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ABSTRACT 

 

 Connecting structure and function in nanoscale engineered materials and devices relies on 

the analysis of the fundamental arrangement of matter, frequently under dynamic conditions.  The 

demand to image structures at fundamental length scales has touched inorganic materials, biology, 

and frequently hybrid hard/soft materials with unique phenomena driven by heterogeneous 

components.  Electron microscopy has been at the core of imaging and interrogating structures at 

this scale for many decades.  Improvements in hardware and digital control have pushed the 

boundaries on the information measurable from modern systems.  Operating as an ‘electron 

scattering’ experiment the ability to push copious amounts of current into small volumes has 

exacerbated the sensitivity of many materials to radiative damage.  Thus, developing new 

autonomous methods of imaging which rely on advanced computation or machine learning is 

playing a larger role in the reliable and high-speed imaging of next-generation materials.  Such 

methods potentially allow an investigator to image materials dynamically in ways not previously 

possible, partly due to the reduction in area doses and partly due to drastic time-savings. 

 In Chapter 1, the major advances in electron microscopy over the last few years are 

highlighted, as well as outstanding challenges in the reliable characterization of dose sensitive 

materials.  Novel methods based on a hybrid hardware-software approach are highlighted, as well 

as advances modeling the process of image formation for effective signal restoration.  A high- leve l 

background to Compressive Sensing is offered, as well as practical discussions on the likelihood 
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of successful implementation in electron microscopy.  Expanding on this, Chapter 2 discusses the 

practical implementation of a coupled hardware/software approach to general imaging of radiation 

sensitive materials, particularly where multiple measurements will be made.  Chapter 3 further 

advances this topic by placing control of the microscope directly in the hands of an autonomous 

machine learning platform, which efficiently plans out the application of dose within the column 

for maximum information retrieval.  The work shifts gears slightly in Chapter 4 for a discussion 

of a novel crystalline orientation mapping tool enabled by advances in image processing, as well 

as its potential as a non-destructive method for understanding complex defect structures.  Finally, 

Chapter 5 will discuss future directions and potential expansions on the preliminary work 

discussed in this thesis.  The consistent theme of this work is the practical application of statistica l 

learning and computation to enable new ways of interrogating structures, particularly with an eye 

towards reducing the time or integrated electron dose for key information.  In many cases, it will 

be shown that considerably superior methods are available with simple innovations for almost no 

cost, and the future of electron microscopy will likely be at the interface of hardware and software, 

as data management and acquisition increasingly become core to the technique. 
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hours for a full spectrum image.  G.  Reconstructed boron and H. carbon maps.  In all 

maps, the zero-loss peak was used to roughly normalize the counts for differences in 

sample thickness. .................................................................................................................. 149 

Figure 3.9  Autonomously collected dynamic EDS spectrum images of Gallionella bacterial 

residue, resin embedded and sectioned to 20nm.  A.  HAADF image collected on FEI 

Titan in STEM mode at 300kV with a 150 µm C2 aperture, spot-size 6, and 10µs dwell 

time.  B.  Scanning mask sampled by the microscope tracking the Fe Kα peak as feedback 
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from a Gatan controlled EDAX EDS (1024 channels at 10 eV width) detector of the 

leftmost inset in image A.  10% of the pixels in the 80x80 image were collected with a 

one second dwell time per pixel, resulting in a total collection time of 23.6 minutes vs. a 

conventional full SI acquisition of 2.7 hours.  An initial 1% of the pixels was collected 

randomly.   C.  Reconstructed discretized spectrum image of the elemental distribution of 

iron from the scan mask in B.  D.  Scanning mask collected from the rightmost inset in 

image A, again tracking the Fe Kα with an 80x80 grid and 10% sampling.  E.  

Reconstructed discretized spectrum image from the mask sampled in D.  F.  

Representative spectrum collected with a 30 second dwell time showing the strong Fe Kα 

peak that was used for the mapping (2048 channels at 10 eV width)................................... 153 

Figure 3.10  MOADS EDS mapping of a titanium deficient region in an annealed Ti 48 at. % 

Al alloy.  Experimental details regarding material and sample preparation can be found in 

previous publications 180.  A.  A HAADF image collected on an FEI Titan at 300 kV with 

150 µm C2 aperture, spot-size 6 with 10µs dwell time equipped with Gatan controlled 

EDAX EDS detector.  A one second dwell time per spectra with 1024 channels and a 10 

eV width was used during autonomous collection.  B.  Final sampling mask after an init ia l 

1% of the points were randomly sampled up to 7% maximum sampling of the 80x80 grid 

of pixels in the spectrum image.   C.  The discrete reconstructed image of the titanium 

deficient region, which tracks the dark feature in the inset of the HAADF image.  D.  

Representative EDS spectrum collected from the light matrix in the image in A, showing 
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strong signal from both the Al Kα peak and the Ti Kα peaks (dwell time 30 seconds).  E.  

A second spectrum collected in the dark region of the inset in A showing the disappearance 

of the titanium peak (1024 channels with 10 eV width).  ...................................................... 156 

Figure 3.11  A comparison of the raw spectra collected during the MOADS experiments 

demonstrated in this work.  A. Unprocessed spectrum from the Gallionella sample (Figure  

3.9) and B. unprocessed spectrum from the Ti-Al sample (Figure 3.10).  Both spectra were 

recorded with a one second exposure.  .................................................................................. 160 

Figure 3.12  A.  The ground-truth original image is a low magnification HAADF image of 

the Gallionella residue that has been down-sampled to only 200x200 pixels. At this pixel 

density and field of view, many isolated single or small groups of pixels have significant 

impact on the distortion in the image. B-C.  Reconstruction and mask after sampling 10% 

of the pixels with c=32 (self-estimated from the training data – top row of 3.3). D-E.  

Reconstruction and mask, also after sampling 10%, with the c parameter set to 2.0. .......... 164 

Figure 3.13  Trade-off case #2.  A.  The ground-truth original image is a low magnificat ion 

HAADF image of the iron oxide nanoparticles distributed on a carbon grid, which has also 

been down-sampled to only 200x200 pixels.  Many agglomerations of particles are 

present, but also a significant number of isolated single or several pixel clusters.  There 

are simply not enough pixels in the sampling budget at <10% sampling and such a coarse 

grid to search for all the small clusters, while resolving the large agglomerations with a 

sufficient level of detail.  The tradeoff between exploration and exploitation cannot be 



27 
 
 

 

 
 

avoided, and if the user cannot increase the pixel sampling rate or decrease the field of 

view, the user should manually set the c parameter depending on his priority.  Poor training 

images have also been used – the top row of Figure 3.3. B-C.  Reconstruction and mask 

after sampling 10% of the pixels with c=32.  As can be seen in the scanning mask, the 

algorithm has prioritized heavy sampling of a small number of large features and small 

clusters (heavy exploitation of known information) and has avoided taking new 

measurements elsewhere (limited exploration of unknowns).  D-E.  Reconstruction and 

mask, also after sampling 10%, with the c parameter set to 2.0.  As can be seen in the 

mask, more points have been dedicated to searching for new clusters (heavy exploration 

and limited exploitation).  As a result, fewer features are missing from the reconstruction, 

but the reconstruction quality of each individual structure is lower.  .................................... 167 

Figure 4.1  Schematic diagram of a typical EBSD set-up including an external camera.  The 

sample is tilted to a high angle to promote the collection of diffracted backscattered 

electrons onto the inserted camera.  The working distance, WD, is defined as the distance 

between the pole-piece of the microscope and the field-of-view on the specimen.  A 

defined camera length, L, then describes the physical distance between the specimen and 

the detector.  Note the oblique angle between the detector and the sample. ........................ 175 

Figure 4.2  Tilt dependence of the BSE signal from an aluminum polycrystal specimen.  As 

the angle between the incident beam and the lattice in each grain shifts, the beam comes 

off and on diffraction conditions.  This results in a changing BSE yield and corresponding 
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contrast change over stage motion that depends on the individual orientation of each grain.

............................................................................................................................................... 178 

Figure 4.3  Schematic a stage-rocked ECP generation system, in which the sample physical 

tilts through a prescribed series of angles while the BSE signal is recorded on a 

conventional detector. ........................................................................................................... 181 

Figure 4.4  (A) Workflow of the proposed Orientation Mapping by Electron Channeling 

(OMEC) method. First, an automated image acquisition scheme acquires a tilt/rotat ion 

series of BSE images from the same relative sample area. This entire image stack is then 

aligned relative to each other, allowing a complete ECP to be extracted at each pixel. 

These channeling patterns can then be segmented or clustered (supervised vs 

unsupervised) into common orientations and then indexed through conventional methods. 

Finally, a full orientation map can be generated for the region of interest. (B) The variables 

describing various operations in the OMEC method are established, including the fixed 

tilt angle (φ) about a fixed axis and the in-plane rotation angle (θ). As the electron beam 

rasters across a fixed grid of pixels on a fixed plane defined by x,y it experiences a tilt 

along these axes parameterized by ψx and ψy........................................................................ 184 

Figure 4.5  Channeling contrast recorded as the stage moves around is a true spherical 

representation of orientation space and can be mapped to a sphere digitally.  This sphere 

can then be projected in any of the well-known geometric projection operations.  Here, a 
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raw channeling contrast dataset from a silicon single crystal is plotted in both three and 

two dimensions using an equiangular projection.  ................................................................. 186 

Figure 4.6  Left:  Raw extracted channeling pattern from a single pixel of a PbSe-GeSe crystal 

showing strong angular dependent contrast.  As you move clockwise around the pattern 

the intensity increases due to the accumulation of carbon contaminants and charging on 

the specimen surface.  Since these images are taken with a TLD BSE detector, high 

currents and long dwell times are necessary for adequate signal-to-noise ratio.  Systems 

with dedicated BSE detectors will likely not encounter this issue.  Right:   Contrast 

normalized and background signal subtracted by fitting a third order polynomial to remove 

time-dependent effects due to charging and mass accumulation.  ......................................... 188 

Figure 4.7  A series of BSE images collected from an aluminum polycrystal sample 

demonstrating the SIFT keypoint identification and matching process.  A.  Stage neutral 

BSE image with keypoint identified by SIFT highlighted with colored circles.  Unique 

edge-like shapes and grain intersections are targeted.  B.   Thirty degree tilted image of 

the same crystal highlighting the drastic contrast change that can occur due to electron 

channeling.  A unique set of keypoints is generated and highlighted for this image 

independently.  C.  Top ten matched keypoints using a brute-force search and the Lowe 

ratio test to unique match points of correspondence between the images.  These points can 

then be used in combination with robust regression to estimate a homography matrix to 

transform all images onto the stage-neutral image. .............................................................. 191 
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Figure 4.8  A.  Raw BSE image collected from the TLD detector on FEI Nanolab from a 

PbSe-Gese polished specimen.  Notice the large gradient in background intensity despite 

the flat surface due to positioning of the detector.  Subtracting this artificial signal is 

critical in order to ensure that only contrast due to channeling is projected into the 

orientation space patterns.  This background is tilt/rotation dependent and can therefore 

obscure the slight changes in contrast due to channeling.  B.  Same FOV after local contrast 

normalization with a large block-size to prevent removing contrast from within the grains.  

While not perfect, a large amount of the stray spatial signal is subtracted, allowing pixels 

to be subdivided and compared in orientation space.  ........................................................... 193 

Figure 4.9  (A) Orthographic projection of a stage-rocked ECP reconstructed from the average 

contrast values in 7200 ECCIs at different orientations from a single-crystal silicon (100) 

sample. (B) Orthographic projection of a hybrid stage- and beam-rocked ECP 

reconstructed by binning each ECCI and correcting for beam divergence due to scanning. 

Corrections are also applied to adjust for systematic contrast variations (background 

subtraction and beam contamination correction).  ................................................................. 196 

Figure 4.10   Comparison between conventional EBSD and OMEC ECPs on the same sample: 

(A-B) Aligned and perspective corrected BSE images of the same PbSe-GeSe crystal 

collected at two different orientations (A: 0 degree tilt, 0 degree rotation, B: 6 degree tilt 

and 0 degree rotation). (C) Z-axis-referenced inverse pole figure (IPFZ) map of the same 

area displaying the relative orientations of the member grains as indexed by EBSD. Grains 
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I and II are labeled for the following two rows of the figure. (D-F) Representative EBSP, 

indexed pattern, and OMEC ECP from the grain labeled I in the IPFZ map. (G-I) A second 

set of EBSP, indexed pattern, and OMEC ECP for the grain labeled II in the above IPFZ 

map. Strong agreement between the ECP and EBSP is seen. Note that to assist in 

identifying correlation between the EBSPs and the OMEC ECPs the ECPs have been 

projected stereographically (equiangular constructions).  ..................................................... 200 

Figure 4.11  A set of orthographically projected channeling patterns for the grains displayed 

is shown. The true data for each grain is a real 3D dataset and thus has none of the 

distortion characteristic of EBSD. Thus, the data can be projected down to two dimensions 

in many ways depending on the purpose (stereographic for indexing, or orthographic for 

intuitive visualization). For small grains sufficient SNR is present to resolve many bands. 

In addition, the large field of view enabled by a stage-rocked channeling pattern means 

that every pattern has enough bands (>3) to enable an accurate indexing.  Scale bar is 100 

μm. ........................................................................................................................................ 202 

Figure 4.12  Simulated OMEC acquisition from calculated channeling patterns of Austenite. 

(A) Simulated BSE image at 0 degree tilt and 0 degree rotation for the four reconstructed 

orientations in (B),(C),(E),(F). When choosing which tilts/rotations to sample, the 

dynamic sampling approach chooses the point with the most benefit for all four grains 

simultaneously (multi-objective). (B,C,E,F) Reconstructed channeling patterns for four 

differently oriented Austenitic grains in a polycrystalline microstructure after samplin g 
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10% of the possible tilts/rotations using dynamic sampling. (D) Mask of selected 

tilts/rotations, white representing a sample position where a simulated BSE image was 

recorded, and black representing skipped.  ............................................................................ 205 
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1 CHAPTER 1:  INTRODUCTION 

 

1.1  Philosophy and Approach 

Materials characterization remains an essential component in the engineering and understanding 

of larger scale devices and processes.  Rapid advances in the quality of hardware and the 

digitization of most imaging and measuring devices has opened the opportunity for small scale 

investigators to design new methods of interacting with and probing materials in dynamic 

environments.  To take advantage of this chance to design custom instruments and operations has 

required the integration of a diverse set of colleagues, from computer science and electrical 

engineering to more traditional mathematics and statistics.  Concepts from operations theory are 

increasingly being leveraged to design statistical learning methods which can adapt and control 

experiments on the fly.  The fact that phenomena which take place at small length scales often 

occur at small temporal scales will increasingly require the use of intelligent sampling methods 

which avoid ‘blind’ recording of phenomena by a single user. 

The goal of this introduction chapter is twofold:  first, to give non-imaging experts an introduction 

to the strengths and challenges of modern electron microscopy and materials characterization, and 

second, to give traditional microscopists the major takeaways from paradigm challenging concepts 

from mathematics, particularly Compressive Sensing.  Thus, on occasion, mathematical rigor in 

the description of the electron column or various optimization methods has been substituted for 
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synthesizing the major points for an application minded audience.  Such rigor will be reintroduced 

in the following chapters when relevant for the major developments and proposals in this thesis. 

 

1.2  A General Introduction to Modern Electron Microscopy 

 

Electron microscopes have emerged as the de-facto imaging technique for the interrogation and 

understanding of nanoscale structure.  Spanning nearly all materials research areas, such as energy 

storage, energy conversion, semiconductors, and therapeutics, the electron microscope a core tool 

for the investigation of the connection between fundamental structure and function1-6.  Having 

achieved resolution with picometer precision, they surpass the best optical microscopes by several 

orders of magnitude due to the sub-atomic wavelength of the electron7, 8. This resolution advantage 

comes with several caveats for the nature of the samples; they must be physically and chemica lly 

stable in vacuum, liquid or gas and processable into a thin electron transparent film without damage 

(with the exception of surface sensitive techniques), and resistant to the electron beam7.  For many 

materials which exist fundamentally with these properties (nanomaterials, etc.) these criteria are 

immediately satisfied, but others can be quite challenging to prepare and investigate reliably.  
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Figure 1.1 A comparison between the two most common operating modes for electron 

microscopes, parallel probe conventional Transmission Electron Microscopy and 

Focused/Scanning Transmission Electron Microscopy. 

There are two primary operation modes for imaging with an electron microscope: parallel probe 

or convergent probe.  In both modes a source of electrons is accelerated at high voltage (5-300kV) 

and focused on to a specimen using electromagnetic lenses.  In conventional Transmiss ion 

Electron Microscopy (cTEM), a parallel electron micro- or nano-probe illuminates a small area of 
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the sample and a pixelated post-specimen detector collects a certain population of transmitted or 

scattered electrons to form an image. The detector can be placed either in either the imaging or 

diffraction plane depending on the activation of the post-specimen lenses.  Typically, apertures 

will be placed in the diffraction plane to select electrons which have been scattered by specific 

crystal planes or the unmodified transmitted electrons.  These two aperture positions produce dark 

field and bright field imaging conditions, respectively.  Electrons reaching the detector from either 

of these two conditions have both amplitude and phase, but detectors are generally only sensitive 

to the incident intensity.  Interpreting cTEM images at high resolution generally requires extensive 

simulations to understand the frequent contrast reversals that can occur due to this phase 

component.  Some electrons may be emitted back from the specimen valence electrons or reflected 

primary beam electrons, producing secondary and backscattered electron images. 

In Scanning Transmission Electron Microscopy (STEM) a convergent nano- or pico-scale probe 

is focused on the sample and rastered to form an image9, 10.  The electrons passing through the 

specimen, or those backscattered, can be collected at each probe position and integrated on a 

photomultiplier tube (PMT) to record images.  The transmitted electrons in STEM are collected 

using a series of annular detectors which are segmented to produce different signals10.  The inner, 

or axial, detector produces bright field images using those electrons which do not undergo 

significant scattering.  On the other extreme, the High Angle Annular Dark field detector 

(HAADF) integrates electrons which have been scattered to large angles (Rutherford Scattering)1 1 .  

In HAADF the phase component can be shown to integrate out, resulting in an incoherent imaging 
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mode where the contrast is pseudo-linearly related to mass12.  This results in HAADF’s more 

common name, ‘Z-contrast imaging’, and its simple interpretation compared to cTEM has made it 

a popular choice in the research community.  Since no post-specimen lenses are required to form 

the image in STEM, it suffers less from the imperfect focusing due to chromatic aberration tha t 

can occur in cTEM in thick specimens due to the wide range of energy losses from plural 

scattering. 

While the elastic scattering is generally used for imaging, inelastically scattered electrons carry a 

significant amount of information about elements present, bonding states, and electronic 

configurations.  Two primary methods will be considered in this thesis: analyzing the energy lost 

by electrons as they pass through the specimen and the emission of photons due to decay from 

ionization by the incident electron beam.  Both methods are primarily used in STEM mode due to 

the ability to localize the effect on the sample and produce spatial maps13. 
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Figure 1.2  Illustration demonstrating the mechanism by which an inelastic scattering event can 

produce an analytical signal inside the electron microscope.  Any high energy electron from the 

incident beam may participate in an inelastic scattering event that may ionize an inner shell 

electron.  The energy an incident electron loses during this scattering event can be recorded post-

specimen, giving EELS spectra.  The decay of a valence electron to fill the ionized core-position 

may result in a characteristic X-ray emission which may be detected by an EDS spectrometer 

positioned strategically. 

 

Electron Energy Loss Spectroscopy (EELS) sorts the electrons that pass through the specimen by 

their energies using a magnetic prism.  A typical EELS spectrum has a large peak at zero energy, 

referred to as the zero-loss peak (ZLP), composed of those electrons which have passed through 

the sample without losing energy.  Next, the low-loss region (up to 40 eV beyond) contains 

plasmon peaks, which results from the free oscillation of electrons in the material.  Lastly, a core-

loss region contains edges, or ‘bumps’, corresponding to characteristic energy losses from the 

ionization of particular core electrons in the atoms of the sample.  These edges can be directly 

connected to the elemental identity of the material at the beam location, and even used to infer the 

chemical structure13.  The very long tail of the plasmon peaks results in a considerable background 

signal which can often obscure the weak core-loss edges at low signal-to-noise ratios.  The 

subtraction of this background is therefore essential and is usually modeled using a power law 

approximation 14.  Plural scattering can also often obscure core-loss edges, so great pains are often 



42 
 
 

 

 
 

taken to produce thin specimens.  Single point spectra, line-scans, and even volumetric maps are 

routinely achievable on modern instruments. 

 

 

Figure 1.3  Plot of a typical EDS spectrum from a high resolution STEM on a metallic specimen.  

A region with a precipitate in a Titanium-Aluminum alloy was investigated using an FEI Titan 

aberration corrected STEM with a single SDD EDS detector.  The total dwell time was thirty 

seconds, giving an appreciable signal-to-noise ratio and easily allows us to distinguish the 
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characteristic peaks for the two elenents.  The inset shows a HAADF image of the region of 

interest, where a darker precipitate can be seen in the center of the frame.  Note that this dwell time 

is consideravly larger than can be maintained on radiation sensitive materials and can preclude a 

high pixel density spectral map. 

 

After an ionization event driven by the incident electron beam, a valence electron may decay to 

occupy the empty core position.  This energy produced by this decay results in a characteristic X-

ray or an Auger electron, the former which can be recorded by an a strategically positioned X-ray 

spectrometer in Energy Dispersive X-ray Spectrometry (EDS)15, 16.  The highly precise nature of 

the electron decay event results in sharp peaks in an X-ray spectrum which can be connected to 

the presence of an element.  Since most STEM/TEM samples are thin enough to be electron 

transparent, there is little Brehmsstrahlung radiation resulting in very high signal-to-background 

spectra17.  In addition, since X-rays interact with matter much more weakly than electrons, EDS is 

typically less sensitive to specimen thickness than EELS.  However, the poorer energy resolution 

of EDS compared to EELS precludes the interpretation of fine structure, and the limited accessible 

area near the specimen results in a very small collection area.  This can make EDS acquisit ions 

extremely inefficient, as the X-rays are emitted uniformly in all directions and the detector 

intercepts a very small segment.   
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Figure 1.4  (A)  HAADF image of a multi- layered Boron Nitride flake from a Hitachi HD2300A 

STEM.  The darker area is a vacuum region with no specimen, resulting in no contrast in the dark 

field image.  (B)  Typical Boron edge from a Gatan Enfina EELS spectrometer with a five second 

exposure further processed by a moving window average.  Note the complicated structure of the 

edge, with multiple interspersed peaks which can be altered by change in the bonding configura t ion 

of the element.  While this potentially gives powerful information about the state of the material, 

it can make fitting and quantification difficult, especially due to the very large pseudo-power law 

tail from the plasmons. 
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These tradeoffs mean that EELS and EDS are typically used in tandem to provide complementary 

information.  However, the large background in EELS and the dose inefficient nature of EDS mean 

that most analytical maps at high resolutions require large incident electron doses 18.  Typical doses 

of 105-106 e-/ A2 prevent the imaging of many interesting specimens, such as hybrid soft-hard 

materials, porous frameworks, catalytic materials, or in-situ phenomena (which will be discussed 

later)19-22.   

Although traditional EM has involved the recording of two-dimensional images, electron 

tomography has seen a renaissance as STEM has allowed for the suppression of diffraction contrast 

and the imaging of thicker specimens23, 24.  Acquiring a series of images at multiple angles yields 

sufficient information to solve for the three-dimensional structure of a sample.  Atomic resolution 

tomograms have recently been achieved 25.  However, the limited available tilting range due to the 

risk of colliding with the pole-pieces of the objective lens and the increase of sample thickness at 

high tilts generally introduces a considerable number of artifacts 26.  The need for high sample 

stability over such a prolonged imaging experiment can be even more challenging, as mass flux 

(which will be discussed later) and sample motion can preclude a consistent solution27.  Time-

lapsed video shares a similar set of problems with tomography, in that the prolonged imaging of a 

specimen over multiple exposures results in considerable risk of damage without the advantage of 

dose fractionization28. 
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Driving the interest in time-lapsed observations, advances in fabricating enclosed micro-or nano-

volumes of liquids and gasses through advanced lithographic processes has allowed for the 

observation of a wide variety of phenomena.  While electron microscopes are typically operated 

in high vacuum to reduce pre-specimen scattering in the electron beam, tightly enclosed volumes 

can be fabricated with thin electron transparent windows to allow for the formation of a high-

quality incident beam on a liquid or gaseous sample.   

As will be discussed in the following section, a consistent challenge at the frontier of modern 

electron microscopy is the consistent and repeated observation of non-traditional structures and 

samples without inducing untoward sample alteration. 

 

1.2.1 Limitations due to Radiative Damage 

 

The risk of ultrastructural damage under electron illumination is a challenge that must be 

acknowledged and minimized when investigating any sample.  Bombarding a specimen with 

relativistic electrons at high current densities can quickly modify a stable specimen or move a 

dynamic process out of equilibrium29.  As the likelihood of observing the desired elastic or inelast ic 

scattering event on a detector or spectrometer is related to the incident beam current, there exists 

a trade-off between structural modification and signal-to-noise ratios30.  This has been long 



47 
 
 

 

 
 

realized in the biological sciences community, where the insulating and fluctuation driven nature 

of bonding in soft samples makes them highly susceptible to ionization and inelastically driven 

damage.  As the contrast of these samples is due to slight shifts in phase (weak phase object 

approximation), considerable work has been dedicated to optimizing imaging conditions to 

maximize the ratio of detectable elastic scattering to damaging inelastic events30, 31. 

Next-generation hybrid soft/hard materials in energy, therapeutics and aerospace are increasingly 

sharing these weak fluctuation driven properties.  Materials which derive novel functionality by 

an interlinked traditional metallic or ceramic (‘hard material’) component with a polymeric or 

biological component (“soft material”) have become a major area of interest as bottom-up 

chemical and directed assembly methods have improved32.  Metal/Covalent organic framework 

structures (MOFs/COFs), in which a metal atom or cluster is coordinated within a larger organic 

framework, have become a major topic in energy storage, catalysis, and ion separation33.  It has 

been shown that structural defects in MOF structures can increase their ability to store/transfer 

hydrogen for high capacity storage by opening new channels and pores34.  A direct inspection of 

the defect structure at high resolution is needed to quantify the relationship between lattice defects 

and hydrogen transport.  As will be discussed in the following section, the fluctuation driven 

bonding of the organic component makes it extremely difficult to image with electron microscopes 

without introducing additional defects due to ionization.  Intelligently designed pseudo-lattices of 

metallic clusters has also been achieved with the help of programmed DNA interactions35, 36.  Such 

systems have interest for their novel coupled plasmonic and sensing properties, as periodic 
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materials at this scale have not previously been synthesizable without the tightly controlled 

bonding of DNA structures37, 38.  DNA itself is easily modified by ionizing radiation, which can 

quickly cause structural collapse38.  Silica embedding and other sample preservation methods can 

result in sample modification, making it difficult to observe the native structure.  Hybrid materials 

are also seeing attention for next-generation composite aerospace materials, where the soft 

component is chemically bonded to the hard filler at the nanoscale level.  As opposed to mixing 

separately prepared components, such grafted nanoconstructs have tightly controllable filling 

ratios and suffer from none of the self-segregation that can occur with other macro-scale mixed 

composites39.  By maximizing the interface between the soft and hard component they also may 

achieve higher strengths at lower weights, improving the efficiency of aerospace systems.  Imaging 

the graft/particle interface and particle/particle interactions is complicated by the need to apply 

significant electron currents in order to resolve the weakly scattering soft component next to a 

highly scattering ‘bright’ hard system, which can often result in ionization of the graft interface 

and structural modification. 

Advances in hardware have afforded an order of magnitude higher available beam current at probe 

sizes smaller than an atom40.  Save for ‘work-horse’ specimens such as Strontium Titanate (STO), 

these higher currents have only further complicated the observation of soft and hybrid materials 

for reasons other than the quality of the microscope41.  The choice of operating voltage and beam 

current must be optimized to minimize the effect of ionization damage and sputtering, particular ly 

for time-lapse or tomographic imaging, as mass loss during imaging completely removes the 
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chance for a consistent structural solution.  In addition, high beam currents can drive the deposition 

of organic contaminants in the microscope (mass addition).  Despite the high standards for vacuum 

purity in most microscopes, the ‘dirty’ liquid phase processing of most materials that is necessary 

for scale up and commercialization provides a large source for contamination that frequently 

cannot be removed without destroying the specimen of interest42. 

As discussed above, there are two major sources of damage when observing a material at high 

integrated doses.  Firstly, the ionization of a sample atom by an inelastic scattering event with an 

incident electron.  Local structure plays a key role in the downstream effect of inelastic scattering, 

as in conducting materials an additional electron can be donated quickly.  In insulating materials , 

such as biological specimens, an ionization event is much more likely to result in bond breakage 

and mass diffusion at room temperature.  The application of imaging techniques which rely on 

inelastic scattering is therefore much more challenging on soft and insulating materials.  

Conducting materials are still subject to knock-on damage, where high angle elastic scattering of 

high speed incident electrons results in atomic displacement.  Such knock-on damage can occur at 

both the surface and the bulk of the specimen.  If on the surface, considerable material thinning 

from atom ejection can result at high accelerating voltages, though random surface diffusion of 

adaptors may occur at considerably lower activation energies30, 43.  In the bulk, atoms may be 

displaced to interstitial sites or vacancies as a result of an elastic scattering event44.  As opposed 

to ionization which is current driven, knock-on requires a critical activation energy and can be 

controlled by the beam accelerating voltage45. 
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Both damage mechanisms affect that overall beam conditions under which images can be 

collected.  In landmark work, Glaeser examined the effect of low-flux electron beams on the 

achievable information and resolution in electron micrographs of biological specimens46.  The 

inherent image contrast is defined as the difference in intensity between two arbitrary points 

normalized by the local average in intensity (background component).  Statistical fluctuation in 

the illumination due to the quantized nature of electron charge at low fluxes and the associated 

read-out noise of the detectors frequently obscure features with weak contrast.  It is common to 

approximate the arrival rates of electrons on to a detector element as a Poisson process, 

characterized by a mean arrival rate λ.  Thus, the statistical fluctuation in the arrival of electrons 

on an arbitrary area of the sample is √λ (square root of the variance of a Poisson process).  Glaeser 

approximated the arrival rate of the process as related to the current density through the specimen, 

j; the resolution of the detector, d2, the exposure time, t; and the collection efficiency of the post-

specimen lenses and apertures, f 46.  For STEM, the collection efficiency is the fraction of post-

specimen electrons that fall on any annulus, and in TEM it’s the number of electrons which are 

accepted by the post-specimen apertures and lenses.  Thus, the contrast (Δn/n) purely due to 

statistical fluctuations, which must be exceeded by the inherent contrast of the object to be 

detectable, can be written as follows: 
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It was further showed by Howie that the resolution at a radiative Dose, D, and detector quantum 

efficiency, 𝜂, could be defined as: 

 d
K

C fD
=   (1.2) 

Where K is the signal-to-noise ratio, typically chosen to be 5 to satisfy the Rose criterion, and C 

is the contrast47-49.  The challenge for electron imaging is this inverse relationship between the 

resolution and the required electron dose.  A dose-limited resolution, DLR, can be defined as the 

maximum achievable resolution at a particular detector set up, contrast, and signal-to-noise ratio 

before damage can occur.  For HAADF imaging at high scattering angles, both the contrast and 

the collection efficiency depend on the elastic scattering cross section of the material normalized 

by the support cross section.  Thus, the dose limiting resolution (DLR), or the maximum resolution 

achievable at an accelerating voltage can be written as the square root of the ratio of the elastic 

scattering cross section (σD) and the damage cross section (σS): 

 D

S

DLR



=   (1.3) 
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Channeling effects in crystalline specimens often require extensive simulations to define an 

optimal imaging condition to achieve high resolution. 

 

Figure 1.5  Plot of the relationship between the quality of a final image, in terms of signal-to-no ise 

ratio and resolution, and the requisite Electron Dose.  Equation 1.2 is plotted in blue showing the 

crossover between a noise-dominated image (k<5) and a resolvable structure.  On the right, the 

critical area for damage is highlighted in red at which the structure of the sample is altered during 

the integration of one image.  The highest achievable resolution, the DLR, is annotated as the 

crossover of the blue line from Equation 1.2 and the Damage regime. 
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The impact of the incident radiation on a specimen of interest has up to this point been described 

strictly in terms of a total integrated ‘dose’, as a product of the beam intensity and the exposure 

time.  It has been noted that the instantaneous beam intensity, or current density, also plays a 

unique role in the evolution of specimen damage.  The development of a specimen charge due to 

the injection of electrons or wide emission of secondaries may cause sample motion due to the 

buildup of an internal field and consequent image blurring.  This charging effect has been shown 

to be suppressed by reducing the total beam intensity below some material dependent threshold5 0 ,  

51.  Reducing the beam intensity may also reduce the rise in local temperature from energy 

deposition52.  Conflicting evidence on the importance of the beam current density on the stability 

of organic and biological materials exists, and likely remains a topic of future work in the field53 ,  

54. 

The fact that these challenges are not unique to electron microscopy, and in fact are shared by 

many other characterization methods relying on a radiative probe, means that much cross-

disciplinary work is possible55. 

 

1.2.2 Advances in Hardware 

 

When Ruska first envisioned the electron microscope, he substituted the wavelength of the electron 

in the constitutive equations for the resolution of optical microscopes56.  This extremely high 
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resolution remained unchallenged until Scherzer noted that the symmetry of the spherical 

electromagnetic lenses would result in resolution limiting aberrations57.  These aberrations are 

referred to as geometric, which result directly from the spherical shape of the lenses.  Parasitic 

aberrations due to the imperfect manufacture of lenses, and the chromatic aberration due to 

imperfect focusing of electrons with slightly different wavelengths must also be accounted for58.  

By altering the phase of the electrons, these change the trajectory of the particle passing through 

the microscope and fundamentally limit resolution59.   

For TEM, the critical image forming lenses immerse the specimen (objective lens), and therefore 

must contend with chromatic aberration due to inelastic scattering events and imperfect focusing.  

In STEM, spherical and other aberrations make it difficult to perfectly focus all electrons that pass 

into the condenser system.  This results in a trade-off between the intensity of the probe and the 

resolution, making it difficult to achieve high signal-to-noise ratio images at very small probe 

sizes.  Improvements to electron sources for higher beam coherency and better power sources to 

expand the temporal coherence envelope in the transfer function have improved the capabilities of 

systems which have remained fundamentally limited by aberrations. 

Scherzer initially proposed that an aberration correction system could be produced with non-

rotationally symmetric multi-pole lenses57, 60.  Critical work in the field in the early 1990s, more 

than fifty years later, made aberration correction a practical reality61, 62.  For STEM, such correctors 

have allowed for the use of very large beam convergence angles at small probe sizes, dramatica lly 
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increasing available beam currents at high resolutions.  Steady commercialization has 

democratized aberration correction outside of specialized national labs into the hands of 

universities and individual research groups. 

Paralleling improvements in electron lensing, the detection of electrons has also seen a rapid 

reinvention.  Prior to the 1980s, virtually all electron images were collected on silver halide gel 

film, such as the KODAK EM Film series.  The ionization of the halide due to an inelast ic 

scattering event with an electron produces silver which can be post-developed into an image.  The 

grains themselves were typically less than one micrometer giving high resolution.  However, the 

nonlinear response of the film due to ionization and the limited dynamic range (ionization is a one-

shot process) required complicated multi- layer processing and post-exposure development.  

Developing film is also a very low-throughput technique, and the inability to ensure a good image 

on the microscope could be a major source of frustration. 

Charge-coupled devices (CCD) offered a solution due to their real-time nature, high sensitivity, 

linear range, and high dynamic range63-66. A CCD operates by dividing a surface into an array of 

‘buckets’ which can store multiple ionization events in a local capacitor.  This charge is then 

transferred column by column into an output amplifier until all the charge is read out into a digita l 

storage device.   

Radiation damage was a consistent problem for CCDs directly exposed to the electron beam, so 

virtually all modern cameras employ a scintillator coupled to the CCD by a fiber optic cable67.  
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The scintillation layer converted the incident electrons into photons which could be detected by 

the CCD without significant radiation damage.  The introduction of the scintillator layer introduced 

the possibility of multiple scattering events which increased the point-spread-function of the 

camera.  Thinning the scintillation layer was also not feasible due to the quantum efficiency of the 

cameras, which resulted in some photons being lost66.  In typical 10-20 micron scintillation layers, 

the electron scattering in the scintillator broadens the detection event to several times the pixel size 

of the CCD, necessitating demagnification between the scintillator and the CCD68.  Despite these 

challenges, the high-throughput nature of CCD imaging and ability to directly perform digita l 

image processing on-the-fly made them the de-facto choice for general purpose imaging. 

Radiation hardened CMOS cameras share none of these drawbacks, particularly due to the removal 

of either the lens-coupled or fiber-coupled scintillator layer69.  As the active detection element in 

a CMOS layer is only present in the top film, additional scattering into the bulk of the detector 

produces significantly less stray signal than in the scintillator layer of traditional cameras70.  Each 

pixel in the final CMOS cameras is equipped with its own read electronics meaning that significant 

frame-rates up to and beyond hundreds of frames per second with manageable read-noise is 

possible.  The opportunity to operate in a ‘counting’ mode in which each electron incident on a 

detector operating at high speed is digitized can further increase the effective Discrete Quantum 

Efficiency (DQE) of the camera71. 



57 
 
 

 

 
 

Analytical electron microscopy has also benefitted from improved detector technology, where 

extremely large area EDS detectors and high sensitivity 4K CMOS EELS cameras are now 

commercially available72.  In combination with monochromators and aberration correctors such 

detectors can resolve molecular level fine structure73. 

 

1.2.3 New Developments in Software 

 

Electron microscopes remain expensive investments, and each new generation can be expected to 

be a multi-million-dollar investment.  The increasing digitization of microscope control and 

detectors has increased the possibility to creatively leverage advances in software to improve their 

usability or develop entirely new techniques.  While the scope of the field is wide, only a few of 

the most relevant developments for the purposes of this thesis will be considered. 

Surprisingly, if one were to compact all the sample area characterized by electron microscopes 

since their invention into one space, it would occupy less than a millimeter cubed74.  New CMOS 

cameras discussed in the last section (Gatan K3 Camera) can produce 24.437 Petabytes of data in 

a single day, orders of magnitude more than previous systems.  To put this in perspective, this is 

more data than all of Facebook processed globally on an average day in 201275.  It should be noted 

that this data flow is not an outlier, Cryo-Electron Microscopy labs commonly run these systems 



58 
 
 

 

 
 

24/7.  The challenge for modern electron microcopy is to increase the amount of useful information 

about samples while managing this deluge of data.  

Two schools of thought have emerged: 

1. Improve the interpretability of large volumes of raw data 

2. Prioritize collection of reduced data for simpler interpretation 

We will highlight several examples of implementations based around these ideas, which is by no 

means meant to be an exhaustive list.  Examples have been selected based around novelty, follow-

on work, relevance for the work in this thesis, or wide acceptance. 

Among these, the use of Model-Based methods has drawn much attention76.  The relatively simple 

forward model for the formation of contrast in incoherent imaging modes, such as HAADF, 

enables the computation of data likelihood with limited time complexity77.  Considerable work in 

the development of Model Based Iterative Reconstruction techniques in the context of Computer 

Tomography for the medical field, have been translated to the domain of Electron Microscopy78 .  

By combining a physical model for the formation of image contrast, a reliable three-dimensiona l 

volume can be constructed from a raw tilt series.  Instead of solving for the volume in terms of an 

arbitrary intensity value (typically nm-1), MBIR methods can solve for the scattering or attenuation 

coefficients. With the use of an effective prior, these methods have been used to characterize 

interfaces between materials of wildly different elastic scattering coefficients, which would 

normally be completely overwhelmed by artifacts from the high scattering region79. 
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Figure 1.6 Top:  Workflow describing the Model-Based iterative process for Electron 

Microscopy.  A tilt series from a three-dimensional unknown sample, f, is collected on a 

microscope and stored as a series of tilted two-dimensional images, g.  This series is inverted into 
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a three-dimensional volume and constraints on the sample given material insight is applied.  A 

simulated tilt series is then calculated for this approximate volume using an accurate physical 

model for image formation in the electron microscope.  The error between the simulated tilt series 

and the actual, g, is then used to optimize the structure.  This model directly accounts for noise and 

other instrument imperfections, allowing lower dose or further restricted angular field of view 

(FOV) acquisitions to still be reconstructed accurately.  Bottom:  MBIR reconstruction of a 

HAADF tilt series of a resin embedded DNA-linked gold nanoprism structure.  Sample courtesy 

of Jinsong Wu. 

 

Methods for correcting for artifacts in high volume rate images from electron microscopes have 

been developed as the desire to image faster for longer time periods has grown.  RevSTEM is one 

incarnation of this topic, in which several rotated high-speed images of a specimen are recorded80.  

Nonlinearities in the scanning coils, primarily caused by eddy currents, and sample drift introduce 

many artifacts which preclude the alignment of a series of images to interpret dynamic phenomena 

such as crystal growth/evolution81.  The multiple quick views with regards to a semi-constant drift 

vector give sufficient information to solve for a transformation to bring all images on to a common 

coordinate frame.  Such a method is only possible due to the combination of a custom acquisit ion 

method which can be implemented on a digitally controlled microscope. 
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It is frequently much more difficult (and sometimes impossible due to the DLR) to produce high 

quality information about a sample than a large volume of noisy/poor quality data.  Increasingly, 

investigators are making use of a few high-quality image samples to infer high resolution structures 

from poor, noisy, and low-resolution images82.  Such multi-resolution techniques attempt to use 

the few high-resolution examples as an effective prior to solve for a super-resolution version of 

the low-resolution data.  In some cases, up to 4x improvement in the resolution is possible from a 

small library of high-resolution image patches83.  Such methods have not explored the possibility 

of hybrid low/high resolution recording within one frame using dwell time as a Bernoulli random 

variable.  In addition, the possibility of using high resolution, more easily achievable HAADF 

images as priors for more difficult to obtain spectral images should not be understated. Although 

no experimental system has been developed to take advantage of the results, it’s expected that 

continued progress in the super-resolution task from other fields may further increase the 

practicality of this method for electron microscopes.  

 

1.3 Compressive Sensing  

 

In this chapter I will attempt to provide a microscopist’s introduction to Compressive Sensing (CS) 

by providing the key context that led to its formulation and the important take-aways for its 

application.  Although in this thesis no compressive sensing schemes will be demonstrated, it’s 
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important to clarify the difference between a CS acquisition and a more general under-sampled 

imaging technique, especially due to some perennial mislabeling in the literature.  Origina lly 

formulated between 2007/2008, compressive sensing entered the stage when the ability to store 

and transmit data was quickly becoming eclipsed by the rate of information generation84.  There 

was a pressing need to reduce the number of bits required to transmit data from sensors to 

processing centers without losing information85. 

In CS we will be concerned with the solution to a set of linear equations: 

 y Hx = +   (1.4) 

Where 𝑥 ∈ ℝ𝑃  is an arbitrary vector to be acquired, 𝑦 ∈ ℝ𝑄  is a vector of acquired values, and 𝜖 ∈

ℝ𝑄  is a noise vector.  𝐻 ∈ ℝ𝑄𝑥𝑃is a sensing matrix which describes the physical process of 

acquiring the signal and storing it in some Q dimensional vector.  In the case of a TEM, H describes 

the collection of the electron amplitude incident on a camera pixel and its conversion into a digita l 

value.  For STEM, H represents the conversion of scattered or transmitted electrons as the beam 

rasters onto the photomultiplier tube and into a digital value.  In both cases, P=Q and H is a square 

matrix with all zeros except for on the diagonals (Equation 1.5). 

 

1 0

0 1

H

 
 

=  
 
 

  (1.5) 
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Performing matrix multiplication between H and x effectively sifts out each value from x and 

passes it directly into a corresponding space in y.  This produces an equivalent copy of x stored in 

y.  In TEM, this matrix multiplication occurs simultaneously across all elements in x, as the camera 

integrates one ‘frame’ during a single exposure.  For STEM, each row of H is the collection of a 

single pixel from one beam position, and thus the rows of H operate on x in sequence.  While 

we’ve described the CS equation in terms of vectors, it’s equally applicable to images and volumes 

which can be ‘unwrapped’ into long vectors. 

The design of H is crucial to ensure an accurate recording of the sample structure or phenomena.  

The Shannon-Nyquist formula provides a sufficient (but not necessary) guideline that a band-

limited signal must be sampled at twice its maximum frequency to prevent artifacts due to 

subsampling (aliasing)86.  This can result in an extremely large H sensing matrix, as doubling the 

height and width of an image quadruples the number of rows and columns in H.  Since H is an 

extremely sparse matrix, with very few non-zero elements for high pixel count images, it begs the 

question if it’s possible to transmit more information for the same number of rows of H by filling 

some of the non-zero off-diagonal elements.  It is precisely this question, where H goes from a 

sparse to dense matrix, and y consequently from dense to sparse, that is the core of compressive 

sensing. 

Let us consider the case where 𝑃 < 𝑄, which gives a very short, wide sensing matrix and an 

acquired signal which is shorter than the signal of interest (𝑑𝑖𝑚(𝑦) < 𝑑𝑖𝑚 (𝑥)).  How could we 
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construct such a scenario?  First, let’s consider dropping some random number of rows from H.  

This means y is now fundamentally missing information about x, and it is impossible to exactly 

represent x.  This is obviously an undesirable result and is referred to as an ill-posed or 

underdetermined problem87. 

 

Figure 1.7 A graphical description of the Equation 1.4 for the compressive sensing recovery 

problem.  A dense sensing matrix, H, is used to acquire a series of data points in y about an arbitrary 

signal x.  Taking advantage of prior knowledge about the sparsity of x, it becomes possible to solve 

this heavily underdetermined problem. 
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Instead, we will try two things.  First, let’s apply some constraints to y, specifically that it’s sparse 

or most of its elements are zero (similar to the constraint on H in the conventional acquisit ion 

formula)88.  Second, let’s populate all or nearly all of the matrix positions on H without worrying 

too much yet how we would accomplish that in practice88.  Each non-zero element of x selects 

exactly one unique dense column from H which is then linearly combined with the columns from 

all other non-zero elements to produce the dense vector y.  Reconstructing x from y and H involves 

a ‘guess and check’ process to estimate which columns from H were activated by x, which tells us 

the locations of the non-zero elements89.  A least square estimate for the coefficients in front of the 

linear combinations of columns tells us the values of x given their location.  The ‘sifting’ property 

of y effectively reduces the wide undetermined sensing matrix H into a reduced set of columns 

corresponding to the non-zero locations, which is well determined and solvable.  Since 𝑑𝑖𝑚(𝑦) <

𝑑𝑖𝑚(𝑥) this means that our camera or PMT can make fewer acquisitions than dictated by the 

Shannon Nyquist theorem and still accurately reconstruct a signal from a specimen89.  In addition, 

the noise term is added to a linear combination of many measurements instead of each one 

individually, which can substantially improve the signal-to-noise ratio.  This has advantages in 

both time and data transmission/storage rates. The process of converting the original high 

dimensional and sparse signal down to a low-dimensional dense representation through a 

multiplication with the sensing matrix is referred to as a projection (not to be confused with the 

general concept of projective imaging in Transmission Electron Microscopy). 
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Formally, we will try to solve the following minimization problem: 

 
0 2

. .min
Px

x s t Hx y 


−    (1.6) 

This is an L0-minimzation problem where ‖𝑥‖0 ≔  card(𝑥) is the L0 norm, counting the number 

of non-zero elements, and ‖∙‖2 is the L2 norm measuring the Euclidean distance.  In practice, we 

will try to find the sparsest possible approximation of the original signal such that the difference 

between our estimation and what we measured has a smaller mean squared error than some noise 

limit in the system. 

Finding the absolutely sparsest vector in the L0-minimization task is very complicated (NP-hard) 

and thus typically an L1-minimization proxy task is used: 

 
1 2

. .min
Px

x s t Hx y 


−    (1.7) 

Where the L1 minimzation counts the absolute values of every non-zero element, ‖𝑥‖1 ≔

 ∑ |𝑥𝑖| 
𝑃
𝑖=1

90  The difference between these two expressions is not particularly relevant to an 

interested microscopist, and many algorithms have been developed to solve these problems, most 

often using iterative thresholding or some form of basis pursuit91, 92.   A rich set of Bayesian 

approaches have also emerged93. 

For these equations to have well determined solutions and for information recovery about x to be 

possible, two criteria in general must be satisfied.  Firstly, as discussed before, the signal x must 
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be appropriately sparse.  Secondly, the sensing matrix H must satisfy some properties to ensure 

that each reduced set of columns from H generated from the ‘sifting’ property of x must form an 

appropriate subspace.  Consider the following trivial matrix multiplication: 

 Hx y=   (1.8) 

 

1
3 2 3 1.5 6

0
6 3 1 3 12

0
2 7 4 1 4

2

 
    
     =    
   

    
 

  (1.9) 

The sparse x vector reduces the sensing matrix from a short and wide matrix to a tall narrow one 

due to its sparsity: 

 

3 1.5 6
1

6 3 12
2

2 1 4

   
    

=    
    

   

  (1.10) 

While this would appear at first glance to be a well-determined problem, note that the two 

remaining columns of the sensing matrix are linearly dependent (by a factor of 2).  Thus, all the 

following estimates for x are potentially equally valid for this sensing matrix, sparsity, and 

acquired vector: 
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  (1.11) 

It therefore becomes impossible to reconstruct the original signal accurately with only the prior 

information that it’s sparse. 

When we design a sensing matrix to be used to record and compress any arbitrary signal x, we 

must ensure that any possible reduced sensing matrix created by the sifting property of the sparse 

signal forms a linearly independent set of columns, ie is full rank94.  Proving this in detail is quite 

challenging, as it involves the combinatoric evaluation of ever increasing sets of columns, which 

can be quite large for high-dimensional signals which might benefit the most from compression.  

The restricted isometry constants (RIC), 𝛿𝐾, is one metric which can summarize the results of such 

a calculation94.  For a K-sparse vector, x, (which K non-zero elements) the RIC is the smallest 𝛿 

such that: 

 
2 2 2

2 2 2
( ) )1 (1x xHx −   +   (1.12) 

This principle, the restricted isometry principle (RIP), directly describes the information 

preserving strength of a particular sensing matrix94.  The RIP represents how the sensing matrix 

preserves the Euclidean distance of the original signal fudged by some small factor 2𝛿.  The 

reconstruction error can then be directly expressed in terms of the RIP: 
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 −− +   (1.13) 

Where A, B are constants depending on the sparsity of the signal, K, and 𝛿2𝐾 and 𝑥𝑘 is the 

thresholding of 𝑥 to the K largest columns94.  This error term has three key components:  a term 

related to the underlying sparsity of the signal, a series of constants related to the effectiveness of 

the sensing matrix at compressing any input sparse vector, and a noise component95.  

Given the difficulty in evaluating the RIC on any given sensing matrix, some authors have instead 

reported the maximum mutual coherence between pairs of columns96: 

 ( ) : max
T

i j

i j

hH h


=   (1.14) 

Where ℎ𝑖 is the ith column of H.  If the product of the sparsity and the coherence is much less than 

one, a very conservative quadratic relationship can be derived between the number of acquisit ions 

required and the underlying sparsity of the signal times some constant, ie 𝑄 ≥ 𝐶𝐾2 96.  Note that 

designing an incoherent sensing matrix has nothing to do with the coherence of the imaging 

modality (not HAADF), and the distinction between incoherent measurements and acquisit ions 

will be discussed in detail in the following. 

Since the sparsity of the input signals cannot be directly controlled and noise present during 

acquisition is often unavoidable, performing CS effectively comes down to intelligent engineer ing 

of the sensing matrix.  As a general rule, it is very difficult to intelligently engineer matrices that 
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satisfy the RIP, although this is an active area of research.  Fortunately, pioneering theoretical 

work in the 1970s and 80s showed that randomly populated matrices are almost always guaranteed 

to be incoherent (and with other bases as will be discussed later)97-99.  It can be shown that with a 

Gaussian sensing matrix and acquisitions 𝑄 ≥ 2𝐾𝑙𝑛 (
2𝑃

p
) a perfect reconstruction can be achieved 

with probability 1-p 89.  Note that we’ve gone from 𝑄 = 𝑃 to 𝑄 ∝ ln (𝑃), thus the number of 

acquisitions needed to reconstruct a signal scales only as the log of the requisite final sampling 

density.  This is possible by populating the off-diagonal elements of the sensing matrix, resulting 

in more information being stored per acquisition. 

Before the practical implementation of such a method is discussed, let’s first consider performing 

CS on a non-sparse signal (dense x).  In this case, the ‘sifting’ property is not satisfied and the 

problem remains highly underdetermined and unsolvable without additional prior information.  A 

clever trick involves decomposing the desired signal x into the product of a sparsifying basis and 

a vector of coefficients: 

 x Dw=   (1.15) 

 y HDw = +   (1.16) 

 HD=   (1.17) 

 y w=    (1.18) 
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In this case, the product of a sparse vector, w, with some basis transformation, D, produces the 

signal of interest, x.  We collect the non-sparse signal, y, through the sensing matrix, H, and attempt 

to reconstruct the sparse signal w using the joint matrix Θ.   

 

 

Figure 1.8  A graphical description of the Equation 1.16 for the compressive sensing recovery 

problem of signals acquired in a non-sparse domain.  The use of a structured basis representation 

which cannot describe the desired signal in a compressed or sparse format can allow for RIC 

satsified acquisition of a non-sparse signal.  Although the sensing matrix may not have to satisfy 

the RIC in this case, to ensure recovery of w, the joint matrix product of H and D must now satisfy 

the recovery criteria.  By solving for w from y we can make use of the sparsity property to recover 

the signal.  Reconstructing x is as simple as the matrix vector product of w with D. 
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As long as a proper sparsifying basis for the signal of interest is known, we can perform 

compressive sensing on distinctly non-sparse signals.  Solving for w allows us to reconstruct x by 

multiplying with the a-priori known basis.  Note now that the RIC applies to the joint matrix, Θ, 

since we are interested in the compression of the sparse signal w.  Basis transformations which can 

produce sparse or compressible (approximately sparse) signals are well known and used for image 

and signal compression, including the Fourier, wavelet, and DCT transformations, although the 

set of measurement matrices they are incoherent with can be somewhat limited97. 

 

1.3.1 Practical Challenges with CS  

 

Many algorithms have been proposed to solve for a compressively acquired signal given an 

appropriate basis and the measurement matrix.  Such algorithms have routinely been applied to 

improve signal quality and reduce acquisition times in optical microscopy, X-ray tomography, and 

MRI imaging100-102.  A wide body of literature has emerged over the past five years applying these 

techniques in electron microscopy as well103, 104.  Unfortunately, many of those methods proposed 

are not actually performing CS.  It’s hoped the following intuitive description will help alleviate 

some of this confusion. 
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Let’s consider the prototypical compressive sensing experiment, the single pixel camera105.  The 

light reflected from a specimen is collected onto a digital micro-mirror array device, in which small 

mirrors can be manipulated to reflect light on or away from a detector.  This sensing matrix, while 

not randomly Gaussian, can be modeled as a random Bernoulli matrix which has slightly less 

attractive theoretical properties, but is much easier to practically realize106.  The detector in this 

situation is a single photodiode, which outputs a single value for any combination of micro-mirror 

positions.  Having known the position of the micro-mirrors at each time point, an operator can 

collect the integration of random combinations of mirror positions into a single long vector.  The 

dimensionality of this vector is much less than the dimensionality of the original micromirror 

device (number of mirrors) and knowing that the image is likely sparse under a wavelet transform 

an accurate picture of the image can be restored after only a few acquisitions.   

However, each ‘acquisition’ was composed of many light-specimen interactions, as many mirrors 

were ‘on’ and collecting signal for each photodiode capture.  Each ‘row’ of the sensing matrix 

contains the list of ‘measurements’ which are integrated into a single acquisition.  In traditiona l 

cTEM or STEM each ‘row’ contained only a single entry, and thus represented a single beam-

specimen interaction.  Populating the off-diagonal elements of the sensing matrix does increase 

the efficiency of each camera or PMT acquisition, but at the cost of including many more beam-

specimen interactions.  Thus, a real CS acquisition can reduce the time required to record 

information from a specimen by increasing the effective area dose by an order of magnitude. 
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Real applications of compressive sensing in electron microscopy have therefore exclusively been 

focused on accelerating the acquisition speed of detectors107.  This has been done by introducing 

a semi-electron transparent membrane behind the specimen and randomly jittering it to create a 

pseudo-flutter shutter (or coded aperture) effect108.  The challenges fabricating a reliably 

transparent Bernoulli mask for electrons, as well as jittering with a piezo driver without introducing 

unwanted vibrations into the chamber have resulted in little follow-up work.  Inherent in such a 

scheme some electrons which have interacted with the specimen are rejected by the coded mask 

(or the sensing matrix), meaning that the dose efficiency is again lower than normal imaging.  

Improving the reconstruction quality by designing a true Gaussian sensing matrix is likely 

practically impossible for an electron microscope. 

We have seen thus far that real compressive sensing operates exclusively in a post-specimen 

fashion, by selectively modulating the spatial distribution of intensity into a lower dimensiona l 

signal.  Such a technique has theoretical guarantees regarding the recovery ability, a fact which 

has unfortunately been somewhat abused in the literature.  Many papers claiming to have 

performed compressive sensing in the electron microscope have instead relied on modifying the 

pre-specimen lenses to reduce the total electron dose.  Such techniques have no theoretical 

guarantees regarding their performance, and most rely on exhaustively tested empirical guidelines.  

These methods will be discussed in the following chapters. 
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1.4 Scope of Dissertation 

 

This thesis will describe several methods utilizing machine learning or image processing to design 

new methods of interrogating material specimens with a focus on electron beams.  In princip le, 

many of the techniques delineated henceforth are equally applicable to many other instruments if 

the primary mechanism of imaging involves the sequential interaction and collection of a finite 

probe with a sample.  Chapter 2 will first review a direct way to reduce the impact of mult ip le 

probe/sample interactions by directly under-sampling the specimen of interest.  The novel use of 

an electrostatic deflector into the electromagnetic column is proposed to allow for the facile and 

repeatable interruption of electromagnetic scanning.  Several machine learning techniques will be 

discussed for the reconstruction of image quality, with a focus on dictionary learning approaches 

due to their effectiveness at low sampling rates.  Empirical methods for analyzing the resulting 

image quality will then be discussed in lieu of theoretical guarantees that might be present for 

compressive acquisitions.  Chapter 3 will then highlight an advanced collection method in which 

the under-sampling strategy is deployed ‘on-the-fly’ rather than pre-determined before the 

interaction of the probe with the sample.  A module is developed to distribute the method on 

virtually all scanning transmission electron microscopes (STEMs) and the effectiveness evaluated 

for varying amounts of prior information.  The method will be discussed in the context of alternate 

control and policy selection strategies, including reinforcement.  This thesis will then shift gears 

slightly in Chapter 4 and discuss creating large 4-D datasets of orientation space information from 
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polycrystals using a hybrid beam-stage rocked electron microscope.  As the alignment of flat 

planes observed at varying perspectives is a well solved problem in image processing, many 

thousands of full electron channeling contrast images (ECCIs) can be collected at a variety of 

stage/beam tilts to enable radically large and high angular resolution orientation maps.  The 

possibility applying these methods in ion microscopes and for the disentanglement of many 

competing defect structures will be discussed.  Finally, Chapter 5 will summarize the thesis and 

highlight some key potential items for future work.  In the spirit of increasing accessibility, the 

relatively low cost of implementing the techniques discussed in this thesis will be further 

emphasized. 
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2 CHAPTER 2:  UNDERSAMPLING OF SEM IMAGES FOR DOSE MITIGATION 

 

Abstract 

Electron microscopy of biological, polymeric, and other beam-sensitive structures is often 

hampered by deleterious electron beam interactions.  In fact, imaging of such beam-sensit ive 

materials is limited by the allowable radiation dosage rather than capabilities of the microscope 

itself, which has been compounded by the availability of high brightness electron sources.  

Reducing dwell times to overcome dose related artifacts, such as radiolysis and electrostatic 

charging, is challenging due to the inherently low contrast in imaging of many such materials. 

These challenges are particularly exacerbated during dynamic time-resolved, fluidic-cell imaging, 

or 3-D tomographic reconstruction – all of which undergo additional dosage.  Thus, there is a 

pressing need for the development of techniques to produce high quality images at ever lower 

electron doses. In this contribution, a direct dose reduction and suppression of beam induced 

artifacts through under-sampling pixels is demonstrated, by as much as 80% reduction in dosage, 

using a commercial scanning electron microscope with an electrostatic beam blanker and a 

dictionary learning in-painting algorithm.  This allows for multiple sparse recoverable images to 

be acquired at the cost of one fully sampled image.   This approach may open new ways to conduct 

imaging which otherwise require compromising beam current and/or exposure conditions. 
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2.1 Radiation Challenges for Organics and In-Situ Experiments\ 

 

  Dynamic observations with high intensity electron probes have revealed detailed electronic and 

elemental information at previously unachievable spatial and temporal resolution 109, 110.  Many of 

these observations are facilitated by the increased brightness of electron sources that afford the 

necessary signal-to-noise (SNR) ratio for meaningful imaging, analysis and interpretation. In 

addition, sample holders allowing the introduction of a fluidic cell for in situ imaging of dynamic 

phenomena are widely available 111. Despite the bevy of signals and environments selectable inside 

the electron microscope, artifacts and sample damage due to electron dose have remaine d 

challenging for materials susceptible to knock-on damage 112, radiolysis 113, electrostatic charging 

114, sample heating 115, and beam induced reduction 116.  Many material systems are highly sensitive 

to these damage mechanisms, as operating at higher magnifications can significantly increase the 

electron dose per unit area.  These shortcomings have been acutely felt for many decades in the 

biological electron microscopy community due to the ease of beam damage in most organic  

systems 117-119.  Organic and biological systems are particularly susceptible to electrostatic 

charging due to their insulating electronic structures, and weak bonding that can be heavily be 

perturbed by incident electrons. In addition, many of these damage mechanisms and artifacts are 

compounded in time-lapsed imaging common among in situ experiments. Imaging dynamic 

chemical reactions in native environments could help us gain fundamental understanding of the 

reaction mechanisms behind catalytic and chemical processes for energy and medicine 120, 121.  
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However, the electron beam may alter reaction pathways after multiple exposures through 

sustained reduction of the participating chemical species 122.  Electron beam induced crystal 

growth and electrostatic interactions with nanoparticles have also complicated the unobstructed 

observation of in situ materials 123. Challenges maintaining appropriate SNR while limit ing 

artifacts and damage from dose in experiments involving these described systems, such as organic 

and biological materials or fluidic or gaseous observations, have motivated the search for 

alternative methods of imaging.   

 

2.2 Under-sampling and Non-Compressive Imaging 

 

In a typical scanning electron or scanning transmission electron microscope (SEM/STEM) a pair 

of electromagnetic scanning coils rasters the beam across the specimen while a resulting signal at 

a digitized set of beam positions is recorded into an image.  There is typically a ‘slow’ and ‘fast’ 

scan axis, where the ‘slow’ scan axis is held fixed while a ‘row’ of the image is collected.  After 

completion of one ‘row’ of the image, the beam is quickly jumped back to the opposite side of the 

image and allowed to settle, as the electromagnetic scan coils have a finite response time.  This 

settling time (or fly-back time) can be quite large and result in the anisotropic deposition of electron 

dose, usually appearing as thick contamination layer along the left side of the image.  In addition, 
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for high pixel-density images this settling time may contribute a non-negligible amount to the total 

imaging time.   

In the context of the sample and instrument limitations there are two key challenges: 

1. Reduce the time to record full images 

2. Limit the impact of dose and multiple observations 

As discussed in the introduction, Compressive Sensing (CS) has been proposed by multiple authors 

as a solution to this problem.  However, since CS actually increases the number of probe sample 

interactions, it’s not clear how one would design a populated sensing matrix for a serial scanning 

technique or if it would have advantages in terms of dose.  The serial nature of scanning electron 

imaging is not unique to SEM/STEM and is shared by virtually all radiative or mechanical probe 

instruments (including XRF and atomic force microscopy).  Multi-beam SEMs which could 

potentially allow for the recording of multiple beam positions onto a single detector do exist, but 

on-the-fly modulation of each beam independently by a random factor as would be required by a 

true CS sensing matrix remains impractical124. 

 

Since most SEM/STEM images are heavily compressible under common image transforms, it 

suggests that there’s considerable amount of redundancy in such images125.   This begs the question 

if it is truly necessary to acquire images at the pixel densities they were originally recorded at since 
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a lot of the information will be thrown out when archiving, transmitting, or publishing the images.  

Many novice or intermediate users will record images exclusively at pixel densities of 1024x1024 

or 2048x2048, which at a micron field of view means a span of several pixels are below the 

physical resolution of common SEMs.  These additional pixels are not really contributing 

meaningful information and are recorded for aesthetic reasons. 

Taking advantage of the fact that images have relatively low informational content given their high 

dimension, it has been proposed that under-sampling and post-collection image recovery could be 

an effective way to reduce the impact of radiative imaging without altering the underlying 

content126-129.  In fact, an analysis of a database of electron microscopy images determined that 

most secondary electron images are highly amenable to such a technique130.  The high degree of 

textural similarity or repeated motifs in most materials samples (columns of atoms, scattered 

nanoparticles, etc.) increases the redundant information since contrast motifs are shared over the 

field of view.  

In principle, there are a combinatorial number of ways to sample a configuration of pixels from an 

image.  Since it has been assumed that not all pixels are contributing information, this logica lly 

leads to the conclusion that there is a reduced subset of pixels which dominate the informationa l 

content.  Thus, not all sampled configurations of pixels from an arbitrary image will have the same 

informational content.  How the subsampling is performed therefore has an extremely large impact 

on the final image quality. Spacing measurements uniformly and equidistantly on a grid is 
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unfavorable, as this is equivalent to simply scanning with larger pixel sizes.  Instead, non-cartesian 

methods, such as spiral and Lissajou scanning, will be primarily discussed, as well as random pixel 

and line scanning. 

For random sampling,  the ‘identity’ sensing matrix in conventional scanning: 

 y Hx=   (2.1) 

 

 

1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 1

H
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  (2.2) 

 

Has random elements along the diagonal replaced with zeros: 
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In contrast to a CS acquisition, this reduces the number of probe/sample measurements during a 

full acquisition.  By subtracting these ‘zero’ rows the number of acquisitions can be reduced and 

collection time potentially improved, although practically this may not always be possible for 

some implementations: 

 

 

1 0 0 0 0

0 1 0 0 0

0 0 0 0 1

H

 
 

=  
 
 

  (2.4) 

 

This is now an underdetermined problem since some pixels are inherently unmeasured, and some 

prior information about the image/structure is needed in order to infer or simulate the missing 

values in a plausible manner.  Effective algorithms have been demonstrated for this problem for a 

wide class of images, but there remains no theoretical guarantee that we will perfectly reconstruct 

the original signal. It is therefore necessary to rely on empirical guidelines by experimenta l ly 

testing different sampling schemes and reconstruction techniques to lay out best-practices for 

performing sub-sampling on previously unseen images. 
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Technique Compressive Sensing Under-sampled 

Imaging 

Conventional 

# of Measurements  ~ P*Q ~ 0.2-0.3 P ~P=Q 

# Acquisitions ~ Kln(P) ~ 0.2-0.3 P ~P=Q 

Recovery Guarantee Theoretical Support Empirical Guidelines Shannon-Nyquist 

Table 2.1 A comparison of the number of measurements (physical probe sample interactions), 

acquisitions (recording a signal on camera/detector), and the guarantee regarding signal recovery 

for a compressive sensing system, under-sampled imaging method, and conventional fully scanned 

raster imaging. 

 

Several simulations on electron micrographs have been published utilizing various in-paint ing 

algorithms including TV minimization 129 L1 split-bregman algorithms 131, and dictionary learning 

(which are still incorrectly referred to as Compressive Sensing) 132.  While such an imaging method 

does not really satisfy incoherence criteria or the restricted isometry principle for compressive 

sensing to apply, recovering images from real space under-sampling can still utilize well-known 

local statistical correlations between nearby pixels in most images 133, 134.  Probabilistic dictionary 

learning algorithms, such as the Beta Process Factor Analysis (BPFA) algorithm, exploit this 

correlation to achieve state of the art recovery from heavily under-sampled images without the use 

of a training set or a preselected dictionary 135. 
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Figure 2.1  Proposed workflow in which an image to be acquired is sub-sampled randomly through 

some reducer agent, an electrostatic beam blanker in this case.  The image collected is decomposed 

into a Dictionary containing common textures and features and an estimate of the original image 

is produced using a linear combination of dictionary elements on a patch-by-patch basis.  The final 

estimate achieves a high degree of similarity to the desired image while having been collected with 

considerably fewer measurements and acquisitions.  This potentially saves time while also 

reducing the area dose the sample experiences in a radiative imaging modality. 

 

Although effective algorithms have been available to recover under-sampled images, previous 

approaches to experimentally realize a non-raster type scanning in an electron microscope have 

been limited due to inherent hysteresis in the scan coils, and careful attention must be given to 

avoiding damage due to overheating from the constant acceleration and deceleration needed to 

achieve random sampling 130.  Herein, the use of a high-speed electrostatic beam blanker is 

proposed to achieve a scanning “mask” in which certain pixels are un-sampled by deflecting the 

electron beam away from the sample.  This allows for the design of scanning masks that may not 

be feasible through direct beam control due to limitations of the scan coils, while being more easily 

implementable on many microscopes.  
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2.3 Materials and Methods 

2.3.1 Modification of Electron Microscope   

 

A commercial SEM (FEI Quanta 600F) with an electron beam lithography system (JC Nabity 

Lithography Systems) was utilized to sparsely image samples of interest.  It is worth noting that 

the general form of this methodology is equally applicable to any instrument where information is 

sampled serially in any digital scan systems (e.g., any model of Scanning Electron Microscope, 

Scanning Transmission Electron Microscope, or Scanning Probe Microscope, etc.).  Images were 

acquired in a raster scan with the beam rapidly deflected away from the sample for the pixels 

determined to be un-sampled through the use of a high-speed electrostatic beam blanker.  In this 

way, the overall area dose was reduced as the electron beam only interacted with a user selected 

sampling “mask”.  
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2.3.2 Dictionary Learning 

 

 

Figure 2.2  Graphical figure describing the masking process performed by the electrostatic beam 

blanker, as a Hadamard product (elementwise).  The collected image has a high number of missing 

entries, which is modeled using a Dictionary and activation matrix.  Iteratively solving for a 

dictionary representation of the image in terms of common textures and patterns and the proper 

activation matrix allows for an estimation of the fully sampled image. 

 

Dictionary learning algorithms seek to find an accurate representation of data given the 

multiplication of a dictionary matrix, D, by corresponding dictionary weights, α.  Generally, we 

can imagine the columns of D as important “features” of the data of interest and α representing the 

relative activations of these different features throughout the image.  Instead of using an off the  

shelf dictionary (or transform) such as the Wavelet transform, it is often beneficial to learn useful 
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dictionary elements strictly from the observed data.  Given the innate uncertainty with recovering 

missing pixels and the high number of model parameters it is natural to turn to a Bayesian 

formulation of the problem.  In this case, it is assumed there is some learnable underlying statistica l 

structure in the image that can be used to recover the missing measurements in the image.  

  

 To identify the dictionary and weights the Beta Process Factor Analysis algorithm (Zhou et al. 

2009) is used.  In this algorithm, only information from the observed pixels in each independent 

image is used to construct the dictionary, so no offline dictionary construction with training data 

is needed.  Further, the only assumption made by algorithm is the sparse activation of weighting 

coefficients, which is achieved by the Beta-Bernoulli statistical process.  In simple terms, this 

assumption ensures that each image patch will be recovered using only a few dictionary elements, 

rather than using small amounts of the entire dictionary.  In their paper they have demonstrated 

that a sparse activation matrix is a good prior assumption for natural images. 

   To learn this local structure, the image is divided into 8x8 overlapping pixel patches which are 

unwrapped into 64 dimensional vectors, from which our objective will be to identify the likeliest 

combination of weighting coefficients and dictionary elements to explain the observed pixels.  This 

is done by estimating the posterior probability distributions for the dictionary and the weighting 

matrices, which gives probability of model parameters from the observed data.  Once this 

combination has been determined, the missing pixels are inpainted using straightforward matrix 



90 
 
 

 

 
 

multiplication of the dictionary and the weighting matrix and the recovered patches are summed 

together to reproduce the image. 

 Mathematically, we can describe the sparse imaging and dictionary learning process through the 

following equation: 

 
i i iv x=    (2.5) 

   

 
i i i i iv D=  +   (2.6) 

 

 

Where xi represents the “true” fully sampled image, 𝑣𝑖 represents the sparsely sampled image, Φ 

models the electrostatic beam blanking by zeroing out a random percentage of true pixel values,  

and a residual 𝝐𝒊 represents noise in the measurement process.  The learned dictionary D and its 

corresponding weight matrix 𝜶 linearly combine to reconstruct the most probable true image x as 

illustrated by the following equation: 

  

 1 1 2 2 k kx d d d   +   (2.7) 

 

We have employed the same notation as Stevens et al. for consistency.  Practically, the BPFA 

algorithm iteratively seeks D and α using analytical update rules derived from Gibbs sampling 

given in the original work (Zhou et al. 2009).   
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In this implementation, the secondary electron (SE) signal for each of the sampled pixels was 

stored and loaded into the BPFA algorithm (implemented in MATLAB).  This algorithm was 

selected due to the fact that it requires no pre-training of the dictionary and has few assumptions 

beyond an underlying learnable statistical structure and sparse activations, and is therefore very 

generalizable to many types of imaging.  Detailed technical information on the algorithm can be 

found in original works in the following references135-140.   

To evaluate the quality of images generated using this sparse imaging method, the Peak Signal to 

Noise Ratio (PSNR) and the cross-correlation factors (CCF) are used, which are defined below:   

 

 ( ) 10 log[ (:) (:)]refPSNR dB I I= − −   (2.8) 
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These metrics are commonly employed in the digital image processing community to reflect the 

quality of image compression and reconstruction between different algorithms on the same image.   
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2.4  Experimental Results on FEI Quanta SEM 

 

Several simulations were first run on a variety of biological and material samples with complicated 

structures to determine the most appropriate sampling mask for general imaging.  The PSNR and 

cross correlation coefficients of reconstructions from several different simulated scan patterns on 

a variety of fully sampled images collected from a microscope were examined in Figure 2.3.  These 

scan patterns include those generated from trigonometric function (Spiral and Lissajous) as well 

as simply subsampling horizontal lines from the image, modeling a coarse raster scan. 
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Figure 2.3 Simulations of reconstructing under-sampled images with varying sampling “masks”.  

Sampling for all masks was performed with only 15% of the total pixels physically sampled.  (a-

c) Fully sampled and reconstructed sparsely sampled images of yeast bacterium on cork 

demonstrating the effectiveness of random and spiral scanning masks.  (d-f)  Image of a biologica l 

diatom comparing reconstructions from Lissajous and random scanning.  (g-i)  A fractured steel 

surface comparing random scanning to a reconstruction simulating a coarse raster scan with lines 

subsampled to achieve the same pixel count.  (j)  Quantitative metrics comparing the effectiveness 

of inpainting the different proposed scanning masks. 

 

As seen above in Figure 2.3, random sampling most commonly achieves the highest quality metric 

of all the proposed sampling schemes on two of the three samples and avoids several prominent 

artifacts.  A coarse raster scan, ie subsampling horizontal lines, results in the far poorest 

performance and introduces very noticeable artifacts that detract from the interpretability of the 

image.  Lissajous scanning achieves consistent quality metrics, but introduces jagged aliasing on 

sharp diagonal features such as the diatom frustules.  On the other hand, spiral scanning performs 

surprisingly well in all three cases, however it drastically under samples the edges of the image 

and can result in blurry peripheral features.  An additional advantage of random sub-sampling is 

that it is easy to construct scanning masks composed of mutually exclusive pixels, ie at 30% 

sampling a user can produce three images in which no pixels are sampled more than once.   Due 
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to this fact, all further experiments in this thesis will employ random sampling, taking advantage  

of the electrostatic beam blanker to achieve this effect. 

 

As a proof of concept, several geometrically diverse, complicated and heterogeneous samples with 

minimal beam sensitivity were selected to experimentally examine the quality of the reconstruction 

against a fully sampled image.  Varying sampling percentages were collected with different dwell 

times to examine the dual effect of noise and under-sampling on the reconstructed image. These 

experiments on a physical microscope are listed below. 
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Figure 2.4 Both sparse and full images were captured at 30 kV and 283 pA beam current.  (a) A 

fully sampled image of gold nano-islands on a carbon substrate collected at a dwell time of 5 µs 

(area dose of 1424 e-/nm2).  (b)  30% sparsely sampled image with a pixel dwell time of 5 µs (427 

e-/nm2).  (c)  Reconstructed sparse imaging pattern of the sample area imaged in A.  (d)  Another 

fully sampled image of a different region of the same sample with a 25 µs dwell time (7120 e-

/nm2).  (e)  Sparsely collected image with only 20% of the total pixels collected (1424 e-/nm2).  (f)  

Reconstructed sparse image of the same sample area as imaged in (d). 
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A dense collection of gold nano-islands prepared on a carbon substrate was selected as the first 

sample.  As seen in Figure 2.4, short dwell times can often result in noisy and blurry images due 

to Poisson-like noise.  This can be seen by comparing fully sampled images 2.4a and 2.4d, where 

the longer dwell time results in sharper and cleaner features.  The middle panels (2.4b and 2.4e) 

show the raw output of the sparse imaging process from the microscope, where the naked eye has 

great difficulty resolving the structure of the gold nano-islands due to heavy under-sampling.  

However, the reconstructions in the right panels from 30% and 20% sampling rates, respectively, 

show strong correlation with the fully sampled images.  Complicated features are well 

reconstructed and a strong majority of point features are maintained, while simultaneous de-

noising can often ameliorate the presence of Poisson-like noise at low exposures.  It is particular ly 

interesting to note that the effective area dose in Figure 2.4f is effectively the same as in 2.4a, as 

the area dose is calculated as dose per pixel multiplied by total number of pixels and the pixel area.  
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Figure 2.5 As in the previous figure, images were captured at 30 kV and 283 pA beam current.   

(a)  A fully sampled image of tin nanoparticles of various diameters collected at a dwell time of 5 

microseconds (area dose of 1234 e-/nm2).  (b)  Sparsely sampled (30%) image with a pixel dwell 

time of 5 microseconds (370.2 e-/nm2).  (c)  Reconstructed sparse imaging pattern of the sample 

area imaged in (a).  (d)  A second fully sampled image of the same area with a 25 micosecond 

dwell time (6170 e-/nm2).  (e)  Sparsely collected image with 30% of the total pixels collected 

(1851 e-/nm2).  (f)  Reconstructed sparse image of the same sample area as imaged in (d). 
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Next, tin nanoparticles prepared on a silicon substrate were selected to validate the sparse imaging 

methodology for samples with a similar array of geometric shapes, but highly heterogeneous sizes 

and shapes.  Figure 2.5 shows the results of the full and sparse imaging processes, as well as the 

final reconstructions from the BPFA algorithm.  Similar to the gold nano-island example, high 

quality reconstructions were obtained for sampling as low as 30 %. 

 

We then examined several biological nanomaterials that are highly susceptible to drift and 

shrinkage due to electrostatic charging and radiolysis.   A sample of human collagen (fibril 

diameter ~ 100nm) was used due to its tendency to drift and move under the electron beam, which 

compromises several quantitative analyses for use in subsequent applications of these structures.  

Observing the distribution of collagen in joints and other isolated areas of the human body may 

give clues to the injury and healing process in areas that are highly limited blood flow 141.  In 

addition, it has been shown that the performance of hybrid collagen based tissue scaffolds is highly 

dependent on collagen alignment and the resulting mechanical anisotropy 142. Therefore, the ability 

to image such collagen fibrils without altering their sensitive structure would greatly speed the 

quantification of treatment efficacy in cartilaginous structures. The collagen was obtained from a 

human patient, then immediately placed in fixative and processed with Osmium tetroxide and 

dehydrated with ethanol followed by critical point drying. The sample was then mounted to an 

SEM stub with silver paint and coated with 5nm of Osmium in a plasma osmium coater prior to 

imaging.  
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Figure 2.6 Sample imaged at 30kV with 48.2 pA beam current with a full image area dose of 20.45 

e-/nm2 and a sparse image area dose of 6.135 e-/nm2 (a) A fully sampled image of human collagen 

prepared on carbon tape. (b)  A second fully sampled image overlaid on the original image showing 

large distortion and sample movement due to beam sample interactions, with differences 

highlighted with green and purple.  (c)  Raw sparse image on the same sample collected at 30% 

sampling rate.  (d)  The reconstruction of the under-sampled data with the BPFA algorithm.  (e)  

The cross correlation vs. three sequences of images captured using 100% sampling and 30% sparse 

sampling.  A very strong reduction in similarity between fully sampled images is observed, while 

sparse images maintain high similarity due to strong reduction in electron dose and corresponding 

dose induced artifacts.  (f)  The differences between the first and third sparse image are highlighted 

with green and purple and show significantly reduced beam induced sample alteration compared 

to (b). 

 

As seen in Figure 2.6 although SEM can produce high quality micrographs of complicated collagen 

distributions, multiple images can result in substantial changes to the native collagen architecture.  

The overlaid images in Figure 2.6b show just how significant this sample distortion can be between 

just two exposures.  Sections highlighted with green and purple are areas of the first and second 

image, respectively, which do not match when overlaid due to electrostatically induced sample 

drift.  The drift associated with individual fibrils under the electron beam in 2.6b can be more than 

400% their diameter (>450 nm translation for a fibril diameter of 100nm).  On the other hand, 
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sparse imaging can produce images of similar quality with only 30% sampling rates.  Figure 2.6e 

quantitatively demonstrates this “three for the price of one” effect, as the similarity between three 

fully sampled images diverges quite quickly due to the extreme beam sensitivity of the sample.  

However, the cross correlation for the three subsequent sparse images is effectively constant, 

demonstrating the direct dose reduction. In the case of the sparse images, only one low-mag full 

sampled image was captured prior to imaging sparsely to rule out the formation of a polymerized 

hydrocarbon film in reducing sample movement. 

 

Samples for in situ fluidic cell microscopy were prepared by first thermally evaporating 2 nm of 

Cr followed by 8 nm of Au on custom fabricated MEMS chips with electron transparent silicon 

nitride membrane windows. Thiolated DNA oligonucleotides were then attached to the gold 

surface and used to immobilize DNA functionalized gold nanoparticles through complementary 

DNA binding interactions 143. The nanoparticle coated chips were then mounted over a reservoir 

containing a buffer solution (0.5 M NaCl, 0.01 sodium phosphate, pH=7.4) and loaded into a 

custom built SEM liquid cell holder that will be described in detail in a forthcoming manuscr ipt. 

Imaging was carried out using an accelerating voltage of 25 kV and a solid-state backscattered 

electron (BSE) detector. 
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Figure 2.7 (a) A fully sampled secondary electron (SE) image of 80 nm and 30nm gold 

nanoparticles immersed in water on a porous gold substrate.  (b)  A sparse 30% sampled 

experimental image collected for reconstruction of the same sample.  (c)  The reconstruction of 

the sparsely sampled image showing strong similarity and dramatically reduced background noise 

as compared with (a).  (d)  A zoomed in image of the inset in (c) highlighting the noise present in 

most SE images in liquid environments.  (e)  The same inset from the reconstruction which was 

experimentally collected after the fully sampled image.  The highlighted region displays 

nanoparticles that are present and observable in the sparse imaging method, that were attracted to 

the region when capturing fully sampled images, possibly due to a combination of electrostatic 
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interactions and electron beam induced cross-linking of the DNA linkers.  Multiple 30nm particles 

are missing from the fully sampled image, and clumps of particles not resolvable in the fully 

sampled image due to noise are clearly distinguishable. 

 

In situ fluidic-cell experiments have shown to be highly susceptible to dose related damage and 

artifacts due to the need to capture sequences of images with the fluidic medium providing samples 

with great mobility and potential side reactions with aqueous electrons.  This is particular ly 

important for the observations of interactions of nanoparticles and nucleation and growth or 

supramolecular chemical reactions, for example.  Depending on the nanoparticle surface charge, 

electrostatic effects can cause attraction or repulsion of particles in the viewing area as well as 

beam induced agglomeration 144. In addition, unavoidable noise due to the low SNR of such 

experiments makes such observations challenging, particularly with BSE imaging in the SEM 

liquid cell. However, as shown in Figure 2.7 the sparse imaging method is well suited to this 

problem.  Since the algorithm models some of the additional noise and can distinguish the correct 

signal to use for inpainting, the sparsely imaged sample produces a lower noise image than the 

fully sampled image while all major features, including the small 30nm nanoparticles, are retained.  

For the case of DNA functionalized nanoparticles, the nanoparticles are attracted to the field of 

view under high dose irradiation.  This effect is seen in the sparsely sampled image in Figure 2.7e 

following acquisition of the fully sample image in Figure 2.7d. These small particles are highly 

mobile and are likely “glued” to the surface during high dose imaging due to crosslinking effects. 
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In addition, nanoparticles, which had clumped together and were not individually distinguishab le 

due to high noise in the fully sampled image, are clearly separable in the sparse image.  In this 

way, sparse imaging may provide the “one-two punch” needed for in situ experiments, drastic 

reduction of undesirable electron dose and retrieval of de-noised images.  Of course, this will be 

limited to our ability to model the specific form of the noise distribution, which may be non-trivia l 

for next-generation detectors with where the mixed Poisson-Gaussian model breaks down. 

 

2.5 Resolution and Image Quality Concerns 

 

We have also quantitatively examined the effect of sparse imaging through the use of the PSNR, 

cross correlation coefficients, and Structural Similarity Index Measure (SSIM) in Figure 2.8.  For 

the tin nanoparticle sample there is no obvious drop in PSNR or cross correlation, measuring the 

similarity of the fully sampled and sparsely sampled images, even down to 20% sampling.  The 

quantitative values also compare well with figures from other “in-painting” and image recovery 

results 145-147. Therefore, even at 20% sampling, one can record five images for the same overall 

dose of a comparable fully sampled image.  This method could have notable impact in imaging 

sensitive structures such as soft biological materials 148, unstable zeolite structures 149, and hybrid 

soft nanoconstructs 150. 
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Figure 2.8  (a),(c),(e)  The peak signal-to-noise ratio (PSNR), cross correlation coefficients, and 

structural similarity index measures (SSIM) for the sparse imaging and reconstruction process on 
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the tin nanoparticle sample with various dwell times and data sampling ratios (percentage of pixels 

in the full image actually sampled).  There is no strong drop of quantitative measures of image 

quality, even at extremely low sampling rates. (b),(d), (f)  PSNR, cross correlation, and SSIM 

results for the sparse imaging process on the gold nano-island process shows a slight dip in PSNR 

with decreasing data ratios as to be expected for slightly lower contrast samples.  Cross correlation 

coefficients often vary less than 5% between reconstructions and fully sampled images, showing 

reconstructions are highly similar with fully sampled images. 

 

The loss of some point-like features is unavoidable in this imaging method, due to the random 

method of sampling.  Features only present in one pixel have a statistically small chance of being 

sampled by the electron beam, but one is rarely interested in pixel values that share no correlation 

with nearby pixels.  Thus, the suppression of random ‘spikey’ noise is another advantage of this 

method, which is usually found when operating at high magnification in a noisy environment.  

This, again, is particularly relevant to the observation of in situ or biological samples, where spiky 

or line like artifacts can often obscure real information that the sparse imaging process is capable 

of retrieving.  Generally, it appears that sampling more information does not necessarily correlate 

with a higher fidelity reconstruction.  As shown in Figure 2.4, Figure 2.5, and Figure 2.8, a higher 

dwell time will result in better reconstruction due to the suppression of noise.  Despite this, samples 

with feature sizes many orders larger than the pixel size minimum dwell times are generally 

acceptable, as seen in the gold nano-island example.  For samples with many small features, such 
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as the smallest tin nanoparticles, increasing the dwell time may be necessary in order to properly 

sample and reconstruct features that are captured in less than 20 pixels.  In general, 30%-20% 

sampling affords a quality reconstruction for a variety of dwell times and samples, while 

successfully suppressing many artifacts. 

 

Although it was mentioned in the introduction, this work has not yet discussed the relative trade-

offs between under-sampling with relatively high per-pixel doses and fully sampling with low per-

pixel doses.  It is possible to achieve the exact same area dose in both cases over a fixed field of 

view and further possible to use the exact same method to either inpaint the undersampled image 

or denoise the fully sampled image.  Much recent work (post-2017) has focused on this tradeoff, 

with the conclusion being that it’s often heavily sample dependent 151, 152.  For samples with highly 

varying textures of dissimilar features scattered on a non-homogenous background, higher quality 

image reconstructions can be achieved by fully sampling at low dwell times152.   
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Figure 2.9 A comparison of several experimentally acquired images on the same region of a 

sample of gold nano-islands acquired in two separate ways.  First, a series of under-sampled 

images were collected at the same beam current.  The relative area doses of the under-sampled 

images were calculated as a function of the total dose experienced by all sampled pixels in the 

image.  Noisier fully sampled images at the same area dose were collected by reducing the dwell 

time at all pixel (scanning faster).  The BPFA algorithm was used to either inpaint the 

undersampled images or denoise the lower dwell time images.  The same number of iterations 
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were used in both cases and the maximum cross correlation coefficient plotted for the relative  

electron doses.  

 

In Figure 2.9, a series of images collected in an undersampled form using an experimental beam 

blanker have been compared to a series of fully sampled images collected at low dwell times.  Each 

pair of images from the two series was collected at an equivalent electron area dose over the same 

field of view.  Excessive blurring from the denoising process at low integrated electron doses 

results in a lower figure of merit for image quality as compared to the inpainted images.  This is 

likely due to the incomplete modeling of the noise process in electron microscopes, which is often 

mixed Poisson Gaussian in character.  This result is heavily dependent on the nature of the image, 

much more complicated heterogeneous images frequently will exhibit superior performance 

through denoising. 

 

While image metrics such as PNSR, SSIM, and cross-correlation coefficient are useful in 

evaluating the statistical quality of an image reconstruction, as microscopists we care about 

resolution.  The resolution of a reconstructed image can be calculated quantitatively given a ground 

truth example using the Fourier Ring/Shell Correlation.  By integrating the correlation over 

successive rings (if in 2D) or shells (if in 3D) between two Fourier transformed images/volumes, 

the correlation as a function of spatial frequency given by the following equations and plotted in 

Figure 2.10: 
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Where r is a corresponding shell/ring in Fourier space, F(ri) is the complex value at ri in Fourier 

Space, and the summation occurs over all Fourier space voxels/pixels ri in a particular shell/ring. 

 

 

Figure 2.10  Comparison of Fourier Ring Correlation plots comparing reconstructions from 

simulated undersampling and inpaintings at various sampling rates.  These plots give a quantitat ive 
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measure of the resolution in the reconstructed image given the dose.  Note that at 20% sampling 

achieves a 55% poorer resolution with a 30% savings in total area dose as compared to 50% 

sampling, which may not be a favorable trade-off for some specimen. 

 

 

Figure 2.11 The resolution of a undersampled image of the gold nano-islands calculated from the 

Fourier Ring Correlation plotted against the resolution of a binned fully sampled image acquired 

at the same area dose.  As can be seen, coarsening the scanning mask appears to be highly effective 

in preserving real ‘resolution’.  Inpainting and under-sampling appear to help only in the very low-

sampling/low area dose cases. 
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Comparing the resolution between undersampled and fully sampled images tells a somewhat 

different story however.  Binning the overall number of pixels to maintain a lower integrated area 

dose (at the same dwell time) results in a higher resolution image except at the very lowest 

sampling rates.  For these reasons, undersampling is likely best applied in situations where mult ip le 

observations must be made over the same field of view while minimizing the impact of radiative 

damage.  Since it’s possible to generate multiple images where each pixel was only visited once, 

this technique may find applications in in-situ and tomographic imaging over day-to-day imaging 

tasks. 

 

2.6 Summary of Key Results 

 

We have experimentally demonstrated that under-sampling electron microscopy images by up to 

80% using an electrostatic beam blanker can still yield high quality images through modern 

probabilistic machine learning techniques.  Such reduced dosage conditions are able to suppress 

many beam induced artifacts common in sensitive materials, such as polymer/biological structures 

and in-situ fluidic systems.  This allows for up to, and possibly exceeding, four images to be 

captured for the dose of one fully sampled image; which is a significant reduction in the price of 

information yielded from a session on a typical electron microscope.  The effective application of 
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this sampling methodology in scanning transmission electron microscopy (STEM) may be very 

effective, where periodicity in images can be further exploited by such a dictionary learning 

algorithm, and hyperspectral elemental information can simultaneously be recovered, possibly 

leveraging the stochastic process of x-ray detection inside the column. 

 

Of particular importance to the field microscopy, the hardware details of this implementa t ion 

(external electrostatic blanker) are readily accessible to many other microscopy facilities, as there 

is no need to directly interface with the scan coils of the microscope.  This method also allows on 

the fly switching between full sampling and sparse imaging, and thus may replace the final 

exposure step in traditional imaging.  As is traditionally done, the microscope can be aligned on a 

nearby area and then jumped to the area of interest, but while also simultaneously switching to 

sparse imaging in order to capture as unaltered of an image of the feature of interest as possible.  

Less computationally intensive inpainting approaches than BPFA can then quickly be used to 

confirm that the feature of interest was indeed captured before performing high quality 

reconstructions off the microscope. 

 

 Further, experiments measuring elemental information in three dimensions (either spatial or 

temporal) of interfaces and defects in hierarchical nanomaterials that were previously infeas ib le 

due to large electron doses may now be possible.  Future work will involve in-painting in three 

dimensions to retrieve correlated elemental information with reduced electron dose, as well as 
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expanding this method to the reconstruction of three-dimensional electron tomograms.  Work will 

also be carried out expanding this method to cryo-SEM to further explore the imaging of extremely 

beam sensitive nanostructures not observable through conventional methods.  Further, the idea of 

intentionally sensing incomplete information and its subsequent recovery with Bayesian Machine 

Learning may have very general applications in other “radiation-based” imaging modes beyond 

EM, such as x-ray and optical imaging with applications to a wide variety of fields where reduced 

dosage has practical and technical benefits. 
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3 CHAPTER 3:  HIGH SPEED/LOW DOSE ANALYTICAL ELECTRON 

MICROSCOPY WITH DYNAMIC SAMPLING 

 

ABSTRACT 

Technological advances in electron microscopy, particularly improved detectors and aberration 

correctors, have led to higher throughput and less invasive imaging of materials and biologica l 

structures by enhancing signal-to-noise ratios at lower electron exposures.  Analytical methods, 

such as electron energy loss spectroscopy (EELS) and energy dispersive x-ray spectrometry 

(EDS), have also benefitted and offer a rich set of local elemental and bonding information with 

nano- or atomic resolution.  However, spatially resolved spectrum imaging with EELS and EDS 

continue to be difficult to scale due to limited detector collection angles or high signal background, 

requiring hours or even days for full maps.  The principle and application of a Multi-Object ive 

Autonomous Dynamic Sampling (MOADS) method which can accelerate spectrum mapping in 

EELS or EDS by over an order of magnitude is presented.  Initial guesses about the true spectrum 

images are constructed as measurements are collected, which allows the prediction of points which 

contribute information/contrast.  In this fashion, an intelligently selected and reduced set of points 

which best approximate the true spectrum image are autonomously collected on-the-fly to save 

considerable time and/or radiative area dose.  MOADS was implemented as a software add-on to 

arbitrary commercial Scanning Transmission Electron Microscopes (STEMs) equipped with a 

Gatan Digital Micrograph (DM, Gatan ©) interface.  The efficacy of this proposed method on 
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several prototypical analytical specimens is demonstrated, as well as dose sensitive materials.  It 

is expected that MOADS and similar supervised dynamic sampling approaches may open the 

exploration of large area analytical maps or the imaging of beam reactive materials not previously 

thought feasible. 

 

3.1  Previous Work on Dynamic Sampling   

 

Newer generations of electron microscopes have dramatically increased spatial resolution and 

analytical sensitivity by focusing ever higher electron currents into smaller and smaller volumes 

153. Studies of a wide variety of materials which utilize new high brightness and high coherence 

electron sources now commonly report atomic resolution imaging and atom-by-atom elementa l 

mapping with Electron Energy Loss Spectroscopy (EELS) and Energy Dispersive X-ray 

Spectrometry (EDS) 110, 154. Commercially available MEMS-based sample holders, which can 

encapsulate the sample in a small volume of controllable fluid or gas, have also become widely 

available for most microscopes with accessible EDS or EELS signals 155, 156.  Spatially resolved 

EDS and EELS spectra, referred to as spectrum images (SI), have continued to be applied to the 

exploration of soft and hybrid soft/hard materials, often answering questions about complex and 

nanoscale processes un-addressable through other imaging modalities 157, 158.  In contrast to energy 
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filtered TEM, these spectrum images provide ‘fine structure’ which can be used to resolve bonding 

configuration and/or other information about local electronic structure 159, 160.   

Although increased radiative fluence with a fixed cross section for signal generation has had 

analytical advantages 161, 162, the limited detector collection angles for EDS and high background 

signal in EELS have prevented the routine application of spectrum imaging at reasonable 

doses/times outside of specialized labs.  In particular, the predilection of soft, hybrid, and in-situ 

systems to be damaged under incident radiation has been an unresolved problem compounded by 

the increasing brightness of modern electron sources 13, 115.  Performing additional correlated 

measurements after spectrum imaging, such as high-resolution imaging or nano-diffraction, is 

often impossible due to the distributed area dose involved in conventional spectrum imaging.  

Larger area or higher fidelity spectrum images of dose insensitive materials also provide 

challenges, as the hours or days required to complete a full map may exceed the stability of the 

microscope or specimen.  This is especially true for in-situ systems, where dynamics often proceed 

at much faster rates 163, 164.   A significant need exists for improved methods of collecting spatially 

resolved EELS and EDS signals at area doses low enough for the preservation of sensitive 

structures or subsequent investigation with a correlated technique, and/or for the acceleration of 

conventional spectrum images for the investigation of spatially confined biological-inorganic 

complex structures, engineered hybrid soft/hard ordered materials, or responsive and dynamic 

reconfigurable nanostructures. 
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Recently, algorithmic approaches have been proposed to substantially reduce the collection time 

or radiative dose of conventional electron, x-ray, and other radiation-based probe instruments 165-

169.  The central idea of these methods is that there is considerable redundancy in most experimenta l 

data, which can be disregarded without loss of fidelity 170.  Sparse imaging involves an under-

sampled acquisition of the signal in real space (sometimes incorrectly referred to as compressive 

sensing) 169, 171, 172.  This redundancy in combination with prior information is used to impute 

reasonable values for the missing entries in the image, which potentially reduces the area dose and 

the acquisition time.  It is important to note that in the case of a scanned probe, the local fluence 

at a single pixel in an under-sampled image is equivalent to the conventional case.  However, the 

reduction in total area dose may allow for the subsequent investigation with a correlated technique 

on pristine sample in the same region-of-interest or the reduction of diffusing and damaging radical 

species in in-situ systems due to beam-media interactions.  Recently, it has also been shown that 

for small electron probes and particular energy losses, the region of primary energy deposition in 

which sample damage occurs is smaller than the point spread function (PSF) for inelastic scattering 

173.  Sparse or under-sampled EELS acquisitions may therefore take advantage of this property to 

maximize the volume of signal unperturbed by the beam 73.  So far, in all the cases described 

above, the scan mask is ‘fixed’ before observing the specimen and is referred to as static, or non-

adaptive. 
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Instead of pre-choosing which measurements to make, dynamic sampling is performed ‘on-the-

fly’ (also referred to as adaptive).  As data is collected from a mobile probe interacting with the  

specimen, an algorithm uses the previously collected data to predict the next best measurement to 

make.  By intelligently adjusting the position of the probe after each sequential acquisition, an 

accurate approximation of the true image can be obtained at radically lower area 

exposures/collection times 174, 175.  Supervised methods based on simple linear regression have also 

shown strong performance at minimal computational cost (milliseconds) 176, 177.   Simulations on 

scanning electron microscopy (SEM) EDS images have recently been carried out using a similar 

approach but have not been followed up with a practical implementation 178.  In addition, this 

previous work could not map multiple overlapping elements or continuously valued spectrum 

images (only integer class-based maps) and required the training of a dedicated neural-network for 

fitting the spectra for each potential sample.  A more robust approach based on direct mapping of 

elements, rather than binned ‘material’ classes, is much needed for routine applications. 
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Figure 3.1  A flow chart describing the interaction of MOADS, Digital Micrograph or other 

Microscope Control Software (TIA Envision, JEM Toolbox, etc.), and the physical microscope.  

All direct calls to the microscope hardware are made through the manufacturer’s control and COM 

interface, which translates the requested measurement from the dynamic sampling code from 

relative coordinates to the physical DAC commands to the scan coils.  After acquiring a spectrum, 

the raw data is sent to a support PC running the dynamic sampling code, which analyzes each 

spectrum and performs the necessary steps to estimate the next best measurement.  In this way, the 

manufacturer software acts as a safety buffer, preventing bad calls to the microscope hardware. 
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Herein, it will be shown that spectrum imaging in analytical EM is amenable to dynamic sampling, 

where abrupt interfaces or continuous changes can be mapped with considerably fewer 

measurements.  In particular, the multi-objective form of dynamic sampling allows for 

independently resolving multiple elements simultaneously, while previous methods relied on 

classifying groups of signals into discrete classes 177.  Such an approach may potentially allow for 

very large spectrum images at acquisition times in the minutes, as opposed to hours or longer.  In 

the current rendition, this approach is drop-in ready and autonomously operable on any STEM 

equipped with a Digital Micrograph (DM®, Gatan Inc.) control system. 

 

3.2  Multi-Objective Dynamic Sampling Formulation 

 

 The goal in dynamic sampling will be to minimize the error between a ground truth (the true fully 

sampled) image X and an approximation X̂ by sequentially sampling a reduced set of pixels that 

best represent the true image.  In this section, the relevant terminology and process will be defined 

in an intuitive fashion, leaving the mathematical formulation for Appendix A.1 and A.2.  At any 

point during an experiment  there will be a set of k values sampled from the grid of pixels of X 

which can be interpolated to form X̂ .  This interpolation will have some error in its estimation X, 

which is referred to as the distortion between the interpolant and the ground truth 
( )( , )ˆ kXD X .  In 
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this case D is calculated as the cumulative pixel-by-pixel error between the two images.  In 

principle, adding any additional measurement k+1 should give us more information about X and 

reduce the distortion, D.  However, it is assumed that some pixels are strongly correlated with their 

neighbors and thus the reduction in distortion is not uniform for all possible pixels (some pixels 

contribute more information than others). 

If one knew the ground truth image X, the pixel which offers the maximum reduction in distortion 

could simply be calculated by enumerating through all the possible choices and calculating D 

directly.  During an experiment we do not have access to the ground truth elemental distribution, 

and thus it is necessary to calculate an expected reduction in distortion, or ERD, for all possible 

pixels to sample.     

Our second assumption is that there are some metrics which could describe the reduction in 

distortion, which are local around each unsampled pixel in the interpolated image.  Calculating 

these metrics, it would then be possible to learn a mapping to the ERD for each possible additiona l 

k+1 measurement.  In the context of Machine Learning, these metrics are described as a feature 

vector, which for MOADS have been listed in Table 3.1.  These features, or metrics, are general 

but powerfully descriptive calculations, such as the local gradient in the interpolated image around 

that pixel, the variance of the last few measurements near that pixel, or the distance to the nearest 

measurement.  Intuitively, if many measurements are taken locally in a small area and they all 
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return very different spectra, this is likely an area with fine detail.  Similarly, if there are no 

measurements in a large area of the image, we might like to take a few exploratory measurements.   

 

Measures of Gradient 
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Table 3.1  The features used to construct the V matrix.  Each of these features is expanded 

polynomially into a 26 dimensional vector 174, 177.  These features capture information about the 

structure of the image, such as gradients and local deviations, as well as the history of previous 

measurements, local density of measured points or distance to last measurement.  These features 

have been shown previously to map un-measured pixels to the expected reduction in distortion 

(ERD) with high efficiency. 
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In the case of MOADS, this mapping is learned by providing training images, with which the 

distortion between an interpolated version and the ground truth image can be calculated exactly.  

By calculating many local metrics for each unsampled pixel and recording the actual reduction in 

distortion on making a measurement, many training pairs can be created.  Simple linear regression 

can then be used to provide a set of coefficients which can be used to predict the ERD for an 

arbitrary set of input metrics.  It was important to demonstrate that the success of MOADS on an 

arbitrary sample does not depend very strongly on the nature of the training images.  While one 

could provide a detailed set of experimental images of the same or similar sample of interest, a 

series of arbitrary binary shapes produced in a paint application have been used.  These are referred 

to as weakly informative training images as they do not on their own give specific information 

about the fine structure in the experimental images.   

In the case of MOADS, for h different elements present in the sample, h different interpolated 

images are constructed for each element independently.  Next, h different ERDs are calculated and 

the point with the highest joint predicted ERD using the coefficients trained offline is sampled. 

In many low-dose conditions, noise or high background can complicate simple fitting and 

interpolation schema, leading to a very inaccurate estimate of the spectrum image.  To fit the 

spectra and calculate an approximation to the true spectrum image in a time scale on the order of 

milliseconds straightforward fitting and interpolation methods which do not explicitly account for 
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noise are used.  Thus, in low signal-to-noise ratio cases the algorithm may wind up chasing 

spurious noise.  To avoid these difficulties while still completing the fitting and interpolation on a 

time scale much faster than the acquisition, the algorithm can map elements in a discrete mode, in 

which the estimated spectrum image is discretized (1s meaning the element is present and 0s 

meaning its absence).   
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Figure 3.2  Flowchart of the dynamic sampling methodology.  First, a small subset of the total 

measurements is acquired by the microscope uniformly or randomly over the grid of defined 

pixels.  This initial set is used to make a crude estimate of the true spectrum image of the sample, 

from which expected reduction in distortion (ERD) between the estimate and true image is 

calculated for each potential measurement.  The pixel with maximum ERD is chosen and the 

appropriate coordinates sent to the microscope for acquisition.  The algorithm then incorporates 
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the information collected and updates its estimation of the spectrum image; repeated until a dose, 

time, or sampling threshold is met. 

 

Practically, a user sets a region of interest (ROI), the pixel density, loads the pre-trained 

coefficients, and chooses which elements to map from the EELS spectrometer or the EDX 

detectors.  The algorithm selects an initial measurement set (typically 0.5 to 1 % of the pixels) 

defined randomly or uniformly and collects the initial EELS or EDS spectra.  In this 

implementation a relatively naïve fitting method was employed, but in principle any advanced 

fitting or quantification method could be dropped into MOADS to suit the users’ preferences as 

long as a discrete label, continuous count or quantified percentage is returned to MOADS.  In this 

case, each EDS spectrum is fit by integrating pre-and post-peak regions and comparing to the 

integrated counts in the peak region.  If the peak counts were more than three times the pre-and 

post- peak counts, the peak count value was returned to MOADS (if operating in continuous mode) 

or a discrete label (if operating in a discretized mode).  In the case of EELS, the classic three-

window method was used by fitting the pre-and post-edge region after a log transform and 

integrating the remaining peak counts after background subtraction.  Every spectra is saved 

separately in a raw format, enabling more advanced fitting offline in commercial packages or free 

modules 179.  
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Using these values and their locations, a crude estimate of the spectrum image for each element 

is made through inpainting, and features are extracted for each un-sampled pixel (as done during 

training).  Multiplying the features and pre-trained coefficient vector results in a predicted ERD 

for each potential measurement.  The algorithm then automatically directs the microscope to 

acquire a new spectrum at the pixel with the maximum ERD.  Using this new information, the 

estimates of the sample are updated, and this process continues iteratively until a preset time or 

area dose threshold is exceeded, or when the estimated spectrum image remains unchanged from 

sampling additional points.  

 

3.2.1 Mathematical Formulation for Single Objective 

 

The goal of dynamic sampling is to choose measurements from a set of available choices which 

cumulatively best approximate the true measurement.  In this case, these measurements are made 

sequentially such that at each iteration a desired pixel from the set of unmeasured pixels which 

has the maximum expected reduction in distortion (ERD) is chosen.  First consider making k 

measurements at s locations with X ∈ RN values:   
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  𝑆 (𝑘) = [
𝑠 (1) ,𝑋𝑠(1)

⋮

𝑠(𝑘) ,𝑋𝑠(𝑘)

] , (3.1)   

Where S(k) is a vector containing all the previous individual measurements.   S(k) can construct 

( ; )ˆ k sX , the approximation of X after sampling k measurements.  The distortion, or difference, 

between ( ; )ˆ k sX and X is 
( ; ), )ˆ( k sD XX .   This is estimated as the pixel by pixel summed difference 

between the ground truth and the estimate:   

  

 ( ; ) ( ; )( , )ˆ ( , )ˆk s k s

r

r

D X D XX X


=  (3.2) 

After making an additional measurement, k+1, the reduction in distortion is effectively the 

change in 
( ; ), )ˆ( k sD XX  before and after measuring k+1. 

 

 
( ; ) ( 1; ) ( ; )( , ) (ˆ )ˆ,k s k s k sR D X D XX X+= −  (3.2)  

In most cases, the ground truth map or image, X, is unavailable, so the expected reduction in 

distortion (ERD) will be computed: 

 

 
( ; ) ( ; ) ( )|k s k s kR SR =   (3.3) 
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The next measurement k+1 which has the maximum value of ERD of all unmeasured pixels will 

be sampled: 

 

 ( 1) ( ; )argmax )( k

s

k sRs +



=  (3.4) 

In the supervised approach for dynamic sampling, the ERD values for all unmeasured pixels are 

predicted by mapping features from ( ; )ˆ k sX  to the ERD value for each pixel linearly: 

 ( )R Vf =  (3.5) 

Therefore, for n un-sampled pixels in an image, there is an n-dimensional vector 𝑅̃, and an n by m 

dimensional matrix for V, where m is the number of features extracted for each pixel.  Features 

include local gradients around the un-sampled pixel in the estimated image and the distance to the 

nearest measured pixel, among others (see Table 3.1). 

 

    (3.6) 
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To learn the coefficients (𝑓𝜃), a user provides a set of training images, which have similar 

features as the experimental images.  Many values for R and V are populated from these training 

images and the coefficients, ̂ , are then estimated using simple linear regression:  

 

 
2

ˆ arg min R V = −   (3.7) 

The training process has been described in detail previously 174, 177, and will not be repeated here.  

Once the coefficients have been learned the next measurement is chosen by taking the pixel with 

the maximum approximated ERD, from linearly multiplying the feature matrix times the 

coefficients: 

 

 
( 1) ( ) ˆargmax( )k k

s
s

s V +



=  (3.8) 

Each time an additional measurement is to be made, the estimated image ( ; )ˆ k sX is re-calculated, 

and the V matrix populated for each remaining un-sampled pixel. Importantly, it will be shown in 

the following text (along with previous literature) that the technique is relatively robust to 

“weakly informative” training images, in which the training images provide little or no specific 

information about the sample structure.   
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Performed without a heuristic for 𝑅̃, each training example would involve one complete 

inpainting step to compute the actual reduction in distortion between the ground truth map and 

the estimated map.  This would be computationally prohibitive to produce many training 

examples, so instead the reduction in distortion is calculated only for a small window around the 

candidate pixel using the following gaussian heuristic: 

 

 
  
R

r

(s) » h
r

(s)D( X
r
, X̂

r
)  (3.9) 

 
( )

2( )

2
exp

2( )s

s

r

c
h r s



 −
 − 

 
  (3.10) 

 ( ) min{ }
t P

s s t


= −  (3.11) 

 

The parameter c is self-estimated during training as reported previously 176, 177. 

 

3.2.2 Extending to Multiple Objectives 

 

Previously, supervised dynamic sampling only considered the possibility that each pixel in the 

grid had membership with only one class or signal (ie, each sampled point, ( )ks , has one and 
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only one value, ( )ks
X ).  In real materials, elements may be distributed in conflicting ways that 

may not be amenable to single class classification.  Particularly, projection style measurements 

in S/TEM may involve the transmission of the beam through multiple elements or classes of 

distinct materials.  Thus, it would be preferable to optimize the order of measurements for each 

map independently and simultaneously, sharing a common coordinate set.  

 

In Multi-Objective Autonomous Dynamic Sampling (MOADS), each un-sampled point has an h 

length vector ( )k

h

s
X which stores the values measured at coordinate k for all h maps.   The ERD is 

and features for each n un-sampled point in each h map independently are estimated and collated 

into two large matrices, 𝑅̃ and V, where each un-sampled point has a vector of possible ERDs and 

a 2D matrix of V features from each h map. 

 

    

1 1( ) ( )

1

( ) ( )

1

,

nn

s s

s

h

s

h

V V

V

V V

 
 

=  
 
 

 (3.12)   

 

The columns of 𝑅̃ and V shares a common set of measurable coordinates, but which have separate 

Xs values, ERDs, estimated images, and feature vectors.  Training and experiments proceed exactly 
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as described previously for each h map separately.  In principle, it is possible to simultaneous ly 

map elements with very different features or distributions by training a custom ˆ
h  for each element, 

fully exploiting the prior knowledge about the sample characteristics (plasmon mapping, core loss 

vs. low loss, EELS vs. EDS).  The next coordinate is selected as follows:   

 

 
( 1) ˆargmaxk hn

h
s h

s V +



 
=  

 
  (3.13) 

The point, k+1, with the maximum joint ERD across all the maps is chosen.  Rather than choosing 

the best point for each h map separately and sequentially, this joint ERD results in a more effic ient 

application of dose across all the maps (see following sections).  Each element’s estimated map is 

then updated using the information from ( 1) ( 1)

( 1) 1( , , , )k k

k

s s

hs X X+ +

+  and 𝑅̃, V updated for all n and 

h.  It becomes unnecessary to assign each spectrum, which may be composed of multiple elements, 

into one class.  Thus, multiple elemental maps (for as many elements or signals as are present) 

may be constructed and imaged simultaneously. 

3.2.3 Computational Resources   

 

In this work, a Digital Micrograph (DM®, Gatan Inc.) script was developed to interface the python 

implementation of MOADS with the microscope.  Relative coordinates on a grid are sent over the 
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network to the computer hosting DM®, which receives and converts these commands into DAC 

voltages for the scan coils on the microscope.  Each spectrum is automatically collected and 

returned over the network to the support PC hosting the dynamic sampling code, which fits and 

analyzes the spectra.  This process is iterated until a preset sampling threshold is met, the area dose 

limit for the materials is met, or the estimated spectrum map converges.  As Digital Micrograph is 

relatively hardware agnostic and implemented on most analytical STEMs, it is expected that this 

method will generalize well.  Simulations and experiments were performed on a commercial laptop 

computer equipped with a Core i7 processor and 16 Gb of memory. 

 

3.2.4 Microscope and Specimen Detail   

 

Figure 3.3  Training images used to construct the coefficient vectors for populating ERD matrices 

in the experiments and simulations used in this paper.  Top Row:  The selection of four basic 

straight- line interfaces used to construct the coefficients used in all experiments and simulat ions 
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except for the Gallionella results.  Bottom Row:  Abstract art pieces produced by the author for 

the creation of coefficient matrices able to follow more complicated interfaces.  Only these four 

images were supplied to the algorithm for all experimental results involving the Gallionella 

bacterial sample. 

 

EELS experiments were performed on a Hitachi HD2300 dedicated STEM equipped with a Gatan 

Enfina EELS spectrometer.  The microscope was operated at 200kV with convergence angle range 

5-24 mrad and collection angle range 7-30 mrad.  EDS experiments were carried out on an FEI 

Titan TEM/STEM equipped with an image corrector and single EDAX Si(Li) detector in STEM 

mode at 300kV, condenser aperture #2 200mm, and probe size of 5 (probe current ~ 250 pA).   In 

both cases, spectral acquisition was controlled through DM®.  Flakes of Fe3O4-MoS2 were drop 

casted onto a carbon membrane grid prior to imaging. The suspended boron nitride flakes on holey 

carbon film was obtained from Gatan as a reference specimen for the testing and calibration of the 

Enfina EELS spectrometer.  There is increasing interest in exploring the distribution of elements 

in soft-matter, particularly in the case where hard and soft material intersect, referred to as hybrid 

materials. In this vein, Gallionella spindles were chemically processed with aldehydes and osmium 

tetroxide followed by dehydration and infiltration with resin for ultramicrotomy.  Binary Ti-Al 

films with nominal composition Ti-48 at. % Al were deposited using magnetron sputtering 
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according to a previously published paper and annealed at 823 K for 10 minutes 180.  Samples were 

mechanically grinded, dimpled, and ion milled to produce a thin foil for imaging. 

 

3.3 Simulated Dynamic Sampling Results 

 

We first conducted an experiment offline using a fully sampled spectrum image of molybdenum 

di-sulfide flakes supporting a collection of magnetic iron oxide nanoparticles.  These materials 

have been explored due to the multifunctional nature of combining super-para-magnetic 

nanoparticles with the unique electronic and optical properties of 2D MoS2.  The fully sampled 

spectrum image was kept in memory and the MOADS algorithm sequentially observed spectra 

from the grid of available measurements.  In Figure 3.12, image quality between dynamic sampling 

and random sampling with two different reconstruction methods are compared (the same Nearest 

Neighbor Mean inpainting used in MOADS and a state-of-the-art patch based inpainting method 

181).  Patch-based methods have been used in many earlier under-sampled electron microscopy 

methods due to their strong performance at low sampling rates 167.  However, patch-based methods 

rely on their being at least one entry in every overlapping patch in the image and will perform 

poorly if large portions of the image are unsampled. 
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Figure 3.4  Simulated MOADS experiment from a fully sampled EDS spectrum image of 

molybdenum di-sulfide (MoS2) flakes decorated with iron oxide (Fe3O4) nanoparticles collected 

on a Hitachi HD2300 STEM.  A.  Processed molybdenum Kα spectrum map showing strong 

agreement with the distribution of the flakes in bottom left panel (132,156 pixels).  B.  Simulated 

dynamically sampled molybdenum map restored with nearest-neighbor mean inpainting after 

iteratively sampling 10% of the pixels.  C.  Nearest-neighbor mean interpolation of a random grid 

of 10% of the pixels from the molybdenum map, and D.  Patch based interpolation of the same 

random set of pixels.  E.  Additional experimental processed spectrum map of iron Kα from the 
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same region of interest.  (F-H).  Dynamically sampled iron map, randomly sampled 10% with 

nearest-neighbor mean interpolation, and with patch-based inpainting.  I.  Bright-field STEM 

image of the region of interest, showing the thin MoS2 flakes decorated with darker patches of 

agglomerated iron oxide nanoparticles.   J.  Both the iron and molybdenum maps were sampled 

and interpolated simultaneously for dynamic sampling simulations, resulting in a single scan mask.  

White pixels represent a grid point at which the algorithm simulated the collection of a spectra, 

and black represent skipped pixels.  K.  The joint mean-squared-error (MSE) for the three 

collection methods:  dynamic sampling + nearest neighbor (NN) inpainting, random sampling + 

nearest neighbor (NN) inpainting, and random sampling + patch based (PB) inpainting.   

 

The results of the simulated experiment with 10 percent sampling can be seen in Figure 3.4, 

showing the experimentally collected images and the reconstructions after simulating acquisit ion 

with MOADS.  As can be seen from the scan mask in Figure 3.4 J, the MOADS approach has 

prioritized the collection of measurements on the flakes and particles themselves, balancing the 

collection of both iron and molybdenum specific information simultaneously.  Strong agreement 

between the MOADS results for iron and molybdenum and the original ground truth maps is 

quantified by the relatively low MSE, which drops quickly after the initial 1% sampling rates.  

Random sampling with nearest-neighbor inpainting reconstructs the rough shape of the object but 

doesn’t produce the fine detail or exploit new data, resulting in slow improvement.  On the other 
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hand, random sampling with patch-based inpainting improves very quickly but still cannot handle 

the large gaps in information at these low sampling rates.   

To understand the practicality of this dynamic sampling approach on common instruments, sthe 

time to perform one iteration as a function of different mapping parameters was simulated.  In 

Figure 3.5, the time to perform an image has been examined as a function of the overall pixel count 

in the image. For small maps, this time is on the order of the time required to pass desired 

coordinates from Digital Micrograph (DM) scripting interface to the Digiscan control box, and for 

the scan coils to re-position the beam (~ 1 ms).  For larger maps, the time to complete one iteration 

of the dynamic sampling process is still more than an order of magnitude smaller than the 

acquisition time for typical EELS and EDS spectra (~100-500 ms).  Notably, the time to complete 

one loop actually increases with the number of sampled pixels.  This is because many of the 

features are calculated for the set Ω of nearest sampled pixels.  As more pixels are sampled, more 

distance calculations are required.  Using an approximate nearest neighbor search instead of brute 

force would likely improve performance at higher pixel densities, as well as using more powerful 

workstation grade computational systems. 
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Figure 3.5  The time required restore missing entries in the spectrum image and estimate the next 

best pixel as a function of the grid size for several common choices.   

 

For a naïve implementation with no parallelization, the impact of adding additiona l mapping 

objectives on the total time to complete one iteration was compared (updating the estimated 

spectrum image and predicting next best measurement).  With no parallelization, in Figure 3.6, it 

can be seen that the total time to feed in new coordinates is still much less than a typical dwell 
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time for EELS/EDS.  Parallelization is relatively simple to implement, since although mult ip le 

objectives share the same relative mapping coordinates, the entire ERD calculation is based solely 

on the portion of the measurement relative to that map (predicting ERD for a Boron edge does not 

depend on a carbon edge in an EELS map).  Thus the calculations associated with each objective 

can be performed completely independently, with the shared joint ERD calculation (a weighted 

average) the only shared calculation. 
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Figure 3.6  For a [128,128] map the time to execute one iteration of MOADS as a function of h, 

the number of simultaneous mapping objectives, is compared.  Even for five separate objectives, 

the time to perform the estimation is still an extremely small fraction of the total time to complete 

one experimental loop, due to a 250 ms EELS acquisition time.  Note shifted Time scale, otherwise 

the computation time from MOADS would be unnoticeable in the graph.  Simulations were 

performed on a commercial laptop computer equipped with a Core i7 processor and 32 Gb of 

memory. 



146 
 
 

 

 
 

Next, the specific form of the multi-objective ERD was examined by comparing the effectiveness 

of two different strategies: (1) sample the point with the maximum total ERD across all maps and 

(2) sequentially choosing the best pixel for each individual map independent of the others.  Figure 

3.7 shows the result of a simulated Boron Nitride flake on a straight carbon support.  As can be 

seen, with strategy (1) the algorithm has allocated more measurements along the more complicated 

polygonal shaped BN surface, while allocating less time to the more easily recoverable 

carbon/vacuum surface.  Comparing the final inpainted BN flake for strategy (1) and (2) in Figure 

3.7 F and H, respectively, it can be seen that strategy (1) results in a much less rough approximation 

of the true surface.  The final plots of the actual ERD as a function of sampling show this effect, 

where for strategy (2) it quickly oversamples the simpler carbon surface. 
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Figure 3.7  The effect of the joint ERD calculation is examined by simulating a straight line 

between a carbon support (A) and vacuum, and an angled polygonal boron nitride flake (B). 

Consider the simulation of two different multi-objective sampling strategies: (1) sample the point 

which gives the most information about both maps (best average ERD) and (2) sample the best 

point for each map independently, iterating back and forth between the best for carbon and the best 
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for boron.  In the mask for scheme (1) in panel C it can be seen that the algorithm has spent more 

time sampling the complicated BN interface and less time the simple C line, as compared to 

scheme (2) in panel D.  In the reconstructed maps for scheme 1 in panels E,F, it can be seen that 

the boron map is comparatively better reconstructed as compared to the reconstructed maps for 

scheme 2 in panels G,H.  Plotting the maximum ERD at each iteration for the boron nitride and 

the carbon maps it is shown that for scheme (1) in panel I, the ERD for BN and C decreases 

together.  However, for scheme (2) in panel J, the ERD diverges between the complicated BN and 

C maps.   

 

Thus, scheme (1), which is used in MOADS, allows the algorithm to allocate dose dynamically as 

a function of the total complexity of each map.  After 3% sampling, scheme (1, MOADS) had 52 

mislabeled pixels, as compared to 61 mislabeled pixels for scheme (2). 

 

3.4 Experimental Results on Commercial STEMs 

 

Having demonstrated the potential benefit, an experimental spectrum mapping of boron nitride 

flakes on lacey carbon was conducted, which is a classic specimen for the validation and 

calibration of EELS spectrometers.  These thin flakes provide well resolvable boron and nitrogen 

edges and are stable under the high exposures common to EELS measurements.  Both the carbon 
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support and the BN flakes provide highly distinguishable interfaces, in which it is possible to 

examine the effectiveness of the dynamic sampling approach for autonomous EELS collection, 

and the balancing of multiple experimental objectives.  As in this system, and in many other 

relevant materials, elements may have highly overlapping or uneven distributions.  A simple 

approach to classify each region separately will fail to resolve overlapping interfaces in 

transmission electron imaging 177.  Thus, it is essential to be able to balance multiple objectives 

when performing an adaptive or dynamic spectrum imaging technique. 

 

 

Figure 3.8  Experimental MOADS acquisition of boron nitride flakes on a lacey carbon film using 

EELS.  A.  HAADF image of a boron nitride flake supported by carbon film, adjacent to vacuum 
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on Hitachi HD2300 STEM with Gatan Enfina Spectrometer (convergence angle: 8 mrad, 

collection angle: 21mrad).  B.  The final mask of points imaged autonomously by the microscope, 

white pixels representing sampled and black skipped.  4% of the total pixels of the 120x120 

spectrum image were collected in 9.6 minutes compared to 4 hours for a full spectrum image, with 

an initial 1% sampled uniformly.  At each pixel a separate boron and carbon spectra were captured, 

each with an exposure of 0.5 seconds and a dispersion of 0.1 eV/ch.  C.  Reconstructed boron map 

from the measured spectra in B of the area in A. D.  Similar carbon map from the measured spectra 

in B of the area in A.  E.  An additional area of boron nitride flake in which the boron signal 

overlaps with the carbon and the vacuum.   F.  Sampled spectra from the inset in E, 5% of an 80x80 

grid of spectra were collected in a total time of 7.5 minutes vs. 2.3 hours for a full spectrum image.  

G.  Reconstructed boron and H. carbon maps.  In all maps, the zero-loss peak was used to roughly 

normalize the counts for differences in sample thickness. 

 

We examined several regions with a distinguishable edge between the carbon film, BN flake, and 

the vacuum.  In Figure 3.8  two distinct MOADS resolved EELS spectrum images are displayed, 

where at each pixel the drift tube was varied to collect a carbon and a boron edge.  The user aligned 

the microscope and centered the desired region, but the mapping was performed fully 

autonomously.  In this case, one percent of the total number of pixels was sampled uniformly to 

make an initial guess about the sample structure.  This initial sampling scheme can also be 
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performed randomly, or potentially initialized from the gradient of the HAADF image (so-called 

Z-contrast).  In this case, a uniform sampling scheme was chosen as it is reproducible and provides 

little initial sampling bias, giving no extra information about the curved or diagonal interfaces in 

the true specimen spectrum map.  In addition, this avoids a situation where elements with similar 

Z but distinct spectra may be missed. 

Despite this, as seen in the left most panels of Figure 3.8, the true interfaces are well captured at 

very small sampling percentages; even just 4% of the pixels in the top map is enough to quickly 

resolve the angled BN flake edge and the sloped interface between the carbon and vacuum.  In 

addition, where interfaces may overlap, as is the case in the middle inset of Figure 3.8, the mult i-

objective formulation is able to apportion time and dose efficiently to distinguish the two 

overlapping interfaces independently from a shared set of pixel coordinates.  In this case, the 

influence of changing thickness on the total counts was accounted for by normalizing against the 

zero-loss peak.  Instrumental errors and drift complicate this procedure and result in a slightly 

higher contrast region at the BN flake interface in the carbon map, but this problem is ubiquitous 

in spectrum imaging of samples with discontinuous jumps in thickness with EELS and is not due 

to MOADS. 

Training images used in these experiments involved simple straight lines separating areas of one 

element from another (binary images separated by sharp interfaces). The same coefficients were 

used to estimate ERDBN and ERDC, although it is possible to use specialized coefficients for each 
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element or to train explicitly for curved interfaces.  This is typically unnecessary since the features 

used to predict the ERD are calculated on a pixel-by-pixel basis and are therefore robust to large 

scale features in the image.  In all experiments reported in this paper, similar ‘weakly informative’ 

training images have been used to demonstrate the generalizability of the method. 

In addition to reducing the time-to-image, reducing the number of measurements can also 

substantially reduce the overall area dose.  Below, a biologically relevant sample is shown where 

spectrum imaging would conventionally struggle to perform using a single EDS detector due to 

poor efficiency and long dwell times, which can quickly accumulate into a destructive area dose. 

Gallionella bacteria are unique organisms that have developed a metabolism utilizing oxidation of 

iron.  These bacteria form biofilms in iron-rich environments such as freshwater springs, oceanic 

hydrothermal vents, or deep within the Earth’s crust along redox gradients.  They are also of 

interest in the astrobiology community, where such bacteria are a focus in the study of possible 

extraterrestrial life, particularly where harsh conditions and iron abundant environment coincide 

(asteroids, rocky planetoids, Mars, etc.). 

In Figure 3.9 an autonomous dynamic spectrum mapping of a thin section of the spindle- like 

residue these bacteria has been performed.  Traditional HAADF images of these mixed carbon and 

iron spindles are shown in Figure 3.9, where a dense core of iron is surrounded by a more sparsely 

packed distribution of iron oxide nanoparticles.  Sampling was performed as described above, 

where the Fe Kα peak was recorded at each pixel position following an initial random 1% sampling 
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mask.  Due to the inefficiency of the single detector, this experiment was performed in a discretized 

form, where each spectrum was classified into a binary feature (1s representing iron, and 0s 

representing no visible peak by comparing against the background). 

 

Figure 3.9  Autonomously collected dynamic EDS spectrum images of Gallionella bacterial 

residue, resin embedded and sectioned to 20nm.  A.  HAADF image collected on FEI Titan in 
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STEM mode at 300kV with a 150 µm C2 aperture, spot-size 6, and 10µs dwell time.  B.  Scanning 

mask sampled by the microscope tracking the Fe Kα peak as feedback from a Gatan controlled 

EDAX EDS (1024 channels at 10 eV width) detector of the leftmost inset in image A.  10% of the 

pixels in the 80x80 image were collected with a one second dwell time per pixel, resulting in a 

total collection time of 23.6 minutes vs. a conventional full SI acquisition of 2.7 hours.  An init ia l 

1% of the pixels was collected randomly.   C.  Reconstructed discretized spectrum image of the 

elemental distribution of iron from the scan mask in B.  D.  Scanning mask collected from the 

rightmost inset in image A, again tracking the Fe Kα with an 80x80 grid and 10% sampling.  E.  

Reconstructed discretized spectrum image from the mask sampled in D.  F.  Representative 

spectrum collected with a 30 second dwell time showing the strong Fe Kα peak that was used for 

the mapping (2048 channels at 10 eV width).   

 

As seen in Figure 3.9, even at a low sampling percentage (10%) both spectrum maps of the insets 

of the HAADF image closely mirror the expected iron distribution in these materials.  Strong 

agreement was reached with conventional fully sampled spectrum images, but at dramatica lly 

lower acquisition times and area doses.  Notably, these EDS experiments were performed on a 

microscope with a single detector.  Microscopes with additional and more efficient detectors can 

still enjoy an order of magnitude improvement of the total mapping time, while benefiting from a 

reduced individual measurement time. 
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As was the case for the boron nitride sample, ‘weakly informative’ training images were supplied 

to the algorithm before performing experimental imaging.  No information about the ellipso id 

cross section or spindle-like planar distribution of the residue was employed to accelerate imaging.  

In the case of extraordinarily dose sensitive materials or very high-fidelity spectrum images, 

several low dose HAADF images may be used as the training database to further reduce the 

necessary sampling percentages. 

One can also use the dynamic spectrum imaging framework to do high speed spectrum imaging of 

features other than pure elemental signatures in spectra.  A titanium deficient region in a sample 

of titanium-aluminum, details of which can be found in previous publications 180, was identified 

using HAADF imaging and point-and-shoot EDS spectra.  Utilizing the coefficients trained from 

the simple straight- line training database employed for the boron nitride flakes, the spectrum 

imaging was performed on a small inset of the HAADF image, shown in Figure 3.10. 



156 
 
 

 

 
 

 

Figure 3.10  MOADS EDS mapping of a titanium deficient region in an annealed Ti 48 at. % Al 

alloy.  Experimental details regarding material and sample preparation can be found in previous 

publications 180.  A.  A HAADF image collected on an FEI Titan at 300 kV with 150 µm C2 

aperture, spot-size 6 with 10µs dwell time equipped with Gatan controlled EDAX EDS detector.  

A one second dwell time per spectra with 1024 channels and a 10 eV width was used during 

autonomous collection.  B.  Final sampling mask after an initial 1% of the points were randomly 

sampled up to 7% maximum sampling of the 80x80 grid of pixels in the spectrum image.   C.  The 

discrete reconstructed image of the titanium deficient region, which tracks the dark feature in the 
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inset of the HAADF image.  D.  Representative EDS spectrum collected from the light matrix in 

the image in A, showing strong signal from both the Al Kα peak and the Ti Kα peaks (dwell time 

30 seconds).  E.  A second spectrum collected in the dark region of the inset in A showing the 

disappearance of the titanium peak (1024 channels with 10 eV width). 

The mapping signal was defined as a discrete version of the ratio between the Al Kα peak and the 

Ti Kα peaks, where a Boolean one represents a ratio of greater than two (titanium deficient region) 

and Boolean zero represents a ratio of less than two.  In Figure 3.10A, the region of interest is 

defined over a HAADF image and a spectrum mask collected from the mask of sampled pixels in 

3.10B.  Using the ratio between the Al Kα and Ti Kα , the algorithm was quickly and autonomously 

able to map the spatial extent of this titanium deficient region using minimal prior information and 

mapping time.  Other unique sample metrics may be chosen, such as the ratio of a plasmon peak 

to a core-loss edge in EELS, etc. in addition to producing independent maps.  The ability to 

optimize a map for a specific signal (or combination of signals) is a novel ability of dynamic 

sampling. Although different signals may have different experimental resolutions, this should not 

affect the ability of the dynamic sampling algorithm.  Lower resolution signals will be easier to 

approximate at smaller length scales with inpainting, so even with a small pixel size to 

accommodate another signal the algorithm will simply space measurements out to maximize the 

quality of the reconstruction.  As established in the introduction, the resolution and contrast are 

intimately related, so basing sampling decisions on contrast inherently considers the varying 
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resolution due to the smearing of the signal due to the poor instrument/mechanistic (core loss vs. 

plasmon loss) resolution. 

In this technique prior information about the type of images encountered is used to infer a set of 

coordinates which can map features in an undersampled image to the relative ‘usefulness’ of 

additional measurements.  Thus, it is useful to compare the similarity between the training images 

and the experimental images to understand the strength of this prior information.  As can be seen 

in Table 3.2 three metrics of similarity all show that the prior images give very little specific 

information regarding the nature of each experimental sample.  Instead, generalizable information 

which is not specific to a particular location in the image or a specific configuration of contrast, 

such as the usefulness of an interface or gradient, are used. 

 

  MoS2-Fe3O4 Boron-Nitride Gallionella Iron Oxide 

Particles 

PSNR 3.0633 3.7933 5.9028 8.2312 

Cross-Correlation 

Coefficient 

0.2375 0.3070 0.1855 0.0101 

SSIM 8.2783e-04 0.3417 0.0358 0.0429 

Table 3.2  Similarity metrics between training images (top row Figure 3.3) and experimenta l 

images.  The Cross-Correlation Coefficient runs on a scale of zero to one, zero being no correlation 
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and one being complete correlation.  None of the images are more than 30% similar.  Additiona lly, 

the Structural Similarity Index Measure (SSIM) also runs on a scale from zero to one, zero being 

least similar and one being perfect similarity. For this reason, the training images used in this work 

(Figure 3.3) as referred to as weakly informative, as they have very little direct similarity with the 

experimental images. 
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Figure 3.11  A comparison of the raw spectra collected during the MOADS experiments 

demonstrated in this work.  A. Unprocessed spectrum from the Gallionella sample (Figure 3.9) 

and B. unprocessed spectrum from the Ti-Al sample (Figure 3.10).  Both spectra were recorded 

with a one second exposure. 
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Figure 3.8 Fully Sampled Image 4% sampling 

Pixel Density 80x80 pixels 80x80 pixels 

Pixel size 9.2 nm 9.2 nm 

Dwell time per pixel 0.5 sec (*2) 0.5 sec (*2) 

Total time for map 4 hours 9.6 minutes 

Table 3.3  Acquisition parameters for fully and dynamically sampled spectrum images in Figure 

3.8.   

 

Figure 3.9 Fully Sampled Image 10% sampling 

Pixel Density 80x80 pixels 80x80 pixels 

Pixel size 5.7 nm 5.7 nm 

Dwell time per pixel 1 sec 1 sec 

Total time for map 2.7 hours 23.6 min. 

Table 3.4  Acquisition parameters for fully and dynamically sampled spectrum images in Figure 

3.9. 

Figure 3.10 Fully Sampled Image 7% sampling 

Pixel Density 80x80 pixels 80x80 pixels 

Pixel size 10 nm 10 nm 

Dwell time per pixel 1 sec 1 sec 

Total time for map 2.7 hours 16.5 min. 

Table 3.5  Acquisition parameters for fully and dynamically sampled spectrum images in Figure 

3.10. 
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Previously, it has been shown that for some samples random scanning can outperform other 

proposed scanning systems in image quality (such as spiral, Lissajous, and line skipping) 182.  

However, since the mask is a-priori defined independently of the sample, it is difficult to achieve 

an order-of-magnitude reduction in dose and time.  Even with state-of-the-art inpainting methods, 

it is unlikely that a static scanning mask will allow for sub 15% sampling rates with accurate 

reconstruction 135, 181, which is still much larger than dynamic sampling for comparably poorer 

image quality.  For under-sampled imaging with a static mask, it has been suggested that denoising 

a fully sampled low exposure image with the same prior information may lead to higher quality 

images 151.  In the case of dynamic sampling, acquiring a comparable fully sampled low-dose 

spectrum image to Figure 3.8 would involve a total collection time of 9.6 minutes on 120x120 

pixels, and consequently individual spectrum exposures of 40 ms (compared to 1s).  Due to the 

extremely low sampling rates Dynamic Sampling achieves (5-10%), comparable fully-samp led 

spectrum images would often have individual measurement times below the detection limit for 

many EDS peaks or EELS edges.  Therefore, dynamically sampled spectrum images could contain 

the same spatial information with the larger individual collection time necessary to resolve ‘fine -

structure’ and crucially, without the need to directly process spectra with computational methods. 
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3.4.1 Limitations 

 

In Figure 3.12, a situation which can challenge the performance of MOADS, and potentially lead 

to sub-optimal image reconstruction is illustrated.   At this field of view there are a considerable 

number of gallionella streaks and agglomerates scattered on the dark carbon support.  As such, 

during the initial 1% sampling, it is highly likely that the initial unguided scan mask will miss 

many of these isolated features.  The parameter c, which controls the width of the Gaussian 

heuristic used to calculate the ERD, controls the relative reward the algorithm receives for taking 

relatively safe bets vs allocating dose in unexplored regions of the image.  The parameter c controls 

the tradeoff between exploration and exploitation.  
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Figure 3.12  A.  The ground-truth original image is a low magnification HAADF image of the 

Gallionella residue that has been down-sampled to only 200x200 pixels. At this pixel density and 

field of view, many isolated single or small groups of pixels have significant impact on the 

distortion in the image. B-C.  Reconstruction and mask after sampling 10% of the pixels with c=32 

(self-estimated from the training data – top row of 3.3). D-E.  Reconstruction and mask, also after 

sampling 10%, with the c parameter set to 2.0. 
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In previous work, a method to self-estimate this c parameter has been developed using the training 

data.  However, in this figure a worst-case series of training images have been used (the top row 

of Figure 3.3 - simple lines separating bright and dark contrast) and thus gives little information 

about the need to explore for smaller scale features.   Thus, the self-estimation results in a very 

large c parameter (32). 

 

For the c parameter set to a large value (32), Figure 3.12 B-C shows how the algorithm prefers 

sampling additional points on particle agglomerations it has already discovered.  This results in 

only a small fraction of the total number of particle agglomerations being detected, but each is 

resolved at high detail.   This is heavy exploitation of known information while avoiding 

exploration.  For the opposite case with a small c value (2) in Figure 3.3 D-E, more points have 

been dedicated to the spaces between the Gallionella residue (heavy exploration and limited 

exploitation).  As a result, fewer features are missing from the reconstruction, but the 

reconstruction quality of each individual structure is subjectively worse.   

 

As shown in Figure 3.12 and 3.13, MOADS can often yield sub-optimal reconstructions when the 

magnification and pixel densities are set at such a level as each pixel becomes meaningfully 

important.  Such images violate the assumption that most pixels do not carry significant 

information.  Despite this, MOADS can often produce images with useful information, and does 
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not outright fail.  The best way to understand this behavior is in the classical experimental design 

terminology of exploration vs. exploitation, in which a tradeoff must be made between sampling 

important pixels in a nearby area versus searching for new isolated structures in the image.  The 

user has control over the behavior of the algorithm in this situation, by manually setting the c-

parameter to either:  1.  Maximize the percentage of isolated structures identified, or 2.  Maximize 

the quality of a few isolated structures.  The user also has the option of simply increasing the pixel 

sampling rates for a conservative setting of c.  At worst case, the algorithm will simply continue 

sampling pixels until the image is fully sampled, and thus performing no worse than a conventiona l 

spectrum image collection. 
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Figure 3.13  Trade-off case #2.  A.  The ground-truth original image is a low magnifica t ion 

HAADF image of the iron oxide nanoparticles distributed on a carbon grid, which has also been 

down-sampled to only 200x200 pixels.  Many agglomerations of particles are present, but also a 

significant number of isolated single or several pixel clusters.  There are simply not enough pixels 

in the sampling budget at <10% sampling and such a coarse grid to search for all the small clusters, 

while resolving the large agglomerations with a sufficient level of detail.  The tradeoff between 

exploration and exploitation cannot be avoided, and if the user cannot increase the pixel sampling 
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rate or decrease the field of view, the user should manually set the c parameter depending on his 

priority.  Poor training images have also been used – the top row of Figure 3.3. B-C.  

Reconstruction and mask after sampling 10% of the pixels with c=32.  As can be seen in the 

scanning mask, the algorithm has prioritized heavy sampling of a small number of large features 

and small clusters (heavy exploitation of known information) and has avoided taking new 

measurements elsewhere (limited exploration of unknowns).  D-E.  Reconstruction and mask, also 

after sampling 10%, with the c parameter set to 2.0.  As can be seen in the mask, more points have 

been dedicated to searching for new clusters (heavy exploration and limited exploitation).  As a 

result, fewer features are missing from the reconstruction, but the reconstruction quality of each 

individual structure is lower.   

 

Although the calculation time to perform one loop of the dynamic sampling prediction is much 

less than the time to acquire a typical EELS or EDS signal, it is still much too large compared to 

dwell times for typical electron imaging (HAADF, Transmission, SE).  In these modes, static 

scanning masks or low-exposure denoising will likely be the preferred mode of operation due the 

time cost (milliseconds for calculation and microseconds for collection).  However, the advantages 

for analytical imaging are clear, and MOADS or other similar dynamic sampling approaches may 

open wide-field elemental imaging of materials not previously feasible.  
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We have highlighted MOADS as an area dose reducing technique, but it is important to emphasize 

that the fluence per pixel remains the same as fully sampled imaging.  Thus, if damage occurs long 

before a single pixel signal is integrated, MOADS will offer no additional advantage over 

conventional fully sampled imaging.  Especially in STEM, where we have a bevy of different 

signals and imaging modalities, we often would like to obtain multiple signals from the same 

region-of-interest (ROI).  By reducing the area of the sample that experiences an interaction with 

the electron beam, it becomes possible to make additional measurements (such as high-res imaging 

or nano-diffraction) within the same ROI on pristine specimen.  This would allow a user to get 

more from their sample by reducing the impact of multiple observations.  In other cases, one could 

also imagine reducing the per-pixel fluence by using MOADS as an initial segmentation tool.  

After delineating the regions between domains of differing composition using a few dynamica l ly 

selected points with long dwell time, the pixels contained within one domain could be recorded 

using a drastically lower acquisition time and integrated into one representative spectra.  Future 

work will explore creative applications of MOADS to both reduce area dose and single pixel 

fluence. 

 

3.5 Conclusions 

We have developed an algorithmic platform for accelerated and low-dose experimental analyt ica l 

imaging of materials that is applicable to arbitrary Scanning Transmission Electron Microscopes 
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using Digital Micrograph or other scriptable OEM software.  In contrast to static sampling schemes 

or denoising, this method can produce spatially accurate spectrum maps at high speeds/low doses 

with weakly informative prior information, and no direct processing or manipulation of spectral 

data (no sparsity constraints).   By maximizing the application of electron dose to areas with 

meaningful information or contrast on-the-fly, MOADS may allow for the effic ient 

characterization of radically larger regions of interest or materials/interfaces that are sensitive to 

accumulated dose.  It is expected that dynamic sampling approaches will impact many radiative, 

serially collected characterization methods currently in use, and may reduce the time of acquisit ion 

by over an order of magnitude for some samples. 
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4 CHAPTER 4:  STAGE ROCKED ELECTRON CHANNELING FOR 

ORIENTATION MAPPING 

 

ABSTRACT 

Microstructural analysis by crystal orientation mapping of bulk functional materials is an essential 

and routine operation in the engineering of material properties. Far and away the most successfully 

employed technique, Electron Backscattered Diffraction (EBSD), provides high spatial resolution 

information at the cost of limited angular resolution and a distorted imaging condition. In this 

work, a stage-rocked electron channeling approach is developed as a low-cost orientation mapping 

alternative to EBSD. This is accomplished by automated electron channeling contrast imaging 

(ECCI) as the microscope stage physically tilts/rotates a sample through a reduced hemisphere of 

orientations followed by computational reconstruction of electron channeling patterns (ECP). 

Referred to as Orientation Mapping by Electron Channeling (OMEC), this method offers 

advantages in terms of local defect analysis, as it combines the advantages of selected area ECP 

(SACP) and ECCI. Dynamic or “adaptive” sampling schemes are illustrated to increase the 

throughput of the technique. Finally, the implications for sample analysis in which large 3D maps 

of ECCI images can be routinely constructed of challenging crystalline samples are discussed. As 

an electron channeling-based approach to orientation mapping, OMEC may open new routes to 

characterize crystalline materials with high angular and spatial resolution. 
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4.1 Crystal Orientation and Texture  

 

A plethora of materials properties and phenomena revolve around the Neumann principle, which 

relates the innate crystal symmetry to the physical properties. Optimizing these properties relies 

on a physical exploration of the macro-scale properties simultaneously with the underlying crystal 

structure.  Polycrystals are one of the most common forms of engineering materials, which have 

large numbers of interlocked areas of varying crystalline orientation.  The innate underlying 

symmetry of the crystals results in anisotropic properties for each local domain, or grain.  Thus, 

the macroscale performance of a particular system depends on the relative abundances of particular 

oriented grains.  The wide-area fractions of different grains are referred to as the microstructura l 

texture, which is often a function of the thermal and mechanical treatment of the material.   

 

Texture is typically described using orientation distribution functions (ODFs) which quantify the 

relative fractions of orientations over the crystal.  Thus for a particular orientation, g, with a volume 

fraction of grains in the material, V(g), and a total volume, V0, the ODF can be calculated as 

follows: 

 
0

1 ( )
( )

dV g
f g

V dg
=   (4.1) 
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Given an inherent material property which may depend on the orientation of the lattice, the ODF 

can be used to calculate an averaged macroscale property for a specific material by integrat ing 

over all present orientations and their volume fractions: 

 ( ) ( )
g

g f g dg =    (4.2) 

Mapping crystal orientation and texture across large areas (up to mm2) of bulk samples with high 

spatial resolution (10’s of nm) allows for this fundamental linkage between the underlying 

crystalline texture (and thus work history) and macroscale performance.  Considerable work has 

been focused on developing techniques which can provide this understanding by directly 

visualizing orientation maps of bulk specimens to further engineer critical materials. 

 

4.2 Mapping Orientation with Electrons 

 

To determine the orientation of a crystal lattice with electrons, there are three key scattering 

mechanisms between an underlying lattice and an incident beam of electrons.  Firstly, electrons 

may be elastically scattered (conservation of energy) coherently (conservation of phase) by Bragg 

scattering which results in small scattering angles.  Bragg scattering leads to a periodic distribution 

of electrons inside the crystal and Bragg diffraction.  Further, electrons may be phonon scattered 

or experience thermal diffuse scattering (TDS), in which the electrons lose a small amount of 
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energy incoherently (phase information is lost).  Core-loss scattering, which has been discussed in 

the context of EELS and EDS, can also occur resulting in larger energy losses and the emittance 

of X-rays or secondary electrons.  Repeated inelastic or phonon scattering can result in mult ip le 

scattering and a broad range of electron energies and large scattering angles.  Electrons which 

experience a large change in angle due to Rutherford scattering and some which experienced 

multiple pseudo-elastic scattering can re-emerge from the sample as relatively high energy 

electrons (> 50 eV).  This process is commonly used to model Backscattered electrons. 
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Figure 4.1  Schematic diagram of a typical EBSD set-up including an external camera.  The sample 

is tilted to a high angle to promote the collection of diffracted backscattered electrons onto the 

inserted camera.  The working distance, WD, is defined as the distance between the pole-piece of 

the microscope and the field-of-view on the specimen.  A defined camera length, L, then describes 

the physical distance between the specimen and the detector.  Note the oblique angle between the 

detector and the sample. 



176 
 
 

 

 
 

Electron backscatter diffraction (EBSD) has become the preeminent technique for performing 

routine orientation mapping in conventional scanning electron microscopes (SEMs)183. As seen in 

Figure 4.1, in EBSD an electron probe interacts with a highly tilted specimen.  Psuedo-elastic and 

multiple scattering events result in a range of forescattered angles with may be further Bragg 

diffracted which results in the emergence of a coherent wavefield from the specimen. The beam is 

scanned across the sample surface and at each grid point over a region of interest, the ‘cones’ of 

Bragg diffracted electrons are intercepted by a 2D electron detector to form an electron backscatter 

pattern (EBSP). Leveraging advanced detectors and computation, modern EBSD systems allow 

the automated acquisition and indexing of EBSP’s at speeds of more than 1500 patterns per 

second184. Nevertheless, EBSD requires a significant investment in additional hardware and suffers 

from limitations including image/scan distortion185 due to the highly tilted (typically 70 degrees) 

sample. Spatial resolution in standard EBSD is non-uniform (i.e different in lateral and 

longitudinal directions)186 and on the order of 20 nm while the precision of angular measurements 

is on the order of 1 degree187-189.  

Before interacting with the specimen, the incident beam of electrons is typically modeled as a 

plane wave.  As the beam enters the sample and interacts with the underlying lattice, the resulting 

field can be modeled as a superposition of standing waves, referred to as Bloch waves.  These 

waves are simply the solution of the time-independent Schrodinger equation for a high energy 

electron experiencing a periodic atomic potential. 
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ℏ2
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ℎ
]𝛹 = 0 (4.3) 

 

Given the electron mass, m, accelerated with a particular kinetic energy E, experiencing a 

complex Fourier series potential, V, for a particular set of lattice vectors, h.  The solution of this 

equation is given by the following linear combination of Bloch waves: 

 ( ) ( ) ( ) ( ) ( ) ( )

0( ) e) xp[2 2( ) ]exp(( )j j j j j j

g

j j g

r i kr r qC g z     +  −= =    (4.4) 

For a particular lattice at a specific orientation, a given number of Bloch waves are present at a 

time, j.  This corresponds to a separate set of diffracted beams from the primary beam.  

Backscattering then occurs when electrons are incoherently removed from the primary Bloch 

wave field by atomic potentials.  Certain Bloch waves have their maxima on atomic columns, 

while others are centered between the columns190.  Thus, those that interact strongly with the 

atomic columns are more strongly damped and participate more often in backscattering.  Since 

the relative amounts of backscattering depend on the fraction of electrons available to participate 

in scattering at a given depth, the population of different Bloch waves affects the incoherent 

intensity from the crystal, which can be detected.  This results in an orientation dependent 

intensity that derives from the fundamental channeling of the primary beam onto other diffracted 

beams.  In principle, such intensity changes are also measurable from other signals, such as 

secondary electrons (SE II& III).   



178 
 
 

 

 
 

 

Figure 4.2  Tilt dependence of the BSE signal from an aluminum polycrystal specimen.  As the 

angle between the incident beam and the lattice in each grain shifts, the beam comes off and on 

diffraction conditions.  This results in a changing BSE yield and corresponding contrast change 

over stage motion that depends on the individual orientation of each grain. 

 

Recording the BSE intensity as a function of beam-specimen angle results in the formation of 

Electron Channeling Patterns (ECP), which can give analogous information as EBSD about the 

underlying orientation of the specimen due to this orientation depend contrast. In practice, ECPs 

have been acquired by low magnification imaging of large single-crystal regions (beam rocking 

due to divergence in raster scan)191, by stage rocking with a fixed beam190, or by rocking the beam 

about a fixed point to generate a selected area electron channeling pattern (SACP)192.  

Compared to EBSD, ECPs provide the same orientation information without the geometric 

distortion that comes from intercepting a three-dimensional signal from a tilted specimen onto a 
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non-perpendicular plane185. Since the angles between bands are used to precisely calculate 

orientations, indexing can be limited by the accuracy of the forward geometric model used to 

account for this complex distortion. ECPs also provide high angular resolution information, 

provided a small beam convergence angle (< 3 mrad)190. They have also been shown to provide 

strain information via higher-order Laue zone (HOLZ) lines193, 194. Strain analysis by EBSD is 

ultimately limited by the pixel resolution of the detector, although high-resolution EBSD can 

provide improved angular resolution by including additional image post-processing steps187, 195.  

SACP is the most common method for ECP collection, but it requires specialized electron optics 

for beam rocking, which limits broad adoption of this technique. In addition, it suffers from poor 

spatial resolution (~500 nm) and limited angular field of view (FOV) (typically 10 degrees)196 due 

to spherical aberration at large beam tilts197. Historically, individual ECPs were indexed by 

comparing them to physical ECP-maps. These maps were laboriously constructed by synthesizing 

hemi-spherical single-crystal samples190, or fabricating dozens of uniquely oriented single crystal 

specimens and collecting many SACPs198. While useful for a limited number of simple crystal 

systems, these tasks were not practical for many material systems with lower symmetry or mult ip le 

phases. Methods to overcome the limited FOV and spatial resolution of SACPs, such as dictionary 

based indexing199 and the use of spherical aberration correction200, result in long computation times 

or large cost.  
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The related technique of electron channeling contrast imaging (ECCI) has been intensely explored 

for the imaging of local defects in the SEM. By mapping the local orientation and texture using 

EBSD (or less commonly SACP) the specimen can be tilted into a “two-beam” condition201. By 

capturing BSE images at several conditions, the Burger’s vectors and other defect parameters can 

be calculated without the destructive sample preparation that would be required to generate 

equivalent information in Transmission Electron Microscopy202. Several reports have analyzed 

dislocation and twin structures in metallic films and surfaces using this method 203-205 . 

In early reports of electron channeling patterns, it was noted that a stage-rocked system with a 

fixed beam orientation could produce identical information to a beam-rocked ECP206. Early 

attempts at producing an accurate tilt/rotation stage were limited by the lack of computationa l 

control and could only maintain a consistent beam position within a micrometer at best207. More 

recently, techniques have been developed using ion channeling contrast in images taken at 

different beam-sample angles for orientation mapping by matching changes in contrast to 

theory/simulation208-211. While ion channeling contrast is extremely useful, the critical angles for 

ion channeling are quite large compared to electron channeling, potentially producing less accurate 

orientation indexing212. The recent electron channeling approach describe by Lafond, et al 

generates orientation maps based on ECCIs from multiple sample orientations213. However, their 

approach does not generate full ECPs and is likely limited to orientation mapping of high 

symmetry systems.  
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Figure 4.3  Schematic a stage-rocked ECP generation system, in which the sample physical tilts 

through a prescribed series of angles while the BSE signal is recorded on a conventional detector.   

In the following, a system combining the advantages of ECCI and SACP which enables large area 

mapping of crystal orientation by recording full BSE ECCIs at many different stage orientations 

is demonstrated. This is accomplished by automated stage control and image acquisition followed 
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by computational image alignment. This alignment corrects for any image shift, rotation or 

distortion and generates an image stack from which spatially resolved channeling patterns are 

produced. The resulting ECPs have a high angular FOV, rendering them suitable for indexing by 

standard routines as conventionally applied in EBSD. The resulting technique, orientation mapping 

by electron channeling (OMEC), results in a very cost-effective orientation mapping solution with 

the high angular resolution and contrast of traditional ECP without any beam-tilt induced spherical 

aberration. 
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Figure 4.4  (A) Workflow of the proposed Orientation Mapping by Electron Channeling (OMEC) 

method. First, an automated image acquisition scheme acquires a tilt/rotation series of BSE images 

from the same relative sample area. This entire image stack is then aligned relative to each other, 

allowing a complete ECP to be extracted at each pixel. These channeling patterns can then be 

segmented or clustered (supervised vs unsupervised) into common orientations and then indexed 

through conventional methods. Finally, a full orientation map can be generated for the region of 

interest. (B) The variables describing various operations in the OMEC method are established, 

including the fixed tilt angle (φ) about a fixed axis and the in-plane rotation angle (θ). As the 

electron beam rasters across a fixed grid of pixels on a fixed plane defined by x,y it experiences a 

tilt along these axes parameterized by ψx and ψy. 

 

In the first section of this chapter a single-crystal silicon (100) sample is examined and the hybrid 

stage/beam-rocking ECP that results due to the combination of stage rocking and beam rocking 

(due to raster scanning) is described. As no image alignment is necessary for a single-crys ta l 

sample, the angular range and accuracy of the stage-rocked channeling system is demonstrated. 

By taking advantage of the spatial information in each ECCI for a polycrystalline sample, precise 

image alignment can be used to correct spatial distortions that occur during stage tilt/rotation to 

produce a high quality ECP for each grain of a PbSe/GeSe thermoelectric material.  The acquisit ion 

speed of the technique can also be improved by sampling a reduced set of critical tilts/rotat ions 

on-the-fly with dynamic sampling, using redundant information to “synthesize” less critical ECPs. 
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4.3 Developing a Stage-Rocked Orientation Mapping Technique 

4.3.1 Sample preparation and data collection 

 

To sample enough orientations to generate a reasonably high resolution ECP, automated imaging 

was employed. To accomplish this, a script was developed to capture images at a range of rotation 

and tilt steps on a commercial FIB/SEM (FEI Helios Nanolab) using the manufacturer’s scripting 

interface. The standard instrument stage has eucentric tilting and rotation capabilities, which were 

accurate enough for this application. A typical experiment included 0.5 degree tilt steps from 0 to 

34.5 degrees (69 degrees angular range) and 2 degrees rotation steps from 0 to 358 degrees, 

resulting in a 12,600 image data set (512×442 px) over approximately 10 hours. Imaging was 

accomplished with a 2-5 kV accelerating voltage, high beam current (1.4-22nA) and the TLD in 

BSE mode. Silicon samples were imaged without any surface preparation, but the mechanica l ly 

polished PbSe/GeSe sample was cleaned in situ with a plasma cleaner to remove organics (iBss 

GV10x) followed by a 5 kV Ga ion beam to remove surface oxidation. 
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4.3.2 Single crystal silicon data processing 

 

Figure 4.5  Channeling contrast recorded as the stage moves around is a true spherical 

representation of orientation space and can be mapped to a sphere digitally.  This sphere can then 

be projected in any of the well-known geometric projection operations.  Here, a raw channeling 

contrast dataset from a silicon single crystal is plotted in both three and two dimensions using an 

equiangular projection. 
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ECP’s are generated from the SEM images by plotting the average contrast of the entire image or 

a subset of the image (grain, etc.) as a spherical projection according to the beam-to-sample 

orientation. These data are displayed as an orthographic or stereographic projection but are 

manipulated in spherical coordinates. There is systematic contrast variation in these images 

according to the sample tilt condition which is corrected by a background subtraction at each tilt 

step based on the average contrast for all rotation steps. As the beam is deflected during raster 

scanning, the beam diverges from the nominal beam-to-sample orientation. This results in a 

different orientation condition for every pixel in the SEM image, which depends on the working 

distance, pixel position and sample tilt. For the silicon samples, the background-corrected 512×442 

pixel images were cropped and binned to generate 16×16 pixel subsets and a divergence correction 

was applied to plot the average contrast value of each subset. This was accomplished by assigning 

a vector to each nominal orientation position and performing a Rodrigues rotation about that vector 

for the divergence associated with each subset. As the divergence angles during raster scanning 

are proprietary and not known to the authors, these angles were estimated empirically to improve 

ECP quality. The resulting data set was adjusted for contrast variation due to beam contamina tion 

by subtracting the intensity of a 3rd degree polynomial fitted to the data in order of collection. 

During the final display operation, overlapping data points at low tilts were handled by grid-cell 

averaging and gaps between data points at high tilts were interpolated. 
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Figure 4.6  Left:  Raw extracted channeling pattern from a single pixel of a PbSe-GeSe crystal 

showing strong angular dependent contrast.  As you move clockwise around the pattern the 

intensity increases due to the accumulation of carbon contaminants and charging on the specimen 

surface.  Since these images are taken with a TLD BSE detector, high currents and long dwell 

times are necessary for adequate signal-to-noise ratio.  Systems with dedicated BSE detectors will 

likely not encounter this issue.  Right:   Contrast normalized and background signal subtracted by 

fitting a third order polynomial to remove time-dependent effects due to charging and mass 

accumulation. 

 

4.3.3 Polycrystalline sample data processing 

For polycrystalline samples, an image sequence of tilted/rotated BSE images was collected and 

then transferred offline to a processing computer for image alignment/correction. The image stack 

is composed of multiple tilted view of an approximately flat plane from a point illumination source. 
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The flat plane approximation is well satisfied for most specimens due to the need for extensive 

polishing to prevent the domination of surface related contrast.  The goal will be to bring all 

different viewpoints on to a common coordinate frame to account for any errors in stage movement 

and to correct the projected distortion from acquiring a three-dimensional motion onto a two-

dimensional grid.  Thus, any individual pixel in one frame can easily be selected in all remaining 

as the object physical translates within the chamber. 

 Misalignments in the three-dimensional motion of the stage can cause unwanted rotations and 

translations if they occur in the two-dimensional plane perpendicular to the electron optics, or 

scaling/magnifications if they occur parallel to electron optics. In addition, since the plane over 

which the beam scans remains fixed relative to the stage, three-dimensional rotation of the sample 

around its eucentric point will cause distortion. To reconstruct a pixel-by-pixel or grain-by-gra in 

orientation map, an alignment method must sufficiently correct for the artifacts while being 

contrast independent (since grain contrast inherently changes between angular frames).  

Given a few accurate points of correspondence between two images of planar objects captured at 

different perspectives, define a homography matrix, H, can be defined to warp the remaining pixels 

onto a common coordinate frame. Algorithms to detect keypoint features of correspondence 

between images at different perspectives and illuminations, such as the Scale Invariant Feature 

Transform (SIFT)214, can be used to define this set of corresponding points. Briefly, SIFT operates 

by creating a multi-scale edge and corner detector using Difference of Gaussians (DoG).  The 
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image is blurred by Gaussian kernels of increasing width and their collated difference taken.  

Extrema in this image pyramid correspond to the maximum spatial extent of a certain edge or 

corner feature, which may be used as a particular keypoint.  Keypoints are filtered by a series of 

contrast and edge sensitive filters in order to improve their quality.  A vector describing the local 

space around a keypoint is created by taking a radial histogram over one full rotation, and 

additional vectors constructed for local windows around the keypoint.  Here, normalization can be 

used in order to increase robustness to changes in illumination.  Keypoints are matched using a 

brute-force nearest neighbor search and false positives rejected using the Lowe ratio test.  Finally, 

an estimate for the homography matrix to align the images is constructed using robust regression 

from the matched keypoints (RANSAC:  Random sample consensus). 

For image sequences collected of polycrystalline specimens in OMEC, SIFT keypoint detection 

followed by a homography based image warp is sufficient to bring all orientations onto a common 

spatially correspondent coordinate frame with minimal parameter tuning. Once a common set of 

coordinates is established, an orientation map for each pixel can be produced exactly as described 

above in the case of the single crystal silicon specimen for arbitrary or defined subsets of pixels 

with shared orientations. 
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Figure 4.7  A series of BSE images collected from an aluminum polycrystal sample demonstrating 

the SIFT keypoint identification and matching process.  A.  Stage neutral BSE image with keypoint 

identified by SIFT highlighted with colored circles.  Unique edge-like shapes and grain 

intersections are targeted.  B.   Thirty degree tilted image of the same crystal highlighting the 

drastic contrast change that can occur due to electron channeling.  A unique set of keypoints is 
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generated and highlighted for this image independently.  C.  Top ten matched keypoints using a 

brute-force search and the Lowe ratio test to unique match points of correspondence between the 

images.  These points can then be used in combination with robust regression to estimate a 

homography matrix to transform all images onto the stage-neutral image. 

 

After image alignment, differences in illumination due to geometric variation in detection 

efficiency are subtracted using a rolling ball filter with a large radius or local contrast equalizat io n. 

Finally, the entire dataset can be segmented into grains by either directly clustering the orientation 

space data at each pixel or by summing the contrast over the entire aligned dataset and applying 

an edge detector. Each set of pixels corresponding to a common orientation is then summed to 

produce a high signal-to-noise ratio (SNR) pattern. In microscopes with dedicated back-scatter 

detector with high detector efficiency, it's likely that this summation step will be unnecessary as 

each pattern will have sufficient SNR for interpretation.  As the actual angular resolution is 

determined by the divergence angle of the beam interacting with the specimen and the stage steps 

are considerably more coarse, quantifying the ultimate resolution is left to future work. 
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Figure 4.8  A.  Raw BSE image collected from the TLD detector on FEI Nanolab from a PbSe-

Gese polished specimen.  Notice the large gradient in background intensity despite the flat surface 

due to positioning of the detector.  Subtracting this artificial signal is critical in order to ensure that 

only contrast due to channeling is projected into the orientation space patterns.  This background 

is tilt/rotation dependent and can therefore obscure the slight changes in contrast due to channeling.  

B.  Same FOV after local contrast normalization with a large block-size to prevent removing 

contrast from within the grains.  While not perfect, a large amount of the stray spatial signal is 

subtracted, allowing pixels to be subdivided and compared in orientation space. 
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EBSD analysis for reference was carried out on an FEI Quanta 650 FEG with an Oxford/HKL 

EBSD system. Maps were generated at 20 kV and EBSP collection was carried out at 5 kV to 

correspond more closely to the electron channeling data. 

 

4.3.4 Dynamic Sampling 

 

For each training experiment the algorithm under-samples the image, estimates the true image, and 

extracts features and utility estimates for each un-sampled pixel. A vector of coefficients then maps 

these features to a utility estimate, which is trained using many under-sampling conditions offline. 

These trained coefficients are used to iteratively predict the best measurement locations for the 

stage tilt/rotation commands for the crystal. To perform the simulation, each orientation map is 

divided into several sampling trajectories parameterized by tilt (φ) and rotation (θ). The algorithm 

makes a prediction and observes one pixel from the true image, from which it infers a future 

predicted “best” measurement. This proceeds until 10% of the total pixels have been measured. 

The dynamic sampling algorithm was implemented as described by Godaliyadda, et al 176. 

Extending the single-objective dynamic sampling algorithm to multiple different mapping 

objectives (polycrystals) is trivial. Each grain is considered separately, and the total reduction in 

distortion for each point is taken as the mean reduction in distortion across all grains. For training 

data, a single ECP of Silicon (100) was used. 
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4.4 Results and Discussion 

4.4.1 Single-Crystal Channeling Patterns 

To construct an ECP by stage rocking, backscattered electron (BSE) images are acquired at a series 

of specified tilt (φ) and rotation (θ) positions as described in Figure 4.4b. These sample positions 

are relative to the sample surface normal and an arbitrary starting rotation position (typically 

registered to a relevant sample feature – in this case, the cleaved edge of the silicon wafer). A 

stage-rocking ECP can then be reconstructed by projecting the average contrast from each image 

onto a spherical surface as shown in Figure 4.5A for a single-crystal silicon (100) sample. This 

raw ECP clearly shows the Kikuchi-like bands indicating the nominal (100) sample orientation. 

These data are collected on a standard commercial instrument with the capability for both eucentric 

tilt and rotation. However, several compromises are made in order to produce these data on such 

an instrument. First, the through-the-lens detector (TLD) is operated in BSE mode without the 

immersion field due to the high tilt range required for data collection. The TLD operated in this 

condition has very low sensitivity, thus an electron beam current of 1.4 nA is required to achieve 

sufficient signal intensity. This high beam current and the short working distance for eucentric 

tilting result in a relatively large beam convergence angle, which likely limits the ultimate angular 

resolution for electron channeling in these experiments. Further, the high beam current and long 

data collection time result in surface contamination that produce the discontinuity in the ECP 

contrast in Figure 4.9A. 
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Figure 4.9  (A) Orthographic projection of a stage-rocked ECP reconstructed from the average 

contrast values in 7200 ECCIs at different orientations from a single-crystal silicon (100) sample. 

(B) Orthographic projection of a hybrid stage- and beam-rocked ECP reconstructed by binning 

each ECCI and correcting for beam divergence due to scanning. Corrections are also applied to 

adjust for systematic contrast variations (background subtraction and beam contamina tion 

correction). 

 

Despite this, these issues can be ameliorated by a few key post-processing steps. First, a systematic 

background intensity distribution is removed in each image, which is presumably due to geometric 

factors influencing detection efficiency and is fixed for each instrument/sample stage combination. 

Second, beam divergence due to raster scanning is corrected, which lowers the angular resolution 

in the raw data. As the electron beam scans over the sample surface, its angle with respect to the 
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initial sample normal is modified by a divergence angle from the scan coils, parameterized by ψx 

and ψy. This divergence angle, and consequently the true sample-beam angle, depends on the beam 

position, working distance, and details of the specific electron-optical scanning system on the 

SEM. Thus, every pixel experiences a slightly modified angle as the scan coils tilt the beam to 

record a full rastered image, potentially improving the angular detail in the map.  The actual details 

of the beam divergence during raster scanning is typically a trade secret for instrument 

manufacturers but can easily be determined by empirically varying an ‘assumed’ divergence and 

comparing the pattern quality.  When the assumed divergence matches the divergence of the 

instrument used to collect the data the pattern will appear significantly clearer.  This divergence 

value can then be used to correct future patterns collected off the same microscope.  To accomplish 

this, each raw image is binned to 16×16 pixels, which are mapped to slightly shifted locations on 

the 3D orientation sphere according to the mean divergence angle for each region. This results in 

a 256-fold increase in the number of orientation values in the final data set – the optimal degree of 

binning is somewhat arbitrary and depends on collection conditions. Finally, sample contamina tion 

due to the high beam current is corrected by fitting a 3rd order polynomial according to the 

acquisition order. As the data after divergence correction overlap in some regions of the ECP, the 

final ECP is plotted using grid-cell averaging. By this method, the raw stage-rocked ECP (with 

7200 orientation values) is expanded to a hybrid beam/stage-rocking ECP with more than 1.8 

million orientation values as shown in Figure 4.9B. This results in a significant improvement in 
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the ECP angular resolution compared to the raw data, particularly visible at the higher tilt range 

where data are more sparsely acquired. 

 

4.4.2 Polycrystalline Orientation Mapping 

 

Next, consider the task of reconstructing ECPs and generating orientation maps for a 

polycrystalline sample. In such a sample, the crystal orientation can change abruptly at grain 

boundaries, leading to very different BSE yield between two potentially adjacent pixels. Therefore, 

it’s crucial to ensure that pixels on either side of the boundary are correctly aligned over the course 

of thousands of images. For systems with many dozens of grains or where one wishes to study the 

change in orientation near an interface, this spatial correspondence between images becomes even 

more important. Briefly, contrast invariant points of correspondence are found using feature 

transforms. These points are then used to define a homography matrix, which accounts for the 

three-dimensional scaling/distortion that can occur as the object tilts around a eucentric point from 

a fixed perspective. This homography matrix is calculated and applied for each image in sequence, 

resulting in spatial correspondence through the ECCI BSE stack  

To test this method, a polycrystalline PbSe-12%GeSe crystal was employed, a material family 

which has engendered much interest in the thermoelectric community215. Controlling 

microstructure and crystalline defects in these materials to reduce their thermal conductivity has 
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received much attention, as the thermoelectric figure of merit is inversely proportional to the 

thermal conductivity. A set of tilted and rotated BSE images was collected in the same fashion as  

for the silicon sample, with a maximum tilt angle of 35 degrees, a step size of 0.5 degrees, and a 

rotation step of 2 degrees. This resulted in 12,600 distinct BSE ECCI images, which were aligned 

and background corrected onto a common coordinate frame. ECPs were generated for each pixel 

in the aligned images as is standard practice in ECP or EBSD mapping. The patterns of each pixel 

contained in a grain were then integrated to form a very high contrast channeling pattern. 
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Figure 4.10   Comparison between conventional EBSD and OMEC ECPs on the same sample: 

(A-B) Aligned and perspective corrected BSE images of the same PbSe-GeSe crystal collected at 

two different orientations (A: 0 degree tilt, 0 degree rotation, B: 6 degree tilt and 0 degree rotation). 

(C) Z-axis-referenced inverse pole figure (IPFZ) map of the same area displaying the relative 

orientations of the member grains as indexed by EBSD. Grains I and II are labeled for the following 

two rows of the figure. (D-F) Representative EBSP, indexed pattern, and OMEC ECP from the 
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grain labeled I in the IPFZ map. (G-I) A second set of EBSP, indexed pattern, and OMEC ECP for 

the grain labeled II in the above IPFZ map. Strong agreement between the ECP and EBSP is seen. 

Note that to assist in identifying correlation between the EBSPs and the OMEC ECPs the ECPs 

have been projected stereographically (equiangular constructions). 

Representative aligned BSE images from the total tilt series are displayed in Figure 4.10, along 

with an EBSD map collected from the same area. As can be seen in the two BSE images, different 

grains light up or fade according to the diffraction condition and the angle between the beam and 

crystal lattice. Orientation agreement between the electron backscatter patterns (EBSPs) and the 

OMEC ECPs can be seen in Figure 4.10, also showing the higher angular resolution and contrast 

inherent to channeling pattern imaging due to user control over the angular sampling with the 

tilt/rotation step size. The agreement between bands and their angles between the EBSPs and the 

ECPs is not surprising considering an approximately reciprocal mechanism216 is responsible for 

generation of the signal in both imaging modalities. When indexing patterns, we are interested in 

the relative angles between bands, and the ability to project a true equiangular construction for the 

ECP enables simpler indexing as compared to indexing methods for EBSD, which must account 

for geometric distortion. Since the ECPs are intrinsically three-dimensional data, they can be 

projected in many different fashions to assist interpretation.  
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Figure 4.11  A set of orthographically projected channeling patterns for the grains displayed is 

shown. The true data for each grain is a real 3D dataset and thus has none of the distortion 

characteristic of EBSD. Thus, the data can be projected down to two dimensions in many ways 

depending on the purpose (stereographic for indexing, or orthographic for intuitive visualization). 

For small grains sufficient SNR is present to resolve many bands. In addition, the large field of 

view enabled by a stage-rocked channeling pattern means that every pattern has enough bands (>3) 

to enable an accurate indexing.  Scale bar is 100 μm. 
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In this work pixels have only been grouped with common orientations into unique grains, but in 

principle arbitrary subsets of pixels down to the single pixel level can be also be analyzed 

depending on the length scale of a feature of interest (dislocations, strain, etc.). In addition, the 

same beam divergence correction for a single crystal sample could be applied here to further 

improve angular resolution. However, such a correction would be less effective for smaller grains 

at higher magnification and less uniform following spatial drift and distortion correction. In Figure 

4.11 the segmented grain structure maps and several integrated ECPs for each grain is presented, 

where grain structures from the OMEC ECPs are identical to the segmentation performed using 

commercial software for EBSD maps. The spatial resolution in this system is limited by the stage 

accuracy and the ability to maintain a consistent FOV at high magnification. However, given a 

more precise stage and sufficient contrast (or fiducials) for image alignment, the OMEC ECP 

resolution should approach that of the BSE image.  

As previously mentioned, stage-rocked electron channeling in OMEC allows for a higher angular 

field of view when compared to beam rocked channeling patterns (70 degrees in OMEC vs 5-10 

degrees in beam-rocked ECPs). In fact, the technique should achieve a much higher angular range 

than demonstrated here, likely greater than 140 degrees given sufficient BSE signal. The large 

angular field of view allows OMEC ECPs to be directly indexed by traditional Hough-space band 

detection and triplet voting methods, since they generally have 4+ bands present in each pattern. 

This avoids the need for specialized indexing methods based on dynamical image simulations and 

dictionary pattern matching needed to accommodate the limited field of view in beam-rocked 
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ECPs. Also, no specialized distortion correction to account for the tilted gnomonic geometry of a 

standard EBSD pattern is necessary to correctly index the orientation. Since OMEC produces true 

three-dimensional orientation maps, the band angles can be compared directly in either 

stereographic projection, orthographic projection, or in three-dimensional space, potentially 

leading to more accurate indexing. 

One limitation of OMEC is the low-throughput nature of imaging, since each mapping involves 

the recording of thousands of individual ECCI BSE images at different stage orientations. 

Although a higher sensitivity BSE detector could substantially reduce the total collection time, the 

sheer number of orientations that must be probed is a major complication. Certainly, data collected 

in this brute force manner is oversampled, as not every stage tilt/rotation contributes useful of 

orientation information. For example, space between the primary bands is effectively blank and is 

wasted sampling time. Ideally, a researcher would want to infer the tilts/rotations which contain 

information about major bands and their angles with respect to one another, since this is the 

primary information used for indexing a crystal’s orientation. Fortunately, substantial progress has 

been reported on computationally efficient dynamic (adaptive) sampling methods176, 217. After each 

measurement, a crude estimation of the object’s channeling pattern can be constructed, and areas 

of potentially useful content predicted from features of the crude pattern. Since bands have well 

defined patterns of contrast due to diffraction, it is not difficult to construct a library of typical 

features to train a supervised algorithm to make a prediction about the next best measurement. 
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Once trained, the algorithm can then construct crude estimates and make new predictions 

iteratively as it incorporates information obtained from the last measurement.  

 

Figure 4.12  Simulated OMEC acquisition from calculated channeling patterns of Austenite. (A) 

Simulated BSE image at 0 degree tilt and 0 degree rotation for the four reconstructed orientations 

in (B),(C),(E),(F). When choosing which tilts/rotations to sample, the dynamic sampling approach 

chooses the point with the most benefit for all four grains simultaneously (multi-objective). 

(B,C,E,F) Reconstructed channeling patterns for four differently oriented Austenitic grains in a 

polycrystalline microstructure after sampling 10% of the possible tilts/rotations using dynamic 



206 
 
 

 

 
 

sampling. (D) Mask of selected tilts/rotations, white representing a sample position where a 

simulated BSE image was recorded, and black representing skipped. 

 

Figure 4.12 shows a simulated example of how OMEC might benefit from using dynamic 

sampling. Using multi-beam electron simulations216 a small four grain polycrystall ine 

microstructure was simulated with several disparately oriented channeling patterns, parameterized 

by tilt (φ) and rotation (θ). After observing a measurement, the algorithm updates the estimation 

of the true pattern and proposes the next measurement which will have the largest positive effect 

on the pattern quality. At a sampling rate of only 10% for the simulated OMEC acquisition, the 

patterns are easily distinguishable, with many indexable bands well resolved. Particular ly, 

prioritizing measurements on the edges of bands allows indexing to be performed very early on 

during the acquisition process, and balancing the acquisition of points between grains with 

differing orientation contrast is manageable A ~90% time savings for OMEC orientation mapping 

potentially brings the time to complete a map into the typical time range of an EBSD map.  

Given the volume of data generated by a single OMEC experiment (thousands of spatially 

correlated ECCI BSE images), significant potential for data mining/engineering exists. For 

complicated specimens with multiple defects existing simultaneously, OMEC may facilitate 

disentanglement of multiple microstructural elements, since an ECCI has been collected at every 

possible orientation. Multiple two-beam-like conditions can be compared offline without the need 
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to identify an orientation on-the-fly using a correlative technique, as some defects may only be 

visible at specific orientations that would otherwise be missed. OMEC also certainly benefits from 

the potential of dynamic-sampling by prioritizing measurements at the intersection or edges of 

bands, thus oversampling the desirable information for ECCI analysis while ‘synthesizing’ the 

missing ECCIs based on redundant information (potentially taking advantage of both spatial and 

orientation space redundancies).  

4.5 Summary & Conclusions 

 

We have developed a new crystal orientation mapping method, OMEC, combining advantages of 

ECCI and SACP imaging, which enables orientation mapping over a large FOV with high angular 

range and distortion-free projection. The method has been demonstrated with up to seventy-degree 

angular imaging with micron-scale resolution, but much larger angular FOV and spatial resolution 

should be accessible with a more sensitive BSE detector and higher precision stage. In addition, 

this technique can be directly implemented on a commercial microscope (possessing adequate 

stage control) without any additional hardware. It is expected that difficulties due to the low-

throughput nature of imaging may effectively be ameliorated by dynamic or “adaptive” stage 

control, where the collection of contrast-critical ECCIs is prioritized over orientations with 

relatively low contrast contribution to the channeling pattern. In addition, the large-data format 

and multiple interlinked contrast mechanisms characteristic of ECCIs may allow for the imaging 
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of multiple complicated defects simultaneously, opening the quantification of difficult to analyze 

specimens.  
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5 CHAPTER 5:  FUTURE OUTLOOK AND CONCLUSIONS 

  

5.1 Data mining large sets of OMEC patterns 

 

As discussed earlier, EBSD can provide a turn-key technique to produce large scale orientation 

maps of samples. Electron channeling contrast images (ECCI) have also been used to investigate 

the nature of defect structures in surfaces non-destructively218.   By tilting on and off two-beam 

conditions it becomes possible to solve for the Burgers vector of a dislocation given its visibility 

on certain orientations from the back scattered channeling contrast219.  Conventionally, most 

people will identify the orientation of a certain region using EBSD. The sample will then be 

physically rotated back to the stage neutral position and tilted on to the Kikuchi line of interest 

using the EBSD pattern as a map. From this position, multiple backscattered ECCI images can be 

collected in order to understand the positioning of certain defects in the sample. This requires the 

user to have some intuition about which two-beam conditions are essential to understand a system 

of interest as well as a tool to accomplish the complex alignment between the EBSD scanning 

position and the stage neutral ECCI collections position220. 

 

In this implementation of OMEC, all of the available ECCI images in the accessible range of tilts 

and rotations from the stage neutral position are collected.  Thus, in post-processing any desired 
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two-beam condition or ECCI image can be pulled out of the larger data set. This allows the user a 

much broader set of conditions with which explore defects that were not initially observable from 

the initial tilt rotation conditions. Instead of requiring the user to intuit the important conditions in 

which to collect ECCI images on a time-constrained and often expensive microscope, the user is 

allowed to explore the data naturally offline.  For systems which have multiple complicated 

interrelated defect structures, this technique may allow for a more thorough understanding of their 

crystalline structure. 

 

It may also be possible to leverage advances and statistical learning to automate the identifica t ion 

and understanding of defects structures in this extremely large data set. Since with high pixel 

densities (1024 or even 2048 pixel maps) it is possible for the total volume of data to exceed 

hundreds of gigabytes, it may quickly become impractical for an individual student or researcher 

to explore all possible ECCI conditions. Unsupervised learning techniques, such as clustering, may 

allow for the grouping of certain spatial locations by their behavior in orientation space. Already 

in this work we've made use of an extremely trivial clustering technique, K-means, which can 

effectively group different grains by their common orientations regardless of their spatial locations. 

More advanced clustering techniques which do not rely on manual setting of the number of clusters 

desired, such as Bayesian Dirichlet mixture models, may allow for the automatic identification and 

grouping of not only polycrystalline grain structures but also complex defect structures that may 

share a common Burgers vector221. 
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Supervised learning techniques may also be trained to identify certain defects of interest in large 

data sets. Such techniques can leverage the structured nature of two-dimensional orientation maps 

and the three-dimensional spherical structure of the actual orientation patterns to achieve facile 

and high throughput identification of defects from the dense and high dimensional pattern spaces. 

In terms of process control and quality assurance, it may be of interest to industry where a 

particular set of certain maybe well-known defects creep in during certain processes and may be 

automatically examined and identified using an automatic method for substage and electron 

microscopy acquisition coupled with a supervised structured learning technique, such as a 

convolutional neural network.  

 

5.2 Substage Collection 

 

One of the major limiting factors this work on OMEC mapping of polycrystalline specimens was 

the need to use a through the lens detector (TLD) for the BSE electrons.  Such detectors have 

extremely low collection efficiencies as compared to dedicated solid-state BSE detectors.  This 

meant each pixel needed a very long dwell time to achieve a sufficient signal-to-noise ratio for a 

quality pattern.  This detector was employed since the microscope equipped with a compucentr ic 

tilt/rotate stage was not equipped with a dedicated BSE detector.  In principle, there's no reason 
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why a dedicated detector cannot be used to improve the collection efficiency and reduce the overall 

time to collect electron channeling maps should a suitable combination of scriptable compucentr ic 

stage and specific detector be available. However, an extremely precise substage can be placed 

within a commercial scanning electron microscope which is equipped with the necessary detector 

electronics.  Commercially available substages have been produced for extremely precise ECCI, 

Transmission Kikuchi Diffraction (TKD), or volumetric imaging of specimens inside standard 

scanning electron microscopes222. This would considerably reduce the amount of time to collect 

full OMEC patterns by reducing the required dwell time. 

 

In addition to saving time, a more sensitive detector would further increase the spatial and angular 

resolution by reducing the required beam current.  Since the SNR was so poor on the instrument 

available, an extremely large probe current was needed to promote a sufficient number of BSE 

electrons.   This resulted in a very large convergence angle which both increases the spatial spot 

size and ‘blurs’ the pattern in orientation space due to the simultaneous incidence of a wide array 

of angles.   

 

By combining a dedicated substage with the reconstruction software, a complete product to 

produce stage rocked electron channeling patterns could be produced which would use the external 

command line into the commercial scanning electron microscope in place of an EDS controller to 

automate and coordinate the stage motion and electron beam scanning. This coordinated 
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movement could be controlled and automated by an external DAC controller with a standard 

programming language or through a graphical interface such as LabView.  This is by no means an 

exceptionally complicated procedure as many third-party packages have been produced such as 

lithography systems like NPGS223.  This would allow virtually any SEM to produce orientation 

maps of specimens at a considerably lower cost as compared to a full EBSD system. 

 

This system would share many of the advantages of traditional selected area channeling patterns 

(SACP) and electron channeling contrast images (ECCI) such as sensitivity to superlattices and 

surface dislocations for understanding deformation transfer and fracture initiation. As compared 

to SACP, image and stage-optimized OMEC may actually be higher throughput, since the limited 

angular field of view in SACP means that a dedicated user must hand tune and collect mult ip le 

individual patterns which must be further stitched together to produce an interpretable map.   

 

5.3 Unified Detector Sampling in STEM 

 

One of the advantages of the multi objective dynamic sampling technique is the fact that it does 

not particularly care about the source of the spatially delineated signal. Earlier, MOADS was 

shown to be able to balance multiple mapping objectives, such as multiple EELS edges or mult ip le 

EDS Peaks (and potentially both EELS and EDS simultaneously). By sharing the information that 
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a particular point may contribute to multiple independent signals and maps, the technique was able 

to balance the application of electron dose and imaging time in order to produce a robust estimation 

of an arbitrary number of maps. 

 

A key strength of scanning transmission electron microscopy is the bevy of signals which are 

available within the specimen chamber from the interaction and scattering (or lack thereof) 

between the specimen and incident beam. Two of these methods which focus on analyt ica l 

mapping (EELS and EDS) have been highlighted, but other techniques such as pixelated STEM 

and even traditional annular or secondary imaging all contribute information regarding the local 

environment on the sample at a fixed beam position. 

 

In principle, all of this information is constantly generated anytime the electron beam is incident 

on the sample, regardless of whether a detector is available to intercept it. Traditionally, only one 

detector is acquiring information from this volume of scattering events at any given time.  This is 

because a user had to constantly evaluate the success rate of the experiment and interpret the results 

on-the-fly to maximize the amount of information generated for a given application of electron 

dose (dwell time and/or instrument time).  However, this is a relatively inefficient way to sample 

information from the specimen, as often one technique or detector only provides a limited picture 

into all of the accessible information.  Since the modular nature of dynamic sampling can easily 

accommodate fitting and interpreting other signals (spectral, image, or volumetric) and 
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parallelization has drastically reduced the penalty from adding additional objectives, it’s possible 

that all of the available signals may be jointly optimized to maximize information from a specimen 

simultaneously.  It’s been shown in the previous chapter that signals which contribute relative ly 

low informational content (low ERD) due to a flat or relatively easily approximately structure are 

‘filtered out’ by the algorithm using the joint optimization approach.  Therefore, sampling all 

signals simultaneously should not induce a penalty on the sampling performance and speed of the 

algorithm since it’s expected that not all channels are useful for certain specimens (prioritization).  

A user rarely employs all techniques anyway, so there would be a benefit in reducing the chance 

of a missed ‘useful’ observation.  The potential for a large volume of data by activating all detectors 

simultaneously is somewhat reduced by the order of magnitude reduction in the number of points 

required to sample.  Thus, there seems to be little downside from employing all detectors 

simultaneously. 

 

One reason MOADS was not employed other signals such as HAADF, SE, or the transmitted beam 

is that the time-scale of the measurement is much smaller than the time to process a single iteration.  

However, at extremely low beam currents, dwell times may quickly approach the computation 

time of a single iteration, making them accessible.  There would be still no disadvantage from 

recording all signals which operate on a faster time scale than the slowest detector currently active.   
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More interestingly, since the majority of the signals emerging from the STEM share 

complementary information, it may be interesting to consider unifying their shared information 

into one abstract mapping objective directly.  Since EELS and EDS maps are usually converted or 

quantified into atomic percent maps it would make more sense to optimize the quality of such a 

post-processed map rather than the individual quality of both maps separately.  The modular nature 

of dynamic sampling would simply require an accurate forward/inverse model to convert the raw 

data coming from each detector into a unifiable parameter that can be expressed on a single map.  

Consider EELS, which has sensitivity for light elements, and EDS, which carries heavier elements, 

being directly interpreted into a shared atomic scale map which is then used to predict the optimal 

sampling pattern for atomic scale information.  Other detectors, such as HAADF or SE, could be 

used to further optimize the sampling pattern by providing additional information where peaks are 

difficult to separate or edges may be obscured by other stronger nearby tails.  Each additiona l 

detector or signal could then provide a slight informational edge and further improve the 

performance of the technique, while ensuring that no regions with useful texture will be ignored. 

 

Converting from an image space with arbitrary units (‘counts’ for EELS and EDS) to a material 

specific space (atomic % or thickness) it may be possible to exploit prior information about 

material structure directly.  In the image space it is much more difficult to express generalizab le 

prior information without altering the types of images one would expect to generate. In the material 

space it may be much more practical to express powerful prior information, such as the range of 
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possible Atomic packing preferences, diffusion limitations, or a known series of surface 

configurations. Such prior information may allow for extremely low sampling rates that are 

superior to the low sampling rate generated by exploiting simple facts about image structure while 

still being computationally facile and computable in the time scale the measurements.  These priors 

will have to be applied somewhat cautiously, as they may restrict the space of possible solutions 

in unexpected ways.  Certainly in a research environment where the entire point is to study new 

phenomena not previously recorded, these priors may be more useful to ‘screen out’ uninteres t ing 

or well understood areas of the specimen.   

 

Advances in computation, particularly the linking of servers and distributed computational nodes 

directly with microscope support computers in order to handle large volumes of data may also be 

used in a more dynamic fashion. Such clusters may directly interpret the information in a live 

format as it streams off the microscope and return requested coordinates and measurements 

directly back to electron scan coils. This may allow for more complicated fitting procedures or 

predictive models to be performed dynamically to achieve extremely low sampling rates at still 

reasonable time-scales.  

 

The parallelization afforded by such nodes may also allow for the computation of much more 

complicated forward and inverse models for mapping raw signals to a material specific parameter. 

As discussed in the discussion section in chapter 4, the point-spread-function for EELS has 



218 
 
 

 

 
 

theoretically been suggested to extend beyond the region of primary energy deposition for some 

edges173.  Since at any point a user has either an experimental spectrum or a predicted spectrum, 

the algorithm can predict both the expected information gain and the expected region of energy 

deposition.  Thus, it can choose points which maximize the information while minimizing the 

overlap of deposited energy.  This should directly mitigate damage associated with integrated dose 

in a direct way, instead of penalizing measurements in pixel space. 

 

This will incorporate an explicit materials specific damage model which may be minimized while 

dually maximizing the quality of a particular map.  For some materials, particularly hybrid 

soft/hard systems, multiple components of the structure have varying sensitivity to incident dose.  

Thus instead of minimizing the number of measurements required to maximize the quality of a 

map, MOADS will be able to balance the relative dose sensitivities of heterogeneous regions and 

exploit that to image materials in a stable fashion which were not analytically mappable previously.  

 

5.4 Compressed Multi-Beam EDS 

 

This thesis has been somewhat pessimistic about the application of compressive sensing to electron 

microscopy, however there are certainly areas in multi-beam scanning electron microscopy where 

it could be applied should the ability to blank individual beams become available.  Briefly, in 
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multi-beam SEM multiple beams are created from a single primary beam, each of which scans the 

sample independently224.  Strategically positioned detectors allow the collection of secondary or 

backscattered electrons independently from each beam position.  Each beam then scans in parallel, 

producing a unique image over an area of a specimen. These images can then be stitched together 

to provide an extremely wide field of view at unprecedently low collection times, since 

measurements are made in parallel.  Systems using dozens, and even approaching one hundred, 

individually addressable beams have been employed to rapidly accelerate wide field mapping of 

neuronal and other biological tissues.   

 

The key enabling discovery was the configuration of charged gates and detectors which can pull 

off electrons from each beam-sample interaction area independently.  However, there are many 

other signals and imaging modes in SEM for which it is impractical to develop a series of detectors 

which can discriminate between the different incident beams.  As discussed in previous chapters, 

EDS allows for the wide area elemental mapping and has become a widely accepted, relative ly 

‘turn-key’ technique to understand compositional configurations at scale.  However, it does suffer 

from relatively long dwell times due to limited detector cross sections and the need to operate at 

high currents to promote x-ray emission (from ionization events).  The dynamic sampling 

technique discussed in Chapter 3 is one way to overcome this challenge by avoiding sampling 

redundant information.  Using multiple beams would be an additional way to overcome this 

challenge and would potentially scale with the number of available beams, becoming a 
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considerably more effective method for wide field mapping.  This would require specialized x-ray 

optics which could redirect the emitted x-rays from each individual beam position on to a separate 

detector, which would be completely impractical. 

Instead, let’s consider the addition of addressability to the incident electron beams themselves and 

use a single conventional EDS detector.  This would likely require a fast electrostatic blanker 

which could blank individual beams without affecting the remaining (the practicality of which will 

be left to future work).  A user will initially set up all the beam positions as normal and keep the 

scanning coils fixed such that the beams will be static.  An automatic controller will then blank a 

random combination of beams and collect the emitted x-rays on to a single detector.  Taking 

several of these acquisitions yields a set of spectra, the number of which is still much less than the 

total number of beams.  Each beam will then step in unison to the next set of pixels and we’ll 

integrate several random acquisitions.  Thus, each set of fixed beam positions forms its own 

compressive sensing acquisition which can be solved individually.  This inversion is well studied 

in the literature for other hyperspectral imaging techniques.  The potential time-savings from 

performing a compressed acquisition aside, there is no practical way currently to perform EDS in 

a multi-beam SEM without turning off all but one beam.   
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5.5 Collaborative Hybrid User-Software Control 

 

Many phenomena of interest which occur at high magnification occur in the sub micro-second 

time scale.  As a result, relying on human reaction times, which barely reach into the milliseconds, 

to react to and identify processes using electron microscopes is unlikely to produce fruitful results.  

Some typical tasks required involve adjusting the beam shift in order to keep an object in the field 

of view, adjusting the focus to keep an object at a controlled defocus, or modifying the exposure 

conditions (dwell times, beam current, etc.) in order to maintain an appropriate signal-to-no ise 

ratio.  In principle, all these tasks could be classified as ‘reactive’ and are likely easily automatable 

using simple control algorithms.  Instead of blindly collecting at the highest possible framerate and 

hoping that a particular reaction or phenomena was observed by manually sifting through terabytes 

of data off the microscope, such a system could prioritize the collection of the key frames of 

interest which would both reduce data management issues as well as the laborious hand sorting 

process post-collection.  Already, simple metrics from image compression have been used to 

monitor the process of dendrite growth, and to identify quantitatively from a large dataset of 

images the onset of formation225.   

These are potentially no less reliable than an army of overcaffeinated students examining each 

frame by hand and may improve reproducibility by removing the chance for human bias.   

Operators are comfortable allowing software to tune higher order aberrations on state-of-the-art 

microscopes, since humans are often poor at tasks which require a high degree of attentiveness 
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over long periods of time.  These tasks are ripe for the addition of computation in the operator 

decision loop.  

Increasingly, electron microscopes are also being used as a fabrication tool, making use of the 

reducing power of the incident beam.  Atom by atom manipulation has previously been attempted 

using laborious manual control of the beam position and incident current226.  Next-generation 

methods make use of coupled algorithmic control of the scanning coils and incident current with 

a system that can monitor signals out of the microscope to directly fabricate rows of atomic 

positions in a crystal227.  The fact that the microscope can be operated simultaneously as both a 

high-sensitivity imaging system and a fabrication tool means that the fabricated result can be 

monitored and adjusted on-the-fly using an imaging signal as ‘feedback’.  This is a major 

advantage over relatively ‘blind’ electron beam patterning techniques in the scanning electron 

microscope which must be extensively calibrated with dose arrays.  This feedback assisted control 

has only included relatively basic measures, such as the 1D Fourier Transform of HAADF 

intensity, thus far227.  However, when combined with pixelated STEM detectors, which in princip le 

contain all of the scattering information from a specimen, much more fine control over atomic 

scale fabrication and manipulation may be possible.  Although such images are difficult to interpret 

without simulating more palatable imaging modalities with artificial apertures, unsupervised 

learning techniques have previously been shown promise in understanding these large high 

dimensional datasets228.  A coupled statistical learning technique to interpret pixelated STEM 

images with a feed-back control system to adjust the application of electron dose in response may 
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achieve facile and precise atomic scale patterning not currently possible through any other method  

without extensive manual control or calibration. 

 

5.6 Concluding Comments 

 

It’s the goal of this thesis to highlight some of the incredible challenges and great opportunit ies 

facing the characterization of materials today.  As our theoretical understanding and ability to 

computationally model phenomena inside the electron column improves, we are closer than ever 

to a true ‘electron scattering experiment’ model of the microscope.  New phenomena enabled by 

improvements in hardware are being observed daily.  However, to truly leverage these microscopes 

to understand materials and structure function relationships will require equal focus on the 

computational side.  We are quickly moving from a world where we need to ‘see’ images to 

understand our samples, to one where the information coming off the microscope is abstract high 

dimensional ‘data’.  Software and theory will play the role of putting this information in context, 

as the volume of data is beyond the capability of a single expert to interpret.  Removing the user 

an additional step from the microscope will be painful, but as users at high end facilities are 

increasingly forced out of the operating room, the opportunity to rethink the way data is collected 

will increasingly present itself to entrepreneurial researchers. 
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