
 

NORTHWESTERN UNIVERSITY 

 

Spatial Thinking and the Learning of Mathematics in the Game of Go 

 

A DISSERTATION 

 

SUBMITTED TO THE GRADUATE SCHOOL 

 IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

 

for the degree 

 

DOCTOR OF PHILOSOPHY 

 

Field of Learning Sciences 

 

By 

Yanning Yu 

  

EVANSTON, ILLINOIS 

 

September 2021 

 



  2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Copyright by Yanning Yu 2021 

All Rights Reserved 

  



  3 

Abstract 

Although there has been profound evidence showing the positive correlation between spatial 

abilities and math performances, we still know very little about how and why spatial thinking 

facilitate the learning of mathematics. This dissertation unpacks several aspects of mathematics 

that are embedded in learning and playing an ancient and rich game of Go and sheds light on 

how and why spatial thinking might contribute to the learning of mathematics. Go is a two-

player, turn-based strategy game that originated in ancient China. It is infused with numerous 

spatial and math activities. Players take turns to put down black or white stones to surround more 

spaces on the board than the opponent. I draw on the sociocultural perspectives which consider 

learning as mediated by cultural tools to explore the potential of Go to influence the way Grade 

2-3 students learn and do mathematics. My study identifies a variety of mathematical reasoning 

practices emerging from the teaching and learning of Go patterns, such as conjecturing, 

justifying, and generalizing, and uncovers how the teacher and students use spatial modeling in a 

dynamic and fluid way to facilitate the reasoning processes. Additionally, I found various score 

counting strategies at the end of games, which involve using different kinds of spatial numerical 

representations to solve math problems embedded in the game. Therefore, Go does not facilitate 

just one type of math strategy but allows players to choose from multiple types of spatial 

numerical representations, which yield different strategies to solve emerging math problems in 

the game. My study thus sheds light on an alternative perspective on how spatial thinking might 

facilitate math learning.  
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Chapter 1: Introduction 

The Learning Sciences has witnessed tremendous growth in research on how games can 

support learning. Thousands of new educational games have been invented, and many use 

technologies such as digital touch screens. My focus here is on the use of a game to facilitate 

learning, but the game is neither new nor reliant on technology. This dissertation is about the 

game of Go, which was invented three thousand years ago and is played by millions of people, 

particularly in Asia, but also in other areas as well.  

Go is a board game with simple elements: line and circle, stone and wood, and simple 

rules—one wins by surrounding more spaces than one’s opponent (Figure 1.1). Yet, these simple 

elements create challenges that have enthralled millions of players across the world for three 

thousand years. The game involves two players taking turns to strategically add black or white 

stones onto the board, aiming at constructing and expanding one’s own territories with connected 

stones while trying to hinder or deconstruct those of the opponent. Although Go has existed for a 

very long time, here is great value in investigating this game as a tool for learning. As I argue 

below, Go has made a strong impact on Asian cultures and might offer a unique platform from 

which to investigate the potential of games for learning.  

The history game of Go is interwoven with Asian history and cultural development. For 

many centuries this game was extremely popular among governors, politicians, and strategists in 

the military. It was built into the curriculum of the educated and privileged because it was 

thought to support complex reasoning, decision making, persistence, patience, and other 

leadership characteristics. Now, parents in many countries enroll their children in Go classes for 

the same intended benefits, that is, to boost intellectual capacities. 
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Figure 1.1 

A Traditional Go Game Board and Stones 

 

Note. Image retrieved from “a traditional Go gameboard” by T. Osato, in The Mystery of Go, the 

Ancient Game That Computers Still Can't Win, by A. Levinovitz, 2014, WIRED, 

(https://www.wired.com/2014/05/the-world-of-computer-go/). CC BY T. Osato/WIRED. 

Although many claims have been made about the benefits of go, there is relatively little 

in the way of rigorous research that has evaluated Go as a tool for cognitive development and 

learning (e.g., Chen et al., 2003; Duan et al., 2014; Jung et al., 2018; Lee et al., 2010; Reitman, 

1976). Here I hope to expand research on Go by addressing some aspects of its potential to 

facilitate spatial and mathematical thinking.  Next, I will discuss theoretical perspectives on 

games and learning, which can shed light on the ways of studying the kinds of learning that 

might occur in the process of learning and playing Go.  
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Games and Learning in Social Cultural Context 

There is growing interest in studying learning in the context of game play. Play is an 

important way that young children learn (Singer et al., 2006). There have been many approaches 

to studying learning in game contexts. My work is generally informed by sociocultural 

perspectives, which view children’s learning and cognitive development from the vantage point 

of historically situated activities that are mediated by cultural artifacts and tools (Cole, 1996; 

Rogoff, 1991; Saxe, 1981, 1991; Wertsch, 1991).  

Sociocultural analyses highlight the importance of social activities like game play as 

contexts for children’s learning and development (Bransford et al., 1999; Lave & Wenger, 1991). 

Nasir (2005) described games as an ideal setting where a significant amount of learning occurs 

through interactions with cultural norms and artifacts. As she noted,  

"Games are inherently artifacts of culture through which cultural roles, values, and 

knowledge bases are transmitted… Games can also be viewed as a microcosm in which 

culture operates in explicit ways to organize activity. Indeed, games are rich in cultural 

artifacts and are guided by implicit and explicit rules, norms, and conventions. 

Additionally, social interaction among players is often integral to game play. These 

features of game play can scaffold learning and cognitive processes in critical ways— 

Both through organizing learning in the context of social interactions with other players 

and affording particular kinds of problems and the strategies to solve them through the 

organization of the physical environment and the game rule structure." (p.6-7) 

In short, Nasir (2005) suggests that games is an setting where learning becomes salient, 

because in game contexts, we can see how individuals actively contribute to their own learning and 

how the learning is influenced by the sociocultural norms (e.g., roles, game structures) and cultural 
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tools. Therefore, there is great value in viewing Go as a cultural tool for learning, as this lens might 

help us understand the role of the individual players in their own learning and the role of the cultural 

tools shaped by the game and to explore their relations. Next, I share some general theoretical 

perspectives on math learning as mediated by cultural artifacts and tools. 

Cultural Tools as Means to Engage in Informal Mathematical Practices 

Learners in various cultures can develop complex mathematical thinking practices in 

informal everyday situations. Viewing learning as mediated by cultural tools may capture 

mathematics learning in these informal contexts in broadly two ways. First, the sociocultural 

perspective sheds light on how cultural tools influence how individuals think mathematically. For 

examples, symbols and artifacts that represent numbers have affected how individuals do calculations 

or reason about patterns in daily lives (e.g., Saxe, 1981; Stigler, 1984).  

Second, cultural tools can be viewed as a means to engage learners in various forms of 

mathematical practices (Gutiérrez & Rogoff, 2003; Lave & Wenger, 1991; Rogoff et al., 2003). 

Learning is interpreted through the lens of goals, roles, and tools which emerge from a group of 

people participating in activities that are central to this community (e.g., the daily and communal 

practices of trading); learning occurs when people take on new roles or develop new goals, which 

may result in shifts in their ways of using the tools and participating in the activities. For example, 

Nasir (2000) showed how high school basketball players learn or engage with the concepts of 

average and percent in order to calculate their own statistics and the statistics of other players. 

However, they might not directly apply such practices in school, where the setting differs sharply 

(Nasir et al., 2008; Saxe, 1991). One of the reasons is that in out-of-school settings, the problems 

that arise are often practical and applied (Bell et al., 2006), and they arise as participants seek to 

reach bigger or broader goals that are meaningful to the learners (Nasir, 2000).  
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Viewing learning in light of cultural tools might offer valuable insights to important 

questions about learning in informal contexts. One of those important questions is about the 

relation between spatial reasoning and math learning.  

Studying Space and Math in the Context of Go 

Although there has been profound evidence showing the positive correlation between 

spatial abilities and math performances (Casey et al., 2015; Hawes et al., 2019), we still know 

very little about how and why spatial thinking facilitate the learning of mathematics. This 

dissertation will unpack several aspects of mathematics that are embedded in learning and 

playing the game of Go and shed light on how and why spatial thinking might contribute to the 

learning of mathematics.  

Here, I examine the game of Go as a cultural tool to examine its potential to engage 

children in spatial reasoning and to influence the way children learn mathematics. The game of 

Go might be an appropriate context to explore specific ways in which mathematical reasoning 

can be modeled and supported spatially, because it is a game that builds in these spatial 

approaches in a natural, organic way. Although Go takes a lifetime to master, it has minimal 

rules, and thus young children can readily learn to play. This game offers opportunities for young 

children to participate in increasingly complex spatial and mathematical tasks, which otherwise 

might be too cognitively demanding for children at the Grade 2-3 level. Therefore, this game 

could be a proper context to study the underlying mechanism of how spatial thinking supports 

early math learning.  

In the next chapter, I review existing literature on spatial reasoning and math learning and 

discuss how cultural tools as a lens to studying math learning may contribute to our 

understanding of spatial and math relations.  
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Chapter 2: Space and Math  

In this chapter, I provide a review of literature on the correlation between spatial skills, 

spatial training, and mathematical performances. I then incorporate the sociocultural perspectives 

and demonstrated a few examples of cultural tools that might contribute to our knowledge of 

how spatial reasoning might support math learning.  

Having high levels of spatial skills has been shown to help students succeed in a variety 

of subjects including Science, Technology, Engineering, and Mathematics (STEM) fields (Sorby 

et al., 2013; Sorby, 2009; Uttal et al., 2013; Uttal & Cohen, 2012). Uttal and Cohen (2012) 

indicate that spatial abilities predict performances in early STEM learning but become less 

predicative as STEM contents advance. Therefore, developing high levels of spatial skills are 

especially important for STEM learning early on. 

 The evidence linking mathematics learning and spatial ability is now quite strong  (Casey 

et al., 2015; Hawes et al., 2019). Moreover, studies have demonstrated that spatial training can 

lead to improvements in math(Cheng & Mix, 2014; Ferrini-Mundy, 1987; Lowrie et al., 2017; S. 

Sorby et al., 2013). Nevertheless, we still know very little about the mechanisms through which 

spatial thinking supports the learning of mathematics (Mix & Cheng, 2012). Exploring such 

mechanisms is extremely valuable, because it will not only shed light on underlying cognitive 

processes that explain how spatial and mathematics activities are linked, but also help us identify 

appropriate types of spatial training and understand how and when to implement the spatial 

training for mathematics.  

So far, researchers have articulated several spatial accounts of math learning, which 

remain to be further evaluated (Hawes & Ansari, 2020). This dissertation research focuses on 

demonstrating and detailing some of these spatial accounts of math learning in the context of an 
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ancient and rich game of Go. By examining how young children engage in spatial thinking and 

math learning through Go, this study will advance our understanding of the accounts of how 

spatial thinking might support math learning. Next, I review some existing spatial accounts of 

math learning. 

Why Space and Math are Related 

 There are different spatial accounts of math learning; some concern neuro-processing and 

working memory, while others focus on mental models. I will discuss two accounts of the 

relation between spatial skills and mathematics, both of which can be illustrated through a case 

study of young children learning to play Go and could potentially advance our knowledge of the 

spatial mechanism for math learning. The two accounts are (a) the spatial numerical account, and 

(b) the spatial modelling account. 

The Spatial Numerical Account  

The mapping of numbers to space is essential in how we learn and do mathematics. There 

has been a substantial body of research showing how numbers can be represented spatially. 

However, fewer studies have examined how and why spatial representations of numbers may 

yield advantages to learning and doing mathematics.  

The number line is a good example to demonstrate how spatial numerical representations 

might support mathematics understanding. Research on the number line estimation task reveals a 

consistent and reliable correlation between the task performance and numerical reasoning 

(Schneider et al., 2018). People who are more accurate at estimating where a given number 

belongs on a horizonal line are also better at numerical and mathematical reasoning. Moreover, 

the number line has been used as an effective instructional tool and proven to enhance students’ 
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numerical reasoning in the classroom, because they lead to a more refined “mental number line” 

(Fischer et al., 2011; Ramani & Siegler, 2008; Siegler & Ramani, 2009). 

The Spatial Modelling Account 

 According to the spatial modeling account, spatial visualization is related to numerical 

reasoning because it provides a “mental blackboard” of which numerical relations and operations 

can be modeled and visualized. More specifically, spatial visualization has been posited to play a 

critical role in how one organizes, models, and ultimately conceptualizes novel mathematical 

problems (Mix et al., 2016; Uttal & Cohen, 2012).  

There appear to be few limitations on the types of mathematical relations that can be 

modeled through visualizations. It is for this reason that it can be difficult to empirically 

investigate the spatial modeling account (Hawes & Ansari, 2020). How does one reveal the 

specific type of spatial modeling that occurs in the “mind’s eye” of any given individual? Are 

some types of spatial modeling more conducive to effective mathematical reasoning than others? 

More studies are needed to show specific spatial models that could be used visualize particular 

math learning contents and explain how the spatial models might support math learning and 

problem-solving. 

It is important to note that the spatial modeling account overlaps with other theories of 

numerical and mathematical cognition. In particular, it is closely related to the grounded and 

embodied accounts of mathematical cognition, which emphasize that mathematical ideas are 

grounded in embodied interactions in the world (Lakoff & Núñez, 2000; Marghetis et al., 2014; 

Marghetis & Núñez, 2013; Nathan, 2008). Since Bruner (1966) and Piaget (1964), numerous 

studies have shown that learners develop abstract mathematical understanding from interacting 

with objects in the world. Lakoff and Núñez (2000), for example, argue that even the most 



  17 

abstract symbolic understandings are developed through conceptual metaphors which are 

grounded in bodily interactions with the world. The embodied accounts and spatial modeling are 

alike in that they both highlight the role of mental processes related to the re-enactment of 

sensorimotor experiences (e.g., mental imagery) in forming mathematical concepts. The spatial 

modeling account is a more specific instantiation of mental simulation that deals explicitly with 

spatial relations. 

The above cognitive theoretical perspectives provide some possible ways to explain why 

spatial thinking and mathematical reasoning are positively related. However, these theories lead 

to more questions about the mapping between specific types of spatial reasoning and the types of 

mathematics they can support. Next, I illustrate how the sociocultural perspectives of learning 

may contribute to our growing knowledge about the spatial mathematical relations.  

Cultural Tools as a Lens to Studying Space and Math 

The lens of cultural tools can shed light on ways of exploring different aspects of 

learning; the relation between spatial thinking and math learning is one example. Many kinds of 

learning mediated by cultural tools evoke spatial reasoning, which play a crucial role in the 

cultural activities, such as those involved in weaving, crafting, and navigation. Some of these 

highly spatial cultural tools were invented to produce various forms of numerical representations. 

These numerical representation systems serve specific practical purposes and influences how 

people of different cultures think mathematically. For example, Saxe (Saxe, 1981, 1985) showed 

that indigenous people in Oksapmin communities in a remote area in central New Guinea use a 

27-body-part system for numbering, counting, and trading activities. This body-numbering-

system can thus be considered as a cultural tool that influences how people in this community 

engage in mathematical practices. Much of the numbering and counting rely on recognizing and 
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reasoning about spatial relations represented on different bodily locations; arithmetic processes 

are carried out through bodily movements which also involve spatial reasoning.  

Because many cultural activities that are inherently spatial, the lens of cultural tools can 

potentially provide new ways to understand why and how engaging in spatial activities may 

facilitate participation in mathematical practices. The question of spatial and mathematical 

relations may be framed as a question about whether and how interacting with cultural tools may 

foster spatial ways of participation in diverse forms of mathematical practices. Furthermore, we 

could explore whether fostering spatial ways of participation might lead to changes in 

participation—new relations between the learners and the mathematical objects (e.g, learners 

may develop a new way to use a tool for problem-solving, thereby causing a shift in their roles 

and a new goal to emerge).  

The ways of viewing learning mediated by cultural tools may enrich our understanding of 

the relationship between spatial thinking and math learnings. Next, I introduce some more 

detailed examples of cultural tools that have affected how individuals do calculations or reason 

about patterns in daily lives, and how doing so influenced their numerical understanding. Some of 

these cultural tools are for numerical representations and might have influenced individuals’ 

mental representations of numbers and their arithmetic skills; the other tools engage people in 

reasoning with spatial patterns, as a means to solve daily problems that are inherently 

mathematical.   

These examples may support the spatial numerical account of math learning, by 

illustrating how cultural tools may play a role in shaping how individuals think and reason with 

numbers in their daily lives. Moreover, these examples may inspire new ways to understand the 
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spatial accounts by demonstrating how math learning can be conceptualized through the lenses 

of changes in ways of participation mediated by cultural artifacts.  

Numerical Representation Systems and Mathematical Thinking 

People from different cultures invented various forms of numerical representations. 

These numerical representation systems serve specific practical purposes and influences how 

people of different cultures think mathematically.  

The abacus is a widely used cultural tool invented in China thousands of years ago and 

still used today as an instructional tool in math classrooms. The abacus represents numbers in 

base five and base -ten systems and affords operations of addition and subtractions easily 

through manipulation, so learning to use the abacus involves representing and manipulating 

numbers from the traditional base-ten system. Stigler (1984) found that people with the motor 

skill of working with a physical abacus can transfer that skill into a mental capacity; they can 

construct a mental image of an abacus and then perform mental calculation by moving the 

“beads” on their “mental abacus” as they would on a real abacus. As a result, the study found 

that the level of difficulty (manifested through accuracy, efficiency, and common mistakes) in 

performing mental abacus is in alignment with the difficulty associated with how the problems 

are represented on a physical abacus, such as the dealing with numbers exceeding 5 at each 

column and increasing columns. This finding reveals the striking similarities between physical 

abacus and mental abacus calculation. In addition, Stigler’s (1984) comparison of mental 

calculations between Asian and American students shows clear distinctions in response times, 

accuracy and strategies used, which further suggests the important role that the abacus training 

played in shaping the way Chinese students think and do arithmetic mathematics. They also 
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highlight the importance and influence of the spatial and motoric representations of number that 

the abacus affords. 

In summary, Stigler’s 1984 study of the mental representation used by Chinese children 

in mental calculation highlights a prominent way in which culture may influence cognitive 

processes. As he summarized, “not only can culturally specific training alter the strategies a child 

brings to bear on a cognitive problem, but it also alters the content of the child’s thought. Indeed, 

perhaps the most powerful tools a culture can provide to the developing child will come in the 

form of specialized mental representations that are passed down through education” (Stigler, 

1984, p. 175). 

Spatial Patterns and Mathematical Thinking 

In many indigenous communities, spatial and mathematical practices were evident in the 

creation of patterns from weaving practices (Rogoff & Gauvain, 1984; Saxe & Gearhart, 1990). 

Likewise, Cherinda (2012) suggests that as weavers bring their own contextual knowledge to 

bear on their creative weaving, they became both inquisitive artisans and mathematical learners 

at the same time.  

Patterns are embedded in many cultural tools and practices; by engaging people with 

these tools and practices, spatial reasoning and mathematical practices are passed on. Studies 

have shown that patterning is a powerful learning tool for young children to develop early 

mathematical ideas (Lowrie et al., 2017; Rittle-Johnson et al., 2013). Pattern knowledge in 

elementary school is predictive of algebraic proficiency a year later (Lee et al., 2011) and 

instruction on repeating patterns supports knowledge of growing patterns (Papic et al., 2011), 

multiplicative thinking (Warren & Cooper, 2007) and general mathematics achievement (Kidd et 

al., 2013, 2014). In addition, abstraction tasks aimed at identifying underline structures of 
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patterns are found to be more effective for math learning than extending or duplicating tasks, 

which can be done by matching surface features of objects (Rittle-Johnson et al., 2015).  

Even the most basic symmetric pattern can promote math understanding. For example,  

Tsang et al. (2015) conducted a study that focused on using symmetry to teach integers to fourth 

graders. They found that recruiting the visual symmetry capacity of the brain, which is familiar 

to learners, can improve children’s understanding of negative numbers – a new and abstract math 

concept to them. Using symmetry blocks as a tool, the design engages learners to build on their 

existing knowledge of integers to understand negative integers. The tool also provides a powerful 

visual illustration of arithmetic problems with positive and negative numbers.  

The examples above show how we can understand math learning mediated by spatial 

reasoning through the lens of cultural tools. In particular, we saw how these cultural tools 

influence the ways people represent numbers spatially and how they reason with patterns, which 

in turn affect their math understanding.  

Next, I return to the discussion of games as a cultural tool for learning, with an emphasis 

on their potentials to engage young children in spatial reasoning activities. I review the literature 

on games and spatial thinking to shed light on potential ways in which the game of Go might 

facilitate math learning through engaging children in spatial activities.   

Spatial Affordances of Games 

Games can be considered as cultural tools that might facilitate children to engage in 

spatial activities. Many studies have shown that playing with spatial toys and engaging in spatial 

activities may support the development of spatial thinking. Some have related spatial play with 

spatial skill development (Casey et al., 2008; Jirout & Newcombe, 2015; Levine et al., 2012) and 

mathematical reasoning (Casey et al., 2015; Cheng & Mix, 2014; Verdine et al., 2014). For 
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example, Jirout and Newcombe (2015) studied a large group of 4- to 7-year-old children and 

found that those who frequently participated in block play, puzzles, and board games had higher 

spatial ability than those who participated less often.  

Block play has generated a great deal of attention in terms of its potential link to spatial 

thinking (Casey et al., 2008). There are at least two key types of spatial skills closely related to 

block building—spatial visualization and mental rotation. Structured block play, in which 

children build a model of a structure (Verdine et al., 2014), may require the analysis of a spatial 

representation and may result in more significant improvements in spatial ability than 

unstructured block play (Casey et al., 2015). The relevant spatial abilities include the ability to 

segment an object into parts and relate those parts to the overall configuration. Moreover, block 

play is found to enhance spatial language and thereby promote spatial thinking (Ferrara et al., 

2011).  

In addition to block play, board games have also been linked to improved spatial 

processing (Jirout & Newcombe, 2015; Ramani & Siegler, 2008; Siegler & Ramani, 2009). 

Board games are filled with spatial elements and may require significant involvement with 

spatial reasoning to play. Some spatially rich board games have the potential to help players 

learn mathematics, due to their spatial alignment with certain mathematical ideas. Physical 

materials that are closely aligned with the desired knowledge structures increase analogical 

transfer and therefore promotes deeper learning (Chen, 1996; DeLoache et al., 1991; Gentner & 

Markman, 1997). For example, Siegler and Ramani (2009) found that a linear board game that 

was closely aligned with the linear representation of numerical magnitudes, as opposed to a 

circular board game, resulted in greater acquisition of the desired linear representation among 

preschoolers. Laski and Siegler (2014) found that playing a 0–100 number board game with the 
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numbers organized in columns on a 10x10 grid improves kindergartners’ knowledge of 

numerical magnitudes. One of the interpretations they proposed is that 10 x 10 matrix might have 

helped children learn the base-ten number system, which, in turn, might be important for 

understanding numerical magnitude of numbers. They concluded that a game board does not 

need to be strictly linear for acquisition of a linear representation of numbers. This is a great 

example of a game that influences learners’ spatial processing and thereby influences their 

mental representations and understandings of numbers. 

Chapter 3:  Studying Space and Math in the Game of Go 

Building on prior works that strongly correlate spatial abilities with math performances 

among young children, this dissertation investigates whether and how young children in Grade 2 

and 3 engage and advance in spatial and mathematical practices through playing Go. I plan to 

specify what those practices are, examine whether they lead to math improvements, and if so, 

how spatial thinking mediates such improvements.  

One crucial feature of the Go game is that it is highly accessible to young children, 

because the rules are very simple to begin with. Yet the game becomes increasingly complex as 

players advance. I want to examine whether this game has the affordance of making high level 

spatial and mathematical thinking accessible to young children.  

My general hypothesis is that playing Go can facilitate the development of spatial and 

mathematical thinking, by grounding numerical and arithmetic concepts in spatial forms, and by 

situating advanced math practices in the context of learning and playing the game.  

This project examines a Go and math curriculum designed specifically to teach young 

children how to play the game, while fostering spatial and math skills at the same time. It differs 

from traditional Go curricula in that it highlights the alignments between learning Go and early 
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mathematics, with a particular focus on engaging learners in spatial thinking. The focus of this 

dissertation is on this curriculum and its influences on children’s mathematics learning. 

Specifically, there are three main purposes of this study: (a) to examine the range of mathematics 

that could take place in the game of Go; (b) to advance our understanding of the mechanisms 

through which spatial thinking supports math learning. 

The Emergent Goals Framework for Games and Math Learning  

My approach to analyses is influenced by prior works that have closely examined 

artifacts, tools, and practices in various cultures that shaped the ways people think 

mathematically. To better understand boardgames as a cultural tool and make sense of its 

affordances for spatial thinking and mathematics learning, I adopted an emergent-goals 

framework that many have used to analyze mathematics learning in boardgames from a 

sociocultural perspective. The framework was developed by Saxe and colleagues in 1996 from 

analyses of everyday mathematics in several indigenous communities. The framework provides 

three principal constructs for analyzing the development of novel mathematical understanding 

from cultural practices: (a) the analyses of goals that emerge from the situations and shaped by 

the players, (b) the forms, which include ways of representing mathematical information that 

may yield different approaches to solving problems, like the indigenous number systems, and (c) 

the functions such as counting and arithmetic which utilize the forms to serve the emergent goals. 

Saxe et. al. (1996) suggested that the relation between forms and functions is reciprocal in 

nature; learners adjust their use of forms to create novel functions in order to realize goals that 

emerge in context. The reciprocal relation supports the emergence of more advanced 

mathematical thinking. Evidence of learning is found when learners repurpose or appropriate 

existing cultural forms to serve new functions in order to solve emerge problems. Next, I will 
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illustrate how this framework has been used in a few prior studies to examine the affordances of 

games for learning (Guberman & Saxe, 2000; Nasir, 2005). 

The Treasure Hunt Game 

Guberman and Saxe (2000) used the emergent goals framework to examine the learning 

that occurs in the case of treasure hunt games. The study illustrated the ways in which children’ 

roles in the game and mathematical goals are connected. They found that different thematic roles 

emerged in the children’s play. These thematic roles give rise to the formation of particular 

mathematical goals, and these goals are distributed in the game situations. This study indicates 

that games may support learning by engaging children in various ways of participation in 

mathematical practices; as the games promote changes in their roles, the players also generated 

more and more complex mathematical goals that contributed to their learning.  

This study utilized the emergent goals framework to depict how young children take on 

increasingly complex roles and develop new mathematical goals during the game. Thus, this 

study demonstrates that by studying learning as participation, we can learn a lot about how 

young children learn in a game setting. This study shed light on how we can understand math 

learning in the Go context, by examining whether and how children develop new mathematical 

goals in the game situations.  

The Game of Dominoes 

Nasir's (2005) study of children learning the game of dominoes provides both an effective 

illustration of Saxe's framework as well as another important example of the value of games for 

learning. She explored how players draw on the cultural resources in the game to actively 

structure plays in dominoes and how the nature of play strategies in the game shifts 
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developmentally; she also examined the relation between the individual and the sociocultural 

setting through the lens of form–function shifts.  

She identified the primary forms and functions that players at different age levels develop 

and utilize during their game plays of dominoes. She illustrated that players at elementary, high 

school, and adult levels utilized different forms and functions to meet growingly complex goals 

in the game play, which were established as the players integrated more prior knowledge into the 

play and developed increasing agency to restructure the game environment and define new 

problems and roles. She also demonstrates how people engage with sophisticated forms of 

addition, subtraction, and multiplication, in the context of help-seeking and help-offering around 

strategies and goals.  

This study highlights many “form functional shifts” in dominos playing that occur across 

players of different ages and levels. As players become older and more advanced, they are able 

use different components of the game, such as game pieces, players’ hands, and knowledge of 

certain game compositions, to serve particular mathematical functions, and therefore enabled to 

achieve more advanced game goals. The game study showcased how examining the “form 

functional shifts” may provide deep insights into the progression of math understanding as 

players become more advanced. The study also highlights how spatial activities mediate such 

learning progressions. Thus, this study shed light on how we can understand the spatial 

mathematical relations in the game of Go by depicting how the spatial patterns of Go might be 

utilized for mathematical functions and how the use of spatial patterns might evolve as players 

develop more complex game goals.  
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Chapter 4: Go as a Cultural Tool: Its Rules, Characteristics, and Affordances for Learning  

In this chapter, I introduce the fundamentals of Go, including its rules and some most 

important patterns, and the process of learning to play Go. The game is played on a board with a 

19x19 grid, although novice players often use a smaller board to begin with. The basic playing 

pieces in Go are called stones (although many are now made of plastic). Each stone has the same 

value and obeys the same rules. There are two distinctly colored sets of stone; the colors are 

usually black and white. At the beginning of the game, players determine who will play the white 

and who will play the black stones. On each turn, the player places a stone on an intersection of 

the board. Stones of the same color that are connected by the grid of the board form a group. The 

groups of connected stones define the territories of each player. The ultimate goal of the game is 

to occupy more territories than one’s opponent. That is, the player who takes over more than 

50% of the intersections of the board (i.e., 181 out of 361) wins the game.  

The Duality of Go: Simple vs. Complex  

Go is perhaps one of the most fascinating board games ever created because of its 

combination of simplicity and complexity. Go is very simple to begin with. Since all the stones 

are the same, they can be placed freely on any vacant and unbounded intersections on a Go 

board, and they do not move around once they are placed; there are no varieties of stones with 

different rules for players to remember. Therefore, Go has a low entry point—even very young 

children can learn to play this game.  

At the same time, the minimal restrictions and the simplicity of the rules lead to an 

enormous degree of variation, making it the most challenging game for human beings and 

computers alike. One of the best ways to understand the complexity of Go is to compare it with 

its western counterpart—chess, which is also a popular traditional board game played with black 
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and white pieces on a grid. In chess, each stone has its designated rules to move, and these rules 

greatly constrain the number of possible moves. A standard Go board consists of 19 horizontal 

lines and 19 vertical lines, resulting in 361 intersections. The number of possible positions is in 

the order of 10¹⁷⁰, much more than the number of atoms in the whole universe, 10⁸⁰. Therefore, 

until a few years ago, mathematicians, experienced players and programmers agreed that it was 

extremely difficult to write software that would satisfactorily play Go: Their prediction was that 

it would take another decade to emulate the “skill” of the best chess programs now able to beat 

even world champions.  

However, they were wrong. A new programming approach led to the defeat of the World 

Champion in 2015. How can the computer suddenly fill the time gap that was predicted at the 

time to still be a decade wide? Put simply, the computer was programmed to play more like a 

human—to look for, recognize, and exploit patterns of stones that alert the player to 

opportunities and risks. The critical role of patterns in Go is discussed in the next section. 

The Critical Role of Patterns 

The game of Go presents an abstract landscape in which it is crucial to recognize and 

build patterns. The secrete to becoming a skilled Go player is to recognize and construct patterns 

that convey advantages to the player or the opponent; that is, the patterns may serve to expand 

one’s territory or to destruct the opponent’s territory. 

Patterns fall into two broad categories: shapes and actions (See Figure 4.1). The first 

category includes labels for shapes and familiar objects in the world that serve meaningful 

functions. These labels are used to define certain configurations of stones to help the player 

recognize potential advantages for themselves or for the opponent. For example, as shown in the 
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first row of Figure 4.1, the “eye” shape encloses a protected space; the “tiger’s mouth” creates a 

potential to “eat” the opponent’s stone.  

The second category describes actions that can be performed with a set of stones, which 

convey strategic actions to attack or defense. For example, the second row in Figure 4.1 enlisted 

examples of actions (“connect” and “cut”) that the player takes either to connect two groups of 

stones to enlarge and secure their territories or to prevent the opponent from doing so. 

Figure 4.1 

Basic Go Patterns 

 

Note. The first row are examples of patterns labeled as familiar objects to describe advantageous 

stone configurations. The second row exemplifies moves labeled as strategic actions, such as 

those taken to connect their own or to separate their opponent’s stones. Adapted from “Cover 

60% Math Contents in K-3 with Just One Game—Weiqi/Go”, by X.Wu, & X. Guo, 2018,  

at conference workshop, Metropolitan Mathematics Club of Chicago, Lisle, IL. 
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The Basic Patterns 

Having learned the critical role of patterns in the game of Go, we now turn to the most 

fundamental concepts and patterns in the game of Go. As a reminder, the ultimate goal of the 

game is to occupy more territories than one’s opponent. But to secure their territories, players 

must make sure that their own groups of stones cannot be destroyed by their opponent. Thus, Go 

always involves a combination of thinking offensively and defensively. A group of stones can be 

destroyed and taken away by the opponent if the group of stones are completely surrounded by 

the opponent’s stones. Under such circumstances, the surrounded group of stones are “dead”. 

Therefore, the goal of the Go game can be described as to keep more of one’s stones “alive” and 

to take away the “life” of the opponent’s stones, by surrounding them with your stones. To 

understand the concept of “life and death” in the game of Go, players must first understand the 

idea of Qi, and consecutively the basic pattern of the “eye” which is derived from the idea of Qi.  

Qi. The most fundamental idea in Go is “liberty” or “Qi” (pronounced “Chee”). “Qi” in 

Chinese means air, the breath of life, or energy. Just as the air surrounds all living beings, Qi 

metaphorically describes all the unoccupied intersections that are connected to a stone or a chain 

of stones, which serve to keep them alive. For example, one single stone placed at the center of a 

board has four units of Qi; one single stone placed on a border line has three units of Qi; and a 

stone at a corner has two units (see Figure 4.2). This concept is illustrated below: 

Figure 4.2  

The Qi of a Stone on Different Locations of the Board 
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Note. The three white circles represent the placement of stones on three different locations of the 

board (inside, corner, side). The “x” marks the locations of Qi that are connected with the stones. 

Based on their locations, the stone on top has more units of Qi than the stones on the boarder and 

at the corner. Reprinted from An Introduction to Go, by British Go Association, 

(https://www.britgo.org/intro/intro2.html).  

The players must attend to the Qi of their own stones and the opponent’s stones at any 

moment, because the presence of Qi determines whether a group of stones is alive or dead. If a 

stone (or a chain of connected stones) is completely surrounded by the opponent’s stones, then it 

has no Qi left and therefore it is dead. The opponent captures the stones and take them away. 

Metaphorically, the stones with no air left are suffocated and would consequently die. In other 

words, the function of Qi is to keep the stones alive.  

The “Eye” Shape. The “eye” shape is the most basic shape of Go; it is derived directly 

from the concept of Qi and is usually formed through the process of occupying the Qi of the 

opponent’s stones. Figure 4.3A and 4.3B illustrate the process of forming an “eye” shape: The 

black takes over the Qi of the white stones, resulting in the removal of the white; now, the empty 

point surrounded by the black stones becomes one “eye” for the black. 

Figure 4.3  

The Creation of the “Eye” 

 

A         B 

https://www.britgo.org/intro/intro2.html
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Note. Adapted from An Introduction to Go, by British Go Association, 

(https://www.britgo.org/intro/intro2.html). 

 Figure 4.3A shows how each white stone has only one unit of Qi left. If black plays at 

position b, the white stone has no remaining Qi and therefore is captured (shown by the blue 

arrow). The empty point surrounded by the four black stones becomes an “eye” for the black, as 

shown in Figure 4.3B. If black plays at c and d, those white stones will also be dead and taken 

away. The resulting two empty points will become eyes for the black—an eye at the border line 

surrounded by three black stones and an eye created by two black stones at a corner.  

Let us call this player who formed an “eye” shape player A. Usually, the other player, 

player B, can no longer place a stone in this eye of player A, because there is no “Qi” for player 

B’s stone, being completely surrounded by the opposite color; if player B places a stone inside 

that “eye” shape, it will be immediately captured by player A.  

In the process of exploring the “eye” shape and it functions, the players may encounter 

one important exception. If the empty point within this eye is the last Qi left for this chain of 

stones of player A, then player B can fill in that eye and capture all of player A’s stones in that 

chain (Figure 4.4). That is to say, a group of stones that has only one eye left and no other chance 

to make more eyes is dead because it has only one last Qi or breath of life left. If the opponent 

fills in that eye, the group will be completely surrounded and the last Qi or breath of life is taken. 

In that case, all the stones in that group will be captured and removed from the board. 

 

 

 

 

https://www.britgo.org/intro/intro2.html
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Figure 4.4   

The One “Eye” Exception 

 

Note. If white plays at i and j, all the blacks will be captured. Both black groups are dead because 

they each only has only one eye. Reprinted from An Introduction to Go, by British Go 

Association, (https://www.britgo.org/intro/intro2.html).  

Double Eyes: The Safety Structure. We have learned that a group with only one eye is 

not guaranteed to survive. The other player can surround the group and capture all the stones as 

shown in Figure 4.4. However, if a group of stones are connected to two or more eyes, it cannot 

be dead because the opponent cannot fill the eyes all at once with only one stone. In that case, 

this group is “alive” (Figure 4.5). We call it a live group.  

Figure 4.5  

Double Eyes: The Safety Structure 

 

Note. Black has two eyes (centered at m and n) and therefore is alive forever. White cannot play 

at both m and n to take away all Qis of black. Playing at either m or n is a suicide move for white, 

https://www.britgo.org/intro/intro2.html
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because there is no Qi left for white, and therefore it cannot kill the black. Reprinted from An 

Introduction to Go, by British Go Association, (https://www.britgo.org/intro/intro2.html). 

The double-eyes structure is one of the most critical in the game of Go. It lies at the 

center of any Go curriculums for beginners. However, the significance of this structure does not 

need to be directly imposed on the learners. Instead, I will use the emergent goals framework to 

illustrate how the double eye safety structure may be derived from learning the basic concepts of 

Qi and the “eye” shape. The derivation can be driven by the player’s game goals which naturally 

emerge and advance as they learn more patterns and strategies. Learners may be guided to 

explore a sequence of problem scenarios (as illustrated in Figure 4.3, 4.4, and 4.5) which will 

lead them to the discovery of this significant structure.  

Learning Processes and Affordances 

What learning processes are involved in people exploring the patterns of Go? From a 

sociocultural perspective, the processes that leads to the learning of patterns may involve rich 

interactions between learners, the emergence of new patterns, and appropriation of a new tool to 

address new problems and goals, etc. The emergent-goals framework developed by Saxe (1996) 

provides a systematic way to understand how players discover and learn new patterns as they 

learn to play the game.  

There are three critical elements in this framework: the forms, which correspond to the 

pattern learning in Go; the functions, which correspond to the meaning entailed by those patterns 

or the proposes they serve; and the goals that emerge during the game, which are set by the 

players and can be increasingly complex as they learn more forms and functions. Figure 4.6 

shows how players learn some of the most basic patterns of Go in light of this framework. 

 

https://www.britgo.org/intro/intro2.html
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Figure 4.6  

The Learning of Basic Go Patterns Explained by the Emergent Goals Framework 

 

Note. The basic forms of Go, including Qi and the eye shape, serve important game functions and 

give rise to the double eyes shape. The arrows explain the reciprocal relations between forms, 

functions, and goals. For example, the discovery of the one eye limitation creates a shift in the 

game goals and thereby leads to a new form—the double eyes shape, which serves as the ultimate 

safety structure. 

Qi is the first form players encounter in their learning process. Upon learning the function 

of Qi, which is to keep one’s stones alive, a novice player (player A) may generate a goal to 

destroy the Qi of the opponent’s (player B) Qi by placing stones around player B’s stone. 

Accomplishing this goal may result in the formation of an “eye” shape for player A. Player A 

may also learn that this newly emerged shape serves as a means to occupy spaces on the board. 

Consequently, new goals emerge as Player A comes to identify these new forms and learn their 
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functions and implications. For example, Player A may decide to create many “eye” shapes 

while trying to destroy Player B’s Qi.  

In the process of exploring the “eye” shape and it functions, the players may encounter 

one important exception. The situation illustrated in Figure 4.4 shows that a group of stones 

cannot ultimately survive if it has only one “eye”. Therefore, learning the limitation of the 

functions of the “eye” shape may cause a new goal to emerge—players may begin to explore 

whether there is an ultimate safety structure that sustain the live of a group of stones, so that the 

stones may “survive forever”. This leads to the introduction of the “double eyes” shape, which is 

the next critical form of Go derived from the basics of Qi and Eye.  

Having learned this new form and its function, the novice player may now develop a new 

game goal: to construct the double eye shapes and connect each group of stones to at least two 

eyes to keep those stones alive; they may also set a goal of keeping the opponent from creating 

double eye shapes.  

The Affordances of Patterns for Learning to Reason. Using the derivation of the 

double eye shape as an example, I have shown one of the most important characteristics of this 

game; a few basic forms give rise to many emergent patterns with increasingly complex 

functions to be discovered. I suggest that this characteristic may potentially engage learners to 

participate in a series of reasoning processes, like the process of deriving the double eye shape 

from Qi and Eye. Such reasoning processes may be similar to the reasoning processes of learning 

many mathematics concepts. In fact, many mathematicians consider the final position of a game 

as a mathematical conjecture and the play as the logical steps necessary to prove that conjecture 

(Bo, 2019). I will further examine the reasoning processes involved in learning and applying Go 

patterns and discuss its links to mathematical reasoning in Chapter 6.  
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The Affordances of Patterns for Spatial Thinking. I suggest that that one crucial 

affordance of Go is making visual patterns the means to represent and solve problems, and thus 

making the problem-solving or sense-making activities accessible for young children. For 

example, the process of learning the double eye shape as the safety structure demonstrates the 

advantage of reasoning in terms of spatial patterns. In contrast, the learning could be more 

difficult if the problems and the reasoning process were represented in terms of abstract symbols. 

Moreover, I suggest that the game of Go share many similarities with games that have been 

previously shown to foster spatial abilities. For example, playing Go requires the same spatial 

ability as in block play (Casey et al., 2008; 2015) to recognize parts (e.g., the eye shape) from a 

whole and to put together purposeful spatial configurations (e.g., connect a group of stones to a 

safety structure) and therefore foster spatial abilities. Moreover, learning the moves of Go and 

their labels (e.g., “connect” and “cut” as shown in Figure 4.1) creates a learning environment 

infused with spatial language (Ferrara, et al., 2011) and opportunities to explore various spatial 

relations, which may improve children’s spatial skills. For example, while “connect” refers an 

action to construct a spatial relationship relative to oneself, “cut” refers an action to construct a 

spatial relationship relative to the opponent. In some cases, the names of the patterns are also 

relative to the positions on the board – regarding adjacency to the boarders. Thus, one can see 

that recognizing such patterns is not a simple pattern recognition task. Instead, it engages 

learners in rather complex spatial reasoning practices at multiple dimensions, by evaluating its 

relationship to oneself, to the opponent, and to the board.  

Higher Level Game Strategies and Reasoning Processes 

Because the ultimate goal of Go is to occupy more territories than one’s opponent, Go 

players do not simply focus on attacking and defending any individual stones. Instead, the key to 
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the game is achieving a balance between enlarging/securing one’s own territories and 

undermining the opponent’s territories. What this means for the game strategy is that the players 

need to evaluate the efficiency of each move; that is, before they decide where to play, they 

might consider multiple options and determine which option may lead to the best outcome for 

winning (i.e., occupying more than 50% area of the board). Sometimes, the benefit of a move to 

take the lead in one area might outweigh the urgency to defend an immediate attack in another 

area. Under such circumstances, players might choose to “sacrifice” the group of stones under 

attack, and instead play a more advantageous move for controlling a larger space on the board. In 

addition to evaluating a move in terms of its efficiency, players also need to turn to the 

opponent’s perspectives to predict their best next moves and play a few turns ahead in their 

imagination before physically playing a move. The intricate reasoning processes illustrated 

above are referred to as “reading” in professional Go practices.  

Although the in-depth “reading” and analyses are common practices for advanced 

players, they are quite challenging for novice players, especially young children. Nevertheless, 

learning these higher-level reasoning processes not impossible with facilitation. In fact, we 

frequently see these reasoning processes being externalized and rehearsed in Go classrooms with 

the assistance of the teacher. The teacher of Go may play an important role guiding the students 

to engage in reasoning practices that are difficult for students alone but can be achieved with 

some guidance. These guidelines may involve externalizing the reasoning processes and inviting 

students to take part in those processes, such as exploring various move options by playing a few 

successive moves on a physical Go board to reveal and evaluate their outcomes.  

 

 



  39 

Score-counting: Another Essential Component of the Game 

In addition to the endless emergent patterns that could promote reasoning, another critical 

feature of Go ties the game directly to both spatial and mathematical practices—the counting of 

spaces. This critical feature concerns the ultimate game goal: to occupy more spaces on the board 

than the opponent. Unlike chess and many other board games which come to a clear-cut ending 

when an action is completed, such as eliminating a certain piece or reaching the finish line, in the 

game of Go however, the counting of each player’s occupied spaces is used to determine who 

wins, who is leading during a game, and when to resign.  

The counting is critical because players’ scores are often incredibly close; at competitive 

levels, the winners sometimes lead by just one or two points on a 19x19 board, which makes 

battling over a small area exciting. Moreover, experienced players not only count their occupied 

spaces at the end of games but also mentally keep track of their emerging territories during the 

game and adjust their game strategies accordingly, such as being more aggressive or defensive at 

different phases of the game.   

Go players’ final scores consist of the total number of live stones they constructed on the 

board plus the empty points in their territories, within which their opponents have zero chance to 

construct their own spaces; the steps to fill those empty spaces are thus eliminated but treated as 

if they were filled. Since Go boards typically contains hundreds of spaces to be occupied (the 

standard 19x19 board contains 361 spaces), the final scores need to be counted strategically and 

efficiently at the end of each game. Go players themselves are responsible for rearranging their 

stones in certain ways so that both players as well as the observers can all quickly recognize and 

agree upon the finals scores of each player.  
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To count the scores efficiently, players have developed various ways to flexibly utilize 

features of the board, like the grid, and rearrange stones into certain Go configurations that 

represent numbers in group of 10s, 20s, etc., to facilitate counting (see Figure 4.7). Panel A 

shows the board at the end of a game. Panel B shows the board after reorganization, with a 

pattern that has been optimized to help the players quickly determine who has more stones. The 

reorganization resulted in square-shaped territories of 10, 20, and 30, which was much easier to 

count than a less structured pattern would be. In this case, black and white both have total 

square-shaped territories of 50; therefore, in counting, the two players can cancel out 50 stones. 

Afterwards, black has remaining score of 3, and white has 1 left. Therefore, black won by 2 on 

the board. 

Figure 4.7 

An Example of Reorganization and Final Score-Counting 

               →    

                                  A                                                                   B 

Note. An end-of-game Go board before and after reorganization. Adapted from Territory 

Rearrange Competition, by X. Guo, 2021, (https://www.youtube.com/watch?v=Knoj1xQuk7I). 



  41 

Therefore, this frequently needed Go activity engages players in spatial and mathematical 

practices constantly. For professional players, score counting can be done skillfully in a matter of 

seconds. Nevertheless, mastering such skills takes time and practice, and has potentials to 

cultivate young children’s spatial and mathematics skills. To study such potentials, I will explore 

how young children develop spatial and mathematics skills through engaging in score-counting 

activities in Chapter 7.  

Summary  

 In this chapter, I introduced two of the most unique characteristics of Go—1) endless 

patterns which requires active reasoning to learn and apply; 2) score-counting which play a role 

throughout the game and require skillful spatial and mathematical practices. The simple rules of 

Go not also provide a low entry point for beginners but also give rise to numerous patterns and 

endless possibilities that promote complex reasoning. My examinations of the rules, 

characteristics, and the process of learning Go patterns shed light on several affordances for 

developing mathematical reasoning skills and spatial skills. In addition, score-counting also 

plays an important role in Go. The game requires efficient score-counting strategies which has 

potential to cultivate spatial and mathematics skills. These insights motivate my approaches to 

studying the game of Go as a tool for learning which I will elaborate in the next chapter.  

Chapter 5: Overview of the Dissertation Research 

  In this dissertation, I consider the game of Go as a cultural tool to examine its potential to 

engage children in spatial reasoning and influence the way children learn mathematics. I view 

mathematical practices in the game of Go as situated in activities in which learners develop 

mathematical understanding by appropriating Go pieces to create meaningful patterns, to solve 

emerging problems, to take on new roles in the learning and playing, and through interacting 
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with other players. In addition, mastering the game requires constantly playing with others, 

reflecting and discussing with a community, solving dynamic problems, discovering new 

meanings from Go patterns, and repurposing the Go patterns to address new goals. I will use the 

emergent goals framework to capture these rich interactions with other participants, artifacts 

(e.g., Go board and Go pieces that constituent meaningful patterns), and norms (e.g., goals, 

strategies, and reasoning processes involved in learning and applying Go patterns).  

Research Foci 

  To understand how Go may engage young children in spatial and mathematical practices, 

I will examine two important aspects in the teaching and learning of Go: 1) the reasoning process 

in learning Go patterns; 2) the end of the game score-counting process. Understanding these two 

important aspects of Go may contribute to our knowledge of spatial thinking and math 

learning—the mechanism of which spatial thinking facilitate math learning.  

  First of all, studying how the game of Go engage children in reasoning with patterns 

might contribute to the spatial modeling account of math learning (Hawes & Ansari, 2020). 

Reasoning with patterns is an important part of mathematics at the elementary level. While there 

are other games, like chess, that engage children in reasoning with patterns, Go might offer more 

opportunities for beginners, especially young children, to reason with patterns, because Go has 

minimal rules and all Go pieces are the same, As I introduced in Chapter 4, a few basic rules 

give rise to countless patterns that entice players to explore over a lifetime. I used the derivation 

of the “double eyes” safety structure from the basic concept of “Qi” as an example to illustrate 

the importance of reasoning involved in the learning and application of patterns. By examining 

how young children reason with patterns as they learn Go, I will identify specific ways in which 

the reasoning processes can be modeled spatially, such as through manipulating the Go pieces, 
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and identify any potential features of the spatial models which could potentially provide an 

explanation for why modeling the reasoning process spatially might facilitate math learning.   

Second, also introduced in Chapter 4 was another essential component of the game—

score-counting. These activities are not only mathematical, but also very spatial. This is a good 

example that support the spatial representation of numbers’ account (Hawes & Ansari, 2020), as 

the game introduces a variety of spatial representations of numbers as tools and promotes 

creative and efficient spatial solutions to score-counting problems. Therefore, examining how 

students arrange their stones for final score counting and how those practices change over the 

course are critical for understanding the ways in which learning the game of Go may foster 

spatial and mathematical practices for young children.  

The Go and Math Curriculum 

The Go and Math curriculum (Wu & Guo, 2018) that I investigated incorporated a large 

portion of the Common Core math standards (CCSS, 2010) in its design to facilitate children to 

think mathematically as they work on counting their scores. It is designed and implemented by 

Xinming Guo, a professional mathematics and Go instructor. He won the teacher-of-the-year 

award from the American Go Association in 2015 for his development of this innovative game-

based Go and Math curriculum.  

The curriculum involves activities with Go that align with many common core math 

standards at the elementary level, which include counting and understanding numbers, arithmetic 

operations, and algebraic thinking, etc. I will discuss the curriculum more specifically in Chapter 

7. I will only be focusing on the alignment ats the Grade 2 level for the purpose of this study. 

Because this is a straightforward counting task that would be familiar to most children of this age 

(regardless of their knowledge of Go), and because the counting strategies largely overlap with 
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the mathematics being learned at Grade 2, I can investigate whether and how children’s 

mathematics skills associated with counting may be affected by their participation in Go.  

Site Information and Participants 

My research has taken place at three sites across the greater Chicago area. In all cases, the 

preliminary research has been a partnership with Xinming Guo. He is the teacher, following his 

Math and Go curriculum, and I am in the class as an observer, researcher, and assistant to Guo. 

The total number of participants across the three sites is 57. Participants are students 

either in Grade 2 or 3, who enrolled in the Go and Math course in one of the sites listed below. 

The age range of students is between 7 and 9 years old.  

Site A 

The Go and Math curriculum was offered as a Saturday enrichment program in Fall 2016. 

The students in Grade 2-3 enrolled in an eight-week series of Go game activities. There were 6 

participants at this site.  

Site B 

Site B is an elementary school. All four Grade 2 math teachers had their classes 

participate in the study during 2017 Fall. There were 44 participants at this site. Approximately 

10 students from each classroom attended the session. We coordinated with the teachers to form 

two combined classrooms, each consisting of two classes, around 20 participants. Mr. Guo 

taught once per week at each combined classroom, for 10 weeks. Each class session lasted for 

one hour.  

Site C 

A Go and Math course was offered at a weekend cultural enrichment program which 

features the Chinese language and arts, Go, and other aspects of Chinese culture. All the 7 
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students who enrolled in the course participated in the study. The Go and Math course was aimed 

at Grade 2 and 3 students who are interested in learning the game of Go while practicing math at 

the same time. The course took place every Sunday for one hour in 2017 Fall, for 12 weeks. 

Study Design 

The study consists of three phases: pre-assessment, curriculum, and post-assessment.  

Figure 5.1 is an illustration of the content of the three phases.  

Figure 5.1  

Study Design and Content of Each Research Phase 

 

The pretest and the posttest on spatial abilities were administered to assess the influences 

of spatial ability on math outcomes and to determine whether spatial skills changed over the 

course of the class.  

Pre-Assessment 

Students individually took a brief test on paper during the second week of instructions. 

The test included spatial thinking items as well as algebra problems. The spatial test included a 

classic 2D mental rotation task (PMA; Thurstone & Thurstone, 1962, 2002) and the Corsi 

Blocks—a traditional spatial working memory test (Corsi,1972; Kessels, et.al., 2000). The 2D 
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MRT items were retrieved from the Spatial Intelligence and Learning center website and 

uploaded as supplementary files (refer to “Rotation Task Form B and BA”). The Corsi blocks 

were projected on a large screen in the classroom when the students recorded the order of 

highlighted blocks with pen and paper. The test items were downloaded from 

http://www.psytoolkit.org/experiment-library/corsi.html.  

Data Collection in the Classroom 

Throughout the course, I took notes in an observation book. During each class, each 

student had opportunities to play the Go game with a partner. I took pictures or video recordings 

during each class. In addition, I also recorded Mr. Guo’s teaching each week.  These recordings 

included interactive learning moments, such as students answering questions, and students 

coming up to interact with Mr. Guo’s Go demo board.  

Post-Assessment 

During the last class, I gave the same spatial tests to students as in the pre-test. I also gave 

a math problem solving worksheet with transfer problems mostly concerned with pattern 

recognition. In addition, due to the smaller class size at site A, I was able to ask the students 

there to participate in an exit interview. I assigned students into two groups of three. I asked each 

group a few questions concerning whether and how they see math in the game of Go. Each 

interview took 6-8 minutes to complete. The interviews were audio recorded. 

Chapter 6: Exploring Spatial and Mathematical Practices in Learning to Play Go 

In this chapter, I analyzed a Go and Math curriculum for Grade 3 students which was 

implemented at a weekend enrichment program to shed light on how Go may engage young 

children in spatial and mathematical reasoning practices. Because this was a small group (only 5 

students) and because each session lasted for two hours, a significant amount of time was 

http://www.psytoolkit.org/experiment-library/corsi.html


  47 

dedicated to reasoning about patterns, which took place in the rich interactions between the 

teacher and the individual students. This site therefore became an ideal setting to investigate the 

kinds of reasoning involved in the teaching and learning of Go patterns and the spatial features of 

Go that might facilitate those reasoning processes. My hypothesis is that the reasoning processes 

can be externalized by manipulating spatial patterns, and thereby making the reasoning processes 

accessible to young children.   

To explore what kinds of reasoning are involved in teaching and learning of Go, I drew 

on the mathematical reasoning literature to identify practices emerging from the teaching and 

learning of Go which are similar to reasoning processes that occur in mathematical practices and 

learning. To examine whether and how the spatial features of Go might facilitate the reasoning 

processes, I utilized the emergent goals framework, which has been used to study other 

boardgames like dominoes as cultural tools that foster the learning of mathematics. This 

framework allowed me to identify the use of spatial forms in the game of Go that served as an 

important means to structure the reasoning activities involved in the teaching and learning of Go. 

The spatial forms refer to the “shapes” (meaningful structures composed of a few Go pieces, as 

exemplified in Chapter 4) the teacher set up on the demo-board, in which new problems were 

embedded.  

To understand whether and how spatial forms might facilitate the reasoning processes, I 

examined the following questions: What and how were spatial forms used in the teaching of Go? 

What were the mathematical reasoning practices being facilitated by those spatial forms? What 

did the students learn from interacting with the spatial forms? To address these questions, my 
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analyses consist of three parts: the teacher’s acts during teaching and learning, student-teacher 

interactions during teaching and learning, and students’ interactions during cooperative play. 

Method 

Site and Participants 

This course was implemented in the northern suburbs of Chicago.  It was offered as part 

of a gifted children’s program, which was operated by a local university and conducted on the 

weekends. Only children who were admitted to the gifted program according to its selection 

criteria were eligible to take this course. The course was advertised as a game-based curriculum 

for third grade students to improve their mathematics skills through playing a board game. Five 

third-grade students, three males and two females, enrolled in this enrichment course. All the 

students participated in the study. 

Implementation 

The Go and Math curriculum consisted of eight weeks of classes. The class took place 

once every Saturday. Each class lasted for two hours. The two hours of class consisted of a 

combination of interactive instructions, game play, and other related activities. Please refer to the 

Appendix I for a weekly description of the curriculum. 

Interactive Instruction. In each class, the teacher taught some new game strategies or 

meaningful Go structures. Most of instructions were interactive. The teacher took a learner-

centered approach to his teaching; the content and pace of teaching was partially influenced by 

the students’ responses, such as their questions and the levels of capabilities they demonstrated. 

The interactive instructions were conducted on a 11x11 demonstration board most of the time, 

and on a computer occasionally. The demonstration board held magnetic stones. Thus, the 
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teacher was able to hold the board vertically facing the students, and flexibly demonstrate the 

stone structures/moves. The computer had the Go playing program installed and had its screen 

projected in the classroom so that all the students could see the Go program. Both platforms were 

very inviting for the students to interact with during instructions; most students frequently and 

spontaneously went up to the demo-board or the computer to demonstrate a point being made or 

to test out their thoughts in response to the teacher’s questions during instructions.  

Number-Telling Activity. In 4 out of the 8 classes, the teacher prepared a series of 

number-telling activities for the students. The number-telling activities asked the students to 

quickly recognize the total number of black or white stones on a Go board shown on the 

computer screen. Each screenshot of the Go board was presented for only a few seconds, so that 

the students had to use more efficient strategies than counting by ones or twos. This activity was 

intended for students to practice number-telling by remembering and recognizing certain shapes 

associated with numbers, taking advantage of arrays, or mentally adapting shapes to make arrays, 

etc. Although this highly visuospatial and mathematical activity was not directly related to 

learning Go strategies, it was meant to cultivate a skill frequently used by Go players to estimate 

who was winning during a game, and to determine each player’s final score at the end of games.  

Game Play. Playing the game of Go took multiple forms in this course. Sometimes, the 

students played in pairs as individuals against each other. Sometimes, the students played their 

individual games against the teacher, as the teacher took turns to play against each of them. At 

other times, the students formed a team of two or three to play together against the computer or 

the teacher; I refer to this kind of play in teams as cooperative play.  
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Other Related Activities. The course also included a series of other related activities 

such as watching a Go themed anime, playing a trivia game, and a picture-based reasoning game 

invented by the teacher.  

Data Collection 

Data come from video recordings of each Go class. I set up a camera facing the teacher 

and the front of the classroom during instructions and other teacher-led activities, to capture the 

interactions between the teacher and the students around the demo-board and on the computer. I 

moved about in the classroom and video recorded a game from each pair/group of students.  

Data Analyses  

Data Selection. I selected the episodes of interactive instructions and cooperative play 

for in-depth analyses. These episodes contain rich interactions between the teacher and the 

students around Go patterns and reveal the reasoning processes involved in learning and 

applying Go patterns. The number-telling activities and other activities had other focuses and 

were therefore eliminated from the analyses. 

Interactive Instructions. Interactive instructions occurred in weeks 3, 5, 6, and 7. The 

first 2 weeks were only observed and not video recorded because a 2-week procedure was 

required to obtain consent for video recording. Minimum interactive instructions occurred during 

these initial two weeks as the content was mainly introductory (e.g., the “Qi” concept and the 

basic rules). Week 4 was not included as it was led by me instead of the teacher. Week 8 was the 

last week of the course and the parents’ visiting week. No new content was taught that week and 

much time was given for the children to teach their parents. During week 3, 5, 6, and 7, I 

recorded and analyzed the interactive instructions, which focused on learning new moves, 
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strategies, or meaningful stone configurations. The episodes often began by the teacher saying, 

“today we will learn a new structure”, or “let’s look at this new situation”, etc. The episodes then 

were followed by a series of questions proposed by the teacher, and students often came up to the 

demo-board or computer to demonstrate their thoughts. The episodes usually ended when the 

teacher said “now, it’s time to play the game”, as he put the demo-board away and transitioned to 

Go playing sessions. These episodes lasted between 20 – 40 minutes each week.  

Cooperative Play. Although Go playing in this course took multiple forms (e.g., between 

individuals, individuals against the teacher, etc.), I only selected the cooperative play episodes in 

which two or three students formed a team to play against the computer or the teacher for 

analyses. In these situations, the students spontaneously communicated their thoughts aloud and 

explored multiple choices of moves before reaching a consensus on the next move. In the 

teacher’s turns, he also verbalized his strategies and occasionally guided the students by 

evaluating a move for them or giving a hint. Therefore, I was able to capture rich data from these 

episodes about the reasoning processes that led to learning.  

Transcription. I first transcribed the selected episodes of interactive instructions and 

cooperative play. I used the turn of talk as the unit of analysis. A code was assigned to each turn 

of talk. A turn of talk started when a student or the teacher began to talk and ends when they 

finished the talk or when the talk was taken over by another student. Some turns of talk were 

accompanied by an action on the Go board; in such circumstances, I would write a line of 

description about the action and the context; the descriptions were placed in parenthesis after the 

talk. In some other cases, a student would come to the board to make a move without saying 
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anything. Under such circumstances, a line of description about what the student did would be 

included in the transcript, put in parenthesis, and treated as a turn of talk when coding.  

Coding. My coding was conducted in several phases. First, I used a bottom-up grounded 

theory approach in my initial coding. I paid close attention to the surroundings, the materials, the 

situational cues s, etc., which were available to the students in the moment, and the patterns of 

interactions that emerged from my data. 

In my subsequent analyses, I drew on the mathematical reasoning literature (Jeannotte & 

Kieran, 2017; Knuth et al., 2019; Lannin, 2005; Mata-Pereira & da Ponte, 2017; A. J. 

Stylianides, 2007; G. J. Stylianides & Stylianides, 2009) to specify the practices emerging from 

the teaching and learning of Go that are similar to reasoning processes that occur in 

mathematical practices and learning. I also utilized the emergent goals framework to analyze 

whether and how certain spatial forms that emerged from my data serve as a way to aid the 

reasoning processes.  

Finally, I drew a parallel between the students’ practices that emerged from interactive 

instructions and those embedded in cooperative play. By comparing the students’ behaviors 

across the two settings, I could explore whether students developed certain practices from 

learning Go and transferred those practices into their own play.  

Initial Coding. My initial coding focused on describing the actions of the teacher or the 

student at each turn, which were as simple as “Teacher Question”, “Student Response”, “Student 

Play”, etc. In addition, when applicable, I also noted the content of the questions and responses, 

which were mostly about a pattern or a shape. For example, if the turn of talk involved a 

teacher’s question about the “eye” pattern, I coded the turn of talk as “teacher question on eyes”. 

Please refer to Table 6.1 for a sample of my initial coding.  
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Table 6. 1  

 Sample Initial Coding of An Interactive Instructional Excerpt 

Shape 1. “L” shape with three empty 

points 

Teacher: OK. So How can this red group 

make two eyes? 

(Students raised hands) 

Teacher: OK Bob wants to play. 

(Bob played) 

Teacher: Do you agree? 

Students: Yeah. 

Teacher: This shape, remember it?  

Students: It’s a L. 

Teacher: How many empty points? (finger 

going over the empty points) 

Students: three.  

Teacher. Yes, when there are three empty 

points – 

Jay: -you can make two eyes. 

Teacher: You have two shapes. One is a shape 

like this, another shape is this (drawing a 

straight line and an “L” on the black board). 

Which one can match this? This first one or 

the second? 

Student : Second, second, second.. 

Teacher: Yes, the second one can match this. 

Now, take a look at this shape 

 

 

Teacher question on “eyes” 

 

Student response 

Teacher invites Student to play 

Student play 

Teacher seeking consensus 

Student response 

Teacher guiding students to observe a shape 

Student response 

Teacher question 

 

Student response 

Teacher confirmation 

 

Student bring up “eyes” 

Teacher guides students to match the L shape 

with a class of shapes that share the same 

feature. 

 

 

Student response 

Teacher transitioning to another shape 

 

As my coding continued, I noticed that some codes appeared repeatedly and seemed to 

serve an important role. The underlined codes in the right column of Table 6.1 present examples 

of codes that I used repeatedly. These codes denote purposeful interactions with shapes. For 

example, the codes “Teacher transitioning to another shape”, and the associated teacher acts 

(e.g., switching between similar shapes), were used frequently to present and connect the Go 
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patterns being taught. These observations led me to develop several categories of codes to 

capture emerging themes in the data.  

Subsequent Coding. I subsequently refined the scope of questions to focus on one key 

learning objective/tool—the “shapes” (i.e., a series of stone configurations with the same pattern 

that entail meanings and strategies) and three aspects of the interactions: 1) the role of the teacher 

in structuring the teaching and learning of Go patterns; 2) the reasoning practices emerging from 

the student-teacher interactions; 3) the spontaneous reasoning practices emerging from the 

corporative play among students. All three aspects of the interactions were associated with the 

reasoning processes of deriving meanings and strategies from interacting with the shapes. The 

“shapes” emerged not only as a key learning objective but also as a tool because they served as 

critical means to externalize the reasoning processes involved in the teaching and learning.  

To examine the use of “shapes” in the three types of interactions, I drew on the emergent-

goals framework to identify specific uses of the “shapes” and analyze their roles in each type of 

interactions—whether and how the use of those shapes served as means to externalize the 

reasoning processes and facilitate the interactions among the teacher and the students. (Please 

refer to Figure 4.6 in Chapter 4 for a theoretical illustration of the process of learning the “double 

eye” shape using the emergent-goals framework.) In addition, I drew on the mathematical 

reasoning literature to specify the reasoning practices emerging from the teaching and learning of 

Go patterns that are similar to those that occur in mathematical practices and learning. 

Identifying Spatial and Mathematical Reasoning Practices. Through multiple rounds 

of coding of teacher acts, teacher-student interactions, and student practices during corporative 

play, I noticed that there were a series of Go learning and playing practices which resembled 
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mathematical reasoning practices. To identify and examine those practices that emerged from my 

data, I drew on the mathematical reasoning literature (Jeannotte & Kieran, 2017; A. J. 

Stylianides, 2007; G. J. Stylianides & Stylianides, 2009) to guide my subsequent coding. 

Mathematical reasoning is broadly interpreted to include the range of activities used to make 

sense of and establish mathematical knowledge (Jeannotte & Kieran, 2017; Mata-Pereira & da 

Ponte, 2017). These activities include observing patterns, classifying, making conjectures (Reid, 

2002), testing examples (Knuth et al., 2019), justifying and generalizing (Ellis, 2007; Lannin, 

2005; Widjaja et al., 2020), etc. Table 6.2 presents the definitions of mathematical and spatial 

reasoning practices according to existing literature in parallel with those emerged in the context 

of my Go analysis.  

Table 6.2   

Spatial and Mathematical Reasoning Coding Table 

Parameter Code Definition (Literature) Definition in Go Example 

Spatial 

Reasoning 

Pattern  

Observation 

(PO) 

By searching for 

similarities and 

differences, infer a 

narrative about a 

relation between 

spatial/mathematical 

objects. 

  

Observing that 

several specific Go 

structures share the 

same common 

features. This can 

include comparing a 

few structures and 

discussing their 

similarities and 

differences. 

Teacher: “Look at 

this situation. How 

many empty points 

are contained in the 

red?” 

Students: 3 

Teacher: “Look at 

this new situation, 

how many empty 

points?” 

Students: 3 

 Classifying 

  

By searching for 

similarities and 

differences between 

mathematical objects, 

infer a narrative about a 

class of objects based 

on their mathematical 

properties. 

Grouping together a 

set of Go structures 

based on their 

common features 

and infer a narrative 

about the group of 

Go structures based 

on their properties.  

Teacher: “Is this real 

eye or fake eye?” 

Students: “Fake!” 

Mathematical 

Reasoning 

Conjecturing Conjecturing involves  

developing statements 

Making a statement 

about the properties 

Teacher: “In this 

situation, can red 
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about a mathematical 

relation that can be 

validated to be true or 

false. Conjecturing 

launches justifications. 

of a Go structure, or 

a set of structures 

that share common 

features, which are 

thought to be true 

and subject to 

testing.  

survive?” 

Student: “Yes! It can 

make two eyes!” 

 Justifying Justifying refers to the 

process of searching for 

data, warrant, or 

backing to validate 

whether a conjecture is 

true. 

Using examples, 

counterexamples, or 

a set of arguments to 

validate that a 

conjecture is true. 

An articulative 

social process so 

that more than one 

person can accept 

the conjecture to be 

true, or refutable. 

Teacher: “Can you 

verify?” 

Student: “If the red 

goes here, blue will 

go here; if the red 

goes here, blue will 

go here; if the red 

goes here, blue will 

go here… ”(showed 

the outcome of all 

possible moves). 

 Generalizing The transportation of 

mathematical relations 

from given sets to a 

larger set (Stylianides, 

2008). 

Producing a 

statement about a 

rule which applies to 

all the Go features 

that share a set of 

common features. 

The rule is obtained 

from exploring a 

subset of Go 

structures which 

share the common 

features.  

Teacher: “So, 

whenever you have 

3 empty points, you 

can survive.” 

Teacher: “Which 

move is the most 

important?” 

Students: “The 

middle point!” 

Teacher: “Yes, 

whenever you have 

a situation like this, 

you should play at 

the middle point.” 

 

Spatial Foci. The mathematical reasoning literature highlights pattern observation and 

classification as important steps in the reasoning process. In my study of Go the classroom, I 

found a series of repeated interactions with “shapes” (meaningful Go configurations) which can 

be categorized as observation and classification activities. Because these activities concerned 

observing and classifying spatial patterns, I used “spatial reasoning” as the parameter to define 

the pattern observation and classifying activities that occurred in the teaching and learning of Go. 
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The parameter may help us interpret the potential role of spatial reasoning in contributing to the 

mathematical reasoning practices in this context.  

Mathematical Foci. The mathematical reasoning practices in my study focuses on three 

interrelated actions: conjecturing, generalizing, and justifying. These are the fundamental 

reasoning practices that play a vital role in the learning of mathematics at the elementary level 

(Lesseig, 2016). Conjecturing involves developing statements about a mathematical relation 

which can be validated as true or false (Lannin, et al., 2011). Generalizing involves identifying 

commonalities across cases or extending mathematical reasoning to consider a broader range of 

objects (Ellis, 2011). Justifying is the act of developing arguments to demonstrate the truth (or 

falsehood) of a claim using mathematical reasoning (Staples et al., 2012). 

Conceptualizing the spatial and mathematical activities of Go in this way has great value: 

First, it highlights how exploration and inductive reasoning in the learning of Go can support 

sense making around core math ideas and can lead to more formal justifications (this is 

especially true in Grade 2-3 classrooms). Second, this definition focuses on the explanatory and 

discovery roles of mathematical reasoning which demand more attention in mathematics 

education.  

Analyses of the Teacher’s Acts: How were Spatial Forms Used in the Teaching of Go?  

The learning of Go mainly involves recognizing meaningful patterns, exploring their 

implications, and subsequently constructing and responding to these patterns in the play. As I 

discussed in Chapter 4, an essential part of teaching Go is to support learners’ reasoning about 

Go patterns, which could be difficult for beginner players alone but can be achieved with 

guidance. Thus, in my analyses of interactive instructional episodes, I first examined the codes 
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assigned to the teacher independently from the codes of the students and explored how the 

teacher facilitated the students to learn and reason about each new pattern.  

The coding revealed that the majority of teacher acts evolved around shapes that the 

teacher constructed on the demo-board. The coded teacher acts around shapes included “drawing 

attention to the feature of a new shape”, “transitioning to a different shape”, and “comparing 

shapes”, etc. These codes were similar in that they all suggested that the use of shapes played a 

major role in the teaching. Moreover, I found that these teacher acts around shapes were mostly 

dynamic and fluid. That is, the teacher frequently made slight changes to existing shapes by 

moving just a few pieces around or by switching a few Go pieces back and forth. In doing so, the 

majority of existing shape features were carried into the new shape and the differences were 

highlighted. Because these dynamic and fluid teacher acts around shapes emerged as a 

predominant pattern in my analyses, I categorized those teacher acts as shape transformation. 

To examine whether and how the teacher’s use of shapes and the shape transformation 

method might support students in engaging in mathematical reasoning practices, I analyzed how 

a Go pattern was taught during each instructional episode in several steps. First, I extracted the 

sequences in which different shapes were presented to the students and uncovered the reasoning 

processes embedded in those sequences. Second, I drew on the spatial and mathematical 

reasoning framework, using codes such as “pattern observation” and “classifying”, to examine 

what functions the teacher’s use of shapes and shape transformation might serve in facilitating 

students in the reasoning activities involved in learning Go patterns.  

Next, I present an interactive episode where I illustrate the different uses of shape 

transformation and the various goals they served in teaching about shapes and the underlying 
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reasoning process. This episode occurred during Week 4 of the curriculum. The teacher’s use of 

shape transformation was underlined throughout the excerpts of the episode. The episode 

focused on a series of teaching and learning around one of the most critical patterns for beginner 

learners. Although this pattern takes on multiple forms on a Go board, all the forms share the 

same feature of having three or more connected stones surrounded by the same color of stones 

(Figure 6.1). Such a pattern requires that the player place a piece at the middle point to form a 

safety structure (the double “eyes” shape, refer to Chapter 4), so that this group could not be 

surrounded and hence will survive for the rest of the game; the opponent, on the other hand, must 

occupy the middle point to overturn the situation.  

Figure 6.1 

Two Similar Shapes 

               

       Shape 1: “L” Shape                                    Shape 2: “Line” Shape 

Note. Shape 1 on the left is a “L” shape; shape 2 on the right is a straight-line shape. The “L” and 

the straight line referred to the negative spaces—the empty points surrounded by the red pieces. 

Both shapes contain three empty points inside the red’s boundary.  

I aimed to uncover the reasoning processes involved in learning the general rule entailed 

by the pattern and the role of shape transformation in facilitating the reasoning processes. I 
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adapted the emergent goals framework to organize my findings about the functions of the shape 

transformation method and the goals they served in the teaching (see Figure 6.2).  

Next, I present my analyses in four parts in accordance with the four functions and 

reasoning goals shown in Figure 6.2; each part concentrates on illustrating one aspect of the 

reasoning process involved in developing/applying a general rule and the role of shape 

transformation in facilitating the teaching and learning of it. 

Figure 6.2  

The Functions of Shape Transformation in Serving Various Teaching Goals 

 

Note. The “dynamic spatial forms” shown in the left column specified the shapes being 

transformed as the teacher modeled the reasoning processes spatially. The arrows indicate the 

order in which the shapes were presented to the students, which was achieved by moving just a 

few pieces from a former shape. The “functions” highlight what the shape transformations afford 

in facilitating the teaching of reasoning processes shown in the “reasoning goals” column.  
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Part 1. Observing Patterns and Classifying to Find a General Rule 

In this section, I discuss how the teacher used shape transformation to create multiple 

similar shape problems, guide students to identify the similarity between shapes, and ultimately 

discover a general rule which applies to all the shapes that share the same feature. Prior to this 

episode, the students did a preparatory activity, in which they explored how many shapes could 

be created by three connected pieces on a Go board. They found two shapes, an “L” and a 

straight line. The teacher drew those two shapes on the blackboard. Then the teacher constructed 

those two shapes (Figure 6.1) on the demo board and presented those shapes consecutively to the 

students and guided them to discover the general rule about where to play, which applies to both 

of these two shapes. In Excerpt 1, I present the detailed teacher-student interactions around these 

two shapes. The teacher’s turns of talk and actions around a certain shape are underlined.  

Excerpt 1. 

Transcript Code 

 

Shape 1. “L” shape with three empty points 

Teacher: OK. So How can this red group make two eyes? 

(Students raised hands) 

Teacher: OK Bob wants to play. 

(Bob played) 

 

 

 

 

 

Teacher question on “eyes” 

Student response 

Teacher invites student to play 

Student play 
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Teacher: Do you agree? 

Student: yeah. 

Teacher: This shape, remember it?  

Student: It’s a L. 

Teacher: How many empty points? (finger going over the 

empty points) 

Student: three.  

Teacher. Yes, when there are three empty points – 

Jay: -you can make two eyes. 

Teacher: You have two shapes. One is a shape like this, 

another shape is this (pointing to the straight line and the 

“L” on the blackboard). Which one can match this? This 

first one or the second? 

Student: Second, second, second.. 

Teacher: Yes, the second one can match this. Now, take a 

look at this shape. 

 

Shape 2. Straight line with three empty points 

Teacher seeking consensus 

Student response 

Teacher guides student to 

observe a shape;  

Student response 

Teacher guides pattern 

observation 

Student response 

Teacher confirmation 

Student response 

Classifying: Teacher guides 

Student to classify two shapes 

(L and straight line) in one 

category (both encompassing 3 

empty points). 

 

 

Student response 

Shape transformation: Teacher 

transitioning to another shape 
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Jay: It can make two eyes.  

Teacher: can this shape make two eyes? Dan, come to try. 

(Dan came to play) 

Teacher: Do you agree? (looking at other students) Yes, 

now you have two eyes.  

 

Teacher: So when this situation happens, what’s the score 

for red? How many pieces of red on board? 

… 

Teacher: OK if the shape looks like this, (moved one piece 

up) – 

 

Jay: You cannot make two eyes; you cannot make two eyes. 

Teacher:- can this group make two eyes? 

Student bring up “eyes” 

Teacher question on “eyes” 

Student play 

Teacher seeking consensus  

 

 

 

 

 

 

Teacher question on score 

Student response 

 

Shape transformation: 

transitioning to another shape 

which has only two empty 

points inside 

 

 

 

Student bring up “eyes” 

Teacher question on “eyes” 
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Student: No you cannot. 

Teacher: you cannot make two eyes. That means. so what’s 

the score for red? 

Student: Zero! 

Teacher: Zero! (nodding) You have to make two eyes. 

Teacher: OK, so we have explored this shape (L) and this 

shape (straight line) (pointing to the drawing on 

blackboard).  

 

Student response 

Teacher confirm+ question 

 

Student response 

Teacher confirmation 

Classifying: Teacher matches 

the two shapes explored to the 

same class of shapes that share 

the same feature and rule 

 

Understanding the Reasoning Process. Now, let us uncover the reasoning process 

involved in learning the general rule and find out how the teacher used shape transformation to 

facilitate the process. First, prior to the excerpt, the teacher asked the students to explore all the 

shapes consisting of three connected points, which include Shape 1, Shape 2, and no other 

possibility. That is: 

Shapes that contain three empty points inside  → Shape 1 “L” and Shape 2 “Line” 

Then, in this excerpt, the teacher first presented the “L” shape in a defense scenario, 

where blue had surrounded all the red pieces; therefore, if red does not respond appropriately, 

blue can capture all the red pieces. The appropriate defensive move is for red to place a piece at 

the middle point of the three connected empty points (the lower, left-hand quarter), so that red 

can form a safety structure (“two eyes”). This move blocks blue’s attempt to fully encircle the 
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red stones. The teacher also guided the students to observe the pattern (coded as PO) by asking 

them to observe the number of empty points inside. 

PO (Pattern Observation) 

Shape 1  →  Rule A (a critical defensive move): play at the middle point to survive 

After finding the critical move for the “L” shape, the teacher used shape transformation 

(moving a few pieces around to modify an existing shape) to present a similar problem and drew 

out the similarities between both shapes. Specifically, the teacher transitioned the problem 

scenario from the “L” shape to the line shape by moving just a few pieces around; the “L” shape 

was altered into a straight line, surrounded by the red. The teacher again asked the students to 

observe the shape and find the critical move in this situation.  

PO 

Shape 2  →  Rule A: play at the middle point to survive 

As the result of exploring Shape 1 and 2, the students learned to play at the middle point 

to make the red group alive in both situations. Moreover, after finding the rule based on Shape 1 

and Shape 2, the teacher purposefully guided the students to match the shape they just explored 

with the class of shapes (containing three empty points inside), which they examined earlier. I 

coded those teacher acts as classifying. 

Classifying 

Shape 1 and 2 → Shapes that enclose three connected empty points  
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Because Shape 1 and Shape 2 encompass all the problem scenarios of shapes that contain 

three empty points inside, this teacher-structured exploratory process logically led to a general 

rule which applies to all shapes that exhibit the same feature.  

General Rule: Shapes that enclose three connected empty points  → Rule A  

From the analysis above, we can see the teacher utilized a set of similar shapes, presented 

in a logical sequence, to externalize the reasoning process involved in deriving the general rule. 

The reasoning process was inductive because the teacher purposefully guided the students to 

explore all possible situations (Shape 1 and 2) of shapes that enclose three connected empty 

points in order to derive the general rule. Pattern observation and classifying activities are 

important steps in the reasoning process because the reasoning relies on identifying and relating 

similar shape features and outcomes.  

Understanding the Role of Shape Transformation. Pattern observation and classifying 

activities are naturally embedded in the interactions with shapes. The teacher used shape 

transformation to create multiple similar situations for the students to explore, drew the students’ 

attention to a new shape (pattern observation), and pointed out the key feature (three empty 

points) that applied to all the shape variations (classifying).  

The use of the shape transformation was very fluid because of how the teacher made 

transitions between shapes. There was always a sense of connectivity in these transitions—

always building on an existing shape by just moving a few pieces around and highlighting the 

shape features that stay consistent or become different. These fluid shape transformations might 

facilitate the students’ recognition of the similarities and make connections. Therefore, I suggest 
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that the teacher’s shape transformation method might assist the students in pattern observation 

and classifying activities, which play an important role in the reasoning process. 

Part 2. “Laddering” to Refine a General Rule 

As the episode continued, the teacher intended to transition to a new problem scenario—

Shape 3, a structure with four empty points connected in a straight line, which was an extension 

of Shape 2 (three empty points, same structure). The teacher only asked the students to consider 

the perspective of the player using the red stone. The rule they developed so far was only 

formulated as a defensive move by the player on one side—the “red”. However, as they started 

exploring Shape 3, one student spontaneously brought up the perspective of the “blue” opponent 

(italicized in Excerpt 2). In response to the students’ awareness, the teacher switched back to 

Shape 2, as the entry point to discuss the opponent’s perspective. Through consideration of both 

the red and the blue perspectives, the class was able to refine and articulate the general rule they 

found about Shape 2. These events are presented in Excerpt 2; the events presented in two 

immediately followed those presented in Except 1 above. Again, the teacher’s turns of talk and 

actions coded as shape transformation were underlined.  

Excerpt 2.  

Transcript Code 

Shape 3. Line with four empty points 

 

 

 

 

 

 



  68 

Teacher: Next, we will move from three empty points to four 

(empty) points. OK. Take a look at this shape. (added new 

pieces) OK. Can red make two eyes? (finger going through 

the empty points). 

Students: Yes.  

Students: No, it can make three. 

Jay: it can make two eyes, but it has to make two moves, but 

blue can make two moves.  

(Bob came to the board to play, spontaneous. Bob put two red 

pieces on board to make two eyes) 

 

Teacher:  Ok, very good. let’s go back to this situation 

(restored the board to 3-empty- points situation) 

Back to Shape 2 alternation 1: String with three empty 

points + a blue in the middle (turned to the opponent 

perspective) 

Shape transformation: 

Teacher transitioning to 

another shape; PO 

Teacher question on “eyes” 

Student response 

Student response 

Student response (alternative 

perspective) 

Student play 

 

 

 

 

 

 

 

Teacher confirms  

Shape transformation: 

Teacher transitioning back to 

shape 2 
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Teacher: If blue plays here, can red make two eyes? 

Students: yeah, no, no, NO (reaching consensus). 

Teacher: No? (Nodding) Emily? 

Amy: (Nodding.) 

Teacher: OK, so where is the most important move you see in 

this situation?  

Students: The middle one.  

Teacher: Good. The middle point is the most important.  

(demonstration) you can make two eye here. And then if blue 

plays here, you cannot make two eyes.  

Students: … (something about who plays first). 

Teacher: Yeah, depends on who’s turn. Well, It’s not a real 

game, but it’s an example. OK, so this move, we call it a 

“kill” move.  

Students: a what? 

Bob: it’s a suicide.  

Teacher: Well, yes, that looks like suicide, but in fact, it’s not 

 

 

 

 

 

Teacher question on “eyes” 

Students reaching consensus 

Teacher question 

Student response 

Teacher question  

 

Student response 

Teacher justifying 

why this move is important 

for both red and blue 

Student response 

Teacher naming the move 

(articulate the general rule) 

 

Student question 

Bob presents a different view 

Teacher response +justifying  
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a suicide. When you play this move, you kill that group. It’s a 

really good move, because- 

Students: Killing red. 

Teacher: -if red play here, red score is 6; if blue play here, 

then red score is zero.  

(Bob went up to board to play an alternative move) 

Teacher: Ok Bob just said, red can play here, and then, where 

is a good move for blue? 

(Mary went up) 

Teacher: show me, (handing piece to Mary.) 

(Mary played.) 

Mary: Blue play here, and then (taking red pieces off the 

board). 

Teacher: Bob you know what happened? 

Bob: yes. 

Teacher: Mary is right. So when this situation happens, this 

group is dead and the score is zero.  

 

 

Student comment 

Teacher justifying (cont.) 

 

Student play  

Teacher response+ question 

 

 

Teacher invites Student to 

play  

Student play (testing the 

alternative move and 

demonstrating the outcome) 

Teacher question  

Student response 

Teacher confirmation 

 

Understanding the Reasoning Process. By considering both players’ perspectives, the 

teacher guided the students to generalize their knowledge about where to play next in a situation 

with three surrounded empty points (L shape and line shape)—one should always play at the 

middle point. If it were the red’s turn, the red should play at the middle point to make two eyes 

so that the red group would be alive. In contrast, if it were the blue’s turn, the blue should play 
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there to kill the red group. The teacher named the move as a “kill” move, justified it on the demo 

board, and allowed the students to test alternatives, which contributed to the process of learning 

and refining the general rule: 

Shapes that enclose three connected empty points  →  Player A: Play at the middle to survive 

                                                                                  →  Player B: Play at the middle to “kill” 

Understanding the Role of Shape Transformation. The analyses above highlight the 

importance of the shape transformation strategy. The teacher first transformed the shape 

containing three empty points (Shape 2) to four empty points (Shape 3), articulated this 

transformation in words, and asked the students to solve the same problem—whether and how to 

make two eyes for the red group to survive. Shape transformation was used to guide students to 

extend the general rule and apply it in the new situation, which is slightly more complex because 

Shape 3 introduced a degree of variability by adding another empty point.  

However, after a student spontaneously brought up the blue’s perspective, the teacher 

restored the board to the Shape 2 situation for the students to consider the blue’s perspective. The 

teacher’s action suggested that he intentionally restored the shape back to the familiar and less 

complex form (variability reduced), so that the student could explore their newly emerged 

question in more easily. As the episode continued, we see that the teacher eventually guided the 

students to explore this question with the more complex Shape 3 setup, having prepared them 

through Shape 2. Thus, the shape transformation method was used to as a scaffold to facilitate 

learning—the teacher first reduced a degree of variability and then increased it, which allowed 

the students to explore increasingly complex problems step-by-step, building on their existing 
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knowledge. Again, I suggest that the use of shape transformation as a ladder highlighted fluidity 

in the ways teacher structured his teaching, which might facilitate learning. 

Thus far, I have highlighted two ways that the teacher adeptly utilized shape 

transformation to facilitate students’ understanding. First, by moving a few pieces around, he set 

up multiple similar shapes to engage the students in pattern observation and classification, which 

led them to find a general rule. Second, the teacher used shape transformation as a scaffold to 

control the level of difficulty, so that the students could explore increasingly complex questions 

within their range of capability, building on what they had just learned.  

Part 3: The Use of Scaffolding for Justifying and Generalizing 

In Part 3 of the episode, the teacher first used shape transformation to create Shape 3 

(with four empty points) on the board, the same setup as the beginning of Excerpt 2. Having 

prepared the students through working with Shape 2, the teacher now asked the students to 

consider both players’ perspectives with Shape 3, instead of considering the red alone. This 

shape was more complex than Shape 2, because the addition of one empty point opened up more 

possible moves for the blue and the red.  

There were rich teacher-student interactions in this part of the episode that signified the 

ways in which the students actively participated in the reasoning process. I will present the 

detailed excerpt and the coding later in the section on teacher-student interactions. Here, I mainly 

focus on analyzing the teacher’s strategic use of shape transformation to support his teaching. 

Therefore, I presented the teacher’s sequential acts through a series of related figures (see 

Figures 6.3 A-E), which demonstrated how the teacher used shape transformation to externalize 

the reasoning process leading to general rule about Shape 3.  
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The teacher’s first goal was to help the students recognize, with scaffolding (Figure 

6.3A), that Shape 3 (the red structure shown in Figure 6.3B) would be safe, even if the blue had 

played at the middle. To aid the students’ exploration, the teacher began by adding a blue and a 

red piece in the middle of the structure (as shown in Figure 6.3A), which was a specific example 

that illustrated why the red structure would be safe. I considered this set-up as a scaffold because 

the implications of those middle pieces built on the students’ understanding of the middle point 

from Shape 2.  

Figure 6.3 

 Sequence of Stone Configurations Constructed in Forming a General Rule About Shape 3  

 →           →     →  

A (scaffold added)           B (scaffold removed)        C (scaffold added) 

→   

D (scaffold added)          E (scaffold removed) 
Note. Figure A presents a Shape 3 setup with scaffolding (a blue and a red in the middle), 

which exemplified one way to secure the red group even though the blue attacked the red 

by playing a move in the middle; Figure B presents the general setup with scaffolding 

removed. Figure C and D present two specific ways to make the red group alive that the 

students tested, following the blue’s attempts to kill the red group. These two specific 



  74 
cases thus justify that the red structure (four enclosed empty points) is safe forever. 

Figure E presents the general setup again with scaffolding removed. 

Understanding the Reasoning Process. Through interacting with Shape 3 with a 

scaffold (Figure 6.3 A), the students recognized that the red could make two eyes and therefore 

was safe. However, would the students be able to learn that Shape 3 was safe forever, without 

having to see it through a specific example (Figure 6.3B)? The teacher’s next goal was to guide 

the students to generalize this knowledge about Shape 3—a structure with four connected empty 

points is safe forever-- by following the reasoning process—even if the opponent attack by 

placing a stone in the middle, the player can still defend and secure the structure. To assist the 

students to generalize, the teacher removed the scaffold (blue and red pieces in the middle) and 

asked the students to evaluate whether the original Shape 3 (Figure 6.3B) was safe forever.  

The removal of the scaffold opened up many possibilities for the students to test and 

evaluate. The remainder of the Part Three episode consisted of a series of repeated interactions 

where the teacher used the shape transformation method to guide the students to explore many 

similar situations and tested out different moves (Figure 6.3C and D). Specifically, in these 

interactions, he altered the situation slightly, by switching the middle blue piece up and down, or 

by adjusting the blue layer on the outside. Each time, the teacher repeatedly asked the same 

questions: “if blue plays here, where should red play?” or “can blue kill red?”.  

As a result, the students explored this question in multiple similar formats and tested out 

different moves and outcomes. In the end, they were able to create the safety structure from all 

the situations they explored. That is, they were always able make two eyes for the red in time (by 

placing a red piece in the middle), no matter where the blue had played. Therefore, with the help 

of the teacher, they generalized the knowledge about Shape 3—a shape with four empty 
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connected pointed would be safe forever, because the opponent could not kill it in any way. This 

process, which was used to discover a general rule, resembled the inductive reasoning process 

uncovered in Part One—by testing all possible moves (alternation 1-2, where the blue played a 

move inside the enclosed space ahead of the red) and examining their outcomes.  

PO, Classifying                Conjecturing and justifying            Generalizing              

Shape 3 Alternation 1 

Shape 3 Alternation 2                            →                           Shape 3: Safe forever 

Scaffolding Added                                                             Scaffolding Removed 

Understanding the Role of Shape Transformation. In this part of the instruction, the 

shape transformation method was used to add and remove scaffolding. With the use of 

scaffolding, the teacher utilized Shape 3 as the base to create multiple similar situations by 

altering it slightly, which prompted the students to systematically test all possible moves and 

outcomes associated with the given situation. The removal of scaffolding guided the students to 

gather their knowledge of specific cases and generalize their findings. The fluidity in the use of 

shape transformation was reflected in how the teacher used scaffolding to transition back and 

forth between reasoning about specific cases and generalizing.  

Part 4. Using Shape Transformation to Extend a General Rule 

After discovering the general rule about four connected empty points, the teacher asked 

the students to explore whether the general rule would extend to other shapes. Their interactions 

with the new shapes are captured in Part Four, the final part of this interactive instruction 

episode. The teacher’s talks and actions that initiated a shape transformation were underlined.  
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Excerpt 3. 

Transcript Coding 

Shape 4. Line with five empty points 

 

Teacher: right yes, Ok. Now, take a look at this (new 

shape, 5 empty points). (Then rotated the board, finger 

went over the empty points within red multiple times). 

Jay: It’s the same exact and exact thing.  

Students: Oh yeah. 

(Mary came up) 

Teacher: Mary, is this group dead or alive? 

Students: It’s kinda alive. 

Mary: It’s alive. 

Teacher: Yes, it’s alive. We already know that this shape is 

alive (switch from Shape 4 to Shape 3), now you have 

more space (add more empty points inside, switch to Shape 

4) you are alive.  

(Jay went up to demonstrate all possible moves in the 

 

 

 

 

 

 

Shape transformation: Transition 

to Shape 4). 

PO (pattern observation). 

Jay recognized the similarity. 

Student affirm 

 

Teacher question 

Student response 

Student response 

Shape transformation: transition 

between Shape 3 to 4, to extend 

a general rule. 

PO: compared shape features. 

Student justified a general 
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given situation and showed that the red can make two eye 

no matter the blue would play.) 

Jay: Here, there, here… 

Teacher: Jay have you verified? 

 

Jay: yes. 

statement by verifying all 

possible moves and outcomes. 

 

Teacher question (highlighted 

Jay’s practice) 

Student response 

 

Based on the episode so far, we could see that the teacher continued to use the shape 

transformation method in a similar way as he did in Part 2 and the beginning of Part 3, where he 

fluidly switched back and forth between Shape 2 and 3 to control the degrees of variation, so that 

the students can explore a new idea step-by-step. In Part 4, the teacher first increased the 

complexity of the problems by presenting Shape 4, which was created by extending one more 

empty point from the original structure of Shape 3. Based on the student’s expression that “it is 

the exact same thing!”, we could see that the students were able to recognize that the general rule 

about Shape 3 could apply to Shape 4 as well, although the teacher modified the shape and even 

rotated it.  

After the students explored Shape 4, which had the same string feature as Shape 3, the 

teacher again modified the shape to Shape 5, which has a square feature while keeping four 

empty points.  
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Excerpt 4. 

Transcript Coding 

Shape 5. Square with four empty points 

 

Teacher: OK now let’s look at this shape. 

Jay: it’s kind of half alive and half dead, I don’t know how to 

explain. It’s complicated. 

Mary: Let’s see. (Mary came up to the board to explore by 

putting pieces on board). 

Teacher: Ok can you make two eyes? 

Mary, if it’s red’s turn, it can play here and then here 

(playing…) 

Teacher: can it make two eyes? 

Mary: no. 

Jay: It’s horrible, horrible! 

Teacher: when you play here, where should blue play? 

Mary: Right there (pointing). 

Teacher: Yes, yes! That’s a kill move. Can this red group 

 

 

 

 

 

 

Teacher shape transformation 

Student conjecturing  

 

Student justifying 

 

Teacher question 

Student testing 

 

Teacher question 

Student response 

Student comment 

Teacher question 

Student response 

Teacher named a critical 



  79 

make two eyes? 

Students: NO. 

Jay: Yes but blue can stop it.  

Teacher: Wherever red play, blue can play here and kill 

that group. So can this group be alive? Who have not tried 

this question. Is this a dead or alive or it depends? 

Students: It’s dead. 

Teacher: Even red play first, red cannot make two eyes. 

Students: What if blue plays first? 

Teacher: Well, do we need to talk about whether blue plays 

first? 

Students: No. 

Teacher: No. Even if red play first, red is dead, then- 

Jay: If blue plays first, red is MORE dead. 

Teacher: More dead, yes. 

move; question about “eyes”. 

Student response 

Student response 

Teacher generalizing 

Teacher asks students to justify 

 

Student response; consensus. 

Teacher confirmation 

Student question 

Teacher question 

 

Student response 

Teacher justifying 

Student justifying 

Teacher confirmation 

 

Shape 5 was the last shape introduced to the students in this interactive instruction 

episode. It was a complex and novel shape because its square structure differed from the string 

shape and the “L” shape they had learned. However, based on the excerpt above, we could see 

that the students discerned the difference and made a reasonable judgement about this new shape 

rather quickly, after just a few turns of talks and trying. It was also clear that the student 

considered both players’ perspectives in their judgment, building on what they learned in Part 2; 

their considerations of both players’ perspectives in making a judgement was effective and 
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efficient. For example, at the end of this excerpt, the students and the teacher discussed whether 

who played first would alter the outcome, and they quickly arrived at the conclusion that “if blue 

plays first, red is MORE dead”, without having to examine any cases where blue played first 

(because even if the red had an advantage to play first, the red could not survive). The student’s 

conclusion that “red is MORE dead” here is enlightening. By using the term “more dead”, the 

student expressed his reasoning that the conclusion of “death” drawn from an advantages 

situation for the red could logically apply to a disadvantageous situation. Although the 

underlying logic was actually substantial, the conclusion was drawn efficiently and expressed 

simply and vividly. Given the students’ demonstration of their newly learned reasoning skills, 

the teacher’s use of the shape transformation strategy was quite effective.  

Interim Summary 

So far, my analyses of the teacher’s acts showed that the teacher used the shape 

transformation method in various ways to guide the students to derive and apply general rules 

associated with a class of similar or related patterns. By using the shape transformation method, 

the teacher externalized the reasoning processes underlying the general rules. The teacher also 

assisted the students to participate in those reasoning processes by using the shape 

transformation method to promote pattern observation and classifying activities in Part 1 and 

facilitate generalization in Part 3. Moreover, the shape transformation method was used as a 

scaffold in Part 2 and 4 to adjust the level of difficulty, which allowed the students to explore 

increasingly complex ideas step-by-step, building on what they had just learned.  

The findings about the shape transformation method signified dynamics and fluidity in 

the teaching of shapes. I suggest that this feature might have contributed to the teaching and 
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learning because the fluid transitions between shapes might highlight not only shape similarities 

for the students, but also foster a sense of connectivity or continuation in the practices of 

reasoning. The “more dead” expression, for example, illustrates this point: because the students 

fluidly transitioned from blue’s advantageous situation to the red’s, they quickly transferred their 

reasoning about the previous situation to the new situation by only considering the difference. 

For another examples, one of the students quickly realized that “”it is the exact same thing” , 

when the teacher transformed the shape from having three empty points to four, and therefore the 

same indications apply. Thus, because of the fluidity, the shape transformation method might 

support the students to carry the reasoning practices they developed in learning a basic shape to 

increasingly complex situations, so that they could learn more complex ideas about Go patterns.  

Analysis of Teacher-Student Interactions: What mathematical reasoning practices emerge 

from those interactions?  

Having examined the teacher’s acts, I now turn to the detailed interactions between the 

teacher and the students within the interactive instruction episodes. The turn-by-turn coding of 

teacher-student interactions led to the emergence of a unique pattern, which highlights the 

students’ spontaneous contribution to the reasoning processes underlying the learning of Go 

patterns. The analyses also show that the students’ spontaneous contributions were mediated by 

the use of spatial forms.  

The following was the excerpt from Part 3 of the episode, in which the teacher guided the 

students to reason about Shape 3 with scaffolding. There were four students who took turns to 

interact with the teacher and the board. The first three students repeated the same actions on the 

board while the fourth student gave a different response. The first student, Jay, spontaneously 
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went to the board to show how the red could make two eyes by capturing the blue piece, 

assuming the red would play next. Then, the teacher restored the board and asked, “can blue 

capture red?”. The second student Mary and the third student Dan answered no and demonstrated 

their reasoning by playing a red piece and taking the blue piece away, the same moves as Jay 

made. Then, the teacher rephrased the question slightly, seeking an answer in another way. 

Finally, student Bob came up to the board and demonstrated why the blue could not capture red; 

not by taking it away (a single example), but by pointing out all the possible moves for the blue 

and showing that all of those would be suicide moves. The part that included students’ 

spontaneous actions of justifications are underlined.  

Excerpt 5. 

Transcript Coding 

Back to Shape 3. alternation 1: String with four empty 

points + a blue piece and a red (scaffolding) in the middle 

(turned to opponent perspective) 

Teacher: Now, go back to this situation (restoring demo 

board to 4-empty-points, with a blue piece and a red in the 

middle) Ok, take a look at this.  

Jay: it can make two eyes... (raised hand and went up to 

board, played a red capture move and took away the blue 

piece, leaving two eyes for red). 

 

 

 

Shape transformation: Teacher 

transitioning to another shape; 

PO (pattern observation)  

Jay conjecturing about “eyes” 

Jay justifying by 

demonstrating the process of 

making two eyes.  
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Teacher: Ok. The first question is can blue capture this red 

group? 

Students: NO. 

Teacher: NO? 

(Mary went up to replay a red capture move-> two eyes; 

same as what Jay did) 

Teacher: so, can blue capture this red group?  

 

Students: yes, no.. sort of. 

 

Dan: No, blue can’t because red will go here (demonstrated 

on board). 

Teacher: OK. My question is. If red doesn’t play here, can 

blue capture red? (if blue play next instead of red) 

…Bob: Suicide, Suicide (Bob came up, put blue in two other 

places, demonstrated those two moves were suicide moves.). 

Teacher: So, is this red group safe forever? 

 

 

 

 

 

Teacher call out to whole 

group 

Student response (conjecture) 

Teacher question  

Student play (justifying) 

 

Teacher question (scaffolding 

removed) 

Student response 

(conjecturing) 

Dan justifying with a specific 

example 

Teacher question  

Bob justify by demonstrating 

the outcome of all possible 

moves for blue. 

Teacher question 



  84 

 

Students: Yes yes yes yes (consensus). 

Teacher: Ok, safe forever (nodding), so red has one eye and 

another space to make another eye. 

Bob: So blue can play everywhere over here (Bob went up 

and pointed to the other areas on the board outside the 

surrounded area.) 

(generalizing) 

Student consensus 

Teacher confirms 

Generalization 

Bob play 

 

An important pattern of teacher-student interactions emerged from Excerpt 5. The pattern 

starts with a teacher question about a specific case shown on the demo-board (“Can blue capture 

this red group?”); the question is followed by a student conjecture (either a yes or a no), which is 

followed by a student justification with a specific example (playing a red move to capture the 

blue).  

However, Bob’s move (underlined) differed from the other players’ moves. While taking 

the blue away was a legitimate immediate defense from the red’s perspective, it did not provide 

the ultimate explanation as to why the blue could not capture the red, because that move assumed 

that the red had an advantage to defend. In contrast, Bob gave a justification by considering all 

the possibilities and outcomes when the blue plays next, and named those moves “suicide”, 

which implied that the blue could do nothing to capture the red inside, even if it had an advantage 

to attack first. Moreover, he went further to suggest that blue should play outside the boundaries, 

given the implication that blue could not capture red in any way. This is a new pattern that 

differed from the prior student responses which concerned the use of one specific example or 

counter example. Therefore, I treated this student’s response as a complete justification, which 
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involved demonstrating all possible moves within a pattern that ultimately leads to a 

generalization.  

The student’s act of complete justification was an integral part of the teacher guided 

process of generalization illustrated in part 3 of the previous section (same except). The student 

here externalized the reasoning process through evaluating the outcomes of all possible stone 

placements (by physically placing stones on the board). In doing so, the student offered a 

complete justification in response to the teacher’s question, which led to a general statement 

about a given situation.  

What is the role of spatial forms in carrying out this reasoning process and engaging 

students in it? At the surface level, the Go board provided a platform to externalize the reasoning 

process. At a deeper level, I suggest that the shapes provided physical constraints to the 

generalization problem, which might prompt the students to easily identify all the possible moves 

and justify their outcomes physically on the board. As shown in Figure 6.3A, the two possible 

moves of the blue were showed inside the red boundaries (the two empty points). The students 

could fill in those empty spaces with stones to demonstrate that those were suicide moves, or just 

visualize those moves and outcomes easily.  

Next, I show another excerpt from Part 3, where the student Jay spontaneously made a 

justification following the teacher’s general claim about a pattern. In this interaction, the teacher 

first guided the students to observe the feature of Shape 3—that is, there are four empty points 

inside the red territory. Then, the teacher made a generalization about this structure—four empty 

points make a group alive. Following this generalization, the student Jay spontaneously went up 

to the board and demonstrated all the possible moves and outcomes for both sides, which 
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justified this generalization. After that, the teacher transformed Shape 3 to Shape 4, by adding 

one more empty point inside, and asked students to evaluate whether the generalization may be 

extended to Shape 4. Again, Jay spontaneously went up to the board to justify the generalization 

about Shape 4. The teacher’s general claims were presented in bold. The two incidences of Jay’s 

justification were underlined. Because Jay’s justifications involved demonstrating all possible 

moves within a pattern that leads to a generalization, as opposed to using one specific example or 

counter example, I coded Jay’s acts of justifications (underlined) as complete justification.  

Excerpt 6. 

Transcript Coding 

Teacher: Now let’s go back. (removed the blue and red pieces 

in the middle) Can blue kill this group?  

  

Jay: No no no no  

Teacher: OK how many empty points in this situation? How 

many? (finger going over the empty space) Dan, how many? 

Students: five 

Dan: six 

Teacher: no,  Jay, how many empty points in this situation?  

Shape transformation; 

Scaffolding removed. 

 

 

 

 

 

Student response 

Teacher question; PO 

 

Student response 

Student response 

Teacher question; PO 
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Jay: four.  

Teacher: Four, one – two- three- four, four space (empty 

points) makes your group alive, never be captured. 

Jay: And all the situations that happen … 

(Jay went up to demonstrate his verification) 

Jay: so if, if black goes there then white goes here, if black goes 

here then white goes here, if black goes there then white goes 

here,  if black goes here and then white goes here. 

(demonstrated the outcome of all situations.) 

Teacher: right yes, Ok. Now, take a look at this.  (new shape, 5-

empty points. Then rotated the board, finger went over the 

empty points within red multiple times).  

 

Jay: It’s the same exact and exact thing.  

Students: Ohh yeah. 

(Mary came up) 

Teacher: Mary, is this group dead or alive? 

Students: it’s kinda alive. 

Mary: it’s alive. 

Student response 

Teacher generalization  

 

Jay complete justification 

 

 

 

 

 

Teacher confirms.  

Shape transformation; PO 

 

 

 

 

 

Jay response; classifying as 

the same. 

Whole group response 

Teacher question 

Student response 

Student conjecture 
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Teacher: Yes, it’s alive. We already know that this shape 

(switched to Shape 3) is alive, you have more space (switched 

to Shape 4 by adding another empty point inside) you are alive.  

(Jay went up to verify all the situation. ) 

Jay: here.. there.. here.. 

Teacher: Jay have you verified? 

Jay: yes. 

Shape transformation; 

Teacher extends and 

articulates general rule 

Jay complete justification 

Teacher named Jay’s 

spontaneous act as to 

“verify”. 

 

From the excerpts above, we can see that the interactions between the teacher and the 

students involved many turns of conjecturing and justifying. While Excerpt 5 showed a student’s 

complete justification that emerged in the teacher guided process of forming a generalization, 

Excerpt 6 showed a student’s two spontaneous acts of complete justifications, to complement the 

teacher’s generalizations made directly after pattern observations. In other words, the student has 

adopted justifications as an integral part of reasoning with patterns,  

These acts of complete justification involved demonstrating all possible moves within a 

pattern that ultimately leads to a generalization. In doing so, the students made a generalization, 

an abstract form of knowledge, become more concrete, because it showed the process that led to 

the generalization. Again, the spatial forms (refer to the figures listed in Excerpt 6) provided 

physical constraints to facilitate their complete justification. It is worth noting that the teacher 

also interacted with the spatial forms to facilitate their reasoning processes, by highlighting the 

number of empty points inside the red boundaries.   

As the previous section highlighted the teacher’s use of shape transformation which 

facilitated various aspects of reasoning, this section, however, highlighted the students’ 
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contributions to the reasoning process, which were also mediated by spatial forms. The analyses 

showed that the students not only participated in the reasoning practices by simply responding to 

the teacher’s questions, but they also initiated their own practices of providing complete 

justifications to a general rule, which actually echo the ways the teacher guided the students 

earlier in the episode to examine all possible moves and outcomes to derive a general rule.  

Analyses of Student Interactions During Play 

I have examined how the teacher used the shape transform strategies to scaffold the 

teaching and learning process, which involves exploring various shapes that share a similar 

pattern and forming a generalization about these shapes. I have also explored how the students 

actively contributed to their own and other students’ learning by initiating the practices of 

justifications that made the generalization more concrete. Next, I explored the student 

interactions during their play. I found that the students transferred some practices of conjecturing 

and justifying that they developed during interactive instructions into their own play. 

Next, I show a cooperative play episode where Bob, Jay, and Dan worked as a team to 

play against the teacher. They exchanged their thoughts and demonstrated their reasoning in 

order to decide on each move together. This episode occurred in week 5, one week after the 

interactive instruction episode presented in the previous section. The interactions during 

cooperative play differed from those during interactive instructions, which were much more 

structured and more centered on generalizing a rule or a pattern from specific cases. The 

interactions here involved analyzing a few steps ahead from both sides to choose the best next 

moves. Therefore, some messy debates between team members are expected. Moreover, I am 

interested in whether the students chose to bring the reasoning practices they engaged in earlier 
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into these debates, because the emergence of those reasoning practices would not only indicate 

that the students might have adopted reasoning as their own means to solve problems, but also 

indicate how much they value these reasoning practices when it comes to decision making as a 

group.   

Excerpt 6. 

Transcript Coding 

Bob: I think black will play here. 

Jay: Oh, Yeah, yeah. 

Teacher: if black play here, what will happen to the white? 

Dan: Wait, look if we go here, then black will go there; if we 

go there, they will go there. Then we’ll just go there, and 

then... 

Jay: Uh...  So we go there… I know why we shouldn’t go 

there.  

Dan: Why? 

Jay: Because we are still gonna be captured. 

Dan: No, we won’t because we can escape through here.  

Jay: Oh my God... 

Dan: See, no, look, they’ll probably not capture two sides, 

look, here.  

Bob: I got it, I got it. So we put it right there. And they 

capture us, and then we put it right here. 

Suggest a move 

Affirm 

Teacher prompts to analyze 

Student suggesting a move 

with reasoning  

 

Student elects himself to 

justify  

Student welcomes to justify  

Justifying 

Objecting the justification 

Expressing disagreement 

Proposing a conjecture and 

testing it 

Suggesting a new move based 

on the analysis so far 
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Jay: Yeah, yeah. But guys, there’s one more thing,  

Dan: Oh Yeah yeah, Oh we should, cuz then they will have 

only one eye, so we can kill them.  

Jay: Look at this, think about it- 

 

Dan: -if the black 

Jay: - let me tell you something; let me tell you something. 

Dan: -If we go here, then black go here, and then they take 

us, they don’t have two eyes, so we can- 

Jay: -Wait, I wanna talk. We don’t wanna go here or here, 

cuz if you go here,  

(Bob blew the stones away) 

Jay, Dan: Oh No Dude..dude. 

(They restored the board) 

Jay: Guys, no no no. Actually, I wanna tell you something. If 

we go here, we think we can capture them, we Can’t. Cuz 

they’ll just gonna go here and capture both of these. 

Bob: but they only have one eye.  

Jay: well 

Bob: they need two eyes (to survive).  

Jay: It’s because, that, when we do this, these will be gone. 

All will be missing.  

Affirm 

Affirm + justifying 

 

Jay asking others to reason 

(with him) 

Dan cont. his justifying 

Jay Asking others to hear him 

Dan cont. his justifying 

 

Jay asking other to hear his 

justification 

 

Express frustration 

 

Cont. Justifying; reasoning 

with both side perspectives 

 

Raised Objection  

 

Explained objection 

Cont. Justifying. (defensive 

perspective) 
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Dan: So we have to escape somewhere.  

 

Jay: we can’t escape. 

Dan: Then we have to sacrifice them. That’s the whole point! 

Jay: Yes. And there’s also reason why we can’t go here.  

Dan: yes we have to sacrifice them, so go here. Because 

that… 

Jay: yes. But this won’t- 

Dan: -but then we go there, and they’ll be surrounded, and 

then we put one there, and when they make one eye, we’ll go 

get them. 

Jay: haha they won’t be surrounded.  

Dan: So look at this.  

Jay: Dude they won’t be surrounded.  

Dan: Look, We go here, they go there, They got there, and 

then we go here, and then they go wherever they’re gonna 

go. 

Jay: Oh my god, hahha 

Dan: and then we go here, they take us, and guess what 

happens, so they take us, and if we go there, and then bang! 

And look at that thing!.  

Jay: hahah, And, Go back in time, they won’t go here, they’ll 

Suggesting alternative actions 

given analysis so far 

Draw a logical conclusion  

Suggesting to “sacrifice” 

Offering a justification 

 

 

Affirm, justifying 

 

Suggesting an alternative 

move 

Rejecting the move 

 

Rejecting the move 

Justifying 

 

 

Expressing objection 

Justifying 

 

 

Challenging Dan’s justification  
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capture this one. 

Teacher: (came back) remember, you have opportunity to 

use help. You need help? 

Jay: Yeah we need help.  

 

Teacher offers help 

 

Seeking help 

 

In this episode, we saw that after the teacher prompted the student to analyze what would 

happen if the opponent played certain moves, each student expressed their own opinions and 

gave their justifications. Most of the justifications were given in forms of “if…then…” 

statements with demonstrations on the board. (This could suggest that the physical interactions 

with the Go pieces, along with the cooperative play setting, might prompt students to articulate 

the justifications in words. Although the current study does not concentrate on this question, the 

observation here could inspire future studies on the relation between verbal reasoning and 

physical interactions/spatial reasoning with patterns in a board game setting.)  In addition, they 

actively followed through the other’s justifications, offered suggestions based on those 

justifications, or challenged others’ justifications by demonstrating alternative moves and 

outcomes.  

Moreover, I found that the student Jay constantly made the effort to articulate and 

demonstrate his reasoning to the group and asked others to attend to his reasoning. For example, 

Jay said “Listen, I know why we shouldn’t go there”, “Yes. And there’s also reason why we 

can’t go here.”, etc. in multiple situations (refer to the underlined sections in Excerpt 6 above), 

which showed his persistent effort to let his group follow his reasoning. These efforts show that 
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the student highly value the actions of communicating his reasoning to the group of players and 

involving other players in the reasoning process. 

Therefore, from the analysis of student interactions during cooperative play, we can see 

that the students were able to carry the reasoning practices they developed through interacting 

with the teacher to the new setting where they work together to find the best moves. From the 

students’ efforts made to communicate their reasoning with their team-mates and their active 

involvements in evaluating others’ reasoning, we can see that they highly value the reasoning 

practices and used those practices frequently in their cooperative play.  

Discussion 

 This chapter concentrates on the analyses of teaching and learning of Go patterns, which 

play an essential role in mastering the game of Go. The episodes presented in this chapter 

illustrate that Go patterns can be derived from a few basic rules and concepts (e.g., the concept of 

Qi and the associated concept of “life and death”, the basic “eye” pattern, etc.) through a series 

of reasoning processes such as conjecturing (Lannin et al., 2011), justifying (Ellis, 2011), and 

generalizing (Staples et al., 2012). These reasoning processes are similar to the previously 

studied mathematical reasoning processes (G. J. Stylianides & Stylianides, 2009). Therefore, my 

analyses revealed what kinds of reasoning processes are embedded in the process of learning and 

applying Go patterns.   

Moreover, my analyses showed the role of spatial forms in facilitating the teaching and 

learning of Go patterns, and particularly their roles in externalizing the reasoning processes and 

supporting the students to participate in the reasoning practices. Using the emergent goals 

framework, I identified the teacher’s dynamic and fluid use of spatial forms as important means 

to facilitate the teaching and learning of Go patterns and the underlying reasoning processes. The 
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use of spatial forms suggest how spatial thinking might mediate the reasoning processes. For 

example, the pattern observation and classifying activities, which were heavily spatial, were 

necessary steps in the derivation of a general rule for shapes that share similar features. 

Therefore, my analyses suggest that spatial thinking played a role in supporting students’ 

mathematical reasoning practices in the context of learning Go.  

Moreover, my analyses of the teacher-student interactions showed that the students not 

only participated in the reasoning practices by responding to the teacher’s questions, but also 

actively contributed to the reasoning process by spontaneously offering justification following 

the teacher’s claims or generalization. These ways of participations are mediated by spatial forms 

which might facilitate the reasoning process by providing a platform to externalize the reasoning, 

and providing visual and physical constraints to identify and test all possible moves and 

outcomes. Furthermore, I found that the students were able to transfer some of the reasoning 

practices into their own cooperative play. Those reasoning practices were adopted as the 

students’ own means to solve problems. The analyses also indicate how much the students value 

the reasoning practices when making decisions as a group.   

Chapter 7: Diversifying Mathematical Strategies through Score-counting 

In this chapter, I examine whether and how mastering score-counting could be a means to 

foster spatial and mathematical practices among young children. As I discussed in Chapter 4, 

score-counting is an essential practice of Go because it concerns the ultimate game goal: to 

occupy more spaces on the board than the opponent. Thus, counting each player’s occupied 

spaces will reveal the winner of the game. Moreover, experienced players do not limit their 

counting to the end of the game; they keep a mental tally of the current score and of their 

projected occupied spaces throughout the game. Players monitor the opponent’s and their own 
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emerging territories in real time and adjust their game strategies accordingly. Because score-

counting involves working with large numbers (especially when playing on a 19x19 board) and 

often requires getting a fast result, players need to develop very efficient strategies to count or 

estimate territories. The process of developing score-counting strategies may provide 

opportunities for young children to improve their spatial and mathematical and skills.  

I collaborated with Xinming Guo, who implemented the Go and Math Curriculum (Wu & 

Guo, 2018) at two Grade 2 classrooms during the Fall semester of 2017, over the course of 10 

weeks. Although the Go contents mostly overlapped with those in the prior study discussed in 

Chapter 6, the curriculum was augmented to highlight and foster mathematical practices which 

are embedded in the score-counting activities. Score counting in this curriculum used a basic and 

straightforward approach, which differed slightly from the professional score counting. Please 

refer to Appendix II for a discussion about the distinctions. Next, I will use the common core 

math standards (CCSS, 2010) to illustrate the specific mathematical practices which can be 

fostered by participating in the score-counting activities.  

Alignment of Score-counting Activities and the Common Core Math Standard (CCSC) 

The score-counting activities (Wu & Guo, 2018) were designed in accordance with the 

common core math standards (CCSS, 2010) for Grade 2 and 3, which include understanding 

numbers and place value, operations and algebraic thinking, etc. Table 7.1. provides a list of 

common core math standards provided by Guo, which he claimed are supported by the score-

counting activities in the curriculum. 
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Table 7. 1   

List of Grade 2-3 Common Core Math Standards Supported by Score-Counting 

 

Note. Adapted from “Cover 60% Math Contents in K-3 with Just One Game—Weiqi/Go”, by 

X.Wu, & X. Guo, 2018, at conference workshop, Metropolitan Mathematics Club of Chicago, 

Lisle, IL. Math items in this table are based on Common Core State Standards for Mathematics by 

National Governors Association Center for Best Practices & Council of Chief State School 

Officers, 2010, http://www.corestandards.org/Math/ 

The list covers the majority of the common core standards at the Grade 2 level, which 

cover 3 domains—Operations and algebraic thinking (OA), Geometry (G), and Number and 

operations in base ten (NBT), and a few common core standards for Grade 3, which involves the 

understanding of multiplication. In the next paragraphs, I discuss a few examples of end-of-game 

board set-up that demonstrate such alignments.  
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The first example focuses on encouraging Grade 2 students to represent and interact with 

numbers in arrays during score-counting. This activity aligns with the two aspects of the Grade 2 

common core standards: 1) Operations and algebraic thinking, which asks students to work with 

equal groups of objects to gain conceptual foundations for multiplication, and 2) Number and 

operations in base ten, which asks students to understand place values in base ten (10s, 20s, 

100s) and use place value understanding and properties of operations to add and subtract.  

Figure 7.1 is an example of the end of game set-up where players rearranged the board for 

score counting by relocating some of the stones to make their territories into rectangular shapes 

while keeping the sizes of their territories constant.  

Figure 7.1 

An End-of-Game Go Board Rearranged for Score Counting 

 

Note. The board is rearranged in arrays and groups of 10s and 5s for easy 

counting. The white territories on the right side of the board are rearranged into 

a rectangular group of 20 (4 arrays of 5) at the upper right conner and three 
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rectangular groups of 10s stacked below. The black territories are rearranged 

into a group of 10 at the upper left corner and 4 columns of 10s below. Adapted 

from “Cover 60% Math Contents in K-3 with Just One Game—Weiqi/Go”, by 

X.Wu, & X. Guo, 2018, at conference workshop, Metropolitan Mathematics 

Club of Chicago, Lisle, IL. 

The calculation of the territories involves working with equal groups of objects. It is thus 

consistent with the specific common core math standard for Grade 2 Operations and Algebraic 

Thinking (CCSS.MATH.CONTENT.2.OA.C.4), which states that students should use addition to 

find the total number of objects arranged in rectangular arrays with up to 5 rows and up to 5 

columns; this activity may serve to gain foundations for multiplication. In addition, because the 

score counting involves counting and adding the groups of 5s, 10s, and 20s, it is also consistent 

with the standard for Number and Operations in Base Ten (CCSS.MATH.CONTENT.2.NBT. 

B.5), which states that students should fluently add and subtract within 100 using strategies 

based on place value, properties of operations, and/or the relationship between addition and 

subtraction. We can also see that the mathematical activities in the example above are achieved 

with spatial thinking because the activities involve recognizing numbers represented spatially as 

arrays and being able to mentally combine those spatially represented numbers.  

Moreover, since score counting involves not only combining numbers but also carefully 

and strategically rearranging stone configurations into arrays and groups of 10s that do not 

change the game outcome, accomplishing such rearrangement activities involves developing and 

applying fundamental understanding about properties of operations. In the next example, I 

illustrate how the stone rearrangement activity aligns with the common core math standard of 

applying properties of operations as strategies to add and subtract (see Figure 7.2).  
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Figure 7.2 

A Rearranged Go Board for Score Counting 

 

Note. The board on the left show the board before rearrangement; the board on 

the right show the board afterwards. The white arrows indicate the two pieces 

of stones that were relocated. Adapted from “Cover 60% Math Contents in K-3 

with Just One Game—Weiqi/Go”, by X.Wu, & X. Guo, 2018, at conference 

workshop, Metropolitan Mathematics Club of Chicago, Lisle, IL. 

As shown in Figure 7.2, the total score within one’s territory does not change as the 

outcome of rearrangement. The black territories initially consist of three parts: 2+4+6=12. The 

rearrangements occurred within the black’s territory and therefore did not affect the outcome. 

The rearrangement combined two territories (4+6) into a group of 10 and made the calculation 

easier as 2+10 =12. This rearrangement thus demonstrates the associative property of addition: 

2+4+6=2+10=12.  

The ability to understand the associative property of addition and apply it to solve 

problems in the context of Go is consistent with the Grade 1 common core math standard about 

Operations and Algebraic Thinking—apply properties of operations as strategies to add and 
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subtract. When the same rearrangement skill is applied to a larger board (as shown in Figure 7.1) 

which involves more operations with 2-digit numbers, the alignment extends to the Grade 2 

level—fluently add and subtract within 100 using strategies based on place value, properties of 

operations, and/or the relationship between addition and subtraction. Thus, the score counting 

activity may provide an authentic problem-solving context for Grade 2 students to connect what 

they have already learned (i.e., the properties of operations) with what they are learning (i.e., the 

base-ten place values and operations within 100), so that they may build on their prior 

knowledge to solve problems and develop new understanding.  

The two examples thus show that the Go and Math curriculum may encourage students to 

apply what they had learned and were learning in Grade 2 mathematics at the time to score-

counting. Moreover, some score-counting activities may also be their first exposure to certain 

mathematics, including multiplication.  

The common core standards provide an approach to investigating whether and how the 

score-counting activities may support the learning of mathematics at the Grade 2 levels. I will 

examine how the teacher aligned score-counting with the common core mathematics standards in 

his teaching. I will also investigate what counting strategies the children develop over the course 

of the curriculum and whether these strategies contributed to their spatial and mathematical 

skills. 

Method 

Site and Participants 

This course was implemented at an elementary school in the northern suburbs of 

Chicago. All four Grade 2 teachers at this school had their classes participate in the study during 

the Fall semester of 2017. There were 44 participants at this site, roughly evenly divided between 
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the 4 classes. We coordinated with the teachers to form two combined classrooms for Go 

instruction, each consisting of two classes, around 20 participants. The course was implemented 

once per week during the “extended learning sessions”, at one of the combined classrooms. The 

extended learning sessions occur daily in the morning for 60 minutes. Students may opt to take a 

variety of courses, such as Chinese, during that time, or choose to participate in the extended 

learning sessions. Normally, the extended learning sessions are flexible instruction times, when 

the teacher may assign some tasks, or help students with homework.  

Implementation 

The course covered mostly the same contents as those in the prior study described in 

Chapter 6. Similarly, the course consisted of interactive instruction, number telling activities, and 

play (please refer to Chapter 6 for a description of these parts of the curriculum). However, 

several new curricular activities were added to these sites, all of which were aimed at leveraging 

the score-counting activities at the end of games for mathematical learning outcomes. The pre 

and post spatial tests were implemented at this site. Please refer to Chapter 5 for an detailed 

description of the tests. 

Data Collection 

The data come from video recordings of the Go classes. During interactive instructions, I 

set up a camera facing the teacher and the front of the classroom during instructions and other 

teacher-led activities, to capture the interactions between the teacher and the students around the 

demo-board and on the computer. During play sessions, I moved about in the classroom and 

video recorded a game from multiple pairs/groups of students. I carefully attended to the 

moments when students counted their final scores at the end of games. To understand their 
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strategies, I often asked them to illustrate how they counted their scores when they finished their 

score-counting. These short “interviews” constitute an important part of my data.  

Data Analyses 

Data Selection. Because this study aimed at understanding how students rearranging 

their stones for final score-counting and how those practices change over time are critical for this 

research, I carefully extracted the episodes where students counted their final scores at the end of 

games for in-depth analyses. These data mainly emerged from two parts of each class—first, 

during the interactive instructions, when the teacher intentionally asked the students to articulate 

how they counted the final scores and asked them to come to the demo-board to demonstrate; 

second, during the student play, when I observed the students’ spontaneous counting activities 

and then asked them to elaborate on their counting strategies. 

Coding. To understand what spatial and mathematical strategies are used and the 

sequence in which they develop, I analyzed the videos directly and coded for counting strategies 

as they emerged. I paid attention to subjects’ gestures in addition to language because gestures 

may convey what features of the problem subjects attend to and reveal their spatial thinking. I 

also observed subjects’ facial expressions, especially eye gaze, which indicate what features of 

the problem or representation the subjects focus on moments by moment. The moment-by-

moment information about their focus of attention is crucial for understanding the score-counting 

process. 

Through my initial coding, I developed two foci for my subsequent analyses. First, I 

focused on uncovering the primary ways in which the teacher facilitated the score-counting 

activities. Second, I focused on uncovering the strategies used by the students for score-counting. 
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I drew on the emergent goals framework to further analyze these two aspects of the score-

counting activities. 

I used the emergent goals framework to identify the forms, functions, and goals emerging 

from the final score counting activities. The framework provides three principal constructs for 

analyzing the development of novel mathematical understanding from cultural practices: (a) the 

analyses of goals that emerge from the situations, (b) the forms, which include new ways of 

representing mathematical information that yield new approaches to solving problems, (c) the 

functions such as counting and arithmetic which utilize the forms to serve the emergent goals.  

Identifying the goals, forms, and functions involved in the score-counting activities has 

great benefits. First, the coding enabled me to better understand the ways in which the teacher 

facilitated the score-counting activities and helped the students connect their mathematical 

understanding with Go. For example, by analyzing how the goals emerged, I was able to find 

that the teacher not only promoted the students to find multiple strategies, but also encouraged 

the students to compare multiple strategies in pursuit of the most efficient. Second, by 

demonstrating the various strategies players used to count their scores, and by keeping track of 

how their strategies shifted as they played more through the course, I was able to understand 

what mathematical practices can be facilitated by the spatial forms embedded in the game of Go.  

Results 

Did Learning to Play Go Improve Young Children’s Spatial Abilities? 

 There were a total of 36 students in the classrooms who participated in both the pre and 

post mental rotation tests, The pre-test was implemented during the second week while the post 

test was implemented during the last week. The paired t-test results from the pre-test (M = 11.9, 
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SD = 2.3) and post-test (M = 10.9, SD = 2.8) indicate that there was no significant effect of 

playing Go on the mental rotation tasks, t(34) = 1.98, p = .0559, 

 Nevertheless, the use of spatial forms still might play an important role in how young 

children develop strategies for score-counting and thereby engaging in mathematics learning. 

The rest of my analyses focuses on identifying what spatial forms were used in the score-

counting and what kinds of mathematical thinking might be facilitated through interacting with 

those spatial forms, 

How did the Teacher Facilitate the Score-counting Activities and Foster Mathematical 

Outcomes?  

The teacher played an important role supporting the students’ score-counting activities 

and fostering mathematics learning. My analyses of the score-counting activities during 

interactive instructions revealed two major ways the teacher facilitated the learning of 

mathematics embedded in score-counting: 1) introducing and strategizing spatial numerical 

forms, and 2) diversifying and comparing strategies.  

Introducing and Strategizing Spatial Numerical Forms. Building on Saxe’s emergent 

goals framework, I identified multiple spatial forms introduced by the teacher that could serve as 

an important means to score-counting. I used the term spatial numerical forms to refer to those 

Go configurations which represent numbers as certain shapes and lends themselves to certain 

spatial arrangements to aid counting. These spatial forms are different from those discussed in 

Chapter 6, which concerns meaningful patterns and game strategies.  

Next, I discuss the specific spatial numerical forms introduced by the teacher that learners 

could use to count their scores. I also discuss the mathematical understanding involved in 

learning to use those spatial forms. The spatial numerical forms include number shapes, a color-



  106 

value system, and the matrix of the board. The uses of spatial numerical forms for score-counting 

indicate the potentials of playing Go in fostering spatial skills and mathematics learning. 

The Number Shapes: Visual Representation of Numbers and the Base-Ten. At the end 

of each game, players fill all the empty spaces of their own territories until there are only two 

eyes open. The final score of one player would be the total number of stones placed by this 

player. At the end of each game, players are encouraged to rearrange all the stones into two basic 

shapes (Figure 7.3 and 7.4) that consist of ten stones to enable accurate and efficient score 

counting. Such basic shapes are called number shapes (term invented by Guo). These number 

shapes are adopted from the traditional Go counting practices. Professional players also make 

these shapes like these to aid fast and accurate counting. The ten-shape shown in Figure 7.3 is 

called the “rectangular ten” in professional practice, while the ten-shape shown in Figure 7.4 is 

called the “turtle-ten”.  

Figure 7.3 

Rectangular Ten 

 

Note. Adapted from “Cover 60% Math Contents in K-3 with Just One Game—

Weiqi/Go”, by X.Wu, & X. Guo, 2018, at conference workshop, Metropolitan 

Mathematics Club of Chicago, Lisle, IL. 
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Figure 7.4 

Turtle Ten 

 

Note. Adapted from “Cover 60% Math Contents in K-3 with Just One Game—

Weiqi/Go”, by X.Wu, & X. Guo, 2018, at conference workshop, Metropolitan 

Mathematics Club of Chicago, Lisle, IL. 

Figure 7.5 

End-of-Game Counting: A Player Arranging Stones in Groups of 10 

 

The use of these spatial forms to count in groups of 10s is consistent with the standard for 

Number and Operations in Base Ten (CCSS.MATH.CONTENT.2.NBT.B.5), which states that 

students should fluently add and subtract within 100 using strategies based on place value, 

properties of operations, and/or the relationship between addition and subtraction. 
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A Fluid Number Representation System: The Color Value System and Base-Ten. To 

keep track of student scores, a score keeping system was introduced at Week 5 to allow students 

to combine their scores from each play. At the end of each game, the students were asked to 

transfer their stones (after filling in until two eyes open) directly into their score boxes (Figure 

7.6 A). However, due to this action, the players would soon realize that their stones for playing 

quickly run out as they would end up in the score boxes. This learning situation naturally lends 

itself to problem solving. After the problem emerged, the instructor introduced a color value 

system on Week 6 to keep track of scores (Figure 7.6 B).   

Figure 7.6  

Score Boxes and The Color Value System 

          

                        A                             B       



  109 

The blue marbles on top of the picture are used as place values for groups of tens. The 

other colored marbles represent values of 100s and 1000s. When students accumulated 10 or 

more stones as their scores, they may go to the teacher, who holds the “trading box” of blue 

marbles, to trade a group of ten for a blue marble. To trade, the students were asked to first 

arrange their score pieces into a rectangular ten, in exchange for a blue marble. After receiving 

the blue marble, they were asked to put the blue marble to the score box and return the ten game 

stones back to the original player box. Therefore, if a student had 3 blue marbles and 6 stones in 

their score box, we could easily tell that their score would be 36. As the score accumulates, 

stones with different colors were introduced through the trading activity: a red marble (100) to 

replace ten blues, a yellow marble (1000) to replace ten reds, etc. 

The two features above, the number shapes and the color-value system, are both in 

alignment with the base-ten numerical structure. They match particularly well with the following 

list of common core standards that concerns the understanding of place values in base-ten and 

reasoning with shapes (partitioning a rectangle into rows and column) to support the 

understanding of base-ten (Table 7.2). 

Table 7. 2   

List of Grade 2 Common Core Standards Related to the Color-Value System 
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Note. Adapted from “Cover 60% Math Contents in K-3 with Just One Game—

Weiqi/Go”, by X.Wu, & X. Guo, 2018, at conference workshop, Metropolitan 

Mathematics Club of Chicago, Lisle, IL. Math items in this table are based on 

Common Core State Standards for Mathematics by National Governors 

Association Center for Best Practices & Council of Chief State School Officers, 

2010, http://www.corestandards.org/Math/ 

The color-value system may be considered as a fluid number representation system that 

aligns the visuals with the representation of numbers according to the decimal (base-ten) system. 

I call it “fluid” for the following reasons: First, the stones a player successfully kept alive are 

directly transferred to the score box as the player's score -the basic level score. This transfer 

activity highlights a continuity from concrete objects (stones) to representation (scores). Second, 

the trading activity highlights the idea of equivalence through the exchange of stones and colored 

marbles. Thus, the concept of face values and the base-ten decimal system are naturally and 

gradually introduced, as a different color represents a decimal place.  

The Matrix System and Multiplication. Most prior studies regarding representations and 

operations of numbers among young children are associated with the number line representation, 

which has a linear format. In contrast, Laski and Siegler’s (2014) study of a non-linear 0–100 

number board game showed that the numbers organized in columns on a 10x10 grid improves 

kindergartners’ knowledge of numerical magnitudes, counting, and numeral identification. They 

suggested that 10x10 matrix might have helped children learn the base-ten structure of the 

number system.  

The game of Go is an ideal case to study how 2D matrix as a tool can influence children’s 

math learning. Go players engage in counting and operations of stones on a matrix set-up. While 
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the traditional standard Go board is 19x19, in this classroom, players played on a 5x5 board 

(Week 1 and 2), 6x6 and 7x7 board (Week 3-9), or 9x9 board (Week 10), all of which have a 

matrix structure.  

I consider the matrix structure as a type of spatial form, because this structure may afford 

a range of mathematical practices (Novick, 2006; Novick & Hmelo, 1994), especially in the 

context of score counting. To be specific, as the goal of the Go game is to maximize one’ spaces 

on the board by constructing live groups of stones, the game would naturally progress toward the 

formation of several divided sections on a matrix. To determine the scores in each section of the 

matrix, players may find a set of rectangular shapes, such as the rectangular ten discussed in a 

previous section or stones arranged in an array, which they can easily apply multiplication; 

alternatively, the stone arrangement in that section may lend itself to some simple modification 

to become an array.  

In addition, as the players become more familiar with the board, they may gradually 

become familiar with the total number of stones on a full board or part of the board and integrate 

these pieces of knowledge to develop new solutions to the score counting problem. Moreover, 

the teacher introduced the following activity to support the students’ understanding of matrix.  

As shown in Figure 7.7, a score record card was distributed to learners at each class to 

record their scores after each round of game. This score-recording activity was designed to 

support the understanding of matrix: by asking both players to combine their scores, the activity 

would eventually lead learners to discover that the total score should be consistently the same 

number and become familiar with the total numbers presented on the 5x5, 6x6, or the 7x7 

boards. Thus, I suggest that such experience can be useful for multiplicative thinking. 
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Figure 7.7 

A Score Record Card for Tracking and Exploring the Matrix of The Go Board 

 

Note. R stands for round; w stands for white; B stands for black; T stands for total (black and 

white scores combined. As showed on the card on the bottom, the total score was consistently 45 

after 3 rounds. The students played on a 7x7 board, which has 49 inter-sections. Because each 

player has to leave two eyes in their territories, the total score was thus 49-2-2=45.  

In summary, the number-shapes and the matrix setup of the Go board can all be viewed 

as spatial numerical forms, which are the ways of representing mathematical information that 

could yield different approaches to solving problems. As young children interact with these 

forms to count their final scores, they will experience numbers represented in different formats, 

including those represented according to the base-ten system, those represented by empty spaces 

as opposed to concrete entities (stones), those represented in rolls, arrays, and matrixes.  

In my subsequent analyses, I will demonstrate the various ways players used spatial 

numerical forms to assist their score-counting, keep track of how their strategies shifted as they 
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became familiar with those forms, and discuss what these shifts suggest about their mathematics 

understanding. 

Diversifying and Comparing Strategies. In addition to introducing spatial numerical 

forms and demonstrating score-counting strategies with these spatial numerical forms, the 

teacher also promoted the students to diversify score-counting strategies and to compare those 

strategies in pursuit of efficiency.  

Since the beginning of the curriculum, the teacher often engaged the students in number-

telling activities—he often asked students to look at one setup board for one second and tell him 

the number of stones shown. These number-telling activities might promote the students to align 

numbers with shapes on a Go board and were intentionally designed to lay foundations for score-

counting. Moreover, the teacher also followed up with questions such as “how do you know?” 

Then, the students articulated multiple strategies they used to find out the number.  

These practices were repeated in actual score-counting. After each demo games, the 

teacher asked the students what the final score for black and white were on the demo board. In 

these score-counting episodes, I always found the teacher always encouraged students to find 

multiple strategies by asking “What is the score for black?” “How do you know?” “What is 

another way to count?” “Can you show me another way”, etc. Moreover, as more counting 

strategies emerged, the teacher would ask the students to compare multiple strategies and 

consider “which way is better?” 

To articulate their counting strategies, students needed to dissemble the stones into 

multiple smaller groups and then add them together. Such practices open up a new way to think 

about addition—as assembling and rearranging stones into basic number shapes. Excerpt 7 

shows that the teacher created various opportunities in class for counting by visualizing numbers 
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in groups and shapes. After the students articulated their own strategies, the teacher 

demonstrated a strategy that involved rearranging stones into groups of tens on the board.  

Excerpt 7. 

Teacher: “What is the score for black?” 

Student: “15!” 

Teacher: “How do you know?” 

Student: “Because there are 5 here, 5 here and 5 here” 

Teacher: “Great! any other ways to count?” 

Student: “Because this is 8 and this is 7, 8+7 is 15” 

Teacher: “Good. Let me show you another way: (moving the stones into a 

rectangular-ten and a string of 5 stones)” 

Teacher: “What is the score here? (using a piece of paper to cover the rest of the 

board and only showing the rectangular ten)” 

Students: “Ten!” 

Teacher: “And how many are here (pointing to the group of 5)” 

Students: “Five!” 

Teacher: “So the final score is ten and five, fifteen.” 

Teacher: “There are different ways to count. Which way do you think is better?” 

Students: “The last one.” 

Teacher: “Right. When we count the final score, we should think about efficiency. 

When we can reorganize the board into these rectangular shapes, we can count the 

score very fast; it’s accurate and efficient.” 
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Excerpt 7 illustrates that at least three strategies were demonstrated and discussed for 

counting the final score at the end of a game. These score-counting instructions were always 

present in each week’s Go lessons. As the student become more familiar with spatial numerical 

forms such as the “rectangular-tens”, the teacher frequently guided the students to compare 

different strategies in pursuit of the more efficient.  

These teacher-facilitated score-counting activities show that the teacher played an 

important role guiding students to not only find multiple strategies but also evaluate strategies in 

terms of efficiency. In light of the emergent-goals framework, I suggest that these discussions 

around multiple strategies and efficiency might influence the formation of goals and thereby 

cause shifts in the students’ choices counting strategies.  

So far, I have examined the spatial forms the teacher presented in the curriculum and 

discussed their potential relevance to mathematical outcomes which are illustrated in terms of the 

common core math standards. For example, the number-shapes and the color-value system are 

associated with the understanding of place values; the rearrangement activities are related to 

operations and algebra thinking; the matrix may contribute to the understanding of 

multiplications. Moreover, I have also examined the ways in which the teacher facilitated score-

counting activities—by diversifying counting strategies and forming the goal of choosing 

efficient strategies.  

In the next section, I will examine the counting strategies actually being adopted by the 

students in their score-counting. By studying how their counting strategies evolve, we will 

understand whether and how the spatial forms and goals may potentially influence the students’ 

counting strategies and contribute to math learning. 
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The Advancement of Students’ Counting Strategies 

Identifying Students’ Counting Strategies. I first coded for various counting strategies 

that emerged in the counting of stones at the end of games. These strategies include skip 

counting, grouping by number-shapes, and multiplying by making arrays, etc. I found that the 

students incorporated the spatial numerical forms discussed in the previous section, such as 

number shapes (e.g., rectangular-ten and turtle-ten) and the matrix structure of the board, etc., 

into their counting strategies. I used the emergent goals framework to categorize counting-

strategies. For each strategy, I defined the spatial form being used, its function, and goals it 

served. I found four types of counting strategies in total (see Table 7.3). The four types of 

counting strategies occurred in different times over the course of the curriculum. Next, I give a 

detailed account of each strategy and when they emerged.  

Strategy 1. During the first two weeks, the students mostly used their fingers to count one 

by one or two-by-two on the board. I coded such strategy as Strategy 1. I did not observe any 

other counting strategies during the first two weeks. The students only played on a 5x5 board 

during the first two weeks, so this strategy did not seem tedious. However, since some students 

did not follow specific orders when counting on the board, they sometimes made mistakes or 

needed to recount to ensure accuracy.  

Strategy 2. Beginning on Week 3, the teacher introduced two basic base-ten shapes, 

including the rectangular ten (2x5) and turtle ten, and demonstrated how these number shapes 

could be used for score-counting. The students then adopted these number shapes as one of their 

primary counting strategies.  

Specifically, I coded their strategy as Strategy 2 when the students took their stones off 

the board and made tens from scratch. This is to be distinguished from Strategy 3, in which the 
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students rearranged stones into arrays (including 2x5) without taking the stones off the board. 

This strategy is associated with the understanding of the base-ten system.  

Table 7. 3   

Score-counting Strategies Defined by Spatial Forms, Functions, and Emergent Goals 

Spatial Forms Functions Emergent Goals 

Single stone or pairs of stones  

 

Number shapes (e.g. 

rectangular-ten 2x5) 

 

Arrays 

 

 

Board Matrix  

Count by one or two 

 

Count by a visual base-

ten system  

 

Skip counting and 

multiplication 

 

Multiplication 

Find the score by counting the number 

of actual stones. 

Make number shapes to find score and 

reach agreement between players using 

a shared norm.   

Faster counting; find how a 6x6 board 

differs from a 5x5 board. 

 

Find the score without filling in all 

surrounded spaces with stones (when 

stones run out); rearrange one’s spaces 

into a matrix on the board.  

 

Strategy 3. This strategy involves relocating a couple of stones to join or dissect from a 

larger group of stones on the board to make rectangular tens (2x5) or other rectangular arrays on 

the board (e.g. 3x5, 4x4) and then skip counting each column or just reading it out. Strategy 3 

often emerged in situations where the learners noticed that the existing shape of stones on the 

board could be rearranged into one or a few rectangular shapes plus or minus a few extra stones. 

Consequently, they rearranged the stones and then counted the rectangular shapes as a whole or 
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skip counted each column. This is evidence that they learned to utilize the structures that already 

existed on the board and made use of the matrix.  

Strategy 4. This strategy involves deriving the final score based on the size of the board. 

The total number of intersections on a board is fixed: 25 on a 5x5 board, 36 on a 6x6 board, etc. 

If a player won the whole 6x6 board, their final score final score would be 36 - 2 = 34 (two eyes 

subtracted). If a player had the score of 16 on a 6x6 board, the other player’s score would be 36-

16-2-2=16 (each player has to leave two eyes unoccupied). Therefore, like Strategy 3, this 

strategy also involves flexibly utilizing existing knowledge about the matrix to solve problems.  

In my earlier analyses on the role of the teacher, I identified the spatial forms the teacher 

introduced in the curriculum, such as the number shapes and the matrix, as means to facilitate 

score-counting. In this section, I found that the students were able to adapt these spatial forms as 

their own tools for score counting. Because the students actively interacted with the spatial forms 

for score counting, they might improve their mathematics understanding that were associated 

with the spatial forms.  

Moreover, in the previous section, I also showed that the teacher guided the students to 

explore multiple strategies and consider efficiency as they compared different strategies. In light 

of the emergent goals framework, I suggested that the pursuit of efficiency may be considered as 

a goal which could potentially motivate students to adopt more efficient strategies, which were 

associated with more advanced mathematics knowledge including multiplication. In the next 

section, I examined whether there were advancements in the students’ counting strategies, and if 

so, whether the advancements were related to the pursuit of efficiency or other emergent goals.  

Identifying Shifts in Goals and Counting Strategies. I found that the students generally 

advanced from Strategy 1 (counting by 1s and 2s) to Strategy 2 (base-ten number shapes) and 
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Strategy 3 (counting by arrays) during Week 3 through Week 6; Strategy 4 (using matrix 

knowledge) began to emerge later in the course as the students became more familiar with the 

sizes of boards. To understand what may influence and advance score-counting strategies, I 

identified the emergent goals in each score-counting episode by attending to what tasks were 

being promoted at the time (e.g. trading for score marbles, filling the score record card, etc.), the 

students’ prior exposure to certain number-shapes, and situational constrains such as sizes of the 

board, time limit, etc. I found that the students’ counting strategies are related to the goals in the 

moment and can advance as different goals emerge.  

For example, between Week 3 and Week 5, Strategy 2 and Strategy 3 appeared equally 

frequently, each took up 40% of total score-counting instances I recorded and coded. However, 

Strategy 2 became the dominant strategy (80% of instances) on Week 6 and afterward, when the 

color value system was introduced—the students were asked to arrange their stones into 

rectangular tens in exchange for a blue marble which represented score of 10. Therefore, the 

introduction of the color-value-system might have encouraged the students to take their stones 

off the board to make rectangular-tens, causing the shift to Strategy 2.  

While Strategy 2 was related to the understanding of place values, Strategy 3 and 4 

involved utilizing the matrix of the board and therefore were associated with the understanding 

of multiplication. Although I found a decrease in the use of Strategy 3 in the latter half of the 

semester, there were profound evidence that the students developed understanding of 

multiplication through the use of Strategy 4. Next, I examine how Strategy 4 emerged and 

identify the goals which might have contributed to the strategy and the learning of multiplication.  

Multiplicative Thinking Supported by the Matrix. I found that Strategy 4 initially 

emerged a situation where a player captured all stones of the opponent (which occurred 
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frequently on small boards for novices) but did not have enough stones to fill the whole board or 

chose not to. Some players were able to take advantage of their knowledge of the board, such as 

knowing how many stones there should be in one line of the board, and how many stones there 

should be when the whole board is filled. They used such knowledge adaptively to find final 

scores, without putting down and counting physical stones.  

Next, I present Excerpt 8 which shows the first instance of Strategy 4 I observed from a 

student’s end-of-a-game score-counting. This event was recorded in Week 6.  

Excerpt 8. 

Student: Look! I took over the whole board! 

Teacher: Nice job! So what's your final score? 

Student:  The entire board is 25. I need to make two eyes. So I subtract 2 from the 

total. So my final score is 23. 

In the earlier interactive instructions, this individual came up to the demo board to answer 

Mr. Guo’s question that was related to the total number of stones on the demo board, which was 

a 5x5 board. In the process, the individual learned that the total number should be 25. However, 

in Excerpt 8, the board actually used was a 6x6 board. Therefore, the final score should be 6x6-2 

which is 34. However, this is a productive mistake that clearly demonstrated that the individual 

adaptively made use of what he just learned to solve problems in this new situation.  

This counting strategy was not only used in a situation where the player won the entire 

board, but also in a situation in which a player needed to find their own score efficiently without 

filling in their territories with stones and counting. In Week 8, I recorded a pair of students who 

just finished a round of game on a 7x7 board and were counting their final score to fill in their 

score-record card. At that moment, the class was about to end, so the teacher asked them to finish 
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their game and put their stones away. Consequently, only one of the players was able to finish 

counting his own final score. Nevertheless, the other player was able to derive his own score by 

subtracting his opponent’s score from the total score, which he learned to be 49-2-2=45. 

From the two examples above, we can see that that Strategy 4 naturally emerged from the 

students’ score counting activities. Several factors contributed to the strategy. First, this strategy 

emerged as the students adaptively utilized what was available to them at the moment (e.g., the 

knowledge of the total score on a board, the opponent’s score) as tools for score counting. The 

strategy was also motivated by the pursuit of efficiency or the demand to work with constraints; 

it was tedious to fill the entire board in the first example, and the player ran out of time and 

stones in the second example.  

Therefore, this analysis show that the students were able to adaptively utilize the spatial 

form introduced by the teacher, response to emergent goals, including dealing with physical 

constraints, and be innovative in their counting strategies. Thus, the score-counting activities 

may be considered as an dynamic and adaptive learning environment, where the players are 

active problem-solving agents, who are provided with a set of spatial forms as tools. They may 

develop new ways to use these tools to solve problems as they emerge. In the process, they may 

gain new knowledge about mathematics as they learn to use the spatial forms in different ways to 

meet their problem-solving goals.   

To further illustrate this point, I demonstrate another example showing how the students 

were able to extend what they learned about arrays and matrix to estimate the size of a Go board 

which they never played with. The following Excerpt 9 illustrates an interaction between the 

instructor and the students around different sizes of Go boards. This interaction occurred in 
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Week 9, when the students had become familiar with 5x5, 6x6, and 7x7 boards, through playing, 

score-counting, and the score tracking activity. 

Excerpt 9. 

Teacher: How many stones can you place on this board (5x5)?  

Student A: 25! 

Teacher: What about this board (7x7)? 

Student B: 49!  

Student C: 30! …  

Teacher: If the entire board is yours now, and your opponent have no space to 

survive, what is your final score? Remember, you have to make two eyes. 

Student B: 47! 

Teacher: 47? How did you know? 

Student B: Because there are 49 points on this board, and you have to have two 

eyes. 49-2 is 47.  

Then, the teacher put out a large board they never played on, and asked: 

“What is the maximum score possible for this 11x11 board? Can you guess?”  

Student D: I guess it is more than 100.  

Teacher:  It is more than 100. Do you agree?  

Student E: Yes!  

Teacher: How do you know? 

Student E: “If you put 10 stones on each line, and there are 11 lines, so the total 

score should be more than 110.” 

Teacher: “Yes! Very good! This is a great way to estimate. Is there another way?” 
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Student F: “I did skip-counting by 11, so it’s 11, 22, 33… to 99, and then you 

have to add more…” 

From Excerpt 9 above, we can see that through these score counting activities on several 

boards, students had gained knowledge about the 5x5, 6x6, and 7x7 matrix. They also could 

utilize the ways of thinking about matrix as a tool to estimate a large number. For example, 

Student E was able to combine what they learned about calculations with base ten and the 

strategy to arrange stones into arrays to solving this problem. Similarly, Student F was able to 

use skip counting and addition of arrays of equal numbers to make the estimate. These strategies 

indicate that they have adapted the matrix as a mathematics tool and gained foundations for 

multiplication.  

Discussion 

Prior studies have shown that physical materials that are closely aligned with the desired 

knowledge structures increase analogical transfer and therefore promotes deeper learning (Chen, 

1996; DeLoache, Kolstad, & Anderson, 1991; Gentner & Markman, 1997). Based on my 

analysis of the score counting activities, I found that learning Go can potentially facilitate young 

children to understand place values, solve arithmetic problems that could be difficult for them 

otherwise, or to solve them in more efficient ways, because this curriculum aligned numerical 

concepts and operations with basic shapes, colors, and matrix. The spatial forms such us the 

rectangular tens and the matrix provided the spatial grounding for the base-ten system and 

multiplicative thinking.  

In addition to the spatial numerical alignment supported by the basic shapes, colors 

values and 2D matrix boards, the counting activities also created opportunities for adaptive 

learning problem solving. My analyses of the emergent goals in score-counting activities show 
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that the students were able to adaptively utilize the spatial form to solve emergent problems such 

as dealing with physical constraints and time limit. They may gain new knowledge about 

mathematics along the way, as they learn to use the spatial forms in different ways to meet their 

problem-solving goals.   

In conclusion, the students gradually adapted the spatial forms in Go as tools to serve the 

increasingly complex goals. Through this process, the Grade 2 students began to participate in 

higher-level math practices like multiplication. As children become familiar with the tools, they 

can adaptively shift the functionality of these tools to meet increasingly complex goals in the 

game play, thereby practicing higher-level math functions like multiplication.  

Chapter 8: Conclusions  

In this dissertation, I demonstrated and detailed the relation between spatial thinking and 

math learning in the context of an ancient and rich game of Go. By examining how young 

children engage in spatial thinking and math learning through Go, this study advanced our 

understanding of the accounts of how spatial thinking might support math learning (Hawes & 

Ansari, 2020) in light of the sociocultural perspectives of learning as mediated by cultural tools 

(Cole, 1996; Rogoff, 2003; Vygotsky, 1987; Wertsch, 1985).  

My approach to studying Go is largely motivated by examining its core features. I 

identified two primary features of Go which potentially make it a tool for math learning. First, 

the game of Go has minimum rules to remember and basic stone pieces which have no 

restrictions on where to play and all perform in the same way. Thus, the game of Go provides a 

low entry point for beginners. At the same time, the minimum rules and free stone pieces give 

rise to millions of meaningful patterns which requires reasoning to learn. Therefore, the first 

feature of Go highlights the role of reasoning in learning and applying Go patterns. Second, 
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score-counting play a critical role in the game of Go. Unlike most board games that have a clear-

cut ending when certain action is completed, the game of Go relies on consistently estimating 

and counting territories to determine when to end a game and adjust strategies during a game. As 

a result, players need to engage in spatial thinking and utilize certain spatial arrangements on the 

board to calculate their scores. The skills required by score-counting potentially overlaps with a 

significant amount of mathematics understanding that young children develop at Grade 2 and 3.  

Based on these two core features of Go that I identified, I developed two studies to 

explore the game of Go as a tool for math learning. In study 1, I examined the reasoning 

practices Grade 3 students participated in as they learned to explore Go patterns. In study 2, I 

explored how Grade 2 students developed score counting skills and investigated whether and 

how these score counting practices might support the learning of mathematics, including place 

values, operations and algebraic thinking, and multiplicative thinking.  

In my first study, I mainly investigated the math learning in the game Go through the lens 

of participation. I identified the ways in which the teacher engaged students in reasoning 

practices, and the ways in which the students participated in the reasoning practices during 

interactions with the teacher and among themselves. I found that the students were able to 

engage in reasoning practices that frequently occur in learning and doing mathematics, which 

include conjecturing, justifying, and generalizing (Ellis, 2007; Hanna, 2000; Lannin, 2005; G. J. 

Stylianides & Stylianides, 2009).  

In addition, my first study revealed important ways in which engaging students in spatial 

reasoning, including pattern observations, and classifying activities, contributed to the reasoning 

process. I found that the teacher used spatial transformation strategies—presenting multiple 

patterns in dynamic and fluid ways—to support pattern observation, classifying, and other 
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reasoning processes involved in learning Go patterns. The spatial transformations may foster 

learning because the fluid transitions between shapes might not only highlight shape similarities, 

but also foster a sense of connectivity in the reasoning processes underlying similar shapes, so 

that the students might carry the same line of reasoning they developed in learning a basic shape 

to increasingly complex patterns. In other words, my analyses indicated that the dynamic and 

fluid use of similar shapes might support young children to reason about Go patterns.  

Thus, my study contributed to the line of research on supporting mathematical reasoning 

practices (Ellis, 2007; Hanna, 2000; Lannin, 2005; G. J. Stylianides & Stylianides, 2009), by 

proposing a set of spatial tools which can make reasoning processes easier and more accessible 

for young children and thereby encourage them to participate in mathematical reasoning 

practices. Therefore, this study may also provide an alternative approach to understanding why 

and how developing spatial skills might help young children learn mathematics (Levine et al., 

2012; Jirout & Newcombe, 2015; Ramani & Siegler, 2008; Siegler & Ramani, 2009). 

Specifically, my study contributed to the spatial modeling account of math learning (Hawes & 

Ansari, 2020), by detailing specific ways of modeling mathematical reasoning spatially and by 

highlighting “dynamic and fluid” shape transformations as a critical feature of spatial modeling 

that might facilitate mathematical reasoning.  

In my second study, I explored how Grade 2 students developed score counting skills and 

investigated whether and how these score counting practices might support the learning of 

mathematics. I approached this question in light of studies on cultural tools that influence 

numerical representations and arithmetic practices and thereby influence how individual’s think 

mathematically. I drew on the emergent goals framework to identify spatial forms which were used 

for numerical representations and operations during score-counting activities. I found that the use of 
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spatial forms, including base-ten number shapes, color values, and the matrix of the board, aligned 

well with the types of mathematics understanding and skills illustrated by Grade 2 common core 

standards. In other words, the spatial forms served as a means to connect multiple formal 

mathematics practices and authentic problem-solving in a game context. Moreover, I found that the 

score counting activities formed a learning environment where students could turn many different 

mathematical ideas and practices (e.g., place values, operations and algebraic thinking) they were 

learning into problem-solving strategies and apply them in the same game context. By adopting these 

spatial forms as tools for score-counting, the Grade 2 students could even learn new mathematics that 

they had never experienced with before, such as multiplication.  

This second study showcased how a variety of spatial numerical representations, which yield 

different strategies to solve math problems, could be flexibly created with the same physical 

materials in the same game context. Because of this, the spatial numerical representations in Go are 

not conceived as means to facilitate one particular type of math strategy or concept, but rather 

conceived as particles on a platform, where different ways of representing and organizing numbers 

are connected and interchangeable. Players can be conceived as active agents in this platform, who 

are responsible for their own learning as they search for the best strategies to solve emerging 

problems. Therefore, my study builds on the spatial numerical account of math learning (Hawes & 

Ansari, 2020), by offering an alternative perspective on why spatial numerical representations might 

support math learning.  

In addition, my study contributes to literature that explores the potentials of board games and 

other cultural activities in supporting the learning of mathematics. In particular, my study contributed 

to studies on the spatial alignment between physical materteral and mathematic understanding (Chen, 

1996; DeLoache, Kolstad, & Anderson, 1991; Gentner & Markman, 1997). Building on Laski 

and Siegler’s (2014) study of a number board game presented on a 10x10 grid, my study 
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highlighted the 2D matrix (Novick, 2006; Novick & Hmelo, 1994) as a potential tool for young 

children to gain foundations for multiplication.  

Moreover, my analyses of emergent goals (Saxe, 2008) revealed that score-counting 

activities fostered an adaptive learning environment, where the players were active problem solvers, 

who creatively used spatial forms to address emergent problems; they might learn mathematics as 

they adaptive new ways to use spatial forms. For example, the students developed multiplicative 

thinking as they adopted the knowledge of the size of a familiar board and strategies of counting by 

arrays to estimate the size of a much larger board which they had never played with before. 

Therefore, my study showed that the students were not only able to complete score-counting tasks by 

following the teacher’s instructions, but also “internalize” some of the spatial forms and use them 

creatively. This finding thus resonates with prior studies on mathematic learning with board games 

(Guberman & Saxe, 2000; Nasir, 2005; Saxe, 1992), which demonstrated how players could 

engage in sophisticated forms of addition, subtraction, and multiplication, through repurpose or 

appropriate existing cultural forms in order to solve emerge problems in context.  

Furthermore, my study highlighted multiple ways in which the teacher facilitated the 

reasoning with patterns and the score-counting processes. In study 1, I showed that the teacher 

used spatial transformations fluidly to support the students’ reasoning processes. In study 2, I 

showed that the teacher not only introduced a series of useful spatial forms that align with core 

mathematical concepts in Grade 2, but also fostered learning community which encouraged 

multiple strategies and promoted discussion around the efficiency of different strategies. These 

insights about the teacher’s roles could potentially generate implications for the design of 

curricula and pedagogical techniques. 
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In conclusion, I examined Go as a cultural tool and explore its potential to influence the 

way Grade 2-3 students learn and do mathematics. I studied video data of interactive Go 

instructions, game play, and end-of-game score counting across three sites where a Go and Math 

curriculum was implemented. I identified various counting strategies used at the end of games, 

such as skip counting, grouping, and multiplying, and kept track of how individuals’ counting 

strategies advance over time. I also identified mathematical reasoning practices that emerged in 

the learning process, which include conjecturing, justifying, and generalizing. Several key 

features of the Go and math curriculum have potential to facilitate spatial thinking and math 

learning.  

I suggest that Go introduces a representation system in which numbers are presented as 

visual patterns and shapes constructed by stones and lines of the board. Such a representation 

system may promote a spatially based way of thinking about and doing mathematics: children 

can count by recognizing shapes, and do arithmetic by moving, rearranging, and combining 

different pieces together, both physically and mentally. In addition, the process of learning Go 

may enable young children to participate in mathematical reasoning practices such as 

conjecturing, justifying, and generalizing, which might be difficult to partake in otherwise at 

Grade 2-3 level.  
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Appendices 

Appendix I  

Course Title: The Game of Go and Math (Gr. 2-3) 

 

Course Description: 

The game of Go originated in China about 3000 years ago. It is the most ancient strategic board 

game that is still played. Today, there are more than 40 million Go players worldwide. Go 

cultivates a wide range of cognitive abilities, including spatial reasoning, problem-solving, 

decision-making, etc. The game also fosters concentration, discipline, and endurance. Moreover, 

research suggests promising links between Go and math achievement. Our interdisciplinary 

curriculum aligns Go with the Common Core standards, including counting and cardinality, 

number and operations, arithmetic and algebraic thinking. The game-based curriculum makes 

advanced math concepts accessible for Grade 2 and 3 students. Students can learn math without 

even noticing, while enjoying the rewarding experience Go offers.  

 

Essential Questions:   

• How is Go played? 
• How does playing Go develop spatial thinking skills? 
• How does playing GO improve mathematics learning and achievement? 

 

Course Learning Outcomes:   

Upon successful completion of this course, students will: 

a. Improving spatial thinking, such as recognizing patterns and distributions. Developing 

understanding of number and mathematics, including multiplication and division.  

b.  Learning how to label patterns. .   

c. Solve arithmetic problems including addition, subtraction, multiplication, and division 

using the Go board and stones.  

d. Develop other useful skills and intuitions in preparation for future math learning.  

Resources and Materials: 

a. Go game sets for the classroom 

b. Classroom resource kit 

• 7x7 boards and 9x9 boards printed on paper 

• Black and white Go stone to mark positions on the GO boards 

• Markers, stickers and notebooks for portfolio 

•  
 

 

Schedule: (Subject to change) 
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Session Today’s Content 

 

Student Learning Objectives 

 

Product Choices 

Week 1 

 

Know the Go board I: 

Coordinates, size, 

intersection 
 

Basic concepts I: 

The concept oft: “liberty” -- 

the number of unoccupied 

intersection points that are 

connected with stones. 

Moves: capture, connect, 

and cut  

Embodied activity: 

students play stone 

characters to act out the 

basic concepts. 

1. Pre-Assessment 

2. Become familiar with the Go 

board and stones by creating 

personally meaningful 

geometric shapes  

3. Practice thinking about 

analogies and geometric design 

4. Explore multiple ways of 

counting the “liberty” of 

stones 

5. Apply the basic moves – 

connect, cut, and capture –in a 

Go game 

6. Play the first Go game  

A group skit that 

demonstrates the 

basic Go moves--

capture, cut and 

connect–through 

body movements.  

 

Portfolio: 1. 

Designs of 

geometric shapes  

2. Record the 

patterns of basic 

moves 

Week 2  

 

Know the Go board II: 

Corners, edges, the center 
 

Basic concepts II: 

Change of liberty, territory, 

risks and uncertainty. 
 

Strategies: 

Counting territories during 

and after a game  

Recognizing and responding 

to risks of being captured 

1. Explore ways to count the 

territory each player owns  

2. Learn ways to organize 

patterns to facilitate counting, 

addition, multiplication, 

etc.Recognize simple risks  

3. Be able to escape from risks of 

being captured 

4. Master the strategy of “cut” in 

attacks and defenses  

5. Complete multiple games 

Rearrangement 

activity I: 

Invent a way to 

rearrange the stones 

of a finished game, 

so that it’s easy to 

count territories 

 

A group skit that 

demonstrates risks 

and escapes from 

capture 

Week 3 

 

Basic concepts III: 

“Eternal life” – cannot be 

captured by the opponent  

Patterns: “diagonal” 

“fly” ”jump” “Atari ”etc. 

Strategies: 

Guidelines and techniques 

for capturing 

Number shapes I: explore 

math representations on the 

Go board 

1. Develop a sense for who is 

winning during a game by 

mental counting 

2. Apply the capture guidelines 

and techniques 

3. Flexibly apply the basic 

patterns as strategies in a game 

4. Recognize the patterns made 

by the opponent 

5. Be able to explain what makes 

a group of stones “alive”  

Portfolio: Record 

the patterns learned 

today. 

 

Create a group skit 

demonstrating the 

process leading to 

“eternal life” 

through body 

movements 
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Session Today’s Content 

 

Student Learning Objectives 

 

Product Choices 

Week 4 

 

Basic concepts IV:  

The “eyes” – structure 

leading to “eternal life” 

Strategies: 

Finding the “key” stones 

How to be efficient on 

moves 

 

Number shapes II: explore 

math representations on the 

Go board 

1. Recognize the “key” stones of 

a game by considering relative 

position of stones on the board 

2. Make simple “alive” groups in 

a real game by making the 

“eye” pattern 

3. Be able to capture stones in 

groups. 

4. Improve techniques by 

considering efficiency of 

moves 

Rearrangement 

activity II: 

Rearrange the 

stones of your own 

finished game to 

make it easy for 

counting. 

Portfolio: construct 

symmetric, rotated, 

and mirror images 

of learned patterns 

on the go board 

Week 5 

 

Patterns and Strategies: 

“Gates” and “Ladder” 

The “Ko” rule – the 

concept, procedure and 

application  

 

Number shapes III: 

Arithmetic problem solving 

on the Go board 

1. Apply new patterns - “gates” 

and “ladders” - to capture, 

escape, and avoid risks 

2. Follow the “Ko” rule in real 

games 

3. Discovering the connections 

between additions and 

multiplications on the Go 

board 

Portfolio: Record 

the strategies and 

patterns learned 

today. 

Create a group skit 

demonstrating the 

“Ko” rule in action. 

Week 6 

 

More on Strategies: 

Variations of the “eye” 

pattern 
 

Explore Symmetry in Go 
 

The common practices of 

Go players: record, replay, 

and reflect on a game 
 

Tournament Round 1 

1. Produce “eye” patterns in 

different sizes and orientations  

2. Determine whether an “eye” 

pattern is “alive” 

3. Recognize and make 

symmetric patterns on the go 

board 

4. Reflect on the process of a 

game – evaluate the good and 

bad moves, the efficiency, and 

consider alternative moves. 

5. Become familiar with the 

game record sheet. 

Portfolio: Construct 

the various learned 

patterns in different 

sizes and 

orientations.  

 

Recreate a game on 

the Go board 

according to a game 

record sheet 
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Session Today’s Content 

 

Student Learning Objectives 

 

Product Choices 

Week 7 

 

Introduction to some of the 

vocabulary of professional 

GO players Go: 

moments, stages, short/long 

term, etc. 
 

Review on game strategies 

 

Invent an abacus on the Go 

board 
 

Tournament Round 2 

 

1. Develop deeper understanding 

of Go through review and 

reflection 

2. Improve on Go techniques 

through tournaments  

3. Advance arithmetic thinking 

by making numeric 

representations and operations 

on the Go board 

4. Be able to record a game on 

the record sheet. 

 

Portfolio: Record 

another pairs’ 

tournament on a 

game record sheet. 

Record results of 

your tournament 

 

Fun activity: Using 

the Go board and 

stones to invent an 

abacus system in 

pairs. 

Week 8 

 

Try out on the whole Go 

board (19x19) 
 

Review on game strategies 
  

Tournament Round 3 

 

Explore beyond the Go 

game 

1. Understand how the whole 

board differs from the smaller 

boards  

2. Complete the post-assessment 

3. Cultivate creativity by 

designing a new game 

Portfolio: Record 

results of your 

tournaments 

 

Fun activity: Using 

the Go board and 

stones to invent a 

new game 
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Appendix ii: The Ways of Counting Final Scores 

 

In traditional Go practices, at the end of each Go game, the players rearrange stones on 

the board to enable score counting. This activity creates various opportunities for players to 

exercise math and spatial skills. First I will illustrate how professional players rearrange stones 

on a professional 19x19 board. Next, I will illustrate the adapted counting system used in this Go 

and Math curriculum, on smaller boards such as 5x5, 6x6, and 7x7 boards.  

In traditional Go practices, there are usually two counting systems – the Chinese counting 

system and the Korean/Japanese counting system. In this paper, I will only introduce the 

Korean/Japanese counting system: At the end of a game, players will first remove all dead stones 

from the board. Next, players will put back the captured stones onto the board by filling in the 

empty spaces within their own territories. Usually, players would start to fill in those smaller 

territories and then move on to fill the larger territories. At the same times, in doing also, they 

would fill around the boarders of the territories so that the empty spaces within territories would 

appear to be rectangular shapes. Since both players put back their captured stones, there will be 

equal numbers of black and white stones on the board. Therefore, players can determine who 

wins a game by comparing the empty spaces within each other’s territories. The player with 

more empty points within one’s territory wins the game. It is more accurate and efficient to 

rearrange the stones such that the empty spaces within territories become rectangular shapes – to 

apply multiplication rules. Moreover, it would be even better if players arrange the empty spaces 

into groups of tens, 20s, 30s, and so on. 

While this way of counting is efficient, the rearranging might be too demanding for 

elementary school students. In addition, counting the empty spaces of their territories might not 
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be the most intuitive for the students. Therefore, the counting method is adjusted in the Go and 

Math curriculum. The students were asked to fill their territories until they only have two eyes 

reflect. Then they would proceed to the counting. The total number of stones they put on the 

board would be their final score. This approach is simple and straight forward, because it does 

not require putting back dead stones onto the board.  

 

 

 

 


