 holds for toric varieties over the field of complex numbers

[3]. The bound for toric varieties over the complex numbers was improved to dimX [8]

this year. Both of the mentioned results require the use of mirror symmetry and powerful
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theorems from symplectic geometry. Our method works over an algebraically closed field

of arbitrary characteristic. Moreover, we obtain several results on generation for arbitrary

smooth projective variety that do not improve the bound on the Rouquier dimension but

are of interest on their own.

In the fifth chapter we study the bounded derived category of coherent D-modules on a

smooth projective variety. We show that the subcategory generated by integrable con-

nections is a derived invariant, and that this subcategory has a Serre functor. Using this

result we show that the bounded derived category of coherent D-modules on X determines

dimension of X and whether or not X is simply connected. Moreover, we prove that sim-

ply connected smooth projective varieties with equivalent bounded derived categories of

coherent D-modules have equal Betti numbers.
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CHAPTER 2

Preliminaries

2.1. Derived categories of coherent sheaves

One of the most important invariants of an algebraic variety X is the bounded derived

category of coherent sheaves on X denoted by Db
coh(X). We treat Db

coh(X) as a triangu-

lated category. In this section we first recall some basic definitions and well-known results

about bounded derived categories of coherent sheaves. The reference for all definitions

and results in this section is [10].

All varieties are always assumed to be defined over an algebraically closed field K.

Throughout this text for a morphism of schemes f : X → Y by f∗ and f ∗ we always

denote the corresponding derived functors of pushforward and pullback

f∗, f
∗ : Db

coh(X) → Db
coh(Y ).

For two objects F •,G • ∈ Db
coh(X) we always denote by F • ⊗ G • the derived tensor

product of F • and G •. For varieties X and Y we denote the projections X×Y → X and

X × Y → Y by πX and πY respectively, and for objects C •
X ∈ Db

coh(X),C •
Y ∈ Db

coh(Y )

we denote π∗
XC •

X ⊗ π∗
Y C •

Y by C •
X ⊠ C •

Y and call it the box product of C •
X and C •

Y . For a

variety X we denote by O∆ ∈ Db
coh(X ×X) the structure sheaf of the diagonal that we

treat as a complex concentrated in degree 0. We will often use Fourier-Mukai functors

between derived categories of coherent sheaves.
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Definition 2.1. Given an object K • ∈ Db
coh(X × Y ), Fourier-Mukai functor with the

kernel K • is a functor ΦK • : Db
coh(X) → Db

coh(Y ) given by ΦK •(C •) = πY ∗(K •⊗π∗
XC •).

For a Fourier-Mukai functor with the kernel that is a box product we have the following

formula.

Lemma 2.2. For K • = F ⊠ G and C • ∈ Db
coh(X) we have that

ΦK •(C •) = RΓ(C • ⊗ F )⊗ G .

Proof. Clear from the projection formula. □

The identity functor is an example of a Fourier-Mukai functor as shown by the following

lemma. [10, Examples 5.4].

Lemma 2.3. ΦO∆
is naturally isomorphic to the identity functor.

We say that a complex C • is concentrated in degrees below d (above d) if H i(C •) = 0

for all i ≥ d (i ≤ d).

Lemma 2.4. Given a complex C • ∈ Db
coh(X) concentrated in degrees below d and

K • ∈ Db
coh(X ×X) concentrated in degrees below d′ we have that ΦK •(C •) is concentrated

in degrees below d+ d′ + dimX.

Proof. Clear from the definition of Fourier-Mukai functors. □

Lemma 2.5. Given K • ∈ Db
coh(X ×X) concentrated in degrees less or equal than d

of the form

K = {... → Fd−2 ⊠ Gd−2 → Fd−1 ⊠ Gd−1 → Fd ⊠ Fd}
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and C • ∈ Db
coh(X), denote by m the minimum i such that

Hk+j(Fd−j ⊗ C •) = 0

for all j ≥ 0 and k ≥ i. Then ΦK •(C •) is concentrated in degrees below m+ d.

Proof. Clear from the fact that ΦF•⊠G •(C •) = RΓ(C • ⊗ F •)⊗ G •. □

The following well-known lemma ([25], Lemma 13.4.8) is often useful to show that a

morphism vanishes in Db
coh(X).

Lemma 2.6. Consider a morphism of distinguished triangles

A B C A[1]

A′ B′ C ′ A′[1]

ϕa ϕb ϕc ϕa[1]

in which ϕa = 0 and ϕb = 0. If Hom(C,C ′) = Hom(C,A′) = 0, then ϕb = 0.

Serre functors are a useful tool in the study of triangulated categories.

Definition 2.7. An equivalence S : T → T is a Serre functor if there exist isomor-

phisms Hom(A,B) ≃ Hom(B, S(A))∗ functorial in A and B.

Existence of a Serre functor for the bounded derived category of coherent sheaves on

a smooth projective variety is given by the following lemma [10, Theorem 3.12].

Theorem 2.8. For a smooth projective variety X we define SX : Db
coh(X) → Db

coh(X)

by S(A) = ωX ⊗ A[n]. SX is a Serre functor for Db
coh(X).
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2.2. Generators in triangulated categories

For a triangulated category T Bondal and Van den Bergh define the notion of a strong

generator [6]. First, we need some preliminary definitions that will be used later.

Definition 2.9. Given a subcategory C of a triangulated category T we denote by

⟨C⟩ the smallest full subcategory of T that contains C and is closed under shifts, direct

summands and finite direct sums.

Definition 2.10. Given subcategories C1, C2 of a triangulated category T we define

C1 ⋆ C2 as a full subcategory consisting of objects C for which there is a distinguished

triangle C1 → C → C2 for some C1 ∈ C1, C2 ∈ C2.

Definition 2.11. Given a subcategory C of a triangulated category T we define ⟨C⟩k

inductively as ⟨C⟩0 = ⟨C⟩, ⟨C⟩i+1 = ⟨⟨C⟩i ⋆ ⟨C⟩⟩.

In other words, ⟨C⟩k is a subcategory generated from C using finite direct sums, direct

summands, shifts and by taking no more than k cones.

The following technical lemma [6, Lemma 2.2.1] shows that we can always assume

that the operation of taking a direct summand is taken once and as the last operation.

Lemma 2.12. For a subcategory C ⊂ T we denote by smd(C) the minimal subcategory

that contains C and is closed under taking direct summands. For subcategories C1 and C2

that are closed under finite direct sums we have

smd(C1) ⋆ C2 ⊂ smd(C1 ⋆ C2), C1 ⋆ smd(C2) ⊂ smd(C1 ⋆ C2)
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Definition 2.13. We say that G ∈ T is a strong generator for a triangulated category

T if there is k ∈ N such that ⟨G⟩k = T .

Bondal and Van den Bergh [6] show the existence of a strong generator for the bounded

derived category of coherent sheaves on a smooth projective variety.

Existence of a strong generator implies the representability of cohomological functores,

result similar to the Brown representability theorem [6].

Theorem 2.14. In a proper Karubian triangulated category with a strong generator

every cohomological functor of finite type is representable.

2.3. The Rouquier dimension

Based on the notion of a strong generator Rouquier defines the notion of dimension

for an abstract triangulated category [23].

Definition 2.15. For a triangulated category T the Rouquier dimension r. dim T is

defined as the smallest m for which there is G ∈ T such that ⟨G⟩m = T .

This definition is similar to the definition of the global dimension for an abelian cate-

gory of right modules over a ring R. If we take G to be R, then existence of a projective

resolution of length m of a module M shows that M ∈ ⟨G⟩m. In a triangulated cate-

gory instead of a resolution of length m of an object M one considers a ”resolution by

distinguished triangles of length m”, which is just any object in ⟨G⟩m. And since there

is no distinguished object R one must consider all possible objecsts G ∈ T as a possible

replacement for R. Discussion above shows that for a derived category of modules over

a ring R we have that for every module M there is an inclusion M ∈ ⟨R⟩gl. dimR. Under
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some mild conditions on R every complex of modules can be generated from R in gl. dimR

steps, which is the content of the following theorem ([14, Proposition 2.6.], see also [2]).

Theorem 2.16. The Rouquier dimension of the bounded derived category of finitely

presented right modules over a right coherent ring R is less or equal than the global di-

mension of R.

Given that we now have a notion of dimension for abstract triangulated categories,

the natural question to ask is ”Given a variety X, what can we say about the Rouquier

dimension of Db
coh(X)?”. Rouquier [23, Proposition 7.9, Proposition 7.16] proves the

following bounds

Theorem 2.17. For a smooth quasi-projective variety X we have that

dimX ≤ r. dimDb
coh(X) ≤ 2 dimX.

This is still the best known bound for a general smooth quasi-projective variety. For

smooth affine varieties Roquier shows that the dimension ofX and the Rouquier dimension

of Db
coh(X) coincide [23, Theorem 7.17].

Theorem 2.18. For a smooth affine scheme X we have that r. dimDb
coh(X) = dimX.

Finally, for some special cases the same equality holds [23, Example 7.7, Example

7.8].

Theorem 2.19. If X is Pn or a smooth quadric, then r. dimDb
coh(X) = dimX.
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2.4. Slope stability and the Harder-Narasimhan filtration

In this section we recall the definition and basic properties of slope stability and the

Harder-Narasimhan filtration for coherent sheaves. The reference is chapter 1 of [11]. Fix

a smooth projective variety X of dimension n and an ample line bundle L on X.

Definition 2.20. The slope of a coherent sheaf F on X with rkF > 0 is defined as

µ(F ) =
c1(L)

n−1.c1(F )

rkF

For a torsion sheaf F the slope µ(F ) is defined to be ∞.

Definition 2.21. A torsion free coherent sheaf F is called semistable if for all nonzero

subsheaves 0 ̸= G ⊂ F we have that µ(G ) ≤ µ(F ).

Theorem 2.22. For every torsion free coherent sheaf F , there exists a unique filtra-

tion

F0 = 0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fk = F

such that all the quotients Fi/Fi−1 are torsion free and semistable, and slopes of the

quotient sheaves are strictly decreasing µ(F1/F0) > µ(F2/F1) > ... > µ(Fk/Fk−1).

This filtration is called the Harder-Narasimhan filtration of F .

Definition 2.23. For a sheaf F consider the torsion subsheaf Ft. From the previous

theorem it follows that there is a unique filtration

0 = F0 ⊂ Ft = F1 ⊂ F2 ⊂ F3 ⊂ ... ⊂ Fk = F
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such that all the quotients Fi/Fi−1 are torsion free and semistable for i > 1, and slopes of

the quotient sheaves are strictly decreasing µ(F1/F0) > µ(F2/F1) > ... > µ(Fk/Fk−1).

We will be calling this filtration the Harder-Narasimhan filtration of F .

2.5. Orlov’s conjecture

Based on the results of Rouquier it is natural to conjecture that for a smooth quasi-

projective variety X we have that r. dimDb
coh(X) = dimX. This is the conjecture posed

by Orlov in [19].

Conjecture 2.24. For a smooth quasi-projective variety X we have that r. dimX =

dimX.

Orlov shows that this conjecture is true for curves [19, Theorem 6].

Theorem 2.25. For a smooth curve X we have that r. dimDb
coh(X) = 1.

We provide the sketch of the proof since some of our results are an attempt to generalize

it to higher dimension. We also slightly simplify it using the notion of Castelnuovo-

Mumford regularity which will be useful to us later.

Proof. We notice that every object C • ∈ Db
coh(X) is isomorphic to the direct sum

of shifts of its cohomology sheaves C • ≃ ⊕H i(C •)[−i]. Therefore, it is enough to find

G ∈ Db
coh(X) such that for every coherent sheaf F on X we have that F ∈ ⟨G⟩1. Fix a

very ample line bundle L onX. IfH1(F⊗L−1+r) = 0, then F is r−Castelnuovo-Mumford

regular with respect to L, and there is an exact sequence ⊕a1
i=0L

−1−r → ⊕a0
i=0L

−r → F .

Since Ext2(G1,G2) = 0 for all coherent sheaves G1,G2 on a smooth projective curve, we
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have that F is a direct summand of the complex ⊕a1
i=0L

−1−r → ⊕a0
i=0L

−r concentrated in

degrees −1 and 0. Therefore, if we have that H1(F∨⊗L−1+r) ≃ H0(F ⊗ωX⊗L1−r) = 0,

then F is a direct summand of a complex ⊕a0
i=0L

r → ⊕a0
i=0L

r+1 concentrated in degrees

0 and 1. Assume that for a coherent sheaf F and integers r+, r− there is a short exact

sequence 0 → F+ → F → F− → 0 such that H1(F+ ⊗ L−1+r+) = 0 and H0(F− ⊗

ωX ⊗L1−r−) = 0. Then from the octahedral axiom it follows that F is a direct summand

of a cone of a morphism from ⊕(L−r+−1[0] ⊕ Lr− [−1]) to ⊕(L−r+ [0] ⊕ Lr−+1[−1]). In

particular, in this case we have that

F ∈ ⟨L−r+ ⊕ L−r+−1 ⊕ Lr− ⊕ Lr−+1⟩1.

Therefore, it is enough to find r+, r− ∈ Z such that for every coherent sheaf F , there

is an exact sequence 0 → F+ → F → F− → 0 such that H1(F+ ⊗ L−1+r+) = 0 and

H0(F− ⊗ ωX ⊗ L1−r−) = 0. For a coherent sheaf F consider the Harder-Narasimhan

filtration of F

0 = F0 ⊂ F1 ⊂ F2 ⊂ ... ⊂ Fk = F .

Take m to be the maximum i such that µ(Fi/Fi−1) > 0 or 0 if there is no such i. We

define F+ = Fm, F− = F/Fm. Take some r > 1 + |deg(ωX)|, then H1(F+ ⊗ L−1+r) ≃

Hom(F+, L
1−r ⊗ ωX) = 0 since µ(L1−r ⊗ ωX) < 0. Similarly, H0(F− ⊗ ωX ⊗ L1−r) ≃

Hom(L−1+r ⊗ ω∨
X ,F−) = 0 since µ(L−1+r ⊗ ω∨

X) > 0. Therefore, one can take r+ = r− =

r. □
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2.6. Technical lemmas on generation

In this section we give several technical definitions and lemmas on generation that we

will need later. Results in this sections are simple and well-known. Proofs are provided

for the reader’s convenience.

Definition 2.26. We say that G ∈ T generates a (not necessarily triangulated)

subcategory C ⊂ T in n steps if C ⊂ ⟨G⟩n. The generation time of a (not necessarily

triangulated) subcategory C ⊂ T with respect to G ∈ T is the minimal n such that G

generates C in n steps and ∞ if there is no such n.

Definition 2.27. We say that a sequence of objects Gi ∈ T generates a (not neces-

sarily triangulated) subcategory C ⊂ T in n steps if C ⊂ ∪d∈N⟨⊕i=d
i=1Gi⟩n. The generation

time of a (not necessarily triangulated) subcategory C ⊂ T with respect to a sequence

Gi ∈ T is the minimal n s.t. the sequence Gi generates C in n steps and ∞ if there is no

such n.

Sometimes it is interesting to study how many elements of the sequence Gi we have

to take to generate an object X in m steps.

Definition 2.28. Assume that a sequence a sequence of objects Gi ∈ T generates T

in m steps. We define the m − depth of an object C • ∈ T with respect to the sequence

{Gi} as the minimal d s.t. C • ∈ ⟨⊕i=d
i=1Gi⟩m.

In the following few lemmas we relate the generation time of F and f ∗F for a mor-

phism f .
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Lemma 2.29. Consider a finite morphism ϕ : X → Y and a subcategory C ⊂ Db
coh(Y ).

Assume that OY → ϕ∗OX splits (which is always true in characteristic 0). If ϕ∗C ⊂

Db
coh(X) is generated from G ∈ Db

coh(X) (a sequence Gi ∈ Db
coh(X)) in k steps we have

that C is generated from ϕ∗G (generated from the sequence ϕ∗Gi) in k steps.

Proof. Since ϕ∗C ⊂ Db
coh(X) is generated from G ∈ Db

coh(X) in k steps it is obvious

that ϕ∗ϕ
∗C ⊂ Db

coh(X) is generated from ϕ∗G since ϕ∗(⟨G⟩n) ⊂ ⟨ϕ∗G⟩n. But every object

C • ∈ C is a direct summand of ϕ∗OX ⊗ C • ≃ ϕ∗ϕ
∗C • ∈ ϕ∗ϕ

∗C. □

Lemma 2.30. Consider the blow-up of X at a smooth subvariety ϕ : X̃ → X and a

subcategory C ⊂ Db
coh(Y ). If ϕ∗C ⊂ Db

coh(X) is generated from G ∈ Db
coh(X) (sequence

Gi ∈ Db
coh(X)) in k steps, then C is generated from ϕ∗G (generated from a sequence ϕ∗Gi)

in k steps.

Proof. We proceed as in the proof of the previous lemma and use that ϕ∗ϕ
∗C • ≃

C •. □

It is also clear that the m− depth of any object C • ∈ Db
coh(Y ) with respect to {ϕ∗Gi}

is less or equal than the m− depth of ϕ∗C with respect to {Gi} both for finite maps and

blow-ups.

Lemma 2.31. If K • ∈ ⟨G⟩k, where G = F • ⊠ G •, then ΦK •(C •) ∈ ⟨G •⟩k for every

C • ∈ Db
coh(X). In particular, if there is a resolution

0 → Fk ⊠ Gk → ... → F2 ⊠ G2 → F1 ⊠ G1 → F0 ⊠ G0 → O∆ → 0

then Db
coh(X) = ⟨⊕i=k

i=0Gi⟩k.
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Proof. We know that ΦF•⊠G •(C •) = RΓ(C •⊗F •)⊗G •. The statement is then clear

by induction on k since if there is a distinguished triangle K •
1 → K • → K •

2 , then for

every C • ∈ Db
coh(X) there is a distinguished triangle

ΦK •
1
(C •) → ΦK •(C •) → ΦK •

2
(C •).

□

This lemma is how most of the first results on the Rouquier dimension of smooth

projective varieties were proved. For example, if X is Pn or a smooth quadric, then there

is a resolution of the diagonal sheaf by box-products of length dimX [4] [12].

However, in general the length of the shortest resolution of OX by box-products could

be greater than the Rouquier dimension of Db
coh(X). One defines the diagonal dimension

of X as the smallest k such that O∆ ∈ ⟨G ⊠ G⟩k for some G ∈ Db
coh(X) (this notion at

least apriori depends not only on Db
coh(X) but also on X itself). We see that the Rouquier

dimension of Db
coh(X) is less or equal than the diagonal dimension of X. The inequality

could be strict as shown by the following theorem by Olander [16].

Theorem 2.32. The diagonal dimension of a smooth projective curve of genus ≥ 1

is 2.

However, it is obvious that there is always an infinite resolution of O∆ by direct sums

of L−i ⊠ L−i, where L is an ample line bundle.

Lemma 2.33. Given an ample line bundle L there exists a resolution of O∆ of the

form

... → ⊕L−a2 ⊠ L−a2 → ⊕L−a1 ⊠ L−a1 → ⊕L−a0 ⊠ L−a0 → O∆ → 0,
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where every direct sum is a finite direct sum.

A useful trick is that given a resolution as in the previous lemma we can tensor it by

La ⊠ L−a to obtain the resolution of the form

→ ⊕L−a2−a ⊠ L−a2+a → ⊕L−a1−a ⊠ L−a1+a → ⊕L−a0−a ⊠ L−a0+a → O∆ → 0

since (La ⊠ L−a)⊗ O∆ ≃ O∆.
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CHAPTER 3

Obstruction morphisms

One of the issues that appear in dimensions greater than 1 is that there are objects

in Db
coh(X) that are not isomorphic to a direct sum of shifted sheaves. Therefore, we do

not obtain a bound on the Rouquier dimension of Db
coh(X) just from the bound on the

generation time of coherent sheaves. We need to find some way to glue ”resolutions” of

H i(C •) into a ”resolution” of C •. But in Orlov’s proof for curves even for the sheaves a

certain gluing of ”resolutions” of a negative part of the sheaf and a positive part of the

sheaf takes place, which is only possible due to the vanishing of Exti(F ,G ) for i > 1.

One way to deal with the mentioned issues is to consider ”resolutions” that are more

functorial. We consider the canonical truncation of a resolution of the diagonal sheaf

t≥−2n+kC •. Even if O∆ does not split off from the truncated resolution (in such case we

obtain a global bound on the diagonal dimension of Db
coh(X)) it can still happen that F•

splits from Φt≥−2n+kC •(F•) in which case we obtain a bound on the generation time of

F•. This splitting is equivalent to the vanishing of a certain morphism that we call the

obstruction morphism ϕF•,k of F • with respect to the resolution C • and truncation at k.

The obstruction morphism behaves functorially and we show that under some restrictions

for a distinguished triangle A → B → C the vanishing of ϕB can be deduced from the

vanishing of ϕA and ϕC .

Let’s fix the notation for this chapter. From now on we always assume X to be a smooth

projective variety of dimension n. We consider a resolution of the diagonal sheaf of the
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following form

(3.1) ... → L2 ⊠R2 → L1 ⊠R1 → L0 ⊠R0 → O∆ → 0,

where Li, Ri are vector bundles on X. We showed in the previous chapter that such

resolution exists with Li = Ri = ⊕j=ki
j=0 L

−ai , where L is an ample line bundle. For the

resolution (3.1) we define truncation complexes

(3.2) C •
k := L2n−k ⊠R2n−k → L2n−k−1 ⊠R2n−k−1 → ... → L1 ⊠R1 → L0 ⊠R0

We consider C •
k as an object in Db

coh(X ×X) concentrated in degrees from −2n+ k to 0.

From (3.1) we obtain the following distinguished triangle of objects in Db
coh(X ×X)

(3.3) Kk[2n− k] → C •
k → O∆,

where Kk is a coherent sheaf on X×X. Moreover, there is a resolution for Kk from (3.1)

that gives a quasi-isomorphism

(3.4) {... → L2n−k+2 ⊠R2n−k+2 → L2n−k+1 ⊠R2n−k+1} ≃ Kk[2n− k],

where the complex on the left is concentrated in degrees up to −2n+ k. Now we see that

there is a triplet of Fourier-Mukai functors with natural transformations between them

(3.5) ΦKk
[2n− k] → ΦC •

k
→ ΦO∆

= id .
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Therefore, for every object F • ∈ Db
coh(X) there is a distinguished triangle obtained

from (3.5)

(3.6) ΦKk
(F •)[2n− k] → ΦC •

k
(F •) → F • ϕF•,k−−−→ ΦKk

(F •)[2n− k + 1].

Definition 3.7. We call ϕF•,k the obstruction morphism of F • with respect to the

resolution (3.1) truncated at k.

Usually the resolution and k are clear from the context and we just call it the ob-

struction morphism of F • and denote it by ϕF• . ϕF•,k is the obstruction to the splitting

of F • from ΦC •
k
(F •) as a direct summand. Therefore, using lemma 2.31 we obtain the

following lemma

Lemma 3.8. If ϕF•,k = 0 for F • ∈ Db
coh(X), then F • can be generated from

2n−k⊕
i=0

Ri

in 2n− k steps.

We can often derive the vanishing of the obstruction morphism of F from the vanishing

of the vector space Hom(F •,ΦKk
(F •)[2n − k + 1]) which we call the obstruction space

of F •.

Example 3.9. If for a coherent sheaf F we have that H i(ΦKk
(F )) = 0 for all

i ≥ n − k + 1, then Hom(F ,ΦKk
(F )[2n − k + 1]) = 0 and ϕF = 0 with respect to the

truncation at k.

Proof. We have that ΦKk
(F •)[2n − k + 1] is concentrated in degrees below −n.

Therefore, the vanishing of Hom(F ,ΦKk
(F )[2n − k + 1]) follows from the fact that for
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a smooth variety X we have that Exti(F1,F2) = 0 for i > dimX and coherent sheaves

F1,F2 on X. □

The following example is a special case of the previous one.

Example 3.10. Consider a coherent sheaf F such that Hi(L2n−k+1+j ⊗ F ) = 0 for

all j ≥ 0, i ≥ n − k + 1 + j. Then we have that Hom(F ,ΦKk
(F )[2n − k + 1]) = 0 and

ϕF = 0 with respect to the truncation at k.

Proof. We have that H i(ΦKk
(F )) = 0 for i ≥ n − k + 1 from lemma 2.5 in the

preliminaries. □

Now we study the behavior of obstruction morphisms in distinguished triangles.

Lemma 3.11. Given a distinguished triangle F •
+ → F • → F •

− such that ϕF•
−
= 0,

the obstruction space of F •
− is 0 and Hom(F•

−,ΦKk
(F •

+)[2n − k + 1]) = 0 we have that

ϕF• = 0.

Proof. From (3.5) we have the following morphism of distinguished triangles

F•
+ F• F•

−

ΦKk
(F•

+)[2n− k + 1] ΦKk
(F•)[2n− k + 1] ΦKk

(F•
−)[2n− k + 1]

0 ϕF• 0

The lemma now is a direct consequence of 2.6 from the preliminaries. □

Using this lemma we can sometimes deduce the vanishing of ϕF• from the vanishings

of ϕH i(F•) for all i. The first application is a generalization of 3.9.
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Lemma 3.12. Assume that there is 0 ≤ k ≤ n such that H i(ΦKk
(H j(F •))) = 0 for

i ≥ n − k + 1 for all j ∈ Z (i.e. all cohomology sheaves of F • satisfy the assumptions

from 3.9). Then for a truncation at k we have ϕF• = 0.

Proof. We prove it by induction on the number N of indices j such that H j(F •) ̸= 0.

If N = 1, then F • is a shifted sheaf and the lemma follows from the example 3.9. For

the induction step take m to be the maximal j such that H j(F •) ̸= 0 and consider the

canonical truncation t≤m−1F •. We have a distinguished triangle

t≤m−1F
• → F • → H m(F •)[−m]

From the induction assumption it follows that ϕt≤m−1F• = 0 and the obstruction space of

H m(F •)[−m] is 0 from 3.9. The vanishing of Hom(H m(F •)[−m],ΦKk
(F •

+)[2n−k+1])

follows from the fact that ΦKk
(t≤m−1F •)[2n− k + 1]) is concentrated in degrees ≤ m−

n− 1. □

Remark 1. Condition Hom(F •,ΦG (F •)[2n − k + 1]) = 0 is almost never satisfied

for complexes with several nonzero cohomology sheaves. Therefore it is important to

consider the vanishing of the obstruction morphism itself instead of the vanishing of the

obstruction space.

The following is the main technical result of this section.

Corollary 3.13. Fix an ample line bundle L. For every F • ∈ Db
coh(X), there is

C ∈ Z s.t. for all k ≥ C we have that ϕF•⊗Lk,n = 0.
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Proof. For sufficiently large k the assumptions of 3.12 are satisfied for F • ⊗ Lk due

to Serre’s vanishing. □

From this corollary and lemma 3.8 we obtain the main theorem of this section.

Theorem 3.14. Fix an ample line bundle L. The sequence {L−i | i ∈ N} generates

Db
coh(X) in n steps.

Proof. Take a resolution of the diagonal with Ri = L−ai . From 3.8 and 3.13 we obtain

that for every coherent sheaf F •, there is k such that F • ⊗Lk is generated from
n⊕

i=0

L−ai

in n steps. It is clear then that F • can be generated from
n⊕

i=0

L−i−k in n steps. □

Orlov’s conjecture predicts that there is an object G ∈ Db
coh(X) such that G generates

Db
coh(X) in n steps. There is no difference in taking just one object or finitely many objects

as a generating set since one can just take a direct sum of finitely many objects (and taking

a direct summand is a free operation). One could ask what happens if countably many

objects are allowed as a generating set. Theorem 3.14 implies that for a smooth projective

variety there is always a countable set of objects in Db
coh(X) that generates Db

coh(X) in

dimX steps. Recently this result was obtained by Olander [18] using a different method.

Remark 2. It is clear that positive powers of an ample line bundle L generateDb
coh(X)

in n steps as well since there is the duality equivalence D : Db
coh(X) → Db

coh(X)opp. It

is also clear from the duality that an analogue of the corollary 3.13 for tensoring with a

sufficiently negative power of L is true. However, even if we wanted to only show that

sheaves can be generated in n steps from positive powers of an ample line bundle (a

statement which is obvious for negative powers), it will require us to work with complexes

of sheaves since DF can have nonzero cohomology sheaves in several degrees.
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Similar results are true if we tensor with a q − ample line bundle for the generation

in n+ q steps.

Definition 3.15. We say that a line bundle L on X is q−ample if for every coherent

sheaf F on X, there is n ∈ N such that H i(F ⊗ L j) = 0 for all i > q, j > n.

Sometimes line bundles that are q − ample in the sense of this definition are called

naively q − ample in the literature. For alternative definitions and basic properties of

q − ample line bundles we refer to [27].

Lemma 3.16. Fix a q−ample line bundle L and a resolution of the diagonal of the

form 3.1. For every F • ∈ Db
coh(X), there is C ∈ Z such that for all k ≥ C we have that

ϕF•⊗L k,n−q = 0.

Proof. The proof is identical to that of 3.13, but we use the definition of q−ample

line bundles instead of Serre’s vanishing. □

As a corollary we obtain the following theorem.

Theorem 3.17. For a resolution of the form 3.1 and a q − ample line bundle L

we have that the sequence {L−i ⊗ R|i ∈ N} generates Db
coh(X) in n + q steps, where

R =
⊕

0≤j≤n+q Rj.

We can apply lemma 3.16 to the blow-up of X at some point pt ∈ X with L = O(E),

where E is the exceptional divisor since O(E) is n − 1 ample. Using 2.30 we obtain the

following lemma.
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Lemma 3.18. Fix a resolution of the diagonal of the form 3.1 and a point pt ∈ X.

For every F • ∈ Db
coh(X), there is C ∈ Z s.t. for all k ≥ C we have that ϕF•⊗Ik

pt,1
= 0.

Applying lemma 3.8 we obtain the following theorem.

Theorem 3.19. Fix a resolution of the form 3.1 and a point pt ∈ X. We have that

the sequence {I i
pt⊗R|i ∈ N} generates Db

coh(X) in 2n−1 steps, where R =
⊕

0≤j≤n+q Rj.

3.1. Truncating at k = 1

In this section we always assume that the truncation is at k = 1. The obstruction

space in this case is easy to study since we have the following lemma

Lemma 3.20. The obstruction space of a coherent sheaf F is a quotient of

(3.21) Hn(F ⊗ L2n)
∗ ⊗ Hom(R2n ⊗ ω−1

X ,F )∗.

Proof. From the distinguished triangle

L2n ⊠R2n[2n] → K1[2n] → C •,

where

C • = {... → L2n+2 ⊠R2n+2 → L2n+1 ⊠R2n+1}

we obtain an exact sequence

Hom(F ,ΦL2n⊠R2n(F )[2n]) → Hom(F ,ΦK1(F )[2n]) → Hom(F ,ΦC •(F )).
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But since H i(C •) = 0 for i ≥ −2n we have that H i(ΦC •(F )) = 0 for i ≥ −n by 2.5.

Therefore, Hom(F ,ΦC •(F )) = 0 for dimension reasons and Hom(F ,ΦK1(F )[2n]) is a

quotient of

Hom(F ,ΦL2n⊠R2n(F )[2n]) ≃ ⊕iHom(F , H i(F ⊗ L2n)⊗R2n[2n− i])

≃ Hom(F , Hn(F ⊗ L2n)⊗R2n[n])

≃ Hn(F ⊗ L2n)
∗ ⊗ Hom(R2n ⊗ ω−1

X ,F )∗.

□

Definition 3.22. We say that a coherent sheaf F is 1-positive if Hn(F ⊗ L2n) = 0.

If Hom(R2n ⊗ ω−1
X ,F ) = 0, then we say that F is 1-negative.

It is clear that for a 1-positive sheaf F we have that ΦK1(F ) is concentrated in degrees

≤ n− 1 by 2.5. It is also obvious that an extension of two 1-positive sheaves is 1-positive

and an extension of two 1-negative sheaves is 1-negative.

We know that 1-negative and 1-positive sheaves can be generated from ⊕0≤i≤2nRi in

2n− 1 steps due to the vanishing of the obstruction spaces and lemma 3.8. Now we want

to explain how to glue ”resolutions” for them.

We prove a criterion for the vanishing of the obstruction space of an extension of two

objects in Db
coh(X).

Lemma 3.23. Given a distinguished triangle C •
+ → C • → C •

− such that ϕC • = 0, the

obstruction space of C •
− is 0 and Hom(C •

−,ΦK(C •
+)[2n]) = 0 we have that ϕC • = 0.
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Proof. Consider the following morphism of triangles

C •
+ C • C •

−

ΦK(C •
+)[2n] ΦK(C •)[2n] ΦK(C •

−)[2n]

0 ϕC• 0

We have that Hom(C •
−,ΦK(C •

+)[2n]) = 0 by the assumption, and Hom(C •
−,ΦK(C •

−)[2n]) =

0 since C •
− has the vanishing obstruction space. Therefore, the result follows from 2.6. □

Corollary 3.24. Given a short exact sequence of sheaves 0 → F+ → F → F− → 0,

where F+ is 1-positive and F− is 1-negative we have that ϕF = 0.

Proof. We have that Hom(F−,ΦK(F+)[2n]) = 0 because the cohomology sheaves of

ΦK(F+) are concentrated in degrees up to −n − 1. Since F− is 1-negative, it has the

vanishing obstruction space, the result then follows from 3.23. □

We can prove a criterion for the vanishing of the obstruction morphism of a complex

of sheaves which is the main technical result of this section.

Lemma 3.25. Consider an object F • ∈ Db
coh(X). Assume that for every i ∈ Z there

is a short exact sequence 0 → H i
+(F

•) → H i(F •) → H i
−(F

•) → 0, where H i
+(F

•) is

1-positive and H i
−(F

•) is 1-negative. Then ϕF• = 0.

Proof. Similarly to the proof of 3.12 we proceed by induction on the number N

of indices j such that H j(F •) ̸= 0. If N = 1 then F • is a shifted sheaf and the

lemma follows from 3.24. For the induction step take m to be the maximal j such that

H j(F •) ̸= 0. We have two distinguished triangles.

F •
≤m−1 → F •

+ → H m
+ (F •)[−m]
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F •
+ → F • → H m

− (F •)[−m]

First, we show that ϕF•
+
= 0. From the induction assumption it follows that ϕF•

≤m−1
= 0,

and the obstruction space of H m
+ (F •)[−m] is 0 since H m

+ (F •) is 1-positive. Since

cohomology sheaves of ΦK(F •
≤m−1)[2n] are concentrated in degrees up to −n− 1 +m we

have that Hom(H m
+ (F •)[−m],ΦK(F •

≤m−1)[2n]) = 0. Therefore, the vanishing of ϕF•
+
= 0

follows from lemma 3.23 applied to the first distinguished triangle. Now we show that

ϕF•
−
= 0 using the second distinguished triangle in the same way. The only change is

that we need to check that cohomology sheaves of ΦK(F+) are concentrated in degrees

up to −n − 1 + m which follows from the first distinguished triangle and the fact that

both ΦK(F •
≤m−1)[2n] and ΦK(H m

+ (F •)[−m])[2n] have cohomology sheaves concentrated

in degrees up to −n− 1 +m. □

Combining this result with lemma 3.8, we obtain the following corollary.

Corollary 3.26. Consider an object C • ∈ Db
coh(X). Assume that for every i ∈ Z

there is a short exact sequence 0 → H i
+(C

•) → H i(C •) → H i
−(C

•) → 0, where H i
+(C

•)

is 1-positive and H i
−(C

•) is 1-negative. Then C • is generated by from ⊕i=2n−1
i=0 Ri in 2n−1

steps.
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CHAPTER 4

Theorems on generation using the Harder-Narasimhan filtration

4.1. Positive and negative classes using Harder-Narasimhan filtrations

As in the previous chapter we always assume X to be a smooth projective variety of

dimension n. We fix an ample line bundle L with respect to which we consider slope-

stability and Harder-Narasimhan filtrations of all sheaves. We fix a resolution of O∆ of

the form 3.1 with Li = ⊕ki
j=0L

ai , Ri = Lbi . We always consider obstruction morphisms

and obstruction spaces with respect to this chosen resolution. All definitions given in this

chapter are with respect to this chosen resolution. In this chapter we are only concerned

with generation in 2 dimX − 1 steps. Therefore, we always consider truncation at k = 1

and the corresponding obstruction morphism. In this section we describe how to obtain the

vanishing of the obstruction morphism ϕF from the properties of the Harder-Narasimhan

filtration of F .

Given a coherent sheaf F , our goal now is to construct a decomposition

0 → F+ → F → F− → 0

that satisfies the requirements of 3.24. The idea is to truncate a certain filtration of

F . One natural choice choice is the Harder-Narasimhan filtration as in Orlov’s proof for

curves. Unfortunately, the existence of a decomposition of the needed form depends on

the existence of a large gap in the Harder-Narasimhan filtration. We will overcome this
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difficulty by taking a pullback of F for a finite polarized endomorphism of sufficiently

high degree.

Lemma 4.1. There exist a, b ∈ R such that all slope-semistable sheaves F with

µ(F ) > b are 1-positive and all slope-semistable sheaves F with µ(F ) < a are 1-negative.

Proof. The condition of being 1-positive can be rewritten as

Hom(F ⊗ ω−1
X , L∨

2n) = 0

which is satisfied if µ(F ) > µ(L∨
2n) + µ(ωX) = µ(ωX) − µ(L2n) = b (we use that L2n =

⊕j=k2n
j=0 La2n is semistable). Similarly, the condition of being 1-negative

Hom(R2n ⊗ ω−1
X ,F ) = 0

follows from µ(F ) < µ(R2n)− µ(ωX) = a. □

It will be convenient to assume that both a = µ(ωX)−µ(L2n) and b = µ(R2n)−µ(ωX)

in the previous lemma are positive. This can always be achieved by modifying the chosen

resolution of O∆ by tensoring it with Lm ⊠L−m for sufficiently large m. From now on we

assume that µ(ωX)−µ(L2n) and µ(R2n)−µ(ωX) are positive for the chosen resolution of

O∆.

Lemma 4.2. Consider the Harder-Narasimhan filtration FiF of a coherent sheaf F

with slopes

µ(FiF/Fi−1F ) = µi.



36

If there is no i such that µi ∈ [a, b], where b, a are the constants from the previous lemma

then there is a short exact sequence 0 → F+ → F → F− → 0, where F+ is 1−positive

and F− is 1−negative. In particular, ϕF = 0. The condition is always satisfied if b < a.

Proof. Consider k = max{i | µi > b}. Then, µi > b for all i ≤ k and µi < a for all

i ≥ k + 1. For F+ = Fk,F− = F/Fk we have a short exact sequence

0 → F+ → F → F− → 0.

We have that F+ is 1−positive from the previous lemma since all quotient sheaves in the

Harder-Narasimhan filtration of F+ have the slope greater than b, and an extension of

two 1−positive sheaves is clearly 1−positive. Similarly, F− is 1−negative. The vanishing

of ϕF follows from lemma 3.24. □

4.2. The Rouquier dimension of toric varieties

Now we want to show that given a finite morphism ϕ : X → X such that ϕ∗L = Lm

for some m > 1 and a coherent sheaf F , we have that ϕ∗
kF satisfies the conditions of

4.2 for k large enough, where ϕk is the composition ϕ with itself k times. Consider the

Harder-Narasimhan filtration F•ϕ
∗
kF of ϕ∗

kF and the Harder-Narasimhan filtration F•F

of F . We have that Fiϕ
∗
kF = ϕ∗

kFiF for all i in characteristic 0. Therefore,

µ(Fi(ϕ
∗
kF )/Fi−1(ϕ

∗
kF )) = mkµ(FiF/Fi−1F ).

Therefore, for k large enough all negative slopes of the quotient sheaves Fi(ϕ
∗
kF )/Fi−1(ϕ

∗
kF )

become less than a, and all positive slopes of the quotient sheaves Fi(ϕ
∗
kF )/Fi−1(ϕ

∗
kF )

become greater than b, where a and b are the constants from lemma 4.2. We assumed that
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the resolution of O∆ was chosen so that both a and b are positive. Therefore, quotient

sheaves with the slope 0 also have slope less than a. Combining lemmas 4.2, 3.25 and 3.8,

we obtain the following lemma.

Lemma 4.3. Consider a smooth projective variety X over a field of characteristic 0

and a finite endomorphism ϕ : X → X such that ϕ∗L = Lm for some m > 1. For every

C • ∈ Db
coh(X), there is N such that for all k > N we have that ϕ∗

kC
• is generated by

⊕i=2n−1
i=0 Ri in 2n− 1 steps.

Using lemma 2.29 we obtain the following corollary.

Corollary 4.4. Consider a smooth projective variety X over a field of characteristic

0 and a finite endomorphism ϕ : X → X such that ϕ∗L = Lm for some m > 1. Then the

sequence {(ϕk)∗(⊕i=2n−1
i=0 Ri) | k ∈ N} generates Db

coh(X) in 2n− 1 steps.

In the case of finite characteristic we additionally assume that ϕ is either an arbitrary

separable morphism or the Frobenius morphism. We denote by F the absolute Frobenius

morphism and by Fk the composition of F with itself k times.

A semistable sheaf F on X is called strongly semistable if for every k > 0 we have

that F ∗
kF is semistable. For the case of finite characteristic we will need the following

theorem by Langer [15, Theorem 2.7.] that shows that the Harder-Narasimhan filtration

of Frobenius pullbacks eventually stabilizes.

Theorem. Consider a smooth projective variety X. For every coherent sheaf F there

exists k0 such that all quotient sheaves in the Harder-Narasimhan filtration of F ∗
k0

F are

strongly semistable.
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Lemma 4.5. Consider a smooth projective variety X over a field of characteristic p

and the Frobenius morthism F : X → X. For every C • ∈ Db
coh(X), there is N such that

for all k > N we have that F ∗
kC • is generated by ⊕i=2n−1

i=0 Ri in 2n− 1 steps.

Proof. Take k0 such that all quotient sheaves in the Harder-Narasimhan filtration

of E = F ∗
k0

F are strongly semistable. Then we can proceed as in the proof of 4.3 in

characteristic 0. □

Combining cases of finite characteristic and characteristic 0, we obtain the following

lemma.

Lemma 4.6. Consider a smooth projective variety X and a finite endomorphism

ϕ : X → X such that ϕ∗L = Lm for some m > 1. If the characteristic of the field

is finite, we additionally assume that ϕ is either a separable morphism or the Frobenius

morphism. For every C • ∈ Db
coh(X), there is N such that for all k > N we have that

ϕ∗
kC

• is generated by ⊕i=2n−1
i=0 Ri in 2n− 1 steps.

Using 2.29 we obtain the following corollary.

Corollary 4.7. Consider a smooth projective variety X and a finite endomorphism

ϕ : X → X such that ϕ∗L = Lm for some m > 1. If the characteristic of the field is finite

we additionally assume that ϕ is either separable or the Frobenius morphism and that

OX → ϕ∗OX splits. Then the sequence {(ϕk)∗(⊕i=2n−1
i=0 Ri) | k ∈ N} generates Db

coh(X) in

2n− 1 steps.

Now we can prove the bound of 2n − 1 on the Rouquier dimension of toric varieties

over an arbitrary algebraically closed field. We will use the toric Frobenius morphism
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m̄ : X → X, which is a unique extension of a morphism given by (xi) → (xm
i ) on the

embedded torus. We will need the following result on direct images of line bundles under

the toric Frobenius morphism [26, Proposition 1] (see also [1]).

Theorem. Fix a line bundle L on a toric variety X. We have that m̄∗L is a direct

sum of line bundles for all m ∈ N. Moreover, there are only finitely many line bundles

that can appear as a direct summand of m̄∗L for some m ∈ N.

We denote by Frob(X,L) the direct sum of all line bundles that appear as a direct

summand of m̄∗L for some m ∈ N.

Theorem 4.8. The Rouquier dimension of a smooth projective toric variety X over

an arbitrary algebraically closed field is less or equal than 2 dimX − 1.

Proof. Applying 4.7 to m̄∗ for some m > 1 we obtain that the sequence

{(ϕk)∗(⊕i=2n−1
i=0 Ri) | k ∈ N}

generates Db
coh(X) in 2n− 1 steps. We assumed that Ri = ⊕j=ki

j=0 L
bi . Therefore,

Db
coh(X) = ∪k⟨(ϕk)∗(⊕i=2n−1

i=0 Ri)⟩2n−1 = ∪k⟨(ϕk)∗(⊕i=2n−1
i=0 Lbi)⟩2n−1

= ⟨⊕i=2n−1
i=0 Frob(X,Lbi)⟩2n−1.

We see that ⊕i=2n−1
i=0 Frob(X,Lbi) generates Db

coh(X) in 2n− 1 steps. □

Remark 3. For a toric variety over a field of characteristic p we could just take m to

be relatively prime with p instead of invoking the theorem of Langer.
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4.3. Generation of complexes with a bound on the total rank

We know that for an arbitrary smooth projective variety we have that Db
coh(X) is

generated by the sequence {Li|i ∈ N} in n steps. In particular, for every C • ∈ Db
coh(X)

there is k ∈ N such that C • ∈ ⟨⊕i=k
i=0L

i⟩2n−1, in this section we give an effective upper

bound on k in terms of ranks of cohomology sheaves of C •.

First, we assume that in the resolution of O∆ we have that Li = ⊕j=ki
j=0 L

ai and Ri =

⊕j=ki
j=0 L

bi . By tensoring the resolution with L−m ⊠ Lm we obtain a resolution of O∆ with

Li = ⊕j=ki
j=0 L

ai−m and Ri = ⊕j=ki
j=0 L

bi+m, we call it the m-resolution. The idea is that given

C • ∈ Db
coh(X) we choose m in such a way that the obstruction morphism of C • with

respect to the m-resolution vanishes.

We define ν = 2µ(ωX) − µ(La2n) − µ(Lb2n). It follows from the proof of 4.2 that if

ν < 0 then Db
coh(X) = ⟨⊕i=2n−1

i=0 Lbi⟩2n−1. Therefore, in this case the bound on k does not

depend on C • at all. Therefore, we assume that ν ≥ 0. We define ν+ = 2ν + µ(L) + 1.

Definition 4.9. Consider the Harder-Narasimhan filtration FiF of a coherent sheaf

F with slopes

µ(FiF/Fi−1F ) = µi

We say that there is a jump at k ∈ N if there is i such that kν+ ≤ µi < (k + 1)ν+.

Lemma 4.10. For a coherent sheaf F we have that rkF is greater or equal than the

number of jumps of F .

Proof. We have that rkF =
∑

rk(FiF/Fi−1F ). All jumps correspond to distinct

FiF/Fi−1F with positive ranks. □
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Lemma 4.11. Consider a complex C • ∈ Db
coh(X). We have that

∑
i rkH i(C •) is

greater or equal than the sum of numbers of jumps of H i(C •).

Proof. Clear from the previous lemma. □

Lemma 4.12. For every complex C • ∈ Db
coh(X), there is 0 ≤ k ≤

∑
i rkH i(C •)

such that there is no jump at k for H i(C •) for all i ∈ Z.

Proof. Clear from the previous lemma. □

For a given k ∈ N we define

mk = min{i ∈ N|iµ(L) + µ(Lb2n)− µ(ωX) > kν+}

It is clear that there is a constant C that depends only on X and L such that

mk ≤ Ck

for all k ∈ N.

Lemma 4.13. If there is no jump at k for a coherent sheaf F , then there is a short

exact sequence 0 → F+ → F → F− → 0, where F+ is 1-positive with respect to the

mk-resolution and F+ is 1-negative with respect to the mk-resolution. In particular, the

obstruction morphism of F with respect to the mk−resolution vanishes.

Proof. We have the following inequalities

kν+ < µ(Lb2n+mk)− µ(ωX) < −µ(La2n−mk) + µ(ωX) < (k + 1)ν+



42

Therefore, conditions of 4.2 are satisfied if we consider the mk− resolution since in this

case a = µ(Lb2n+mk) − µ(ωX), b = −µ(La2n−mk) + µ(ωX), and there is no i such that

kν+ ≤ µi < (k + 1)ν+. □

Lemma 4.14. Consider a complex C • ∈ Db
coh(X). If there is no jump at k for

H i(C •) for every i ∈ Z, then the obstruction morphism of C • with respect to the

mk−resolution vanishes.

Proof. Direct consequence of the previous lemma and 3.25. □

Now we can prove the main result of this section.

Theorem 4.15. There is a constant K that depends only on X and L such that for

every C • ∈ Db
coh(X) we have that C • ∈ ⟨⊕i=k

i=0L
i⟩2n−1, where k = K

∑
i rkH i(C •).

Proof. We combine lemmas 4.14, 4.12 and 3.8. □

We define subcategories of complexes with a bound on the total rank

TN = {C • ∈ Db
coh(X)|

∑
i

rkH i(C •) < N}

Corollary 4.16. For every N ∈ N, there is G ∈ Db
coh(X) such that G generates TN

in 2n− 1 steps.

Proof. We can take G = ⊕i=KN
i=0 Li, where K is the constant from the previous theo-

rem. □
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CHAPTER 5

Derived categories of coherent D-modules

For a smooth projective variety X, the derived category of coherent sheaves on X is

an important and well-studied invariant. One of the most basic and important questions

one can ask is the following. Given two varieties X and Y such that there is an exact

equivalence F : Db
coh(X) → Db

coh(Y ), is it true that a certain property must be the same

for X and Y . In such a case we say that the property is a derived invariant. Turns out

that Db
coh(X) contains a lot of information about the geometry of X, and there are a lot

of theorems of this form that are known. We list some of them here, in all of the theorems

the assumptions are that X and Y are smooth projective varieties such that there is an

exact equivalence F : Db
coh(X) → Db

coh(Y ).

Theorem (Kawamata, [13]). dim(X) = dim(Y )

Theorem (Bondal-Orlov, [5]). If the (anti-)canonical bundle of X is ample then X

and Y are isomorphic.

Theorem (Orlov, [20]). ExtiX×X(δX∗OX , δX∗ω
l
X) = ExtiY×Y (δY ∗OY , δY ∗ω

l
Y ) for all

i, l ∈ Z, where δX , δY are diagonal embeddings. As an easy corollary we obtain that

∑
p−q=i

hp,q(X) =
∑
p−q=i

hp,q(Y )

for all i.
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Theorem (Rouquier, [24]). Pic0(X)× Aut0(X) ≃ Pic0(Y )× Aut0(Y )

Theorem (Popa-Schnell, [21]). h0(X,Ω1
X) = h0(Y,Ω1

Y ) and h0(X,TX) = h0(Y, TY ).

We are interested in the situation when Db
coh(X) is replaced with Db

coh(DX), the

bounded derived category of coherent D-modules on X. The only similar theorem in

this setting that we were able to find in the literature is the following.

Theorem (Favero-Arinkin, [7]). An abelian variety A can be reconstructed from its

derived category of coherent D-modules. If two abelian varieties A and B have equivalent

derived categories of coherent D-modules then A ≃ B.

It is stated in [7] that Orlov conjectured that the same is true for all varieties. For

an abelian variety A we denote the moduli space of line bundles on A equipped with

an integrable connection by A♯ (see [22]). The theorem follows from the equivalence

Db
coh(DA) ≃ Db

coh(A
♯) and the classification of objects in Db

coh(A
♯) with proper support.

We say that an object F • ∈ Db
coh(DX) is proper if for every G • ∈ Db

coh(DX) we have

that Hom(G •,F •) and Hom(F •,G •) are finite dimensional. We denote the subcategory

of proper objects by Prop(Db
coh(DX)). Motivated by the result of Favero and Arinkin we

study Prop(Db
coh(DX)) and prove the following theorem

Theorem 5.1. For a smooth projective variety X we have that

Prop(Db
coh(DX)) = {C • | H i(C •) is a vector bundle with a flat connection for all i ∈ Z}.

We also show that Prop(Db
coh(DX)) is equipped with a Serre functor given by C • →

C •[2 dimX] and obtain the following theorem as a corollary.
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Theorem 5.2. Assume that X and Y are smooth projective varieties such that there

is an equivalence F : Db
coh(DX) → Db

coh(DY ). Then dimX = dimY . Assume additionally

that X is simply connected. Then Y is also simply connected, and we have there is an

isomorphism H i(X,C) ≃ H i(Y,C) induced by F for all i.

It is somewhat surprising that even the equality of dimensions is not obvious. We

were not able to find this result mentioned in the literature or find a proof that is more

elementary than the one presented in this chapter.

We also note that the equality of Betti numbers for varieties with equivalent derived

categories of coherent sheaves is only conjectured. And while it is known for surfaces

and threefolds, there is no natural isomorphism of vector spaces between H i(X,C) and

H i(Y,C) induced by the equivalence of derived categories of coherent sheaves of X and

Y .

5.1. Notation for derived categories D-modules

We use the notation from [9] for functors between derived categories of coherent

D−modules that we recall here. For a smooth variety X there is the duality functor

D : Db
coh(DX) → Db

coh(DX)

For a smooth proper morphism f : X → Y of smooth varieties we have functors

∫
f

: Db
coh(DX) → Db

coh(DY )

f ∗ : Db
coh(DY ) → Db

coh(DX)
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f † = f ∗[dimX − dimY ]

f ⋆ = f ∗[dimY − dimX]

We have that f ⋆ is left-adjoint to
∫
f
and f † is right-adjoint to

∫
f
for holonomic D-modules

[9, Corollary 3.2.15].

5.2. Proper complexes of D-modules

Definition 5.3. Let X be a smooth projective variety. We say that an object F • ∈

Db
coh(DX) is right-proper if Hom(G •,F •) is a finite dimensional vector space for every

G • ∈ Db
coh(DX). The subcategory of right-proper objects is denoted by Propr(D

b
coh(DX)).

Similarly, we say that an object F • ∈ Db
coh(DX) is left-proper if Hom(F •,G •) is

a finite dimensional vector space for every G • ∈ Db
coh(DX). The subcategory of left-

proper objects is denoted by Propl(D
b
coh(DX)). It is clear that an exact equivalence

Db
coh(DX) ≃ Db

coh(DY ) induces equivalences

Propr(D
b
coh(DX)) ≃ Propr(D

b
coh(DY )), Propl(D

b
coh(DX)) ≃ Propl(D

b
coh(DY )).

It is also clear that the duality functor on Db
coh(DX) interchanges right-proper objects

and left-proper objects D(Propr(D
b
coh(DX))) = Propl(D

b
coh(DX)).

Theorem. For a smooth projective variety X we have that

Propr(D
b
coh(DX)) = {C • | H i(C •) is a vector bundle with a flat connection for all i ∈ Z}.
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Proof. Fix an ample line bundle L on X. Given a right-proper object F • we have

that

HomDX
(DX ⊗OX

Li,F •[j]) ≃ HomOX
(Li,F •[j]) ≃ Hj(F • ⊗ L−i)

is a finite dimensional vector space for all i, j ∈ Z. Consider a resolution over OX of the

structure sheaf of the diagonal O∆ ∈ Coh(X ×X) of the following form

... → ⊕L−b2 ⊠ L−a2 → ⊕L−b1 ⊠ L−a1 → ⊕L−b0 ⊠ L−a0 → O∆ → 0,

where every direct sum is finite. Since Exti(F ,G ) = 0 for i > 4n and coherent D-modules

F ,G on X × X, truncating the resolution at −4n = −4 dimX we obtain that O∆ is a

direct summand of

C • = {0 → L−b4n ⊠L−a4n → ... → ⊕L−b2 ⊠L−a2 → ⊕L−b1 ⊠L−a1 → ⊕L−b0 ⊠L−a0 → 0},

where we consider C • ∈ Db
coh(X ×X) as a complex concentrated in degrees from −4n

to 0. Therefore, F • = ΦO∆
(F •) is a direct summand of ΦC •(F •), where by ΦK :

Db
qcoh(X) → Db

qcoh(X) we denote the Fourier-Mukai functor with the kernel K . But

ΦC •(F •) is constructed from finite direct sums of RΓ(L−bi⊗F •)⊗L−ai by taking 4 dimX

cones. Since RΓ(L−bi ⊗ F •) is finite dimensional for all i, it follows that F • belongs to

Db
coh(X) ⊂ Db

qcoh(X) and H i(F •) are coherent over OX for all i ∈ Z. But D-modules

coherent over OX are integrable connections. The other direction follows from [9][Lemma

D.2.4.]. □
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As a consequence we see that Propr(D
b
coh(DX)) = Propl(D

b
coh(DX)) since the du-

ality functor maps vector bundles with a flat connections to vector bundles with a flat

connection. From now on we denote Propr(D
b
coh(DX)) by just Prop(Db

coh(DX)).

Lemma 5.4. For a smooth projective variety X we have that Prop(Db
coh(DX)) is

equipped with a Serre functor given by SX : C • → C •[2 dimX].

Proof. Consider the projection π : X → pt and F • ∈ Prop(Db
coh(DX)). We have

that

HomDX
(OX ,F

•) ≃ HomDX
(π⋆Opt[dimX],F •) ≃ HomDpt(Opt[dimX],

∫
π

F •) ≃

HomDpt(

∫
π

F •,Opt[dimX])∗ ≃ HomDX
(F •, π†Opt[dimX])∗ ≃

HomDX
(F •,OX [2 dimX])∗.

Therefore, for F •,G • ∈ Prop(Db
coh(DX)) we have

HomDX
(F •,G •) ≃ HomDX

(OX ,DF • ⊗OX
G •) ≃ HomDX

(DF • ⊗OX
G •,OX [2 dimX])∗ ≃

HomDX
(OX ,F

• ⊗OX
DG •[2 dimX])∗ ≃ HomDX

(G •,F •[2 dimX])∗,

where we used that DE ≃ HomOX
(E ,OX) for an integrable connection E . See [9][Corollary

2.6.15, Theorem 3.2.14] □

Corollary 5.5. Let X and Y be smooth projective varieties such that there is an

equivalence F : Db
coh(DX) → Db

coh(DY ). Then dimX = dimY .
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Proof. We have that F induces the exact equivalence of subcategories

F : Prop(Db
coh(DX)) → Prop(Db

coh(DY )).

Since exact equivalences commute with Serre functors we have

F (OX)[2 dimX] ≃ F (OX [2 dimX]) ≃ F (SX(OX)) ≃

SY (F (OX)) ≃ F (OX)[2 dimY ].

Since F (OX) is a bounded nonzero complex, we obtain that dimX = dimY . □

5.3. Derived invariants of coherent D-modules

We showed in the previous section that dimX is determined by Db
coh(DX). The

main goal of this section is to prove that the property of being simply connected is also

determined by Db
coh(DX), and that for simply connected varieties Betti numbers are also

determined by Db
coh(DX).

Lemma 5.6. Let X and Y be smooth projective varieties such that there is an equiv-

alence F : Db
coh(DX) → Db

coh(DY ). Assume that Y is simply connected. Then F (OX) =

OY [k] for some k ∈ Z.

Proof. From theorem 5.2 we know that H i(F (OX)) ≃ ⊕j=ai
j=0 OY for all i ∈ Z since Y

is simply connected, and there are no nontrivial vector bundles with flat connection on

a simply connected variety. We want to show that there is k ∈ Z such that ak = 1 and

ai = 0 for i ̸= k. Take a to be the smallest integer i such that H i(F (OX)) ̸= 0. Take b
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to be the largest integer i such that H i(F (OX)) ̸= 0. We know that

Hom(F (OX), F (OX)[i]) = Hom(OX ,OX [i]) = 0

for i < 0. On the other hand it is easy to see that

Hom(F (OX), F (OX)[a− b]) ̸= 0

since H i(F (OX)) = 0 for i > b, H i(F (OX)[a− b]) = 0 for i < b, and

H b(F (OX)) = ⊕j=k1
j=0 OY , H b(F (OX)[a− b]) = ⊕j=k2

j=0 OY

for some nonzero k1, k2. Therefore, a = b and

dimHom(F (OX), F (OX)) = k2
1.

Since

Hom(F (OX), F (OX)) ≃ C

we obtain that k1 = 1 and F (OX) ≃ OY [−a]. □

Corollary 5.7. Let X and Y be smooth projective varieties such that there is an

equivalence F : Db
coh(DX) → Db

coh(DY ). Assume that Y is simply connected. Then X is

also simply connected and we have isomorphisms H i(X,C) ≃ H i(Y,C) for all i.

Proof. Consider a vector bundle with flat connection E ∈ Db
coh(DX). By the same

argument as in the proof of the previous lemma we see that F (E ) = ⊕i=a
i=0OY [k] for some

k ∈ Z, a ∈ N since Hom(F (E ), F (E )[−i]) ≃ Hom(E ,E [−i]) = 0 for i > 0. But we also
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know from the same lemma that F (⊕i=a
i=0OX [i]) ≃ ⊕i=a

i=0OY [k] for some i ∈ Z. Which

means that E ≃ Oa
X since F is an equivalence. Therefore, there are no nontrivial vector

bundles with flat connection on X, which means that X is simply connected. The second

statement follows from

H i(X,C) ≃ HomDX
(OX ,OX [i]) ≃ HomDY

(F (OX), F (OX)[i])

≃ HomDY
(OY [k],OY [i+ k]) ≃ H i(Y,C).

□
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