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ABSTRACT

Quantitative Analysis of Complex Three-Dimensional Microstructures

Amber Lynn Genau

The morphological evolution due to coarsening is analyzed for two distinctive types

of microstructure. First, the feasibility of characterizing spatial correlations of interfa-

cial curvature in topologically complex structures is demonstrated with the analysis of

bicontinuous two-phase mixtures produced using phase field modeling. For structures

produced with both conserved and nonconserved dynamics, new characteristic length

scales are identified. In the nonconserved case, despite the local evolution law govern-

ing interfacial motion, long-range correlations develop that lead to a characteristic length

scale associated with the distance between high curvature tunnels. In the conserved case

the diffusional dynamics leads to a length scale that is related to correlations and anticor-

relations between regions of curvature of opposite sign. Positive correlations due to this

length scale can be measured out to seven times the characteristic length of the system.

Spatial correlations are also compared for symmetric and asymmetric mixtures produced

with conserved dynamics.
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In addition, the microstructure of directionally solidified and isothermally coarsened

Pb-Sn samples are examined at various coarsening times. The samples, composed of Pb-

69.1wt%Sn, have an overall volume fraction of 22% solid which is not uniformly distributed

through the sample but clustered into regions of approximately 37% solid separated by

empty eutectic regions. The morphology of the dendrites, both in the dense regions and

at the edge of the eutectic spaces is analyzed using three-dimensional reconstructions,

Interface Shape Distributions and Interface Normal Distributions. These methods are

used to track the evolution of the structures from being dominated by secondary and

tertiary arms in the plane perpendicular to the solidification direction to predominance

of the primary stalks running in the solidification direction.

Finally, the method of characterizing spatial correlations introduced above is applied

to the experimentally obtained dendritic structures. For these samples, changes to the

correlations are found due to increased coarsening time, changes in volume fraction, and

whether the sample comes from a dense or non-dense region. This technique proves to be

a method of broad applicability that has the potential to unlock valuable details about a

variety of different systems and phenomena.
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CHAPTER 1

Introduction

Although we have always lived in a three-dimensional world, materials science has

only recently entered the three-dimensional realm. It is within the last two decades that

the techniques for acquiring 3D images, and the computing power necessary to handle the

vast quantities of resulting data, have been available, making 3D analysis practical or even

possible. This advance has opened up new possibilities for exploring the many natural

structures of extraordinary morphological and topological complexity which require a

fully three-dimensional analysis. If we are to take full advantage of the explosion in the

availability of 3D data, new methods of quantifying complex structures are necessary.

One type of such a complex structure is composed of two or more interconnected

domains and posses spatially varying interfacial curvature. Examples of such structures

include trabecular bone [1], two-phase mixtures produced following spinodal decomposi-

tion [2], ordering in ferromagnetic materials [3,4], solid-liquid mixtures following dendritic

solidification [5], solid-oxide fuel cells [6,7], and phase separation in polymer blends [8,9].

The morphology of the interfaces in these structures plays a major role in setting their

unique properties. The topology and morphology of the tribeculae contribute to the me-

chanical properties of bone [10]. The morphology of bicontinuous structures may play

an important role in improving the efficiencies of organic solar cells [11]. The ease with

which gas flows through solid-oxide fuel cells is strongly related to the morphology of the

pores in these structures [12]. Similarly, fluid flow through dendritic solid-liquid mixtures
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is connected with the morphology of the two-phase mixture and hence the presence of

deleterious casting defects.

In past these structures have been characterized using a two-point correlation function

or its Fourier transform, the structure function [2], which can be determined from x-ray

analysis. This provides some information on the structure, but a measure in Fourier space

cannot provide an accurate picture of the interfacial morphology. One recently developed

method for partially determining the morphology of these structures is called the Interface

Shape Distribution (ISD) [1, 13, 14], which is determined by measuring the probability

of finding a patch of interface with a certain mean and Gaussian curvature. The ISD

is the counterpart to particle size distributions for systems consisting of spherical parti-

cles embedded in a matrix. Another measurement is the Interface Normal Distribution

(IND) [14], which determines directionality of a structure. The topology of these systems

have been characterized by measures such as the Genus, Euler characteristic, and Betti

numbers [8,15–17].

However, these works provide only a partial picture of the structure of these mor-

phologically complicated systems since the manner in which the interfacial curvatures

are distributed spatially in the system is unknown. In particular, it is possible for two

structures to have the same interface shape distribution, but to have the curvatures dis-

tributed differently in space. Moreover, in many cases interfacial curvature itself drives

the evolution of the structure. For example, in a two-phase system the chemical potential

is a function of the local mean curvature, so the spatial distribution of the mean curva-

ture can provide important information on the manner in which the structure evolves.
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Thus an important piece of information is missing that is needed to both characterize the

morphology of the interfaces and, in some cases, predict its evolution.

The spatial correlation of spherical (or assumed spherical) particles has been directly

measured in two dimensional systems [18,19] and on planar slices taken from three dimen-

sional systems [20,21]. The 2D techniques have also been extended to obtain correlation

data about fibers [22] and non-spherical particulate matter [23]. Spatial correlation in-

formation can also be extracted from three-dimensional systems using x-ray or other scat-

tering data via the structure function [24,25], but as mentioned above, this is an indirect

measurement requiring a number of assumptions such as particle shape and the particle

size distribution. In addition, a few studies have measured three-dimensional correlations

in real space using confocal microscopy [26] and simulated particle systems [27–29]. I

will present a new method which I have developed that can be used to quantify the spa-

tial distribution of interfacial curvature in systems of any morphology and topology by

calculating the radial distribution function (RDF).

An excellent example of the usefulness of quantifying complex microstructures is the

field of coarsening. Coarsening is a widespread phenomenon which occurs in nearly all

two phase systems, whether metal, ceramic or polymer, and in solids, liquids and gases.

Driven by the desire to reduce the excess free energy associated with interfacial area,

the system works to decrease the amount of interface, resulting in an increasing length

scale within the system. The evolution of the microstructure during coarsening is highly

dependent on both the type of curvature present (measured by ISD) and the arrangement

of that curvature (measured by RDF).
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In the first section, I will examine the spatial correlations of bicontinuous structures

produced following phase separation by spinodal decomposition and phase ordering, in

particular focusing on the late-stages of the transformations, or coarsening regime, where

the interfaces are well developed and the structures are evolving under the influence of

interfacial energy. During phase ordering, the order parameter, whose value changes

from one phase to another, is not conserved, whereas during spinodal decomposition the

order parameter is conserved. This critical difference leads to markedly different spatial

distributions in the mean curvature of the system. In the second section, I will apply this

method of analyzing spatial distributions to examine the differences between symmetric

and asymmetric two-phase mixtures produced using conserved kinetics.

This work was done in conjunction with NASA and the Coarsening in Solid-Liquid

Mixtures 2 project, which studies coarsening of spherical particles in liquid in the micro-

gravity environment of the international Space Station. The microgravity environment

avoids material transport effects due to sedimentation or convection currents, allowing

the fundamental aspects of coarsening to be probed, particularly the assumptions of LSW

Theory (discussed further in Chapter 2). Lead-tin was chosen as a model system because

of its isotropic interfacial energy, well known parameters and fast coarsening rate. While

the CSLM-2 project is ongoing, it did not proceed on a time-scale conducive to inclusion

in this dissertation, particularly because of lingering delays after the crash of the space

shuttle Columbia. Therefore, in order to supplement the work being done in micrograv-

ity, an experimental component was developed which could be carried out on the ground.

Using the same Pb-Sn system and many of the same techniques and equipment, direc-

tionally solidified dendrites were isothermally coarsened and analyzed using ISDs, INDs
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and RDFs. The structural nature of dendrites makes it possible to coarsen them without

significant gravity-induced sedimentation, at least within a range of volume fractions and

coarsening times.

Dendritic coarsening is an area of particular technological importance, because den-

drites form in all metal alloys, and the coarsening of these structures, both in the mushy

zone during solidification and potentially afterwards while the part is in service, has a

significant impact on the properties of the metal. In the third section, I particularly look

at dendrites grown in systems with a low volume fraction of solid, allowing individual

dendrites to develop more fully. The fourth section I will examine the patterns of spatial

correlations of dendritic samples, looking at the correlations change with volume frac-

tion solid and coarsening time. An improved understanding of coarsening and its effect

on microstructure will help us better exploit the link between processing and structure,

tailoring the properties of a material to fit specific needs.
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CHAPTER 2

Coarsening

2.1. Coarsening in Systems with Spherical Particles

For the simplest systems, specifically two phase systems with spherical particles, coars-

ening, also known as Ostwald ripening, is quite well understood. In an attempt to min-

imize surface energy in such a system, small spheres shrink while large spheres grow,

maintaining a nearly constant volume of the second phase while decreasing the surface

area to volume ratio. Over time, the average particle radius increases, while the number

density of particles decreases. This process is facilitated by the Gibbs-Thomson effect,

the dependence of equilibrium concentration at an interface on the mean curvature, H, of

that interface. The equilibrium composition of the liquid at any point along the interface

is given by the Gibbs-Thompson equation as

(2.1) CL = C∞ + ΓH

where CL is the composition in the liquid, C∞ is the equilibrium composition of the

liquid at a flat interface, Γ is the capillary length (determined by the material parameters

including solid-liquid interface energy), and the mean curvature of the interface is equal

to

(2.2) H =
1

2

(
1

R1

+
1

R2

)
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where R1 and R2 are the maximum and minimum radii of curvature, respectively. Because

of this composition dependence, the concentration of solute atoms near a small particle

(with high curvature) will be relatively high, while the concentration near a larger particle

(with lower curvature) will be relatively lower. This concentration gradient causes mass

to diffuse from the small particle to the larger particle, with the large particle growing

and the small particle shrinking until it disappears.

Coarsening of spherical structures can therefore be described by only one variable, the

radius of the spheres. Lifshitz and Slyozov [30] and Wagner [31] developed a theory in

1961 for the coarsening of a polydisperse array of particles embedded in a matrix which

effectively predicts the growth rate of the average particle size. They predicted that

(2.3) R̄3(t)− R̄3(0) = KLSW t

where R̄ is the average particle radius at some time, t, and KLSW is the rate constant

(2.4) KLSW =
8T0ΓD

9ML(CS − CL)

with T0 the coarsening temperature, Γ again the capillary length, D the diffusion coeffi-

cient, ML the slope of the liquidus curve, and CS and CL the compositions of the solid and

liquid at a flat interface. LSW theory assumes infinitely separated particles, i.e., that the

volume of the particles is negligible so that there is no overlapping of diffusion fields, and

that the interfacial free energy is isotropic (producing spherical particles). Equation 2.3

also predicts the condition of self-similarity, meaning that the microstructure appears the

same as it coarsens except for a scaling factor (i.e., time-independent when scaled by a

time-dependent characteristic length).
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2.2. Coarsening of Dendrites

Unfortunately, most real systems do not present simple spherical particles. Metal al-

loys, for example, usually solidify by forming dendrites, complicated tree-like structures

with secondary, tertiary and sometimes higher order branches. After solidification initi-

ates, minute variations develop in the progressing solid-liquid interface. Thermodynamics

drives these perturbations to quickly grow into cellular and then dendritic morphologies.

Between the tips and the bases of the dendrites is a region of solid plus liquid, known as

the mushy zone, where coarsening occurs. This occurs under nearly isothermal conditions.

Dendrite surfaces present a complex curvature which can be either positively or neg-

atively curved, and which are no longer related to the size of the particle. The varying

curvatures set up concentration gradients in the liquid, which cause a flux of solute and

drive the evolution of the morphology. Although the concentration at the interface is de-

termined by the curvature of the local interface, the velocity of the interface at any given

point is determined by long-range diffusive interactions with surrounding regions. The

effects of this nonlocal dependence on coarsening dynamics are not yet well understood.

The first description of dendrite coarsening was put forth by Papapetrou in 1935 [32],

and initially it was studied by looking at the secondary dendrite arm spacing. While

providing useful information about the evolution of the structure, this method has sev-

eral significant shortcomings, namely the inherent difficulties in extracting information

about three-dimensional objects from a two-dimensional measurement, and the problem

of evolution to the point where the dendrites become spherical and there are no arms to

measure. Most models of the mushy zone have generally simplified dendrites to a collec-

tion of cylinders [33–37] or tear-drop shaped arms [38,39]. This allows the curvature of
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Figure 2.1. Four different models for isothermal corasening: (1) radial
remelting, (2) axial remelting, (3) arm detachment, and (4) arm coales-
cence.

the interface to be once again linked with size. Kattamis et al. [40] proposed methods for

both shapes. The first describes a situation in which a cylindrical arm, thinner than the

surrounding arms and therefore with a lower melting point, will decrease in radius until

it has melted away, leading to an increase in average spacing. For the second case, Kat-

tamis proposed a model in which a tear-drop shaped arm between two cylindrical arms

will decrease in radius at its base until it pinches off entirely as mass is transported from

the base of the arm to the tip. Alternatively, Kahlweit approximates dendrite arms as

cylinders with spherical tips [33] which melt back from the tips instead of radially. Young

and Kirkwood [39] propose that the the method of coarsening is coalescence rather than
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Figure 2.2. Micrographs showing the coarsening of Sn-wt%40Bi for (a) t =
0, (b) t = 10min, (c) t = 2.5hr, (d) t = 240hr.

melting. According to their calculations, the curvature between dendrite arms will cause

initially cylindrical arms to become tear-drop shaped and impinge on one another near

the tips, causing coalescence. These four methods are shown schematically in Figure 2.1.

Experimental evidence suggests that each of these methods is possible to some extent,

depending on circumstances.

By measuring secondary dendrite arm spacing, researchers were able to determine

that dendrite coarsening follows the same power law observed in spherical particle sys-

tems and spinodal decomposition of alloys, namely λ2 ∼ t
1/3
f , where λ2 is the secondary

dendrite arm spacing and tf is the local solidification time. While measuring λ2 is clearly
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a useful measure, it has significant shortcomings, such as those faced by Marsh and Glicks-

man in their 1996 study of Sn-40wt%Bi. After coarsening for very long periods of time,

the microstructure underwent drastic morphological changes, with the initially branched

structure breaking up into spherical particles (see Figure 2.2 [41]). Without secondary,

or even primary arms, a different measure was clearly needed. They proposed using the

specific interfacial area, Sv, which is the interfacial area per unit volume of the system

under consideration and has units of inverse length. It has the advantage of being mor-

phologically independent and so can be used to describe the coarsening process regardless

of changes to the microstructure. The term S−1
v is also useful, and commonly defined

as the characteristic length of the system. Furthermore, Sv can be related to coarsening

time by the formula

(2.5) S−3
v (t)− S−3

v (0) = KLSW t

and Marsh and Glicksman found that, over the entire observed coarsening range, despite

the enormous changes in morphology, the evolution of the system was always described

as S−1
v ∼ t1/3 (see Figure 2.3 citeglicksman). All analysis of coarsening presented in this

document will use Sv as a basis of measurement. While the coarsening exponent is the

same, unlike the case of spherical particles, the condition of self-similarity seems not to

be correlated with a t1/3 evolution of S−1
v in dendrites [15].

To study the curvature and evolution of dendrites without resorting to fixed geome-

tries, three-dimensional data is needed. In 1966, Bower, Brody, and Flemings [42] used

serial sectioning to study the shape of dendrite arms. Some work was done by Feijóo and

Exner [43, 44] using deep-etching combined with stereo-pictures to evaluate curvature
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Figure 2.3. Change in specific surface area with time in Sn-40%Bi.

distributions of dendritic structures, but both methods had severe limitations. Only re-

cently have advances in computing power allowed for more rigorous methods and models

to be attempted.

The study of coarsening is further complicated by the effect of sedimentation. As

dendrites coarsen, side branches or even entire dendrites will often pinch off from the

rest of the solid region. Unsupported, gravity will cause these loose pieces to either sink

or rise, depending on their relative density, through the liquid of the mushy zone and

deposit on one side of the sample. This process is known as sedimentation, and results in

non-uniform volume fraction of solid throughout the sample, thereby affecting all other

measurements. The problem of sedimentation is more pronounced for alloys with a small

volume fraction of solute, since the dendrite network is smaller and less interconnected.

Long coarsening time also exacerbates the problem.



34

2.3. Coarsening in Bicontinuous Structures

Coarsening also affects so-called bicontinuous structures, where phases are interpene-

trating and intricately connected. Bicontinuous structures form in both phase separating

and phase ordering systems, including spin ordering in magnetic materials, spinodal de-

composition in binary homopolymer mixtures, and microemulsions. Phase separation

occurs when a homogeneous single-phase mixture is cooled below some critical tempera-

ture and it becomes thermodynamically favorable for two phases to form. This process

may occur with conserved or nonconserved dynamics; that is, the amount of each phase

after separation may be fixed or it may not be. Spinodal decomposition is a good example

of conserved dynamics. The amount and composition of phase A and B are dictated by

the phase diagram. Evolution can only occur by diffusion of mass from one region to

another. Spin ordering is an example of nonconserved dynamics, as a region may switch

from one domain (+) to the other (-) simply by the flipping of dipoles. Because of the

interconnected nature of these structures, a decrease in the amount of interface requires

continual pinching apart of both phases.

The growth law developed by LSW and given in Eqn. 2.3 can be modified for non-

particulate systems by replacing R̄, the average particle radius, with the characteristic

length, l, defined above as S−1
v , to be

(2.6) lm(t)− lm(0) = KLSW t

where m is the growth exponent, equal to 3 for conserved dynamics and 2 for nonconserved

dynamics. Other effects such as fluid flow or elastic stress can also change the exponent.
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Although it has been shown that dendritic coarsening does not proceed in a self-similar

manner, recent work shows that bicontinuous structures do reach a regime of self-similar

coarsening, as measured by the Interface Shape Distribution and topology [45].
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CHAPTER 3

Spatial Correlations in Symmetric Bicontinuous Mixtures

3.1. Development of Calculation Method

Because curvature distributions and directionality are not enough to completely char-

acterize a structure, a method was developed for quantifying the spatial correlation of

complex structures such as dendrites and the bicontinuous structures discussed in the

introduction. The radial distribution function has been used extensively to character-

ize particulate systems, but there are a number of challenges to applying it to systems

without discrete particles.

The radial distribution function is defined for particle systems as

(3.1) RDF =
No. Particles per area in a spherical shell

Overall particle density

that is, if one starts at any given particle and goes out some radial distance, the RDF

gives the probability of finding another particle at that distance, normalized by the overall

density of particles in the system. An example of a typical RDF for a system of spherical

particles is shown in Figure 3.1 [46]. In order to compare results from one sample to

another, the radial distance is typically normalized by the average particle radius as in

Figure 3.1. The RDF appears as a line with some combination of peaks and valleys, and

at longer distances, generally shows a decaying oscillation about 1. One indicates that

there is no correlation; in other words, the probability of finding anything is the same as
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it would be in a system with a random distribution of particles. RDFs are often further

specified to determine the correlations between particular sizes of particles, say, between

large and small particles or between all particles with a given diameter range.

Figure 3.1. Typical RDF for system of spherical particles showing proba-
bility as a function of normalized distance. For this system, RDF changes
somewhat with coarsening time.

When attempting to define a RDF for a non-particulate system, one must consider

some particular aspect of the structure; in this case, the variation in curvature of the

interface. As stated earlier, at least two values are needed to completely define the shape

of a patch of curvature, such as the mean (H) and Gaussian curvature (K). This gives a

spatial correlation function that is a function of five independent variables: H and K of

two patches and r, where r is the distance between two interfacial patches. To reduce the

dimensionality of the RDF I focused only on the mean curvature due to its significance

in the coarsening process (see Equation 2.1).
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Initially, I attempted to plot RDF the same way it was done for particle systems

by choosing two regions of the ISD and calculating the correlation between them at all

distances. An example of this is shown in Figure 3.2. It soon became apparent that this

was not a good way to look at the data, as it required very large numbers of plots. For

example, to see the correlations of each of the thirteen boxes and with themselves and all

other boxes shown in Figure 3.2a would require 91 line plots and still does not capture

all possible correlations. Also, there was no good way to determine size and location of

these boxes, as there were no natural lines along which to distinguish the curvatures.

A more reasonable distinction is to plot correlations between all values of curvature

at some discrete distance on a single plot. This requires a 2D contour plot similar to

those used for IDSs and INDs. Using this method, the RDF is calculated for a series

of concentric shells about all initial points, H1 (see Figure 3.3). Now the RDF can be

defined as the probability, referenced to the average over the sample volume, of finding an

interfacial patch having a given mean curvature H2 at distance r from a patch having a

mean curvature H1. This is given by the ratio of the interfacial area having a curvature of

H2 found inside a spherical shell to the volume-averaged interfacial area having the same

curvature (see Figure 3.3), or

(3.2) G(H1, H2, r) =
A(H2, r)

Av(H2)4πr2dr

where A(H2, r) is the interfacial area having curvature H2 within a spherical shell of

thickness dr at a radial distance, r, measured from a point having curvature H1, and

Av(H2) is the volume-averaged total interfacial area per unit volume having curvature



39

(a)

(b)

Figure 3.2. Initial method of calculating RDF for complex systems. Ex-
ample shown is Pb-Sn dendrites, 43% solid, 3 minute coarsening time. See
Chapter 7 for more data from this system. (a) The ISD was broken into
regions and the correlation between any two boxes could be calculated. (b)
Some of the correlations measured between boxes for the system in (a).
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Figure 3.3. Red, blue, green, yellow and purple display the interfaces that
are within the first five shells, each having a width of 1/3 S−1

v , centered
around an initial patch of interface, shown in white. It is clear from this
figure that a patch is typically surrounded by similar values of H at small
distances and interfaces with many different values of H at larger distances.

H2, calculated for the entire volume. As before, G will approach 1 in the limit where

r→∞.

An example of the RDF for r = 1/3S−1
v one of some generic structure, where r

is much less then a typical radius of interfacial curvature, is shown in Figure 3.4. By

looking at Figure 3.3, it is clear that the curvature in the red region is very similar to

the curvature of the initial point. Therefore, since the interfacial patch size is very small

compared to the scale of the structure, all positive correlations at this distance should

be between curvatures of the same or similar values. Figure 3.4 shows this to be the

case, with all correlations running along the H1 = H2 line. This will be true for any

real (non-fractal) structure since surface energy acts to smooth the curvature. In general,

the plots must be symmetric across the H1 = H2 line (shown as a dotted line) since

G(H1, H2, r) = G(H2, H1, r) by definition.
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Figure 3.4. RDF for r = 1/3S−1
v for some generic structure. At this dis-

tance, correlations between like curvatures are extremely high. Notice that
the axes are scaled by the characteristic length of the system. White indi-
cates values greater than ten.

As the bell shape of the curvature distribution indicates (shown below in Figure 3.6),

there is very little area with high absolute curvature values. The relative scarcity of
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this curvature, which is not randomly distributed through the structure but concentrated

into a few features, causes the probability to scale inversely with the relative amount of

curvature. That is, the higher the magnitude of curvature is, the more scarce it is and the

more relatively concentrated it is, producing a higher correlation value. Larger absolute

values of mean curvature also correspond to regions with very small radii of curvature (i.e.,

very small features) where the curvature changes quickly over a smaller spatial distance,

causing the region of increased probability to widen near the edges of the plot.

3.2. Structures for Analysis

The method of analyzing spatial correlations using the Radial Distribution Function

was first applied to two structures composed of bicontinuous phases of equal volume,

shown in Figure 3.5. They were obtained by numerically evolving the Cahn-Hilliard equa-

tion, which governs conserved dynamics, and the Allen-Cahn (time-dependent Ginzburg-

Landau) equation, which governs nonconserved dynamics, from an initial condition having

random noise around a mean value chosen such that the volume fraction of each phase is

50%. Complete details about these structures can be found elsewhere [45,47], including

the structure function, which is the parameter generally used to characterize this type of

complex structure. These structures provided a good testing ground for the new method

because the 3D models were not affected by experimental error.

While the driving force for the evolution of interfaces is related to the interfacial mean

curvature in both cases, the interfacial motion occurs by different mechanisms. In the

conserved dynamics, mass is conserved and coarsening takes place by the diffusion of

species from one region to another; thus the interfacial motion depends not only on the
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local curvature, but also on the mean curvatures of surrounding interfaces. On the other

hand, for the nonconserved dynamics, the velocity at a point on the interface depends

only on the mean curvature at that point.

The probability of finding a patch of interface with a given value of the mean curvature

for each structure has a peak at H = 0 and is symmetrically distributed about zero,

see Figure 3.6. When the distributions are plotted in terms of a scaled mean curvature

H/Sv, where Sv is the surface area per unit volume, unique time-independent distributions

result. The distribution is narrower for the conserved dynamics case as compared with

the nonconserved dynamics case. Despite this difference, the two structures were found

to be topologically similar, with nearly identical values of scaled genus [45].

The RDFs were calculated for conserved and nonconserved structures of size (22S−1
v )3

and (16S−1
v )3, respectively. For each structure, 120,000 initial H1 values were sampled,

each providing many thousands of patches for H2. Since all structures were initially

created using periodic boundary conditions, I was able to calculate the RDF across the

boundaries, effectively creating a much larger volume from which to sample data. Utilizing

the periodic boundary conditions in this way dramatically decreased the noise near the

edges of the plots and allowed correlations to be calculated out to much longer distances.

To obtain sufficient statistics while ensuring a good resolution in r, the shell thickness

resolution ∆r was set to 1/3(S−1
v ). The correlation functions were also plotted for values

of scaled curvature −Hmax < H < Hmax such that some percentage of the total interfacial

area is included in the data displayed. Unless otherwise noted, all plots in this section are

scaled to display curvatures of 90% of the total surface area. This does not result in loss of

essential data since high curvature areas (with large |H|) are evolving quickly, thus their
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a

b
Figure 3.5. Two structures used for analysis, (a) conserved order parameter
and (b) nonconserved order parameter.
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Figure 3.6. Mean curvature distributions for symmetric, 50% solid struc-
tures produced by evolving the Cahn-Hilliard equation (conserved dynam-
ics) and the Allen-Cahn equation (nonconserved dynamics).

existence is strongly transient in nature. These measures, along with scaling the axes of

the plot by the characteristic length of the system (S−1
v ) allows one to compare results

for the two different structures, despite the differences in width of the scaled curvature

distributions.

Since the interfacial morphologies resulting from both the conserved and the noncon-

served dynamics attain statistically unique time-independent states when scaled by their

characteristic length [45], the scaled spatial correlation was expected to have specific

time-independent forms as well. The RDF for the conserved system was thus compared
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with another structure that had been evolved approximately twice as long. When scaled

by S−1
v , the spatial correlation functions were found to be statistically the same, confirm-

ing this time-independence. We thus plot the correlation functions as a function of the

dimensionless curvatures H̃1 = H1S
−1
v , H̃2 = H2S

−1
v and distance r̃ = rS−1

v . In both

the conserved and nonconserved structures a radius of curvature of the interfaces has a

magnitude that is on the order of S−1
v [45].

3.3. Analysis of Structure with Conserved Dynamics

The RDF of the structure produced using conserved dynamics, with its nonlocal evolu-

tion, is shown in Figure 3.7. As mentioned above, the plots must be symmetric across the

H̃1 = H̃2 line. Because both structures discussed in this section have equal volume frac-

tions of the two phases, the plots will also be symmetric across the line H̃1 = −H̃2. The

RDF shows a fairly complex pattern of spatial correlations with several distinct regions

of positive correlation. At very short distances (see Figure 3.7a) all enhanced probability

is concentrated along the H̃1 = H̃2 line and is higher for larger values of |H̃1| and |H̃2|.

From r̃ = 1 to 4/3, Figure 3.8b and 3.8c, these strongly localized correlations begin to

decay, and patches of H̃ = 0 reach a random distribution at r̃ = 1.

As the positive correlation between similar curvatures decreases with increasing dis-

tance, a separate nonzero probability begins to appear for patches of interface that have

different signs of the curvature. This probability grows in intensity until it dominates at

r̃ = 5/3 (Figure 3.7d) and regions where both patches have either very large or very small

curvature become slightly anticorrelated at r̃ = 2, Figure 3.7e. These correlations and
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anticorrelations slowly disappear near r̃ = 10/3 (see Figure 3.8). The like-curvature cor-

relation reappears weakly at about four times the magnitude of the characteristic radius

of curvature of the interfaces (r̃ = 4), and the opposite-curvature correlation returns yet

more weakly around r̃ = 5 (Figure 3.8). The distance over which the correlation function

oscillates as it decays is a characteristic length scale of these structures that can only be

identified through analysis such as this.

As mentioned, strong correlations were found between patches of interface with like

curvatures for r̃ ≤ 5/3 (Figure 3.7a-d). Since surface energy acts to smooth a spatial

variation in the curvature and the interfacial patch size is very small compared to the

scale of the structure, most patches are surrounded by other patches of similar curvature,

producing this type of correlation. For this reason, the correlation functions of the con-

served and nonconserved structures are similar at very short distances, as will be seen.

However, examination of the conserved structure revealed that these regions are larger

than the length scale over which surface energy would be expected to act, and that they

are instead the result of the interconnected structure and pinching events. The high cur-

vature tubes formed during pinching act to constrain the structure so that the interfaces

on both ends of the tube have curvatures of the same sign. In the conserved case these

pinching events occur quite quickly, but the remnants of the pinched tubes persist and

contribute to the enhanced correlations between regions of interface with large absolute

values of curvature. The enhanced rate of pinching in the conserved case as compared to

the nonconserved case can be seen in shrinking spherical particles. When such particles

shrink by conserved dynamics or diffusion, the shrinkage rate goes as 1/R2 whereas for

nonconserved dynamics the shrinkage rate goes as 1/R. Thus as R → zero, conserved
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Figure 3.7. Spatial correlations in the conserved structure for a variety of
distances. Plots were constructed using a shell of thickness 1/3 at r̃ = (a)
2/3, (b) 1, (c) 4/3, (d) 5/3, (e) 2, and (f) 7/3. The data shown represents
greater than 90% of total interfacial area. White indicates a probability of
greater than 1.2.
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Figure 3.8. Spatial correlations in the conserved structure at very long dis-
tances of r̃ = (a) 3, (b) 4, and (c) 5, showing the fluctuation between
correlation of similar curvature and opposite curvature. Note that a higher
resolution is required in the color bar for these smaller correlations to be
visible.

dynamics yield much faster transformation rates than nonconserved dynamics. This is

also why the probability of finding two interface patches with opposite signs of H at this

distance is very low since such an arrangement would introduce a rapid mass flow from

one region of curvature to the other or a high interfacial velocity and thus disappear from

the system.
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Because the evolution of this structure is driven by diffusion, it is best to have regions

of positive and negative curvature near each other as they act as sources and sinks for

diffusing mass. The distance between these positive and negative mean curvature regions

must be long enough that the difference in chemical potential does not create an unduly

high diffusion gradient and the subsequent elimination of one region, as it does at shorter

length scales. Thus the only pinching remnants which persist in this structure are those

that occur at a distance favorable for diffusion, 5/3 ≤ r̃ ≤ 10/3, appearing in the plots as

an increased correlation between curvatures of opposite signs. The necessity for sources

and sinks of mass in the conserved order parameter model creates a somewhat regular

structure, with correlations that extend to at least r̃ = 5.

These regions of positively and negatively curved interface are separated by bands of

near-zero mean curvature. Note that in this case, zero mean curvature does not indicate

a flat interface but rather an interface with equal and opposite values of the principal

curvatures. The uniform separation of the positive and negative curvature regions means

that the spacing between regions of near-zero mean curvature is also quite regular, and so

causes the slight increase in probability near zero curvature at r̃ = 4/3 (Figure 3.7c). This

small probability peak can also be found at r̃ = 5/3, but its small value at this distance

means that is is not visible in Figure 3.7d as plotted.

3.4. Analysis of Structure with Nonconserved Dynamics

The RDF of the structure produced with nonconserved dynamics is given in Figure 3.9

and displays a comparatively simple correlation pattern. At very short distances, r̃ = 2/3

(Figure 3.9a), it follows the probability enhancement along H̃1 = H̃2 described above,
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clearly showing that the structure does not have a random spatial distribution at short

distances as has been sometimes assumed [48]. The strongly convoluted nature of the

interfaces shown in Figure 3.5b is illustrated by the correlations at r̃ = 4/3, Figure 3.9c. At

this distance, interfaces with approximately zero mean curvature, H̃1 = 0, are surrounded

by a nearly random distribution of interfaces with a wider range of curvatures, |H̃2| < 1.4,

than for conserved dynamics, see Figure 3.9c. In the conserved case the interfacial energy

induces a smoothing that occurs by long-range diffusion, whereas in the nonconserved case

the motion of the interface is much more local and thus for the same value of interfacial

energy it is possible to have more irregular interfaces. As a result, there is a wider

distribution about H̃1 = H̃2 for the nonconserved case as compared to the conserved case

at short distances.

As r̃ increases, the nonconserved structure maintains its preference for positive cor-

relations between like curvatures, although the magnitude of these increased probability

regions decreases and their width increases. Curvatures near zero reach a random distri-

bution by r̃ = 5/3, with all values reaching a random distribution by r̃ = 8/3, just less

than three times the characteristic length. Correlation plots for this distance and greater

show all that curvatures are randomly distributed in space. Unlike the conserved dynam-

ics case, no positive correlation is ever observed between regions of opposite curvatures

since there is no need for diffusion of mass from positive to negative curvatures for the

structure to coarsen.

The evolution of the curvature in the nonconserved system is not strictly local since it

depends on the second derivatives of the interfacial velocity (or curvature) [49]. However,

this should lead to a very short ranged correlation on the order of the radii of principal
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Figure 3.9. Spatial correlation in the nonconserved structure calculated for
shells of thickness of 1/3 and r̃ = a) 2/3, b) 1, c)4/3, d)5/3, e) 2, f) 7/3.
The data shown represents greater than 90% of total interfacial area. White
indicates a probability of greater than 1.2.
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curvatures, r = S−1
v [45]. Instead, curvatures of the same sign are correlated out to a

distance of r̃ = 7/3, see Figure 3.9. This long-ranged correlation gives rise to regions

with a diameter on the order of 4 that have curvatures of the same sign. As was the

case in the structure with the conserved order parameter, these large regions are related

to the tubes that are present in this interconnected structure. Because interface motion

does not require long range diffusion, pinching occurs more slowly in the nonconserved

case, and thus it is far easier to identify the tubes and their remnants (a cap that is

locally spherical). As in the conserved case, the high-curvature tubes act to constrain

the structure, so that the interfaces on both ends of the tube have curvature of the same

sign. This region of positive or negative mean curvature will persist until it meets a tube,

or a remnant thereof, of opposite sign. Thus, this length scale of regions of positive and

negative curvature is roughly equal to the distance between active pinching events, or

high-curvature tubes, and the morphology of the bicontinuous structure itself induces the

correlations in the curvature that we observe.

3.5. Summary

I have developed a new method of broad applicability to quantify the morphology

of topologically complex interfaces by calculating the spatial correlation of interfacial

curvature. I have used this method to determine the structure of bicontinuous, two-phase

mixtures produced using conserved and nonconserved dynamics. I find that the long-

range diffusive interactions resulting from conserved dynamics yield specific correlations

and anticorrelations over an extended length scale. The correlations indicate regularly

spaced regions of positive and negative curvature which is a new characteristic length
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scale for this structure. Despite the local nature of the interfacial evolution process in the

nonconserved case, spatial correlations on a relatively long scale were observed. These

correlations are attributed to the persistence of high curvature tunnels in the structure.

The spacing between these tunnels constitutes a new characteristic length scale for these

structures. The time independence of both the scaled spatial correlation functions and

the interface shape distributions indicate that the interfacial morphologies in these cases

assume a unique time independent form.
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CHAPTER 4

Spatial Correlations in Nonsymmetric Bicontinuous Mixtures

4.1. Structures for Analysis

The method of analysis described in Section 3.1 was applied to two structures com-

posed of bicontinuous phases, shown in Figure 4.1. One is a symmetric mixture with a

volume fraction of 50% (this is the same as the conserved structure discussed in Chap-

ter 3). The other is an asymmetric mixture produced by an off-critical quench with a

volume fraction of 36%. The structures were obtained by numerically evolving the Cahn-

Hilliard equation, which has conserved dynamics. More details about these structures can

be found elsewhere [45,50]. The evolution of the structures is nonlocal, in that mass is

conserved and coarsening takes place by the diffusion of mass from one region to another.

The Mean Curvature Distribution (MCD) for each structure is shown in Figure 4.2.

When the distributions are plotted in terms of a scaled mean curvature H/Sv, where

Sv is the surface area per unit volume, unique time-independent distributions result.

Conserved dynamics produces a fairly regular interface with a narrow distribution of

curvature around the average mean curvature of the structure. When the mixture is

symmetric, the curvature distribution is symmetric about zero. For comparison, the

MCD for a symmetric structure produced using nonconserved dynamics (evolution of the

Allen-Cahn or time-dependent Ginzburg-Landau equation) is also shown. Analysis of the

correlations in this nonconserved-dynamics structure can be found in Chapter 3 and [51].
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a

b
Figure 4.1. Two structures used for analysis, a) symmetric mixture 50%
solid and b) asymmetric mixture 36% solid.



57

Figure 4.2. Mean curvature distribution of symmetric and asymmetric mix-
tures with conserved and nonconserved dynamics.

An asymmetric mixture, however, has a mean curvature distribution that is centered

about some non-zero value, and is relatively wider than the distribution of the symmetric

structure. As the figure shows, the shift away from zero and the increase in distribution

width are proportional to the degree of asymmetry. A mixture containing 40% solid has

a MCD that is midway between the symmetric mixture and the asymmetric 36% solid

mixture. The correlations in the 40% solid mixture were also found to be intermediate,

with no unique features, and so will not be discussed further. The MCD for asymmetric

mixtures is also not perfectly symmetric about the maximum value. For the 36% solid

mixture, the right side of the MCD has a slightly greater slope than the left side as well

as a longer tail.
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The RDFs were calculated for symmetric and asymmetric mixtures of size (22S−1
v )3

and (20S−1
v )3 respectively. The same symmetric mixture was discussed in Chapter 3. For

each structure, 80,000 to 120,000 initial H1 values were sampled, each providing many

thousands of patches for H2. Since all structures were initially created using periodic

boundary conditions, it was possible to calculate the RDF across the boundaries, effec-

tively creating a much larger volume from which to sample data. To obtain sufficient

statistics to ensure a good resolution in r, the shell thickness resolution ∆r was set to

1/3(S−1
v ). To further reduce statistical noise, the plots shown are obtained by averag-

ing together the RDFs obtained from two separate structures evolved under the same

physical assumptions but with initial conditions created by different seeds for the random

noise generation. This serves to reduce the noise, particularly near the edges of the plot,

although there are no major differences between the two mixtures being averaged.

Since the interfacial morphologies resulting from the conserved dynamics attain statis-

tically unique time-independent states when scaled by their characteristic length [45], the

scaled spatial correlation was expected to have specific time-independent forms as well.

To confirm this, the RDF for the symmetric system was compared with another simu-

lated structure which had been evolved for approximately twice as long. When scaled by

Sv, the spatial correlation functions were found to be statistically the same, confirming

this time-independence. Thus we plot the correlation functions as function of the scaled

curvatures H̃1 = H1S
−1
v , H̃2 = H2S

−1
v and distance r̃ = rS−1

v . In both the symmetric and

asymmetric mixtures the average radius of curvature of the interfaces has a magnitude

that is on the order of S−1
v , which can be defined as the characteristic length of the system.
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In order to directly compare results for the two structures, despite the differences in

scaled MCDs, the correlation functions were plotted using some width ±H̃max around

the maximum value of the MCD. H̃max was chosen such that 98% of the total interfacial

area is included in the data displayed, as opposed to the 90% used to produce the results

shown in the previous chapter. This does not result in loss of essential data since high

curvature areas (with large |H̃|) are evolving quickly and thus their existence is extremely

transient in nature. For the symmetric mixture, H̃max = 0.83 and the maximum of the

MCD at H̃ = 0.00. For the asymmetric mixture, H̃max = 1.00 with the maximum of the

MCD at H̃ = 0.33.

4.2. Analysis of Symmetric Mixture

Figure 4.3 shows the correlations in the symmetric structure with conserved dynamics.

As distance increases, the probability falls from that shown previously in Figure 3.4. At

r̃ = 4/3 (Figure 4.3b) a separate nonzero probability begins to appear for patches of

interface with curvature of opposite sign. At the same distance, a small increase in

correlation between patches of H̃ = 0 is also seen. At r̃ = 5/3 (Figure 4.3c) the initial

correlations between like curvatures have decayed to small peak centered at H̃ = |0.5|.

These two instances are the only observed peaks with discrete boundaries which do not

increase or decrease continuously with increasing magnitude of curvature. At r̃ = 2

(Figure 4.3d) like curvatures have become anticorrelated, while the correlations between

curvatures of opposite signs continue to grow. From r̃ = 7/3 to 10/3 the magnitude of

both the correlations and the anticorrelations decreases, and then positive correlations

between curvatures of like sign return at r̃ = 4. This oscillation of the correlations and
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(a) (b) (c)

(d) (e) (f)

Figure 4.3. Spatial correlations in the symmetric mixture for a variety of
distances. Plots were constructed using a shell of thickness 1/3 at r̃ = a) 1,
b) 4/3, c) 5/3, d) 2, e) 3, and f) 4. White indicates a probability of greater
than 1.2.

anticorrelations between high-magnitude curvatures of the same sign and opposite sign

continues with decreasing intensity out to r̃ = 7 before all correlations disappear and

all curvatures are randomly distributed. Additionally, note that the curvature of the

structure is such that at r̃ = 5/3 (Figure 4.3d) more interfacial area falls within the shell

than at other distances, causing the probability of all values of curvature to be above that

expected for a random distribution.



61

With the exception of the two discrete peaks in the symmetric mixture mentioned

above, the RDF plots can be thought of as showing correlations between different pri-

mary regions of curvature, with the overlapping effects of each region making up the

contours of the plots. The symmetric mixture has only two primary regions: correlations

between regions interface with similar curvature or between regions with opposite curva-

ture. These primary regions can be identified by the increase in magnitude of correlation

or anticorrelation with increasing magnitude of curvature and with increasing similarity

between patches of curvature being compared. For example, at any given distance, the

magnitude of the correlation between two patches of H̃ = 1 will be higher than between

two patches of H̃ = 0.7.

To more easily follow the changes in correlations for each of these primary regions,

the correlations for each region as a function of distance are plotted in Figure 4.4. In

the symmetric mixture, both primary correlations show a decaying oscillation about 1,

reaching a random distribution by seven times the characteristic length of the system.

The two primary correlations are clearly related, as they are perfectly out of phase with

each other. As we previously reported [51], this oscillatory behavior results from large

regions of interface within the structure which are composed primarily of either positive

or negative curvature. Regions of curvature with a high magnitude are created when one

phase undergoes a pinching event. Because of the interconnected nature of the mixture,

any increase in length scale requires the pinching apart of one of the phases. This creates

a high-curvature tunnel which, after pinching, leaves behind two hemispherical caps of

high curvature.
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Figure 4.4. RDFs for the primary correlation regions of the (a) symmetric
mixture and (b) asymmetric mixture. Lines indicate correlations between
similar positive curvature (++), regions of similar negative curvature (–)
and regions of opposite curvature (+/-) In the symmetric mixture, (++)
and (–) are the same.
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Because the evolution of this structure is driven by diffusion, it is necessary to have

regions of positive and negative curvature near each other as they act as sources and

sinks for diffusing mass. While the difference in chemical potential between two patches

of interface with different positive (or negative) curvatures could also drive diffusion, the

necessary difference in magnitude between curvatures of like sign would require curvatures

of a very high magnitude which disappear quickly and thus are not commonly present in

the structure. The distance between these positive and negative mean curvature regions

must be long enough that the difference in chemical potential does not create an unduly

high diffusion gradient and the subsequent elimination of one region, as it does at shorter

length scales. Thus the morphology of this structure, and the corresponding correlations,

are a result of diffusion acting on pinching remnants, so that the only remnants which

persist are those that occur at a distance favorable for diffusion, 5/3 ≤ r̃ ≤ 10/3, appearing

in the plots as an increased correlation between curvatures of opposite signs. The size

and spacing of these positive or negative curvature regions is so regular that correlations

extending out to r̃ = 7 are observed.

These large regions of positively and negatively curved interface are separated by

bands of near-zero mean curvature. Note that in this case, zero mean curvature is not

a flat interface but rather an interface with equal and opposite values of the principal

curvatures. The uniform separation of the positive and negative curvature regions means

that the spacing between regions of near-zero mean curvature is also quite regular, and

so causes the slight increase in probability near zero curvature at r̃ = 4/3 (Figure 4.3b).

The discrete peaks that remain at r̃ = 5/3 also provide insight into the morphology of

the system. They represent the curvature regions which exhibit self-correlation over the
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Figure 4.5. Small segment of the interface in the symmetric structure, with
curvature of H̃ = −0.5± 0.1 highlighted in red. Visible are two rings which
mark the top and bottom of a recent pinching event.

longest distance, indicating the size of the largest continuous region of any one curvature.

These regions consist of curvature with |H̃| = 0.5. Note these are regions of curvature

that have an average radius of curvature equal to half the characteristic length. From

observing the curvature distribution directly on the structure, it was observed that |H̃| =

0.5 corresponds to the smallest magnitude of curvature which is predominately rings

around pinching remnants, as shown in Figure 4.5. Curvatures closer to zero are generally

distributed as long bands through the structure, as described above, and so have a shorter

self-correlation. Curvatures of greater magnitude also correspond to pinching remnants,

but are relatively smaller features and so have a shorter self-correlation. Visual analysis of

the 3D structure confirms that |H̃| = 0.5 forms rings which are have a maximum diameter

of about d̃ = 4/3. Note that these are rings of iso-curvature on the interface and do not

indicate tubes of this size in the structure.
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4.3. Analysis of Asymmetric Mixtures

The asymmetry of the second mixture introduces another layer of complexity to the

spatial correlations, as seen in Figure 4.6. While initially similar to the correlations seen

in the symmetric mixture, by r̃ = 1 the asymmetry becomes apparent, as the correlations

between regions of negative curvature remain higher than the correlations between regions

of positive curvature. At r̃ = 5/3 the correlations between regions of negative curvature

decrease dramatically and remain strongly anticorrelated out to r̃ = 8/3. Correlations

between two positively curved regions of interface and between regions of opposite curva-

ture exhibit a decaying oscillation similar to that seen in the symmetric mixture. These

correlations persist out to a radial distance of about r̃ = 7. The correlations between

regions of negative curvature extending farther, to greater than r̃ = 8.

The plots for the asymmetric mixture show correlations between three primary and

independently varying regions: regions of positive curvature, regions of negative curvature,

and regions of opposite curvature. Because the MCD is not centered around zero, the

asymmetric mixture has some positive curvature which is less than the average mean

curvature. This curvature displays the same oscillation with distance as the negative

curvature region. The interactions between these three primary regions produce very

different contours, see particularly Figure 4.6e and h.

The correlations for each of the three primary curvature regions of the asymmetric

mixture are shown in Figure 4.4b. When the positive curvature regions and opposite

curvature regions are plotted against the corresponding regions for the symmetric mixture

(Figure 4.7), there is remarkable similarity. The change in volume fraction and resulting

changes to the MCD appear not to have much effect on correlations between similar
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6. Spatial correlations in the asymmetric mixture for a variety of
distances. Plots were constructed using a shell of thickness 1/3 at r̃ = a) 1,
b) 4/3, c) 5/3, d) 2, e) 7/3, f) 8/3, g) 3, h) 10/3 and i) 4. White indicates
a probability of greater than 1.2.
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Figure 4.7. Comparison of the changes in primary correlations between the
symmetric and asymmetric mixture.

positive regions of interfacial curvature and between regions of opposite curvature, when

scaled by S−1
v and to include the same fraction of total interface (here, 98%).

The correlation between regions of negative curvature in the asymmetric mixture, as

plotted in Figure 4.4b, does not have a corollary in the symmetric structure. It has the

strongest correlations and anticorrelations in space and seems to be unrelated to any

correlations between other regions, oscillating with a different wavelength. This would

indicate that what little negative curvature exists in this structure is clustered in large

patches, some which visual analysis of the structure clearly shows to be the result of a

rare pinching event in the majority phase. The largest of these patches have a radius on

the order of S−1
v , which is consistent with the correlation analysis. The correlations also
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indicate a distance of approximately 2S−1
v between patches which is responsible for the

trough in Figure 4.4b.

Whereas in the symmetric mixture, the curvature difference necessary for diffusion

must take place between regions of positive and negative curvature, that is not the case

for the asymmetric structure. The MCD shows a large enough range of positive curvature

present in the structure that the diffusion necessary for coarsening can occur between

regions of high positive curvature and regions of moderate positive curvature. Thus the

negative curvature plays a smaller role in the evolution of the asymmetric mixture. Diffu-

sionally, negative curvature must cluster to avoid disappearing due to the large quantities

of surrounding positive curvature. However, some negative curvature is geometrically

necessary for a three-dimensional, bicontinuous structure to exist and thus the strong

clustering effect. Some of these regions of negative curvature seem to be created by rare

pinching events in the majority phase. Previous work [47] has shown that 36% minority

phase, where this structure is, is just at the edge of where a stable, bicontinuous structure

can exist. At lower volume fractions, there is not enough negative curvature present to

maintain a stable structure, and the structure will break up into spherical domains.

4.4. Summary

The new methods of calculating radial distribution functions in three-dimensional real

space use used to analyze spatial correlations in morphologically complex, bicontinuous

mixtures. The mixtures were both symmetric and asymmetric, produced using conserved

dynamics. This analysis was performed by calculating the RDF both for correlations

between all existing values of curvature at a single radial distance, and between specific
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curvature values identified primary correlation regions. It was found that in the symmet-

ric mixture the long-range diffusive interactions yielded a correlations up to seven times

the characteristic length. The observed correlations are attributed to interfacial smooth-

ing effects at short distances, diffusional constraints at intermediate distances, and the

repeating nature of the structure at longer distances. The form of the correlations has

led to important observations on the nature of the morphology of this type of structure.

The correlation analysis of the asymmetric mixture has provided important details about

the nature of changes to a spinodal structure as it moves away from a critical quench,

and possibly the nature of the breakup of such structures. The asymmetric mixture also

showed correlations out to a distance of about r̃ = 7, with particularly strong correla-

tions between patches of negative curvature. Both structures have been found to reach

unique scaled microstructures which can now be uniquely characterized using this spatial

correlation information along with interface shape distribution.



70

CHAPTER 5

Experimental Procedure for Directionally Solidified Dendrites

5.1. Lead-Tin System

The lead-tin (Pb-Sn) binary system was used for all experimental work. It is a partic-

ularly useful model system for studying coarsening because the the interfacial energy is

nearly isotropic, the coarsening rate is rapid, and the thermophysical parameters are well

documented [52]. The low melting temperature (183◦C) is also convenient for laboratory

work. The Pb-Sn phase diagram is shown in Figure 5.1. Tin grows as a body-centered

tetragonal crystal with dendrites historically thought to grow 12◦ away from the [ 110 ]

direction toward the [ 001 ] direction [53]. However, more recent work has shown that tin

dendrites tend to grow in several different directions depending on growth conditions so

growth direction cannot be definitively stated. Lead is a face-centered cubic crystal [54].

Using the phase diagram, it was determined that an alloy composed of 69.1wt% Sn and

30.9wt% Pb was necessary to produce samples containing the desired 20% Sn dendrites

and 80% Pb-Sn eutectic.

5.2. Processing

The alloy studied was created using high purity tin shot (99.99+%) and lead rod

(99.9998%). About 600 grams of metal, composed of the desired fraction of lead and tin

as discussed above, were melted in a graphite cup and cast in a chilled aluminum mold.

In the machine shop, the ends of the resulting ingot were removed and the diameter was
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Figure 5.1. The Lead-Tin phase diagram.

reduced to 0.900 inches. The piece was then swaged, gradually decreasing the diameter

to 0.500 inches.

Next, the alloy rod was directionally solidified in a Bridgeman-type furnace to produce

a uniform dendritic microstructure. As opposed to a typical Bridgeman furnace which

moves the sample through a stationary furnace, the alloy rod, contained inside a graphite

tube, was held stationary in this custom-built furnace while the heating element moved

up the length of the rod. This customized furnace was designed to minimize movement

and vibration which can affect the resulting microstructure. A photo of the directional
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Figure 5.2. Image of the Bridgeman-type directional solidification furnace.

solidification furnace is shown in Figure 5.2. The heating unit consists of nickel-chromium

wire wrapped around an alumina tube, and the cooling comes from chilled water through

copper tubes. The velocity of the heater-cooler assembly, which equals the solidification

velocity, is determined by a computer controlled stepper motor. For these experiments, the

furnace maintained a temperature gradient of 1.22◦C/mm and a velocity of 0.02mm/sec.
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Figure 5.3. Photo of the coarsening furnace. To quench the samples, ice
water was loaded into chamber 1 via the glass tube. At the end of the
prescribed coarsening time, compressed air held in chamber 2 was automat-
ically released into chamber 3, which pushed a rubber bladder forward into
chamber 1 and forced the cold water into the furnace chamber.

The heater was calibrated to maintain a temperature of 250◦C inside the metal rod, a

temperature well above the eutectic temperature for this system.

After directional solidification, the rod was removed from the graphite tube and five

samples, each about 6 mm thick, were cut from the middle of the rod. After further

machining to reduce the samples to the exact dimensions of 0.4720 inches in diameter

and 0.194 inches in height, each sample was isothermally coarsened in a special furnace
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Figure 5.4. Schematic of the sample holder in the coarsening furnace. The
heat flow compensation caps are necessary to equalize the thermal contact
on all sides of the samples. For these experiments, only one sample was
coarsened at a time, so the remaining three holes were filled with dummy
samples.

for a length of time ranging from three minutes to two days. The coarsening furnace,

seen in Figure 5.3, was build by NASA specifically for coarsening of Pb-Sn samples and

is optimized to provide highly isothermal conditions. The complex sample holder, shown

in Figure 5.4 and 5.5, is also designed to minimize temperature gradients.

For each coarsening time, a sample was loaded into the sample holder and the furnace

chamber securely sealed. A vacuum pump was used to evacuate all air from the furnace

chamber, pumping down for 24 hours before the coarsening run began. The vacuum is im-

portant for minimizing any temperature gradients during coarsening and so is maintained
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Figure 5.5. Photo showing the actual assembled sample holder with resis-
tance temperature detectors (RTDs) indicated. The RTDs precisely mea-
sure the temperature inside the sample holder and allow the computer to
direct current to the heating elements accordingly.

throughout the process. A computer controls the coarsening procedure, heating the sam-

ples to the set temperature of 185◦C, which is 2◦C above the eutectic temperature for the

Pb-Sn system. The computer uses feedback from the RTDs to hold the temperature pre-

cisely at 185◦C for a specified number of seconds, then quenches the sample holder with ice

water. This drops the temperature of the sample to well below the eutectic temperature

almost instantly, preserving the form of the coarsened dendrites. This quenching method,

along with coarsening the samples only slightly above the eutectic temperature, has been

shown to effectively minimize the deposition of additional material at the interface during

cooling [55]. To avoid changes to their structure after coarsening, the samples are held
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in a freezer at −80◦C when not in use. This entire process for creating and coarsening

Pb-Sn samples is also described extensively in [56].

5.3. Automated Serial Sectioning

To obtain the three-dimensional data needed for image reconstruction, a semi-automated

serial sectioning device [57], shown in Figures 5.6 and 5.7, was used. To use this machine,

samples are mounted on glass slides, which are held by suction on top of a movable stage.

The stage is translated in the y-direction underneath the diamond-tipped blade of the

milling machine which removes a uniform amount of material from the top of the sample

(here, 4.75µm). The speed of the stage during milling is approximately 0.8 mm/s. The

sample continues in the y-direction, stopping under three nozzles which automatically

etch, rinse and dry the surface of the sample. For Pb-Sn samples, the etchant is 0.5%

nitric acid in methanol, the rinse is isopropanol, and the drying is done with compressed

air. The etchant is left on the surface of the sample for 4-6 seconds. The stage then

moves the sample under a microscope and attached camera. A digital image of the etched

surface is taken, while the exact position of the stage is recorded using a linear variable

differential transformer (LVDT). Because the stage moves only in the y-direction, and

the sample is not removed from the stage during the sectioning process, no rotational

or x-translational misalignment is introduced into the images. However, there is some

variance in the image capture position in the y-direction, so the LVDT readings are used

later to align the images. This method is able to produce a stack of images which are

aligned to better than 0.5µm.
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Figure 5.6. The microtome used for serial sectioning of samples.

All images here were taken with a 5x objective lens, producing a resolution of 1.03µm

in the x- and y-directions. After the image is taken, the stage returns to the starting

position and the cutting blade is lowered 4.75µm. Because the etching nozzles and the

microscope/camera are directly mounted on the milling machine, a uniform distance from

the sample surface is maintained, ensuring uniform etching and well focused pictures.

Once the procedure has been set up, about twenty sections per hour can be obtained.

Approximately 100 sections were obtained for all samples discussed here. The process of

converting the stack of raw images to a three-dimensional reconstruction will be discussed

in Section 5.5.
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Figure 5.7. A close-up of the sample about to pass under the blade during
sectioning. The sample is sprayed with isopropanol to lubricate the cutting
surface, and a vacuum nozzle is present to capture chips created during
milling.

5.4. Initial Observations of Dendritic Samples

Five samples of the directionally solidified Pb-69.1wt%Sn were coarsened for three

minutes, twenty-eight minutes, one hundred minutes, 486 minutes (about eight hours)

and 2280 minutes (48 hours). Images of the etched surfaces of the five samples are shown

below in Figure 5.8, taken using a tripod and standard digital camera. The longest

coarsening time shows too much sedimentation to provide usable data. The other four

samples were sectioned, and 3D reconstructions and analysis are shown later (Chapter 6).
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(a) (b) (c)

(d) (e)

Figure 5.8. Effect of coarsening on dendritic microstructure after (a) 3 min-
utes (b) 28 minutes (c) 100 minutes (d) 8 hours and (e) 2 days. The longest
time shows complete sedimentation. Images were taken using a tripod and
digital camera.

A montage of 59 images was made of the 486 minute sample (Figure 5.9), using a

digital camera and 5x lens, so that enough detail would be visible to obtain an accurate

volume fraction measurement. From this image, the sample was found to be 22% dendritic

and 78% eutectic by volume (hence, 22% solid during coarsening). The dendritic region

inside the box in Figure 5.9(b) has a volume fraction of about 38%. Previous work on

higher volume fractions have found samples with an overall and local volume of 43%
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solid [58]. This seems to indicate that that at some point between about 30% and 40%

solid, the density of the dendritic regions remains relatively constant and large, empty

regions of eutectic form to account for the overall lower volume fraction solid. For the

three-dimensional reconstructions and analysis, effort was made to obtain data from both

the dense interior dendrite region and the dendrites near the edge of the dense regions

which were able to grow more freely.

(a) (b)

Figure 5.9. Montage of eight hour coarsened sample (a) before and (b)
after thresholding. The area inside the box contains 38% solid. The overall
sample is 22% solid.

5.5. Three-Dimensional Reconstruction

The creation of a three-dimensional reconstruction from an experimentally obtained

microstructure is a complex and multi-step process, requiring segmentation and alignment
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of the images obtained from the serial sectioner and then the creation and manipulation

of the actual 3D mesh.

5.5.1. Segmentation and Alignment

While the process of obtaining the sequential images using serial sectioning generally

takes about a day and a half, processing the images for conversion to a 3D model takes

much longer, sometimes a month or more. Figure 5.10 shows the steps taken to obtain

a correctly segmented image. This work is done in Adobe Photoshop. The RAW image

is first converted to grayscale, so that each pixel has a value between 0 (black) and 255

(white). The image can then be automatically thresholded, or converted to binary, so that

all pixels with a value higher than the threshold value (in general, 127) become white and

all those with a lower value become black. The meshing algorithm can then create an

interface running along the boundary between black and white.

However, thresholding of the images is made more difficult because the images often

contain flecks of debris, improper etching, water spots from the alcohol used to rinse off

the etchant, variations in brightness due to misalignment of the microscope components,

or other imperfections. Special filters in Photoshop can be used to minimize some of these

issues, but as Figure 5.10(c) shows, there will always be some imperfections which can only

be corrected by hand, and this takes time. Images of shorter coarsening time samples, with

more complex morphologies, take the longest. One must also take extreme care during

thresholding and subsequent cleaning that the location of the interface does not move.

Thresholding at a value that is too high will create bridges between unconnected regions,

altering the morphology of the meshed structure. Often it is difficult to tell whether
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two regions should be connected or not, both during thresholding and later during the

smoothing process (see next section) because of insufficient resolution in the images.

Semi-automated routines for thresholding have been developed using edge detection

software, but these work best for systems of spherical particles and provide no time savings

for the dendritic samples discussed here. Improvements to the segmentation process would

clearly have a great impact on this type of work.

Once the entire stack of images has been carefully segmented, the images are stacked

and aligned using the data recorded by the LVDT (as discussed in section 5.3). Figure 5.11

shows a schematic of the alignment process. From this point on, all work was done

using programs written in IDL (Interactive Data Language), a language by ITT Visual

Information Solutions, unless otherwise noted. IDL creates a polygonal mesh which follows

the boundary between the two regions of the 3D binary array and, if the segmentation

process was done well, accurately represents the morphology of the sample.

5.5.2. Smoothing

Much attention has been given to the smoothing of these structures. In the past, all

smoothing has been done to the three-dimensional array which comes from the stacked

binary images. Just before this work began, an improvement was developed that allowed

for anisotropic smoothing, i.e. more smoothing in the z-direction than in the x-y plane for

highly directional, long coarsening time samples [56]. Because of the extremely fine scale

of this structure, this numerical smoothing caused significant microstructural changes,

such as the welding of some dendrite arms and the pinching off of others. A new method
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(a) (b)

(c) (d)

Figure 5.10. Segmentation process for part of the 100 minute coarsened
sample, Pb-69.1wt%Sn. (a) The initial raw image as captured by the mi-
croscope. (b) After conversion to grayscale, equalization of brightness across
image, and noise reduction. (c) After initial thresholding. (d) Final image
after manual cleaning.

of first meshing the surface of the structure in IDL, then smoothing the mesh has brought

dramatic improvements and increased flexibility to the smoothing process.

Although the use of mesh smoothing produced many favorable results, it also intro-

duced some new problems. During the mesh smoothing process, IDL resizes the polygons
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Figure 5.11. Schematic of alignment process

of the mesh, and in some cases constricts them so far that they have an area of zero.

This causes the Simview program, which calculates areas and curvatures of all interfa-

cial patches, to produce NANs (values that are Not A Number) and renders it unable to

correctly calculate curvatures.

This issue was minimized by using a compromise of minimal volume smoothing and

careful mesh smoothing. Using the mesh validate command on the smoothed mesh in

IDL was found to reduce the occurrence of NANs, but mesh smoothing also has the prob-

lem of being less effective at removing the ”wedding cake” structure, a residual terracing

effect from the sectioning process. Some reduction in the wedding cake effect was ob-

tained by making use of the fixed vertices command during mesh smoothing to fix points

known to be accurate (based on the original arrays) and strongly smoothing everything

between them. All these contradictory issues must be balanced, and significant advances

can still be made in the smoothing process to produce a more accurate microstructure.

Figure 5.13 shows the improvements made to the smoothing process, but room remains

for improvement.

A final variable which can affect smoothing of the structure is the reduction factor of

the images. When the binary images are read into IDL, they are generally reduced by

some factor between 2 and 5. This decreases the resolution of the images somewhat, but

is necessary to obtain arrays which are small enough to be handled by current computers.
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(a) (b)

(c)

Figure 5.12. Three versions of the same segment (a) without smoothing,
where individual sections are clearly visible, (b) with too much volume
smoothing, showing welding of some features, (c) with too much mesh
smoothing, showing shrinkage and distortion of some features.

Reduction has a similar effect as volume smoothing the stack, so it is both useful for

removing the wedding cake effect and detrimental when it causes welding of small features.

Various reduction factors for the shorter coarsening times were explored to minimize
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(a) (b)

(c)

Figure 5.13. Three versions of the same structure, colored by mean curva-
ture to show effect of various smoothing methods. (a) Volume smoothing
(b) Mesh smoothing (c) Combination of slight volume smoothing and opti-
mized mesh smoothing, showing curvature which changes smoothly across
the structure with minimal patchiness.

welding effects. It should be noted that, for this setup, a reduction of 5 has generally

been used because it produces the most nearly cubic voxels.

The parameters used for smoothing each structure are given in Table 5.1. All smooth-

ing parameters were the same for the dense and non-dense regions except where noted.

The values used for each parameter were a result of extensive trial and error. These are
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Coarsening
(min) Reduction

Volume
Smoothing Threshold

Fixed Point
Mesh Smooth.
(λ/iterations)

Mesh Smoothing
(λ / iterations)

3 3 5 142 , 127 0.06 / 60 0.05 / 75
28 5 3 127 0.05 / 60 0.05 / 50
100 5 5 127 0 0.05 / 60
486 5 5 127 0 0.05/60 , 0.06/70

Table 5.1. Smoothing parameters for each sample. Where two values or
sets of values are separated by a comma, the first is that used for the dense
region and the second that used for the non-dense region. Other parameters
were the same for both regions.

the values which were deemed to be the ones producing the most accurate representation

of each structure. However, any smoothing process inevitably introduces some error, and

having used different smoothings for each structure introduces different changes to the

resulting ISDs and other measurements which are confounded with any actual changes

due to evolution of the structure. This is yet another reason why systematic study of and

improvement to the smoothing process would prove very helpful.
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CHAPTER 6

Analysis of Low Volume Fraction Dendrites

6.1. Dense Regions

For each of the four usable coarsening times (those not overly affected by sedimen-

tation), the region for imaging was chosen such that both dense regions and non-dense

regions (where free growth is approximated) were captured. All calculations were done

separately for the two regions of each sample. The three-dimensional reconstructions of

the dense dendritic regions are shown in Figures 6.4-6.7. The specifics of each structure

are given in Table 6.1.

The change in Sv with time is plotted in Figure 6.1. As predicted, S−3
v increases

linearly with time. The t1/3 dependence indicates that despite any movement due to

sedimentation, etc., the coarsening kinetics are still diffusion controlled. Figure 6.2 shows

the small difference in slope between the specific S−1
v , S−1∗

v , for the dense regions versus

the non-dense regions. S−1∗
v is defined as the surface area divided by the volume of the

solid instead of the volume of the entire sample, and therefore can be measured for samples

that are not uniformly filled by solid. The increased deviation from linear in the non-dense

samples is likely a result of the small sample size.

Another measure of these systems is the mean curvature distribution (MCD), which

is particularly for the spatial correlation work which looks only at mean curvature (see

Chapter 7 for analysis of RDFs for dendritic samples). The scaled and unscaled MCD for
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Coarsening
(min)

Local Volume
Fraction (% ) Stack Size (µm) Sv (1/µm)

Specific Sv

(1/µm)

3 37 998 x 1242 x 399 0.0291 0.0840
28 37 1777 x 932 x 394 0.0248 0.0680
100 36 1545 x 1545 x 475 0.0166 0.0472
486 32 1880 x 2575 x 523 0.0101 0.0318

Table 6.1. Characteristics of the dense regions from samples. Sv is the
surface area divided by the volume of the sample box, while specific Sv

refers to the amount of surface area divided by the volume of only the
dendrites.

Figure 6.1. S−1
v as a function of the cube root of coarsening time for all

four samples, showing a strong linear dependence.

the dense region of these four samples is given in Figure 6.3. Viewed alone, the MCDs

would seem to indicate coarsening in a self-similar fashion. However, mean curvature
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Figure 6.2. Specific S−1
v as a function of the cube root of coarsening time

for the dense regions versus the non-dense regions.

alone does not fully capture the type of interface present, and so a more comprehensive

method of measuring curvature is developed in Section 6.3.
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(a)

(b)

Figure 6.3. The evolution of the (a) unscaled and (b) scaled MCD of the
dendritic samples with coarsening time.
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Figure 6.4. Three-dimensional reconstruction of the 3 minute coarsened
sample, dense region, locally 37% solid.
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Figure 6.5. Three-dimensional reconstruction of the 28 minute coarsened
sample, dense region, locally 37% solid.
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Figure 6.6. Three-dimensional reconstruction of the 100 minute coarsened
sample, dense region, locally 36% solid.
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Figure 6.7. Three-dimensional reconstruction of the 8 hour coarsened sam-
ple, dense region, locally 32% solid.

6.2. Non-dense Regions

The three-dimensional reconstructions of the non-dense dendritic regions are shown

in Figures 6.8-6.11. The specifics of each structure are given in Table 6.2. Where to

crop the structures to include only the ”non-dense” region was somewhat subjective, so

the values given in the table and the analysis in the following sections reflect the exact

structures being examined and may vary depending on how the region is defined. While
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Coarsening
(min)

Local Volume
Fraction (% ) Stack Size (µm)

Specific Sv

(1/µm)
∆Sv

(%)

3 25 1928 x 1091 x 390 0.0814 3.1
28 21 2719 x 1051 x 394 0.0636 6.5
100 20 2627 x 1288 x 470 0.0441 6.6
486 18 1442 x 1700 x 523 0.0343 -7.9

Table 6.2. Characteristics of the non-dense regions from samples, including
the percent change in specific Sv from dense region. As the dendrites do
not completely fill the sample boxes, it does not make sense to measure Sv

for these samples.

these are not truly free growing dendrites, these regions do approximate dendrites growing

unconstrained into a liquid, developing extensive secondary and tertiary branches.
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Figure 6.8. Three-dimensional reconstruction of the 3 minute coarsened
sample, non-dense region.
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Figure 6.9. Three-dimensional reconstruction of the 28 minute coarsened
sample, non-dense region.
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Figure 6.10. Three-dimensional reconstruction of the 100 minute coarsened
sample, non-dense region.
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Figure 6.11. Three-dimensional reconstruction of the 846 minute coarsened
sample, non-dense region.

6.3. Interface Shape Distributions

Unlike particle systems, where the interfacial curvature can be characterized by using

a particle size distribution, characterization of curvature in complex structures such as

dendrites requires a more elaborate method. The technique used for determining the so-

called Interface Shape Distribution (ISD) of a structure, along with the ISDs for dense

and non-dense regions of each sample, is described here.
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Figure 6.12. Definition of principal curvatures at a point on the surface.
Note that the curvature is positive when the center of the radius is on one
side of surface and negative when on the other.

6.3.1. Method

Once the three-dimensional mesh has been created and optimized, it can be used to

calculate interfacial curvature at any point in the structure. For any patch of interface,

the curvature at the center of the patch, point p, can be completely characterized by the

two principal radii of curvature, R1 and R2 (see Figure 6.12). Each radius corresponds

to an imaginary circle that is tangent to the surface patch at point p. The circles are

perpendicular to each other and represent the maximum and minimum radii of curvature

for the patch. The principal curvatures for the patch are defined simply as the inverse

maximum and minimum radii of curvature,

(6.1) κ1 =
1

R1
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(6.2) κ2 =
1

R2

In all cases, κ1 is defined here to be greater than κ2. An alternate method which can also

be used to completely characterize the shape of a local interface is to measure the mean

curvature, H, and the Gaussian curvature, K, defined as

(6.3) H =
1

2

(
1

R1

+
1

R2

)
=

(κ1 + κ2)

2

(6.4) K =

(
1

R1

)(
1

R2

)
= κ1 ∗ κ2

Unlike a spherical surface, which needs only one parameter (the radius) to be fully

characterized, consideration of a saddle-shaped region illustrates why two values are nec-

essary to completely describe the curvature of a non-spherical surface. In such a case

it is possible that R1 = −R2 and so consequently H = 0. Using just one measure it

is impossible to distinguish this surface from a planar surface, which also has a mean

curvature value of H = 0. And while coarsening has long been described by the Gibbs-

Thompson equation (Equation 2.1) which considers only mean curvature, Drew has shown

that Gaussian curvature is also a determining factor during interface evolution [49].

Interfacial curvature can be determined using a variety of methods. Previous work in

this group used the parallel surface method, described by Jinnai et. al. [59], however this

work was done using a newer and faster method first described by Lavoué et al. [60]. This

new method works by calculating Voronoi areas and using a mixed Finite-Element/Finite-

Volume method. After triangulating the interface, the interior angles of the triangles
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Figure 6.13. First ring of neighbors around vertex X used to calculate the
curvature at point X.

surrounding each vertex are calculated as shown in Figure 6.13. The mean and Gaussian

curvatures can then be calculated using the following equations where A is the Voronoi

area:

(6.5) H(X) =
1

2A

∑
(cotαj + cotβj)(Xj −X)

(6.6) K(X) =
1

A
(2Π−

∑
ϑi)

(6.7) A =
1

8

∑
(cotαj + cotβj)‖Xj −X‖

After the surface has been triangulated, the area of each surface patch is also calculated.

Once the curvatures have been calculated for all points on the interface, the curvature

information can be displayed on a three dimensional plot like the one shown in Figure 6.14.

P (κ1, κ2) is a probability density function such that P (κ1κ2)dκ1dκ2 is the probability that

a randomly chosen interface point will have principal curvatures from κ1 to κ1 + dκ1 and



104

Figure 6.14. An example of the 3D curvature probability plot for κ1 and κ2.

from κ2 to κ2 + dκ2. Although such a plot gives some idea of the curvature distribution,

it is difficult to use for quantitative or comparison purposes. For this reason, these three-

dimensional plots are converted to two-dimensional contour plots, substituting a color

gradient for the z-dimension. These plots are particularly useful because each region of

the plot is associated with a particular shape, as illustrated in Figure 6.15. A summary

of the regions found on an ISD is given below. Note that there will never be data below

the κ1 = κ2 line because κ1 has been defined to be greater than κ2. Self-similarity during

coarsening can be explored by normalizing each plot by Sv, so that the graph shows κ1/Sv

versus κ2/Sv. If the normalized ISD does not change with time, the structure is coarsening

in a self-similar manner.
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Figure 6.15. Map of local interfacial shapes for the κ1 − κ2 contour plots,
known as Interface Shape Distributions (ISDs).

• Interfaces with curvatures that lie on the κ1 = κ2 line are spherical:

– the interface has a spherical shape, composed of solid, if κ1 = κ2 > 0

– the interface has a spherical shape, composed of liquid, if κ1 = κ2 < 0

• Interfaces with cylindrical shapes

– are solid cylinders, if κ1 = 0

– are liquid cylinders, if κ2 = 0

• Interfaces with κ1 < 0 and κ2 > 0 are saddle-shaped
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• Interfaces with κ1 > 0 and κ2 > 0 are defined as convex towards the solid

• Interfaces with κ2 < 0 are defined as concave towards the solid

• Interfaces with κ1 = κ2 = 0 are planar

• Interfaces in region 1 of the map have H > 0 and K > 0

• Interfaces in region 2 of the map have H > 0 and K < 0

• Interfaces in region 3 of the map have H < 0 and K > 0

• Interfaces in region 4 of the map have H < 0 and K < 0

6.3.2. ISDs of Dense Regions

The interface shape distributions for the dense regions of all four samples are shown

unscaled in Figure 6.16 and scaled for comparison in Figure 6.17. The unscaled ISDs

clearly depict the increase in length scale of the system with coarsening time, as the

non-zero probability region of the plots shrinks towards the origin. This is logical, since

the axis of the plots are κ1 and κ2 which have units of inverse microns; therefore, as the

structure gets larger, the average principal curvatures will get smaller.

The scaled ISDs allow for comparison of the structures without regard to length scale;

that is, to look at changes that are taking place besides the increase in scale. As discussed

in Chapter 2 and illustrated in Figure 6.1, S−1
v increases as t1/3 with coarsening time and

so makes an excellent measure by which to scale the ISDs. To accurately compare the

ISDs, the color bar also needs to be the same. The maximum value for the color bar

was set to the value of the highest peak in any plot, which in this case was 0.416 and

corresponds to a peak in the 20 minute coarsened sample.
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By observing the shape of the ISD and the evolution of the peak position with coars-

ening time, one can detect the dominant interfacial shapes and verify quantitatively the

observations made by looking at the three-dimensional reconstructions. For each sample

here, the majority of curvature is distributed along the κ1 = 0 solid cylinder line, corre-

sponding to stalks and arms of the dendrites, which are roughly cylindrical but have a

range of diameters. The peak region also extends to the right of this line, into the convex

towards the solid area. This region corresponds to the hemispherical caps on the ends

of the dendrite arms. With increased coarsening time, the magnitude of the peak along

the solid cylinder line first increases in intensity, then decreases while the peak contracts

upwards toward a single value centered at about κ/Sv=1.6.

These four samples represent an increase in length scale of the structure of more

than two times. When observed together, the four ISDs shown in Figure 6.17 are not

dramatically different, especially when compared with the very large changes which are

observed in samples coarsened for much longer times [14, 58]. In directionally solidified

Pb-Sn samples with a higher volume fraction, it was found that the structure evolves into

long cylindrical tubes aligned along the primary growth direction at very long coarsening

times. The lower volume fraction of solid of this sample precludes these long coarsening

times because of the increased effects of sedimentation, and at the four coarsening times

presented here, the transition to vertically aligned cylinders is just beginning.
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(a) (b)

(c) (d)

Figure 6.16. Unscaled ISDs for dense region of (a) 3 min (b) 28 min (c) 100
min (d) 846 min sample. In each plot, the maximum value of the colorbar
corresponds to the maximum peak value of that plot.



109

(a) (b)

(c) (d)

Figure 6.17. Scaled ISDs for dense region of (a) 3 min (b) 28 min (c) 100
min (d) 846 min sample. In each plot the colorbar has the same scale.
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6.3.3. ISDs of Non-dense Regions

The interface shape distributions for the non-dense regions of all four samples are shown

unscaled in Figure 6.18 and scaled for comparison in Figure 6.19. The most noticeable

feature of all four plots is that the curvature is very strongly aligned along the solid cylinder

line. This is reasonable, as the 3D images show that these regions consist of secondary

arms growing uninhibited into the free space. At all times, there is less probability to

the left of the solid cylinder line (high Gaussian curvature) then there was for the dense

regions. This area of probability corresponds to the saddle-shaped regions which occur

at the base of each dendrite arm. In the ISDs of the non-dense regions, the amount of

saddle-shaped interface also decreases with coarsening time, a sign that the number of

tertiary arms is decreasing. The region to the right of the peak area, corresponding to the

hemispherical caps at the end of each dendrite arm, changes very little with coarsening

time.

After 3 minutes of coarsening time, there are second, third and fourth-order arms

present which have a variety of diameters and cause the peak of the ISD to be the most

diffuse of the four. By 28 minutes, the fourth-order arms have disappeared and the peak

has consolidated onto the solid cylinder line, as the structure is now primarily composed

of near-cylindrical third-order arms arranged on near-cylindrical second-order arms. As

in the ISD from the dense region, the red region of the peak is spread over a variety

of κ2 values, centered around κ2/Sv = 2, indicating that there exist cylinders with a

range of radii and an average radii of about S−1
v . In the last two coarsening times,

the peak value contracts upward as the arms continue to disappear due to coarsening and

become relatively smaller compared to the scale of the structure. The ISD in Figure 6.19d
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(a) (b)

(c) (d)

Figure 6.18. Unscaled ISDs for non-dense region of (a) 3 min (b) 28 min (c)
100 min (d) 846 min coarsened sample. In each plot, the maximum value
of the colorbar corresponds to the maximum peak value of that plot.
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(a) (b)

(c) (d)

Figure 6.19. Scaled ISDs for non-dense region of (a) 3 min (b) 28 min (c)
100 min (d) 846 min coarsened sample. In each plot the colorbar has the
same scale.
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indicates that by 486 minutes all secondary dendrite arms have obtained a fairly uniform

radius of about 1.6S−1
v . Note that while these secondary arms are still clearly present and

distinct after 486 minutes of coarsening time, in the dense dendritic regions (Figure 6.7)

the secondary arms are nearly gone by this time.

6.3.4. Correlating ISDs and 3D Reconstructions

When comparing the ISDs to the three-dimensional reconstructions, it is possible to cor-

relate regions of the ISD to the exact patches of interface which appear in that region.

For example, Figure 6.20 shows that the convex toward the solid region (region 1 in Fig-

ure 6.15) does in fact correspond to the tips of the dendrite arms. This approach was used

to determine that the range of values along the solid cylinder line in Figure 6.19b are not

due so much to dendrite arms of different radii as to varying radii within the same arm. In

this sample, the arms are not true cylinders but long rods with a roughly elliptical cross

section. Because of space constraints, secondary arms are flattened on the top and bottom

with higher curvatures on the side (see Figure 6.21). As the primary dendrite stalks grow

in the z direction, they send out secondary arms in the x-y plane. The spacing between

primary stalks is greater than the spacing between consecutive arms in the z-direction,

so the secondary arms generally branch only in the x-y plane, where there is more room

for the tertiary arms to develop. Thus, as Figure 6.22 shows, the dendrite arms form

flat, fan-like clusters, which contain individual arms that are also flattened in the x-y

plane. Because the groups of tertiary arms grow quite close together, they are sometimes

distorted in the opposite way, with larger curvatures on the sides and smaller curvatures

found on the top and bottom. This effect can also be seen in Figure 6.21. The tertiary



114

arms grow at an angle which is approximately 42◦ from the main arm. With increased

coarsening time, the ISDs show that the remaining arms do become progressively more

cylindrical.
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(a)

(b)

Figure 6.20. (a) The ISD for the non-dense region of the 28 minute coars-
ened sample, with the convex toward solid region selected. (b) A small
region of the non-dense 28 minute coarsened sample, with all curvature in-
side the selected region highlighted in red. It is clear that the probability
in this region of the ISD corresponds to the tips of the dendrite arms.
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(a)

(b) (c)

Figure 6.21. (a) The ISD for the dense regions of the 28 minute coarsened
sample, with two regions selected along the solid cylinder line. (b) A small
region of the 28 minute coarsened dense sample, with the upper selected
region (red box) highlighted in red and the lower selected region (blue box)
highlighted in blue; viewed directly down the z-axis. (c) A segment of the
28 minute coarsened non-dense structure, with the same curvature regions
highlighted; viewed up the z-axis.
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(a)

(b)

Figure 6.22. A section of the non-dense 28 minute coarsened sample show-
ing the growth formations of the dendrite arms into the liquid. (a) Looking
down the z-axis, so the 42◦ angle formed by the secondary and tertiary arms
is apparent. (b) Looking along the y-axis, so that the spacing between the
arms is visible.
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6.4. Interface Normal Distributions

Because it is often useful to understand and track the directionality of a structure, a

method of analyzing preferential directionality to produce Interface Normal Distributions

(INDs) was previously developed [14]. The technique for obtaining these probability plots,

along with the INDs for the dense and non-dense region of each sample, is presented here.

6.4.1. Method

For any structure where the curvature has been determined for every patch of interface,

all the interface normals can be collapsed into a unit reference sphere, with their origins

at the center of the sphere and their ends on its surface. A spherical projection is then

used to obtain a two-dimensional representation of the directionality of the interfaces. For

this work, an equal-area projection, see Figure 6.23, taken along the x-axis is used. The

projection plane is tangent to the sphere and perpendicular to the axis along which the

projection is made. As Figure 6.23 illustrates, the projection is obtained by drawing an arc

from a point on the reference sphere to the projection plane such that the distance from

the tangency point (B) to the projected point is equal to the distance from the tangency

point to the point on the reference sphere. This allows for minimal distortion of features

near the center of the plots, which is where the data from these samples is primarily

concentrated. Also to minimize distortion, the data is binned in three dimensions on the

reference sphere, with each bin covering the same amount of surface area on the sphere,

instead of binning afterwards on the projection. Since the structures being analyzed

are not symmetric, two projections are needed to represent all data: a near-hemisphere
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Figure 6.23. Schematic representation of the equal-area projection used to
obtain the INDs.

projection (projected along the positive x-axis) and a far-hemisphere projection (projected

along the negative x-axis).

During the course of this work, a method was developed to display the binned orien-

tation data directly on the surface of the reference sphere which could be manipulated

on the screen by a user. This has the potential to be a useful tool for understanding

interfacial orientation distributions because it avoids the distortion caused by projections

and also the general confusion often present when thinking about a two-dimensional plot
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Figure 6.24. Screen capture of a sphere showing the distribution of interface
normals on its surface. This sphere shows the distribution of normals for
the nondense region of the 486 minute coarsened sample.

representing a three-dimensional surface. An image of the sphere is shown in Figure 6.24.

The sphere shown is displaying the orientation of interface in the nondense 486 minute

coarsened sample (compare to the projected version of this data in Figure 6.33. This

sphere can be freely rotated by the user to view the color distribution from all angles, or

captured as a movie while rotating about an axis. Such a construction is most useful for

explanations and presentations where the sphere can be rotated before the audience.

6.4.2. INDs of Dense Regions

The INDs for the dense region of each sample are shown in Figures 6.25-6.28. By conven-

tion, an open circle at the origin of the coordinate system indicates that the positive axis

is coming out of the page and the symbol ⊗ indicates that the positive axis is going into

the page. To facilitate comparison between samples, the interface normals were rotated
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Figure 6.25. IND for the dense region of the 3 min coarsened sample.

Figure 6.26. IND for the dense region of the 28 min coarsened sample.
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Figure 6.27. IND for the dense region of the 100 min coarsened sample.

Figure 6.28. IND for the dense region of the 486 min coarsened sample.



123

in the x-y plane so as to center the primary peak in the middle of each plot. This cor-

responds to a rigid body rotation of the microstructure and does not effect the results in

any other way. The colorbar in all four figures has the same scale to facilitate comparison.

As with the ISDs, the maximum value of the colorbar is set to the maximum peak value

in all plots.

When comparing the INDs for the four coarsening times, it is clear that there is an

increase in directionality with coarsening, as the peak value in each plot gets progressively

higher. At each time, there is a primary peak near the center of each plot. Since these

are projections along the x-axis, a peak at this position indicates that the normals are

parallel to the x-direction, hence the interface itself is parallel to z. This corresponds

to the primary dendrite stalks which become more prominent with time as the dendrite

arms disappear.

The primary stalks do not, however, become cylinders in this time period, as a perfect

cylinder running in the z-direction would appear on these projections as a horizontal

line of equal intensity through the center of the plot. While there is a horizontal line at

later times, most of the probability is concentrated into one or two peaks along that line.

This indicates that the primary stalks have some directionality in the x-y plane as well.

Figure 6.33 shows that there is one strong peak in the near-hemisphere projection and two

weaker symmetric peaks in the far-hemisphere projection for the 486 minute coarsened

dense sample. Similar instances of the single peak/dual peaks has also been observed in

this system with higher volume fraction alloys [56]. It can be attributed to the roughly

triangular shape of the primary dendrite stalks. This shape is visible in Figure 6.29.

As the figure shows, and is more clear in Figure 5.8, the primary dendrites grow closely
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Figure 6.29. The dense 28 minute coarsened sample, where the three-sided
nature of the primary stalks is clear. Several instances are marked in red.

spaced in parallel sheets. This is a phenomenon that has been observed for some time

in tin dendrites [61]. It means that the secondary arms have the most room to grow

in a direction perpendicular to the plane of the sheet. A smaller set of secondary arms

also form in the plane of the primary sheet, but only on one side of each stalk. Thus,

the triangular shape is a result of these three sets of secondary arms, and the peak seen

in the INDs indicates the alignment of the primary sheet. When this morphology was

discussed previously in higher volume fractions of this alloy, it was noted that the shape

persists with coarsening for an extended time [14] before evolving to cylindrical tubes.

This persistence was attributed to the relatively lower mean curvature of the stem which

therefore coarsens at the expense of the surrounding regions.

While there are primary peaks in each of the four sets of INDs, there is also a region or

regions of low-level (blue or purple) probability spread over a larger area. At the shortest
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coarsening time, Figure 6.25, there are diffuse purple lines which run both vertically and

horizontally across the plot. After 28 minutes of coarsening, Figure 6.26, there is only a

vertical purple line. After 100 minutes, Figure 6.27, the horizontal line returns and comes

to dominate the background probability by 486 minutes, Figure 6.28. Because these are

projections taken along the z-axis, the vertical line comes from solid cylinders aligned

along the y-direction, while the horizontal line is the result of solid cylinders aligned

along the z-direction. This confirms what was discussed earlier in Section 6.3, that the

structure is initially a complex combination of second, third and fourth-order arms aligned

in all three primary planes. With increased coarsening, the higher-order arms disappear,

leaving the structure to be dominated by second and third-order arms aligned in the x-y

plane (thus the vertical purple stripe). In the later two coarsening times, the INDs show

the vertical line fade away as the arms coarsen, leaving the vertically-aligned primary

stalks and consequently a horizontal line across the IND plots. Thus, while the ISDs for

the dense regions of the samples do not show much change over this range of coarsening

times, when studied in conjunction with the three-dimensional reconstructions and the

INDs, we see that it is different pieces of the morphology which are contributing to the

similar shapes observed in the plots.
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6.4.3. INDs of Non-dense Regions

The INDs for the non-dense region of each sample are shown in Figures 6.30-6.33. The

plots are dominated by a pair of vertical stripes at each coarsening time except the first,

where there is only one stripe of probability in each hemisphere. At 28 and 100 minutes

of coarsening time, this dual stripe is attributed to the clusters of secondary and tertiary

branches which grow generally in the x-y plane with a fixed angle between them (see

Figure 6.22a). Thus, one stripe comes from the secondary arms and the other from the

tertiary arms. At 3 minutes of coarsening time, the IND is very diffuse because of the

many higher-order branches, and the single stripe probably corresponds to the direction in

which most of the large secondary arms are growing. At 486 minutes of coarsening time,

the tertiary arms are nearly gone, so the dual stripe must be attributable to something

else. Examination of the sample from which these plots were constructed (shown in

Figure 6.11) reveals that the region captured by the reconstruction contains secondary

dendrite arms from two different sheets of primary dendrite stalks, and the angle formed

by these sheets is comparable to the angle formed by secondary and tertiary arms. Thus

the IND looks similar to previous coarsening times, but for a different reason. The angle

between the two sheets in Figure 6.11, as well as many of the angles between sheets in

Figure 5.8, is similar to the angles measured between dendrite arms, indicating that these

sheets may originate from branching arms growing off a single primary stalk.
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Figure 6.30. IND for the non-dense region of the 3 min sample.

Figure 6.31. IND for the non-dense region of the 28 min sample.
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Figure 6.32. IND for the non-dense region of the 100 min sample.

Figure 6.33. IND for the non-dense region of the 486 min sample.
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6.5. Conclusions and Discussion

The Pb-69.1wt.%Sn alloy produced as described in Chapter 5 was qualitatively and

quantitatively analyzed in three dimensions after 3 minutes, 28 minutes, 100 minutes and

486 minutes (approximately 8 hours) of coarsening time. Because the volume fraction

of solid was not enough to fill the entire volume of the sample, the dendritic structure

was analyzed both inside one of the dense dendritic regions and along the edge of these

dense regions where the dendrite arms could develop more fully. The 3D reconstructions

of the dendritic microstructures show the transition from a highly complex structure

with many higher-order branches, to one dominated by fan-like clusters of secondary

and tertiary dendrite arms growing in the x-y plane, to one in which the side branches

have mostly disappeared and the structure is becoming primarily tubes aligned along the

growth direction (z-axis). The Interface Shape Distributions of the dense regions show

primarily solid cylinders with hemispherical caps and saddle-shaped regions where the

cylinders (i.e., dendrite arms) connect to each other. By connecting regions of probability

on the ISDs to specific microstructural locations, we see that quite often the dendrite

arms are not cylindrical but slightly flattened due to space constraints. The ISDs of

the non-dense regions showed structures which were almost exclusively solid cylinders (or

cylindrical-like rods), which decreased in diameter as the structure went from primarily

secondary and tertiary arms to primary dendrite stalks, and the arms became smaller

compared to the scale of the structure. The structures were also analyzed for preferred

directionality using Interface Normal Distributions. These plots confirmed the changes

in the structure that were hypothesized after analysis of the ISDs and three-dimensional

reconstructions. They also show that the primary dendrite stalks have a three-sided
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shape and preferred orientation besides alignment in the growth direction. This secondary

orientation is related to the sheet formation in which tin dendrites grow.

Due to experimental limitations, the size of the regions being sampled varied widely,

particularly for the non-dense regions. Along with the difficultly in obtaining an accurate

and consistently smoothed structure, the small size of some samples introduces sources

of error into these measurements. While they can be used to make some observations

about these types of directional dendritic structure, further work is needed to determine

how significant these sources of error are. The results could be improved with better

experimental data; namely by taking thinner sections to reduce the wedding cake effect

and the need for such extensive smoothing. The serial sectioner used for this work has been

used to produce sections as small as 3µm, as compared to the nominally 5µm sections

used here, however since the Pb-Sn alloy is so soft, with very thin sections, the blade

has a tendency to smear the surface instead of cut it. Increasing the resolution in the

z-direction also requires more time sectioning and more segmented images to sample the

same volume of material. However, as this work continues, particularly if better insight

into the dendrites at short coarsening times is desired, better z-resolution is probably

necessary.
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CHAPTER 7

Spatial Correlations in Directionally Solidified Dendrites

The method for calculating spatial correlations of curvature on complex surfaces de-

scribed in Chapter 3 was applied to directionally-solidified dendrites coarsened for various

lengths of time. Here, changes in spatial correlation with coarsening time and volume frac-

tion solid are discussed. The data being used is that presented in Chapter 6 along with

several other samples which were created earlier, with volume fractions of 43% and 58%

solid. Complete analysis of these other volume fractions can be found in [56]. All samples

are composed of tin dendrites in Pb-Sn eutectic which have been directionally solidified

and isothermally coarsened.

There are a number of challenges when measuring spatial correlations in these experi-

mental structures that were not present in the earlier analysis of the simulation-generated

bicontinuous structures. First, as discussed previously, it is not possible to create 3D

meshes that exactly reproduce the original microstructure. There will always be some

degree of error due to a finite section thickness, errors during segmentation of images, and

distortion due to smoothing. The spatial correlation measurements are extremely sensi-

tive to small changes in the mesh, so one must sort out which features of the correlation

plots are due to the true structure and which are not.

Secondly, the nature of the serial sectioning process and the time required to add

additional images to the stack limits the size of the 3D reconstructions which can be

obtained. Reconstructions tend to be much larger in the x-y plane than in the z-direction
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(the sectioning direction). While the simulated structures were in a cubic volume, and the

correlations could be calculated across the periodic boundaries, the available experimental

structures are all quite small in the z-direction. This makes it difficult to measure three-

dimensional correlations at larger radial distances. Also, as there is only one sample

available for each coarsening time and volume fraction, the correlations cannot be averaged

across multiple structures to reduce noise.

Despite these challenges, interesting correlation data was obtained. For these samples,

60,000 to 80,000 initial H1 values were sampled, and the shell thickness ∆r was set to

1/4(S−1
v ) for increased resolution. As with the calculations in Chapters 3 and 4, the

correlation functions are plotted as a function of the dimensionless curvatures H̃1 =

H1S
−1
v , H̃2 = H2S

−1
v and distance r̃ = rS−1

v .

7.1. Effects of Coarsening Time

The spatial correlations for two samples containing 43% solid after 24 minutes and 240

minutes of coarsening were calculated. Images of the three-dimensional reconstructions of

these two samples are shown in Figures 7.1 and 7.2. The length scale increases by about

1.7 times between these two samples, which have S−1
v = 37.0 and 62.5µm, respectively.

The MCDs for these samples, Figure 7.3, show the curvature becoming more narrowly

distributed about the maximum value with increasing time. A sample with the same

volume fraction and 2880 minutes of coarsening was also investigated, but the S−1
v was so

large (135.3µm) compared to the thickness of the sample (475µm) that it was not possible

to obtain meaningful data.
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Figure 7.1. 3D reconstruction of the 43% solid sample after 24 minutes of coarsening.

Figure 7.2. 3D reconstruction of the 43% sample after 240 minutes of coarsening.
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Figure 7.3. Scaled mean curvature distributions of the 43% solid structure
after 24 and 240 minutes of coarsening time.

The RDFs for the two samples are shown in Figure 7.4 and 7.5 for r̃ = 0.25 to

2.25. Because the MCDs were quite similar in width, the plots for both samples run

from H̃ = -2 to 2.4. This displays 99% of all curvatures in both cases. The two sets

of correlations have many similar features common to this type of dendritic structure.

For both samples at r̃ = 0.25 the plots look similar to those seen in previous chapters

at very short distances, with all probability being concentrated along the H̃1 = H̃2 line.

With increasing distance, this initial region of probability decreases in magnitude, with

curvatures near the maximum values of the MCD (H̃ = 0.6) becoming uncorrelated with

each other by r̃ = 1.5. Correlations between patches of similar large positive or large

negative curvature maintain a positive correlation over longer distances, with curvatures

of small negative values (H̃ = -1 to 0) showing the most persistent positive correlation. In

both samples there is also a region of increased probability between patches of interface
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having curvatures of opposite sign which appears at r̃ = 0.5, increases as r̃ increases, and

then decreases back to a random distribution. Finally, curvatures of H̃ = 1 to 2 and

H̃ = 0.5 to 1 are strongly anticorrelated over the range of distances shown.

As discussed previously, the initial high probability along H̃1 = H̃2 is the result of local

smoothing due to surface tension. Like the asymmetric mixture discussed in Chapter 4,

these structures have less than 50% solid, so negative curvature must be relatively more

correlated; thus, the plots are not symmetric across the H̃1 = −H̃2 line and two regions

of negative curvature are more correlated than two regions of positive curvature with a

similar magnitude. In both structures, the correlations between patches of similar negative

curvature form two different peaks: one encompassing curvatures of approximately H̃ >

1.25 and the other values of approximately H̃ < 1.25. The more negative values are due

to welding (see Figure 7.8). The welding peak disappears by r̃ = 2.5 in 24min sample.

The values closer to zero are the primary dendrite stalks (see Figure 7.6), which show the

longest range correlation in the system. In the 24 minute sample, this peak is present

out to r̃ = 3.75. In the 240 minute sample, it is present until at least H̃ = 3.25. Longer

distances cannot be measured in this sample due to size constraints. It is worth noting that

while the form of the correlations for the two samples are generally similar, the magnitude

of the correlations and anticorrelations in the 240 minute sample are uniformly larger as

the sample becomes simpler and more aligned.

While the problems with artificial welding due to over-smoothing have been extensively

discussed here, examination of the original micrographs shows at least some of these to

be actual events in the microstructure, at least within the resolution of the images (see

Figure 7.9). If that is the case, then the structure is coarsening by arm coalescence. The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.4. Spatial correlations of 43% solid sample after 24 minutes of
coarsening for r̃ = a) 0.25, b) 0.50, c) 0.75, d) 1.00, e) 1.24, f) 1.50, g) 1.75,
h) 2.00, i) 2.25. White indicates a probability of greater than 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.5. Spatial correlations of 43% solid sample after 240 minute of
coarsening for r̃ = a) 0.25, b) 0.50, c) 0.75, d) 1.00, e) 1.24, f) 1.50, g) 1.75,
h) 2.00, i) 2.25. White indicates a probability of greater than 2.
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Figure 7.6. 240 minute sample with curvatures of H̃ = -1.25 to 0 highlighted
in red and H̃ = 0 to 0.2 highlighted in blue. Together, these curvatures cor-
respond to the primary dendrite stalks which run in parallel sheets through
the structure.

Figure 7.7. 240 minute sample with curvatures of H̃ > 1 highlighted. These
curvatures correspond to the tips of the dendrite arms.
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Figure 7.8. 240 minute sample with curvatures of H̃ < −1.2 highlighted.
These curvatures correspond to the neck region where two interfaces have
become welded together. The box indicates a region of coalescence by tear-
drop shaped arms.

region indicated by the box in Figure 7.8 looks very similar to Model 4 in Figure 2.1

which depicts dendrite arms obtaining tear-drop shapes which touch near the tips where

the arms are the widest and then coalesce. Visual examination of the structures indicates

that Model 2, axial remelting, is also a coarsening method used by these systems. This

makes for a very different coarsening process than what was described earlier for the

bicontinuous structures that coarsen by pinching events.
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Figure 7.9. An original micrograph of the 240 minute sample, with arrow
1 indicating a region of actual coalescence, while arrow 2 indicates a region
that would likely become welded during smoothing.

The regions of low negative curvature associated with the stalks show a strong anti-

correlation with regions of moderate to high positive curvature. These positive regions

correspond to the tips of the dendrite arms (Figure 7.7). Thus, the length over which

this anticorrelation persists contains information about the average length of the dendrite

arms. In the 240 minute sample, the anticorrelation persists to at least r̃ = 3.25 which

is the longest distance measurable in this sample. r̃ = 3.25 corresponds to a distance of

220µm. The secondary dendrite arm length was measured to be approximately 300µm.

Thus, we speculate that if the correlations could be measured for longer distances, the

anticorrelation would disappear shortly and then likely become positively correlated. In
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the 24 minute sample, the anticorrelation persists to a distance of 70-80µm, which cor-

responds to the average distance from the stalk to the tip of the first tertiary arm. As

the anticorrelation disappears, a positive correlation between stalks (H̃ = −1 to 0) and

tips (H̃ > 2) appears for r̃ > 2.5. Most of these tertiary arms have disappeared by 240

minutes and there is very little curvature of H̃ > 2.

The positive correlation between regions of similar positive curvature is due to clus-

tering of dendrite tips. This correlation region has a very high value initially and then

exhibits a uniform decay with increasing distance. There appears to be no oscillation

which would indicate an average spacing between individual arms. Either there is too

much variation in spacing between arms to pick up an average value, or with the current

noise level and colorbar scaling, the plots are not sensitive enough to pick it up.

The correlation between positive and negative regions is due to spacing between den-

drite tips and welded regions. For the 240 minute sample, two things about this peak

confirm that the welding events are occuring between the highly curved dendrite tips.

First, this peak appears at a very short distance (r̃ = 0.5) and shows the strongest corre-

lation from r̃ =0.75 to 1.25. Second, the peak is initially centered about a positive value

of H̃ = 2 and with increasing distance r̃ shifts downwards towards H̃ = 1, indicating that

the most highly curved interfaces are nearest the welds. This is less clear for the 24 minute

coarsened sample, as there is much more welding which occurs between entire arms (see

Figure 7.10) of a variety of sizes. Therefore the weld regions are not correlated to any

particular curvature of the arms except the very highest curvature found on the tips of all

tertiary arms. More work is necessary to determine how much of this extensive welding

is the result of over-smoothing. However, even if the welding is due to over-smoothing,
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Figure 7.10. 24 minute sample showing the extensive welding in this struc-
ture. Red highlights H̃ < −1.2 and blue highlights H̃ > 2. Arrows indicates
the type of region which causes the correlation between very high negative
and positive curvatures.

it does indicate that the arms in these regions are very close to each other, within a few

voxels.
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7.2. Dense versus Non-dense Regions

The RDFs for the dense and non-dense regions of the Pb-69.1wt%Sn sample (3D

reconstructions shown in Figures 6.5 and 6.9) are given in Figure 7.11 and 7.12 for r̃ =

0.25 to 2.25. To be consistent with the plots in the previous section, the axes are scaled

from H̃ = −2 to 2.4. This displays 98% of all curvatures for both regions. The MCDs for

these two samples are given in Figure 7.13. At longer distances for the non-dense region,

Figure 7.12(f)-(i), the plots are not symmetric across the H̃1 = H̃2 line but exhibit a sort

of horizontal smearing effect. This is due to the limited size of the sample, particularly in

the z-direction. Although the sample is still thicker than twice the radial distance being

measured, in order to keep the measurements inside the sample, the possible H̃1 values

which can be used are very limited. This causes a distortion of the probability plots, but

previous work using the larger bicontinuous structures has shown that the general trends

are still correctly displayed.

The correlation plots in Figures 7.11 and 7.12 show many of the features discussed in

the previous section. While at the shortest distances, all probability falls along the H̃1 =

H̃2 line, and the correlation is very strong for all values of H̃, the samples are less than

50% solid and so the negative curvatures exhibit the highest correlations. At moderate

distances, there is a positive correlation between regions of large positive curvature and

large negative curvature. In the dense region, this peak indicates a correlation between

welded regions and the dendrite arm tips, as discussed above. In the non-dense sample,

however, the high-magnitude negative curvature does not correspond to welding but to

the regions between tertiary arms, as illustrated in Figure 7.14. Thus this peak represents

the correlation between the tips of the tertiary arms and the bases of those arms. The
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.11. Spatial correlations of dense region after 28 minutes of coars-
ening. Plots were constructed using a shell of thickness 1/4 at r̃ = a) 0.25,
b) 0.50, c) 0.75, d) 1.00, e) 1.24, f) 1.50, g) 1.75, h) 2.00, i) 2.25. White
indicates a probability of greater than 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.12. Spatial correlations of non-dense region of 28 minute coarsened
sample. Plots were constructed using a shell of thickness 1/4 at r̃ = a) 0.25,
b) 0.50, c) 0.75, d) 1.00, e) 1.24, f) 1.50, g) 1.75, h) 2.00, i) 2.25. White
indicates a probability of greater than 2.
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Figure 7.13. Scaled mean curvature distributions of 28 minute coarsened
sample in the dense and non-dense regions.

appearance of the peak from r̃ = 0.5 to 1.25, or 20 to 50µm suggests the range of tertiary

dendrite arm lengths at this time. Notice that the peak corresponding to this phenomenon

encompasses a different range of negative curvature values (H̃ = -1 to -2) than seen in

previous peaks attributable to welding (H̃ < -1.5). The lack of welding is also noticeable

because there is only one peak in the H̃1 = H̃2 region, just below H̃ = 0, instead of the

two peaks seen previously.

Two other differences between the dense and non-dense regions can be noted along

the positive region of the H̃1 = H̃2 line. First, the positive correlation along the length of

H̃1 = H̃2 line is maintained for a longer distance in the non-dense sample. In the dense

sample, the curvatures nearest the maximum value of the MCD (approximately H̃ = 0.4 to

1.2) become uncorrelated with themselves by a distance of r̃ = 1.5 and remain uncorrelated
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at all larger distances. In all previous samples, both dendritic and bicontinuous, the

curvatures near the maximum of the MCD have the shortest self-correlation. In the non-

dense sample, these curvatures correspond to the highly aligned tertiary dendrite arms

and maintain a positive self-correlation for all currently measurable distances, while other

curvatures do exhibit a random distribution.

Finally, the self-correlations for high positive curvature (H̃ > 1.5) drop off more

quickly in the non-dense structure for distances of r̃ ≥ 1.5. In the non-dense structure, the

dendrites have more room to spread out, thus the tips are not as tightly clustered. In the

non-dense region, there are generally no more than one or two immediately surrounding

tips which create the positive correlation between regions of large positive curvature. In

the dense region, there may be as many as five or six tips packed into the area being

sampled by r̃ = 2.25.

7.3. Effects of Changing Volume Fraction

From the data already presented, Figure 7.4, 43% solid after 24 minutes of coarsening,

and Figure 7.11, locally 37% solid after 28 minutes of coarsening, can be compared. These

two samples have S−v 1 values of 0.0270 and 0.0248 1/µm, respectively, a difference of about

8%. The difference is likely due to the slight differences in coarsening time and volume

fraction, as well as different amounts of welding due to different initial segmentation

and thresholding. The smoothing process was nearly identical. The correlation plots

are quite similar, although the positive correlations in Figure 7.11 have slightly higher

values, particularly for the self-correlations of negative curvatures. This indicates that,

in general, despite the fact that the sample in Figure 7.11 comes from an alloy where
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Figure 7.14. Illustration of correlation between tips and bases of tertiary
dendrite arms. Curvatures of H̃ = 1.5 to 3 highlighted in red and curvatures
of H̃ = -1 to -2 highlighted in blue.

the overall volume fraction is just 22% solid and the solid is not uniformly distributed

throughout the sample, the growth in the dense regions is comparable to that in fully-

dense samples.

There is also data available for the Pb-Sn system for directionally solidified samples

of 58% solid and 81% solid at a variety of coarsening times, as well as the 43% and 22%

(locally 37% in the dense regions) samples already discussed. It remains to future work

to probe further the changes in spatial correlation with increasing volume fraction.

7.4. Correlations after Long Coarsening Times

After very long coarsening times, all secondary dendrite arms disappear and the struc-

ture becomes vertically aligned tubes of increasingly circular crosssection. Figure 7.15
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Figure 7.15. 3D reconstruction of the 58% solid sample after 4320 minutes
(3 days) of coarsening.

shows a 58% solid sample after three days of coarsening time, which consists of strongly

aligned, horizontally elongated solid tubes. The RDF for this structure is shown in Fig-

ure 7.17. These plots cannot be directly compared to previous ones because axes are

scaled slightly differently, from H̃ = -1.8 to 1.8. The increased noise is not due to error in

the 3D mesh, as the large structure is easier to smooth and so more accurately represents

the original microstructure. However, the very large increase in length scale (S−1
v is 2

to 4 times larger than all other structures discussed here) means that the sample size is

relatively smaller and therefore less data is available to sample.

The plots show three primary positive correlations, always between regions of similar

curvature. These three regions are highlighted in Figure 7.16. Curvature with large

positive values corresponds to the highly curved sides of the elongated tubes. Curvature
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Figure 7.16. Sample shown in previous figure with blue highlighting H̃ >
0.5, yellow highlighting H̃ >-0.5 and red highlighting H̃ = -0.5 to 0.2. These
are the three primary regions showing positive correlation for this structure.

with large negative values corresponds to regions of horizontal interface which connect

some of the vertical tubes. These regions have self-correlation values which persist over

the longest distance. There is also a small peak for H̃ just below 0, which corresponds to

the large flat sides of the elongated tubes.

The smearing effect in the plots due to small sample size begins at r̃ = 2, and r̃ can

only be measured out to a distance of r̃ = 2.5, even though this sample is 1.5 times

thicker than any of the other dendritic samples discussed here. Since it is not feasible

to go back and obtain thicker samples, a new method of calculating correlations was

developed for this type of large S−1
v , highly-directional sample. Instead of calculating
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the correlations in all three dimensions, the radial distance was taken only in the x-y

plane. H̃1 values were chosen throughout the thickness of the sample so that all x-y

planes available were sampled and averaged together. The plane was defined to be all

values which fell inside the shell of radius r̃ and thickness ∆r̃ as defined previously, and

which also had H̃2(z) = H̃1(z) ± 15µm. It was hoped that this would be a way to make

use of the larger dimensions of these samples without sacrificing any vital information, as

the samples change very little in the z-direction. Figure 7.18 shows the correlations in the

x-y plane for the same sample shown in Figure 7.15. Although noisier, the plots are quite

similar to those calculated in the normal way in Figure 7.17 and, although not shown,

have been calculated for distances as long as r̃ = 4.25. More investigation is necessary to

completely understand the potential of this new method.

7.5. Summary

The new technique for measuring spatial correlations of complex surfaces has been

applied to directionally solidified dendritic samples. The changes with coarsening time

from 24 to 240 minutes in a 43% solid sample are analyzed. The differences between

the dense and non-dense region of the 22% solid sample are also discussed. Finally, the

technique is adapted to the available, highly-directional samples with small z dimensions

by measuring correlations only in the x-y plane. We have used the technique to identify

length scales in these complicated structures such as the average distance from base to tip

of dendrite arms. With more refinement, this technique, in both two and three dimensions,

will be able to be used to pick up increasingly subtle features of these structures. The

work presented here does prove that the technique works for a variety of morphologies,
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.17. Spatial correlations of 58% solid sample after three days of
coarsening for r̃ = a) 0.25, b) 0.50, c) 0.75, d) 1.00, e) 1.24, f) 1.50, g) 1.75,
h) 2.00, i) 2.25. White indicates a probability of greater than 2.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 7.18. Spatial correlations in the x-y plane of the 58% solid sample
after three days of coarsening for r̃ = a) 0.25, b) 0.50, c) 0.75, d) 1.00,
e) 1.24, f) 1.50, g) 1.75, h) 2.00, i) 2.25. White indicates a probability of
greater than 2.
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and the potential for future work and impact is great. The use of other techniques, such

as x-ray tomography, to obtain larger and more accurate three-dimensional meshes for

analysis will also provide a great leap forward.
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CHAPTER 8

Conclusions

Two different types of microstructures were subjected to quantitative three-dimensional

analysis. First, simulated bicontinuous mixtures were used to develop a new method of

quantifying the morphology of topologically complex interfaces by calculating the spatial

correlation of interfacial curvature. Second, three-dimensional reconstructions of direc-

tionally solidified and isothermally coarsened dendritic samples were created using serial

sectioning, and analyzed using a variety of techniques including the newly developed

method of calculating spatial correlations.

This method for calculating spatial correlations of interfacial curvature uses a radial

distribution function (RDF) calculated directly from the surfaces of a three-dimensional

structure. This method is independent of morphology and can be used for any type of

structure. The usefulness of such a calculation is demonstrated by calculating correla-

tions of two bicontinuous, two-phase mixtures produced using phase field modeling with

conserved and nonconserved dynamics, respectively. It was found that the long-range

diffusive interactions resulting from conserved dynamics yield positive correlations which

display a decreasing oscillation with increasing distance between regions of similar curva-

ture and regions of opposite curvature. These correlations were observed out to a distance

of seven times the characteristic length of the system and indicate regularly spaced re-

gions of positive and negative curvature which is a new characteristic length scale for
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this structure. Despite the local nature of the interfacial evolution process in the noncon-

served case, positive correlations between similar curvature were observed on a relatively

long scale (greater than two times the characteristic length of the system). These corre-

lations are attributed to the persistence of high curvature tunnels in the structure, with

the spacing between these tunnels constituting a new characteristic length scale for these

structures. The time independence of both the scaled spatial correlation functions and

the interface shape distributions indicate that the interfacial morphologies in these cases

assume a unique time-independent form.

Spatial correlations were also compared for symmetric and asymmetric bicontinuous

mixtures produced using conserved dynamics. This analysis was performed by calculat-

ing the RDF for correlations between all existing values of curvature at a single radial

distance, and also between specific curvature values identified as primary correlation re-

gions. The observed correlations are attributed to interfacial smoothing effects at short

distances, diffusional constraints at intermediate distances, and the repeating nature of

the structure at longer distances. The correlation analysis of the asymmetric mixture

has provided important details about the nature of changes to a spinodal structure as it

moves away from a critical quench, and possibly the nature of the breakup of such struc-

tures. The asymmetric mixture also showed correlations out to a distance of about seven

times the characteristic length, with particularly strong correlations between patches of

negative curvature. The negative curvature must be highly clustered to stable: diffusion

would eliminate smaller patches very quickly, and some negative curvature is geometrically

necessary to have a three-dimensional, bicontinuous structure.
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On the experimental side, a Pb-69.1wt.%Sn alloy was created and directionally solid-

ified, then coarsened just above the eutectic temperature for 3 minutes, 28 minutes, 100

minutes, 486 minutes and 3 days. The 3 day sample was not analyzed because it had un-

dergone complete sedimentation. Because the volume fraction of solid was not enough to

fill the entire volume of the sample, the dendritic structure was analyzed both inside one

of the dense dendritic regions and along the edge of these dense regions where the dendrite

arms could develop more fully. The 3D reconstructions of the dendritic microstructures

show a transition from a highly complex structure with many higher-order branches, to

one dominated by fan-like clusters of secondary and tertiary dendrite arms growing in the

x-y plane, to one in which the side branches have mostly disappeared and the structure

is becoming primarily tubes aligned along the growth direction (z-axis). The Interface

Shape Distributions of the dense regions show primarily solid cylinders with hemispherical

caps and saddle-shaped regions where the cylinders (i.e., dendrite arms) connect to each

other. By connecting regions of probability on the ISDs to specific microstructural loca-

tions, we see that quite often the dendrite arms are not cylindrical but slightly flattened

due to space constraints. The ISDs of the non-dense regions showed structures which were

almost exclusively solid cylinders (or cylindrical-like rods), which decreased in diameter as

the structure went from primarily secondary and tertiary arms to primary dendrite stalks,

and the arms became smaller compared to the scale of the structure. The structures were

also analyzed for preferred directionality using Interface Normal Distributions. These

show that the primary dendrite stalks have a three-sided shape and preferred orientation

besides alignment in the growth direction. This secondary orientation is related to the

sheet formation in which tin dendrites grow.
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Finally, the new technique for measuring spatial correlations of complex surfaces was

also applied to directionally solidified dendritic samples, including some of the samples

discussed above. The RDFs show correlations of curvature due to the dendrite stalks,

the arm tips, and coalescence events. The extent of a strong anticorrelation between

curvatures associated with the stalks and the tips gives provides information about the

average secondary dendrite arm length. The changes with coarsening time from 24 to

240 minutes in a 43% solid sample are analyzed. At the shorter time, correlations are

seen between the base and tips of tertiary arms, while at the longer time, the tertiary

arms have mostly disappeared and the correlations show the distance between the base

and tips of secondary arms. More coalescence between highly-curved dendrite tips is

also seen after 240 minutes. The differences between the dense and non-dense region of

the 22% solid sample are also analyzed. Most notably, it was found that in the non-

dense sample, the curvature values corresponding to the maximum value of the mean

curvature distribution (MCD) do not have the shortest self-correlation distance, as is the

case for all other sampled which have been studied. This is due to the strong alignment

of tertiary dendrite arms in this sample, which contribute the curvature at the center of

the MCD. The feasibility of adapting the technique to measure spatial correlations only

in the x-y plane for use with highly-directional, long coarsening time samples with small

z dimensions is shown.
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[60] G. Lavoué, F. Dupont, and A. Baskurt. Constant curvature region decomposition of
3D-meshes by a mixed approach vertex-triangle. J. WSCG, 12:245–252, 2004.

[61] J.C. Warner and J.D. Verhoeven. Morphology of tin dendrites in near-eutectic alloys.
Met. Trans., 3(4):1001–1002, 1972.


	ABSTRACT
	Acknowledgements
	List of Figures
	List of Tables
	Chapter 1. Introduction
	Chapter 2. Coarsening
	2.1. Coarsening in Systems with Spherical Particles
	2.2. Coarsening of Dendrites
	2.3. Coarsening in Bicontinuous Structures

	Chapter 3. Spatial Correlations in Symmetric Bicontinuous Mixtures
	3.1. Development of Calculation Method
	3.2. Structures for Analysis
	3.3. Analysis of Structure with Conserved Dynamics
	3.4. Analysis of Structure with Nonconserved Dynamics
	3.5. Summary

	Chapter 4. Spatial Correlations in Nonsymmetric Bicontinuous Mixtures
	4.1. Structures for Analysis
	4.2. Analysis of Symmetric Mixture
	4.3. Analysis of Asymmetric Mixtures
	4.4. Summary

	Chapter 5. Experimental Procedure for Directionally Solidified Dendrites
	5.1. Lead-Tin System
	5.2. Processing
	5.3. Automated Serial Sectioning
	5.4. Initial Observations of Dendritic Samples
	5.5. Three-Dimensional Reconstruction
	5.5.1. Segmentation and Alignment
	5.5.2. Smoothing


	Chapter 6. Analysis of Low Volume Fraction Dendrites
	6.1. Dense Regions
	6.2. Non-dense Regions
	6.3. Interface Shape Distributions
	6.3.1. Method
	6.3.2. ISDs of Dense Regions
	6.3.3. ISDs of Non-dense Regions
	6.3.4. Correlating ISDs and 3D Reconstructions

	6.4. Interface Normal Distributions
	6.4.1. Method
	6.4.2. INDs of Dense Regions
	6.4.3. INDs of Non-dense Regions

	6.5. Conclusions and Discussion

	Chapter 7. Spatial Correlations in Directionally Solidified Dendrites
	7.1. Effects of Coarsening Time
	7.2. Dense versus Non-dense Regions
	7.3. Effects of Changing Volume Fraction
	7.4. Correlations after Long Coarsening Times
	7.5. Summary

	Chapter 8. Conclusions
	References

