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ABSTRACT

Scaling Classroom Education with Peer Review: A Natural Language Processing

Approach

Zheng Yuan

Peer review is a commonly used tool to manage large classes. It allows students

to grade and provide feedback to each other based on rubrics provided by instructors.

Peer review has been proved to be effective in improving students’ learning outcomes by

many research. During providing peer review, students are exposed to more solutions

to the same question, which makes students more innovative. Also, peer review reduces

instructors’ or TAs’ workload on providing feedback despite teaching big classes.

However, peer review still has shortcomings. First, peer review increases students’

workload on reviewing other submissions. To collect enough peer reviews for submissions,

each peer usually needs to review several submissions per homework. Some peers may

spend more time on peer reviewing than finishing the homework. Second, since peers

typically lack the subject matter mastery of the instructor, peer grades exhibit both bias

and variance, which makes consensus grade estimation a challenging task.
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This dissertation addresses these limitations of peer review using Natural Language

Processing techniques. Specifically, this dissertation proposes novel neural models that

predict important parts of submissions. By doing so, peers can save time by only focusing

on the essential parts. Our models take advantage of textual reviews and review labels to

improve prediction accuracy. This dissertation also proposes novel peer grading methods,

which enhance peer grading accuracy by using historical instructor grades to estimate

peer bias, and textual review comments to estimate review quality.
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CHAPTER 1

Introduction

Peer review [17] is a widely used tool in classrooms, in which students are asked to

review each other’s submissions, and reviews are aggregated to produce consensus assess-

ments of each submission. Due to the explosion enrollment in computer science major[56],

it is hard for instructors or TAs to grade and provide feedback for every homework sub-

mission. Peer review is a common solution to scaling the size of classroom education.

Peer review allows students to grade and give feedback to each other’s submission. It

has several advantages, including reducing instructors’ or TAs’ workload on grading[41],

improving students’ writing ability[97], providing helpful guidance to students[18], and

enabling more prompt feedback to students on their submissions [60].

A general peer review process in a classroom setting includes the following steps:

1: Submission collection: students submit individual or group submissions.

2: Review matching: determine which peers should review which submissions.

3: Peer feedback collection: Peers provide their numeric grades and textual com-

ments according to certain rubrics.

4: Consensus grade estimation: compute submission grades based on peer grades.
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5: Instructor evaluation (optional): To ensure the quality of peer feedback, some-

times instructors grade a portion of the submissions, and also the review com-

ments. Peers are rewarded for assigning grades that are similar to the instructor’s

grade, and for providing helpful comments.

However, challenges in peer review exist [1]. First, although peer review reduces in-

structors’ or TAs’ workload, the workload of peers increased because they need to review

others’ submissions. Second, since peers are not well-trained graders, peer grades are not

as accurate as instructors’ or TAs’ grades. (We use the term of instructor and TA inter-

changeably.) In this dissertation, we propose novel NLP (Natural Language Processing)

solutions to the two shortcomings mentioned above.

1.1. Highlighted Text Prediction and Named Entity Typing in Open Domain

Text annotation [113] is the practice and the result of adding a note or gloss to a text,

which may include highlights or underlining, comments, footnotes, tags, and links. It helps

people better understand an article [72, 87]. Doing text annotation by machine (automatic

text annotation) is an essential task in Natural Language Processing. Automatic text

annotation includes many tasks, such as text summarization [71, 27, 29, 36, 9, 59, 54,

101, 19, 55], review generation [65, 8, 79, 25, 80, 130, 116, 91, 127, 134], important

sentence prediction [135, 48, 63], to name a few. It is valuable for many other natural

language processing tasks, such as relation extraction [69, 129, 78, 131, 66, 50, 52, 88, 70,

133], question answering [122, 11, 30, 89, 110, 119, 125, 111, 132, 112], knowledge base

population [51, 4, 15, 32, 35, 38, 49, 74, 76, 86], and co-reference resolution [96, 31, 22, 26,

23, 83, 13, 20, 43, 120]. Automatic text annotation also helps people reading articles easier
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[117]. For example, by highlighting sentences people can easily get the gist of articles. By

annotating entities and drawing relationships, people can better understand connections

within articles.

One of the tasks in this dissertation aims to reduce peers’ workload by highlighting im-

portant text of submissions, so that peers can save reading time by skipping un-highlighted

parts. We collect submissions and peer review data in EECS-349 machine learning class

at Northwestern University. The task we are interested in is to predict the important

parts of the submissions we collected. This problem can be viewed as a sequence labelling

(tagging) problem [103] where the model predicts a binary label (highlighted or not) for

each token. Since we have collected textual reviews and review labels corresponds to each

highlighted sentence during peer review process using PDF annotation tools, we can take

advantage of these extra information to improve prediction accuracy. Textual reviews can

be viewed as labels for highlighted sentences. To investigate the problem of treat a text

sequence as a label, we first study the problem of NET (Named Entity Typing) in open

domain setting [126].

NET [77] is the task of labeling a given entity mention in text with a semantic label.

NET is valuable for many natural language processing tasks, such as relation extraction,

question answering, knowledge base population, and co-reference resolution. Traditional

NET systems [115, 12, 2, 16] usually pre-define a set of labels and train a model to learn

entity typing. One of the shortcomings of NET is that it is hard to incorporate new labels

to the already trained NET models. The task of Open Named Entity Typing (ONET) is

fine-grained NET when the set of target types is not known in advance. Note that the

common part between ONET and highlighted text prediction is that both of them view
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unseen texts as labels. In ONET, the unseen texts are type names, while in highlighted

text prediction unseen texts are peer reviews. Thus, by investigating ONET problem, we

could get more insights of highlighted text prediction.

1.2. Consensus Grade Estimation

How to estimate consensus grade accurately based on peer grades is a challenging

problem in peer review [1]. Since peers typically lack the subject matter mastery of

the instructor, peer grades exhibit both bias and variance, which makes consensus grade

estimation a challenging task. A variety of previous work [3, 85, 94, 93, 6, 7] has proposed

peer grading methods to model peer biases and variances.

However, existing methods have two limitations. First, they do not model systematic

peer bias. That is, most peers tend to all overestimate, or all underestimate, then the

consensus grades computed by the methods will be higher or lower than the ground

truth grades. Second, existing methods only consider peer grades and are not able to

take advantage of textual review comments. In addition to numeric grades, peers provide

textual comments that point out problems in submissions or suggestions for improvement.

Comments that are high-quality could indicate that a peer review merits higher weight

in the consensus grade. In this dissertation, we explore several methods that can not

only detect and adjust systematic peer bias based on historical data but also improves

consensus grade estimation accuracy using available textual reviews.

1.3. Contributions and Outline

Contributions of this dissertation are as follows.
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Preliminary Work: Open Domain Named Entity Typing: In Chapter 2 and

[126], we introduce Open domain Named Entity Typing (ONET), the task of typing named

entity in open domain setting. In ONET, the set of target types is not known in advance.

We propose a novel neural architecture for ONET. We show that the proposed neural

architecture outperforms two baseline models and achieves weighted average ROC AUC

score of 0.870 and 0.780 on unseen types for FIGER(GOLD) and MSH-WSD data. We

also analyze which factors drive the system’s performance, finding that the presence of

training types that are more similar to an unseen target type improves accuracy on that

type.

Highlighted Text Prediction: In Chapter 3, we present several neural architectures

that predict highlighted text in homework submission PDFs. Our methods are inspired by

the over-labeling technique [75], which takes advantage of available information, textual

reviews and review labels, to improve prediction performance. Our results show that by

using review labels our model beats baseline model while using textual review does not

have much advantage on highlighted text prediction. By doing highlighted text prediction,

peers can potentially save time on peer review process by focusing on important parts of

submissions and skim the unrelated parts.

Consensus Grade Estimation: In Chapter 4, we explore different methods to im-

prove consensus grades estimation accuracy. We first investigate one of state-of-the-art

peer grading algorithms and propose several ways to improve its performance. We also

present peer grading methods, which improve peer grading accuracy by using historical

instructor grades to estimate peer bias and textual review comments to estimate review
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quality. Our method models peer biases in maximum-likelihood fashion using the differ-

ences between peer grades and instructor grades in the past. It models the quality of

a peer review using its textual comments and puts more weight on better peer reviews

when computing submission grades. To the best of our knowledge, our method is the first

work to explore using textual reviews to improve peer grading performance. We also show

the possibility of further improves the estimation performance using co-training method.

In addition, Chapter 4 also investigates the learning outcomes of different peer review

processes. This chapter releases the limitation of inaccurate peer grades on peer review

tools.
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CHAPTER 2

Preliminary Work: Open Domain Named Entity Typing

This chapter is a preliminary work chapter. In order to see how likely highlighted

text prediction is going to work with the help of textual reviews, we first tackle a simpler

task: named entity typing in open domain. Entity typing labels a mention in a sentence

with types. In open domain setting, type names can be any words or phrases, which may

not even appear in training phase. As mentioned before, the connection between open

domain named entity typing and highlighted text prediction is that both of them treat

unseen texts as labels. This chapter treats entity types, usually one word, as labels, while

next chapter treats textual reviews as labels.

In this chapter, section 2.1 introduces the task of ONET. In section 2.2, we cover

related work. 2.3 formally defines ONET problem. Section 2.4 illustrates a neural network

architecture for ONET problem. Section 2.5 shows our results. Section 2.6 concludes this

chapter.

2.1. Introduction of ONET

Named Entity Typing (NET) is the task of labeling a given entity mention in text

with a semantic label. NET is valuable for many natural language processing tasks, such

as relation extraction, question answering, knowledge base population, and co-reference

resolution.
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Traditional NET focused on a small set of mutually-exclusive types, such as person,

location, and organization [115, 12, 2, 16]. More recent work has generalized NET to

much larger type systems that include fine-grained types, e.g. book, artist, city, and so

on [90, 106, 67, 124]. In fine-grained NET, often the target types are non-disjoint (“Paris”

is both a city and a location, for example) and thus fine-grained NET is a multi-label

task, i.e. each mention may be assigned multiple positive labels.

Existing fine-grained NET techniques have a limitation: they require labeled training

mentions for each target type. For types that are not in the training set—referred to

as unseen types—NET systems cannot output the labels. This is a limitation because

in many cases, we want to know whether a given entity belongs to a specific type that

is not present in our limited training dataset. Learning whether an entity belongs to

an unseen type is an instance of “zero-shot learning,” where no training examples exist

for a given output label [82, 108, 14]. While existing hypernym discovery techniques

can identify whether a given phrase belongs to a type, hypernym discovery is context

insensitive, whereas NET is context sensitive. For example, given the sentence “I went

to Chicago last year,” hypernym discovery would output all possible types of “Chicago”

(city, band, movie, etc.). Whereas in NET we must only assign types that are correct

for “Chicago” in the given context, e.g. city and location. Unsupervised Named Entity

Recognition [45] is context-sensitive and in principle can handle entities of unseen types,

but these techniques require mutually exclusive entity categories—i.e. they cannot apply

to the multi-label setting encountered in fine-grained NET.

Thus, we introduce the task of Open Named Entity Typing (ONET), which is fine-

grained NET when the set of target types is not known in advance. We propose a novel
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neural architecture for ONET. The intuition behind our approach is simple: we represent

mentions and types in our model using word embeddings pre-trained on unlabeled text,

and leverage regularities in the embedding space to extend to unseen types. Specifically,

our model projects the embeddings of mentions and types into a common space. We

train the model such that in the common space, the representations of correct types are

close to the mention representation, while the representations for incorrect types are far

away. Our hypothesis is that regularities in the pre-trained embedding space will allow

this approach to extend to unseen types. That is, if our model learns to map mentions

of the type “musician” to be close to the representation for the word “musician,” it will

also map mentions of the type “drummer” to be close to the representation of the word

“drummer,” even if the latter type never appears in training. Our architecture extends

previous work [106] by adding a new component, type embeddings, and a method for

comparing the type embedding to a given mention embedding. In addition, our model is

able to incorporate mention- and pattern-based features as optional components.

We refer to our model as OTyper. We evaluate OTyper on a common benchmark

NET dataset, FIGER(GOLD) [67] and MSH-WSD dataset[53]. The results show that

OTyper outperforms two baseline models and achieves weighted average ROC AUC score

of 0.870 and 0.780 on unseen types for FIGER(GOLD) and MSH-WSD. We also analyze

which factors drive the system’s performance, finding that the presence of training types

that are more similar to an unseen target type improves accuracy on that type.

In summary, our contributions include:

1: We introduce a new task of Open Named Entity Typing (ONET), which is fine-

grained NET when the set of target types is not known in advance.
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2: We propose a neural network model, OTyper, for the ONET task and exper-

imentally demonstrate that the technique outperforms baseline approaches on

unseen types.

3: We also establish performance baselines for the ONET task. To the best of our

knowledge, OTyper is the first model for ONET.

2.2. Related Work

Named Entity Typing is a long-standing task in Natural Language Processing [34,

21, 28, 95, 98, 61]. Most work in NET is performed in the context of the Named Entity

Recognition (NER) task, which includes NET as a subtask. In NER, systems must first

find and delimit entity mentions, and then perform NET, i.e. assign each mention to a

type. Using a variety of supervised approaches, existing NET methods can achieve high

accuracy and recall. Most of these systems only deal with traditional NET over three

categories: person, location, organization.

Many end tasks such as relation extraction and question answering can benefit from

finer-grained entity typing, which has become a focus in recent years. Unlike traditional

NET, fine-grained NET considers hundreds or thousands of types, and each entity mention

can be assigned to more than one type. Ling and Weld [67] introduced 113 entity types

derived from Freebase and released a dataset, FIGER, now a commonly-used benchmark

for fine-grained NET. They used semantic features to train a multi-instance multi-label

distant supervision classifier on FIGER. In this chapter, we use FIGER as our evaluation

dataset. Lee et al. [64] defined 147 fine-grained named entity types and used a CRF on

fine grained NET for question answering. Yogatama et al. [124] introduced embedding
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methods that use a ranking loss and learn a joint representation of features and labels,

which allows for information sharing among related labels. Rabinovich et al. [90] consid-

ered a large number of types and applied a linear model for fine-grained NET. Shimaoka

et al. [105] proposed the first model for fine-grained entity typing that learns to recur-

sively compose representations for the context of each entity using an attention model.

Shimaoka et al. [106] combined the attention model with mention features and hierarchi-

cal label-sharing parameters in a NET system, and achieved the current state-of-the-art

result on the FIGER(GOLD) dataset. By adopting a universal schema approach, Yao et

al. [123] operates over the union of all types from its input sources, and is able to classify

over 16,000 types. However, all these methods assume a pre-defined a set of fine-grained

types that is known at training time—they are not applicable to ONET, where the target

types do not appear in the training dataset.

Huang et al. [45, 44] proposed an unsupervised entity-typing framework by combining

symbolic and distributional semantics. They use domain knowledge bases as an additional

data resource. Their approach creates a knowledge graph and knowledge representation

based on domain knowledge base, and then clusters entity embeddings and named entities.

Their system produces only one type label for each mention, while in ONET each mention

can correspond to many types. Also, domain knowledge bases are not always available,

which is a limitation for their system. By contrast our OTyper approach does not use a

knowledge base, only pre-trained embeddings.

Similar to named entity typing, hypernym discovery [107, 102] also labels entities with

their hypernyms. Hypernym discovery is the task of, given an NP e, finding a set of NPs

ci such that each ci is a hypernym of e [99]. Hypernym discovery is often powered by
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Hearst patterns [39], which we also employ as features in OTyper. The primary difference

between our ONET task and hypernym discovery is that ONET is context sensitive—we

must not only assign types to each entity name, but also determine which of those types

are relevant to the particular sense of the entity name used in a given context.

2.3. ONET Definition

We now formally define Open Named Entity Typing (ONET). As in traditional NET,

in ONET we take as input a set of mentions. Each mention is an occurrence of a named

entity in text, along with its surrounding context. We are also given a set of target types,

and the the task is to associate each mention with its correct types. An ONET system is

trained on a labeled dataset of annotated mentions. The key difference between ONET

and NET is that in ONET, some of the target types (i.e. the test types) may not occur at

all in the training phrase. We use the symbol ti to denote a type in training or testing, and

mi to denote a mention. Each mention mi contains two parts: the entity ei and its textual

context on the left and right, referred to as cli and cri. In our remaining notation, we use

lowercase letters for scalars, bold lowercase for vectors and uppercase letters for matrices

and constants. We define seen types to be the types in the training dataset. Unseen types

are those that do not exist in training dataset but are found in test dataset. While in

principle test types may include both seen types and unseen types, in our experiments we

focus on unseen types.
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2.4. OTyper: A Neural Network Architecture for ONET

2.4.1. Overview

OTyper outputs a vector for each mi, where each element in the vector is a probability

estimate that mi belongs to a type. Our intuition is that if mention embeddings are

appropriately mapped into a common space with type embeddings, then the mention

embeddings will be nearby the correct type embeddings and far away from the incorrect

type embeddings—even for types that do not explicitly occur in the training set.

entity	
embedding	 (300)

context	embedding	
(600)

mention	
features	(50)

type
representation	(300)

mention embedding

dot	product	 (1) pattern-based	features	
(6)

sigmoid	output	 (1)

mention
representation	(300)

type
embedding	 (300)

Figure 2.1. Neural architecture for OTyper. The number of neuronal units
is provided for each component in parentheses

Figure 2.1 shows the neural network architecture of OTyper. The number of dimen-

sions is listed in parentheses after the name. The arrows represent fully interconnected

weight matrices with one exception—the mapping from the mention and type represen-

tation to the dot product is a dot product operation of these two representations. Also,
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OTyper uses a fixed identity matrix for the weights from the type embedding to the type

representation. OTyper has a single logistic function output for each <mention, type>

pair. Thus, OTyper can have a different number of types in training and testing phase,

which is critical for ONET. OTyper maps the mention embedding into a common space

with the type embedding and is trained to minimize the dot-product distance between

the mention embedding and each of its correct type embeddings.

The high level mathematical formulation of OTyper is as follows:

(2.1) arep = [fm-emb, fm-fet] ∗Wmention

OTyper concatenates the mention features (fm-fet) with the mention embedding (ffet)

and projects it into the common space in Equation 2.1.

(2.2) brep = ft-emb ∗Wtype

Equation 2.2 projects the type embedding, ft-emb, into the common space. As men-

tioned above, in OTyper, the type projection is an identity transformation; exploring

alternative transformations is an item of future work.

(2.3) d = arep · brep
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Then, the dot product between the projected mention and type is computed in Equa-

tion 2.3.

(2.4) l = [d, fp-fet] ∗Wl + b

Pattern features vector (fp-fet) are concatenated with the dot product. In equation 2.4,

the concatenation vector is then fed into a hidden layer, which outputs a scalar.

(2.5) ŷ = sigmoid(l)

The last layer transforms the hidden layer output with a logistic function, to produce

a probability estimate that the given mention is of the given type. To train the model,

OTyper minimizes the cross-entropy loss on the training data.

Note that in the training phase, we feed seen type embeddings into OTyper, while

during the test phrase, we feed target types which can include unseen types.

In 2.4.2 and 2.4.3, we introduce mention and type embeddings. The features that

OTyper uses are illustrated in 2.4.4.

2.4.2. Mention embedding

The mention embedding in OTyper contains two parts: an entity embedding and a context

embedding. OTyper adopts the mention embedding approach proposed for NET in [106],

which we describe in this section.
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Our entity embedding simply averages the individual word embeddings for the entity,

as shown in equation 2.6. m
(j)
i denotes the jth word of ith mention. mli is the number of

words of ith mention. The function emb(·) returns the word embedding.

(2.6) fe-emb(mi) =
1

mli

mli∑
j=1

emb(m
(j)
i )

To generate a context embedding, OTyper trains two bi-LSTMs [33] on both sides

of context. An attention model is applied to the output states of the bi-LSTMs to get

weighted summations on both sides, which are concatenated for form the context embed-

ding.

Equations 2.7 to 2.10, from [106], describe how our mention embedding is computed.

Equations 2.7 to 2.9 formulate how OTyper computes its context embedding. We use −→o lij

and←−o lij to denote the bidirectional output states of bi-LSTMs for the jth word in the left

side context of mi, j ∈ {1, . . . , C}, with analogous quantities for the right side.

(2.7) elij(clij) = tanh(We ∗

−→o l
ij

←−o l
ij

)

(2.8) ãlij = exp(Wa ∗ elij)



24

(2.9) alij =
ãlij∑C

j=1(ã
l
ij + ãrij)

To get the attention weights in Equation 2.9, the attention model trains a two-layer

feed-forward neural network as in Equations 2.7 and 2.8. The scalar alij is the weight for

the left context output state for the jth word. The right context scalars are analogous.

The context embedding is shown in Equation 2.10.

(2.10) fc-emb(cli, cri) =
C∑
j=1

(alij ∗

−→o l
ij

←−o l
ij

 + arij ∗

−→o r
ij

←−o r
ij

)

The mention embedding (Equation 2.11) is the concatenation of the entity and context

embedding.

(2.11) fm-emb(mi, cli, cri) = [fe-emb(mi), fc-emb(cli, cri)]

We also tried the two alternative context models proposed in [106], one based on

averaging the context embeddings and the other based on LSTMs without attention. We

found the attention embedding performed the best, so we use it in OTyper.

2.4.3. Type embeddings

In equation 2.12, OTyper computes type embeddings by simply averaging the word em-

beddings of the words comprising the type name:
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(2.12) ft-emb(ti) =
1

tli

tli∑
j=1

emb(t
(j)
i )

where t
(j)
i denotes the jth word of type ti. tli is the number of words in ti.

2.4.4. Features

Shimaoka et al. [106] showed substantial F1 score improvement in NET by incorporating

mention features such as syntactic features, word shape features and topic features. We

also use these mention features in OTyper. Following [106], we represent mention features

as binary vectors and use a trainable linear projection to map the binary vector to lower

dimension. We use fm-fet(mi) to represent mention features for mention i.

Pattern-based features are helpful for ONET. For example, given an entity-type pair,

<e, t>, if the number of textual occurrences of “e is a t” is low in a large corpus, it is

less likely that e is of type t. We use two kinds of pattern based features in OTyper :

entity-type features and type-only features. We use a set of hypernym patterns applied

to a large corpus taken from the web-is-a database [102]. We compute features based

on the number of pattern matches for different entities and types. Entity-type features

capture the pattern matching information of a specific <e, t> pair. Specifically, entity-

type features include: the number of matches, the number of distinct matched patterns,

and the number of matched URL domains. Type-only features marginalize entity-type

features over types, and can be viewed as a prior over types — i.e. types that appear

in more patterns may be the type labels that OTyper should be output more often, all

else being equal. Equations 2.13, 2.14 are the formulas for entity-type features (fe-t-fet)
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and type-only features(ft-o-fet). nm, np and nu are the number of matches, the number of

distinct matched patterns and the number of URL domains for <e, t> separately. Pattern

based features (in Equation 2.15) combines entity-type features with type-only features.

(2.13) fe-t-fet(ei, ti) = [nm(ei, ti), np(ei, ti), nu(ei, ti)]

(2.14) ft-o-fet(ti) =
∑
i

fe-t-fet(ei, ti)

(2.15) fp-fet(ei, ti) = [fe-t-fet(ei, ti), ft-o-fet(ti)]

2.5. OTyper Experimental Result

This section evaluates OTyper and answers three questions:

1: How well can OTyper label unseen types?

2: How much do similar training types help—does unseen type accuracy correlate

with how similar the training type embeddings are to the unseen type embed-

dings?

3: How much does each feature impact the accuracy of OTyper?

2.5.1. Experimental setup

We evaluate OTyper on two datasets: FIGER(GOLD) and MSH-WSD.
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1: FIGER(GOLD) is a benchmark dataset for fine-grained NET. The training

and development FIGER(GOLD) data were generated from Wikipedia text [67].

The FIGER(GOLD) test dataset consists of manually annotated newspaper arti-

cles. Each mention has 113 binary type labels, where the types were derived from

Freebase. There are 200,000 mentions in training dataset, and 10,000 mentions

for development.

2: MSH-WSD is a word sense disambiguation dataset that was automatically

collected from the Unified Medical Language System (UMLS) Metathesaurus

and the manual MeSH indexing of MEDLINE [53]. We type each MSH-WSD

mention using UMLS tags. Specifically, we define the correct types for a mention

to be all of its ancestors in the UMLS taxonomy tree. We randomly select 80%

of the mentions for training, 10% for development and 10% for test. There are

1387 different types in MSH-WSD.

We use published mention features for the FIGER(GOLD) dataset from [106]. There

are no mention features available for MSH-WSD. The pattern features used in our exper-

iments are extracted from the web-is-a database [102]. Mention and type embeddings are

taken from pre-trained GloVe-840B [84] word embeddings.

For all experiments, the dimension of the common space is 300. As mentioned above,

we set Wtype to be the identity matrix. The rest of hyper-parameters are the same as in

[106]. The projection of the mention features is 50 dimensional. The Adam optimizer

[58] with a learning rate 0.001 is applied to minimize the loss. The model is trained for

5 epochs with batch size 1,000. Dropout with keep probability of 0.5 is applied to the
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mention embeddings and mention features. The context window size is 10. We present

the test performance of the model that performed best of the development set.

Our evaluation metric is weighted AUC-ROC score, which computes an AUC-ROC

score for each type and then averages the scores weighted by the type frequency.

2.5.2. Unseen type labeling

To evaluate how well OTyper labels unseen types, we split test types into 10 parts and

do 10-fold cross-validation on the types. For each fold, only type labels other than the

test types are utilized in the training and development set.

We compare OTyper with two baseline models. Pattern-based methods are a canonical

approach for identifying hypernym relations. So, our first baseline is a pattern-based

model. It uses the number of matches in web-is-a for <e,t> as its score [100], and forms a

relatively strong baseline. The second baseline is based on word embeddings. It trains a

logistic regression model to classify the vector difference between the entity embedding for

e and the type embedding for t. Vector differences between embeddings have been shown

to reflect relation information [73]. In addition, to provide an upper bound on accuracy,

we also evaluate OTyper in a fully supervised setting in which all types are available in

training.

Model AUC-ROC

Pattern baseline 0.639
Embedding baseline 0.413

OTyper 0.870
Supervised upper bound 0.943

Table 2.1. Unseen type weighted AUC-ROC comparison on
FIGER(GOLD). OTyper outperforms the baselines.
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Table 2.1 presents the results on FIGER(GOLD). The results show that using only

pattern-based features or embeddings cannot solve the ONET task, because ONET is

context-sensitive whereas the pattern features and embeddings are context-insensitive.

OTyper achieves an AUC-ROC of 0.870 and outperforms the two baselines by substantial

margins. The pattern baseline is better than the embedding baseline in these experiments.

The supervised upper bound model gets an AUC-ROC score of 0.943. It is notable that

OTyper can score relatively close to the performance of the supervised model, given that

OTyper must solve the much more challenging ONET task in which the test types do not

occur in the labeled training examples.

Model AUC-ROC

Pattern baseline 0.005
Embedding baseline 0.350

OTyper 0.780
Supervised upper bound 0.891

Table 2.2. Unseen type-weighted AUC-ROC comparison on the MSH-WSD
dataset. OTyper outperforms the baselines.

Table 2.2 shows the results on MSH-WSD. Again, OTyper achieves much higher

weighted type AUC-ROC score compared to the baselines. However, the AUC-ROC

is not as high as in FIGER(GOLD) because MSH-WSD has a much higher number of

types than FIGER(GOLD), and also lacks mention features, which makes the ONET task

harder than in FIGER(GOLD). Further, since MSH-WSD type comes from biomedical

domain, they rarely show up in the Web corpus used to form the web-is-a database. Thus,

pattern-based features are sparse. In fact, out of 51 million <e, t> pairs in MSH-WSD

only 817 of them have non-zero pattern matches. This implies that the pattern-based

features are not informative here, and is the reason that the pattern-based baseline gets
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almost zero AUC-ROC score on MSH-WSD data. Due to the feature limitations of MSH-

WSD, we only use FIGER(GOLD) in the following experiments.

Note that although OTyper achieves high weighted type AUC scores, if we evaluate

on an F1 metric over unseen types, OTyper achieves a score of 0.26. This indicates that

OTyper works well for ranking the unseen types, but not that well for classification.

In addition, for each fold of the 10-folds cross-validation, our model holds out about 4

types. So, to predict a test type, our model lost the labels of three more types in training

dataset. These missing types in training data have negative effect on test type prediction,

especially when the missing types are similar to the test type. We will investigate this

more in 2.5.3.

2.5.3. Influence of training types

This subsection attempts to explain the performance of OTyper by analyzing how much

the unseen type AUC-ROC correlates with how similar the training type embeddings

are to the target unseen type embedding. We use cosine similarity in Equation 2.16 to

measure the distance between types:

(2.16) cos-similarity(a,b) =
a · b

‖a‖2‖b‖2

For these experiments, we focus on the 11 of our 41 test types that occur at least ten

times in our test dataset. For each of the 11 types, we hold the type out from training

and development sets and train three different OTyper models. In the first model, the

training and development types contain all other types other than the test type. We name
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this model All. In the second and third models, the three most and least similar types

from the test type are removed from the training and development datasets. We call them

top-3 and bot-3 model. IfOTyper is utilizing similar types to the test type in the training

set as a source of information, we would expect top-3, which removes the most similar

types, to substantially underperform bot-3, which removes dissimilar types.

Type name All Top-3 Bot-3

location 0.739 0.692 0.742
person 0.885 0.82 0.897

organization 0.880 0.819 0.811
city 0.917 0.856 0.921

country 0.857 0.787 0.893
company 0.849 0.611 0.842

sports team 0.862 0.827 0.873
athlete 0.957 0.897 0.953

building 0.929 0.885 0.894
educational institution 0.888 0.720 0.904

time 0.793 0.863 0.801
Average 0.869 0.798 0.866

Table 2.3. Performance of OTyper when holding out types that are similar
(Top-3) or dissimilar (Bot-3) to the target type, compared to keeping all
training types (All). We report AUC-ROC on the FIGER(GOLD) dataset.
On average, removing similar types hurts performance, whereas removing
dissimilar types has negligible impact.

Table 2.3 shows the type AUC-ROCs of all three models. On average, bot-3 achieves

0.068 higher AUC-ROC score than top-3. The result suggests that to predict unseen types,

the similar types in the training data are more informative than dissimilar types. We also

observed that average AUC-ROC of All is almost the same with bot-3. So, dissimilar

types do not affect unseen type prediction.
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2.5.4. Feature analysis

This section investigates whether having mention- and pattern-based features is helpful in

predicting unseen types. We remove each feature from our model separately and evaluate

our model using 10 fold cross-validation as in 2.5.2. The results are summarized in Table

2.4.

Model Weighted AUC-ROC

OTyper 0.870
OTyper (- mention features) 0.863

OTyper (- entity-type features) 0.842
OTyper (- type-only features) 0.848

Table 2.4. Impact of features on the FIGER(GOLD) dataset. The pattern-
based features are most valuable for this dataset.

Table 2.4 shows that removing any of the features results in some AUC-ROC decrease.

AUC-ROC does not decease very much when mention features are removed. We did not do

a statistical significant test on these AUC-ROC scores. however, given there are more than

two millions mentions in FIGER(GOLD), tiny change of AUC score is a big difference.

As additional analysis, we find that when mention features are removed, the AUC-ROCs

increases for 18 unseen types, decreases for 21 unseen types, and remains unchanged for

the other two. Thus, there appears to be no clear advantage in using mention features.

The pattern-based features are found to be more informative for FIGER(GOLD) dataset.

Even without these features, OTyper still performs well. We believe that this is because,

a) world embedding vectors consists meaning fully information of types; b) OTyper learns

to map type representation vector space to mention representation vector space.
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2.5.5. Supervised setting

Our focus is on ONET in which types can be unseen. In a supervised setting, where all

types are seen, we would expect OTyper performs similar to that of the recent state-of-

the-art model in [106]. To verify this, we evaluate OTyper against the model from [106]

(NFGEC for short) on FIGER(GOLD) using the same evaluation set-up in that work, i.e.

strict accuracy, loose macro F1, and loose micro F1 scores. For this experiment, all 113

types are seen types.

For NFGEC, we use the attentive context encoder with mention features, which is the

setting that achieves the highest FIGER(GOLD) accuracy and F1 scores in [106]. We use

two feature settings for OTyper. The first setting includes only mention features. This

setting uses exactly the same input data as NFGEC, i.e. mention embeddings, context

embeddings and mention features. The second setting includes all features in OTyper,

i.e. mention, entity-type and type-only features. Table 2.5 shows the results. When

OTyper uses the same input data with NFGEC, OTyper gets slightly lower accuracy and

F1 scores than NFGEC. When all features are included, OTyper gets similar accuracy

and F1 scores with NFGEC. Overall, OTyper performs comparably to NFGEC in the

supervised setting.

F1 F1
Model Acc. Macro Micro

NFGEC 0.597 0.790 0.754
OTyper(mention features) 0.584 0.776 0.752

OTyper(all features) 0.595 0.779 0.759

Table 2.5. Comparison in the supervised setting. OTyper achieves compa-
rable F1 to the state-of-the-art NFGEC.
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2.6. Conclusion

In this chapter, we introduced the task of Open Named Entity Typing (ONET), which

is NET when the set of target types is not known in advance. We proposed OTyper, a

neural network architecture for ONET. OTyper relies on type embeddings in order to

extend to unseen types. The experimental results demonstrate that on unseen types

OTyper outperforms two baseline models and achieves a weighted AUC-ROC of 0.870 on

the benchmark FIGER(GOLD) dataset, and a score of 0.78 on the MSH-WSD dataset.

OTyper can serve as a baseline model for future ONET systems. Finally, our analysis

revealed that similar training types provide more information for unseen type prediction

than dissimilar training types do.

The Investigation of ONET helps us to better understand the task of highlighted text

prediction. As for highlighted text prediction with textual reviews, instead of treats types

as labels, it actually treats textual reviews to be labels for entire highlighted sentence.

This chapter shows that well pre-trained word embedding vector provides information

for types, although these types do not exists in training data. In the next chapter, to

get meaningful representation of unseen reviews we use pre-trained word embedding and

sequence-to-sequence model, which is an over-labeling technique [75].
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CHAPTER 3

Highlighted Text Prediction

The previous chapter shows that by leveraging the information in word embedding, it

is possible to type named entities using unseen labels. In this chapter, we move one step

forward, which is highlighted text prediction using over-labeling technique. We collect

peer review data in EECS-349 machine learning class at Northwestern University. We ask

students to highlight important regions (topic, data set, feature, algorithm) of submissions

and provide feedback on the highlighted text. To encourage peers highlight the correct

span of text, graders graded the quality of peer reviews. In this way, we have a peer

review data set to train a neural network for highlighted text prediction.

The organization of this chapter is as follows: data collection is included in section 3.1.

Section 3.2 talks about the background knowledge of highlighted text prediction. Section

3.3 shows our methods to predict the highlighted text and evaluate the results.

3.1. Peer Review Data Collection

To the best of our knowledge, there is no public peer review data set for highlighted

prediction yet. The only large peer review data is [57]. However, the peer reviews in this

data set are global peer reviews not sentence level reviews.



36

3.1.1. Project assignment overview

We collect data in EECS-349 Machine Learning class at EECS department at Northwest-

ern University. In the course project of EECS 349, students work in groups. Each group

proposes a machine learning task they want to address. Then, they collect data and train

a machine learning model to solve their proposed tasks. The course project lasts for five

weeks. Students submit project proposals in PDF format in the first week. In the third

week, students submit status reports. At the end of the fifth week, students design a web

site to demonstrate their work.

We ask students to do peer review for project proposals and status reports. By

reviewing project proposals, students are exposed to more machine learning topics and

techniques, which will help them to adjust their plan in this course project. Project status

peer review helps student evaluate their progress of the course project by comparing with

the progresses of other groups. To encourage students to provide good quality reviews,

five graders graded student’s peer review based on their quality and quantity of peer

reviews. Note that grading peer review quality increases grading workload, but our goal

here is to train a model to automatically identify important texts. Once the model is

trained, it could save peer review time in the future.

3.1.2. Peer review process

For project proposal, students are asked to provide peer reviews on different aspects of

randomly assigned submissions: topic, dataset, feature, and machine learning algorithm.

For status report, students provides comments on dataset, feature, machine learning al-

gorithm, and preliminary result. In this chapter, we call these aspects review labels.
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To provide peer comments of these aspects, students first highlight the corresponding

span of text in PDF file, then add comments on the highlighted part. Figure 3.1 is an

comment example of the topic of a project proposal. We pixelate the name of the peer

reviewer and the grader.

Figure 3.1. Topic peer comment example

Note that to specify the aspect of peer review. Peer comments starts with the name

of the aspect. For the example in Figure 3.1, it starts with ”Topic :”

Students are also allowed to provide other aspects of reviews, like Figure 3.2, by

highlighting a sentence and provide free-style textual comments.

Figure 3.2. Free style peer comment example

If students want to provide global comments, they can put their comments in ’sticky

notes’ without highlighting any text. Figure 3.3 shows an example of a global comments.
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Figure 3.3. Global peer comments example

Peer reviews were graded by graders according to two aspects: quantity and quality.

Students received full grades on quantity if they provide seven or more comments on a

submission. Quality scores were measured by graders based on the helpfulness of peer

reviews. The grading scale for peer reviews is from zero to five.

3.1.3. Statistical information of peer review data

There were 220 students in EECS-349 2018 Spring. Students worked in groups for the

course project. Overall, there were 90 project groups. Each group submitted one project

proposal and one project status report. In peer review process, each student got three

project proposals and project status reports to do peer review. So, we collected 1.32K an-

notated PDFs. Each PDF has eight comments on average. The total number of annotated

comments is about 10.56K.

3.2. Background of Highlighted Text Prediction

This section describes background and key steps to highlighted text prediction, which

includes, peer review extraction, seq2seq model, and sequence tagging.
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3.2.1. Peer review extraction

Our collected data are annotated PDFs. We need to extract annotations from those raw

PDFs. There are two kinds of annotation: pop-up notes, which are used for peer reviews

of highlighted text, and sticky notes, which are used for global peer reviews. These peer

reviews are extracted using Java itextpdf package[47]. Each pop-up note has a label,

which denotes the category (aspect) of it, such as topic, dataset, etc. After peer review

extraction, a list of training examples is created for the task of highlighted text prediction.

Each training example consists: peer review content, highlighted span of text (None, for

global peer reviews), category(None, for global peer reviews), and text of the entire PDF.

3.2.2. Seq2seq model

Sequence-to-sequence (Seq2Seq) [109] is a neural network model, which takes a sequence

as input and outputs a sequence. It has achieved state-of-the-art results on many NLP

tasks, including machine translation, speech recognition, and text summarization, etc.

Seq2seq model consists of two parts: encoder and decoder. Usually, both of them are

RNN. Encoder maps an input sequence into an encoder state. The decoder takes encoder

state as inputs and generates an output sequence. Figure 3.4 illustrate the structure of

seq2seq model. This model takes sequence ABC as input, and the output is WXYZ. The

blue box is the encoder state, which is also the beginning state of the decoder.

Attention mechanism has been widely used to improve the performance of seq2seq as

an optional component. During decoding, attention mechanism takes previous states as a

query vector. A weighting array is computed based on this query vector. Then, a weighted

sum RNN states in the encoding phase is used to generate the current decoding state. In
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A B C <EOS> W X Y Z

W X Y Z <EOS>

Figure 3.4. Sequence-to-sequence model architecture

such a way, the decoder is able to focus on different encoding RNN states. This work uses

attention mechanism. Note that the attention mechanism is not shown in seq2seq figures.

3.2.3. Sequence tagging

Highlighted text prediction can be viewed as a sequence tagging problem. Each token can

be tagged as either 0 or 1, where 1 denotes the token is highlighted, 0 means the token

is not highlighted. For example, in Figure 3.1 labels from The to features are labeled as

1s, while labels of the rest tokens are all 0s. A traditional way to do sequence tagging is

using LSTM [40] plus a CRF [62] layer on the top. Figure 3.5 shows the architecture of

a common LSTM+CRF sequence tagging neural model. As is shown, the input of each

LSTM cell is each token in a sentence. The LSTM output is then fed into a CRF layer.

In order to train this model, cross-entropy loss is minimized. The data we collected from

EECS-249 actually contains more data, textual reviews and review labels. Can we take

advantage of these data to improve highlighted text prediction performance? This is the

problem we will solve in the next section.
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A B C <EOS>

0/1 0/1 0/1

CRF

LSTM

Figure 3.5. Traditional neural network architecture for sequence tagging

3.3. Highlighted Text Prediction Models

This section describes our methods of highlighted text prediction. Note that it is

not appropriate to directly use OTyper to solve this task. If we consider mention as the

highlighted text and the type as textual peer review, it only works well for highlighted

text. It is not possible to combine non-highlighted text in this model. So, we propose

two methods, that are different from OTyper, for highlighted text prediction. One is to

take advantage of textual reviews to predict highlighted text. The other is to use review

labels provided by peers to improve prediction performance. Note that both of these

models adopt the idea of over-labeling [75]. The idea of over-labeling is to let the model

predict something harder than the target. Then, convert the harder task to the target

task in the test phase. The intuition is that by doing the harder task, models can learn to
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create more sophisticated features, which results in better prediction performance. In our

case, the hard tasks are: when predicting highlighted tokens, our model also minimizes

the probability of generating textual reviews and predicts review labels given highlighted

texts.

Over-labeling(review text): Figure 3.6 illustrates the neural architecture of high-

lighted text prediction using textual reviews as the extra input. The idea is to sum up

seq2seq loss and the binary label loss per token as the training loss. Note that the review

sequences for non-highlighted sentences are empty strings.

Encoder state

Input sequence

Cross-entropy loss

CRF

LSTM

Seq2seq loss

Review sequence

Training loss

Figure 3.6. Highlighted text prediction using textual review as extra input

Over-labeling(review label): We also propose another model which takes peer

topic labels as the extra input. Figure 3.7 shows the architecture. This model combines

two losses, binary label cross-entropy loss and multi-label cross-entropy loss. The multi-

label are the aspects of reviews.
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Input sequence

Binary label loss

CRF

LSTM

Multi-label loss

Training loss

Figure 3.7. Highlighted text prediction using review labels as extra input

We evaluate the F1 score of the proposed models using the data we collected at EECS-

349 Machine Learning class. Table 3.1 shows the token accuracy of the proposed models.

We also compare our models with a baseline model. The baseline model predicts the

binary label using LSTM+CRF architecture as we mentioned earlier in this chapter.

Model Over-labeling(review text) Over-labeling(review label) baseline
F1 score 0.6935 0.7259 0.7143

Table 3.1. F1 score comparison of highlighted text prediction
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As we can see from Table 3.1, using over-labeling(review label) provides the best

token accuracy. This result implies using review labels helps the model on feature learn-

ing and results in better performance. Since the difference of token accuracy between

over-labeling(review label) and baseline is small. We further run a Fisher’s exact test

compares if there is a significant difference between these two methods. The p-value

is 0.0141 (smaller than 0.05), which indicates the difference between baseline and over-

labeling(review label) exists. The textual review over-labeling did not achieve a good F1

score. We believe there are several reasons for this. First, generating meaningful reviews

for homework submissions needs to understand submissions very well, which means do-

main knowledge is required. However, domain knowledge for homework is hard to get and

encode. Our model does not take domain knowledge into consideration. Thus, it may

not be able to do well on the seq2seq part. Instead of introducing domain knowledge,

a cheaper way to incorporate external information into our model is to use massive pre-

trained models. Exploring pretrained model is an item of future work. Second, training

a seq2seq model usually requires millions of training data. The data that we collected

in class has only several thousand reviews, which may not be enough to train a seq2seq

model well. Third, since the reviews of non-highlighted text are empty, most of the time

the decoder predicts empty strings, which may impact the performance of seq2seq when

it is trained on the highlighted text.
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3.4. Conclusion

To reduce peer review workload, this chapter proposed highlighted text prediction

models using over-labeling technique. The proposed models can be used to predict im-

portant span of text of submissions. Peers can save time by focusing on the important

parts and skip the rest. Due to unpromising results and expansive cost, we did not eval-

uated the whether our methods reduce peer review effort in real classroom setting. Also,

we want to note that the proposed methods are specific for one course. It may not be

easily generalizes to other courses. Thus, a more generalized model, which could predict

important regions of any submissions, is needed to increase practicality.
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CHAPTER 4

Consensus Grade Estimation

Since peers typically lack the subject matter mastery of the instructor, peer grades

exhibit both bias and variance, which makes consensus grade estimation a challenging

task. How to estimate consensus grades based on peer grades is a challenging task [1].

In this chapter, we explore peer grading techniques by first analyzing and improving a

state-of-the-art peer grading algorithm. Then, we proposed novel peer grading methods,

which outperforms state-of-the-art and baseline methods. Finally, we discuss learning

outcomes of different peer reviewing processes.

4.1. Related Work

Alfaro and Shavlovsky [3] proposed Vancouver algorithm, which measures each peer’s

grading accuracy, by comparing the grades assigned by the peer with the grades by other

peers to the same submissions and gives more weight to the peer grades with higher

measured accuracy. The basic idea of Vancouver is like EM (Expectation-Maximization)

algorithm. Vancouver estimates consensus grades by weighted averaging peer grades based

on peer reputation, which is represented by the variance of each peer. Then, Vancouver

updates peer variances based on the peer grades and consensus grades. Vancouver algo-

rithm runs iteratively until the consensus grades and peer variances converge. Vancouver

algorithm assumes that all peers are non-biased. However, peers are not trained graders.

Thus, non-biased peer assumption is hardly met in reality. Piech et al. [85] proposed a
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probabilistic method to do peer grade estimation. They propose three peer grades gen-

eration models and use Gibbs sampling to do the inference. Their methods estimates

grader biases and reliabilities based on peer grades. Raman and Joachims [94, 93] pro-

pose methods for ordinal peer grading. They claim that besides cardinal grades [3, 85],

ordinal information should be take into consideration during peer grading. They proposed

both ordinal and cardinal methods for peer grading. According to their results [94], their

ordinal enriched method achieved better results than the probabilistic method proposed

in [85].

However, all of the previous works of peer grading have two shortcomings. First,

they cannot deal with systematic peer biases. For example, if most of peers overestimate

submission grades, the consensus grade estimated by peer grading algorithm will be higher

than ground truth grades. Second, previous works did not take textual peer reviews, which

is practically available and abundant, into consideration. Actually, quality of textual

peer reviews reflect how much effort a peer spend on reviewing a submission to some

extent. Intuitively, a detailed and constructive textual review indicates the peer reviewer

understands the submission well and the corresponding peer grade is more likely to be

accurate. Thus, peer grading may be improved if textual reviews can be taken into

consideration. Also, we note that we target a classroom setting, where classes have on the

order of 50-100 students and the instructor feedback can cover a significant proportion of

the students, rather than the large MOOC setting with much more student data (but less

proportionally instructor feedback).

Finally, our use of textual peer review comments is related to work in automated

grading. Automated Essay Scoring (AES) [104] is the process that computer evaluate the
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score of the writing. The input of AES is a text document and a rubric. AES outputs

the predicted score of the writing. Automatic peer review grading is related to AES

since peer review grading also predicts scores for peer reviews, which is a kind of text

document. However, the different between AES and peer review grading is that peer

review grading is context sensitive. Specifically, the score of the same review could be

different for different documents. Different AES systems uses different grading strategies.

Project Essay Grader(PEG) [81] takes some graded essays as training data. To predict

the final score, PEG computed the coefficients from the training examples. Intelligent

Essay Assessor (IEA) [46] grades essays using Latent Semantic Analysis, which predicts

the distribution of word semantics. Electronic essay rater (E-rater) [5] grade essays by

identify specific lexical and syntactical features.

4.2. Peer Grading Data Collection

To evaluate peer grading performance, we collected four peer review data sets from an

EECS-336 Algorithm Design in EECS department at Northwestern University from the

following quarters: 2017 Spring, 2017 Fall, 2019 Spring, and 2019 Fall. The instructor

assigned one to two homework per week in EECS-336. Students worked in groups of one

or two. Students submitted their submissions to Canvas, the learning management sys-

tem used at Northwestern University. After submissions were collected, Canvas learning

management system assigned several peers to review each submission. Each peer reviewed

three submissions. Peers provided their feedback (textual reviews and peer grades) on

Canvas. The instructor also graded a portion of the submissions. In addition, Canvas

makes ensure that each peer has at least one submission that is also graded by TA. Peers
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were graded based on how close their grades are to the instructor’s grades. The difference

between EECS-336 data sets is that in the 2019 Spring and Fall, peers are asked to pro-

vide separate textual reviews on three aspects for each homework (including correctness

of the algorithm, correctness of the proof, and clarity of the writing). Then, the instructor

also graded a part of the textual reviews by hand. In the 2017 Fall and Spring, peers

were asked to provide one overall textual review, and the instructor did not evaluate the

quality of textual reviews. Only the accuracy of the peer grades are evaluated based on

the distance to TA grades.

To help isolate how method performance depends on specific characteristics of the

peer grading distribution, we also create three synthetic data sets (syn-asymbias, syn-

symbias, syn-unbias). We simulate a class with 90 students and 30 homework. For each

homework, each student submits one submission and reviews three submissions. Ground

truth grades of submissions are uniformly random sampled from [50, 100]. Each peer has a

peer variance, which is uniformly sampled from [2, 20], and a peer bias. Peer biases of syn-

asymbias and syn-symbias are uniformly sampled from [0, 20] and [−10, 10]. Peer biases

of syn-unbias are zeros (unbiased). Peer grades are sampled from normal distributions:

N(peer bias + ground truth, peer variance). Note that the synthetic data sets do not

have textual peer reviews. Table 4.1 brief summarises the data sets. Table 4.2 shows

biases of synthetic data sets.
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data set students num homework num review num text reviews text review evaluation
2019 Spring 49 14 1783 3 3

2019 Fall 65 14 2360 3 3
2017 Spring 98 17 4064 3 5

2017 Fall 92 17 3068 3 5
synthetic 90 30 13500 5 5

Table 4.1. Data sets summary

syn-asymbias syn-symbias syn-unbias
Peer bias Uniform(0, 20) Uniform(-10, 10) 0

Table 4.2. Synthetic data peer biases

4.3. Vancouver Algorithm Case Study

This section illustrates how Vancouver algorithm, one of state-of-the-art peer grading

algorithms, computes consensus grades. The basic idea of Vancouver is like Expectation-

Maximization (EM) algorithm. At high-level, Vancouver computes consensus grades

based on peer accuracy, which is represented by the variance of each peer. Then, Van-

couver again updates peer variance based on the peer grades and the consensus grades.

Vancouver algorithm runs iteratively until the consensus grades and peer variances con-

verge. The assumption of Vancouver algorithm is that although different peers may spend

different amounts of time to do peer review, each peer put equal effort to review each as-

signed submissions. For example, a peer spends three hours to review three submissions,

he or she will spend one hour to review each.

When calculating consensus grades, Vancouver leaves out each peer at a time. The

intuition is that, by doing so, a bad peer will not impact the consensus grades and bad

peers will be detected. Similarly, when calculating peer variances, it lefts out each sub-

mission at a time. Without this left out strategy, we found that the results of Vancouver
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show that some peers have very high qualities meanwhile the rest peers’ qualities are very

low. Thus, the estimated high quality peer grades dominate the final submission grades.

However, those estimates may not be accurate and thus it is not optimal to have those

peers dominate.

Algorithm 1 and 2 illustrates pseudo-code of the Vancouver algorithm proposed by

Alfaro and Shavlovsky in [3]. Specifically, algorithm 1 is the iteration part of Vancouver.

In each iteration, it calculates consensus grades and peer variances, while left out peers

or submissions at each step. Thus, algorithm 1 has multiple peer variances and consensus

grades. Based on the outputs of algorithm 1, algorithm 2 calculates unique variance for

each peer and unique consensus grade for each submission.

Vancouver algorithm sets all peer variances to be 1.0 as the initialization value (line

1). In each EM iteration (line 2), line 3-7 computes the submission variances by sum-

ming all peer variances who reviewed the submission, except the left out peer. Line 8-13

then calculates the consensus grades. Vancouver algorithm weighted averages peer grades

(gradepeer) based on peer qualities (peer variances). Line 14-20 updates peer qualities

based on estimated consensus grades. Vancouver estimates the quality of a peer based on

the difference between peer grades and estimated consensus grades (line 16) and the sub-

mission variance (line 17). Peer qualities are weighted averaged different, which weights

are the submission variance and values are square difference in line 16. After running EM

for several iterations, peer variances and consensus grades converge. Then, algorithm 1

returns the final peer variances and consensus grades.

After the EM part, algorithm 2 calculates unique variances for each peer and unique

consensus grades for each submission. Algorithm 2 is similar to algorithm 1, except that
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Algorithm 1: Original Vancouver Algorithm Pseudo-code, part 1

1 Initialize all peer variances (p-var) to 1.0;
2 for iditeration in range(0, Max Iterations) do
3 for each submission id := idsub do
4 for each peer id who reviewed submission id := idp do
5 varsub[idsub][idp] =

∑
id

p
′!=idp varp[idp′][idsub]

6 end
7 end
8 Initialize all consensus grade (gradecon[idsub][idp]) to zero.
9 for each submission id := idsub do

10 for each peer id who reviewed submission id := idp do
11 gradecon[idsub][idp] =∑

id
p
′!=idp gradepeer[idsub][idp′] ∗ varp[idp′][idsub]/varsub[idsub][idp′]

12 end
13 end
14 for each peer id := idp do
15 for each submission id which is reviewed by idp := idsub do
16 dsum =

∑
id

sub
′!=idsub(gradepeer[idsub′][idp]− gradecon[id

sub
′][idp])

2 ∗
varsub[idsub′][idp]

17 vsum =
∑

id
sub
′!=idsub varsub[idsub′][idp]

18 varp[idp][idsub] = dsum/vsum
19 end
20 end
21 end
22 return varsub, gradecon, varp

it doesn’t left out peers or submissions. Line 1-3 computes submission variances. Line 4-6

computes consensus grades. Line 7-11 computes peer variances. Since submission vari-

ances is an internal variable, Vancouver only returns consensus grades and peer qualities

(peer variances) in the end.
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Algorithm 2: Original Vancouver Algorithm Pseudo-code, part 2

1 for each submission id := idsub do
2 varfinal−sub[idsub] =

∑
id

p
′ varp[idp′][idsub]

3 end
4 for each submission id := idsub do
5 gradefinal−con[idsub] =∑

id
p
′ gradepeer[idsub][idp′] ∗ varp[idp′][idsub]/varfinal−sub[idsub]

6 end
7 for each peer id := idp do
8 dsum =

∑
id

sub
′(gradepeer[idsub′][idp]− gradecon[id

sub
′][idp])

2

9 vsum =
∑

id
sub
′ varsub[idsub′][idp]

10 varfinal−p[idp] = dsum/vsum
11 end
12 return gradefinal−con, varfinal−p

4.4. Vancouver Algorithm Improvement

In this section, we first point out two parts in the original Vancouver algorithm that can

be improved. Then, we propose our ways of improvement and evaluate the performance.

4.4.1. Peer variance prior

Original Vancouver algorithm calculates peer variance based on the difference between

peer grades and estimated consensus grades. We observe that, especially for the first few

iterations, Vancouver produces super high peer variance (several thousand). In reality,

peer variances are usually low. Thus, if we could take the prior estimate of peer variance

into consideration (peer variance prior), not only Vancouver will converge faster, but

it will also produce more accurate estimation in the end.

We assume the peer grade generation process is as follows:

1. For peer i, sample qi from a normal distribution: N(µ, σx
2) (prior).
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2. qi is the variance for peer i, i.e. the grade of assignment j given by peer i obeys

normal distribution: N(Aj, qi), where Aj is the ground truth score of assignment j.

Since peer i grades multiple assignments, we further assume the observed q′is obeys

normal distribution: N(qi, σy
2)(likelihood). Since Vancouver estimates peer variance at

each iteration, we then adjust these estimated peer variance using the prior per iteration.

According to Bayesian statistics, we have both prior and likelihood function to be

normal. We assume the variance of the likelihood is known (σy
2). Therefore, posterior is

also a normal distribution (conjugate), which obeys: N(( 1
σx2 + n

σy2 )−1( µ
σx2 +

∑n
i=1 xi
σy2 ), ( 1

σx2 +

n
σy2 )−1). The prove can be found at [114].

4.4.2. Homework variance

Homework variance helps to estimate peer variance better, i.e. we should not punish a

peer much for a high variance homework if the peer’s estimation is much different from the

consensus estimation. Actually, the homework variances come from the summation of peer

variances. If we think about the source of the signal, homework variance is a duplicated

signal with peer variance. Therefore, adding homework variances does not help with peer

variance estimation. We propose to remove the homework variance weighting part (plain

weighting). Algorithm 3 and 4 illustrate the improved Vancouver algorithm. (Using

peer variance prior and plain weighting during peer variance computation).

In the first part of the algorithm, instead of computing peer variances by weighted

average the squared errors based on submission variance, line 16-18 calculates the plain

average of the squared errors. Line 19-20 adjusts the peer variances using prior peer
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Algorithm 3: Improved Vancouver Algorithm Pseudo-code, part 1

1 Initialize all peer variances (p-var) to 1.0;
2 for iditeration in range(0, Max Iterations) do
3 for each submission id := idsub do
4 for each peer id who reviewed submission id := idp do
5 varsub[idsub][idp] =

∑
id

p
′!=idp varp[idp′][idsub]

6 end
7 end
8 Initialize all consensus grade (gradecon[idsub][idp]) to zero.
9 for each submission id := idsub do

10 for each peer id who reviewed submission id := idp do
11 gradecon[idsub][idp] =∑

id
p
′!=idp gradepeer[idsub][idp′] ∗ varp[idp′][idsub]/varsub[idsub][idp′]

12 end
13 end
14 for each peer id := idp do
15 for each submission id which is reviewed by idp := idsub do
16 varp[idp][idsub] =

∑
id

sub
′!=idsub(gradepeer[idsub′][idp]−

gradecon[id
sub
′][idp])

2 ∗ varsub[idsub′][idp]/
17 vsum =

∑
id

sub
′!=idsub 1.0

18 varp[idp][idsub] = dsum/vsum
19 weight = σ2

y/(σ
2
y + σ2

x ∗ vsum)

20 varp[idp][idsub] = weight ∗ µ+ (1− weight) ∗ varp[idp][idsub]
21 end
22 end
23 end
24 return varsub, gradecon, varp

variance, µ. We set the prior peer variance to be 10. The prior variance and the likelihood

variance are all set to be 5.

Since submission variances are removed during peer variance computation, part 2

calculates the plain average of squared errors in line 8-10.
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Algorithm 4: Improved Vancouver Algorithm Pseudo-code, part 2

1 for each submission id := idsub do
2 varfinal−sub[idsub] =

∑
id

p
′ varp[idp′][idsub]

3 end
4 for each submission id := idsub do
5 gradefinal−con[idsub] =∑

id
p
′ gradepeer[idsub][idp′] ∗ varp[idp′][idsub]/varfinal−sub[idsub]

6 end
7 for each peer id := idp do
8 dsum =

∑
id

sub
′(gradepeer[idsub′][idp]− gradecon[id

sub
′][idp])

2

9 vsum =
∑

id
sub
′ 1.0

10 varfinal−p[idp] = dsum/vsum
11 end
12 return gradefinal−con, varfinal−p

4.4.3. Vancouver results

We evaluate the original Vancouver algorithm and the improved Vancouver using the

EECS-336 data set we collected at Northwestern University EECS department and our

synthetic data set. Both the original Vancouver and the improved Vancouver run for

100 iterations on each data set. MSE (Mean squared error) are calculated based on the

difference between Vancouver outputs and ground truth scores, which are TA grades for

EECS-336 data and mean grades in synthetic data sets during data generation. We use

the same prior mean and variance among all experiments.

Table 4.3-4.9 show the results.

plain weighting homework variance weighting
Using peer variance prior 263.14 256.26

Not using peer variance prior 288.98 281.71

Table 4.3. mean squared error comparison of 2019 Spring data
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plain weighting homework variance weighting
Using peer variance prior 170.06 179.13

Not using peer variance prior 189.15 201.29

Table 4.4. mean squared error comparison of 2019 Fall data

plain weighting homework variance weighting
Using peer variance prior 180.25 175.34

Not using peer variance prior 197.82 192.52

Table 4.5. mean squared error comparison of 2017 Spring data

plain weighting homework variance weighting
Using peer variance prior 272.96 275.81

Not using peer variance prior 288.21 291.47

Table 4.6. mean squared error comparison of 2017 Fall data

plain weighting homework variance weighting
Using peer variance prior 101.20 103.16

Not using peer variance prior 102.97 106.36

Table 4.7. mean squared error comparison of syn-asymbias

The results show that MSE of using peer variance prior is much lower than not us-

ing peer variance prior for all EECS-336 data sets, syn-asymbias, and syn-symbias. For

syn-unbias, using prior makes MSE worse. Note that peer grades of syn-unbias are un-

biased. The results indicate that peer variance prior improves Vancouver accuracy when

systematic bias exists. Also, we found that the MSE of using peer variance prior do not

change much when using different prior mean and variance setting, which suggests that

peer variance prior is a robust strategy to improve Vancouver accuracy.

We observe that MSEs decrease when using plain weighting strategy for most of the

data set when peer variance is not used. However, when peer variance prior is activated,

weighting strategy does not impact MSE much. This is also what we expected because the
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plain weighting homework variance weighting
Using peer variance prior 43.51 44.99

Not using peer variance prior 44.40 46.13

Table 4.8. mean squared error comparison of syn-symbias

plain weighting homework variance weighting
Using peer variance prior 20.63 21.62

Not using peer variance prior 21.12 22.89

Table 4.9. mean squared error comparison of syn-unbias

prior mean and variance introduce new information to Vancouver, while plain weighting

just removes duplicated signals in Vancouver.

Note that using peer variance prior actually decreases and smooth the peer variances.

Similar effect can be achieved by taking the squared root of the original peer variances.

Table 4.10 shows the result. We found that the square root approach surprisingly out-

performs the peer variance prior approach. In addition, the square root approach does

not need prior or other hyper-parameters. Thus, it seems to be a better way to improve

Vancouver. So far, we are not sure the reason that it outperforms peer variance prior and

will leave it for future study.

plain weighting homework variance weighting
2019 Spring 241.18 244.99

2019 Fall 136.98 135.07
2017 Spring 167.08 156.42

2017 Fall 248.61 246.71
syn-asymbias 91.94 92.14
syn-symbias 37.31 37.44
syn-unbias 19.36 19.39

Table 4.10. Using square root to smooth peer variance

Table 4.11 illustrates simple average baseline results.
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Simple ave
2019 Spring 219.84

2019 Fall 113.75
2017 Spring 141.74

2017 Fall 232.17
syn-asymbias 88.03
syn-symbias 38.58
syn-unbias 23.76

Table 4.11. Simple average baseline MSE of all data sets

We observe that the simple average baseline achieves better MSE in most data sets

except syn-unbias. The reason is likely to be the biased peer scores. For EECS-336 data

sets, we observe systematic peer score bias. A lot of peers overestimated the submission

scores. On average, peers overestimated submission scores by 8.91 comparing to TA

ground truth among the four EECS-336 data sets. [3] also argues that systematic bias

causes the simple average baseline achieves better MSE than Vancouver algorithm.

4.5. Semi-automated Methods for Peer Grading

As is shown in the previous section Vancouver does not beat simple average baseline

on our data. This section introduces our novel methods for peer grading algorithms.

4.5.1. Math notations

We first introduce math notations used in our algorithm. We assume that, in a class,

n students are given a sequence of K homework HW = [hw1, hw2, ...hwK ] in total. For

homework k, every student makes a submission and is given a few other students’ sub-

missions to review. We use [ssidk1 , ssidk2 , ..., ssidkn ] to denote the submission list. sidki is

the id of the submission of student i on homework k. In peer review, students (peers)
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provide peer grades and textual reviews. We use the symbol pgij and rij to denote the

peer grade and textual reviews given by peer i to submission j ∈ sid. For each homework,

instructor will grade a small portion of submissions and textual reviews. Grades provided

by instructors are igj and rgij, where j is a submission and i is the peer id. The goal of

peer grading is to estimate the ground truth grade, gj, for each submission j.

4.5.2. Peer bias estimation

Since peers are not well-trained graders, peer grades may not be accurate. For example,

in the EECS-336 data we gathered for our experiments, 61% of the peer grades are

higher than the instructor grades. That is, in our data the peers are biased and tend to

overestimate the grades. We also observed that if a peer overestimates submissions in the

past, they are likely to overestimate in the future. Figure 4.1, shows the number of over-

estimated and under-estimated peer grades for all EECS-336 data. Each dot represents

a peer. X-axis represents the number of over-estimated peer grades in a quarter. Y-axis

is the number of under-estimated peer grades. The diagonal, y = x is shown as the

orange line. As we can see, peers are to either over-estimate peer grades (x > y) or

under-estimate peer grades(y > x). The statistical result shows that 61% of peer grades

are higher than TA ground truth.

Also, peers are likely to behave similarly (either overestimate or underestimate) on

submissions that are assigned in the same week. Table 4.12 to 4.15 shows the coefficients

of L1 differences between peer grades and ground truth grades for two homework that

are assigned in the same week for EECS-336. As we can see, most of the coefficients are
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Figure 4.1. Number of over-estimated and under-estimated peer grades.
Each dot represents a peer. Most of the peers are to either over-estimate
peer grades (x > y) or under-estimate peer grades(y > x). The statistical
result shows that 61% of peer grades are higher than TA ground truth.

positive, which means if a peer over-estimate or under-estimate one of homework, he or

she will likely to over or underestimate the other homework as well.



62

week 1 week 2 week 3 week 6 week 7
coef 0.1402 0.0159 -0.0214 0.2827 0.3722

Table 4.12. L1 difference coefficients of different homework within a week.
2019 Spring.

week 1 week 2 week 3 week 6 week 9
coef 0.1684 0.3348 0.2258 0.1250 0.5140

Table 4.13. L1 difference coefficients of different homework within a week.
2019 Fall.

week 1 week 2 week 3 week 4 week 5 week 6 week 8
coef -0.1205 -0.0672 0.2762 0.1287 0.2078 0.0671 0.3521

Table 4.14. L1 difference coefficients of different homework within a week.
2017 Spring.

week 1 week 2 week 3 week 7 week 8 week 9
coef -0.2681 0.3849 0.2267 0.2918 0.4404 0.1155

Table 4.15. L1 difference coefficients of different homework within a week.
2017 Fall.

Based on the above observations, we model peer bias using a limited amount of histor-

ical instructor submission ground truth grades. This method first estimates bias for each

peer by averaging the difference between the historical peer grades and the corresponding

instructor grades. Then, it subtracts peer biases from peer grades and averages them as

the estimated consensus grades. Formally:

(4.1) bi =

∑
j′∈D(pgij′ − igj′)

|D|

(4.2) ĝj =

∑
i′∈E(pgi′j − b′i)
|E|
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Equation 4.1 and 4.2, describe how consensus grades are computed for homework

k. In equation 4.1, D is the set of submission ids that are graded by both peer i and

the instructor for homework 1 to k − 1. bi is the estimated bias of peer i (this is the

maximum likelihood estimate assuming biases are e.g. Gaussian distributed). Equation

4.2 computes the estimated consensus grade of submission j from homework k. E is the

peer set that reviewed submission j. We name this method SAB (Semi-Automated Peer

Bias).

To evaluate SAB, we compare SAB with simple average, Vancouver, and MALS algo-

rithm (Score-Weighted Mallows) proposed in [94] on EECS-336 data and synthetic data.

Note that ideally we should have done model development and selection on one data set,

and then evaluated on a completely disjoint data. Because the data is very expansive to

obtain, we were force to develop and test using the data set we have. Table 4.16 show

the results. Note that we now use a 2-way cross-validation on 2019 Spring and Fall data,

since we need to split TA ground truth into training and testing for the supervised textual

review quality methods proposed in later subsections.

SAB simple ave Vancouver MALS
2019 Spring 171.61 210.04 276.93 209.83

2019 Fall 112.71 113.54 192.77 113.59
2017 Spring 138.13 141.74 192.52 139.65

2017 Fall 228.44 232.17 291.47 229.34
syn-asymbias 39.83 88.03 106.36 86.69
syn-symbias 27.99 38.58 46.13 37.80
syn-unbias 23.44 23.76 22.89 22.94

Table 4.16. MSE comparison of SAB, simple average, Vancouver and MLAS
on all data sets.(Lower is better) SAB outperforms other methods in most
of the data sets
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As shown, SAB achieves lower MSEs than other methods for most of the data sets.

This indicates that by using previous instructor ground truth, SAB can accurately model

peer biases and estimates consensus grades. Vancouver performs the best on syn-unbias,

showing that it is most effective when data happens to be unbiased. But Vancouver’s

poor performance on the other data sets suggests that the unbiased assumption is too

strong for real classroom data.

4.5.3. Homework bias estimation

Our previous model, SAB, assumes the grading bias only comes from peers. However,

homework difficulty differs. Some homework may be hard to grade, while some are easy.

Thus, homework may introduce bias as well. We now assume the bias comes from two

parts, homework bias and peer bias. Homework bias can be estimated using the difference

between average peer scores and TA scores. We view the residual difference as peer bias.

Thus, for each peer, we compute a peer bias, and each homework corresponding to a

homework bias.

(4.3) hbk =

∑
j′∈F (pgij′ − ig′j)

|F |

Equation 4.3 shows how bias of homework k, hbk, is computed. During consensus

scores estimation, we use part of the current instructor ground truth F to compute the

homework bias and the rest ground truth scores are used for evaluation purpose. We call

this method SAB(HW).
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SAB(HW) SAB simple ave
2019 Spring 110.62 171.61 210.04

2019 Fall 173.80 112.71 113.54
2017 Spring 277.24 138.10 141.74

2017 Fall 284.96 228.75 232.17
syn-asymbias 44.87 33.24 88.03
syn-symbias 44.60 26.38 38.58
syn-unbias 25.68 23.49 23.76

Table 4.17. MSE comparison of SAB(HW), SAB, simple average. (Lower
is better). SAB(HW) does not beat SAB on most data sets except 2019
Spring.

We compare the proposed homework bias method SAB(HW) with SAB and simple

average baseline in Table 4.17. MSEs of other baseline models can be found in Table 4.16.

Table 4.17 shows that the MSE of homework bias model is the best only on 2019 Spring

data. A further investigation shows that there is a homework, where the peer grades

are much higher than ground truth grades by 25 to 40. This homework leads to very

high MSEs for SAB and simple average. This homework happened when students learn

a new and hard to understand the topic. Thus, the TA scores are low (about 40s to 50s).

However, peers tend to provide similar scores as before (70s to 90s). Since homework bias

is able to detect such an outlier by using a part of ground truth scores of the current

submission, it achieves very low MSE on this homework comparing to SAB, which results

in low average MSE. Other than 2019 Spring, SAB is still the best model for both real

and synthetic data sets. Thus, our conclusion is that homework bias is applicable when

peer scores are very different than TA scores, but in general this phenomenon is rare. Due

to this, we do not include homework bias in the following experiments.
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4.5.4. Textual review quality estimation

In this subsection, we consider using textual peer reviews to improve peer grading perfor-

mance. Textual reviews reflect how much effort a peer spends on peer reviewing and how

well he or she understands the submission. Intuitively, peers who provide good textual

reviews are likely to provide more accurate peer grades. Our idea is to increase the weights

of peer grades that corresponding to high-quality textual reviews and down-weight the

peer grades of bad ones. This subsection proposes several methods to model the quality

of peer reviews using textual comments and puts more weight on good peer reviews when

computing consensus grades. Note that quality is determined by how much effort a peer

spent and how skillful is the peer. In this thesis, we only focusing on measuring the effort

part.

We now present our methods for using textual review comments to improve peer

grading performance. Formally, all of our models estimate a textual review quality rij for

peer i and submission j, and linearly map it to the range [−τ, τ ] as the weight wij. We set

tau = 0.1 in this work. Equation 4.4 computes consensus peer grades using the weights:

(4.4) ˆgnew =

∑
i∈E(pgij − bi) ∗ (1.0 + wij)

|E|

(4.5) wij =
len(rij)− (lenmax − lenmin)/2.0

1.0
τ
∗ (lenmax − lenmin)
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4.5.4.1. Using review length to estimate peer review quality. We propose a sim-

ple yet effective method, SABTXT (Semi-Automated peer Bias grading approach with

TeXTual reviews), that estimates review quality using the length of textual review con-

tent. SABTXT trains a linear regression model to learn historical relation between re-

view length and peer grading accuracy. The independent variables are [len(rij), len(rij)
2,√

len(rij)]. The dependent variable is 1.0
(pgij−igj)2+1.0

. To predict review thoroughness, we

linearly map the range of dependent variable to [−τ, τ ]. Since there is no historical data

for the first homework, SABTXT linearly maps review lengths to weights as is shown

in Equation 4.5, where lenmax and lenmin represent the maximum and minimum review

length.

4.5.4.2. Using BERT to estimate peer review quality. Sometimes we have TAs’

evaluation on the quality of textual peer reviews. In such cases, it is possible to use those

evaluations to train a supervised model of peer review quality. Bidirectional Encoder

Representations from Transformers(BERT)[24], is a widely used method of pre-training

language representations which obtains state-of-the-art results on a wide array of Nat-

ural Language Processing tasks, including General Language Understanding Evaluation

(GLUE)[118], Stanford Question Answering Dataset (SQuAD)[92], Situations With Ad-

versarial Generations (SWAG)[128], etc. To predict peer review text quality (peer review

quality for short), we fine tune the pre-trained BERT model (Base, Uncased) using the

peer reviews as the input and peer review quality (TA grades) as the output. Specifically,

after feeding peer reviews into BERT, we take the last output layer and linear map to

the peer review grades provided by TA. We tried three different loss functions: softmax
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cross-entropy loss, sigmoid cross-entropy loss, and mean squared error loss. Figure 4.2

illustrates the basic architecture of our model.

BERT Linear 
transformation

Textual 
peer review Prediction

Figure 4.2. basic architecture of peer review quality prediction model using BERT

We consider the following strategies to improve BERT prediction results.

1: Classification loss function

Since BERT is originally designed for classification tasks, instead of MSE loss

(regression), we could use cross-entropy loss, which is widely used for classification

tasks. To train our model, we convert float output scores into integer types. Since

the scale of review scores is from 0 to 10, there are 11 different classes. Each score

corresponds to one class.

2: LM fine tuning

BERT is pre-trained on two tasks: masked language model and next sentence

prediction[24] using BooksCorpus [136] and English Wikipedia. Since sentences

in peer review are different from BooksCorpus and English Wikipedia, we could

continue to pre-train BERT (base, uncased) on our peer review data set be-

forehand. This is called LM fine tuning (different from fine tuning mentioned

before). The intuition of LM fine tuning is to warm BERT up by feeding peer

review sentences, which will be used during fine tuning.

3: Adding peer grades
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Peer grades might provide useful information to predict review quality. For

example, if the peer grade is low, high quality peer review should justify the

reason for the low peer grades. Thus, we propose to use both peer grades and

textual reviews to predict textual review quality. Specifically, we concatenate

peer grades strings with the peer review as the input to BERT. Figure 4.3 shows

the architecture of the proposed model.

BERT Linear 
transformationPeer review Predictionpeer grade

e.g.: 80 ; Good job! 

concatenat
e

Figure 4.3. concatenate peer grades embeddings

Table 4.18 and 4.19 evaluate the effect of approaches proposed above. We evaluate

the review quality score prediction performance using MSE and l1 error on 2019 Spring

and Fall data. We randomly select 80% of TA graded peer reviews for training 10% for

validation and 10% for testing purpose. We randomly selected three different training,

validation, and testing data. Average mean squared error, l1 error and accuracy are

reported. We compared our models with zero-r baseline and average review score baseline.

Zero-r baseline simply outputs the most frequent integer score. Average review score

baseline outputs the average review score of the training data. Table 4.18 and 4.21 show

MSEs, L1 errors and accuracies of all different BERT settings on 2019 Spring and 2019

Fall data. Table 4.20 and 4.21 show the baseline performance.
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2019
Spring

Softmax cross-entropy loss Sigmoid cross-entropy loss Mean squared error loss

MSE L1 ACC MSE L1 ACC MSE L1 ACC

Original 
BERT

W/O 
peer 
grades

6.274 1.856 0.199 5.556 1.728 0.237 4.510 1.634 N/A

Peer 
grades

5.896 1.785 0.212 4.800 1.593 0.244 4.765 1.726 N/A

LM fine-
tuned 
BERT

W/O 
peer 
grades

6.383 1.888 0.192 5.556 1.702 0.231 4.707 1.657 N/A

Peer 
grades

4.902 1.631 0.218 6.300 1.830 0.192 4.796 1.728 N/A

Table 4.18. MSE, L1 error and accuracy comparison of different BERT
setting on 2019 Spring data.

We observe that the models that using mean squared error loss achieves much lower

MSE than softmax and sigmoid cross-entropy loss. Using sigmoid cross-entropy loss,

BERT achieves better prediction accuracy than softmax in general. Also, we observe

that lower MSE does not necessarily mean lower L1 error. Comparing the models using

sigmoid cross-entropy and mean squared error for 2019 Fall data. Mean squared error loss

models achieve lower MSE but higher L1 error, while sigmoid cross-entropy loss models

achieve higher MSE but lower L1. We found that LM fine-tuned model performs worse

than the original model. This observation is different from [42, 37], where fine-tuning

model using domain related corpus improves classification accuracy. We believe that the

reason is that the number of training examples is small, less than 500. Thus, it is hard

to fine tune BERT on small data sets.



71

2019
Fall

Softmax cross-entropy loss Sigmoid cross-entropy loss Mean squared error loss

MSE L1 ACC MSE L1 ACC MSE L1 ACC

Original 
BERT

W/O 
peer 
grades

3.348 0.966 0.569 3.147 0.941 0.539 2.742 1.029 N/A

Peer 
grades

3.279 0.926 0.574 3.216 0.941 0.549 2.680 1.023 N/A

LM fine-
tuned 
BERT

W/O 
peer 
grades

3.471 1.069 0.475 3.103 0.956 0.505 2.721 1.002 N/A

Peer 
grades

3.289 0.966 0.525 3.319 0.975 0.539 2.728 1.012 N/A

Table 4.19. MSE, L1 error and accuracy comparison of different BERT
setting on 2019 Fall data.

MSE L1 ACC
Zero-R 4.896 1.638 0.218
Average 4.811 1.739 N/A

Table 4.20. MSE, L1 error and accuracy of baselines on 2019 Spring data

MSE L1 ACC
Zero-R 3.397 0.917 0.608
Average 2.597 1.072 N/A

Table 4.21. MSE, L1 error and accuracy of baselines on 2019 Fall data

The best BERT setting for 2019 Spring data in terms of L1 error and accuracy is

using original BERT, sigmoid cross-entropy loss, and peer grades feature, which achieves

the L1 error and accuracy of 1.593 and 0.244 separately. Original BERT, mean squared

error loss without peer grades is the best setting that achieves the lowest MSE. The best

setting outperforms both baselines for 2019 Spring data. For 2019 Fall data, in terms of
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MSE, the original BERT, MSE loss with peer grades feature is the best. Original BERT,

softmax cross-entropy loss with peer grades feature achieves the best L1 error of 1.593.

Surprisingly, MSE of average baseline and L1 error of Zero-R baseline beats BERT models.

We guess that due to the fact that we only have a limited amount of training examples,

it is not easy to train BERT well. General speaking, LM fine-tuning, and adding peer

grades does not improve prediction performance much.

Back to peer review quality prediction, we use original BERT, sigmoid cross-entropy

loss without peer grade. We train BERT model using a part of ground truth review

scores and use the rest data for validation and testing purpose. We call this approach

SABTXT(BERT). SABTXT(BERT) computes weights using Equation 4.6.

(4.6) wij =
r̂gij − 5.0

1.0/τ

4.5.4.3. Using Bag-Of-Words vector to estimate peer review quality. BERT is

a powerful model but has over a hundred million parameters. Our data collected from

EECS-336 may be too sparse to train it effectively. Thus, we also build a smaller model

that takes Bag-Of-Words vectors of reviews as input and feeds them into a one-layer neural

network (i.e. a logistic regression model) to predict instructor grades on reviews. We name

this model SABTXT(BOW). Like SABTXT(BERT), SABTXT(BOW) uses Equation 4.6

to compute weights wij as well.

4.5.4.4. Textual review quality estimation results. Table 4.22 compares different

textual review quality estimation methods, including SABTXT, SABTXT(BERT), and
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SABTXT(BOW). Note that since the instructor did not evaluate reviews in 2017 Spring

and Fall, supervised results are not available.

Surprisingly, the length-based method in SABTXT outperforms the two supervised

models. We further compare SABTXT with a model that linearly maps the ground truth

instructor grades on reviews to the review weights, which can be considered as an upper

bound for the supervised models. Surprisingly, SABTXT even beats the upper bound.

The result suggests that review length is a better indicator of appropriate weight than

are the instructor grades on reviews. Also, the length-based method does not require any

instructor evaluation of textual reviews, increasing practicality.

Table 4.23 compares SABTXT with other baselines. The results show that SABTXT

(1st column) achieves lower MSEs than the other methods for nearly all of the data sets.

The MSEs of 2019 Spring and 2017 Fall are higher than the other data sets. This is

due to a handful of assignments in those courses that cover newly introduced topics. In

those cases, instructor grades are much lower than the peer grades, which causes higher

average MSEs for all methods. This suggests we could potentially improve our methods

by accounting for how bias may be higher for more challenging, unfamiliar assignments,

and this is an item of future work.

SABTXT SABTXT(BERT) SABTXT(BOW)
2019 Spring 171.24 166.37 233.76

2019 Fall 111.15 111.88 112.71
2017 Spring 137.14 N/A N/A

2017 Fall 227.63 N/A N/A

Table 4.22. Text review quality weighting methods comparison.

To test how the amount of historical instructor grades affects SABTXT, we ran-

domly select different percentages of historical grades for peer bias estimation. We plot
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SABTXT simple ave Vancouver MALS
2019 Spring 171.24 210.04 276.93 209.83

2019 Fall 111.15 113.54 192.77 113.59
2017 Spring 137.14 141.74 192.52 139.65

2017 Fall 227.63 232.17 291.47 229.34
syn-asymbias 39.83 88.03 106.36 86.69
syn-symbias 27.99 38.58 46.13 37.80
syn-unbias 23.44 23.76 22.89 22.94

Table 4.23. Mean Squared Error of grade estimation for SABTXT, simple
average, Vancouver and MLAS on all data sets. SABTXT outperforms
baseline methods on all data sets, except the unbiased synthetic data set
syn-unbias.

the average MSE over the classroom and synthetic data in Figure 4.4 against the two

best-performing baselines. Figure 4.4 shows that MSE improves given more historical in-

structor grades, although the improvement tapers off at about 60% of the data. Moreover,

even without instructor data, SABTXT outperforms the baselines.

4.5.5. Peer review quality co-training

According to the results in the previous section, training supervised models using TA

evaluation on peer review quality did not beat SABTXT, which just takes review length

to re-weight peer grades. The reasons are probably there are not enough training examples

to train neural models, or TA grades may be inaccurate sometimes. To overcome these

two shortcomings, this section proposes an iterative method to predict the quality of

textual peer reviews.

This method adopts the idea of co-training [10]. Instead of predicting TA grades, this

method directly predicts weights of peer reviews given textual reviews. This method first

estimates the weights of textual reviews using the differences between peer grades and
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Figure 4.4. MSEs of SABTXT using different amount of historical instruc-
tor grades. MSE drops as historical instructor grades increases.

estimated consensus grades. The small differences mean high weights. We then select

a part of textual reviews and the corresponding weights to train a neural model (either

BERT or Bag-Of-Word model) and use the prediction of the model to update the weights

of the rest. We then compute the consensus grades using new weights. And estimate the

weight for textual reviews again. Algorithm 5 shows the procedure for the co-training

method at a high-level.

Note that this co-training method selects a part of data to train a model and updates

the weights of the rest. Intuitively, we want the training data and validation to be good

quality, so that after training, we will have a good model to update the test data. One

way to select good quality data is to select peers that behave constantly. We measure
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Algorithm 5: Co-training algorithm pseudo code

1 Initialize all weights to be 1.0
2 for iteration in [1,2,3...] do
3 compute consensus grades based on weights
4 compute weights based on consensus grades
5 select part of weights to train a neural network model and update the rest
6 end
7 return consensus grades

the quality of peers by first calculating the distance between peer grades and ground

truth grade and sort peers by the variance of distances. Peers who have low variance

means their behavior is relatively constant and can be considered as good quality training

examples. We tried two different strategies to split the data. The first strategy is to sort

peers according to the variances mentioned. Then, it selects peer reviews belong to peers

who have low variances for training and validation data. The rest data is the peers have

high variances. The second strategy is to random split data into training, validation, and

testing parts.

To evaluate the performance of co-training, we use the data we collected in EECS-

336. For each data set, we tried three different loss functions: sigmoid loss, softmax

loss, and MSE loss. For each setting, we train 10 iterations and plot the best test MSE.

Note that this experiment is to test the best possible performance of co-training method,

which is the lower-bound of MSE. Due to very long time training and lack of data, it

is not practical to do cross-validation on this experiment. Table 4.24 to 4.27 show the

results. For each setting, we show the MSE of the SABTXT (with review length) and SAB

(without review length), the best MSE of the co-training and the best iteration. Note
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that weights are updated at the beginning of an iteration. Thus, iteration 0 is actually

the MSE of SABTXT or SAB.

With textual review length Without textual review length

softmax sigmoid mse softmax sigmoid mse

2019 Spring SAB(TXT) mse 157.321 157.321 157.321 172.645 172.645 172.645

best mse 157.321 157.321 157.321 172.645 172.645 171.689

best iter 0 0 0 0 0 6

2019 Fall SAB(TXT) mse 121.361 121.361 121.361 117.971 117.971 117.971

best mse 121.361 121.361 121.361 117.971 117.971 117.971

best iter 0 0 0 0 0 0

2017 Spring SAB(TXT) mse 136.780 136.780 136.780 138.101 138.101 138.101

best mse 136.780 136.780 136.780 138.101 138.101 137.972

best iter 0 0 0 0 0 5

2017 Fall SAB(TXT) mse 224.579 224.579 224.579 228.752 228.752 228.752

best mse 223.749 223.573 223.552 227.577 227.874 228.129

best iter 7 2 3 8 5 4

Table 4.24. Co-training using Bag-Of-Word model, sort peers

With textual review length Without textual review length

softmax sigmoid mse softmax sigmoid mse

2019 Spring SAB(TXT) mse 157.321 157.321 157.321 172.645 172.645 172.645

best mse 157.321 157.321 156.838 172.587 172.645 172.481

best iter 0 0 3 3 0 7

2019 Fall SAB(TXT) mse 121.361 121.361 121.361 117.971 117.971 117.971

best mse 121.196 121.230 120.959 117.383 117.772 117.608

best iter 2 8 8 8 1 2

2017 Spring SAB(TXT) mse 136.780 136.780 136.780 138.101 138.101 138.101

best mse 135.680 135.564 135.600 136.487 136.679 137.147

best iter 7 6 7 7 6 6

2017 Fall SAB(TXT) mse 224.579 224.579 224.579 228.752 228.752 228.752

best mse 223.608 223.234 223.077 227.070 226.850 227.358

best iter 9 4 2 2 1 2

Table 4.25. Co-training using Bag-Of-Word model, random split
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With textual review length Without textual review length

softmax sigmoid mse softmax sigmoid mse

2019 Spring SAB(TXT) mse 157.321 157.321 157.321 172.645 172.645 172.645

best mse 157.321 157.321 157.321 172.645 172.418 172.188

best iter 0 0 0 0 4 6

2019 Fall SAB(TXT) mse 121.361 121.361 121.361 117.971 117.971 117.971

best mse 121.361 121.361 121.361 117.971 117.971 117.908

best iter 0 0 0 0 0 2

2017 Spring SAB(TXT) mse 136.780 136.780 136.780 138.101 138.101 138.101

best mse 136.780 136.780 136.780 137.971 137.049 136.827

best iter 0 0 0 1 1 7

2017 Fall SAB(TXT) mse 224.579 224.579 224.579 228.752 228.752 228.752

best mse 223.640 223.306 223.686 227.685 227.443 227.010

best iter 3 4 3 6 5 4

Table 4.26. Co-training using BERT, sort peers

With textual review length Without textual review length

softmax sigmoid mse softmax sigmoid mse

2019 Spring SAB(TXT) mse 157.321 157.321 157.321 172.645 172.645 172.645

best mse 157.097 156.856 156.652 172.645 172.369 172.622

best iter 5 3 4 0 4 9

2019 Fall SAB(TXT) mse 121.361 121.361 121.361 117.971 117.971 117.971

best mse 121.113 120.949 120.893 117.280 117.784 117.712

best iter 1 8 9 8 1 1

2017 Spring SAB(TXT) mse 136.780 136.780 136.780 138.101 138.101 138.101

best mse 135.417 136.083 135.362 136.763 137.145 136.328

best iter 7 7 7 7 8 7

2017 Fall SAB(TXT) mse 224.579 224.579 224.579 228.752 228.752 228.752

best mse 223.297 223.373 225.502 227.157 227.127 226.270

best iter 6 3 1 2 2 1

Table 4.27. Co-training using BERT model, random split

As is shown, for some settings, co-training achieves better MSE than SABTXT or SAB,

which indicates that using co-training method, it is possible to improve the performance

of consensus grade estimation. Most settings that sorted peers according to variances
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do not get lower MSE than SABTXT or SAB. We believe that the reason is that the

weights of training data are not updated during co-training. Consequently, it is likely

that at each iteration, the model selects the same or similar for training purpose. Thus,

the performance of neural network is not improved through co-training. The results also

show that a lot of experiments that adopting random training, validation, and test data

split strategy achieve lower MSE comparing to other settings. This implies that random

data split allows neural network to explore more data and results in better prediction

accuracy. However, we found that the overall MSE improvement of using co-training is

small. Also, neural network models are trained for every iteration, which causes a long

time to get the final result. Thus, it is hard to adopt co-training in real scenarios.

4.6. Peer Review Process and Students’ Behavior

Note that the peer review processes of the four EECS-336 data sets we collected in

this chapter are different. For 2017 Spring and Fall quarter, peers provided peer grades

and TA graded some submissions. Then, peers are graded using Mechanical TA [121].

The basic idea of Mechanical TA is to give higher grades to peers that provide accurate

peer grades.

For the two quarters in 2019, peers are asked to grade assignments based on three

different rubric elements: correctness of the algorithm, correctness of the prove and clear-

ness of the writing. The final peer grade is the summation of them. TAs also grade these

three aspects on some of the assignments. Similarly, peer grades are automatically graded

using Mechanical TA. Besides peer grades, peers were asked to provide comments to jus-

tify their peer grades or provide constructive suggestions for assignments. TAs evaluated
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the quality of textual peer reviews and grade textual reviews. Table 4.28 compares the

peer review processes of EECS-336 data sets.

Data Set Text review Evaluation

2019 Spring Rubric Y

2019 Fall Rubric Y

2017 Spring Overall N

2017 Fall Overall N

Table 4.28. Peer review process comparison

This section investigates the students’ behavior of different peer review processes.

Specifically, this section answers the following questions:

1: What kind of peer review process encourages peers to provide better peer re-

views?

2: For these peer review processes, is there a difference in textual review content?

Intuitively, we could estimate the time a peer spent on peer review by checking the

length of the corresponding textual peer review. Longer reviews indicate that peers put

more effort in peer review. Figure 4.5 plots the average review length for each homework.

Note that homework IDs are in time order, homework 1 is the first homework in a quarter,

homework 2 is the second one, so on and so forth. As we can see, the review lengths of

2019 Spring and Fall quarter are much longer than 2017 Spring and Fall. This indicates

peers were likely to spent more time on peer review in 2019 than the two quarters in
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2017. There are two possible reasons for the longer reviews of 2019. First, instead of

providing a single review for each submission, peers were asked to provide feedback on

three rubric elements in 2019. Peer reviewers were given more specific instructions on

peer review. This may increase the length of textual reviews. Second, unlike 2017, the

quality of textual reviews were human evaluated and graded by TA. This motivated peers

to spend more time and provide longer reviews.

Figure 4.6 shows the percentage of short reviews for each homework. We define short

reviews to be reviews that consist of 5 or fewer characters. Those reviews are usually

empty reviews or reviews that are too general, such as ”good”, ”great”, etc. Counting

short review is another way to measure the amount of effort peers spend on reviewing.

Figure 4.6 shows the difference between the two quarters in 2017 and the two quarters in

2019. There are more empty reviews in 2017 than that of 2019. What’s more, comparing

to 2019 Spring and Fall, there is a clear trend that peers gave more and more empty

reviews in 2017 Spring and Fall. Especially for the last few homework, about 60% to

80% reviews are short reviews. We believe that the reason for the difference is due to

the fact that textual reviews were not graded in 2017. Consequently, after they realized

they won’t get credit for peer review text, they were reluctant to spend much time on

providing textual reviews. Our conclusion is that by having TA evaluate the quality of

reviews, peers are likely to provide longer reviews.

We now propose an unsupervised method to compare peer review content specificity of

2017 and 2019. Note that this unsupervised peer review quality evaluation method is not

designed to evaluate the quality of a specific peer review but the overall content specificity

of a homework, although content specificity partially correlates to review quality. This
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Figure 4.5. Average textual review length (number of characters) for each homework.

unsupervised method assumes that good peer reviews should be specific to the submission

and point out major issues. Low quality peer reviews are usually very general, such as

’good job!’. Thus, the unsupervised task we propose here is that for each homework

rubric, say there are n peer reviews, and we build a n2 matrix M . M [i][j] == 1 means

peer review i and j belongs to the same submission and M [i][j] == 0 means peer review i

and j belongs to different submissions. Then, a model is built to predict matrix elements.

The intuition is that it’s hard to predict the results for low quality peer reviews because

low quality reviews are very general. If both peer reviews are high quality, the model is

able to tell if they belong to the same submission or not by checking whether they talk

about similar issues. Note that this unsupervised method enlarges the size of data from
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Figure 4.6. Short review percentage per homework. 2017 Spring and Fall
have more short reviews than 2019 Spring and Fall. Also, peers gave more
and more short reviews in 2017 Spring and Fall, while for 2019 Spring and
Fall, the short review percentage roughly keeps the same level.

n to n2 for each homework, which enlarged the training data set by a lot. In addition,

unlike the supervised models mentioned above, this unsupervised model doesn’t require

TA assessments on textual peer reviews.

We train BERT model to do the proposed unsupervised task. The BERT model takes

two reviews as input. The binary output indicates whether they belong to the same

submission or not. Note that peers are asked to provide grades and reviews on three

aspects of the algorithm in 2019, while only one peer grade and a single overall review is

required in 2017. Since BERT is GPU memory demanding, we have to train three different

models for different rubric elements separately. Each homework has a different number

of submissions, and each submission received different submissions received a different
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number of reviews. To get a fair comparison between homework within a quarter, we

randomly drop some submissions and reviews so that each homework has the same number

of submissions, and each submission has the same number of reviews. We randomly select

80% examples for training purpose, 10% for validation purpose and report the F1 score

using the rest 10% testing data.

We compare the F1 score of our method with two baselines. Random 50 random

guesses a review pair is true or false 50% to 50%, while random bias random guess X%

pairs to be true and the rest of pairs to be false, where X% is the percentage of true pairs

in the training data. Figure 4.7 shows the F1 score for each homework. r0, r1, and r2

represent three rubric elements that are used during 2019 Spring and Fall. Besides F1 of

these different rubric elements, we also plot the f1 of the combined prediction of a pair

(combined) by averaging the probabilities of the corresponding rubric elements.

Figure 4.7 shows that peer review content specificity in 2019 is higher than in 2017.

Especially in 2019 Fall, F1 score slightly increases. So, because of human evaluation and

providing comments on different aspects, peers are likely to provide more specific and

detailed peer reviews. Our result also show that the combined F1 score achieves about

the same F1 scores as three rubric elements. Thus, averaging the prediction of different

rubric elements does not improve F1 score much.

4.7. Conclusion

Due to high biases and variances of peer grades, peer grading is a challenging task. This

chapter first proposed, SABTXT, a semi-automated peer grading method. SABTXT im-

proves peer grading accuracy through two mechanisms. First, by using a limited amount
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Figure 4.7. Peer review specificity evaluation using unsupervised method.
A N2 is built for each class or rubric element. The test F1 score(Y-axis) for
each homework(X-axis) is reported. Peer reviews of 2019 achieves higher f1
scores comparing to 2017.

of historical instructor grades, SABTXT refines a model of each peer’s bias throughout

the course. Second, SABTXT models the quality of peer reviews based on their textual
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content, and puts more weight on the more thorough peer reviews when estimating sub-

mission grades. The experimental results with over ten thousand peer reviews collected

over four courses demonstrate that SABTXT outperforms three baseline models. We find

that simple models of the text perform comparably to more powerful techniques. We

also investigated the impact of peer review processes on students behavior. Our results

showed that students tends to provide longer reviews when the review quality is evaluated

by TA. Also, by providing separate reviews based on different rubric elements, textual

review contents are more specific.
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CHAPTER 5

Conclusion and Future Work

This dissertation introduced NLP methods that benefit peer review. Specifically, by

highlighting important text of submissions, peers could potentially save time on peer re-

view by focusing on the important parts of submissions and skip the un-highlighted parts.

We also did a preliminary study which is open domain entity typing. Peer grading algo-

rithms proposed in this dissertation improves the accuracy of consensus grade estimation.

We now conclude this dissertation and discuss the remaining challenges and future work.

Chapter 2 tackled the problem of open domain entity typing, which is to type entities

using labels that do not exist in training data. OTyper is proposed to solve this problem.

OTyper relies on type embeddings in order to extend to unseen types. OTpyer learns

to map the mention representation and type representation to a common vector space.

The dot distance of correct mentions and types are minimized. The results showed that

OTyper outperforms two baselines models and achieves similar accuracy and F1 score

with state-of-the art named entity typing model. Also, similar training types provide

more information for unseen type prediction than dissimilar training types do.

As we mentioned in chapter 2, our results showed that OTyper is good at ranking

the unseen types of entities, but the performance of predicting whether an entity belongs

to a type is not promising. OTyper achieves a F1 score of 0.26 of answering the yes or

no question. This result indicates that the yes or no threshold for different types are

different. A threshold prediction part needs to be added in order to do this task better.
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So, given an entity and a type, how to answer the question of yes or no could be one of

future work.

Also, although OTyper performs well on open domain entity typing, it cannot generate

types, which is an interesting and challenging task, i.e. given an entity in a context,

generates all possible types of the entity. This could be done using language generation

models.

Chapter 3 addressed the task of highlighted text prediction. We proposed models

that could predict the important parts of submissions. Thus, peers can save time on

reviewing. Our neural model adopts over-labeling technique to use textual reviews and

review labels to help with highlighted text prediction. Our results showed that using

review labels our model achieves higher F1 scores comparing to baseline models. However,

using textual reviews did not show promising results. This technique can potentially

reducing peer review time by highlighting important parts of submissions, although we

did not do experiments on this part.

One direction to the improve textual review over-labeling model is to incorporate

document or paragraph representation. A good document representation can preserve

semantic information, which is helpful for highlighted text prediction. There are many

neural network based techniques to generate document representation, such as CNN based

document representation model [68], unsupervised weighted embedding model [137]. We

could also combine neural document representations with other document representations.

Latent Dirichlet allocation (LDA) is a topic model, which can generate the topic distri-

bution of a document. Topic distribution could be a good feature which may improve
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accuracy. Also, domain knowledge bases could be combined into our model to improve

prediction performance.

Also, we note that a potential limitation of highlighted text prediction method pro-

posed in this dissertation is that the proposed method needs training data. This training

data is specific to a course or a submission. It may not be generalize to other courses

easily. So, how to predict important section of submissions for general purpose is an

interesting direction.

Chapter 4 mainly focused on the problem of consensus grade estimation. We first

investigated and improved a state-of-the-art peer grading algorithm. We also proposed

SABTXT, a novel peer grading algorithm, which estimates peer bias by using historical

data and weight peer grades based on the quality of textual reviews. Various methods were

proposed to estimate textual review quality. In our experiments, a simple length-based

model of quality was shown to outperform much more sophisticated and cumbersome

language models. A co-training method is proposed to further improve peer grading

accuracy. Our analysis also showed that by human evaluating the quality of peer reviews

and providing comments on different aspects of submissions, peers tend to provide better

quality reviews.

One possible direction to further improve peer grading performance is to consider

individual behavior on textual peer reviews. Textual review feature differs from peers

to peers. Thus, by considering textual review features for each individual, models may

estimate peer grades weights better. Also, SABTXT computes peer biases based on all

ground truth scores. If a peer just gives average grades regardless of submission qualities,

peer biases may not be bad, but the peer grades are not informative. A future direction to
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deal with this problem is to identify peer bias or quality using submissions which do not

receive average grades. Thus, if a peer grade is close to non-average submissions, this peer

should be considered as good peers and peer bias should be estimated accordingly. Our

results show that our methods exhibit very different absolute performance across different

classes and homeworks, which suggests that further experiments with a variety of classes

beyond the four we evaluate here are necessary. Exploring whether richer models of peers

and submission content can achieve higher accuracy could also be a promising direction

in the future.

I hope this dissertation could benefit peer review in real scenarios and encourage

researchers to tackle more practical problems in education using artificial intelligence.
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