
NORTHWESTERN UNIVERSITY

Fantastic Subgraphs and How to Find Them

A DISSERTATION

SUBMITTED TO THE GRADUATE SCHOOL

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

for the degree

DOCTOR OF PHILOSOPHY

Field of Computer Science

By

Pattara Sukprasert

EVANSTON, ILLINOIS

June 2023

2

© Copyright by Pattara Sukprasert 2023

All Rights Reserved

3

ABSTRACT

Fantastic Subgraphs and How to Find Them

Pattara Sukprasert

Due to their widespread applicability, graphs and networks appear in various contexts.

The increasing scale of graphs encountered in the real-world requires the development of

efficient algorithms that run reasonably fast and produce close to optimal solutions. The

main focus of this thesis is the development of fast graph algorithms for optimizing specific

structural properties. Many classical problems can be thought of in this framework - for

example, the maximum weight matching problem in graphs can be thought of as finding a

maximum weight subgraph where each node has degree at most one. While these problems

are known to be solvable in polynomial time, many interesting properties could lead to

NP-hard optimization problems. We study four problems that fit in the framework.

First, we study k-Edge Connected Spanning Subgraph (kECSS). Our goal here is to come

up with a network that tolerates link failures. Given an undirected weighted graph, we

want to find a minimum weighted spanning subgraph with a property that this subgraph

must remain connected even after removing k edges. This problem has applications in route

planning where links such as roads or network cables might become unusable. We can think

of it as a generalization to the classical minimum spanning tree problem, and this belongs to

a family of problems called Survivable Network Design. It has been known for a long time

4

how to get a 2-approximation solution in polynomial time. We show how to find a fractional

solution in near-linear time and how to round it to an integral solution efficiently.

Second, we study the Dynamic Graph Spanner problem. Here, our goal is to develop a

data structure, called a spanner, that maintains a subgraph approximating distances between

pairs of nodes dynamically. A dynamic graph undergoes structural changes such as edge

insertions and deletions. More precisely, our goal is to maintain a t-spanner, which is small

subgraph such that the distance between every pair of vertices is bounded by t times their

actual distance. In the area of dynamic graphs, one important goal is to design algorithms

that are robust against an adaptive adversary. Maintaining a dynamic spanner is one of

the problems where the gap between an oblivious adversary and an adaptive adversary was

not well understood. When recourse, which is defined as the number of edge changes, is of

concern, we show how to maintain a dynamic spanner with an optimal bound. We further

show that we can achieve good runtime and recourse for maintaining a dynamic 3-spanner.

We then focus on a problem related to Dataset Versioning. In this problem, our nodes

represent versions, and edges represent “deltas” which are differences between versions. This

problem captures online collaboration and data repositories. The general goal is to store a

selected set of versions under a storage constraint while allowing users to query a certain

version efficiently. Here, we are interested in optimizing both weights and distances while

ensuring connectivity. Despite research in the graph representation of these problems, di-

rected variants of this problem are poorly understood. We show both hardness results and

algorithms for different specific cases.

Lastly, we focus on the Densest Subgraph problem. This problem has applications in

graph mining and bio-informatics and has recently gained much traction. Given an undi-

rected unweighted graph, the goal is to find a vertex-induced subgraph with maximum

density, defined as a ratio between the number of edges and the number of vertices of the

5

graph. We focus on developing a parallel algorithm that runs within a reasonable time on

massive-scale graphs for up to billions of nodes.

6

Acknowledgements

Six years in two graduate schools is a long time. During these years, I have been through

good times, bad times, joy, tears, sorrow, stress, transition, and changes. I think I had quite

eventful years and I would not be here today without help from many people around me. I

am blessed to have such a support system.

First and foremost, I would like to thank Samir Khuller, my advisor. I became Samir’s

student during my first semester at the University of Maryland in College Park. At that

time, I had not graduated with my Master’s degree in Thailand yet, so it was like working

two jobs simultaneously. Thank you for being patient with me and believing in me. Under

his guidance, I learned to be a better student and researcher. I cannot thank Samir enough

for the lessons, advice, connections, and support. Samir is well-known in the community

and is respected by his peer. Not only that, he is maintaining those networks very well. The

mindset I learned will stick with me for the rest of my life. Thank you for setting such a

standard and being my role model.

I met two of my committee members, Aravindan Vijayaraghavan and Konstantin Makarychev,

when I moved to Northwestern University. Most of our interactions were through our group’s

events. Thank you for being a good part of giving our group a sense of community. Also,

thank you both for agreeing to be on my committee.

I first met Thatchaphol Saranurak as a Master’s student in Thailand. He started his

Ph.D. around then. Since then, we have been collaborating on different projects, and I got

to learn about different problems and trends from him. He also hosted me a few times on

other occasions. Thank you for being a senior who took care of me and for being on my

7

committee. I learned a lot from you, especially about dynamic graphs. Our dynamic spanner

project became a chapter in this thesis. I always admire your mindset toward research and

your effort to ensure your projects are adequately taken care of. It is astonishing to me the

sheer amount of results you got throughout the years.

I started working with Julian Shun on the densest subgraph project. The project only

started in the Summer of 2022, so this is the most recent part of my thesis. While relatively

brief, I immensely enjoyed working on the problem and learned about parallel algorithms.

Thank you for funding all the costs of that project and for being on my committee.

I would not have known TCS in the first place without the Thai TCS community. Espe-

cially from my Master’s advisor, Jittat Fakcharoenphol, whom I worked with at the beginning

of my career. I was working full-time as a software engineer and doing research part-time

for a year before leaving my job and being a full-time student. Thank you a lot for your

support, your inspiration, and for helping me with my Mathematical Maturity , which I

lacked before.

I visited a few universities during my study. I thank Parinya Chalermsook and Danupon

Nanongkai for hosting me on my research internship at Aalto University and KTH. I thank

Bundit Lekhanukit for hosting me at the Shanghai University of Finance and Economics.

The research internship was when I worked on the k-Edge Connected Spanning Subgraph

problem, which appears in this thesis.

There, at Aalto University, I also got to work on Tuza’s conjecture intensively with

Sumedha Uniyal, who was a postdoctoral fellow. That project became the first paper pub-

lished during my doctoral study. Sumedha, I will always treasure the countless hours we

spent fixing the bug to make that submission. You will be remembered.

I thank all collaborators whose contributions appear in this thesis. Thank you for

your discussion, collaboration, and friendship. For the k-Edge Connected Spanning Sub-

graph project, I thank Parinya Chalermsook, Chien-Chung Huang, Danupon Nanongkai,

8

Thatchaphol Saranurak, and Sorrachai Yingchareonthawornchai. For the Dynamic Spanner

project, I thank Sayan Bhattacharya and Thatchaphol Saranurak. For the Graph Versioning

project, I thank Amol Deshpande, Bob Guo, Sofia Li, Koyel Mukherjee, and Samir Khuller.

For the Densest Subgraph project, I thank Laxman Dhulipala, Quanquan Liu, and Julian

Shun.

Beyond that, I enjoyed hours of discussions with all my colleagues. Thank you for being

part of my wonderful experience. For that, I thank Anders Aamand, Saba Ahmadi, Natalie

Artzi, Pranjal Awasthi, Justin Y Chen, Keertana Chidambaram, Matthäus Kleindessner,

Aounon Kumar, Allen Liu, Jamie Morgenstern, Eytan Ruppin, Alejandro A Schäffer, Fiorella

Schischlik, Sanju Sinha, Sandeep Silwal, Sumedha Uniyal, Ali Vakilian, Rahulsimham Veg-

esna, Sheng Yang, and Fred Zhang.

I made many friends who shared the doctoral journey during my graduate school years.

While I cannot list all of you, I would like to thank you all for being different colors in my

life. Thank you for the classes, events, talks, meals, trips, fun, and all the time we had. I

especially want to mention more than a few names. My two years at Maryland would not be

as great without Amin Ghiasi, Rangfu Hu, Shih-Han Hung, Jingling Li, Yuheng Lu, Khoi

Pham, and Xuchen You. At Northwestern, I interacted with theory professors, students, and

postdocs. Our group is excellent, active, and fun to be with. I am proud to be part of it.

I am grateful for the following list, which is not exhaustive. Thank you, Aidao Chen, Sami

Davies, Jinshuo Dong, Sanchit Kalhan, Yiduo Ke, Quanquan Liu, Sheng Long, Aravind

Reddy, Anant Shah, Liren Shan, Vaidehi Srinivas, Yifan Wu, and Chenhao Zhang. I want to

give a special thanks to Quanquan Liu and Vaidehi Srinivas for helping me name my thesis.

The memory of Vaidehi dashing to Mudd 3514 to tell me to change my thesis name will stick

with me for the rest of my life.

I am fortunate to come across many Thais, and many of them have become my lifelong

friends. Thank you all for being a big part of my life outside of school.

9

Through my partner, Wiriya Thongsomboon, I learned to be less desperate and led a

more peaceful life. Thank you so much for your daily support, love, care, and suggestions

and for being the best partner I could hope for. Lastly, I want to thank my family, Boonsom

Sukprasert, Somsri Sukprasert, and Apichaya Sukprasert, for raising me, supporting me, and

continuing to do so throughout different stages of my life. I am truly blessed to have all of

you in my life.

10

Table of Contents

ABSTRACT 3

Acknowledgements 6

Table of Contents 10

List of Tables 13

List of Figures 14

Chapter 1. Introduction 16

1.1. k-Edge Connected Spanning Subgraphs 17

1.2. Dynamic Spanners 18

1.3. Dataset Versioning 20

1.4. Densest Subgraphs 21

1.5. Organization 22

Chapter 2. k-Edge Connected Spanning Subgraphs 23

2.1. Overview of Techniques 28

2.2. Preliminaries 36

2.3. Range Mapping Theorem 39

2.4. Fast Approximate LP Solver 41

2.5. LP Rounding for kECSS (Proof of Theorem 2.15) 48

2.6. Truncated Lazy MWU Increment (Proof of Theorem 2.27) 51

2.7. Authors 57

11

Chapter 3. Dynamic Spanners 58

3.1. Deterministic Spanner with Near-optimal Recourse 63

3.2. 3-Spanner with Near-optimal Recourse and Fast Update Time 66

3.3. Proactive Resampling: Abstraction 71

3.4. Proactive Resampling: Analysis (Proof of Lemma 3.12) 74

3.5. Bounding Load (Proof of Lemma 3.14) 76

3.6. Conclusion 84

3.7. Authors 85

Chapter 4. Dataset Versioning 86

4.1. Preliminaries 91

4.2. Hardness results 97

4.3. Exact Algorithm for MMR and BMR on bi-directional trees 109

4.4. Fully polynomial time approximation scheme for MSR via Dynamic

Programming 112

4.5. Experiments and Improved Heuristics for MSR and BMR 125

4.6. Experiments and Improved Heuristics for MSR and BMR 127

4.7. Conclusion 136

4.8. Authors 136

Chapter 5. Densest Subgraph 137

5.1. Preliminaries 140

5.2. Pruning-and-Refining Framework 145

5.3. Experiments 153

5.4. Conclusion 163

5.5. Authors 163

Chapter 6. Conclusion 165

12

References 167

Appendix A. k-Edge Connected Spanning Subgraphs 199

A.1. Sparsify the fractional solution (Proof of Lemma 2.31) 199

A.2. Bounding the minimum normalized free cut (Proof of Theorem 2.7) 203

A.3. Multiplicative weight update guarantee (Proof of Theorem 2.16) 204

A.4. Fast LP solver (Proof of Theorem 2.23) 206

Appendix B. Dynamic Spanner 211

B.1. Lifting the Machine-Disjoint Assumption 211

B.2. A Fully-dynamic-to-decremental Reduction for Spanners 213

B.3. Missing Proofs from Section 3.2 215

Appendix C. Graph Versioning 218

C.1. DP on tree via FPTAS 4.4.1 218

C.2. Supplementary materials for Section 4.4.3 219

C.3. ILP Formulation 222

13

List of Tables

3.1 The state of the art of fully dynamic spanner algorithms. 63

4.1 Problems 1-6 88

4.2 Hardness results 89

4.3 Algorithms Summary. Here, Rmax is defined to be the maximum retrieval

cost between any pair of vertices in the tree. 90

4.4 Natural and ER graphs overview. 127

5.1 Common notation used throughout the paper. 141

5.2 Graph sizes, their maximum core values (kmax), their ⌈kmax/2⌉-core

sizes, and their vertex (edge) ratios, where this quantity is the number

of vertices (edges) in core(G, ⌈kmax

2
⌉) divided by the number of vertices

(edges) in G. 156

5.3 Approximation Ratio at the 10th iteration for various algorithms. 158

5.4 Approximation Ratio at the 20th iteration for various algorithms. 158

5.5 Empirical widths in our experiments. 160

5.6 Comparison between PaRSorting++ on one thread and algorithms

from [FYC+19]. 163

14

List of Figures

4.1 (i) A version graph over 5 datasets – annotation <a, b> indicates a storage

cost of a and a retrieval cost of b; (ii, iii, iv) three possible storage graphs.

The figure is taken from [BCH+15] 88

4.2 An adversarial example for LMG. 99

4.3 Case 1 in proof of Lemma 4.11. The improved solution is on the right. 104

4.4 The BSR case in proof of Theorem 4.10. The solution on the right

has one version (b2) of retrieval cost 2, hence it must materialize an

additional version am to satisfy the total retrieval constraint. 106

4.5 3 cases of DP-BMR. The blue nodes and edges are stored in the partial

solution. 111

4.6 An illustration of DP variables in Section 4.4.1 113

4.7 Eight types of connections on a binary tree. A node is colored if it is

materialized or retrieved via delta from outside the chart. Otherwise,

an uncolored node is retrieved from another node as illustrated with the

arrows. 114

4.8 Illustration for compatibility. A node is colored if it is materialized. 122

4.9 Four types of edge (u, v) involved when restricting Tz to Ta. 123

4.10 Performance of MSR algorithms on natural graphs. OPT is obtained by

solving an integer linear program (ILP) using Gurobi [Gur22]. ILP takes

too long to finish on all graphs except datasharing. 131

15

4.11 Performance and run time of MSR algorithms on compressed graphs. 132

4.12 Performance and run time of MSR algorithms on compressed ER graphs.133

4.13 Performance and run time of BMR algorithms on natural version graphs.

135

5.1 Example Illustrating the Pruning-and-Refining Framework (Algorithm 6).

The i-th iteration of the algorithm computes a lower bound on the density,

L, computes the Ci = ⌈L⌉ core of G, and then applies an Refine algorithm

on Ci to compute a new subgraph S′
i. In the example, the density of each

successive S′
i is increasing, and the cores Ci decrease in size. 146

5.2 Running times of different densest subgraph algorithms on our small

graph inputs. 159

5.3 Densities on different iterations for various algorithms. Only our

algorithms can successfully process large graphs (bottom row) within the

2 hours limit. 160

5.4 Densities and time (ms) for various algorithms. PaRGreedy++,

PaRSorting++, FISTA are run on one thread here for smaller graphs (top

row) and 60 threads for the large graphs (bottom row). 161

5.5 Runtime (ms) of PaRGreedy++, PaRSorting++, and FISTA versus the

number of threads when running for 5 iterations. 161

5.6 Runtime (ms) of PaRGreedy++, PaRSorting++, and FISTA versus the

number of threads when running for 10 iterations. 161

5.7 Runtime (ms) of PaRGreedy++, PaRSorting++, and FISTA versus the

number of threads when running for 20 iterations. 162

C.1 Illustration of the retrieval path for Fig. 4.8 222

16

CHAPTER 1

Introduction

Graphs are mathematical objects that are widely used in various disciplines today. In

their simplest form, graphs consist of vertices, which are points that represent entities,

and edges, which represent relationships between these entities. Many real-world problems

can be represented using this simple model. For instance, we can model social networks

using vertices to represent individuals and edges to represent their friendships. Further-

more, graphs enable us to focus on solving problems at their core by ignoring irrelevant

details. An algorithm that finds a short route from Chicago to Boston is essentially the

same as an algorithm that finds a short route for sending data from a client to a server.

Graph theory dates back to 1736 when Leonhard Euler proved that the Seven Bridges of

Königsberg problem has no solution [Eul41]. Since then, several exciting developments have

been made, from the Four Color Theorem [Gut80, AH77] to the more recent Graph Neural

Networks [ZCH+20, SGT+08, WPC+20].

Due to their widespread applicability, graphs and networks show up in various contexts,

from indexing web pages, finding shortest routes, matching with a potential date, and more.

In the age of data, the instances we encounter are increasingly larger. Once upon a time, most

algorithms were run on inputs entered by hand by a user. However, as networked devices

collect data and people interact on online social platforms, the need to process graphs at scale

efficiently is ever-increasing. For example, a significant fraction of the world’s population

is on social media, such as Facebook and Twitter, creating the need to understand how to

process graphs with billions of nodes and edges. Moreover, the graphs are dynamic, so the

algorithms might need to be rerun frequently.

17

While fast implementations of classical algorithms have been developed over the last

few decades, the last three decades of research in approximation algorithms have focused

on developing approximation algorithms for graph problems that run in polynomial time

and produce close to optimal solutions. Again, while significant progress was made in the

last three decades in this area, we can no longer be satisfied with algorithms that run in

“polynomial time” due to the scale of the graphs involved. Unless the algorithm is practical

for graphs with billions of edges its applicability could be severely limited.

This thesis is primarily concerned with the development of fast graph algorithms. Specif-

ically, we study problems of finding “fantastic” subgraphs. These are typically subgraphs

that have low cost/few edges that have certain desirable properties. Many classical problems

can be thought of in this framework - for example, the maximum weight matching problem

in graphs can be thought of as finding a maximum weight subgraph such that each node

has degree at most one. Similarly, a maximum weight perfect matching problem can be

thought of as a matching where each node has degree exactly one. While these problems are

known to be solvable in polynomial time, many interesting properties could lead to NP-hard

optimization problems.

We study four problems that fit in the framework. The setting where we study each

problem is different, which is natural given that the state-of-the-art for each problem is

different. We briefly introduce each problem below. More detailed explanations and the

status of each problem can be found in the corresponding chapter.

1.1. k-Edge Connected Spanning Subgraphs

The first problem is about finding a low-cost highly-connected subgraph. Given an

undirected weighted graph G = (V,E), a weight function w, and a requirement function

r. The goal is to find a subgraph H ⊆ G such that there are at least r(u, v) disjoint paths

between vertices u and v. This class of problems is called survivable network design problems

18

(SNDPs). In this thesis, we focus on k-edge connected spanning subgraph, which are specific

cases when r(u, v) = k for a fixed integer k. A k-edge connected graph is a graph that remains

connected even after any set of k − 1 edges are removed.

Problem 1 (k-Edge Connected Spanning Subgraph (kECSS)). Given a weighted undi-

rected graph G = (V,E), an integer k, and a weight function w : E → R. The goal is to find

a k-edge connected subgraph H ⊆ G that minimizes w(H).

The kECSS problem is a generalization of the minimum spanning tree problem (MST)

as MST corresponds to the case where r(u, v) = 1. Real networks are susceptible to failure,

e.g., a road is flooded or a network cable is cut. Hence, there is a need to design fault-

tolerance networks, which motivates this line of work. While it is known how to solve MST

in linear time [KKT95], the problem becomes NP-hard for all k > 1. For SNDPs, the

best-known algorithm is the iterative rounding algorithm proposed by Jain [Jai01], which is

2-approximation. However, this approach solves linear programs in many iterations, so it

is not scalable. For kECSS, the combinatorial algorithm by Khuller and Vishkin [KV94] is

2-approximation and runs in Õ(nmk).1

In Chapter 2, we discuss a fast (2 + ε)-approximation algorithm for kECSS. We first give

an algorithm that compute a (1 + ε)-approximate fractional solution of kECSS that runs in

Õε(m).2 We then show how to use this fractional solution to sparsify the input graph G. By

plugging in the algorithm of Khuller and Vishkin [KV94], we obatin a (2 + ε)-approximation

algorithm that runs in Õε(m + k2n1.5).

1.2. Dynamic Spanners

The second problem concerns subgraphs that preserve distances approximately; such

subgraphs are called multiplicative spanner. A subgraph H ⊆ G is a t-spanner if dG(u, v) ≤
1Õ hides polylog(n) factors.
2Oε hides f(1/ε) factors.

19

dH(u, v) ≤ t ·dG(u, v) where dG is a distance metric with respect to the graph G. This notion

was defined by Peleg and Schäffer [PS89] where they showed that deciding if a graph has

a t-spanner of less than m edges is NP-hard. Graph spanners have applications in many

areas. For example, in communication networks, one can think of a protocol where each

node broadcasts messages to all neighbors, which results in a fast message-propagation but

edges are unnecessarily flooded with messages. By constructing a spanner, we reduce the

bandwidth by paying the price of a higher latency.3 We focus our attention on maintaining

a small t-spanner in dynamic graphs where a single edge insertion or deletion occurs on each

timestep.

Problem 2 (Dynamic Spanner). Given an undirected graph G = (V,E) and an integer

t where the graph G is undergoing a sequence of edge updates. The goal is to come up with

an efficient algorithm that maintains a t-spanner H ⊆ G after each update.

Graph Spanner is well-studied in the static graph setting. In particular, we know how to

find an optimal size spanner.4 In dynamic graphs, one problem that gains much attention

is designing algorithms that work against an adaptive adversary. An adaptive adversary

can decide on an update after learning about the latest output. Maintaining spanners is

notable here as it is a problem where efficient algorithms against an oblivious adversary

are known [BKS12, FG19, BFH19], but there is almost no result that works against an

adaptive adversary. Before our result, the best-known algorithm for t ≤ 3 requires O(n) per

update [AFI06].

In Chapter 3, we discuss in detail algorithms for maintaining spanners that work well

against an adaptive adversary in detail. There, we first consider the notion of recourse

where we try to minimize the number of edges changes per update. We manage to show an

3See the survey by Ahmedet al. [ABS+20] for more applications.
4Assuming the Girth conjecture [Erd86], there is an instance where a (2k − 1)-spanner requires at least
n1+1/k edges. We refer to a spanner of size O(n1+1/k) as optimal.

20

algorithm with small recourse for all t-spanners. We then develop an efficient algorithm that

maintains a 3-spanner against an adaptive adversary.

1.3. Dataset Versioning

The third problem is motivated by the need to utilize storage efficiently while keeping

all objects accessible in a timely manner. This problem comes up naturally in the context

of online collaboration. Imagine a team of scientists working on datasets. Each scientist

might manipulate these datasets, transform them, and experiment with them differently,

which results in data pipelines. A mistake could happen in an intermediate version of these

datasets, and scientists might want to go back to that version to fix it. By explicitly storing

every version, it is easy to retrieve a specific version to work as needed. However, doing so

is not feasible as it requires much larger storage compared to keeping only some versions. If

we keep track of necessary “differences” , i.e., how to construct one version from another,

then we can recompute a certain version from versions we have in storage. Deltas here can

range from text diffs, SQL-like join operations, to function calls. In this aspect, it is helpful

if the time needed to reconstruct each version is not too long. Hence, this motivates Dataset

Versioning, a bi-criteria optimization problem, where we want to optimize both storage and

the time needed to reconstruct a specific version, which we call re-n time.

Problem 3 (Dataset Versioning). Given a directed graph G = (V,E). A storage cost

function s : V ∪ E → N, a retrieval cost function r : E → N, the goal is to select a set of

vertices S ⊆ V and a set of edges F ⊆ E to minimize

(1) Total storage cost:
∑

v∈S s(v) +
∑

e∈F s(e), and

(2) Retrieval cost for each vertex v ∈ V \ S, which is the shortest distance from S to v

w.r.t. the retrieval cost function r.

Because the problem is bi-criteria, there are natural variants of this problem where we

set one criterion as an optimization goal and another as a constraint. The seminal work

21

by Bhattacherjee et al. [BCH+15] defines six different variants and proposes heuristic-based

algorithms. In Chapter 4, we discuss algorithms, hardnesses, and experiments concerning

these variants. In particular, we show algorithms with a provable guarantee for specific cases

where the input graphs are tree-like. We also show reductions to known hard problems,

which imply various inapproximability results for these problems.

1.4. Densest Subgraphs

For the last problem, we discuss the problem of finding dense subgraphs, defined as

follows.

Problem 4 (Densest Subgraph). Given an undirected graph G = (V,E), the goal is to

find an induced subgraph H ⊆ G that maximizes its density ρ(H) = |E(H)|/|V (H)|.

This is a fundamental problem in graph mining that has been studied for decades. There

are numerous applications including social networks visualization [AHDBV05, GJL+13, JXRF09,

KRRT99, CHKZ03, RTG14], bioinformatics [FNBB06, SSA+15, DHZ22], and pattern iden-

tification [DJD+09, AKS+14, HSB+16].

There exist polynomial-time algorithms for finding the densest subgraph [GGT89, Gol84,

Cha00]. However, solving it optimally requires constructing a flow network or solving linear

program using solvers. Because of applications in graph mining and bio-informatics, the

problem of finding the densest subgraph gained much traction. Unfortunately, the scale of

the graphs we are dealing with makes it hard for superlinear time algorithms to be practical.

As we aim to get faster algorithms, approximation algorithms are studied. One notable al-

gorithm for finding a 2-approximation solution is the peeling algorithm by Charikar [Cha00].

The algorithm is straightforward. At each step, the algorithm removes (“peels”) a ver-

tex with the minimum degree. The algorithm then outputs the graph with the maximum

density among all subgraphs the algorithm encountered. The subsequent works by Boob

et al. [BGP+20], namely Greedy++, improved the quality of the solution by running the

22

peeling algorithm for T iterations, utilizing the idea from the multiplicative weight update

framework to update “loads” which is used in addition to the degree to determine peeling

order. While these algorithms are already efficient, it lacks parallelism. Also, it is possible

to sparsify the graph to speed up algorithms in practice. We propose a pruning rule that

can efficiently prune input graphs. We then develop a provably-efficient parallel algorithm

for finding the approximate densest subgraph. This will be discussed in Chapter 5.

Putting things in perspective. Among all problems described, the common goal here

is to develop algorithms that can obtain a small subgraph while maintaining desired struc-

tural property, e.g., a survivable network, a small subgraph approximating the distances, a

compressed subgraph, and a dense subgraph. Since the definition of a good subgraph differs

from problem to problem, it is natural that the approaches to these problems are different.

Informally, we ask the following question.

Question 1.1. Given a graph G = (V,E), and a predicate P , find a subgraph H ⊆ G of the

smallest size such that H satisfies P .

1.5. Organization

In Chapter 2, we discuss k-edge connected spanning subgraph. In Chapter 3, we discuss

multiplicative spanners. In Chapter 4, we study a problem related to “graph versioning”. In

Chapter 5, we discuss the problem of finding dense subgraphs in unweighted graphs. Lastly,

we conclude all our works in Chapter 6.

23

CHAPTER 2

k-Edge Connected Spanning Subgraphs

In the k-Edge-Connected Spanning Subgraph problem (kECSS), we are given an undi-

rected n-node m-edge graph G = (V,E) together with edge costs, and want to find a

minimum-cost k-edge connected spanning subgraph.1 For k = 1, this is simply the min-

imum spanning tree problem, and thus can be solved in O(m) time [KKT95]. For k ≥ 2, the

problem is a classical NP-hard problem whose first approximation algorithm was given al-

most four decades ago, where Frederickson and Jaja [FJ81] gave a 3-approximation algorithm

that runs in O(n2) time for the case of k = 2. The approximation ratio was later improved

to 2 by an Õ(mnk)-time algorithm of Khuller and Vishkin [KV94].2 This approximation

factor of 2 has remained the best for more than 30 years, even for a special case of 2ECSS

called the weighted tree augmentation problem. When the running time is of the main

concern, the fastest known algorithm takes O(n2) time at the cost of a significantly higher

(2k − 1)-approximation guarantee, due to Gabow, Goemans, and Williamson [GGW98].

This above state-of-the-art leaves a big gap between algorithms achieving the best ap-

proximation ratio and the best time complexity. This gap exists even for k = 2. In this

chapter, we improve the running time of both aforementioned algorithms of [KV94, GGW98]

while keeping the approximation ratio arbitrarily close to two. Our main contribution is a

near-linear time algorithm that (1 + ε)-approximates the optimal fractional solution.

1Note that this problem should not be confused with a variant that allows to pick the same edge multiple
time, which is sometimes also called kECSS (e.g., [CQ17a]). We follow the convention in [CL07] and call the
latter variant minimum-cost k-edge connected spanning sub-multigraph (kECSSM) problem. (See also the
work by Pritchard [Pri10].)
2Õ hides polylog(n) factor.

24

Theorem 2.1. For any ε > 0, there is a randomized Õ(m/ε2)-time algorithm that out-

puts a (1 + ε)-approximate fractional solution for kECSS.

Following, in the high-level, the arguments of Chekuri and Quanrud [CQ18] (i.e. solving

the minimum-weight k disjoint arborescences in the style of [KV94] on the support of the

sparsified fractional solution), the above fractional solution can be turned into a fast (2 + ε)-

approximation algorithm for the integral version of kECSS.

Corollary 2.2. For any ε > 0, there exist

• a randomized Õ(m/ε2)-time algorithm that estimates the value of the optimal solu-

tion for kECSS to within a factor (2 + ε), and

• a randomized Õ
(

m
ε2

+ k2n1.5

ε2

)
-time algorithm that produces a feasible kECSS solution

of cost at most (2 + ε) times the optimal value.

We remark that the term Õ(k2n1.5) is in fact “tight” up to the state-of-the-art algorithm

for finding minimum-weight k disjoint arborescences.3

Prior to our results, a sub-quadratic time algorithm was not known even for special cases

of kECSS, called k-Edge-Connected Augmentation (kECA). In this problem, we are given a

(k− 1)-edge-connected subgraph H of a graph G, and we want to minimize the total cost of

adding edges in G to H so that H becomes k-edge connected. It is not hard to see that if we

can α-approximates kECSS, then we can α-approximates kECA by assigning cost 0 to all

edges in H. This problem previously admits a O(kn2)-time 2-approximation algorithm for

any even integer k [KT93].4 The approximation ratio of 2 remains the best even for 2ECA.

Our result in Corollary 2.2 improves the previously best time complexity by a Θ̃(
√
n) factor.

3More formally, if a minimum-weight union of k edge-disjoint arborescences can be found in time T (k,m, n),
then our algorithm would run in time T (k, kn, n). The term O(k2n1.5) came from Gabow’s algorithm [Gab95]
that runs in time O(km

√
n log(ncmax)).

4In Khuller and Vishkin [KT93], the kECA problem aims at augmenting the connectivity from k to (k + 1)
(but for us it is from (k − 1) to k.)

25

Perspective. The gap between algorithms with best approximation ratio and best time

complexity in fact reflects a general lack of understanding on fast approximation algorithms.

While polynomial-time algorithms were perceived by many as efficient, it is not a reality in

the current era of large data, where it is nearly impossible to take O(n3) time to process a

graph with millions or billions of nodes. Research along this line includes algorithms for spars-

est cut [KRV09, KKOV07, She09, Mad10a], multi-commodity flow [GK07, Fle00, Mad10b],

and travelling salesman problem [CQ17a, CQ18]. Some of these algorithms have led to

exciting applications such as fast algorithms for max-flow [She13], dynamic connectivity

[NSW17, CGL+19, SW19, Wul17, NS17a], vertex connectivity [LNP+21] and maximum

matching [vdBLN+20].

The kECSS problem belongs to the class of survivable network design problems (SNDPs),

where the goal is to find a subgraph ensuring that every pair of nodes (u, v) are κ(u, v)-edge-

connected for a given function κ. (kECSS is the uniform version of SNDP where κ(u, v) = k

for every pair (u, v).) These problems typically focus on building a network that is resilient

against device failures (e.g. links or nodes), and are arguably among the most fundamental

problems in combinatorial optimization. Research in this area has generated a large number

of beautiful algorithmic techniques during the 1990s, culminating in the result of Jain [Jai01]

which gives a 2-approximation algorithm for the whole class of SNDPs. Thus, achieving a

fast 2-approximation algorithm for SNDPs is a very natural goal.

Towards this goal and towards developing fast approximation algorithms in general, there

are two common difficulties:

(1) Many approximation algorithms inherently rely on solving a linear program (LP)

to find a fractional solution, before performing rounding steps. However, the state-

of-the-art general-purpose linear program solvers are still quite slow, especially for

kECSS and SNDP where the corresponding LPs are implicit.

26

In the context of SNDP, the state-of-the-art (approximate) LP solvers still re-

quire at least quadratic time: Fleischer [Fle04] designs an Õ(mnk) for solving kECSS

LP, and more generally for SNDP and its generalization [Fle04, FKPS16] with at

least Θ(mmin{n, kmax}) iterations of minimum cost flow’s computation are the best

known running time where kmax is the maximum connectivity requirements.

(2) Most existing techniques that round fractional solutions to integral ones are not

“friendly” for the design of fast algorithms. For instance, Jain’s celebrated iterative

rounding [Jai01] requires solving the LP Ω(m) times. Moreover, most LP-based

network design algorithms are fine-tuned to optimize approximation factors, while

designing near-linear time LP rounding algorithms requires limiting ourselves to a

relatively small set of tools, about which we currently have very limited understand-

ing.

This work completely resolves the first challenge for kECSS and manages to identify a

fundamental bottleneck of the second challenge.

Challenges for LP Solvers. Our main challenge is handling the so-called box con-

straints in the LPs. To be concrete, below is the LP relaxation of kECSS on graph G =

(V,E).

min{
∑
e∈E

cexe :
∑

e∈δG(S)

xe ≥ k (∀S ⊆ V), x ∈ [0, 1]E}(2.1)

where δG(S) is the set of edges between nodes in S and V \S. The box constraints refer to the

constraints x ∈ [0, 1]E. Without these constraints, we can select the same edge multiple times

in the solution; this problem is called kECSSM in [CL07] (see Footnote 1). Removing the box

constraints often make the problem significantly easier as the linear program, without box

constraints, is often pure covering or pure packing problem. There is a line of work focusing

on developing fast algorithms for solving these two classes [PST91, BI04, Jan01, CHPQ20,

27

KY99, CQ17b]. For example, the min-cost st-flow problem without the box constraints

become computing the shortest st-path, which admits a much faster algorithm.

For kECSS, it can be shown that solving (2.1) without the box constraints can be reduced

to solving (2.1) with k = 1 and multiplying all xe with k. In other words, without the box

constraints, fractional kECSS is equivalent to fractional 1ECSS.This fractional 1ECSS can

be (1 + ε)-approximated in near-linear time by plugging in the dynamic minimum cut data

structure of Chekuri and Quanrud [CQ17a] to the multiplicative weight update framework

(MWU).

However, with the presence of box constraints, to use the MWU framework we would

need a dynamic data structure for a much more complicated cut problem, that we call, the

minimum normalized free cut problem (roughly, this is a certain normalization of the mini-

mum cut problem where the costs of up to k heaviest edges in the cut are ignored.) For our

problem, the best algorithm in the static setting we are aware of (prior to this work) is to

use Zenklusen’s Õ(mn4)-time algorithm [Zen14] for the connectivity interdiction problem.5

This results in an Õ(kmn4)-time static algorithm. Speeding up and dynamizing this algo-

rithm seems very challenging. Our main technical contribution is an efficient dynamic data

structure (in the MWU framework) for the (1 + ε)-approximate minimum normalized free

cut problem. We explain the high-level overview of our techniques in Section 2.1.

Further Related Works. The kECSS and its special cases have been studied exten-

sively. For all k ≥ 2, the kECSS problem is known to be APX-hard [Fer98] even on bounded-

degree graphs [CKK02] and when the edge costs are 0 or 1 [Pri10]. Although a factor 2

approximation for kECSS has not been improved for almost 3 decades, various special cases

of kECSS admit better approximation ratios (see for instance [GKZ18, FGKS18, Adj18]).

For instance, the unit-cost kECSS (ce = 1 for all e ∈ E) behaves very differently, admitting

a (1 + O(1/k)) approximation algorithm [GGTW09, LGS12]. For the 2ECA problem, one

5In the connectivity interdiction problem, we are given G = (V,E) and k ∈ N, our goal is to compute F ⊆ E
to delete from G in order to minimize the minimum cut in the resulting graph.

28

can get a better than 2 approximation when the edge costs are bounded [Adj18, FGKS18].

Otherwise, for general edge costs, the factor of 2 has remained the best known approximation

ratio even for the 2ECA problem.

The kECSS problem in special graph classes has also received a lot of attention. In

Euclidean setting, a series of papers by Czumaj and Lingas led to a near-linear time approx-

imation schemes for constant k [CL00, CL99]. The problem is solvable in near-linear time

when k and treewidth are constant [BG07, CDE+18]. In planar graphs, 2ECSS, 2ECSSM

and 3ECSSM admit a PTAS [CGSZ04, BDT14].

Organization. We provide a high-level overview of our proofs in Section 2.1. In Sec-

tion 5.1, we explain the background on Multiplicative Weight Updates (MWU) for com-

pleteness (although this paper is written in a way that one can treat MWU as a black box).

In Section 2.3, we prove our main technical component. In Section 2.4, we present our LP

solver. In Section 2.5, we show how to round the fractional solution obtained from the LP

solver. Due to space limitations, many proofs are deferred to Appendix.

2.1. Overview of Techniques

In this section, we give a high-level overview of our techniques in connection to the known

results. Our work follows the standard Multiplicative Weight Update (MWU) framework to-

gether with the Knapsack Covering (KC) inequalities (see Section 5.1 for more background).

Roughly, in this framework, in order to obtain a near-linear time LP solver for kECSS, it

suffices to provide a fast dynamic algorithm for a certain optimization problem (often called

the oracle problem in the MWU literature):

Definition 2.3 (Minimum Normalized Free Cuts). We are given a graph G = (V,E), weight

function w : E → R≥0, integer k, and our goal is to compute a cut S ⊆ V together with

29

edges F ⊆ δG(S) : |F | ≤ k − 1 that minimizes the following objective:6

min
S⊊V,F⊆δG(S):|F |≤(k−1)

w(δG(S) \ F)

k − |F | ,

where δG(S) denotes the set of edges that has exactly one end point in S. We call the

minimizer (S, F) the minimum normalized free cut.

This is similar to the minimum cut problem, except that we are allowed to “remove”

up to (k − 1) edges (called free edges) from each candidate cut S ⊆ V , and the cost would

be “normalized” by a factor of (k − |F |).7 Notice that there are (apparently) two sources

of complexity for this problem. First, we need to find the cut S and second, given S, to

compute the optimal set F ⊆ δG(S) of free edges. To the best of knowledge, the fastest

known algorithm for this problem takes Õ(mn4) time by reducing it to the connectivity

interdiction problem [Zen14], while we require near-linear time. This is our first technical

challenge.

Our second challenge is as follows. To actually speed up the whole MWU framework,

in addition to solving the oracle problem statically efficiently, we further need to implement

a dynamic version of the oracle with polylog(n) update time. In our case, the goal is to

maintain a dynamic data structure on graph G = (V,E), weight function w, cost function

c, that supports the following operation:

Definition 2.4. The PunishMin operation computes a (1 +O(ε))-approximate normalized

free cut and multiply the weight of each edge e ∈ δG(S) \ F by a factor of at most eε.8

We remark that invoking the PunishMin operation does not return the cut (S, F), and

the only change is the weight function w being maintained by the data structure.

6For any function f , for any subset S of its domain, we define f(S) =
∑

s∈S f(s).
7This is in fact a special case of a similar objective considered by Feldmann, Könemann, Pashkovich and
Sanità [FKPS16], who considered applying the MWU framework for the generalized SNDP.
8The actual weight w(e) is updated for all e ∈ δG(S)\F : w(e)← w(e) ·exp(εcmin

ce
) where cmin is the minimum

edge capacity in δG(S) \ F .

30

Proposition 2.5 (Informal). Assume that we are given a dynamic algorithm that supports

PunishMin with amortized polylog(n) cost per operations, then the kECSS LP can be solved

in time Õ(m).

Let us call such a dynamic algorithm a fast dynamic punisher. The fact that a fast

dynamic punisher implies a fast LP solver is an almost direct consequence of MWU [GK07].

Therefore, we focus on designing a fast dynamic algorithm for solving (and punishing)

the minimum normalized free cut problem. Our key idea is an efficient and dynamic imple-

mentation of the weight truncation idea.

Weight truncation: Let G = (V,E) and ρ ∈ R≥0 be a threshold. For any

weight function w of G, denote by wρ the truncated weight defined by wρ(e) =

min{w(e), ρ} for each e ∈ E. Call an edge e with w(e) ≥ ρ a ρ-heavy edge.

Our main contribution is to show that, when allowing (1 + ε)-approximation, we can

use the weight truncation to reduce the minimum normalized free cut to minimum cut

with O(polylog(n)) extra factors in the running time. Moreover, this reduction can be

implemented efficiently in the dynamic setting. We present the ideas in two steps, addressing

our two technical challenges mentioned above respectively. First, we show how to solve the

static version of minimum normalized free cut in near-linear time. Second, we sketch the key

ideas to implement them efficiently in the dynamic setting, which can be used in the MWU

framework.

We remark that weight truncation technique has been used in different context. For

instance, Zenklusen [Zen14] used it for reducing the connectivity interdiction problem to

O(|E|) instances of the minimum budgeted cut problem.

31

2.1.1. Step 1: Static Algorithm

We show that the minimum normalized free cut problem can be solved efficiently in the

static setting. For convenience, we often use the term cut to refer to a set of edges instead

of a set of vertices.

Define the objective function of our problem as, for any cut C,

valw(C) = min
F⊆C:|F |≤k−1

w(C \ F)

k − |F | .

For any weight function w, denote by OPTw = minC valw(C). In this paper, the graph G is

always fixed, while w is updated dynamically by the algorithm (so we omit the dependence

on G from the notation val and OPT). When w is clear from context, we sometimes omit

the subscript w.

We show that the truncation technique can be used to establish a connection between

our problem and minimum cut.

Lemma 2.6. We are given a graph G = (V,E), weight function w, integer k, and ε > 0.

For any threshold ρ ∈ (OPTw, (1 + ε)OPTw],

• any optimal normalized free cut in (G,w) is a (1 + ε)-approximate minimum cut in

(G,wρ), and

• any minimum cut C∗ in (G,wρ) is a (1 + ε)-approximation for the minimum nor-

malized free cut.

Proof. First, consider any cut C with val(C) = OPT. Let F ⊆ C be an optimal set of

free edges for C, so we have wρ(C\F) ≤ w(C\F) = (k−|F |)OPT. Moreover, wρ(F) ≤ |F |ρ.

This implies that

(2.2) wρ(C) = wρ(C \ F) + wρ(F) < kρ

32

Next, we prove that any cut in (G,wρ) is of value at least kOPT (so the cut C is a (1 + ε)

approximate minimum cut). Assume for contradiction that there is a cut C ′ such that

wρ(C
′) < kOPT. Let F ′ ⊆ C ′ be the set of ρ-heavy edges. Observe that |F ′| ≤ k − 1 since

otherwise the total weight wρ(C
′) would have already exceeded kOPT. This implies that

w(C ′ \ F ′) = wρ(C
′ \ F ′) < (k − |F ′|)OPT and that

val(C ′) ≤ w(C ′ \ F ′)

(k − |F ′|) < OPT

which is a contradiction. Altogether, we have proved the first part of the lemma.

To prove the second part of the lemma, consider a minimum cut C∗ in (G,wρ), we

have that wρ(C
∗) < wρ(C) < kρ (from Equation (2.2)). Again, the set of heavy edges

F ∗ ⊆ C∗ can contain at most k − 1 edges, so we must have w(C∗ \ F ∗) < (k − |F ∗|)ρ ≤

(k − |F ∗|)(1 + ε)OPT, implying that val(C∗) < (1 + ε)OPT. □

We remark that this reduction from the minimum normalized free cut problem to the

minimum cut problem does not give an exact correspondence, in the sense that a minimum

cut in (G,wρ) cannot be turned into a minimum normalized free cut in (G,w). In other

words, the approximation factor of (1 + ε) is unavoidable.

Theorem 2.7. Given a graph G = (V,E) with weight function w and integer k, the

minimum normalized free cut problem can be (1 + ε) approximated by using O(1
ε
· log n) calls

to the exact minimum cut algorithm.

Proof. We assume that the minimum normalized free cut of G is upper bounded by

some value M which is polynomial in n = |V (G)| (we show how to remove this assumption

in Appendix A.2). For each i such that (1 + ε)i ≤ M , we compute the minimum cut Ci in

(G,wρi) where ρi = (1 + ε)i and return one with minimum value val(Ci). Notice that there

must be some i∗ such that ρi∗ ∈ (OPTw, (1 + ε)OPTw] and by the lemma, we must have that

Ci∗ is a (1 + ε)-approximate solution for the normalized free cut problem. □

33

By using any near-linear time minimum cut algorithm e.g., [Kar00], the collorary follows.

Corollary 2.8. There exists a (1+ε) approximation algorithm for the minimum normalized

free cut problem that runs in time Õ(|E|/ε).

2.1.2. Step 2: Dynamic Algorithm

The next idea we use is from Chekuri and Quanrud [CQ17a]. One of the key concepts

there is that it is sufficient to solve a “range punishing” problem in near-linear time; for

completeness we prove this sufficiency in Appendix. In particular, the following proposition

is a consequence of their work:

Definition 2.9. A range punisher9 is an algorithm that, on any input graph G, initial

weight function w = winit, real numbers ε, and λ ≤ OPTwinit, iteratively applies PunishMin

on (G,w) until the optimal becomes at least OPTw ≥ (1 + ε)λ.

The following proposition connects a fast range punisher to a fast LP solver.

Proposition 2.10. If there exists a range punisher running in time

Õ

(
|E|+ K +

∑
e∈E

log(
w(e)

winit(e)
)

)

where K is the number of cuts punished, then, there exists a fast dynamic punisher, and

consequently the kECSS LP can be solved in near-linear time.

This proposition applies generally in the MWU framework independent of problems.

That is, for our purpose of solving kECSS LP, we need a fast range punisher for the min-

imum normalized free cut problem. For Chekuri and Quanrud [CQ17a], they need such

an algorithm for the minimum cut problem (therefore a fast LP solver for the Held-Karp

bound).

9Our range punisher corresponds to an algorithm of Chekuri and Quanrud [CQ18] in one epoch.

34

Theorem 2.11 ([CQ17a], informal). There exists a fast range punisher for the minimum

cut problem.

Our key technical tool in this paper is a more robust reduction from the range punishing

of normalized free cuts to the one for minimum cuts. This reduction works for all edge

weights and is suitable for the dynamic setting. That is, it is a strengthened version of

Lemma 2.6 and is summarized below (see its proof in Section 2.3).

Theorem 2.12 (Range Mapping Theorem). Let (G = (V,E),w) be a weighted graph.

Let λ > 0 and ρ = (1 + γ)λ.

(1) If the value of optimal normalized free cut is in [λ, (1 + γ)λ), then the value of

minimum cut in (G,wρ) lies in [kρ/(1 + γ), kρ).

(2) For any cut C where wρ(C) < kρ, then w(C\F)
k−|F | < (1 + γ)λ, where F contains all

ρ-heavy edges in C. In particular, val(C) < (1 + γ)λ.

Given the above reduction, we can implement range punisher fast. We present its full

proof in Section 2.4 and sketch the argument below.

Theorem 2.13. There exists a fast range punisher for the minimum normalized free cut

problem.

Proof. (sketch) We are given λ and weighted graph (G,w) : w = winit such that

OPTwinit ≥ λ. Our goal is to punish the normalized free cuts until the optimal value in

(G,w) becomes at least (1 + ε)λ. We first invoke Theorem 2.7 to get a (1 + ε)-approximate

cut, and if the solution is already greater than (1 + ε)2λ, we are immediately done (this

means OPT > (1 + ε)λ).

Now, we know that OPT ≤ (1 + ε)2λ ≤ (1 + 3ε)λ. We invoke Lemma 2.12(1) with

γ = 3ε. The minimum cut in (G,wρ) has size in the range [kρ/(1 + 3ε), kρ). We invoke (one

iteration of) Theorem 2.11 with λ′ = kρ(1 + 3/ε) to obtain a cut C whose size is less than

35

kρ and therefore, by Lemma 2.12(1), val(C) < (1 + 3ε)λ. This is a cut that our algorithm

can punish (we ignore the detail of how we actually punish it – we would need to do that

implicitly since the cut itself may contain up to m edges). We repeat this process until all

cuts whose values are relevant have been punished, that is, we continue this process until

the returned cut C has size at least kρ.

The running time of this algorithm is

Õ

(
|E|+ K +

∑
e∈E

log(
wρ(e)

winit
ρ (e)

)

)
≤ Õ

(
|E|+ K +

∑
e∈E

log(
w(e)

winit(e)
)

)

Notice that we rely crucially on the property of our reduction using truncated weights. □

We remark that in the actual proof of Theorem 2.13, there are quite a few technical

complications (e.g., how to find optimal free edges for a returned cut C?), and we cannot

invoke Theorem 2.11 in a blackbox manner. We refer to Section 2.4 for the details.

2.1.3. LP Rounding for kECSS

Most known techniques for kECSS (e.g. [GGW98, LGS12]) rely on iterative LP rounding,

which is computationally expensive. We achieve fast running time by making use of the

2-approximation algorithm of Khuller and Vishkin [KT93].

Roughly speaking, this algorithm creates a directed graph H from the original graph G

and then compute on H the minimum-weight k disjoint arboresences. The latter can be

found by Gabow’s algorithms, in either Õ(|E||V |k) or Õ(k|E|
√
|V | log cmax) time.

To use their algorithm, we will construct H based on the support of the fractional solution

x computed by the LP solver. By the integrality of the arborescence polytope [Sch03], an

integral solution is as good as the fractional solution. However, the support of x can be

potentially large, which causes Gabow’s algorithm to take longer time. Here our idea is a

sparsification of the support, by extending the celebrated sparsification theorem of Benzcur

36

and Karger [BK15] to handle our problem, i.e., we prove the following (see Section 2.5 for

the proofs):

Theorem 2.14. Let G be a graph and cG its capacities. There exists a capacitated graph

(H, cH) on the same set of vertices that can be computed in Õ(m) such that (i) |E(H)| =

Õ(nk), and (ii) for every cut S and F ⊆ S : |F | ≤ (k−1), we have cG(S \ F) = (1 ± ε) cH(S \ F).

Benzcur and Karger’s theorem corresponds to this theorem when k = 1. We believe that

this theorem might have further applications, e.g., for providing a fast algorithm for the

connectivity interdiction problem. Our result implies the following (see Section 2.5 for the

proof):

Theorem 2.15. Assume that there exists an algorithm that finds a minimum-weight

k-arborescences in an m-edge n-node graph in time Tk(m,n). Then there exists a (2 + ε)

approximation algorithm for kECSS running in time Õ(m/ε2 + Tk(kn/ε2, n))

Applying Theorem 2.15 with the Gabow’s algorithm (see Theorem 2.34 in Section 2.5),

we obtain Corollary 2.2.

2.2. Preliminaries

In this section, we review the multiplicative-weight update (MWU) framework for solving

a (covering) LP relaxation of the form min{c · x : Ax ≥ 1, x ≥ 0}, where A is an m-by-n

matrix with non-negative entries and c ∈ Rn
≥0. Our presentation abstracts away the detail

of MWU, so readers should feel free to skip this section.

Let A1, . . . , Am be the rows of matrix A. Here is a concrete example:

• Held-Karp Bound: The Held-Karp bound on input (G, c) aims at solving the

LP:10

min{
∑

e∈E(G)

cexe :
∑
e∈S

xe ≥ 2 for any cut S ⊆ E}

10We refer the readers to [CQ17a] for more discussion about this LP and Held-Karp bound.

37

Matrix A = AG is a cut-edge incidence matrix of graph G where each row Aj

corresponds to a cut Fj ⊆ E(G), so there are exponentially many rows. Each

column corresponds to an edge e ∈ E(G). There are exactly |E(G)| columns. The

matrix is implicitly given as an input graph G.

We explain the MWU framework in terms of matrices. Some readers may find it more

illustrative to work with concrete problems in mind.

MWU Framework for Covering LPs: In the MWU framework for solving covering linear

programs, we are given as input an m-by-n matrix A and cost vectors c associated with

the columns.11 Let ε > 0 be a parameter; that is, we aim at computing a solution x that

is (1 + ε) approximation of the optimal LP solution. Denote by MinRow(A,w) the value

minj∈[m] Ajw. We start with an initial weight vector w
(0)
i = 1/ci for i ∈ [n]. On each

day t = 1, . . . , T , we compute an approximately “cheapest” row j∗ such that Aj∗w
(t−1) ≤

(1+ε)MinRow(A,w(t−1)), and update the weight w
(t)
i ← w

(t−1)
i exp

(
εAj∗,icmin

ci

)
where cmin =

mini∈[n]
ci

Aj∗,i
.12 After T = O(n log n/ε2) many days, the solution can be found by taking the

best scaled vectors; in particular, observe that, for any day t, the scaled vector w̄(t) =

w(t)/
(
minj∈[m] Ajw

(t)
)

is always feasible for the LP. The algorithm returns w̄(t) which has

minimum cost. The following theorem shows that at least one such solution is near-optimal.

Theorem 2.16. For T = O(n logn
ε2

), one of the solutions w̄(t) for t ∈ [T] is a (1 +

O(ε)) approximation of the optimal solution min{c · x : Ax ≥ 1, x ≥ 0}.

Since we use slightly different language than the existing proofs in the literature, we

provide a proof in the appendix.

KC Inequalities: Our LP is hard to work with mainly because of the mixed packing/-

covering constraints x ∈ [0, 1]n. There is a relatively standard way to get rid of the mixed

11There are several ways to explain such a framework. Chekuri and Quanrud [CQ17a] follow the continuous
setting of Young [You14]. We instead follow the combinatorial interpretation of Garg and Könemann [GK07].
12In the MWU literature, this is often referred to as an oracle problem.

38

packing/covering constraints by adding Knapsack covering (KC) inequalities into the LP. In

particular, for each row (or constraint) j ∈ [m], we introduce constraints:

(∀F ⊆ supp(Aj), |F | ≤ (k − 1)) :
∑

i∈[n]\F

Aj,ixi ≥ k − |F |, or
∑

i∈[n]\F

Aj,i

(k − |F |)xi ≥ 1

Let Akc be the new matrix after adding KC inequalities, that is, imagine the row indices

of Akc as (j, F) where j ∈ [m] and F ⊆ supp(Aj); we define Akc
(j,F),i = Aj,i/(k − |F |). The

actual number of rows in Akc can be as high as m · nO(k), but our algorithm will not be

working with this matrix explicitly.

The following lemma shows that we can now remove the packing constraints.

Lemma 2.17. Any solution to {x ∈ Rn : Akcx ≥ 1, x ≥ 0} is feasible for {x ∈ Rn : Ax ≥

k, x ∈ [0, 1]}. Conversely, for any point z in the latter polytope, there exists a point z′ in the

former such that z′ ≤ z.

Proof. Let x be a feasible solution Akcx ≥ 1. Consider x′
i = min(xi, 1) for each i ∈ [n].

We claim that x′ satisfies Ax′ ≥ κ. Consider the constraint Ajx
′ ≥ κj. Let F = {i ∈

supp(Aj) : xi > 1}. If |F | ≥ κj, it would imply that Ajx
′ ≥ κj and we are done. Otherwise,

we have |F | ≤ κj − 1, and the KC constraints guarantee that

∑
i∈supp(Aj)

x′
i =

∑
i∈supp(Aj)\F

xi + |F | ≥ κj

Conversely, let x be a feasible solution Ax ≥ κ, x ∈ [0, 1]n. Consider any KC constraint:

For any j ∈ [m] and F ⊆ supp(Aj), |F | ≤ κj − 1

∑
i∈supp(Aj)\F

xi =
∑

i∈supp(Aj)

xi −
∑
i∈F

xi ≥ κj − |F |

This implies that x itself is feasible for Akcx ≥ 1. □

39

Corollary 2.18. For any cost vector c ∈ Rn
≥0,

min{cTx : Akcx ≥ 1, x ≥ 0} = min{cTx : Ax ≥ k, x ∈ [0, 1]}

2.3. Range Mapping Theorem

The goal of this section is to prove Theorem 2.12, a cornerstone of our work. We empha-

size that it works for any weight function w. First, we introduce more notations for conve-

nience. For any cut C ∈ C, and any subset of edges F ⊆ E, we define valw(C,F) = w(C\F)
k−|F | if

F ⊆ C and |F | < k; otherwise, valw(C,F) =∞. Also, denote valw(C) = minF⊆E valw(C,F).

By definition, we have valw(C) = mini≤k−1 valw(C,Fi) where Fi is the set of heaviest i edges

in C with respect to weight function w. We let mincutwρ be the value of a minimum cut with

respect with weight wρ. When it is clear from context, we sometimes omit the subscript w.

For any positive number ρ, let Hw,ρ = {e ∈ E : w(e) ≥ ρ} be the set of ρ-heavy edges.13

Define the weight truncation wρ(e) = min{w(e), ρ}.

Theorem 2.19 (Restatement of Theorem 2.12). We are given a weighted graph (G,w),

λ > 0 be a parameter and ρ = (1 + γ)λ. Then we have the following:

(1) If OPTw ∈ [λ, (1 + γ)λ), then mincutwρ ∈ [kρ/(1 + γ), kρ), and

(2) if a cut C satisfies wρ(C) < kρ, then valw(C,Hw,ρ ∩ C) < (1 + γ)λ.

Notice that the above theorem not only gives a mapping between solutions of the two

problems but also that the heavy edges can be used as a set of free edges. We say that a cut

C is interesting if it contains at most k − 1 heavy edges, i.e., |Hw,ρ ∩ C| < k.

Proposition 2.20. If cut C ⊆ E is not interesting (i.e., |Hw,ρ ∩C| ≥ k), then valw(C) ≥ ρ

and wρ(C) ≥ kρ.

13When it is clear from the context, for brevity, we might say that e is a heavy edge instead of ρ-heavy edge.

40

Proof. The fact that wρ(C) ≥ kρ follows immediately from the definition of heavy edges.

Let Fi be the set heaviest i edges in C with respect to w. Since C contains at least k heavy

edges, we have that for all i < k, C \ Fi contains at least k − i heavy edges. Therefore, we

have valw(C) = mini≤k−1
w(C\Fi)

k−i
≥ mini≤k−1

(k−i)ρ
k−i

= ρ. □

Proposition 2.20 says that if a cut is not interesting it must be expensive as a normal-

ized free cut (i.e., high valw(C)) and as a graph cut (i.e., high wρ(C)). We next give a

characterization that relates valw and the sizes of the cuts for interesting cuts.

Lemma 2.21. Let C be an interesting cut. Then valw(C) ≤ valw(C,Hw,ρ ∩ C) < ρ if and

only if wρ(C) < kρ.

Proof. (→) By definition of wρ, we have

wρ(C) = w(C \ (Hw,ρ ∩ C)) + ρ|Hw,ρ ∩ C|.(2.3)

If valw(C,Hw,ρ ∩C) < ρ, then w(C \Hw,ρ ∩C) < ρ(k − |Hw,ρ ∩C|). By Equation (2.3), we

have wρ(C) < kρ.

(←) Denote F = Hw,ρ ∩ C. By definition of val, we have

valw(C) ≤ valw(C,F) =
w(C \ F)

k − |F |
(2.3)
=

wρ(C)− ρ|F |
k − |F | <

kρ− ρ|F |
k − |F | = ρ.

□

Proof of Theorem 2.19. For the first part, we begin by proving that mincutwρ < kρ.

Let C∗ be a cut such that valw(C∗) = OPTw. By Proposition 2.20, C∗ must be interesting.

Since valw(C∗) = OPTw < (1 + γ)λ = ρ, Lemma 2.21 implies that we have wρ(C
∗) < kρ.

Therefore, mincutwρ < kρ.

Next, we prove that mincutwρ ≥ kρ/(1 + γ). Let C be a cut, and denote F = Hw,ρ ∩ C.

If C is not interesting, then Proposition 2.20 implies that wρ(C) ≥ kρ ≥ kρ/(1 + γ). If C is

41

interesting, by definition of wρ, we have

wρ(C) = w(C \ F) + ρ|F | ≥ OPTw(k − |F |) +
ρ

1 + γ
|F | ≥ ρk

1 + γ
.

The last inequality follows since by assumption OPTw ≥ ρ/(1 + γ).

For the second part of the theorem, as wρ(C) < kρ, Proposition 2.20 implies that C is

interesting. By Lemma 2.21, valw(C,Hw,ρ ∩ C) < ρ = (1 + γ)λ. □

2.4. Fast Approximate LP Solver

In this section, we construct the fast range punisher for the normalized free cut problem.

Our algorithm cannot afford to maintain the actual MWU weights, so it will instead keep

track of lazy weights. From now on, we will use wmwu to denote the actual MWU weights

and w the weights that our data structure maintains.

Theorem 2.22 (Fast Range Punisher). Given graph G initial weight function winit and

two real values λ, ε > 0 such that λ ≤ OPTwinit, there is a randomized algorithm that iter-

atively applies PunishMin until the optimal with respect to the final weight function wmwu

becomes at least OPTwmwu ≥ (1 + ε)λ, in time Õ(|E| + K + 1
ε

∑
e∈E log(·wmwu(e)

winit(e)
)), where K

is the number of cuts punished.

The following theorem is almost standard: the fast range punisher, together with a fast

algorithm for approximating OPTw for any weight w, implies a fast approximate LP solver

(e.g., see [CQ17a, Fle04]). For completeness, we provide the proof in the Appendix.

Theorem 2.23 (Fast LP Solver). Given a fast range punisher as described in Theo-

rem 2.22, and a near-linear time algorithm for approximating OPTw for any weight function

w, there is an algorithm that output (1+O(ε))-approximate solution to kECSS LP in Õ(m/ε2)

time.

42

Notice that the above theorem implies our main result, Theorem 2.1. The rest of this

section is devoted to proving Theorem 2.22. Following the high-level idea of [CQ17a], our

data structure has two main components:

• Range cut-listing data structure: This data structure maintains dynamic (trun-

cated) weighted graph (G,wρ) and is able to find a (short description of) (1+O(ε))-

approximate cut whenever one exists, that is, it returns a cut of size between λ and

(1 + O(ε))λ for some parameter λ. Since our weight function w changes over time,

the data structure also has an interface that allows such changes to be implemented.

The data structure can be taken and used directly in a blackbox manner, thanks

to [CQ17a].

• Lazy weight data structures: Notice that a fast range punisher can only afford

the running time of Õ
(∑

e log wmwu(e)
winit(e)

)
for updating weights, while in the MWU

framework, some edges would have to be updated much more often. We follow the

idea of [CQ17a] to maintain approximate (lazy) weights that do not get updated

too often but are still sufficiently close to the real weights. We remark that wmwu

only depends on the sequence of cuts, that PunishMin actually punishes. This lazy

weight data structure is responsible for maintaining w that satisfies the following

invariant:

Invariant 1. We have (1− ε)wmwu ≤ w ≤ wmwu.

That is, we allow w to underestimate weights, but they cannot deviate more

than by a factor of (1− ε). In this way, our data structure only needs to update the

weight implicitly and output necessary increments to the cut listing data structure

whenever the invariant is violated.

43

In sum, our range punisher data structures deal with three weight functions w (lazy

weights), wρ (truncated lazy weights, used by the range cut listing data structure) and

wmwu (actual MWU weights, maintained implicitly).

The rest of this section is organized as follows. In Section 2.4.1–Section 2.4.3, we explain

the components that will be used in our data structure, and in Section 2.4.4, we prove

Theorem 2.22 using these components.

2.4.1. Compact representation of cuts

This part serves as a “communication language” for various components in our data struc-

ture. Since a cut can have up to Ω(m) edges, the data structure cannot afford to describe

it explicitly. We will use a compact representation of cuts [CQ17a], which allows us to de-

scribe any (1 + ε)-approximate solution in a given weighted graph using Õ(1) bits; notice

that, in the MWU framework, we only care about (punishing) near-optimal solutions, so it

is sufficient for us that we are able to concisely describe such cuts.

Formally, we say that a family F of subsets of edges is ε-canonical for (G,w) if (i)

|F| ≤ Õ(|E|), (ii) any (1 + ε)-approximate minimum cut of (G,w) is a disjoint union of at

most Õ(1) sets in F , (iii) any set S ∈ F can be described concisely by Õ(1) bits, and (iv)

every edge in the graph belongs to Õ(1) sets in F . It follows that any (1 + ε)-approximate

cut admits a short description. Denote by [[S]] a short description of cut S ∈ F , and for

each (1 + ε) approximate cut C, [[C]] a short description of C.

Lemma 2.24 (implicit in [CQ17a]). There exists a randomized data structure that, on input

(G,w), can be initialized in near-linear time, (w.h.p) constructs an ε-canonical family F ⊆

2E(G), and handles the following queries:

• Given a description [[C]] of a (1 + ε)-approximate cut, output a list of Õ(1) subsets

in F such that C is a disjoint union of those subsets in Õ(1) time.

• Given a description of [[S]], S ∈ F , output a list of edges in S in Õ(|S|) time.

44

2.4.2. Range Cut-listing Data Structure

The cut listing data structure is encapsulated in the following theorem.

Theorem 2.25 (Range Cut-listing Data Structure [CQ17a]). The cut-listing data struc-

ture, denoted by D, maintains dynamically changing weighted graph (G, ŵ) and supports the

following operations.

• D.Init(G,winit, λ, ε) where G is a graph, ŵ is an initial weight function, and mincutŵ ≥

λ: initialize the data structure and the weight ŵ← winit in Õ(m) time.

• D.FindCut() : output either a short description of a (1+O(ε))-approximate mincut

[[C]] or ∅ (when mincutŵ > (1 + ε)λ). The operation takes amortized Õ(1) time.

• D.Increment(∆) where ∆ = {(e, δe)} is the set of increments (defined by a pair of

an edge e ∈ E and a value δe ∈ R≥0): For each (e, δe) ∈ ∆, ŵ(e)← ŵ(e) + δe. The

operation takes Õ(|∆|) time (note that |∆| corresponds to the number of increments).

As outlined earlier, the cut listing data structure will be invoked with ŵ = wρ.

2.4.3. Truncated Lazy MWU Increment

The data structure is formally summarized by the definition below.

Definition 2.26 (Truncated Lazy MWU Increment). A truncated lazy MWU increment

denoted by L maintains the approximate weight function w explicitly, and exact weight wmwu

implicitly and supports the following operations:14

• L.Init(G,winit, ρ) where G is a graph, winit is the initial weight function, ρ ∈ R>0:

Intialize the data structure, and set w← winit.

14This is implicit in the sense that w is divided into parts and they are internally stored in different memory
segments. Whenever needed, the real weight can be constructed from the memory content in near-linear
time.

45

• L.Punish([[C]]) where C is a cut: Internally punish the free cut (C,F) for some F

(to be made precise later) and output a list of increment ∆ = {(e, δe)} so that for

each e ∈ E, winit(e) plus the total increment over e is wρ(e).

• L.Flush(): Return the exact weight wmwu.

Remark that the output list of increments returned by Punish is mainly for the purpose

of syncing with the cut listing data structure (so it aims at maintaining wρ instead of w).

Also, in the Punish operation, the data structure must compute the set F ⊆ C of free edges

efficiently (these are the edges whose weights would not be increased). This is one of the

reasons for which we cannot use the lazy update data structure in [CQ17a] as a blackbox.

Appendix 2.6 will be devoted to proving the following theorem.

Theorem 2.27. There exists a lazy MWU increment with the following time complexity:

(i) init operation takes Õ(m) time, (ii) Punish takes Õ(K) + Õ
(∑

e log wmwu(e)
winit(e)

)
time in

total where K is the number of calls to Punish and outputs at most Õ
(∑

e log wmwu(e)
winit(e)

)
increments, and (iii) flush takes Õ(m) time. Moreover, Invariant 1 is maintained throughout

the execution.

2.4.4. A Fast Range Punisher for Normalized Free Cut Problem

Now we have all necessary ingredients to prove Theorem 2.22. The algorithm is very simple

and described in Algorithm 1. We initialize the cut-listing data structure D so that it

maintains the truncated weight wρ and the lazy weight data structure L. We iteratively use

D to find a cheap cut in (G,wρ) until no such cut exists. Due to our mapping theorem,

such a cut found can be used for our problem, and the data structure L is responsible for

punishing the weights (Line 8) and returns the list of edges to be updated (this is for the

cut-listing D to maintain its weight function wρ).

46

Algorithm 1: FastRangePunisher(G,w, λ)

Input : G,winit, λ, ε such that OPTwinit ≥ λ.
Output: a correct weight function w = wmwu such that OPTw ≥ (1 + ε)λ.

1 w← winit and ρ← (1 + ε)λ
2 Let wρ be the truncated weight function of w.
3 if mincutwρ ≥ kρ then return w.
4 Let D and L be cut listing data structure, and truncated lazy MWU increment.
5 D.Init(G,wρ, kρ/(1 + ε), ε)
6 L.Init(G,w, ρ, ε)
7 while D.FindCut() returns [[C]] do
8 ∆← L.Punish([[C]])
9 D.Increment(∆)

10 w← L.Flush()
11 return w.

Analysis. By input assumption, we have OPTw ≥ λ. If w is returned at line 3, then

mincutwρ ≥ kρ. By Theorem 2.19(1), OPTwmwu ≥ OPTw ≥ ρ = (1 + ε)λ, and we are

done (since minimum cut can be computed in near-linear time). Now, we assume that w is

returned at the last line. The following three claims imply Theorem 2.22.

Claim 2.28. For every cut [[C]] returned by the range cut listing data structure during

the execution of Algorithm 1, we have that (C,Hw,ρ ∩ C) is a (1 + O(ε))-approximation to

OPTwmwu at the time [[C]] is returned.

We remark that it is important that our cut punished must be approximately optimal

w.r.t. the actual MWU weight.

Proof. By definition of L.Flush() operation, we always have that the exact weight

function and approximate weight function are identical at the beginning of the loop. By

definition of L.Punish([[C]]), the total increment plus the initial weight at the beginning

of the loop for every edge e is wρ(e) and Invariant 1 holds. Therefore, by definition of

D.Increment(∆), the range cut-listing data structure maintains the weight function wρ in-

ternally. We now bound the approximation of each cut [[C]] thatD.FindCut() returned. Let

F = Hw,ρ∩C. By definition of FindCut(), we have that wρ(C) < kρ. By Theorem 2.19(2),

47

valw(C,F) < (1 + ε)λ. By Invariant 1, we have that valwmwu(C, F̃) < (1 + O(ε))λ. Since

OPTwmwu ≥ OPTwinit ≥ λ, we have (C,F) is a (1 + O(ε))-approximation to OPTw. □

Claim 2.29. At the end of Algorithm 1, we have OPTwmwu ≥ (1 + ε)λ.

Proof. Consider the time when D.FindCut() outputs ∅. The fact that this procedure

terminates means that mincutwρ ≥ kρ. Therefore, Theorem 2.19(1) implies that OPTw ≥

(1 + ε)λ. Let (C∗, F ∗) be an optimal normalized free cut with respect to wmwu. We have

OPTwmwu = valwmwu(C∗, F ∗)

≥ valw(C∗, F ∗)

≥ OPTw

≥ (1 + ε)λ

where the first inequality follows from Invariant 1. □

Claim 2.30. Algorithm 1 terminates in Õ(m + K + 1
ε
·∑e∈E log(w(e)

winit(e)
)) time where K is

the number of Punish operations.

Proof. We first bound the running time due to truncated lazy MWU increment. By

Theorem 2.27, the total running time due to L (i.e., L.Init,L.Punish,L.Flush) is Õ(m +

K + 1
ε
·∑e∈E log(w(e)

winit(e)
)) time where K is the number of Punish operations. We bound

the running time due to cut-listing data structure. Observe that the number of cuts listed

equals the number of calls of Punish operations, and the total number of edge increments

in D is Õ
(

1
ε
·∑e∈E log(w(e)

winit(e)
)
)

. By Theorem 2.25, the total running time due to D (i.e,

D.Init,D.FindCut(),D.Increment(∆)) is as desired. □

48

2.5. LP Rounding for kECSS (Proof of Theorem 2.15)

In this section, we show how to round the LP solution x found by invoking Theorem 2.1.

The main idea is use a sampling technique to sparsify the support of x. On the subgraph

G′ ⊆ G based on this sparsified support, we apply the 2-approximation algorithm of Khuller

and Vishkin [KV94] to obtain a (2 + ε)-approximation solution.

Let G be a graph with capacities c (we omit capacities whenever it is clear from the

context). Our algorithm performs the following steps.

Step 1: Sparsification. We will be dealing with the following LP relaxation for kECSS.

min{
∑

e∈E(G)

c(e)xe :
∑

e∈C\S

xe ≥ k − |S|, ∀C ∈ C ∀S ∈ {F : |F | ≤ k − 1 ∧ F ⊆ C}, x ≥ 0}

Denote by LPkECSS(G) the optimal LP value on input G. We prove the following lemma

in Appendix A.1 that will allow us to sparsify our graph without changing the optimal

fractional value by too much:

Lemma 2.31. Given an instance (G, c), and in Õ(m/ε2) time, we can compute a subgraph

G′ having at most Õ(nk/ε2) edges such that LPkECSS(G′) = (1±O(ε))LPkECSS(G).

The first step is simply to apply this lemma to obtain G′ from G.

Step 2: Reduction to k-arborescences. Next, we reduce the kECSS problem to the

minimum-cost k-arborescence problem which, on capacitated directed graph (H, cH), can

be described as the following IP:

min{
∑

e∈E(H)

cH(e)ze :
∑

e∈δ+(C)

ze ≥ k for C ∈ C; z ∈ {0, 1}E(H)}

49

where C is the set of all cuts C such that {r} ⊆ C ⊊ V (G). Denote by OPTar(H) and

LPar(H) the optimal integral and fractional values15 of the minimum-cost k-arborescence

problem respectively. We use the following integrality of its polytope:

Theorem 2.32 ([Sch03], Corollary 53.6a). The minimum-cost k-arborescence’s polytope

is integral, so we have that OPTar(H) = LPar(H) for every capacitated input graph H.

For any undirected graph G, denote by D[G] the directed graph obtained by creating,

for each (undirected) edge uv in G, two edges (u→ v) and (v → u) in D[G] whose capacities

are just c(uv). We will use the following theorem by Khuller and Vishkin (slightly modified)

that relates the optimal values of the two optimization problems.

Theorem 2.33. For any graph (H, c), the following properties hold:

• LPar(D[H]) ≤ 2LPkECSS(H), and

• Any feasible solution for k-arborescences in D[H] induces a feasible kECSS solution

in H of at most the same cost.

Proof. For the first part of the theorem, let x denote the optimal solution in the relaxed

LP of kECSS of graph H. We create a fractional solution z in D[H] as follows: for every

edge e ∈ E in H, if e1 and e2 are the two opposite directed edges in D[H] derived from e,

we set ze1 = ze2 = xe. It is clear that c(z) = 2c(x). We just need to argue that z is feasible

in the relaxed k-arboresences problem. Consider a cut C ∈ C (where r ∈ C and C ̸= V). As

x(C) ≥ k,
∑

e∈δ+(C) ze ≥ k. Furthermore, by Lemma 2.17, x satisfies the boxing constraint,

that is, 0 ≤ xe ≤ 1 for all edges e ∈ H, implying that 0 ≤ ze ≤ 1 for all directed edges

e ∈ D[H]. This shows that z is feasible and the first part of the theorem is proved.

For the second part, consider a feasible solution for k-arborescences in D[H]. If any of

the two opposite directed edges is part of the k-arborescences, we include its corresponding

15The relaxation is simply min{∑e∈E(H) cH(e)ze :
∑

e∈δ+(C) ze ≥ k for C ∈ C; z ∈ [0, 1]E(H)}

50

undirected edge in H as part of our induced solution. Clearly, the cost of the induced solution

cannot be higher and it is a feasible kECSS solution, since it guarantees that the cut value

is at least k for all cuts. □

Note that Theorem 2.32 and the algorithm by Khuller and Vishkin imply that the in-

tegrality gap of the kECSS LP is at most 2. While this result is immediate, it seems to

be a folklore. To the best of our knowledge, it was not explicitly stated anywhere in the

literature. This integrality gap allows us to obtain the first part of Corollary 2.2. Our final

tool to obtain Theorem 2.15 (and the second part of Corollary 2.2) is Gabow’s algorithm:

Theorem 2.34 ([Gab95]). Given a graph G = (V,E, c) with positive cost function c, a

fixed root r ∈ V , and let cmax be the maximum cost on edges, there exists an algorithm that

in Õ(km
√
n log(ncmax)) time outputs the integral minimum-cost k-arborescence.

Algorithm of Theorem 2.15. Now, using the graph G′ created in the first step, we create

D[G′], and invoke Gabow’s algorithm to compute an optimal k-arborescence in D[G′]. Let

S ⊆ E(G) be the induced kECSS solution.

The cost of S is at most:

OPTar(D[G′]) ≤ LPar(D[G′])

≤ 2LPkECSS(G′)

≤ 2(1 + O(ε))LPkECSS(G)

≤ 2(1 + O(ε))OPTkECSS(G)

The first inequality is due to Theorem 2.32. The second one is due to Theorem 2.33 (first

bullet). The third one is due to Lemma 2.31.

51

Analysis. Step 1 takes Õ(m/ε2) time, by Lemma 2.31. As the sparsified G′ has m′ =

Õ(nk
ε2

) edges, for Step 2, by Theorem 2.34, we can compute the arborescence in O(km′√n log(ncmax)) =

Õ(k
2n1.5

ε2
log cmax) time. To remove the term log cmax in our case, we can do as follows.

Polynomially bounded costs. Since Gabow’s algorithm for arborescences has the running

time depending on cmax, the maximum cost of the edges, we discuss here how to ensure that

cmax is polynomially bounded.

Let x be the LP solution obtained from our LP solver. Denote by C∗ =
∑

e∈E cexe, so

we have that C∗ is between OPT/2 and OPT, where OPT is the optimal integral value.

First, whenever we see an edge e ∈ E with ce > 2C∗, we remove such an edge from the

graph G. For each remaining edge e ∈ E, we round the capacity ce up to the next multiple

of M = ⌈εC∗/|E|⌉. So, after this rounding up, we have the capacities in {M, 2M, . . . , C∗},

and we can then scale them down by a factor of M so that the resulting capacities c′e are

between 1 and O(|E|/ε). It is an easy exercise to verify that any α-approximation algorithm

for (G, c′) can be turned into an α(1 + ε)-approximation algorithm for (G, c).

In summary, the total running time is Õ
(

m
ε2

+ k2n1.5

ε2

)
. Notice that the running time

can be Õ(m
ε2

+ Tk(kn/ε2, n)) if we let the running time of Theorem 2.34 be Tk(m,n), this

complete the proof for Theorem 2.15.

2.6. Truncated Lazy MWU Increment (Proof of Theorem 2.27)

2.6.1. Additive Accuracy

Notice that, at any time, we maintain wmwu(e) = 1
c(e)
· exp (vmwu(e)s(e)) by some positive

real numbers vmwu(e) and s(e) = ε
c(e)

. For the true vector vmwu, the update rule for (C,F)

becomes the following: vmwu(e) ← vmwu(e) + cmin for all e ∈ C \ F . This update causes all

edges in C \ F to increase their vmwu(e) by the same amount of cmin. By Theorem 2.19(2),

F can be assumed to be Hρ,w ∩ C, i.e., the set of heavy edges with respect to w inside C.

From now on, we always use Hw,ρ ∩ C as a free edge set whenever we punish C.

52

Instead of maintaining the approximate vector w for the real vector wmwu, we instead

work with the additive form of the approximate vector v for the real vector vmwu, and we

bound the additive error:

∀e ∈ E,vmwu(e)− η/s(e) ≤ v(e) ≤ vmwu(e)(2.4)

Next, we show that it is enough to work on vmwu with additive errors.

Proposition 2.35. If Equation (2.4) holds, then ∀e ∈ E,wmwu(e)(1−η) ≤ w(e) ≤ wmwu(e).

Proof. Fix an arbitrary edge e ∈ E, we have w(e) ≤ wmwu(e). Moreover,

w(e) ≥ 1

c(e)
exp((vmwu(e)− η/s(e))s(e)) =

1

c(e)
· exp(vmwu(e)s(e))

exp(η)
≥ (1− η)wmwu(e).

□

2.6.2. Local Bookkeeping

We describe the set of variables to maintain in order to support Punish operation efficiently.

Let F be a ε-canonical family of subsets of edges (as defined in Lemma 2.24). We call each

subset of edges in F as a canonical cut. Let Ē = E \ Hw,ρ be the set of non-heavy edges

where Hρ,w = {e ∈ E : w(e) ≥ ρ} is the set of heavy edges. We define a bipartite graph

B = (F , Ē, EB) where the first vertex partition is the set of canonical cuts F , the second

vertex partition is Ē, and for each S ∈ F and for each e ∈ Ē, we add an edge (S, e) to EB

if and only if e ∈ S. Let q(B) = the maximum degree of nodes in Ē in graph B. Since F

is ε-canonical, q(B) = Õ(1). By Lemma 2.24, given a description [[C]] of 1 or 2−repsecting

cut, we can compute a list of at most Õ(1) canonical cuts in F in Õ(1) time.

We maintain the following variables:

(1) For each canonical cut S ∈ F ,

53

(a) we have a non-negative real number ref(S) representing the reference point for

the total increase in S so far.

(b) in addition, we create a min priority queue QS containing the set of neighbors

NB(S) (which is the set of edges in Ē that S contains).

(c) moreover, we define cB(S) = mine∈NB(S) c(e) for the purpose of computing cmin

which is the minimum capacity c(e) for all edge e in the cut (excluding heavy

edges) that we want to punish.

(2) For each edge (S, e) ∈ EB, we have a number last(S, e) representing the last update

point for e in S.

(3) For each edge e ∈ E, we maintain v(e).

For each edge (S, e) ∈ EB, we define diff(S, e) = ref(S) − last(S, e) ≥ 0. This difference

represents the total slack from the exact weight of e on S (we will ensure that the slack

is non-negative by being “lazy”). When summing over all canonical cuts that contains e,

we ensure that
∑

S∋e diff(S, e) = vmwu(e) − v(e). More formally, we maintain the following

invariants throughout the execution of the truncated lazy increment.

Invariant 2. Let η′ = η/ q(B).

(1) for all e ∈ Ē, η
s(e)
≥∑S:(S,e)∈EB

diff(S, e) = vmwu(e)− v(e),

(2) for all (S, e) ∈ EB, QS. priority(e) = last(S, e) + η′

s(e)
, and

(3) for all e ∈ Hw,ρ, v
mwu(e) = v(e).

Intuitively, the first invariant means for each e ∈ Ē, the total difference over all S ∋ e is

bounded. The second invariant ensures that ref(S) ≤ QS. priority(e) if and only if diff(S, e)

is small, and we can apply extract min operations on QS to detect all edges whose priority

exceeds the reference point efficiently. The third invariant means we restore the exact value

for all heavy edges.

Proposition 2.36. Invariant 21 implies Equation (2.4).

54

Algorithm 2: Reset(e)

1 v(e)← v(e) +
∑

S:(S,e)∈EB
diff(S, e)

2 for each S : (S, e) ∈ EB do
3 last(S, e)← ref(S)

4 QS. priority(e)← last(S, e) + η′

s(e)

Also, this invariant allows us to “reset” v to be vmwu efficiently.

Since priority queue supports the change of priority in O(logm) time, we have:

Proposition 2.37. The procedure Reset can be implemented in time O(q(B) · logm) =

Õ(1).

2.6.3. Init

Define v = v0 where v0 is the additive form of w0. We construct the bipartite graph B =

(F , Ē, EB) as defined in Section 2.6.2. We use Lemma 2.24 to construct B in Õ(m) time.

For each S ∈ F , we create a min priority queue QS containing all the elements in NB(S)

where for each e ∈ NB(S), we set QS. priority(e) = η′/s(e). We also define ref(S) = 0 for

all S ∈ F , and last(S, e) = 0 for all (S, e) ∈ EB. By design, the invariants are satisfied. The

total running time of this step is Õ(m).

2.6.4. Punish

Given a short description of 1 or 2-respecting cut [[C]], we apply Lemma 2.24 to obtain a

set S ⊆ F of Õ(1) canonical cuts whose disjoint union is C in Õ(1) time. Recall that the

update increases vmwu(e) by cmin for each e ∈ C −Hw,ρ where cmin = mine∈C−Hw,ρ c(e).

Claim 2.38. We can compute cmin in Õ(1) time.

Proof. By definition of cB(S), minS∈S cB(S) = minS∈S mine∈NB(S) c(e) = mine∈C−Hw,ρ c(e) =

cmin. The claim follows because there are Õ(1) canonical cuts in S and we maintain the value

cB(S) for every S ∈ F . □

55

In the first step, for each S ∈ S, we set ref(S) ← ref(S) + cmin. This takes Õ(1) time

because |S| = Õ(1) and potentially causes a violation to Invariant 21.

In the second step, we check and fix the invariant violation as follows. For each S ∈ S,

let WS = {e ∈ S \Hw,ρ : ref(S) > QS. priority(e)} be the set of all edges in S \Hw,ρ whose

priority in QS is smaller than the reference point ref(S). For each e ∈ WS, we call the

procedure Reset(e). This take times O(r · q(B) logm) = Õ(r) where r is the number of

calls to Reset procedure. There will be new heavy edges after this step, which means that

we need to update B to correct the set Ē.

In the third step, we identify new heavy edges from the set of edges that we called Reset

procedure in the second step, then we remove each edge in the set from the associated priority

queues and from the graph B as follows. Let U =
⋃

S∈S WS. Define UH = {e ∈ U : w(e) ≥ ρ}.

For each e ∈ UH , for all D ∈ NB(e), remove e from the priority queue QD and update the

value cB(D) (to get a new minimum after removing e). Finally, delete all nodes in UH from

B. The third step takes O(|U | + |UH | q(B) logm + |UH | q(B)) = Õ(r) time. The running

time follows because the |U | = r and |UH | ≤ |U |.

Finally, we output ∆ where ∆ is constructed as follows. For each e ∈ U , let w′(e) be

the weight of e before Reset(e) is invoked. If e ̸∈ UH , then we define δe = w(e) − w′(e).

Otherwise, we define δe = ρ−w′(e). Then, we add (e, δe) to ∆.

Lemma 2.39. If Invariant 2 holds before calling Punish([[C]]), then Invariant 2 holds

afterwards.

Proof. In the first step, we have
⋃

S∋S NB(S) = C \ Hw,ρ, and thus the violation to

Invariant 21 can only happen due to some edge e ∈ C \Hw,ρ. Because the unions are over

disjoint sets, for each edge e ∈ C \ Hw,ρ, there is a unique canonical cut Se ∈ S such that

NB(Se) ∋ e.

56

Claim 2.40. If there is a violation to Invariant 21 due to an edge e ∈ C \ Hw,ρ, then

Reset(e) is invoked in the second step.

Proof. Since Invariant 21 is violated due to an edge e, we have
∑

S′:(S′,e)∈EB
diff(S ′, e) >

η/s(e). By averaging argument, there is a canonical cut S∗ such that diff(S∗, e) > η
s(e)
· q(B).

Since diff(Se, e) is the only term in the summation that is increased, we have S∗ = Se.

Therefore, we have

η

s(e)
· q(B) < diff(Se, e) = ref(Se)− last(Se, e)

2
= ref(Se)−QSe . priority(e) +

η′

s(e)
.

Therefore, ref(Se) > QSe . priority(e), and so e ∈ WS as defined in the second step. Hence,

Reset(e) is invoked. □

Since Reset(e) is invoked for every violation, we have that Invariant 21 is maintained.

By design, the second invariant is trivially maintained whenever Reset is invoked, and

also the last invariant is automatically maintained by the third step. This completes the

proof. □

2.6.5. Flush

For each e ∈ Ē, we call the procedure Reset(e). Then, we output w which is the same as

wmwu. The total running time is O(q(B)|Ē|) = Õ(m).

2.6.6. Total Running Time

The initialization takes Õ(m). Let K be the number of calls to Punish([[C]]) and let I be

the number of calls to Reset(e) before calling Flush(). The total running time due to the

first step is O(K log2 n) = Õ(K), and total running time due to the second and third steps

is Õ(I). It remains to bound I, the total number of calls to Reset(e). Since each Reset(e)

increases of weight wmwu(e) by a factor of 1 + η′, the total number of resets is

57

O(
∑
i∈[n]

log1+O(η′)

(
wmwu(e)

winit(e)

)
) = O

q(B)

η
·
∑
i∈[n]

log(
wmwu(e)

winit(e)
)

= Õ

1

η
·
∑
i∈[n]

log(
wmwu(e)

winit(e)
)

 .

2.7. Authors

This chapter was written by Parinya Chalermsook, Chien-Chung Huang, Danupon Nanongkai,

Thatchaphol Saranurak, Pattara Sukprasert, and Sorrachai Yingchareonthawornchai. It

was published at The International Colloquium on Automata, Languages and Programming

(ICALP) 2022 [CHN+22].

58

CHAPTER 3

Dynamic Spanners

Increasingly, algorithms are used interactively for data analysis, decision making, and

classically as data structures. Often it is not realistic to assume that a user or an ad-

versary is oblivious to the outputs of the algorithms; they can be adaptive in the sense

that their updates and queries to the algorithm may depend on the previous outputs they

saw. Unfortunately, many classical algorithms give strong guarantees only when assuming

an oblivious adversary. This calls for the design of algorithms that work against an adap-

tive adversary whose performance match the ones assuming an oblivious adversary. Driven

by this question, there have been exciting lines of work across different communities in

theoretical computer science, including streaming algorithms against an adaptive adversary

[BEJWY20, HKM+20, WZ20, ABED+21, KMNS21, BHM+21], statistical algorithms against

an adaptive data analyst [HU14, DFH+15, BNS+21, SU17], and very recent algorithms for

machine unlearning [GJN+21].

In the area of dynamic graph algorithms, a continuous effort has also been put on

designing algorithms against an adaptive adversary. This is witnessed by dynamic algo-

rithms for maintaining spanning forests [HDLT01, NS17b, Wul17, NSW17, CGL+19], short-

est paths [BC16, Ber17, BC17, CK19, CS21, GWN20a, GWN20b, GWW20, Chu21], match-

ing [BHI15, BHN16, BHN17, BK19, Waj20, BK21], and more. This development led to new

powerful tools, such as the expander decomposition and hierarchy [SW19, GRST21, LS21]

applicable beyond dynamic algorithms [Li21, LPS21, AKT21, Zha21], and other exciting

applications such as the first almost-linear time algorithms for many flow and cut problems

[vdBLN+20, BLL+21, Chu21, BGS21]. Nevertheless, for many fundamental dynamic graph

59

problems, including graph sparsifiers [ADK+16], reachability [BPW19], directed shortest

paths [GWN20a], the performance gap between algorithms against an oblivious and adap-

tive adversary remains large, waiting to be explored and, hopefully, closed.

One of the most prominent dynamic problems whose oblivious-vs-adaptive gap is max-

imally large is the fully dynamic spanner problem [AFI06, Elk11, BKS12, BK16, FG19,

BFH19, BBG+20]. Given an unweighted undirected graph G = (V,E) with n vertices, an α-

spanner H is a subgraph of G whose pairwise distances between vertices are preserved up to

the stretch factor of α, i.e., for all u, v ∈ V , we have distG(u, v) ≤ distH(u, v) ≤ α·distG(u, v).1

In this problem, we want to maintain an α-spanner of a graph G while G undergoes both edge

insertions and deletions, and for each edge update, spend as small update time as possible.

Assuming an oblivious adversary, near-optimal algorithms have been shown: for every

k ≥ 1, there are algorithms maintaining a (2k − 1)-spanner containing Õ(n1+1/k) edges,2

which is nearly tight with the Ω(n1+1/k) bound from Erdős’ girth conjecture (proven for the

cases where k = 1, 2, 3, 5 [Wen91]). Their update times are either O(k log2 n) amortized

[BKS12, FG19] or O(1)k log3 n worst-case [BFH19], both of which are polylogarithmic when

k is a constant.

In contrast, the only known dynamic spanner algorithm against an adaptive adversary by

[AFI06] requires O(n) amortized update time and it can maintain a (2k− 1)-spanner of size

O(n1+1/k) only for k ≤ 3. Whether the O(n) bound can be improved remained open until very

recently. Bernstein et al. [BBG+20] show that a log6(n)-spanner can be maintained against

an adaptive adversary using polylog(n) amortized update time. The drawback, however, is

that their expander-based technique is too crude to give any stretch smaller than polylog(n).

Hence, for k ≤ log6(n), it is still unclear if the Θ(n) bound is inherent. Surprisingly, this

holds even if we allow infinite time, and only count recourse, i.e., the number of edge changes

1Here, distG(u, v) denotes the distance between u and v in graph G.
2Õ(·) hides a polylog(n) factor.

60

per update in the maintained spanner. The stark difference in performance between the two

adversarial settings motivates the main question of this chapter:

Is the Ω(n) recourse bound inherent for fully dynamic spanners against an adaptive

adversary?

Recourse is an important performance measure of dynamic algorithms. There are dy-

namic settings where changes in solutions are costly while computation itself is considered

cheap, and so the main goal is to directly minimize recourse [GKS14, GK14, ABL+20, GL20].

Even when the final goal is to minimize update time, there are many dynamic algorithms that

crucially require the design of subroutines with recourse bounds stronger than update time

bounds to obtain small final update time [CZ20, GRST21, CGH+20]. Historically, there are

dynamic problems, such as planar embedding [HR20b, HR20a] and maximal independent set

[CHK16, BDH+19, CZ19], where low recourse algorithms were first discovered and later led

to fast update-time algorithms. Similar to dynamic spanners, there are other fundamental

problems, including topological sorting [BC18] and edge coloring [BGW21], for which low

recourse algorithms remain the crucial bottleneck to faster update time.

In this part, we successfully break the O(n) recourse barrier and completely close the

oblivious-vs-adaptive gap with respect to recourse for fully dynamic spanners against an

adaptive adversary.

Theorem 3.1. There exists a deterministic algorithm that, given an unweighted graph G

with n vertices undergoing edge insertions and deletions and a parameter k ≥ 1, maintains

a (2k− 1)-spanner of G containing O(n1+1/k log n) edges using O(log n) amortized recourse.

As the above algorithm is deterministic, it automatically works against an adaptive

adversary. Each update can be processed in polynomial time. Both the recourse and stretch-

size trade-off of Theorem 3.1 are optimal up to a O(log n) factor. When ignoring the update

time, it even dominates the current best algorithm assuming an oblivious adversary [BKS12,

61

FG19] that maintains a (2k − 1)-spanner of size O(n1+1/k log n) using O(k log2 n) recourse.

Therefore, the oblivious-vs-adaptive gap for amortized recourse is closed.

The algorithm of Theorem 3.1 is as simple as possible. As it turns out, a variant of the

classical greedy spanner algorithm [ADD+93a] simply does the job! Although the argument

is short and “obvious” in hindsight, for us, it was very surprising. This is because the greedy

algorithm sequentially inspects edges in some fixed order, and its output solely depends on

this order. Generally, long chains of dependencies in algorithms are notoriously hard to ana-

lyze in the dynamic setting. More recently, a similar greedy approach was dynamized in the

context of dynamic maximal independent set [BDH+19] by choosing a random order for the

greedy algorithm. Unfortunately, the random order must be kept secret from the adversary

and so this fails completely in our adaptive setting. Despite these intuitive difficulties, our

key insight is that we can adaptively choose the order for the greedy algorithm after each

update. This simple idea is enough, see Section 3.1 for details.

Theorem 3.1 leaves open the oblivious-vs-adaptive gap for the update time. Below, we

show a partial progress on this direction by showing an algorithm with near-optimal recourse

and simultaneously non-trivial update time.

Theorem 3.2. There exists a randomized algorithm that, given an unweighted graph

G with n vertices undergoing edge insertions and deletions, with high probability maintains

against an adaptive adversary a 3-spanner of G containing Õ(n1.5) edges using Õ(1) amor-

tized recourse and Õ(
√
n) worst-case update time.

We note again that, prior to the above result, there was no algorithm against an adaptive

adversary with o(n) amortized update time that can maintain a spanner of stretch less than

log6(n). Theorem 3.2 shows that for 3-spanners, the update time can be Õ(
√
n) worst-case,

while guaranteeing near-optimal recourse.

62

We prove Theorem 3.2 by employing a technique called proactive resampling, which

was recently introduced in [BBG+20] for handling an adaptive adversary. We apply this

technique on a modification of a spanner construction by Grossman and Parter [GP17]

from distributed computation community. The modification is small, but seems inherently

necessary for bounding the recourse.

To successfully apply proactive resampling, we refine the technique in two ways. First,

we present a simple abstraction in terms of a certain load balancing problem that captures

the power of proactive resampling. Previously, the technique was presented and applied

specifically for the dynamic cut sparsifier problem [BBG+20]. But actually, this technique

is conceptually simple and quite generic, so our new abstraction will likely facilitate future

applications. Our second technical contribution is to generalize and make the proactive

resampling technique more flexible. At a very high level, in [BBG+20], there is a single

parameter about sampling probability that is fixed throughout the whole process, and their

analysis requires this fact. In our load-balancing abstraction, we need to work with multiple

sampling probabilities and, moreover, they change through time. We manage to analyze

this generalized process using probabilistic tools about stochastic domination, which in turn

simplifies the whole analysis.

If a strong recourse bound is not needed, then proactive resampling can be bypassed

and the algorithm becomes very simple, deterministic, and has slightly improved bounds as

follows.

Theorem 3.3. There exists a deterministic algorithm that, given an unweighted graph

G with n vertices undergoing edge insertions and deletions, maintains a 3-spanner of G

containing O(n1.5) edges using O(min{∆,
√
n} log n) worst-case update time, where ∆ is the

maximum degree of G.

63

Ref. Stretch Size Recourse Update Time Deterministic?

Against an oblivious adversary

[BKS12] 2k − 1 O(k8n1+1/k log2 n) O(7k/2) amortized rand. oblivious

[BKS12, FG19] 2k − 1 O(n1+1/k log n) O(k log2 n) amortized rand. oblivious

[BFH19] 2k − 1 Õ(n1+1/k) O(1)k log3 n worst-case rand. oblivious

Against an adaptive adversary

[AFI06]
3 O(n1+1/2) O(∆) amortized deterministic
5 O(n1+1/3) O(∆) amortized deterministic

[BBG+20]
Õ(1) Õ(n) Õ(1) amortized rand. adaptive

no(1) Õ(n) no(1) worst-case deterministic

Ours
2k − 1 O(n1+1/k log n) O(log n) amortized poly(n) worst-case deterministic

3 Õ(n1+1/2) Õ(1) amortized Õ(
√
n) worst-case rand. adaptive

3 O(n1+1/2) O(min{∆,
√
n} log n) worst-case deterministic

Table 3.1. The state of the art of fully dynamic spanner algorithms.

Despite its simplicity, the above result improves the update time of the fastest determin-

istic dynamic 3-spanner algorithm [AFI06] from O(∆) amortized to O(min{∆,
√
n} log n)

worst-case. In fact, all previous dynamic spanner algorithms with worst-case update time

either assume an oblivious adversary [Elk11, BK16, BFH19] or have a very large stretch of

no(1) [BBG+20]. See Table 3.1 for detailed comparison.

Organization. In Section 3.1, we give a very short proof of Theorem 3.1. In Section 3.2, we

prove Theorem 3.2 assuming a crucial lemma (Lemma 3.8) needed for bounding the recourse.

To prove this lemma, we show a new abstraction for the proactive resampling technique in

Section 3.3 and complete the analysis in Section 3.4. Our side result, Theorem 3.3, is based

on the the static construction presented in Section 3.2.1 and its simple proof is given in

Section 3.2.2.

3.1. Deterministic Spanner with Near-optimal Recourse

Below, we show a decremental algorithm that handles edge deletions only with near-

optimal recourse. This will imply Theorem 3.1 by a known reduction formally stated in

Lemma 3.6. To describe our decremental algorithm, let us first recall the classic greedy

algorithm.

64

The Greedy Algorithm. Althöfer et al. [ADD+93b] showed the following algorithm for

computing (2k − 1)-spanners. Given a graph G = (V,E) with n vertices, fix some order of

edges in E. Then, we inspect each edge one by one according to the order. Initially EH = ∅.

When we inspect e = (u, v), if distH(u, v) ≥ 2k, then add e into EH . Otherwise, ignore it.

We have the following theorem.

Theorem 3.4 ([ADD+93b]). The greedy algorithm above outputs a (2k − 1)-spanner

H = (V,EH) of G containing O(n1+1/k) edges.

It is widely believed that the greedy algorithm is extremely bad in dynamic setting as an

edge update can drastically change the greedy spanner. In contrary, when we allow the order

in which greedy scans the edges to be changed adaptively, we can avoid removing spanner

edges until it is deleted by the adversary. This key insight leads to optimal recourse.

When recourse is the only concern, prior to our work this result was known only for

spanners with polylog stretch, which is a much easier problem.

The Decremental Greedy Algorithm. Now we describe our deletion-only algorithm. Let

G be an initial graph with m edges and H = (V,EH) be a (2k − 1)-spanner with O(n1+1/k)

edges. Suppose an edge e = (u, v) is deleted from the graph G. If (u, v) /∈ EH , then we do

nothing. Otherwise, we do the following. We first remove e from EH . Now we look at the

only remaining non-spanner edges E \EH , one by one in an arbitrary order. (Note that the

order is adaptively defined and not fixed through time because it is defined only on E \EH .)

When we inspect (x, y) ∈ E \EH , as in the greedy algorithm, we ask if distH(x, y) ≥ 2k and

add (x, y) to EH if and only if it is the case. This completes the description of the algorithm.

Analysis. We start with the most crucial point. We claim that the new output after

removing e is as if we run the greedy algorithm that first inspects edges in EH (the order

within EH is preserved) and later inspects edges in E \ EH .

65

To see the claim, we argue that if the greedy algorithm inspects EH first, then the whole

set EH must be included, just like EH remains in the new output. To see this, note that,

for each (x, y) ∈ EH , distH(x, y) ≥ 2k when (x, y) was inspected according to some order.

But, if we move the whole set EH to be the prefix of the order (while the order within EH

is preserved), it must still be the case that distH(x, y) ≥ 2k when (x, y) is inspected and so

e must be added into the spanner by the greedy algorithm.

So our algorithm indeed “simulates” inspecting EH first, and then it explicitly implements

the greedy algorithm on the remaining part E \ EH . So we conclude that it simulates the

greedy algorithm. Therefore, by Theorem 3.4, the new output is a (2k − 1)-spanner with

O(n1+1/k) edges.

The next important point is that, whenever an edge e added into the spanner H, the

algorithm never tries to remove e from H. So e remains in H until it is deleted by the

adversary. Therefore, the total recourse is O(m). With this, we conclude the following key

lemma:

Lemma 3.5. Given a graph G with n vertices and m initial edges undergoing only edge

deletions, the algorithm above maintains a (2k − 1)-spanner H of G of size O(n1+1/k) with

O(m) total recourse.

By plugging Lemma 3.5 to the fully-dynamic-to-decremental reduction by [BKS12] below,

we conclude Theorem 3.1. We also include the proof of Lemma 3.6 in Appendix B.2 for

completeness.

Lemma 3.6 ([BKS12]). Suppose that for a graph G with n vertices and m initial edges

undergoing only edge deletions, there is an algorithm that maintains a (2k − 1)-spanner H

of size O(S(n)) with O(F (m)) total recourse where F (m) = Ω(m), then there exists an

algorithm that maintains a (2k − 1)-spanner H ′ of size O(S(n) log n) in a fully dynamic

66

graph with n vertices using O(F ((U) log n)) total recourse. Here U is the total number of

updates, starting from an empty graph.

3.2. 3-Spanner with Near-optimal Recourse and Fast Update Time

In this section, we prove Theorem 3.2 by showing an algorithm for maintaining a 3-

spanner with small update time in addition to having small recourse. We start by explaining

a basic static construction and needed data structures in Section 3.2.1 and show the dy-

namic algorithm in Section 3.2.2. Assuming our key lemma (Lemma 3.8) about proactive

resampling, most details here are quite straight forward. Hence, some proofs are deferred to

Appendix B.3.

Throughout this section, we let NG(u) = {v ∈ V : (u, v) ∈ E} denote the set of neighbors

of a node u ∈ V in a graph G = (V,E), and we let degG(u) = |NG(u)| denote the degree of

the node u in the graph G.

3.2.1. A Static Construction and Basic Data Structures

A Static Construction. We now describe our static algorithm. Though our presentation

is different, our algorithm is almost identical to [GP17]. The only difference is that we do

not distinguish small-degree vertices from large-degree vertices.

We first arbitrarily partition V into
√
n equal-sized buckets V1, . . . , V√

n. We then con-

struct three sets of edges E1, E2, E3. For every bucket Vi, i ∈ [1,
√
n], we do the following.

First, for all v ∈ V \ Vi, if Vi ∩NG(v) is not empty, we choose a neighbor ci(v) ∈ Vi ∩NG(v)

and add (v, ci(v)) to E1. We call ci(v) an i-partner of v. Next, for every edge e = (u, v),

where both u, v ∈ Vi, we add e to E2. Lastly, for u, u′ ∈ Vi with overlapping neighborhoods,

we pick an arbitrary common neighbor wuu′ ∈ NG(u) ∩ NG(u′) and add (u,wuu′), (wuu′ , u′)

to E3. We refer to the node wuu′ as the witness for the pair u, u′.

67

Claim 3.7. The subgraph H = (V,E1 ∪ E2 ∪ E3) is a 3-spanner of G consisting of at most

O(n
√
n) edges.

Dynamizing the Construction. Notice that it suffices to separately maintain E1, E2, E3,

in order to maintain the above dynamic 3-spanner. Maintaining E1 and E2 is straightforward

and can be done in a fully-dynamic setting in O(1) worst-case update time. Indeed, if

e = (u, ci(u)) ∈ E1 is deleted, then we pick a new i-partner ci(u) ∈ Vi ∩ NG(u) for u.

Maintaining Vi ∩ NG(u) for all u allows us to update ci(u) efficiently. If e = (u, u′) ∈ E2,

where u, u′ ∈ Vi, is deleted, then we do nothing.

The remaining task, maintaining E3, is the most challenging part of our dynamic al-

gorithm. Before we proceed, let us define a subroutine and a data structure needed to

implement our algorithm.

Resampling Subroutine. We define Resample(u, u′) as a subroutine that uniformly

samples a witness wuu′ (i.e. a common neighbor of u and u′), if exists. Notice that, we can

obtain E3 by calling Resample(u, u′) for all u, u′ ∈ Vi and for all i ∈ [1,
√
n].

Partnership Data Structures. The subroutine above hints that we need a data structure

for maintaining the common neighborhoods for all pairs of vertices that are in the same

bucket. For vertices u and v within the same bucket, we let P (u, v) = NG(u) ∩ NG(v) be

the partnership between u and v. To maintain these structures dynamically, when an edge

(u, v) is inserted, if u ∈ Vi and v ∈ Vj, we add v to P (u, u′) for all u′ ∈ Vi ∩NG(v) \ {u}, and

symmetrically add u to P (v, v′) for all v′ ∈ Vj ∩NG(u) \ {v}. This clearly takes O(
√
n log n)

worst-case time for edge insertion. and this is symmetric for edge deletion.

As we want to prove that our final update time is Õ(
√
n), we can assume from now that

E1, E2, and all partnerships are maintained in the background.

68

3.2.2. Maintaining Witnesses via Proactive Resampling

Remark. For clarity of exposition, we will present an amortized update time analysis. Using

standard approach, we can make the update time worst case. We will discuss this issue at

the end of this section.

Our dynamic algorithm runs in phases, where each phase lasts for n
√
n consecutive

updates (edge insertions/deletions). As a spanner is decomposable,3 it suffices to maintain a

3-spanner H of the graph undergoing only edge deletions within this phase and then include

all edges inserted within this phase into H, which increases the size of H by at most n
√
n

edges. Henceforth, we only need to present how to initialize a phase and how to handle

edge deletions within each phase. The reason behind this reduction is because our proactive

resampling technique naturally works for decremental graphs.

Initialization. At the start of the phase, since our partnerships structures only processed

edge deletions from the previous phase, we first update partnerships with all the O(n
√
n)

inserted edges from the previous phase. Then, we call Resample(u, u′) for all u, u′ ∈ Vi for

all i ∈ [1,
√
n] to replace all witnesses and initialize E3 of this phase.

Difficulty of Bounding Recourse. Maintaining E3 (equivalently, the witnesses) in Õ(
√
n)

worst-case time is straightforward because the partnership data structure has O(
√
n log n)

update time. However, our goal is to show Õ(1) amortized recourse, which is the most

challenging part of our analysis. To see the difficulty, if (u, v) is deleted and u ∈ Vi, a vertex

v may serve as a witness {wuu′} for all u′ ∈ Vi. In this case, deleting (u, v) causes the

algorithm to find a new witness wuu′ for all u′ ∈ Vi. This implies a recourse of |Vi| = Ω(
√
n).

To circumvent this issue, we apply the technique of proactive resampling, as described below.

3Let G1 = (V,E1) and G2 = (V,E2). If H1 and H2 are α-spanners G1 and G2 respectively, then H1 ∪H2 is
a α-spanner of G1 ∪G2.

69

Proactive Resampling. We keep track of a time-variable T ; the number of updates to G

that have occurred in this phase until now. T is initially 0. We increment T each time an

edge gets deleted from G.

In addition, for all i ∈ [1,
√
n] and u, u′ ∈ Vi with u ̸= u′, we maintain: (1) wuu′ , the

witness for the pair u and u′ and (2) a set Schedule[u, u′] of positive integers, which is the

set of timesteps where our algorithm intends to proactively resample a new witness for u, u′.

This set grows adaptively each time the adversary deletes (u,wuu′) or (wuu′ , u′).

Finally, to ensure that the update time of our algorithm remains small, for each λ ∈

[1, n
√
n] we maintain a List[λ], which consists of all those pairs of nodes (x, x′) such that

λ ∈ Schedule[x, x′].

When an edge (u, v), where u ∈ Vi and v ∈ Vj is deleted, we do the following operations.

First, for all u′ ∈ Vi that had v = wuu′ as a common neighbor with u before deleting

(u, v), we add the timesteps {T + 2k | T + 2k ≤ n
√
n, k ∈ N} to Schedule[u, u′]. Second,

analogous to the previous one, for all v′ ∈ Vj that had u = wvv′ as a common neighbor

with v before deleting (u, v), we add the timesteps {T + 2k | T + 2k ≤ n
√
n, k ∈ N} to

Schedule[v, v′]. Third, we set T ← T + 1. Lastly, for each (x, x′) ∈ List[T], we call the

subroutine Resample(x, x′).

The key lemma below summarizes a crucial property of this dynamic algorithm. Its proof

appears in Section 3.3.

Lemma 3.8. During a phase consisting of n
√
n edge deletions, our dynamic algorithm makes

at most Õ(
√
n) calls to the Resample subroutine after each edge deletion. Moreover, the

total number of calls to the Resample subroutine during an entire phase is at most Õ(n
√
n)

w.h.p. Both these guarantees hold against an adaptive adversary.

Analysis of Recourse and Update Time. Our analysis are given in the lemmas below.

70

Lemma 3.9 (Recourse). The amortized recourse of our algorithm is Õ(1) w.h.p., against

an adaptive adversary.

Proof. To maintain the edge-sets E1 and E2, we pay a worst-case recourse of O(1) per

update. For maintaining the edge-set E3, our total recourse during the entire phase is at

most O(1) times the number of calls made to the Resample(., .) subroutine, which in turn

is at most Õ(n
√
n) w.h.p. (see Lemma 3.8). Finally, while computing E3 in the beginning

of a phase, we pay O(n
√
n) recourse. Therefore, the overall total recourse during an entire

phase is Õ(n
√
n) w.h.p.. Since a phase lasts for n

√
n time steps, we conclude the lemma. □

Lemma 3.10 (Worst-case Update Time within a Phase). Within a phase, our algorithm

handles a given update in Õ(
√
n) worst case time w.h.p..

Proof. Recall that the sets E1, E2 can be maintained in O(1) worst case update time.

Henceforth, we focus on the time required to maintain the edge-set E3 after a given update

in G.

Excluding the time spent on maintaining the partnership data structure (which is Õ(
√
n)

in the worst-case anyway), this is proportional to Õ(1) times the number of calls made to the

Resample(., .) subroutine, plus Õ(1) times the number of pairs u, u′(v, v′) where we need to

adjust SCHEDULE[u, u′]. The former is w.h.p. at most Õ(
√
n) according to Lemma 3.8,

while the latter is also at most Õ(
√
n) since |Vi|, |Vj| ≤

√
n. Thus, within a phase we can

also maintain the set E3 w.h.p. in Õ(
√
n) worst case update time. □

Although the above lemma says that we can handle each edge deletion in Õ(
√
n) worst-

case update time, our current algorithm does not guarantee worst-case update time yet

because the intialization time exceed the Õ(
√
n) bound. In more details, observe that the

total initialization time is O(n
√
n) × O(

√
n log n) because we need to insert O(n

√
n) edges

into partnership data structures, which has O(
√
n log n) update time. Over a phase of n

√
n

steps, this implies only Õ(
√
n) amortized update time.

71

However, since the algorithm takes long time only at the initialization of the phase, but

takes Õ(
√
n) worst-case step for each update during the phase, we can apply the standard

building-in-the-background technique (see Appendix B.3.1) to de-amortized the update time.

We conclude the following:

Lemma 3.11 (Worst-case Update Time for the Whole Update Sequence). W.h.p., the worst-

case update time of our dynamic algorithm is Õ(
√
n).

3.3. Proactive Resampling: Abstraction

The goal of this section is to prove Lemma 3.8 for bounding the recourse of our 3-spanner

algorithm. This is the most technical part of this paper. To ease the analysis, we will abstract

the problem situation in Lemma 3.8 as a particular dynamic problem of assigning jobs to

machines while an adversary keeps deleting machines and the goal is to minimize the total

number of reassignments. Below, we formalize this problem and show how to use it to bound

the recourse of our 3-spanner algorithm.

Our abstraction has two technical contributions: (1) it allows us to easily work with mul-

tiple sampling probabilities, while in [BBG+20], they fixed a single parameter on sampling

probability, (2) the simplicity of this abstraction can expose the generality of the proac-

tive resampling technique itself; it is not specific to the cut sparsifier problem as used in

[BBG+20].

Jobs, Machines, Routines, Assignments, and Loads. Let J denote a set of jobs and

M denote a set of machines. We think of them as two sets of vertices of the (hyper)-graph

G = (J,M,R).4 A routine r ∈ R is a hyperedge of G such that r contains exactly one

job-vertex from J , denoted by job(r) ∈ J , and may contain several machine-vertices from

M , denoted by M(r) ⊆ M . Each routine r in G means there is a routine for handling

job(r) by simultaneously calling machines in M(r). Note that r = {job(r)} ∪M(r). We

4This graph is different from the graph that we maintain a spanner in previous sections.

72

say that r is a routine for job(r). For each machine x ∈ M(r), we say that routine r

involves machine x, or that r contains x. The set R(x) is then defined as the set of routines

involving machine x. Observe that there are degG(u) different routines for handling job u.

An assignment A = (J,M,F ⊆ R) is simply a subgraph of G. We say assignment A is

feasible iff degA(u) = 1 for every job u ∈ J where degG(u) > 0. That is, every job is handled

by some routine, if exists. When r ∈ A, we say that job(r) is handled by routine r. Finally,

given an assignment A, the load of a machine x is the number of routines in A involving x, or

in other words, is the degree of x in A, degA(x). We note explicitly that our end-goal is not

to optimize loads of machines. Rather, we want to minimize the number of reassignments

needed to maintain feasible assignments throughout the process.

In this section, we usually use u, v, w to denote jobs, use x, y, z to denote machines, and

use e or r to denote routines or (hyper)edges.

The Dynamic Problem. Our problem is to maintain a feasible assignment A while the

graph G undergoes a sequence of machine deletions (which might stop before all machines

are deleted). More specifically, when a machine x is deleted, all routines r containing x are

deleted as well. But when routines in A are deleted, A might not be feasible anymore and

we need to add new edges to A to make A feasible. Our goal is to minimize the total number

of routines ever added to A.

To be more precise, write the graph G and the assignment A after t machine-deletions

as Gt = (J,M,Rt) and At = (J,M, F t), respectively. Here, we define recourse at timestep

t to be |F t \ F t−1|, which is the number of routined added into A at timestep t. When the

adversary deletes T machines, the goal is then to minimize the total recourse
∑T

t=1 |F t\F t−1|.

The Algorithm: Proactive Resampling. To describe our algorithm, first let Resample(u)

denote the process of reassigning job u to a uniformly random routine for u. In the graph

language, Resample(u) removes the edge r such that job(r) = u from A, sample an edge

73

r′ from {r ∈ R | job(r) = u}, and then add r′ into A. At timestep 0, we initialize a feasible

assignment A0 by calling Resample(u) for every job u ∈ J , i.e., assign each job u to a

random routine for u. Below, we describe how to handling deletions.

Let T be the total number of machine-deletions. For each job u, we maintain Schedule(u) ⊆

[T] containing all time steps that we will invoke Resample(u). That is, at any timestep t,

before an adversary takes any action, we call Resample(u) if t ∈ Schedule(u).

We say that an adversary touches u at timestep t if the routine r ∈ At handling u at

time t is deleted. When u is touched, we call Resample(u) and, very importantly, we put

t + 1, t + 2, t + 4, . . . where t + 2i ≤ T into Schedule(u). This is the action that we call

proactive resampling because we do not just resample a routine for u only when u is touched,

but do so proactively in the future as well. This completes the description of the algorithm.

Clearly, A remains a feasible assignment throughout because whenever a job u is touched,

we immediately call Resample(u). The key lemma below states that the algorithm has low

recourse, even if the adversary is adaptive in the sense that each deletion at time t depends

on previous assignment before time t.

Lemma 3.12. Let T be the total number of machine-deletions. The total recourse of the

algorithm running against an adaptive adversary is O
(
|J | log(∆) log2 |M |+ T log2 |M |

)
with

high probability where ∆ is the maximum degree of any job. Moreover, if the load of a

machine never exceeds λ, then our algorithm has O(λ log T) worst-case recourse.

We will prove Lemma 3.12 in Section 3.4. Before proceeding any further, however, we

argue why Lemma 3.12 directly bounds the recourse of our 3-spanner algorithm.

Back to 3-spanners: Proof of Lemma 3.8. It is easy to see that maintaining E3 in

our 3-spanner algorithm can be framed exactly as the job-machine load-balancing problem.

Suppose the given graph is G = (V,E) where n = |V | and m = |E|. We create a job juu′ for

each pair of vertices u, u′ ∈ Vi with u ̸= u′. For each edge e ∈ E, we create a machine xe.

74

Hence, |J | = O(n1.5) and |M | = |E| = m. For each job, as we want to have a witness wuu′ ,

this witness is corresponding to two edges e = (u,wuu′) and e′ = (u′, wuu′). Hence, we create

a routine r = (juu′ , e, e′) for each u, u′ ∈ Vi and a common neighbor wuu′ . Since there are at

most n common neighbors between each u and u′, ∆ = O(n). A feasible assignment is then

corresponding to finding a witness for each job. Our algorithm that maintains the spanner is

also exactly this load-balancing algorithm. Hence, the recourse of the 3-spanner construction

follows from Lemma 3.12 where we delete exactly T = O(n1.5) machines. As |J | = O(n1.5),

the total recourse bound then becomes O(n1.5 log3 n). As T = O(n1.5), averaging this bound

over all timesteps yields O(log3 n) amortized recourse.

3.4. Proactive Resampling: Analysis (Proof of Lemma 3.12)

The first step to prove Lemma 3.12 is to bound the loads of machines x. This is because

whenever machine x is deleted, its load of degA(x) would contribute to the total recourse.

What would be the expected load of each machine? For intuition, suppose that the

adversary was oblivious. Recall that R(x) denote the set of all routines involving machine

x. Then, the expected load of machine x would be
∑

r∈R(x) 1/ degG(job(r)) because each

job samples its routine uniformly at random, and this is concentrated with high probability

using Chernoff’s bound. Although in reality our adversary is adaptive, our plan is to still

prove that the loads of machines do not exceed its expectation in the oblivious setting too

much. This motivates the following definitions.

Definition 3.13. The target load of machine x is target(x) =
∑

r∈R(x) 1/ degG(job(r)). The

target load of x at time t is targett(x) =
∑

r∈Rt(x) 1/ degGt(job(r)). An assignment A has

overhead (α, β) iff degA(x) ≤ α · target(x) + β for every machine x ∈M .

Our key technical lemma is to show that, via proactive resampling, the loads of ma-

chines are indeed close to its expectation in the oblivious setting. That is, the maintained

assignment has small overhead. Recall that T is the total number of machine-deletions.

75

Lemma 3.14. With high probability, the assignment A maintained by our algorithm always

has overhead (O(log T), O(log |M |)) even when the adversary is adaptive.

Before proving Lemma 3.14, we formally show how to use Lemma 3.14 to bound of

machine loads implies the total recourse, which proves Lemma 3.12.

Proof of Lemma 3.12. Let T be the total number of deletions. Observe that the

total recourse up to time T is precisely the total number of Resample(.) calls up to time

T , which in turn is at most the total number of Resample(.) calls put into Schedule(.)

since time 1 until time T . Therefore, our strategy is to bound, for each time t, the number

of Resample(.) calls newly generated at time t. Let xt be the machine deleted at time t.

Observe this is at most O(log T) × degAt(xt) where degAt(xt) is xt’s load at time t and the

O(log T) factor is because of proactive sampling.

By Lemma 3.14, we have degAt(xt) ≤ O (log (T)targett(xt) + log |M |). Also, we claim

that
∑T

t=1 targett(xt) = O(|J | log ∆) where ∆ is the maximum degree of jobs (to be proven

below). Therefore, the total recourse up to time T is at most

O(log T)
T∑
t=1

degAt(xt) ≤ O(log T)
T∑
t=1

O
(
log(T)targett(xt) + log |M |

)
≤ O

(
|J | log (∆) log2 |M |+ T log2 |M |

)
as T ≤ |M |.

It remains to show that
∑T

t=1 targett(xt) = O(|J | log ∆). Recall that targett(x) =∑
r∋x

1
degGt (job(r))

. Imagine when machine xt is deleted at time t. We will show how to

charge targett(xt) to jobs with edges connecting to xt. For each job u with c (hyper)edges

connecting to xt, u’s contribution of targett(xt) is c/ degGt(u). So we distribute the charge of

c/ degGt(u) ≤ 1
degGt (u)

+ 1
degGt (u)−1

+ . . .+ 1
degGt (u)−c+1

to u. Since these edges are charged from

machine xt to job u only once, the total charge of each job u at most 1
degG(u)

+ 1
degG(u)−1

+

76

· · ·+ 1/2 + 1 = O(log ∆). Since there are |J | jobs, the bound
∑T

t=1 targett(xt) = O(|J | log ∆)

follows.

To see that we have worst-case recourse, one can look at any timestep t. There are O(log t)

timesteps that can cause Resample to be invoked at timestep t, namely, t−1, t−2, t−4,

At each of these timesteps t′, one machine is deleted, so the number of Resample calls

added from timestep t′ is also bounded by the load of the deleted machine xt′ , which does

not exceed λ. Summing this up, the number of calls we make at timestep t is at most

O(λ log t) = O(λ log T). This concludes our proof. □

3.5. Bounding Load (Proof of Lemma 3.14)

Here, we show that the load degAt(x) of every machine x at each time t is small. Some

basic notions are needed in the analysis.

Experiments and Relevant Experiments. An experiment X is a binary random variable

associated with an edge/routine e and time step t, where X = 1 iff Resample(job(e)) is

called at time t and e is chosen to handle job(e), among all edges incident to job(e). Observe

that P[X = 1] = 1/ degGt(job(e)). Note that each call to Resample(u) at time t creates

new degGt(u) experiments. We order all experiments X1, X2, X3, . . . by the time of their

creation. For convenience, for each experiment X, we let e(X), t(X), and job(X) denote its

edge, time of creation, and job respectively.

Next, we define the most important notion in the whole analysis.

Definition 3.15. For any time t and edge e ∈ Rt at time t, an experiment X is (t, e)-relevant

if

• e(X) = e, and

• there is no t(X) < t′ < t such that t′ ∈ Schedulet(X)(job(e)).

Moreover, X is (t, x)-relevant if it is (t, e)-relevant and edge e ∈ Rt(x) is incident to x.

77

Intuitively, X is a (t, e)-relevant experiment if X could cause e to appear in the assignment

At at time t. To see why, clearly if e(X) ̸= e, then X cannot cause e to appear. Otherwise, if

e(X) = e but there is t′ ∈ (t(X), t) where t′ ∈ Schedulet(X)(job(e)), then X cannot cause

e to appear at time t either. This is because even if X is successful and so e appears at time

t(X), then later at time t′ > t(X), e will be resampled again, and so X has nothing to do

whether e appears at time t > t′. With the same intuition, X is (t, x)-relevant if X could

contribute to the load degAt(x) of machine x at time t.

It is important to note that, we decide whether X is a (t, e)-relevant based on Schedulet(X)(job(e))

at time t(X). If it was based on Schedulet(job(e)) at time t, then there would be only a

single experiment X that is (t, e)-relevant (which is the one with e(X) = e and maximum

t(X) < t).

According to Definition 3.15, there could be more than one experiments that are (t, e)-

relevant. For example, suppose X is (t, e)-relevant. At time t(X) + 1, the adversary could

touch job(e), hence, adding t(X) + 2, t(X) + 4, . . . into Schedule(job(e)). Because of

this action, there is another experiment X ′ that is (t, e)-relevant and t(X ′) > t(X). This

motivates the following definition.

Definition 3.16. Let Rel(t, e) be the random variable denoting the number of (t, e)-relevant

experiments, and let Rel(t, x) =
∑

e∈Rt(x) Rel(t, e) denote the total number of (t, x)-relevant

experiments.

To simplify the notations in the proof of Lemma 3.14 below, we assume the following.

Assumption 3.17 (The Machine-disjoint Assumption). For any routines e, e′ with job(e) =

job(e′), then M(e) ∩M(e′) = ∅. That is, the edges adjacent to the same job are machine-

disjoint.

Note that this assumption indeed holds for our 3-spanner application. This is because

any two paths of length 2 between a pair of centers u and u′ must be edge disjoint in any

78

simple graph. We show how remove this assumption in Appendix B.1, but the notations are

more complicated.

Roadmap for Bounding Loads. We are now ready to describe the key steps for bounding

the load degAt(x), for any time t and machine x.

First, we write X (t,x) = X
(t,x)
1 , X

(t,x)
2 , . . . , X

(t,x)
Rel(t,x) as the sequence of all (t, x)-relevant

experiments (ordered by time step the experiments are taken). The order in X (t,x) will be

important only later. For now, we write

degAt(x) =
∑

X∈X (t,x)

X,

as the total number of success (t, x)-relevant experiments. As any edge e adjacent to x in

At may appear only because of some successful (t, x)-relevant experiment X ∈ X (t,x), we

conclude the following:

Lemma 3.18 (Key Step 1). degAt(x) ≤ degAt(x).

Lemma 3.18 reduces the problem to bounding degAt(x). If all (t, x)-relevant experiments

X (t,x) = {X(t,x)
i }i were independent, then we could have easily applied standard concentra-

tion bounds to degAt(x) =
∑

X∈X (t,x) X. Unfortunately, they are not independent as the

outcome of earlier experiments can affect the adversary’s actions, which in turn affect later

experiments.

Our strategy is to relate the sequence X (t,x) of (t, x)-relevant experiments to another se-

quence X̂ (t,x) = X̂
(t,x)
1 , X̂

(t,x)
2 . . . , X̂

(t,x)
Rel(t,x) of independent random variables defined as follows.

For each (t, x)-relevant experiment X̂
(t,x)
i where e = e(X̂

(t,x)
i) and u = job(e), we carefully

define X̂
(t,x)
i as an independent binary random variable such that

P[X̂
(t,x)
i = 1] = 1/ degGt(u),

79

which is the probability that Resample(u) chooses e at time t. We similarly define

d̂egAt(x) =
∑

X̂∈X̂ (t,x)

X̂,

that sums independent random variables, where each term in the sum is closely related to

the corresponding (t, x)-relevant experiments. By our careful choice of P[X̂
(t,x)
i = 1], we can

relates d̂egAt(x) to degAt(x) via the notion of stochastic dominance defined below.

Definition 3.19. Let Y and Z be two random variables not necessarily defined on the same

probability space. We say that Z stochastically dominates Y , written as Y ⪯ Z, if for all

λ ∈ R, we have P[Y ≥ λ] ≤ P[Z ≥ λ].

Our second important step is to prove the following:

Lemma 3.20 (Key Step 2). degAt(x) ⪯ d̂egAt(x).

Lemma 3.20, which will be proven in Section 3.5.1, reduces the problem to bounding

d̂egAt(x), which is indeed relatively easy to bound because it is a sum of independent random

variables. The last key step of our proof does exactly this:

Lemma 3.21 (Key Step 3). d̂egAt(x) ≤ 2 log (t)targett(x) + O(log |M |) with probability

1− 1/|M |10.

We prove Lemma 3.21 in Section 3.5.2. Here, we only mention one important point

about the proof. The log(t) factor above follows from the factor the number of (t, e)-relevant

experiment is always at most Rel(t, e) ≤ log(t) for any time t and edge e. This property is

so crucial and, actually, is what the proactive resampling technique is designed for.

Given three key steps above (Lemmas 3.18, 3.20 and 3.21), we can conclude the proof of

Lemma 3.14.

80

Proof of Lemma 3.14. Recall that we ultimately want to show that, for every timestep

t, the maintained assignment At has overhead O(log (T), log |M |). In other words, for every

t ∈ T and every x ∈M , we want to show that

degAt(x) ≤ targett(x) ·O(log (T)) + O(log |M |).

By Lemma 3.18, it suffices to show that

degAt(x) ≤ targett(x) ·O(log (T)) + O(log |M |).

By Lemmas 3.20 and 3.21,

P[degAt(x) ≥ 2 log(t)targett(x) + O(log |M |)]

≤ P[d̂egAt(x) ≥ 2 log(t)targett(x) + O(log |M |)] (Lemma 3.20)

≤ 1/|M |10. (Lemma 3.21)

Now we apply union bound to the probability above. There are T ≤ |M | timesteps and

|M | machines, hence the probability that a bad event happens is bounded by T |M |
|M |10 = 1

|M |8 .

Here, we conclude the proof of Lemma 3.14.

3.5.1. Key Step 2

The goal of this subsection is to prove Lemma 3.20. The following reduces our problem into

proving that a certain probabilistic condition holds.

Lemma 3.22 (Lemma 1.8.7(a) [Doe20]). Let X1, . . . , Xn be arbitrary boolean random vari-

ables and let X∗
1 . . . X

∗
n be independent binary random variables. If we have

P[Xi = 1|X1 = x1, . . . , Xi−1 = xi−1] ≤ P[X∗
i = 1]

81

for all i ∈ [n] and all x1, . . . , xi−1 ∈ {0, 1} with P[X1 = x1, . . . , Xi−1 = xi−1] > 0, then

n∑
i=1

Xi ⪯
n∑

i=1

X∗
i .

In light of the above lemma, we will prove that

P[X
(t,x)
i = 1|X(t,x)

1 , . . . , X
(t,x)
i−1] ≤ P[X

(t,x)
i = 1] ≤ P[X̂

(t,x)
i = 1],

in Claims 3.24 and 3.23, respectively. This would imply
∑

X
(t,x)
i ∈X (t,x) X

(t,x)
i ⪯∑

X̂
(t,x)
i ∈X̂ (t,x) X̂

(t,x)
i

by Lemma 3.22 above, and so degAt(x) ⪯ d̂egAt(x), completing the proof Lemma 3.20.

Claim 3.23. For any (t, x)-relevant experiment X
(t,x)
i , P[X

(t,x)
i = 1] ≤ P[X̂

(t,x)
i = 1].

Proof. Let e = e(X
(t,x)
i) and t′ = t(X

(t,x)
i) be the time that the experiment X

(t,x)
i is

taken. Note that t′ ≤ t as X
(t,x)
i is (t, x)-relevant. The claim follows because

P[X
(t,x)
i = 1] =

1

degGt′ (job(e))
≤ 1

degGt(job(e))
= P[X̂

(t,x)
i = 1].

The first equality is because X
(t,x)
i succeeds iff Resample(job(e)) chooses e at time t′, which

happens with probability 1/ degGt′ (job(e)). (Note that knowing that X
(t,x)
i is (t, x)-relevant

does not change the probability that the experiment X
(t,x)
i succeeds because we can determine

if Xi is (t, x)-relevant depends on information in the past, including X1, X2, . . . , Xi−1 and

the adversary’s actions.) The inequality is because t′ ≤ t and G undergoes deletions only.

The last equality is by definition of X̂
(t,x)
i . □

Claim 3.24. P[X
(t,x)
i = 1|X(t,x)

1 , . . . , X
(t,x)
i−1] ≤ P[X

(t,x)
i = 1].

Proof. By Assumption 3.17, this is true simply because knowing the results of the past

experiments and other experiments taken at the same timestep as X
(t,x)
i cannot increase

the probability that X
(t,x)
i being 1. Without the assumption, for some i and j < i, it is

possible that P[X
(t,x)
i = 1|X(t,x)

j = 0] > P[X
(t,x)
i = 1] if t(X

(t,x)
i) = t(X

(t,x)
j) and job(X

(t,x)
i) =

82

job(X
(t,x)
j), i.e., X

(t,x)
i and X

(t,x)
j are being sampled with the same Resample(job(X

(t,x)
i)

call. □

3.5.2. Key Step 3

In this section, we prove Lemma 3.21. To simplify our proofs, we say that time t′ is (t, e)-

relevant if there is a (t, e)-relevant experiment X created at time t(X) = t′. Since, for

each time step t′, the algorithm can only create one (t, e)-relevant experiment, we have the

following observation:

Observation 3.25. The number of (t, e)-relevant experiments R(t, e) is exactly the number

of (t, e)-relevant time steps.

Now, we state the following crucial lemma. It says that, there are at most log(t) experi-

ments that are (t, e)-relevant.

Lemma 3.26. Rel(t, e) ≤ log(t) for every t and e ∈ Rt.

Proof. By Observation 3.25, we will bound the total number of (t, e)-relevant time steps.

Suppose t′ is (t, e)-relevant. It suffices to show that if there is another time t′′ > t′ which

is (t, e)-relevant, then t′′ ≥ (t′ + t)/2. This means that each consecutive (t, e)-relevant time

steps decrease the gap to the fixed time step t by at least half. So this can happen at most

log(t) times.

To prove the claim, observe that t′′ /∈ Schedulet′(job(e)) as t′ is (t, e)-relevant. Hence,

the adversary must touch job(e) at some timestep s ≥ t′. When that happens, we add

s + 1, s + 2, . . . into Schedules(job(e)). Let s′ = s + 2log (t−s)−1. It is clear that

s′ ≥ s + 2⌈log(t−s)⌉−1 ≥ (s + t)/2 ≥ (t′ + t)/2.

83

Because any timestep in (t′, s′] cannot be (t, e)-relevant, t′′ must be greater than s′. Hence,

t′′ ≥ (t′ + t)/2 as claimed. □

The above implies that the expected value of d̂egAt(x) is not too far from the target load

of x at time t.

Lemma 3.27. E[d̂egAt(x)] ≤ log (t)targett(x).

Proof. We have the following

E[d̂egAt(x)] = E[
∑

X̂∈X̂ (t,x)

X̂] ≤ log (t)
∑

e∈Rt(x)

1/ degGt(job(e)) = log(t) · targett(x),

where the first and last equalities are by definitions of d̂egAt(x) and targett(x), respectively.

It remains to prove the inequality.

Observe that
∑

X̂∈X̂ (t,x)|e(X(t,x)
i)=e

E[X̂] = Rel(t, e)/ degGt(job(e)). This is because the

number of terms in the sum is exactly the number of (t, e)-relevant experiments Rel(t, e),

and we precisely define each X̂
(t,x)
i ∈ X̂ (t,x) where e = e(X

(t,x)
i) so that E[X̂

(t,x)
i] = P[X̂

(t,x)
i =

1] = 1/ degGt(job(e)). Therefore, by Lemma 3.26, we have

E[
∑

X̂∈X̂ (t,x)

X̂] =
∑

e∈Rt(x)

∑
X̂∈X̂ (t,x)|e(X(t,x)

i)=e

E[X̂] ≤ log(t) ·
∑

e∈Rt(x)

1/ degGt(job(e)).

□

The last step is to show that the expectation bound from Lemma 3.27 is concentrated.

However, since target(x) for the machine x can be very small (≪ 1), it is not enough to use

the standard multiplicative Chernoff’s bound. Instead, we will apply the version with both

additive error and multiplicative error stated below.

84

Lemma 3.28 (Additive-multiplicative Chernoff’s bound [BV14]). Let X1, . . . , Xn be inde-

pendent binary random variables. Let S =
∑n

i=1Xi. Then for all δ ∈ [0, 1] and α > 0,

P[S ≥ (1 + δ)E[S] + α] ≤ exp(−δα

3
).

Proof of Lemma 3.21. By plugging δ = 1 and α = 30 log |M | into the above bound, we

have

P
[
d̂egAt(x) ≥ 2E[d̂egAt(x)] + 30 log |M |

]
≤ exp(−30 log |M |/3) = |M |−10.

This completes the proof of Lemma 3.21 because E[d̂egAt(x)] ≤ log (t)targett(x) by Lemma 3.27.

3.6. Conclusion

In this chapter, we study fully dynamic spanner algorithms against an adaptive adversary.

Our algorithm in Theorem 3.1 maintains a spanner with near-optimal stretch-size trade-off

using only O(log n) amortized recourse. This closes the current oblivious-vs-adaptive gap

with respect to amortized recourse. Whether the gap can be closed for worst-case recourse

is an interesting open problem.

The ultimate goal is to show algorithms against an adaptive adversary with polyloga-

rithmic amortized update time or even worst-case. Via the multiplicative weight update

framework [Fle00, GK07], such algorithms would imply O(k)-approximate multi-commodity

flow algorithm with Õ(n2+1/k) time which would in turn improve the state-of-the-art. We

made partial progress toward this goal by showing the first dynamic 3-spanner algorithms

against an adaptive adversary with Õ(
√
n) update time in Theorem 3.3 and simultaneously

with Õ(1) amortized recourse in Theorem 3.2, improving upon the O(n) amortized update

time since the 15-year-old work by [AFI06].

Generalizing our Theorem 3.3 to dynamic (2k − 1)-spanners of size Õ(n1+1/k), for any

k ≥ 2, is also a very interesting and challenging open question.

85

3.7. Authors

This chapter was written by Sayan Bhattacharya, Thatchaphol Saranurak, and Pattara

Sukprasert. It was published at The Annual European Symposium on Algorithms (ESA)

2022 [BSS22].

86

CHAPTER 4

Dataset Versioning

Tremendous amount of data is produced daily due to the increasing usage of online

collaboration tools for data storage and management: multiple users might collaborate to

produce many versions of a raw data set. The management of all these versions, however, has

become increasingly challenging in large enterprises. When we have thousands of versions,

each of several terabytes, then storing all versions is extremely costly and wasteful. Reducing

data storage and data management costs is a major concern for enterprises [MSS+23].

Important not just in online collaborative settings, dataset versioning is also a key concern

for enterprise data lakes as well, that are managing huge volumes of customer data [NZM+19].

Often, existing versions of huge tabular datasets might require a few records (or rows) to

be modified (for example, product catalogs), thus resulting in a new version for each such

modification. This becomes challenging at the terabyte and petabyte scale and storing

all of the versions can incur a huge storage and data management cost for the enterprise.

Additionally, dataset versioning is a concern for Data Science and Machine learning (and

Deep Learning) pipelines as well, as several versions of the data can get generated by the

applications of simple transformations on existing data for training and insight generation

purposes, thereby increasing the storage and management costs. It is no surprise therefore

that data version control is emerging as one of the hot areas in industry [git05, pac16,

DVC17, Ter19, Lak20, Dol19], and even popular cloud solution providers like Databricks are

now capturing data lineage information that can help in effective data version management

[RFT22].

87

In a pioneering paper, Bhattacherjee et al. [BCH+15] proposed an innovative model

capturing the trade-off between storage cost and retrieval (recreation) cost. The com-

mon use case of their model includes version control (e.g., git, mercurial, svn), collabo-

rative data science and analysis, and sharing data sets and intermediate results among

data pipelines. The problem studied by the authors can be defined as follows. Given

datasets and a subset of the “deltas” between them (shown as directed edges connect-

ing versions), find a compact representation that minimizes the overall storage as well as

the retrieval costs of the versions. This involves a decision for each version – either we

materialize it, (store the version explicitly) or we rely on the edit operations to retrieve

the version from another materialized version when necessary. The downside of the lat-

ter is that to retrieve a version that was not materialized, we will have to incur a com-

putational overhead as well as a delay while the user waits. There are some follow-up

works [ZLJG18, DRMK+22, HXL+20]. However, those works either formulate new problems

in different use cases [DRMK+22, MSM+22, HXL+20] or implement a system incorporat-

ing the feature to store specific versions and deltas [HXL+20, WDL+18, SKS+19]. We will

discuss this in more detail in Section 4.1.4.

Fig. 4.1, taken from Bhattacherjee et al. [BCH+15], illustrates the central point through

different storage options. (i) shows the input graph, with annotated storage and retrieval

costs (for an edge, the retrieval cost indicates the cost to reconstruct the target version given

the source version). If the storage size is not a concern, we should store all versions as in

(ii). For (iii) and (iv), it is clear that, by storing v3, we shorten the retrieval times of v3 and

v5.

This retrieval/storage trade-off leads to the combinatorial problem of minimizing one

type of cost, given a constraint on the other. There are variations of our objective function

as well: retrieval cost of a solution can be measured by either the maximum or total (or

88

V1

V3V2

V5V4

<10000, 10000>

<10100, 10100> <9700,9700>

<9800,9800> <10120,10120>

<200,200> <1000,3000>

<50,400>
<800,2500>

<200,550>

V1

V3V2

V5V4

<10000, 10000>

<200,200> <1000,3000>

<50,400> <200,550>

V1

V3V2

V5V4

<10000, 10000>

<200,200>

<50,400> <200,550>

<9700,9700>

V1

V3V2

V5V4

<10000, 10000>

<10100, 10100> <9700,9700>

<9800,9800> <10120,10120>

(i) (ii)

(iii) (iv)

Figure 4.1. (i) A version graph over 5 datasets – annotation <a, b> indicates
a storage cost of a and a retrieval cost of b; (ii, iii, iv) three possible storage
graphs. The figure is taken from [BCH+15]

equivalently average) retrieval cost of files. This yields four different optimization problems

(Problems 3-6 in Table 4.1).

Problem Name Storage Cost Retrieval Cost

Prob. 1 Min Spanning Tree min R(v) <∞, ∀v
Prob. 2 Shortest Path Tree <∞ min {maxv R(v)}
Prob. 3 MinSum Retrieval (MSR) ≤ S min{∑v R(v)}
Prob. 4 MinMax Retrieval (MMR) ≤ S min {maxv R(v)}
Prob. 5 BoundedSum Retrieval (BSR) min

∑
v R(v) ≤ R

Prob. 6 BoundedMax Retrieval (BMR) min maxv R(v) ≤ R

Table 4.1. Problems 1-6

Fundamentally, we can think of the problem as a multi-root arborescence problem in a

directed graph. A single-root arborescence in a directed (weighted) graph G = (V,E) is

a rooted tree such that every node is reachable from the root, and efficient algorithms for

finding a minimum weight arborescence are known.

In our multi-root version, we can imagine that nodes have labels and our goal is to select

a subset of nodes (multiple roots) and every node not selected should have a directed path

from one of the roots to it. Edges may have multiple costs associated with them, relating to

storage and computation (reconstruction) costs. The total sum of the node label values and

89

edge costs directly contributes to the storage cost, and the path length to nodes, directly

determines the delay to materialize those versions.

4.0.1. Our Contributions

We provide the first set of provable inapproximability results and approximation algorithms

for the aforementioned optimization problems that trade-off between retrieval and storage

costs from different angles.

Hardness. Table 4.2 summarizes all hardness results in this paper. Notably, it’s im-

possible to approximate any of the problems within a constant factor on general directed

graphs, with MSR being especially hard. This also motivated the consideration for special

graph classes.

Problem Graph type Assumptions Inapproximability

MSR
arborescence

Triangle inequality
Single weight1

1
undirected 1 + 1

e − ε
general Ω(n)2

MMR
undirected 2− ε
general log∗ n− ω(1)

BSR
arborescence 1
undirected (12 − ε) log n

BMR undirected (1− ε) log n

Table 4.2. Hardness results

Tree Algorithms.We propose algorithms that work well when the given graph is a

tree (even this special case is not trivial, as we will see). Specifically, for any graph whose

underlying undirected graph is a tree , we show that BMR can be solved exactly and

efficiently, and that there exists a (1 + ε)-approximation algorithm for MSR.

Inspired by these algorithms on trees, we also proposed new heuristics on general graphs.

Compared to the best heuristics in [BCH+15], we improve the MSR solution by several orders

of magnitude and the BMR solution by up to 50%.

1Both are assumptions in previous work [BCH+15] that simplify the problems. In other words, our hardness
results apply even when the weights r and s are equal on the edges, and when the weight satisfies the triangle
inequality. These assumptions were not made in any other sections of this paper.
2This is true even if we relax S by O(log n).

90

Graphs Problems Algorithm Approx. Run Time

General Digraph MSR LMG-All heuristic close to LMG

Bounded Treewidth
MSR & MMR

DP-BTW
1 + ε

poly(n, 1
ε)BSR & BMR (1, 1 + ε)

Bidirectional Tree
MMR

DP-BMR exact
n2 logRmax

BMR n2

Table 4.3. Algorithms Summary. Here, Rmax is defined to be the maximum
retrieval cost between any pair of vertices in the tree.

Bounded Tree-width Algorithms. We extend our approximation algorithms for trees

to graphs that are close to trees, as measured by a property called treewidth [BB73]. Our

extensions to bounded treewidth graphs give (1 + ε)-approximation for MSR and MMR,

as well as (1, 1 + ε) bi-criteria approximation for BSR and BMR. One motivation behind

our attention on bounded treewidth graph is that Series–parallel graphs,3 which are very

similar to version graphs derived from repositories, has bounded treewidth. In fact, a graph

has treewidth at most two if and only if every biconnected component is a series-parallel

graph [Bod98]. To confirm our hypothesis, we measure treewidths from various repositories:

datasharing, styleguide, and leetcode have treewidth 2,3, and 6 respectively.

New Heuristic. Additionally for MSR, we show that LMG, the algorithm proposed

in [BCH+15], may perform arbitrarily poorly. This behavior is in line with the hardness

results and is confirmed by experiments. On the other hand, we propose a slight modification

named “LMG-All”(LMGA) which dominates the performance of LMG (by up to around 100

times in certain cases), while exhibiting decent run time on sparse graphs.

Inspired by our algorithms on trees, we also propose two new dynamic programming

(DP) heuristics for MSR and BMR respectively. Both algorithms perform extremely well in

almost all experiments, even when the input graph is not tree-like.

3See, e.g., Eppstein [Epp92] for formal definition.

91

4.1. Preliminaries

In this section, the definition of the problems, notations, simplifications, and assumptions

will be formally introduced.

4.1.1. Problem Setting

In the problems we study, we are given a directed graph G = (V,E). The given graph is a

version graph where vertices represent versions and edges capture “delta” between versions.

More precisely, every edge e = (u, v) is associated with two weight functions: storage cost

se and retrieval cost re.
4 It takes re time to retrieve v given that we have retrieved u. The

cost of storing (materializing) e is se, and the cost of storing v is sv. Since there is usually a

smallest unit of retrieval/storage cost in real world, we will work with nonnegative integers,

that is, se, re ∈ N for all e ∈ E.

In order to retrieve a version v from a materialized version u, there must be some path

P{(ui−1, ui)}ni=1 with u0 = u, un = v, such that all edges along this path are stored. In such

cases, we say that v can be retrieved from u with retrieval cost
∑n

i=1 r(ui−1,ui). In the rest of

the paper, we say v is “retrieved from u” if u is in the path to retrieve v, and v is “retrieved

from materialized u” if in addition u is materialized.

The general optimization goal is to select a set of versions M ⊆ V and a set of edges

F ⊆ E of small size (w.r.t. storage cost s) such that for each v ∈ V \M , the length of

shortest path in F (w.r.t. retrieval cost r) from any node m ∈M to v is optimized (different

versions of the problem optimize different measures). We denote the cost of this shortest

path as R(v).

In some previous works, an auxiliary root is added to the graph to simplify the problem.

Though not used in our approximation algorithms, this is an important simplification for

defining problems and for many previous heuristics. We briefly explain the concept here:

4We may use su,v in place of se and ru,v in place of re.

92

instead of finding both set of versions and set of edges, we could simplify the problem by

adding an auxiliary root vaux to the graph and let edges in the form (vaux, v) capture the

storage cost of storing v explicitly.

More precisely, we generate a graph Gaux = (Vaux = V ∪ {vaux}, Eaux = E ∪ E ′) from

G = (V,E) where E ′ = {(vaux, v) | v ∈ V }. Each e = (vaux, v) ∈ Eaux has se = sv and re = 0.

It is straightforward to see that any solution M ⊆ V, F ⊆ E has a 1-to-1 correspondence

with a directed spanning tree rooted at vaux. In particular, problems 1 and 2 reduce to

familiar problems on Gaux (see below).

4.1.2. Problem Definition

Different problems are formulated based on different optimization goals. Recall that, after

simplification, we want to select a set of edges F ⊆ Eaux such that H = (Vaux, F) is an

arborescence rooted at vaux. We let s(H) =
∑

e∈F se be the total storage cost. We also let

R(H) =
∑

v∈Vaux
R(v) be the total retrieval cost.

Since the two objectives are negatively correlated, and since we want to capture both

aspects, one natural way is to constrain one objective and optimize the other objective. The

following optimization goals were originally defined in Bhattacherjee et al. [BCH+15] though

we might use different names for brevity. See Table 4.1 for the 6 problem definitions.

Since the first two problems are well studied, we do not discuss them further. In a way,

MSR and BSR (MMR and BMR, resp.), are closely related. If we have an algorithm for

MSR (MMR, resp.), we can turn it into an algorithm for BSR (BMR, resp.) by binary-

searching over S. Vice versa, if we have an algorithm for BSR (BMR, resp.), we can solve

MSR (MMR, resp.) by binary-searching over R.

93

4.1.3. Further Assumptions

Motivated by real world application and tractability, we will introduce some further simpli-

fications or complications. In general, our hardness results (Section 4.2) apply even with the

strongest assumptions, namely undirected graph, (generalized) triangle inequality and single

weight function. Non-uniform demand is considered a special case among the hardness re-

sults. In the algorithm sections (Sections 4.3, 4.4), all our algorithms apply even on directed

graphs with two weight functions that do not satisfy triangle inequality. Bob: Changed this.

We note that our assumptions are natural and some of them were used in [GN22].

Triangle inequality: It is natural to assume that both weights satisfy triangle inequal-

ity, i.e., ru,v ≤ ru,w + rw,v, since we can always implement the delta ru,v by implementing

first ru,w and then rw,v. In fact, a more general triangle inequality should hold on Gaux, i.e.,

materializing u and storing (u, v) shouldn’t cost less space than materializing v directly.

All hardness results in this paper hold under the generalized triangle inequality.

Directedness: It is possible that for two versions u and v, ru,v ̸= rv,u. In real world,

deletion is also significantly faster and easier to store than addition of content. Therefore,

Bhattacherjee et al. [BCH+15] considered both directed and undirected cases; we argue that

it is usually more natural to model the problems as directed graphs and focus on that case.

Note that in the most general directed setting, it’s possible that we are given the delta (u, v)

but not (v, u). (or equivalently, sv,u ≥ su)

Single weight function: This is the special case where the storage cost function and

retrieval cost function are identical. This can be seen in the real world, for example, when

we use simple diff to produce deltas. We note all our hardness results hold for single weight

functions. All our approximations hold for directed graphs with two weight functions.

Arborescence and trees: An arborescence, or a directed spanning tree, is a connected

digraph where all vertices except a designated root have in-degree 1, and the root has in-

degree 0. If each version is a modification on top of another version, then the “natural” deltas

94

automatically form an arboreal input instance.5 For practical reasons, we also consider bi-

directional tree instances, meaning that both (u, v) and (v, u) are available deltas.6 Empirical

evidence shows that having deltas in both direction can greatly improve the quality of the

optimal solution.

Bounded treewidth: At a high level, treewidth measures how similar a graph is to a

tree [BB73]. As one notable class of graphs with bounded tree-widths, series-parallel graphs

highly resemble the version graphs we derive from real-world repositories. Therefore, graphs

with bounded treewidth is a natural consideration with high practical utility.

Non-uniform demand Some versions may be requested more often than others. To

model this, we may introduce demands dv for v ∈ V , and replace total re-creation cost(∑
v R(v)

)
with weighted total re-creation cost

(∑
v dvR(v)

)
in MSR and BSR. This variant,

although has great practical value, is not the focus of this paper. We demonstrate a hardness

result when demand is non-uniform and hope to address this problem in future works.

4.1.4. Related Works

4.1.4.1. Theory. There has been little theoretical analysis on the exact problems we

study. The optimization problems are first formalized in Bhattacherjee et al. [BCH+15],

which also compared the effectiveness of several proposed heuristics on both real-world and

synthetic data. They defined six variants of the problem, two of which are polynomial-

time solvable, and the other four are NP-hard (see Section 4.1.2). Zhang et al.[ZLJG18]

followed-up by considering a new objective that’s a weighted sum of objectives in MSR

and MMR. They also modified the heuristics to fit this objective. There are similar con-

cepts, including Light Approximate Shortest-path Tree (LAST) [KRY95] and Shallow-light

Tree (SLT) [KP97, HKS09, HHZ21, MRS+98, Rav94, KS16]. However, this line of work

focuses mainly on undirected graphs and their algorithms don’t generalize to the directed

5This does not hold true for version controls because of the merge operation.
6While both edges are available, their storage costs and retrieval costs are not necessarily identical.

95

case. Among the two problems mentioned, SLT is closely related to MMR and BMR. Here,

the goal is to find a tree that is light (minimize weight) and shallow (bounded depth). To

the best of our knowledge, there are only two works that give approximation algorithms for

directed shallow-light trees. Chimani and Spoerhase [CS15] gives a bi-criteria (1 + ε, nε)-

approximation algorithm that runs in polynomial-time. Their run-time analysis is quite

complicated, but it is at least nO(1/ε). Recently, Ghuge and Nagarajan [GN22] showed that

a problem called “submodular tree orienteering” has a O(logn
log logn

) approximation algorithm

that runs in quasi-polynomial time. In this problem, we want to find a directed tree T

rooted at r such that s(T) ≤ S and maximize f(V (T)) where the objective function f is a

submodular function. The authors also extended their algorithm so that it works when both

retrieval costs and storage costs are constrained. Their algorithm can be adapted into

O(log2 n
log logn

)-approximation for MMR and BMR where the approximation part is on the stor-

age cost. For MSR and BMR, their algorithm gives
(
O(log2 n

log logn
), O(log2 n

log logn
)
)

-approximation.

The idea is to run their algorithm for many rounds, where the objective of each round is to

cover as many nodes as possible. We also note that our assumptions, namely, triangle

inequality and integral weights are also used in their paper [GN22].

4.1.4.2. Systems. To implement a system captured by our problems, components spanning

multiple lines of works are required. For example, to get a graph structure, one has to keep

track of history of changes. This is related to the topic of data provenance [BKT00, SPG+].

Given a graph structure, the question of modeling “deltas” is also of interest. There is a line of

work dedicated to studying how to implement diff algorithms in different contexts [HVT98,

BL98, XJF+14, Mac00, Sue02].

In the case where we have more flexibility, one may think of creating deltas from dif-

ferent versions without much of the change history. However, computing all possible deltas

96

is too wasteful, hence it is necessary to utilize other approaches to identify similar version-

s/datasets. Such line of work is known in the literature as dataset discovery or dataset

similarlity [NZM+19, JJ19, FAK+18, BBN19, BFPK20].

After the work of Bhattacherjee et al. [BCH+15], there are several followup works that

implemented systems with a feature that saves only selected versions to reduce redun-

dancy. There are works that focus on version control for relational databases [BW21,

HXL+20, SKS+19, WDL+18, CD17, MGE+16, BBC+14, SCMMS12] and works that fo-

cus on graph snapshots [YCJ20, KD12, MSM+22]. However, since their focuse was on

designing full-fledged systems, the algorithms proposed for these systems are rather simple

heuristics, without rigorous theoretical results. Here is a non-exhaustive list of examples.

OrpheusDB [HXL+20] tackled a similar problem but was designed specifically for relational

databases. Forkbase [WDL+18] is a version control system for blockchain-like instances with

built-in fork semantics. Pensieve [YCJ20] is a system designed specifically for storing graphs.

Derakhshan et al. [DRMK+22] formulated a more generalized problem, which includes time

intervals. However, since they deal with data science & machine learning pipelines, they

only consider instances where the underlying graphs are directed acyclic.

4.1.4.3. Usecases. In a version control system such as git, our problem is similar to what

git pack command aims to do.7 The original heuristic for git pack, as described in an

IRC log, is to sort objects in particular order and only create deltas between objects in

the same window.8 It is shown in Bhattacherjee et al. [BCH+15] that git’s heuristic does

not work well compared to other methods.9 For svn, the most recent version and deltas

to the past versions are stored [Nag06]. Other existing data version management systems

include [pac16, DVC17, Ter19, Lak20, Dol19], which offer git-like capabilities suited for

7https://www.git-scm.com/docs/git-pack-objects
8https://github.com/git/git/blob/master/Documentation/technical/pack-heuristics.txt
9There is a blog post that further discusses the point: http://www.cs.umd.edu/~amol/DBGroup/2015/06/
26/datahub.html

https://www.git-scm.com/docs/git-pack-objects
https://github.com/git/git/blob/master/Documentation/technical/pack-heuristics.txt
http://www.cs.umd.edu/~amol/DBGroup/2015/06/26/datahub.html
http://www.cs.umd.edu/~amol/DBGroup/2015/06/26/datahub.html

97

different use cases, such as data science pipelines in enterprise setting, machine learning-

focused, data lake storage, graph visualization, etc.

4.2. Hardness results

We hereby list the main hardness (inapproximability) results of the problems. For com-

pleteness, we hereby define the notion of approximation algorithms used in this paper.

Definition 4.1 (ρ-approximation algorithm). Let P be a minimization problem where we

want to come up with a feasible solution x satisfying some constraints (e.g., a · x ≤ b). We

say that an algorithm A is a ρ-approximation algorithm for P if xA, the solution produced

by A is feasible and that OPT ≤ f(xA) ≤ ρ ·OPT where OPT is an optimal objective value

and f(x) is the objective value of a solution x. Here, ρ is an approximation ratio. Generally,

we want A to run in polynomial time.

Definition 4.2 (Polynomial-time approximation scheme (PTAS)). Polynomial-time ap-

proximation scheme (PTAS) A polynomial-time approximation scheme is an algorithm

A that, when given any fixed ε > 0, can produce an (1 + ε)-approximation in time that’s

polynomial in the instance size. We say that A is a fully polynomial-time approximation

scheme (FPTAS) if the runtime of A is polynomial in both the instance size and 1/ε.

Definition 4.3 (Bi-criteria approximation). In problems such as ours where optimizing an

objective function while meeting all constraints is challenging, we can consider relaxing both

aspects. We say that an algorithm A (α, β)-approximates problem P if the objective value of

its output is at most α times the objective value of an optimal solution and the constraints

are violated at most β times.10

10We allow x ≤ βy if the constraint x ≤ y is presented.

98

4.2.1. Heuristics can be Arbitrarily Bad

First, we consider the approximation factor of the best heuristic for MSR in Bhattacherjee et

al. [BCH+15], Local Move Greedy (LMG). The gist of this algorithm is to start with the

arborescence that minimizes the storage cost, and iteratively materialize a version that most

efficiently reduces retrieval cost per unit storage. In other words, in each step, a version

is materialized with maximum ρ where ρ = reduction in total of retrieval costs
increase in storage cost

. We provide the

pseudo-code for LMG in Algorithm 3.

Algorithm 3: Local Move Greedy (LMG)

Input : Extended version graph Gaux, storage constraint S
1 T ← minimum arborescence of Gaux rooted at vaux w.r.t. weight function s
2 Let S(T) be the total storage cost of T
3 Let R(v) be the retrieval cost of v in T
4 Let P (v) be the parent of v in T
5 U ← V
6 while S(T) < S do
7 (ρmax, vmax)← (0,∅)
8 for v ∈ U with S(T) + sv − sP (v),v ≤ S do
9 T ′ ← T \ {(P (v), v)} ∪ {(vaux, v)}

10 ∆ =
∑

v

(
R(v)−RT ′(v)

)
11 if ∆/(sv − sP (v),v) > ρmax then
12 ρmax ← ∆/(sv − sP (v),v)
13 vmax ← v
14 T ← T \ {(P (vmax), vmax)} ∪ {(vaux, vmax)}
15 U ← U \ {vmax}
16 if U = ∅ then
17 return T
18 return T

Note also that we work with the modified graph Gaux with the auxiliary root, as defined

in Section 4.1.1. Here we show that, even on simple instances, LMG could perform poorly

as an approximation algorithm.

Theorem 4.4. LMG has an arbitrarily bad approximation factor for MinSum Re-

trieval, even under the following assumptions: (1) G is a directed path; (2) there is a

single weight function; and (3) triangle inequality holds.

99

A

a

B

b

C

c(1− b
c
)b (1− b

c
)c

Figure 4.2. An adversarial example for LMG.

Proof. Consider the following chain of three nodes; the storage costs for nodes and the

storage/retrieval costs for edges are labeled in Fig. 4.2 (let a be large and ε = b/c be close

to 0). To save space, we do not show vaux but only the nodes of the version graph.

It’s easy to check that triangle inequality holds on this graph.

In the first step of LMG, the minimum storage solution of the graph is {A, (A,B), (B,C)}

with storage cost a + (1− ε)b + (1− ε)c.

Next, in the greedy step, two options are available: (1). Choosing B and delete (A,B):

ρ1 = 2(1−ε)b
εb

= 2
ε
− 1; (2). Choosing C and delete (B,C): ρ = (1−ε)b+(1−ε)c

εc
= (1−ε)b

b
+ 1−ε

ε
=

1
ε
− ε < 2

ε
− 1.

With any storage constraint in range
[
a + (1 − ε)b + c, a + b + c

)
, LMG will choose (1)

which gives a total retrieval cost of (1− ε)c. Note that with S < a+ b+ c, LMG is not able

to conduct step (2) after taking step (1). However, by choosing (2), which is also feasible,

the total retrieval cost is (1− ε)b. The proof is finished by observing c/b can be arbitrarily

large. □

4.2.2. Optimizations problems with known hardness

Before we show our hardness results, it is useful to introduce several other NP-hard problems

to reduce from.

Definition 4.5 (Set Cover). Elements U = {o1, . . . , on} and subsets S1, . . . , Sm ⊆ U are

given. The goal is to find A ⊆ [m] with minimum cardinality such that
⋃

i∈A Si = U .

Set Cover has no c lnn-approximation for any c < 1, unless NP ⊆ DTIME(nO(log logn)) [Fei98].

100

Definition 4.6 (Subset Sum). Given real values a1, . . . , an and a target value T . The goal

is to find A ⊆ [n] such that
∑

i∈A ai is maximized but not greater than T .

Subset Sum is also NP-hard, but its FPTAS is well studied [IK75, Kar75, GL78, GL94,

KMPS03].

Definition 4.7 (k-median and Asymmetric k-median). Given nodes V = {1, . . . , n}, k,

and symmetric (resp. asymmetric) distance measures Di,j for i, j ∈ V that satisfies triangle

inequality. The goal is to find a set of nodes A ⊆ V of cardinality at most k that minimizes

∑
v∈V

min
c∈A

Dv,c.

The symmetric problem is well studied. The best known approximation lower bound for

this problem is 1 + 1
e
. We note that an inapproximability result of 1 + 2

e
[JMS02] is often

mistakenly quoted for this problem, whereas the authors actually studied the k-median

variant where the “facilities” and “clients” are in different sets. With the same method we

can only get the hardness of 1 + 1/e in our definition.

The asymmetric counterpart is rarely studied. The manuscript [Arc00] showed that there

is no (α, β)-approximation (β is the relaxation factor on k) if β ≤ 1
2
(1−ε)(lnn− lnα−O(1)),

unless NP ⊆ DTIME(nO(log logn)).

Notably, even symmetric k−median is inapproximable when triangle inequality is not

assumed on the distance measure D. [SO06] However, this hardness is not preserved by

the standard reduction to MSR (as in Section 4.2.3.1), since the path distance on graphs

inherently satisfies triangle inequality.

Definition 4.8 (k-center and Asymmetric k-center). Given nodes V = {1, . . . , n},

k, and asymmetric distance measures Di,j for i, j ∈ V that satisfies triangle inequality. The

101

goal is to find a set of nodes A ⊆ V of cardinality at most k that minimizes

max
v∈V

min
c∈A

Dv,c.

The symmetric problem has a greedy 2-approximation, which is optimal unless P= NP

[Gon85].

The asymmetric variant has log∗ k approximation algorithms [Arc01], and one cannot get

a better approximation than log∗ n unless NP ⊆ DTIME(nO(log logn)), if we allow k to be

arbitrary [CGH+05].

4.2.3. Hardness Results on General Graphs

In this subsection, we prove the various hardness of approximations on general input graphs.

We first focus on MinSum Retrieval and MinMax Retrieval where the constraint is

on storage cost and the objective is on the retrieval cost. We then shift our attention to

BoundedMax Retrieval and BoundedSum Retrieval in which the constraint is of

retrieval cost and the objective function is on minimizing storage cost.

4.2.3.1. Hardness for MinSum Retrieval and MinMax Retrieval.

Theorem 4.9. On version graphs with n nodes, even assuming single weight function

and triangle inequality, there is no:

(1) (α, β)-approximation for MinSum Retrieval if β ≤ 1
2
(1−ε)

(
lnn− lnα−O(1)

)
;

in particular, for some constant c, there is no (c ·n)-approximation without relaxing

storage constraint by some Ω(log n) factor, unless NP ⊆ DTIME(nO(log logn));

(2) (1 + 1
e
− ε)-approximation for MinSum Retrieval on undirected graphs for all

ε > 0, unless NP ⊆ DTIME(nO(log logn));

(3)
(

log∗(n)−ω(1)
)
-approximation for MinMax Retrieval, unless NP ⊆ DTIME(nO(log logn));

102

(4) (2− ε)-approximation for MinMax Retrieval on undirected graphs for all ε > 0,

unless NP =P.

Here, log∗(n) denotes the number of logarithms it takes to decrease n down to 3/2.

Proof. MinSum Retrieval. There is an approximation-preserving (AP) reduction11

from (Asymmetric) k-median to MSR. Let su,v = ru,v = du,v, the distance from u to v

in a (asymmetric) k-median instance. By setting the size of each version v to some large

N and storage constraint to be S = kN + n, we can restrict the instance to materialize at

most k nodes and retrieve all other nodes through deltas. For large enough N , an (α, β)-

approximation for MSR provides an (α, β)-approximation for (Asymmetric) k-median,

just by outputting the materialized nodes. The desired results follow from known hardness

for asymmetric [Arc00] or symmetric (Section 4.2.2) k-median.

MinMax Retrieval. A similar AP reduction exists from (Asymmetric) k-center

to MMR. Again, we can set all materialization costs to N and cu,v = ru,v = du,v, and the

desired result follows from the hardness of asymmetric [CGH+05] and symmetric [Gon85]

k-center. □

4.2.3.2. Hardness for BoundedSum Retrieval and BoundedMax Retrieval.

Theorem 4.10. On both directed and undirected version graphs with n nodes, even as-

suming single weight function and triangle inequality, there is no:

(1) c1 lnn-approximation for BoundedSum Retrieval for any c1 < 0.5;

(2) c2 lnn-approximation for BoundedMax Retrieval for any c2 < 1.

unless NP ⊆ DTIME(nO(log logn)).

To prove this theorem, we will present our reduction to these two problems from Set

Cover. We then show their structural properties on Lemmas 4.11 and 4.12. We finally

show the proof at the end of this section.

11See, e.g., [Cre97] for more detail.

103

Reduction Given a set cover instance with sets A1, . . . , Am and elements o1, . . . , on, we

construct the following version graph:

1. Build versions ai corresponding to Ai, and bj corresponding to oj. All versions have

size N for some large N ∈ N.

2. For all i, j ∈ [m], i ̸= j, create symmetric delta (ai, aj) of weight 1. For each oj ∈ Ai,

create symmetric delta (ai, bj) of weight 1.

Lemma 4.11 (BMR’s structure). Assume we are given an approximate solution to BMR

on the above version graph under max retrieval constraint R = 1. In polynomial time, we

can produce another solution, of equivalent or better quality, such that:

(1) Only the set versions are materialized. i.e., all {bj}nj=1 are retrieved via deltas.

(2) The storage cost does not exceed that of the original approximate solution, and the

maximum retrieval cost is feasible.

Proof of Lemma 4.11. We show (1) by contradiction. Suppose the algorithm pro-

duces a solution that materializes bj.

Case 1: If there exists ai that needs to be retrieved through bj (i.e., oj ∈ Ai), then we

can replace the materialization of bj with that of ai and replace edges of the form (bj, ak)

with (ai, ak). It is straightforward to see that neither storage cost nor retrieval cost increased

in this process.

Case 2: If no other node is dependent on bj, we can pick any ai such that (ai, bj) exists

(again, oj ∈ Ai). If ai is already materialized in the original solution, then we can store

(ai, bj) instead of materializing bj, which decreases storage cost.

Case 3: If no ai adjacent to bj is materialized in the original solution, then some delta

(ai′ , ai) has to be stored with the former materialized to satisfy the R = 1 constraint. We

can hence materialize ai, delete the delta (ai′ , ai), and again replace the materialization of

bj with the delta (ai, bj) without increasing the storage. Fig. 4.3 illustrates this case. □

104

Figure 4.3. Case 1 in proof of Lemma 4.11. The improved solution is on the
right.

Lemma 4.12 (BSR’s structure). Assume we are given an approximate solution to BSR on

the above version graph under total retrieval constraint R = m−mOPT + n, where mOPT is

the size of the optimal set cover. In polynomial time, we can produce an improved solution

such that:

(1) Only the set versions are materialized. i.e., all {bj}nj=1 are retrieved via deltas.

(2) The storage cost does not exceed that of the original approximate solution, and the

total retrieval cost is feasible.

Proof of Lemma 4.12. We refer to the same three cases as in Lemma 4.11, and we

want to show that, if bj is materialized,

Case 1 : if some ai is retrieved through bj, we can apply the same modification as

Lemma 4.11. We can replace the materialization of bj with that of ai, and replace edges

of the form (bj, ak) with (ai, ak). Neither the storage nor the retrieval cost increases in this

case.

Now we WLOG assume no deltas (bj, ai) are chosen.

Case 2 : if no ai is retrieved through bj, and some ai adjacent to bj is materialized, then

method in Lemma 4.11 needs to be modified a bit in order to remove the materialization of

bj. If we simply retrieve bj via the delta (ai, bj), we would lower the storage cot by N − 1

and increase the total retrieval cost by 1. This renders the solution infeasible if the total

retrieval constraint is already tight.

105

To tackle this, we analyze the properties of the solutions with total retrieval cost exactly

R. Observe that all solutions must materialize at least mOPT nodes at all time, so a config-

uration exhausting the constraint R must have some version w with retrieval cost at least 2.

If this w is a set version, we can loosen the retrieval constraint by storing a delta of cost 1

from some materialized set instead. If w is an element version, then we can materialize its

parent version (a set covering it), which increases storage cost by N − 1 and decreases total

retrieval cost by at least 2.

Either case, by performing the above action if necessary, we can resolve case 2 and obtain

a approximate solution that’s not worse than before.

Case 3: this is where each ai adjacent to bj neither retrieves through bj nor is materialized.

Fix an ai, then some delta (ai′ , ai) has to be stored to retrieve ai; we can WLOG assume that

the former is materialized. We can thus materialize ai, delete the delta (ai′ , ai), and again

replace the materialization of bj with the delta (ai, bj) with no increase in either costs. □

Equipped with Lemma 4.11 and Lemma 4.12, we are now ready to prove Theorem 4.10.

Proof of Theorem 4.10. Assumign m = O(n) in the set cover instance, we present

an AP reduction from Set Cover to both BMR and BSR.

BoundedMax Retrieval To produce a set cover solution, we take an improved ap-

proximate solution for BMR, and output the family of sets whose corresponding versions

are materialized. Since none of the bj’s is stored, they have to be re-created from some ai.

Moreover, under the constraint R = 1, they have to be a 1-hop neighbor of some ai, meaning

the materialized ai covers all of the elements in the set cover instance.

Finally, we prove that the approximation factor is preserved: for large N , the improved

solution has objective value

≈ N |{i : ai materialized}|.

106

Hence, assuming n = O(m), an α(|V |)-approximation for MMR provides a (α(n) + O(1))-

approximation for set cover. Hence we can’t have α(|V |) = c lnn for c < 1 unless NP ⊆

DTIME(nO(log logn)) [Fei98].

Figure 4.4. The BSR case in proof of Theorem 4.10. The solution on the right
has one version (b2) of retrieval cost 2, hence it must materialize an additional
version am to satisfy the total retrieval constraint.

BoundedSum Retrieval Assume for the moment that we know mOPT, then we can set

total retrieval constraint to be R = m−mOPT +n, and work with an improved approximate

solution. This choice of R is made so that an optimal solution must materialize the set

versions corresponding to a minimum set cover. All other nodes must be retrieved via a

single hop.

By Lemma 4.12, we assume all element versions are retrieved from a (not necessarily

materialized) set version that covers it. If m = O(n), an α(|V |)-approximation of BMR

materializes mALG ≤ (α(n) + O(1))mOPT nodes.

Note that, by materializing additional nodes, we are allowing a set B of bj’s to have

retrieval cost ≥ 2. Let H denote the set of “hopped sets” Ai, which are not materialized yet

are necessary to retrieve some bj through the delta (ai, bj). By analyzing the total retrieval

cost, we can bound |H| by:

|H| ≤ |B| ≤ mALG −mOPT

Specifically, each additional bj ∈ B increases retrieval cost by at least 1 compared to the

optimal configuration; yet each of the mALG −mOPT additionally materialized set versions

107

only decreases total retrieval cost by 1. It follows that the family of sets

S = {Ai : ai materialized } ∪H

is a
(

2α(n)−O(1)
)

-approximation solution for the corresponding Set Cover instance.

S is feasible because all of the bj’s are retrieved through some (ai, bj), where Ai ∈ S; on the

other hand, the size of both sets on the right hand side are at most (α(n) + O(1))mOPT,

hence the approximation factor holds. Thus, any α(|V |) = c lnn for any c < 0.5 will result

in a Set Cover approximation factor of 2c · ln(n).

We finish the proof by noting that, without knowing mOPT in advance, we can run the

above procedure for each possible guess of the value mOPT, and obtaining a feasible set

cover each iteration. The desired approximation factor is still preserved by outputting the

minimum set cover solution over the guesses. □

As a side note, MinSum Retrieval becomes impossibly hard on general graphs when

non-uniform demands are allowed:

Theorem 4.13. On directed version graphs with r = s, triangle inequality, and non-

uniform demand, MinSum Retrieval is inapproximable.

Proof. This follows from the same reduction from Asymmetric k-median as in Sec-

tion 4.2.3.1. □

4.2.4. Hardness on Arborescence

We show that MSR and BSR are NP-hard on arborescence instances. This essentially shows

that our FPTAS algorithm for MSR in Section 4.4.1 is the best we can do in polynomial

time.

Theorem 4.14. On arborescence inputs, MinSum Retrieval and BoundedSum Re-

trieval are NP-hard even when we assume single weight function and triangle inequality.

108

In order to prove the theorem above, we rely on the following reduction which connects

two problems together.

Lemma 4.15. If there exists poly-time algorithm A that solves BoundedSum Retrieval

(resp. BoundedMax Retrieval) on some set of input instances, then there exists a poly-

time algorithm solving MinSum Retrieval (resp. MinMax Retrieval) on the same set

of input instances.

Proof. Suppose we want to solve a MSR (resp. MMR) instance with storage constraint

S. We can use A as a subroutine and conduct binary search for the minimum retrieval

constraint R∗ under which BSR (resp. BMR) has optimal objective at most S. R∗ is thus

an optimal solution for our problem at hand.

To see that the binary search takes poly(n) steps, we note that the search space for

the target retrieval constraint is bounded by n2rmax for BSR and nrmax for BMR, where

rmax = maxe∈E re. □

Now we show the proof for Theorem 4.14.

Proof of Theorem 4.14. Assuming Lemma 4.15, it suffices to show the NP-hardness

of MSR on these inputs.

Consider an instance of Subset Sum problem with values a1, . . . , an and target T . This

problem can be reduced to MSR on an n-nary arborescence of depth one. Let the root

version be v0 and its children v1, . . . , vn. The materialization cost of vi is set to be ai + 1 for

i ∈ [n], while that of v0 is some N large enough so that the generalized triangle inequality

holds. For each i ∈ [n], we can set both retrieval and storage costs of edge (v0, vi) to be 1.

Consider MSR on this graph with storage constraint S = N + n + T . From an optimal

solution, we can construct set A = {i ∈ [n] : vi materialized}, an optimal solution for the

above Subset Sum instance. □

109

4.3. Exact Algorithm for MMR and BMR on bi-directional trees

By Lemma 4.15, we can use an algorithm for BMR to solve for MMR. Therefore, in

this section, it suffices to focus on the problem BMR, namely, we are given constraint R

on the maximal retrieval cost, and we want to minimize the total storage cost. We refer to

Algorithm 4 for the pseudo code of the algorithm.

Algorithm 4: DP-BMR

Input : T , a bidirectional tree and R, the max retrieval cost constraint
1 Orient T arbitrarily, and sort V in reverse topological order
2 DP[v][u]←∞ for all v, u ∈ V
3 for v in V do
4 for u in V such that R(u, v) ≤ R do
5 if u = v then
6 DP[v][u]← sv
7 else
8 DP[v][u]← sp[v],v, where p[v] is the node before v on the path from u to v
9 for w child of v do

10 if w in the path from u to v then
11 DP[v][u]← DP [v][u] + DP[w][u]
12 else
13 DP[v][u]← DP [v][u] + min{OPT [w],DP[w][u]}
14 OPT [v]← min{DP [v][w] : w ∈ V (T[v])}
15 return OPT[vroot]

Let T = (V,E) be a bi-directional tree instance (abbreviated “tree” in the rest of the

section) with given maximum retrieval cost constraint R. We can arbitrarily pick a vertex

vroot as root, and orient the tree such that the root has no parent, while all other nodes have

exactly one parent. This process is straightforward, so we will assume that the given tree is

rooted for the rest of the section.

For some v ∈ V , let T[v] denote the subtree of T rooted at v. If v is retrieved from

materialized u, we use puv to denote the parent of v on the unique u − v path to retrieve v.

We write pvv = v. We now describe a dynamic programming (DP) algorithm DP-BMR that

solves BMR exactly on T .

110

DP variables. For u, v ∈ V , we define DP[v][u] to be the minimum storage cost of

a partial solution on T[v] with respect to version u. The partial solution is defined as a

solution with all descendants of v are retrieved from some materialized node in T[v], while v

is retrieved from a materialized version u, potentially outside of the subtree T[v]. See Fig. 4.5

for an illustration.

Importantly, also note that when calculating the storage cost for DP [v][u], if u is not a

part of T[v], the incident edge (puv , v) is involved in the calculation, while other edges in the

u− v path, or the cost to materialize u, are not involved in it.

Base case. We iterate from the leaves up. Let R(u, v) denote the retrieval cost of the

path from u to v. For a leaf v, we set DP [v][v] = sv, and DP [v][u] = s(puv ,v) for all u ̸= v

with R(u, v) ≤ R. Here, puv is just the unique parent of v in the tree structure.

All choices of u, v such that R(u, v) > R are infeasible, and we therefore set DP[v][u] =∞

in these cases.

Recurrence. For convenience, we define a helper variable OPT [v] to be the minimum

storage cost on the subproblem T[v], such that v is either materialized or retrieved from one

of its descendants.12 In other words,

OPT [v] = min{DP [v][w] : w ∈ V (T[v])}

For recurrence on DP[v][u] such that R(v, u) ≤ R, there are three possible cases of the

relationship between v and u (see Fig. 4.5 for illustration). In each case, we outline what we

add to DP[v][u] below.

Case 1. If u = v, we materialize v, and each child w of v can be either materialized,

retrieved from their materialized descendants, or retrieved from the materialized u = v (u

for the other two cases). Note that this is exactly min{OPT [w],DP[w][u]}, and similar facts

hold for the following two cases as well.

12Note that the case where v is retrieved from u outside of T[v] is not considered in this helper variable.

111

Figure 4.5. 3 cases of DP-BMR. The blue nodes and edges are stored in the
partial solution.

Case 2. If u ∈ V (T[v])\{v}, we would store the edge (puv , v). Note that puv is a child of v

and hence is also retrieved from the materialized u, so we must add DP[puv][u]. We then add

min{OPT [w],DP[w][u]} for all other children w of v.

Case 3. If u ̸∈ V (T[v]), we add the edge (puv , v), where puv is the parent of v in the tree

structure. We then add min{OPT [w],DP[w][u]} for all children as before.

Output We output OPT[vroot], which is the storage cost of the optimal solution. To

output the configuration achieving this optimum, we can use the standard procedure where

we store the configuration at each DP.

Theorem 4.16. BoundedMax Retrieval is solvable on bidirectional tree instances

in O(n2) time.

Proof. Time complexity

It is straightforward to see that, for each v, u, computing DP [v][u] takes O(deg(v)) time.

Hence, computing all the dynamic programming table takes

∑
u∈V

∑
v∈V

deg(v) =
∑
u∈V

O(n) = O(n2).

Moreover, it takes O(n2) time to compute the values R(u, v) on a tree. We thus conclude

that DP-BMR runs in O(n2) time.

Optimality We will show by induction that our DP table calculates optimal solution

corresponding to each state, i.e., DP [v][u] represents the total storage cost needed for T[v]

112

given that v is retrieved from materialized u. Note that if u /∈ T[v], then only the edge (puv , v)

is considered in DP [v][u] among all edges in u− v path in T .

In the base case on each leaf v, we set DP [v][v] = sv, and DP [v][u] = s(puv ,v) if u − v

path has length at most R. This is consistent with the optimal storage cost on the trivial

subproblems.

Inductively, suppose we want to compute DP [v][u]. Notice that the storage needed for

two children w,w′ are independent from each other, implying that we can consider them

separately. For each child w, if u /∈ T[w], then w can either be retrieved through u or

some other node in T[w]. Hence, we add to DP [v][u] the minimum between OPT [w] =

minu′∈T[w]
DP [w][u′] and DP [w][u]. Otherwise, if u ∈ T[w], in order for v to be retrieved

through u, w has to be retrieved through u, so we add DP [w][u] to DP [v][u]. Finally, we

increase DP[v][u] by s(puv ,v) if u ̸= v and sv if u = v. These are all possible cases. Given

that DP [w][u] is computed correctly, for all w ∈ T[v] and u ∈ V , then we compute DP [v][u]

correctly.

By induction, we conclude that the DP table is computed correctly. Since the table

can capture all feasible solutions, it must capture an optimal solution as well. Hence, our

algorithm outputs an optimal answer. □

4.4. Fully polynomial time approximation scheme for MSR via Dynamic

Programming

In this section we focus on problem MSR and present a fully polynomial time approxima-

tion scheme (FPTAS) on digraphs whose underlying undirected graph has bounded treewidth.

Similar techniques can be extended to all three other versions of the problems. However, we

focus on the method itself and omit the details for the other three problems due to space

constraints.

113

We start by describing a dynamic programming (DP) algorithm on trees in Section 4.4.1.

In Section 4.4.2, we define all notations necessary for the latter subsection. Finally, in

Section 4.4.3, we show how to extend our DP to the bounded treewidth graphs.

4.4.1. Warm-up: Bidirectional Trees

As shown in Theorem 4.4, the previously best-working LMG algorithm performs arbitrarily

badly even on directed paths. In this section, as a warm-up to the more general algorithm in

Section 4.4.3, we will present an FPTAS for bidirectional tree instances of MSR via dynamic

programming. This algorithm also inspired a practical heuristic DP-MSR, presented in

section Section 4.6.2.3.

We can WLOG assume the tree has a designated root vroot and a parent-child hierarchy.

We can further assume that the tree is binary, via the standard trick of vertex splitting and

adding edges of zero weight if necessary. See Appendix C.1.1 for details.

Figure 4.6. An illustration of DP variables in Section 4.4.1

DP variables. We explain the DP variables defined for MinSum Retrieval here: we

define DP[v][k][γ][ρ] to be the minimum storage cost for the subproblem with constraints

v, k, γ, ρ such that (with examples illustrated in Fig. 4.6)

(1) Root for subproblem v ∈ V is a version on the tree; in each iteration, we consider

the subtree rooted at v.

(2) Dependency number k ∈ N stands for the number of versions that will be retrieved

via v (including v itself) in the subproblem solution. This is useful when calculating

the extra retrieval cost incurred by retrieving v from its parent.

114

Figure 4.7. Eight types of connections on a binary tree. A node is colored if
it is materialized or retrieved via delta from outside the chart. Otherwise, an
uncolored node is retrieved from another node as illustrated with the arrows.

(3) Root retrieval γ ∈ N represents the cost of retrieving version v, the root in the

subproblem. This is useful when calculating the extra retrieval cost incurred by

retrieving the parent of v from v. Note that the root retrieval cost will be discretized,

as specified later.

(4) Total retrieval ρ ∈ N represents the total retrieval cost of the subsolution. Similar

to γ, ρ will also be discretized.

Discretizing retrieval costs. Let rmax = maxe∈E{re}. The possible total retrieval

cost ρ is within range {0, 1, . . . , n2rmax}. To make the DP tractable, we partition this range

further and define approximated retrieval cost r′u,v for edge (u, v) ∈ E as follows:

r′u,v = ⌈ru,v
l
⌉ where l =

n2rmax

T (ε)
, T (ε) =

n4

ε
,

and T (ε) is the number of “ticks” we want to partition the retrieval range into. The specific

choice for T (ε) will become useful in the proof for Theorem 4.18. We will work with r′ in

the rest of the subsection.

Base case For a leaf v, we let DP [v][1][0][0] = sv.

115

Recurrence step For each iteration, we take the minimum over all possible situations

as illustrated in Fig. 4.7. The recurrence relation for all cases is given in Appendix C.1.2,

and explained in detail for the representative cases below:

4.4.1.1. Dealing with dependency. This refers to the case where a child is to be retrieved

from its parent v. Consider case 2 in Fig. 4.7 as an example. Note that γ = 0 in case 2 since

v is materialized. The minimum storage cost in case 2 (given v, k, γ = 0, ρ) is:

S2 = sv + sv,c1 − sc1

+ min
ρ1≤ρ

{
DP [c1][k − 1][0][ρ1 − (k − 1)r′v,c1](4.1)

+ min
k′,γ2
{DP [c2][k

′][γ2][ρ− ρ1]}
}

(4.2)

In Eq. (4.1), note the dependency number for c1 needs to be k − 1 for that of v to

be k. The choice of ρ1 determines how we are allocating retrieval costs budget ρ to c1

and c2 respectively. Specifically, the total retrieval cost allocated to subproblem on G[c1] is

ρ1− (k− 1) · r′v,c1 since an extra (k− 1) · r′v,c1 cost is incurred by the edge (v, c1), as it is used

(k − 1) times by all versions depending on c1.

In Eq. (4.2), for a given choice of ρ1, we want to find the minimum storage cost over the

dependency and retrieval cost of c2. Minimizing this sum of Eqs. (4.1) and (4.2) over all

possible combinations of budget splitting yields the minimum storage cost for case 2.

Uprooting We introduce Uprooting, a process extensively used in the next section. In

the above example, the subproblem solution on G[c1] materializes c1, yet in case 2 we would

replace this materialization with the diff (v, c1). This explains the −sc1 term in the equation

for S2.

116

In general, the restriction of a global solution on a subproblem G[v] does not result in

a feasible partial solution, due to the possibility of some v ∈ V (G[z]) that’s retrieved from

versions outside of G[z]. The uprooting process allows us to utilize the DP variables on the

subproblem in this case. Conversely, by reversing this process (un-uproot), we can check

if a subproblem is compatible with a bigger problem. We explain this in more detail on

Section 4.4.3.

Distributing dependency An additional complication arise in case 4, where v is re-

quired to have dependency number k and root retrieval 0. For each k1 +k2 = k−1, we must

go through subproblems where c1 has dependency number k1 and c2 has that of k2.

4.4.1.2. Dealing with retrieval. In contrast with dependencies, this refers to the case

where v is retrieved from one of its children. We take case 5 as an example: given v, k =

0, γ, ρ,

S5 = sc1,v

+ min
ρ1≤ρ

{
min
k1
{DP [c1][k1][γ − rc1,v][ρ1 − γ]}

+ min
k2,γ′
{DP [c2][k2][γ

′][ρ− ρ1]}
}

We allocate the retrieval cost similar to case 2. We will care less about the dependency

number, over which we will take minimum. The retrieval cost for c1 now has to be γ − rc1,v

since v has to be retrieved from c1. Note importantly that now we are counting the retrieval

cost for v in ρ1, and so the retrieval cost remaining for the left subproblem now is ρ1 − γ.

Notice that since only one way of retrieving v will be stored, this retrieval cost will not be

over-counted in any cases.

117

Similarly, we take minimum on all other unused parameters to get the best storage for

case 5.

4.4.1.3. Combining the ideas. We take case 8 as an example where both retrieval and

dependencies are involved. In case 8, v is retrieved from child c1 (retrieval), and child c2 is

retrieved from v (dependency). Given v, k, γ, ρ, we claim that:

S8 = sc1,v + sv,c2 − sc2

+ min
ρ1+ρ2=ρ

{
min
k′
{DP [c1][k

′][γ − rc1,v][ρ1 − γ]}

+ DP [c2][k − 1][0][ρ2 − (k − 1) · (r2 + γ)]

}

Note that the c1 side is identical to that for case 5. In combining both dependency and

retrieval cases, there is slight adjustment in the dependency side: since v now might also

depend on nodes further down c1 side, the total extra retrieval cost created by adding edge

(v, c2) becomes (k − 1) · (r2 + γ) instead of (k − 1) · (r2).

Output Finally, with storage constraint S and root of the tree vroot, we output the

configuration that outputs the minimum ρ which achieves the following

∃k ≤ n, γ ∈ N s.t. DP [vroot][k][γ][ρ] ≤ S

We shall formally state and prove the FPTAS result below.

Lemma 4.17. The DP algorithm can output a configuration with total retrieval cost at most

OPT + εrmax in poly(n, 1/ε) time.

Proof. By setting T (ε) = n4

ε
, we have l = n2rmax

T (ε)
= εrmax

n2 . Note that we can get an

approximation of the original retrieval costs by multiplying each r′e with l. This creates an

estimation error of at most l on each edge. Note further that in the optimal solution, at

most n2 edges are materialized, so if ρ∗ is the minimal discretized total retrieval cost, we

118

have

total retrieval of DP output ≤ lρ∗ ≤ OPT + n2l ≤ OPT + εrmax

□

Now we restate Theorem 4.18:

Theorem 4.18. For all ε > 0, there is a (1 + ε)-approximation algorithm for MinSum

Retrieval on bidirectional trees that runs in poly(n, 1
ε
) time.

Proof. Given parameter ε, we can use the DP algorithm as a black box and iterate the

following for up to n times:

(1) Run the DP for the given ε on the current graph. Record the output.

(2) Let (u, v) be the most retrieval cost-heavy edge. We now set r(u,v) = 0 and s(u,v) = sv.

If the new graph is infeasible for the given storage constraint, or if all edges have

already been modified, exit the loop.

At the end, we output the best out of all recorded outputs. This improves the previous

bound when rmax > OPT: at some point we will eventually have rmax ≤ OPT, which

means the output configuration, if mapped back to the original input, is a feasible (1 + ε)-

approximation. □

4.4.2. Treewidth-Related Definitions

We now consider a more general class of version graphs: any G whose underlying undirected

graph G0 has treewidth bounded by some constant k.

Definition 4.19 (Tree Decomposition [BB73]). A tree decomposition of an undirected graph

G0 = (V0, E0) is a tree T = (VT , ET), where each z ∈ VT is associated with a subset (“bag”)

Sz of V0. s The bags must satisfy the following conditions:

(1)
⋃

z⊆VT
Sz = V0;

119

(2) For each v ∈ V0, the bags containing v induce a connected subtree of T ;

(3) For each (u, v) ∈ E0, there exists z ∈ VT such that Sz contains both u and v.

The width of a tree decomposition T = (VT , ET) is maxz∈VT
|Sz| − 1.

The treewidth of undirected graph G0 is the minimum width over all tree decompositions

of G0.

It follows that undirected forests have treewidth 1. We further note that there is also a

notion of directed treewidth [JRST01], but it’s not suitable for our purpose.

For our purpose, we will WLOG assume a special kind of tree decomposition:

Definition 4.20 (Nice Tree Decomposition [Bod98]). A nice tree decomposition is a tree

decomposition with a designated root, where each node is one of the following types:

(1) a leaf, which has no children;

(2) a separator, which has one child, and whose bag is a subset of the child’s bag;

(3) a join, which has two children, and whose bag is exactly the union of its children’s

bags.

Given a bound k on the treewidth, there are multiple algorithms for calculating a desired

tree decomposition of width k [Bod93, ACP87, FTV15], or an approximation of k [BF21,

FLS+18, Kor22, FHL05]. For our case, the algorithm by Bodlaender [ACP87] can be used to

compute a tree decomposition in time 2O(k3) ·O(n), which is polynomial in n if the treewidth

k of the given input is constant. Given such a tree decomposition, we can in O(|V0|) time

find a nice tree decomposition of the same width with O(k|V0|) nodes [Bod98].

4.4.3. Generalized Dynamic Programming

Here we outline the DP for MSR on graphs whose underlying undirected graph G0 has

treewidth at most k − 1. In order to extend our algorithm in Section 4.4.1 to bounded

treewidth graphs, we utilize the techniques from Hajiaghayi [Haj01].

120

4.4.3.1. DP States. Similar to the warm-up, we will do the DP bottom-up on each z ∈ VT

in the nice tree decomposition T . When we are at node z, let V[z] =
⋃

z′∈V (T[z])
Sz′ denote the

set of vertices that were already considered bags up to bag Sz, including Sz. We now define

the DP states. At a high level, each state describes some number of partial solutions on the

subgraph V[z]. When building a complete solution on G from the partial solutions, the state

variables should give us all the information we need.

Each DP state on z ∈ VT consists of a tuple of functions

Tz = (Parz,Depz,Retz,Ancz)

and a natural number ρz:

(1) Parent function Parz : Sz 7→ V[z] describing the partial solution restricted on Sz. If

Parz(v) ̸= v then v will be retrieved through the edge (Parz(v), v). If Parz(v) = v

then v will be materialized.

(2) Dependency function Depz : Sz 7→ [n]. Similar to the dependency parameter in the

warm-up, Depz(v) counts the number of nodes whose retrieval requires the retrieval

of v.

(3) Retrieval cost function Retz : Sz 7→ {0, . . . , K}. Similar to the root retrieval param-

eter in the warm-up, Retz(v) denotes the retrieval cost of version v in the partial

solution on V[z].

(4) Ancestor function Ancz : Sz 7→ 2Sz . u ∈ Ancz(v) denotes that u is retrieved in order

to retrieve v. i.e. v is dependent on u. Different from the tree case, to produce a

spanning forest here, we need this extra information to avoid directed cycles.

(5) ρz, the total retrieval cost of the subproblem according to the partial solution. Sim-

ilar to its counterpart in the warm-up, ρz will be discretized by the same technique

that makes the approximation an FPTAS.

121

A feasible state on z ∈ VT is a pair (Tz, ρz) as defined, which correctly describes some

partial solution on V[z] whose retrieval cost is exactly ρz. Each state is further associated

with a storage value σ(Tz, ρz) ∈ Z+, indicating the minimum storage needed to achieve

the state (Tz, ρz) on V[z]. We call a minimum-storage solution “the partial solution Tz” for

convenience.

Since we have described our states, we are now ready to describe how to compute each

state.

4.4.3.2. Recurrence on leaves. For each leaf z ∈ VT , we can enumerate all possible

choices of Parz on Sz. It’s easy to calculate the corresponding Depz, Retz, and Ancz functions,

as well as the retrieval cost ρz and storage cost σ(Tz, ρz) for each choice of Parz. These are

all the feasible states.

4.4.3.3. Recurrence on separators. On a separator z with child c, because Sz ⊆ Sc, the

feasible states on z are just restrictions of those on c:

σ(Tz, ρz) = min{σ(Tc, ρz) : Tc
∣∣
Sz

= Tz}

where Tc
∣∣
Sz

is the natural restriction of Tc on Sz:

Tc
∣∣
Sz

=
(

Parc
∣∣
Sz
,Depc

∣∣
Sz
,Retc

∣∣
Sz
,Ancc

∣∣
Sz

)
where Ancc

∣∣
Sz

is Ancc restricted on Sz with the additional requirement that its output is

also an intersection with Sz. (So that the range of Ancz is 2Sz , as in the definition.)

4.4.3.4. Recurrence on joins. Suppose we are at a join z with children a, b, where Sz =

Sa ∪ Sb.

Compatibility. Naturally, we want to find all partial solutions (Ta, ρa) and (Tb, ρb) that

“combine” into a given (Tz, ρz), and then take the minimum storage over the objective of all

such combinations. The first attempt is to consider the states Ta, Tb to be Tz
∣∣
Sa

and Tz
∣∣
Sb

.

122

Figure 4.8. Illustration for compatibility. A node is colored if it is materialized.

However, in Tz there could be v ∈ Sa such that Parz(v) ∈ V[b] \ Sa, as in node u of Fig. 4.8.

We call these the uprooted nodes. To resolve problems like this, we need a more detailed

definition of which (Ta, Tb) can “combine” into Tz. Let Compatibility (Algorithm 12) be

a function which, given Tz, Ta, Tb, returns a boolean value indicating whether (Ta, Tb) are

compatible with Tz. We say (Ta, Tb) is compatible with Tz in this case.

The Un-Uprooting process. The first step in Compatibility is to resolve the

aforementioned problem of uprooted nodes. To do this, we first call Scan Uprooted

Nodes (Algorithm 10) to get the two sets of uprooted nodes Ua, Ub for Ta, Tb respectively.

It’s not hard to see that Ua is just the nodes v ∈ Sa such that Parz(v) ̸∈ V[a].

Afterwards, we apply Un-Uproot (Algorithm 11) to loop through Sz topologically and

calculate the correct Par,Ret,Anc functions for both Ta and Tb. This process reverses the

idea of “uprooting” described in Section 4.4.1.

Fig. 4.9 gives a demonstration of how Un-Uproot obtain these functions for Ta. If

(Parz(v), v) is as case 1, then v is un-uprooted (materialized), and we modify Anca(v) and

Reta(v) accordingly. If (Parz(v), v) is as case 2, then we calculate Anca(v) and Reta(v) based

on v’s parent Parz(v). If (Parz(v), v) is as case 3, we subtract Depa(v) from the dependency

counts of all ancestors of v, including v itself. We note that case 4 is not dealt with in this

step.

Distributing dependency. The next step in Compatibility is to check whether the

functions Depa,Depb are compatible with Depz. Specifically, nodes in Sa, Sb could have

123

Figure 4.9. Four types of edge (u, v) involved when restricting Tz to Ta.

external dependencies from V[a] \ Sa and V[b] \ Sb, as in case 4 of Fig. 4.9. These external

dependencies are from outside Sz, so they are untouched in the looping process in Un-

Uproot. Consequently, we have to manually check whether the external dependencies in

Ta and Tb adds up to that in Tz, much like how we distribute dependency number k to the two

children in case 4 of Fig. 4.7. The pseudo code for this calculation is inside Compatibility.

(Algorithm 12)

We further note that we only need to distribute the external dependencies of nodes in

Sa ∩ Sb:

Lemma 4.21. In a nice tree decomposition T , let z ∈ VT be a join with children a, b. If a′

is a descendant of a in T , then v ∈ Sa′ \ Sa does not have neighbors in Sb \ Sa.

Proof. For each edge (u, v) in G, there must be a bag containing both u and v. However,

there is no bag containing both a node in Sa′ \Sa and a node in Sb \Sa, as a is in the unique

path from a′ to b. □

Calculating ρ. Given that (Ta, Tb) are compatible with Tz, we want to find the objective,

σ(Tz, ρz), with the recurrence relation involving σ(Ta, ρa) + σ(Tb, ρb) for suitable ρa and ρb.

However, we can’t simply take ρa + ρb = ρz due to the complicated procedure of combining

124

Ta, Tb into Tz. We thus implement Distribute Retrieval (Algorithm 13) to calculate ρ∆

such that ρa + ρb = ρz − ρ∆ and then iterate through all such ρa and ρb. A justification of

this procedure can be found in Appendix C.2.2.

Recurrence relation. Finally, we have all we need for the recurrence relation:

σ(Tz, ρz) = min {σ(Ta, ρa) + σ(Tb, ρb)− uproot− overcount}

where the minimum is taken over all (Ta, Tb) that are compatible with Tz and all ρa + ρb =

ρz − ρ∆, and

uproot =
∑
v∈Ua

(sv − sParz(v),v) +
∑
v∈Ub

(sv − sParz(v),v), and

overcount =
∑

v∈Sa∩Sb

sParz(v),v.

If k is constant, then the recurrence relation takes poly(n) time. This is because there

are poly(n) many possible states on Sa, Sb and Sz, and it takes poly(n) steps to check the

compatibility of (Ta, Tb) with Tz and compute ρ∆.

Output The minimum storage cost of a global solution is hence just min{σ(Tz), ρz} over

all states Tz and ρz, where z is the designated root of the nice tree decomposition.

We conclude this section with the following theorem.

Theorem 4.22. For a constant k ≥ 1, on the set of graphs whose undelying undirected

graph has treewidth at most k, MinSum Retrieval admits an FPTAS, while Bounded-

Sum Retrieval has an (1, 1 + ε) bi-criteria approximation that finishes in poly(n, 1
ε
) time.

To see that our algorithm above is an FPTAS for MSR, the proof is almost identical to

the proof of Theorem 4.18 (Section 4.4.1.3) once we note that the number of partial solutions

on each z is poly(n).

125

An FPTAS for MMR arises from a similar procedure. When the objective becomes the

maximum retrieval cost, we can use ρz to represent the maximum retrieval cost in the partial

solution. We then modify Depz(v) to represent the highest retrieval cost among all the nodes

that are dependent on v. The recurrence relation is also changed accordingly. One can note

that, like before, the new tuple Tz contains all the information we need for a subsolution on

G[z].

The same algorithms extend to (1, 1 + ε) bi-criteria approximation algorithms for BSR

and BMR naturally, as the objective and constraint are reversed.

4.5. Experiments and Improved Heuristics for MSR and BMR

In this section, we propose three new heuristics that are inspired by empirical observa-

tions and theoretical results. We will discuss the experimental setup, datasets used, and

experimental results for empirical validation of the performance of the algorithms. The per-

formance and run time of these new algorithms are compared with previous best-performing

heuristics.13

In all figures, the vertical axis (objective and run time) is presented in logarithmic scale.

Run time is measured in milliseconds.

4.5.1. Datasets and Construction of Graphs

We use real-world GitHub repositories of varying sizes as datasets, from which we construct

version graphs. Each commit corresponds to a node with its weight (storage cost) equal to

its size in bytes. Between each pair of parent and child commits, we construct bidirectional

edges. The storage and retrieval costs of the edges are calculated, in bytes, based on the

actions (such as addition, deletion, and modification of files) required to change one version

to the other in the direction of the edge. We use simple diff to calculate the deltas, hence

13Our code can be found at https://github.com/Sooooffia/Graph-Versioning.

126

the storage and retrieval costs are proportional to each other. Graphs generated this way

are called “natural graphs” in the rest of the section.

In addition, we also aim to test (1) the cases where the retrieval and storage costs of an

edge can greatly differ from each other, and (2) the effect of tree-like shapes of graphs on

the performance of algorithms. Therefore, we also conduct experiments on modified graphs

in the following two ways:

(1) Random compression. We simulate compression of data by scaling storage cost

with a random factor between 0.3 and 1, and increasing the retrieval cost by 20%

(for de-compression). In realistic cases, storage and retrieval costs for the “delta”

between two versions are often proportional, but randomness is added for generality

of our experiments.

(2) ER construction. Instead of the naturally constructing edges between each pair of

parent-child commits, we construct the edges as in an Erdős-Rényi random graph:

between each pair (u, v) of nodes, with probability p both deltas (u, v) and (v, u) are

constructed, and with probability 1−p neither are constructed. This creates graphs

much less tree-like than the natural construction. In particular, ER graphs have

treewidth Θ(n) with high probability if the number of edges per vertex is greater

than a small constant [Gao12].

The datasets we use are from GitHub’s repositories, namely, LeetCodeAnimation,14

styleguide,15 996.ICU,16 and freeCodeCamp.17 The characteristic of these datasets can

be found in Table 4.4.

We ran the experiments on a PC with an Intel i9-13900K and 64GB RAM. We used

the python packages Networkx [HSSC08] and GitPython to generate version graphs. All

algorithms were implemented using C++. To compute minimum spanning arborescence, we

14https://github.com/MisterBooo/LeetCodeAnimation
15https://github.com/google/styleguide
16https://github.com/996icu/996.ICU
17https://github.com/freeCodeCamp/freeCodeCamp

https://github.com/MisterBooo/LeetCodeAnimation
https://github.com/google/styleguide
https://github.com/996icu/996.ICU
https://github.com/freeCodeCamp/freeCodeCamp

127

Dataset #nodes #edges avg. materialization avg. storage
datasharing 29 74 7672 395
styleguide 493 1250 1.4e6 8659
996.ICU 3189 9210 1.5e7 337038
freeCodeCamp 31270 71534 2.5e7 14800
LeetCodeAnimation 246 628 1.7e8 1.2e7
LeetCode 0.05 246 3032 1.7e8 1.0e8
LeetCode 0.2 246 11932 1.7e8 1.0e8
LeetCode 1 246 60270 1.7e8 1.0e8

Table 4.4. Natural and ER graphs overview.

applied Gabow et al.’s algorithm [GGST86], and we used Böther et al.’s code for implemen-

tation [BKW23].

4.6. Experiments and Improved Heuristics for MSR and BMR

In this section, we propose three new heuristics that are inspired by empirical observa-

tions and theoretical results. We will discuss the experimental setup, datasets used, and

experimental results for empirical validation of the performance of the algorithms. The per-

formance and run time of these new algorithms are compared with previous best-performing

heuristics18.

In all figures, the vertical axis (objective and run time) is presented in logarithmic scale.

Run time is measured in milliseconds.

4.6.1. Datasets and Construction of Graphs

We use real-world GitHub repositories of varying sizes as datasets, from which we construct

version graphs. Each commit corresponds to a node with its weight (storage cost) equal to

its size in bytes. Between each pair of parent and child commits, we construct bidirectional

edges. The storage and retrieval costs of the edges are calculated, in bytes, based on the

actions (such as addition, deletion, and modification of files) required to change one version

to the other in the direction of the edge. We use simple diff to calculate the deltas, hence

18Our code can be found at https://github.com/Sooooffia/Graph-Versioning.

128

the storage and retrieval costs are proportional to each other. Graphs generated this way

are called “natural graphs” in the rest of the section.

In addition, we also aim to test (1) the cases where the retrieval and storage costs of an

edge can greatly differ from each other, and (2) the effect of tree-like shapes of graphs on

the performance of algorithms. Therefore, we also conduct experiments on modified graphs

in the following two ways:

(1) Random compression. We simulate compression of data by scaling storage cost

with a random factor between 0.3 and 1, and increasing the retrieval cost by 20%

(for de-compression). In realistic cases, storage and retrieval costs for the “delta”

between two versions are often proportional, but randomness is added for generality

of our experiments.

(2) ER construction. Instead of the naturally constructing edges between each pair of

parent-child commits, we construct the edges as in an Erdős-Rényi random graph:

between each pair (u, v) of nodes, with probability p both deltas (u, v) and (v, u) are

constructed, and with probability 1−p neither are constructed. This creates graphs

much less tree-like than the natural construction. In particular, ER graphs have

treewidth Θ(n) with high probability if the number of edges per vertex is greater

than a small constant [Gao12].

4.6.2. Algorithms Implementation

4.6.2.1. Baselines. In considering MSR and BMR, we used LMG (refer to Section 4.2.1)

and Modified Prim(MP) [BCH+15] as the respective baselines in assessing the performance

of algorithms. Both are best-performing heuristics in previous experiments for the respective

problems [BCH+15].

4.6.2.2. LMGA: improving LMG. For MSR, we implemented a modification for LMG

named LMG-All, abbreviated LMGA below. (Algorithm 5) Instead of searching for the most

129

efficient version to materialize per step, we can enlarge the scope of this search to explore

the payoff of modifying any single edge.

Specifically, we will keep a set of active edges Eactive, initialized to E(Gaux). On each

iteration, let Par(v) be the parent of v in the current solution T . For all e = (u, v) ∈ Eactive,

we will consider the potential solution Te, obtained by adding the edge e and removing

(Par(v), v) from T . We then update T to Te∗ and remove e∗ from Eactive, where e∗ maximizes

ρe = R(T)−R(Te)
S(Te)−S(T)

.

While LMGA considers more edges than LMG, it is not obvious that LMGA always

provides a better solution. Due to its greedy nature, the first move might be better, but it

may possibly be stuck in a worse local optimum.

Algorithm 5: LMG-ALL

Input : Extended version graph Gaux, storage constraint S
1 T ← minimum arborescence of Gaux rooted at vaux w.r.t. weight function s
2 Let R(T) and S(T) be the total retrieval and storage cost of T
3 Let P (v) be the parent of v in T
4 while S(T) < S do
5 (ρmax, (umax, vmax))← (0,∅)
6 for e = (u, v) ∈ E where u is not a descendant of v in T do
7 Te = T \ (P (v), v) ∪ {e}
8 if R(Te) > R(T) then
9 continue

10 else if S(Te) ≤ S(T) then
11 ρe ←∞
12 else
13 ρe ← (R(T)−R(Te))/(se − sP (v),v)
14 if ρe > ρmax then
15 ρmax ← ρe
16 (umax, vmax)← e

17 if ρmax = 0 then
18 return T
19 T ← T \ {(P (vmax), vmax)} ∪ {(umax, vmax)}
20 return T

4.6.2.3. DP heuristics. We also propose DP heuristics on both MSR and BMR, as in-

spired by algorithms in Sections 4.3 and 4.4. Importantly, we note that DP algorithms

130

proposed for bounded treewidth graphs involve the calculation of nice tree decompositions

and complicated subroutines (un-uprooting, etc.), which severely slow down the running

time on graphs with high treewidths. To speed up the algorithm, we instead only run the DP

on bi-directional trees (namely, with treewidth 1) extracted from our general input graphs,

with the steps below:

(1) Calculate a minimum spanning arborescence A of the graph G rooted at the first

commit v1. We use the sum of retrieval and storage costs as weight.

(2) Generate a bidirectional tree G′ from A. Namely, we have (u, v), (v, u) ∈ E(G′) for

each edge (u, v) ∈ E(A).

(3) Run the proposed DP for MSR and BMR on directed trees (see Section 4.4.1 and

Section 4.3) with input G′, and return the solution.

In addition, we also implement the following modifications for MSR to further speed up

the algorithm:

(1) Total storage cost is discretized instead of retrieval cost, since the former generally

has a smaller range.

(2) Geometric discretization is used instead of linear discretization.

(3) A pruning step is added, where the DP variable discards all subproblem solutions

whose storage cost exceeds some bound.

All three original features are necessary in the proof for our theoretical results, but in

practice, the modified implementations show comparable results but significantly improves

the running time.

4.6.3. Results and Discussion

4.6.3.1. Results in MSR. Section 4.6.3.1, Fig. 4.11, and Fig. 4.12 demonstrate the perfor-

mance of the three MSR algorithms on natural graphs, randomly compressed natural graphs,

and random compression ER graphs. The running times for the algorithms are shown in

131

LMG LMG-All DP-MSR

2 2.5 3 3.5 4

·104

104

105

Storage

R
et

ri
ev

al

datasharing

0.6 0.8 1

·107

108

109

Storage

R
et

ri
ev

al

styleguide

2.5 3 3.5 4 4.5 5

·108

108

109

1010

1011

Storage

R
et

ri
ev

al

996

0.5 0.6 0.7 0.8 0.9 1

·109

1011

1012

Storage

R
et

ri
ev

al

freeCodeCamp

Figure 4.10. Performance of MSR algorithms on natural graphs. OPT is ob-
tained by solving an integer linear program (ILP) using Gurobi [Gur22]. ILP
takes too long to finish on all graphs except datasharing.

Fig. 4.11 and Fig. 4.12. Note since run time for most non-ER graphs exhibit similar trends,

many are omitted here due to space constraint. Also note that, since all data points by the

DP-MSR are generated with a single run of the DP, its running time is shown as a horizontal

line over the full range for storage constraint.

We run DP-MSR with ε = 0.05 on most graphs, except ε = 0.1 for freeCodeCamp (for the

feasibility of run time). The pruning value for DP variables is at twice the minimum storage

for uncompressed graphs, and ten times the minimum storage for randomly compressed

graphs.

Performance analysis. On most graphs, DP-MSR outperforms LMGA, which in turn

outperforms LMG. This is especially clear on natural version graphs, where DP-MSR solu-

tions are near 1000 times better than LMG solutions on 996.ICU. in Section 4.6.3.1. On

datasharing, DP-MSR almost perfectly matches the optimal solution for all constraint ranges.

132

LMG LMG-All DP-MSR OPT

2 4 6 8

·104

103

104

105

Storage

R
et

ri
ev

al

datasharing

2 4 6 8

·104

10−1

100

101

Storage

T
im

e

datasharing

0.2 0.4 0.6 0.8 1 1.2 1.4

·107

107

108

Storage

R
et

ri
ev

al

styleguide

0.2 0.4 0.6 0.8 1 1.2 1.4

·107

101

102

103

Storage

T
im

e

styleguide

2 4 6 8

·108

107

108

109

1010

1011

Storage

R
et

ri
ev

al

996.ICU

2 4 6 8

·108

102

103

104

105

Storage

T
im

e

996.ICU

Figure 4.11. Performance and run time of MSR algorithms on compressed
graphs.

On naturally constructed graphs (Section 4.6.3.1), LMGA often has comparable perfor-

mance with LMG when storage constraint is low. This is possibly because both algorithms

can only iterate a few times when the storage constraint is almost tight. DP-MSR, on the

other hand, performs much better on natural graphs even for low storage constraint.

On graphs with simulated random compression (Fig. 4.11), the dominance of DP in per-

formance over the other two algorithms become less significant. This is anticipated because

of the fact that DP only runs on a subgraph of the input graph. Intuitively, most of the

information is already contained in a minimum spanning tree when storage and retrieval

133

LMG LMG-All DP-MSR

0.5 1 1.5

·109

105

106

107

108

109

Storage

R
et

ri
ev

al

LeetCodeAnimation (original)

0.5 1 1.5

·109

100

101

102

103

Storage

T
im

e

original - run time

1 2 3 4 5

·109

109

1010

1011

Storage

R
et

ri
ev

al

LeetCodeAnimation (0.05)

1 2 3 4 5

·109

100

101

102

103

104

Storage

T
im

e

0.05 - run time

0.5 1 1.5

·109

105

107

109

1011

Storage

R
et

ri
ev

al

LeetCodeAnimation (0.2)

0.5 1 1.5

·109

101

102

103

104

Storage

T
im

e

0.2 - run time

0.5 1 1.5

·109

105

107

109

1011

Storage

R
et

ri
ev

al

LeetCodeAnimation (complete)

0.5 1 1.5

·109

101

102

103

104

105

Storage

T
im

e

complete - run time

Figure 4.12. Performance and run time of MSR algorithms on compressed ER
graphs.

costs are proportional. Otherwise, the dropped edges may be useful. (They could have large

retrieval but small storage, and vice versa.)

134

Finally, LMG’s performance relative to our new algorithms is much worse on ER graphs.

This may be due to the fact that LMG cannot look at non-auxiliary edges once the minimum

arborescence is initialized, and hence losing most of the information brought by the extra

edges. (Fig. 4.12).

Run time analysis. For all natural graphs, we observe that LMGA uses no more time

than LMG (as shown in Fig. 4.11). Moreover, LMGA is significantly quicker than LMG

on large natural graphs, which was unexpected considering that the two algorithms have

almost identical structures in implementation. Possibly, this can be due to the fact that

LMG makes bigger, more expensive changes on each iteration (materializing a node with

many dependencies, for instance) as compared to LMGA.

As expected, though, LMGA takes much more time than the other two algorithms on

denser ER graphs (Fig. 4.12), due to the large number of edges.

DP-MSR is often slower than LMG, except when ran on the natural construction of

large graphs (Fig. 4.11). However, unlike LMG and LMGA, the DP algorithm returns a

whole spectrum of solutions at once, so it’s difficult to make a direct comparison between

the two. We also note that the runtime of DP heavily depends on the choice of ε and the

storage pruning value. Hence, the user can trade-off the runtime with solution’s quatlities

by parameterize the algorithm with coarser configuration (i.e., higher ε).

4.6.3.2. Results in BMR. As compared to MSR algorithms, the performance and run

time of our BMR algorithms are much more predictable and stable. They exhibit similar

trends across different ways of graph construction as mentioned in earlier sections - including

the non-tree-like ER graphs, surprisingly.

Due to space limitation, we present the results on natural graphs, as shown in Fig. 4.13,

to respectively illustrate their performance and run time.

Performance analysis. For every graph we tested, DP-BMR outperforms MP on most

of the retrieval constraint ranges. As the retrieval constraint increases, the gap between MP

135

MP DP-BMR

0 0.2 0.4 0.6 0.8 1

·104

108

108.5

Retrieval

S
to

ra
ge

styleguide

0 0.2 0.4 0.6 0.8 1

·104

101.6

101.7

Retrieval

T
im

e

styleguide - run time

0 1,000 2,000 3,000 4,000

1011.5

1012

Retrieval

S
to

ra
ge

freeCodeCamp

0 1,000 2,000 3,000 4,000

105.2

105.3

105.4

Retrieval
T

im
e

styleguide - run time

Figure 4.13. Performance and run time of BMR algorithms on natural version
graphs.

and DP-BMR solution also increases. We also observe that DP-BMR performs worse than

MP when the retrieval constraint is at zero. This is because the bidirectional tree have fewer

edges than the original graph. (Recall that the same behavior happened for DP-MSR on

compressed graphs)

We also note that, unlike MP, the objective value of DP-BMR solution monotonically

decreases with respect to retrieval constraint. This is again expected since they are essentially

optimal solutions the problem on the bidirectional tree.

Run time analysis. For all graphs, the runtimes of DP-BMR and MP are comparable

within a constant factor. This is true with varying graph shapes and construction methods

in all our experiments, and representative data is exhibited in Fig. 4.13. Unlike LMG and

LMGA, their runtimes do not change much with varying constraint values.

4.6.3.3. Overall Evaluation. For MSR, we recommend always using one of LMGA and

DP-MSR in place of LMG for practical use. On sparse graphs, LMGA dominates LMG both

136

in performance and run time. DP-MSR can also provide a frontier of better solutions in a

reasonable amount of time, regardless of the input.

For BMR, DP-BMR usually outperforms MP, except when the retrieval constraint is

close to zero. Therefore, we recommend using DP in most situations.

4.7. Conclusion

In this paper, we developed fully polynomial time approximation algorithms for graphs

with bounded treewidth. This often captures the typical manner in which edit operations

are applied on versions. However, due to the high complexity of these algorithms, they are

not yet practical to handle the size of real-life graphs. On the other hand, we extracted the

idea behind this approach as well as previous LMG approach, and developed two heuristics

which significantly improved both the performance and run time in experiments.

Future Works. There are many possible future directions. For one, a polynomial-time

algorithm with bounded approximation ratio for general graph is desirable. Even for re-

stricted classes of graphs, any development of a practical algorithm that can handle larger

scale graphs is interesting. Moreover, in enterprise setting, often some versions are requested

more often than others. It would be interesting to extend our work to handle such use cases.

4.8. Authors

This chapter was written by Anxin (Bob) Guo, Jingwei (Sofia) Li, Pattara Sukprasert,

Samir Khuller, Amol Deshpande, Koyel Mukherjee. The preliminary version of this work

is under submission at The International Conference on Very Large Data Bases (VLDB)

2023 [GLS+23].

137

CHAPTER 5

Densest Subgraph

The densest subgraph problem is a fundamental problem in graph mining that has been

studied extensively for decades, both because of its theoretical challenges and its practical

importance. The numerous applications of the problem include community detection and

visualization in social networks [AHDBV05, GJL+13, JXRF09, KRRT99, CHKZ03, RTG14],

motif discovery in protein and DNA [FNBB06, SSA+15, DHZ22, SHK+10], and pattern

identification [DJD+09, AKS+14, HSB+16].

Significant effort has been made in the theoretical computer science community in com-

puting exact and approximate densest subgraphs under various models of computation, in

particular in the static [Cha00, KS09, BGP+20, CQT22, TG15, GGT89, Gol84], stream-

ing [BHNT15], distributed [BGM14, SV20, GLM19], parallel [DBS18, BKV12, HQC22,

DCS17], dynamic [BHNT15, SW20, CQ22, CHv+22], and privacy-preserving [FHS22, NV21,

DLR+22] settings. However, despite a plethora of theoretical improvements on these fronts,

there still does not exist practical near-optimal densest subgraph algorithms that can scale

up to the largest publicly-available graphs with hundreds of billions of edges. In particular,

for the largest such graphs, hyperlink2012 (with roughly 113 billion edges) and clueweb

(with roughly 37 billion edges), no previous approximations for the densest subgraph were

known that are better than a 2-approximation.

There are two typical approaches for solving the densest subgraph problem exactly. The

first is to solve a combinatorial optimization problem using a linear program solver. The other

is to set up a flow network with size polynomial in the size of the original graph, binary search

on the density, and then run a maximum flow algorithm on it. However, the caveat to both

138

approaches is that they are not scalable to massive modern graphs; namely, both approaches

have large polynomial runtimes and the best theoretical algorithms for these approaches are

often not practical. Moreover, as the maximum flow problem is P-complete, there is no hope

of fast parallel algorithm for the exact maximum flow problem [GSS82]. Because of this

bottleneck, many have instead investigated approaches for approximate densest subgraphs.

The best-known approximation algorithms for the densest subgraph problem fall into two

categories.

The first category contains parallel approximation algorithms, which work by iteratively

removing carefully chosen subsets of low-degree vertices while computing the density of the

induced subgraph of the remaining vertices; then, the induced subgraph with the largest

density is taken as the approximate densest subgraph [Cha00, BKV12, BHNT15] using

poly(log n) rounds of peeling vertices with degree smaller than some threshold. Unfortu-

nately, such methods give (2 + ε)-approximations at best and no one has thus far made such

methods work in poly(log n) rounds and give better approximations.

The second category consists of algorithms obtained from the multiplicative weight update

(MWU) method. The multiplicative weight update framework approximately solves an

optimization problem by using expert oracles to update the weights assigned to the variables

multiplicatively and iteratively over several rounds depending on how the experts performed

in previous rounds. The MWU framework allows for (1 + ε)-approximate densest subgraphs

in poly(log n) iterations; however, it requires more work per iteration to update the weights

of the variables. As such, neither approach is particularly scalable to massive graphs.

In terms of practical solutions, Boob et al. [BGP+20] present a fast, sequential, iterative

peeling algorithm called Greedy++ that combines peeling with the MWU framework. Chekuri

et al. [CQT22] show that running Greedy++ for Θ(∆logn
ρ∗ε2

) iterations results in a (1 + ε)-

approximation of the densest subgraph, where ρ∗ is the density of the densest subgraph.

However, Greedy++ is not parallel, and does not take advantage of modern multi-core and

139

multiprocessor architectures. Recently, Harb et al. [HQC22] proposed an iterative algorithm

based on projections that solves a quadratic objective function with linear constraints derived

from the dual of the densest subgraph linear program of Charikar [Cha00]. For a graph with

m edges and maximum degree ∆, they prove that their algorithm converges to a (1 + ε)-

approximation in O(
√
m∆/ε) iterations, where each iteration takes O(m) work. However,

their algorithm uses Greedy++ as a subroutine, which is inherently sequential due to its

iterative peeling nature, and hence they do not have strong bounds on depth (parallel time).

In our work, we design fast practical algorithms that simultaneously make use of par-

allelism as well as the closely related concept of the k-core decomposition. The k-core de-

composition decomposes the graph into k-cores of different values of k. Within the induced

subgraph of each k-core, each vertex has degree at least k. It is a well-known fact that the

density of the densest subgraph is within a factor of 2 of the maximum core value. However,

it is less clear how to make use of this fact in creating a scalable algorithm for the largest

publicly-available graphs. In this chapter, we design a pruning framework that, combined

with our parallel densest subgraph subroutines, results in both theoretical as well as practical

improvements over the state-of-the-art with speed-ups of up to hundreds of times. The main

idea of our framework is to iteratively prune the graph using lower bounds on the density of

densest subgraph computed from our parallel densest subgraph subroutines, while preserving

the densest subgraph.

The concept of using pruning to obtain a smaller subgraph from which to approximate the

densest subgraph is also used in the work of Fang et al. [FYC+19]. However, in their work,

they only prune once using the maximum core number divided by two and then run maximum

flow on the pruned graph. Furthermore, they do not consider adaptive pruning using any

approximate densest subgraph approximation, which is the basis of our pruning framework.

Compared to the single-shot approach of pruning in previous work, we introduce a multi-

shot pruning approach in this paper that can be mixed and matched with new approximate

140

densest subgraph algorithms in the future to obtain scalable and efficient algorithms from

these baselines.

The main contributions in our work are three-fold:

• We design a pruning framework that can be combined with any parallel or sequential

(1 + ε)-approximate algorithm for densest subgraph to yield a scalable near-optimal,

(1 + ε)-approximate densest subgraph algorithm. Our algorithms adaptively prunes the

graph over multiple iterations based on the best approximation of the densest subgraph

in the current iteration.

• We give a new faster, sorting-based MWU iterative algorithm based on Greedy++ [BGP+20]

that achieves the same theoretical number of iterations as Chekuri et al. [CQT22] but

is more amenable to parallelization. Experimentally, our parallel sorting-based algo-

rithm outperforms our parallel peeling-based algorithm, as well as previous state-of-the-

art benchmarks on most graphs. For instance, compared with the state-of-the-art parallel

algorithm by Chekuri et al., we achieve up to 114x speedup on the same machine.

• Leveraging the scalability of our parallel algorithms, we provide a number of previously

unknown graph statistics and graph mining results on the largest of today’s publicly

available graphs, hyperlink2012 and clueweb, using commodity multicore machines.

5.1. Preliminaries

For an undirected unweighted graph G = (V,E), we let n = |V | and m = |E|. We let

degG(v) be the degree of vertex v with respect to G. We define the density of G to be

ρ(G) = |E|
|V | . The goal of the densest subgraph problem is to find a subgraph S ⊆ G, such

that ρ(S) is maximized. We will use S∗ to denote a densest subgraph of G with density ρ∗.

A central structure we study is the k-core of an undirected graph. We now define k-core

formally.

141

Symbol Meaning

G = (V,E) undirected unweighted graph
n,m number of vertices, edges resp.
deg(v) current degree of vertex v
∆ current maximum degree of graph
cp Peeling-complexity

ρ(G) current density of graph G
ρ∗ optimal density of graph G
ρ̃ the best density found in our algorithms

core(G, k) k-core of G
core(v) core number of v
kmax max. non-empty core number
ℓ(v) current load of vertex v

Table 5.1. Common notation used throughout the paper.

Definition 5.1 (k-core). A k-core core(G, k) of G is defined to be a maximal subgraph S ⊆ G

such that degS(v) ≥ k for any v ∈ V (S).

It is well known that to find core(G, k), one can repeatedly peel1 an arbitrary vertex v

from G so long as degG(v) < k. This process terminates when all remaining vertices have

degree at least k, or the graph becomes empty. If the remaining graph is not empty, then it

is the unique subgraph, core(G, k). Next, we define the coreness or core number of a vertex

v:

Definition 5.2 (Core number). For any vertex v, we let core(v) = k if k is the maximum

integer such that v is in core(G, k).

An easy modification of the peeling algorithm described above yields core(v) for all

vertices v. We call this peeling-based algorithm Coreness . In this algorithm, we pick a

vertex with minimum degree and peel it one at a time until there is no vertex left. Let D

be a variable which represents the maximum degree of peeled vertices at the time we peel

them. Initially, D = 0. Once v is about to be peeled, we set D ← max(D, degG(v)). We

then set core(v) ← D and peel v from G. We refer to the ordering of vertices that we peel

1Throughout this paper, a vertex v is peeled from G means that v is deleted and G is now G \ {v}.

142

in this process as a degeneracy ordering of the graph, which is unique up to permuting

vertices in the order with the same coreness.

We also use the following notion of c-approximate k-core, which can be computed more

efficiently than exact k-core

Definition 5.3 (c-Approximate k-Core). A c-approximate k-core is a partition of vertices

into layers, such that a vertex v is in approximate core k̂(v) denoted apxcore(G, k̂(v)) only

if k(v)
c
≤ k̂(v) ≤ ck(v), where k(v) is the coreness of v.

Later on, we will want to find an ordering that is similar to degeneracy ordering, but

certain loads of vertices are also given as an input. Let ℓ(v) be load of v. At each step, we

peel the vertex that minimizes the term ℓ(v) + degG(v). Note that after v is peeled, the

term degG(v′) could be decreased, if v is adjacent to v′, as degG(v′) is an induced degree of

the remaining part. The vanilla degeneracy ordering is the ordering we obtain by setting

ℓ(v) = 0 for all v. We overload the definition of degeneracy ordering and say that we find a

degeneracy ordering with respect to loads ℓ.

Model Definitions. We analyze the theoretical efficiency of our parallel algorithms in

the work-depth model [CLRS09, Jaj92]. In this model, the work is the total number of

operations executed by the algorithm and the depth (parallel time) is the longest chain of

sequential dependencies. We assume that concurrent reads and writes are supported in O(1)

work/depth. A work-efficient parallel algorithm is one with work that asymptotically

matches the best-known sequential time complexity for the problem. We say that a bound

holds with high probability (w.h.p.) if it holds with probability at least 1− 1/nc for any

c ≥ 1.

We use the following parallel primitives in our algorithms: ParFor , SuffixSum , Find-

Max , Bucketing , and IntegerSorting . Each primitive takes a sequence A of length n.

ParFor is a parallel version of a for-loop that we use to apply a function f to each element

143

in the sequence. If a function f takes O(t) work and O(d) depth, then ParFor takes O(tn)

work and O(d) depth. SuffixSum returns a sequence B where B[j] =
∑n

i=j A[i]. FindMax

returns an element with maximum value among those in the sequence. The SuffixSum and

FindMax primitives take O(n) work and O(log n) depth. IntegerSorting returns a se-

quence in the sorted order (either ascending or descending order) according to integer keys.

We use two different implementations of IntegerSorting: the first is an algorithm by Ra-

man [Ram90] which takes O(n log log n) expected work and O(log n) depth w.h.p., and the

second is a folklore algorithm that takes O(n/ε) work and O(nε) depth for 0 < ε < 1 [Vis10].

The decision to use one of these two sorting algorithms depends on whether work or depth

is more important. We state the complexity of our algorithm in both ways when necessary.

5.1.1. Pruning with Cores

In this section, we describe a pruning idea that takes an input graph G and outputs a

subgraph H of G such that (1) H is typically smaller than G and (2) any densest subgraph

S∗ is in H.

We begin with a property that relates a graph’s density and its vertices’ degrees. The

following lemma is folklore.

Lemma 5.4 (Folklore, (see, e.g., [CQT22])). For a graph G, if there is a vertex v with degree

deg(v) < ρ(G), then G′ = G \ {v} is a graph with density ρ(G′) > ρ(G).

144

Proof. Notice that

ρ(G) =
|E(G′)|+ deg(v)

|V |

=
|V | − 1

|V | ·
|E(G′)|
|V | − 1

+
deg(v)

|V |

=
|V | − 1

|V | · ρ(G′) +
deg(v)

|V |

= x · ρ(G′) + (1− x) · deg(v),

for some real number x ∈ (0, 1). The last line can be viewed as a weighted average between

ρ(G′) and deg(v). Since deg(v) < ρ(G), it has to be the case that ρ(G′) > ρ(G) so that their

average becomes ρ(G). □

As a corollary, any vertex in a densest subgraph has induced degree at least ρ(S∗).

Corollary 5.5. Let S∗ be the densest subgraph, then for any v ∈ V (S∗), degG(v) ≥

degS∗(v) ≥ ⌈ρ∗⌉.

Intuitively, if we are given some ρ̃ < ρ∗, we can keep removing any vertex v such that

v ≤ ⌈ρ̃⌉ from the graph until no such vertex is left. By Corollary 5.5, no vertices from the

densest subgraph S∗ will be removed in this process. Notice that this process is very similar

to the algorithm for computing core(G, k) described in Section 5.1. In fact, we can relate

k-core to the densest subgraph.

Lemma 5.6. For some k ≤ ⌈ρ∗⌉, let C = core(G, k) be a k-core of G. It must be the case

that S∗ ⊆ C.

Proof. We prove this by contradiction. Assume that there exists some vertex v ∈ S∗\C.

Let H = S∗ ∪ C. Notice that, for any vertex v ∈ S∗ ∪ C, degH(v) ≥ k; if v ∈ S∗, then

degH(v) ≥ degS∗(v) ≥ k and if v ∈ C, then degH(v) ≥ degC(v) ≥ k. Hence, S∗∪C is a k-core

with more vertices than C, implying that C is not maximal, which is a contradiction. □

145

Moreover, the maximum non-empty core gives us a lower bound on ρ∗.

Corollary 5.7. Let kmax be the maximum integer such that the core(G, kmax) is not empty.

Let C be the ⌈kmax

2
⌉-core. Then S∗ ⊆ C.

Proof. For any v in C = core(G, kmax), we have degS(v) ≥ kmax. Hence,

ρ(C) = |EC |/|VC | ≥
∑

v∈VC
degC(v)/2

|VC |
≥ kmax/2.

Hence, ρ∗ ≥ ρ(C) ≥ kmax/2. It follows from Lemma 5.6 that S∗ is contained in the ⌈kmax

2
⌉-

core. □

Similarly, the largest non-empty c-approximate k-core, k̂max also gives us a lower bound

on ρ∗, in terms of the density of a (smaller) approximate core:

Corollary 5.8. Let k̂max be the maximum integer such that the apxcore(G, k̂max) is not

empty. Let C be the ⌈ k̂max

2c
⌉ approximate core. Then S∗ ⊆ C.

Proof. The proof is identical to that of Corollary 5.7; the only difference is that since

the core is approximate, the lower bound on degS(v) for any v in C = apxcore(G, k̂max), is

degS(v) ≥ k̂max/c. □

5.2. Pruning-and-Refining Framework

Based on the properties described in Section 5.1, any algorithm that yields a lower bound

on ρ∗ can be used for pruning the graph while retaining the densest subgraph. The main idea

of the framework is as follows. Let L be a lower bound on ρ∗. We can prune the input graph

G by computing G′, which is an ⌈L⌉-core of G and then search for the densest subgraph in

G′ instead of G. This process can be potentially repeated multiple times, making it useful

in algorithms that iteratively refine increasingly tight lower bounds for ρ∗ over a sequence of

steps.

146

Iteration 1

C1

G
S′ 1

C2

S′ 2 S′ 3

C3

Iteration 2 Iteration 3

L = ⌈kmax /2⌉, C1 = L-core, S′ 1 = Refine(C1, L)
L = ρ(S′ 1), C2 = ⌈L⌉-core

S′ 2 = Refine(C2, L)
L = ρ(S′ 2), C3 = ⌈L⌉-core

S′ 3 = Refine(C2, L)

Figure 5.1. Example Illustrating the Pruning-and-Refining Framework (Algo-
rithm 6). The i-th iteration of the algorithm computes a lower bound on the density,
L, computes the Ci = ⌈L⌉ core of G, and then applies an Refine algorithm on Ci

to compute a new subgraph S′
i. In the example, the density of each successive S′

i is
increasing, and the cores Ci decrease in size.

To the best of our knowledge, the idea of using cores to prune the graph adaptively while

refining the approximate densest subgraph solution has not been done in the literature. The

closest idea is the CoreExact algorithm of Fang et al. [FYC+19]. Their pruning rules first

compute Coreness , and then inspect connected components from the ⌈kmax

2
⌉-core. They

then take the maximum density found among the connected components as a lower bound for

their binary searches (they use kmax as an upper bound) and run a flow-based algorithm on

each connected component separately. Their pruning rules do not help much if there is only

a single component in the ⌈kmax

2
⌉-core. On the other hand, our framework applies pruning

for multiple iterations adaptively, even for graphs with a single connected component. Our

framework can be seen as a generalized version of the algorithm of Fang et al.

5.2.1. Framework Overview

We apply this idea in an algorithmic framework for computing an approximate densest

subgraph, which is shown in Algorithm 6. The pseudocode uses exact pruning i.e., uses

the value of the exact kmax-core, but we also describe how to use the approximate k-cores

in text below. On Lines 1–4, we compute the lower bound L by applying Corollary 5.7

and a k-core algorithm, or an approximate k-core algorithm. Both algorithms take linear

147

Algorithm 6: Pruning-and-Refining Framework

Input : an input graph G = (V,E), number of iterations T , and an ordering
function O

Output: an approximate densest subgraph S
1 cores, kmax ← Coreness(G)
2 G← core(G, ⌈kmax/2⌉) // From Corollary 5.5

3 S ← G // Initial pruning

4 L← ⌈kmax/2⌉ // Trivial bound from core(G, kmax)
5 for i=1 to T do
6 S ′ ← Refine(G,L) // Refine candidate subgraph

7 if ρ(S ′) > ρ(S) then
8 S ← S ′

9 L← max(L, ρ(S))
10 G← core(G, ⌈L⌉) // Additional pruning using cores from Line 1

11 return S

(O(m + n)) work, but approximate k-core has provably poly-logarithmic depth. For exact

k-core, we use the bucketing-based k-core implementation of [DBS17, DBS18], which takes

O(m+n) expected work and O(cp log n) depth with high probability, where cp is the peeling-

complexity. Peeling-complexity is defined as the number of steps needed to completely

peel the graph when each step peel all vertices with minimum degrees. For approximate k-

core, we use the implementation of Liu et al. [LSY+22], which gives a (2 + δ)-approximation

to all core numbers and takes O(m+n) expected work and O(log3 n) depth whp. The lower

bound L for the approximate k-core approach is computed using Corollary 5.8.

On Lines 5–10, we iterate for T rounds, where each round calls a function Refine which

attempts to compute a higher density subgraph. We then return the approximate densest

subgraph found on Line 11. In Section 5.2.2 we describe various options for the Refine

function.

148

5.2.2. Refinement Algorithms

Next, we describe algorithms that can be used for the Refine function in Algorithm 6. We

first describe two existing sequential algorithms, the peeling algorithm and Greedy++, and

then introduce our parallel algorithms.

Peeling Algorithm [Cha00]. At each step, we compute the density of the current graph.

Then, we pick a vertex v with the minimum induced degree and remove it from the graph. We

continue until there are no vertices remaining, and return the subgraph with the maximum

density found in this process. The peeling algorithm can be parallelized [DBS17] but can

have linear depth in the worst case. Charikar [Cha00] proves that the subgraph returned

by this peeling algorithm has a density at least half the optimal density, i.e., it gives a

2-approximation to the densest subgraph.

Greedy++ [BGP+20]. Algorithm 7 presents a greedy load-based densest subgraph algo-

rithm, for which the state-of-the-art Greedy++ algorithm is a special case. Initially, each

vertex v is associated with a load ℓ(v) = 0 (Lines 2–3). The algorithm runs for T iterations

(Lines 4–11). On each iteration, we compute the degeneracy order O with respect to the load

ℓ on graph H to obtain the ordered set of vertices v1, . . . , vn (Line 6). Then, on Lines 7–11,

we peel vertices in this order. When vi is peeled, we compare the density of the remaining

subgraph to the density of the best subgraph found so far, and save the denser of the two.

We also update the loads, setting ℓ(vi)← ℓ(vi) + deg(vi), where deg(vi) here is the induced

degree of vi when it is peeled. We return the best subgraph found after T = Θ(∆logn
ρ∗ε2

) itera-

tions. Recall that ∆ is the maximum degree and 0 < ε < 1 here is an adjustable parameter.

This algorithm yields a (1 + ε)-approximation of the densest subgraph as shown in [CQT22].

Note that the first iteration of Greedy++ is exactly the peeling algorithm of Charikar. The

pseudocode for Greedy++ is shown in Algorithm 7.

149

Algorithm 7: Greedy Load-Based Densest Subgraph

Input : an input graph G = (V,E), number of iterations T , ordering function O
Output: an approximate densest subgraph S

1 S ← G

2 for v in V do
3 ℓ(v)← 0
4 for i=1 to T do
5 H = (VH , EH)← (V,E)
6 let v1, . . . , vn be the ordering provided by the function O
7 for j=1 to n do
8 if ρ(H) > ρ(S) then
9 S ← H

10 ℓ(vj)← ℓ(vj) + degH(vj)
11 H ← H \ {vj}
12 return S

The original Greedy++ algorithm is implemented in a way where the degeneracy ordering

and the update steps are fused together. It will become clear once we introduce our algorithm

below why we decouple these two steps.

GreedySorting++ (our algorithm). Our second algorithm uses a simpler method for

computing O, in that it orders vertices based on their loads at the beginning of the iteration.

The motivation for this algorithm is that sorting is faster in practice than the iterative peeling

process used in Greedy++, and is also highly parallel. Therefore, on Line 6, we compute

v1, . . . , vn, such that ℓ(v1) ≤ ℓ(v2) ≤ . . . ≤ ℓ(vn). Because of the way we decouple the

ordering and update steps in Greedy++, Line 6 is the only difference between two algorithms.

Next, we argue that GreedySorting++ has the same guarantees in terms of approximation

and number of rounds compared to Greedy++.

Theorem 5.9. For T = Θ
(
∆logn
λ∗ε2

)
, GreedySorting++ outputs a (1 + ε)-approximation

to the densest subgraph problem.

Proof. (Sketch) The proof follows almost immediately from Section 4 of [CQT22]. To

prove that Greedy++ works, they define a linear program where each variable is corresponding

150

Algorithm 8: Parallel Density and Load Computation

Input : an input graph G = (V,E), an ordering v1, . . . vn, current loads ℓ(·)
Output: updated loads ℓ(·), best density found ρmax

1 A := array of size n

2 parfor e = (vj, vk) in E do
3 A[min(j, k)]← A[min(j, k)] + 1
4 B := SuffixSum(A)
5 parfor i = 1 to n do
6 B[i]← B[i]/(n− i + 1)
7 ρmax ← maxi B[i] // maximum density in this iteration

8 parfor vi in V do
9 ℓ(vi)← ℓ(vi) + A[i] // update loads

10 return ℓ, ρmax

to the peeling order. They then utilize the multiplicative weight update (MWU) framework

on the linear program.2 The oracle problem that we need to solve is to find a good ordering.

Lemma 4.6 of [CQT22] shows that the ordering obtained with Greedy++ is a good approximate

ordering. The proof of Lemma 4.6 work for any order that satisfies the following property:

ℓ(vi) ≤ ℓ(vj) + ∆ if i < j. This is true for the ordering used in GreedySorting++, where we

sort by the initial load of the vertices. Hence, by plugging this ordering, all of the proofs in

[CQT22] go through. □

Remark. In our experiments, Greedy++ converges in many fewer iterations than indicated

by Theorem 5.9. We suspect that the existing analysis is not tight.

5.2.3. Parallel Implementation

In this subsection, we present our parallelizations of Greedy++ and GreedySorting++. We

still run both algorithms for T iterations, one iteration at a time, and our aim is to achieve

low depth within each iteration.

Parallelization of the common parts. We first describe how to parallelize all parts of

Algorithm 7 except for Line 6. Let v1, . . . , vn be an ordering of vertices in which we will peel.

2See, e.g., [AHK12] for a survey on this topic.

151

Notice that, on the i’th iteration of the for-loop on Line 7, the induced subgraph of G that

we respect is Si = G(vi, . . . , vn). This holds for all 1 ≤ i ≤ n. For any edge e = (vj, vk), e

will contribute to the density of Si if and only if i ≤ j and i ≤ k.

Our implementation for computing the densities and updating the loads in parallel is

shown in Algorithm 8. We first initialize an empty array A of size n (Line 1). Then, for each

edge e = (vj, vk), we add 1 to A[min(j, k)] (Lines 2–3). Let B be the suffix sum array of A

(Line 4). It is the case that after the suffix sum, B[i] corresponds to the number of edges

remaining in the graph after vertices v1, . . . , vi−1 are peeled. To see why it is the case, let us

consider a graph remains after v1, . . . , vi−1 are peeled, which is corresponding to a subgraph

induced by vi, . . . , vn. Consider an edge e = (vj, vk). e will appear in this subgraph if and

only if both vj and vk are not yet peeled, i.e., i ≤ j and i ≤ k. When we consider adding 1

to A[min(j, k)], e is accounted for in any subgraphs of the form vi≤min(j,k), . . . , vn. We then

compute the densities and take the maximum density on Lines 5–7. We update the loads

in parallel on Lines 8–9. The work and the depth of this implementation are O(n + m) and

O(log n), respectively. As we described in Section 5.1, ParFor , SuffixSum , and FindMax

all take linear work. SuffixSum and FindMax have O(log n) depth, and ParFor have

O(1) depth, so the depth bound follows.

ParallelGreedy++. In order to parallelize Greedy++, what is left for us is to parallelize the

computation of the degeneracy ordering, which can be computed with a k-core algorithm

in O(m + n) expected work and O(cp log n) depth with high probability. Notice that, when

we peel all vertices with minimum degree at the same time, the degeneracy ordering can be

different from the order obtained sequentially. The reason is that when a vertex is peeled in

the sequential algorithm, it affects its neighbors degrees immediately. However, in the parallel

version, this effect is delayed until the end of the peeling step where multiple vertices may be

peeled together. We claim that this does not significantly affect the order. Consider a pair

of vertices vi and vj. To make the proof in Theorem 5.9 go through, it suffices to show that

152

i < j implies ℓ(vi) ≤ ℓ(vj) + ∆. We prove this by contrapositive. Suppose ℓ(vi) > ℓ(vj) + ∆.

Because the numbers of neighbors of both vi and vj are bounded by ∆, it is the case that,

even if all of vi neighbors are peeled and non of vj neighbors are peeled, vi will still be peeled

after vj, implying that i > j. As the invariant that ℓ(vi) ≤ ℓ(vj) + ∆ if i < j holds true, the

proof in Theorem 5.9 will go through.

Theorem 5.10. For T = Θ
(

∆logn
ρ∗ε2

)
, ParallelGreedy++ outputs a (1+ε)-approximation

to the densest subgraph problem. Moreover, each iteration takes O(n+m) expected work and

O(cp log n) depth with high probability.

ParallelGreedySorting++. We replace the degeneracy order in ParallelGreedy++ with

integer sorting to obtain ParallelGreedySorting++. As discussed in 5.1, integer sorting

takes O(n log log n) expected work and O(log n) depth w.h.p., or O(n/ε) work and O(nε)

depth for 0 < ε < 1. We have argued earlier that sorting does not affect the approximation

guarantee of the algorithm. Therefore, we have the following theorem.

Theorem 5.11. For T = Θ
(

∆logn
ρ∗ε2

)
, ParallelGreedySorting++ outputs a (1 + ε)-

approximation to the densest subgraph problem. Moreover, each iteration takes either O(n log log n+

m) expected work and O(log n) depth w.h.p. or O(n+m) work and O(nε) depth for 0 < ε < 1.

Combining Refinement with Pruning. Using the framework in Algorithm 6, we can

combine a pruning method with one iteration of Greedy++, GreedySorting++, ParallelGreedy++,

and ParallelGreedySorting++ as the Refine function. For example, we can combine ap-

proximate k-core for pruning with one iteration of ParallelGreedySorting++, which would

give an algorithm with either O(T (n log log n + m)) expected work and O(T log n + log3 n)

depth or O(T (n + m)) work and O(T log n + nε) depth for 0 < ε < 1.

Note. While pruning gives speedups in practice, it does not improve the theoretical com-

plexity of the algorithm, as there exists a graph where the core that we prune down to covers

153

most of the original graph. As an example, the maximum non-empty core of a clique is the

clique itself.

5.3. Experiments

In this section, we implement and benchmark different instantiations of the Pruning-and-

Refining framework on real-world datasets. We also compare our algorithms with existing

algorithms. One goal is to show that our approach is practical and is scalable. Another goal

is to provide statistical data on large-scale graphs, in particular the densities of near-optimal

densest subgraphs of these graphs, which has not been reported in the literature for some of

the larger graphs.

Implementations. We implement Greedy++, GreedySorting++, and their parallel instan-

tiations as our refinement algorithms. We consider two algorithms for pruning: pruning

using exact k-cores, and pruning using approximate k-cores. Both pruning algorithms are

parallel and are modular across all of the refinement algorithms. We use the exact k-core

algorithm from Dhulipala et al. [DBS17] and the approximate k-core algorithm from Liu et

al. [LSY+22]. We name our algorithms as follows:

(1) PaRGreedy++: is ParallelGreedy++ combined with our Pruning-and-Refining framework.

(2) PaRSorting++: is ParallelGreedySorting++ combined with our Pruning-and-Refining

framework.

Our framework and all of the implementations will be made publicly available in the final

version of this paper.

Existing Algorithms. We compare with the state-of-the-art algorithms from Fang et

al. [FYC+19] (CoreExact and CoreApp), Boob et al. [BGP+20] (Greedy++), and Harb et

al. [HQC22] (FISTA, Frank-Wolfe, MWU).

Fang et al. [FYC+19] implemented a variant of a maximum-flow algorithm to find the

densest subgraph. Their CoreExact implementation is exactly the flow algorithm with binary

154

search over the density. They perform a density lower-bound estimation using cores, which

we described in more detail in Section 5.1.1. If a graph has many connected components,

then a subgraph with maximum density lies exclusively in one component. Hence, they

run the flow algorithm on each connected component separately. The densities of cores are

then used to determine the lower bounds and upper bounds of the binary search needed for

the flow computation. Their approximation algorithm, CoreApp, is an algorithm that finds

core(G, kmax) directly. Once the maximum core is found, they return the component with

the highest density. This algorithm yields a 2-approximation for our problem.

Harb et al. [HQC22] propose a gradient descent based algorithm called FISTA, where the

number of iterations needed is O(
√

∆m/ε). They use accelerated proximal gradient descent

which is faster than the standard gradient descent approach [Nes83, BT09]. The output in

each iteration is a feasible solution to a linear program for the densest subgraph problem.

They then use Greedy++-inspired rounding, which they call fractional peeling, to round the

linear program solution into an integral solution.

Setup. We use c2-standard-60 Google Cloud instances (3.1 GHz Intel Xeon Cascade

Lake CPUs with a total of 30 cores with two-way hyper-threading, and 236 GiB RAM) and

m1-megamem-96 Google Cloud instances (2.0 GHz Intel Xeon Skylake CPUs with a total

of 48 cores with two-way hyper-threading, and 1433.6 GB RAM). We use hyper-threading

in our parallel experiments by default. Our programs are written in C++. We use parallel

primitives from the GBBS [DBS18] and Parlay [BAD20] libraries. The source code is compiled

using g++ (version 10) with the -O3 flag. We terminate experiments that take over 2 hours.

Using enough threads, with our framework, Greedy++, GreedySorting++, and their parallel

versions finished within 2 hours for all of our experiments. However, FISTA took longer than

2 hours on all of the large graphs (clueweb, twitter, friendster, hyperlink2012), so we

omit the entries for these datasets.

155

Datasets. We run our experiments on various synthetic and real-world datasets. The real-

world datasets are obtained from SNAP [LK14] (cahepth, ascaida, hepph, dblp, wiki,

youtube, stackoverflow, livejournal, orkut, twitter, friendster), Network Reposi-

tory [RA15] (brain), Lemur project at CMU [BV04] (clueweb), and WebDataCommons [MVLB15]

(hyperlink2012). The hyperlink2012 graph is the largest publicly-available real-world

graph today. closecliques is a synthetic dataset designed to be challenging for Greedy++ [BGP+20,

CQT22, HQC22]. We remove self-loop and zero-degree vertices from all graphs, and sym-

metrize any directed graphs. The sizes of our inputs and their maximum core values are

shown in Table 5.2. We run most of our experiments on c2-standard-60 machines. How-

ever, on the larger graphs (namely, twitter, friendster, clueweb and, hyperlink2012),

we use m1-megamem-96 machines as more memory is required.

Overview of Results. We show the following experimental results in this section.

• Our pruning strategy is very efficient as edges are 40× fewer on average and vertices are

1951× fewer on average.

• Our algorithms, similar to the state of the art, take only a few iterations to converge.

PaRSorting++takes more iterations in particular, but it still converges to < 1.01-approximation

within 10–20 iterations.

• When measuring wall-clock time, our algorithms outperform existing algorithms by a large

margin.

• Our algorithms are highly parallelizable, achieving up to 29x self-relative parallel speedup

on a 30-core machine with two-way hyperthreading.

• We measure empirical “width”, which is a parameter that correlates to the number of

iterations needed to converge. We observe that the empirical width is much smaller than

the upper bound used to analyze the algorithm. This may lead to a more fine-grained

analysis of many MWU-inspired algorithms.

156

Original Graph core(G, ⌈ kmax
2

⌉)
Graph Dataset Num. Vertices Num. Edges kmax Num. Vertices Num. Edges Vertex Ratio Edge Ratio

closecliques 3,230 95,400 59 3,230 95,400 1.000 1.000
cahepth 9,877 25,973 31 96 2,306 0.0097 0.088
ascaida 26,475 106,762 22 208 6,244 0.007 0.048
hepph 28,094 3,148,447 410 6,304 1,562,818 0.224 0.494
dblp 317,080 1,049,866 101 280 13,609 0.001 0.010
brain 784,262 267,844,669 1,200 187,494 137,354,946 0.239 0.512
wiki 1,094,018 2,787,967 124 3,807 344,553 0.034 0.090
youtube 1,138,499 2,990,443 51 12,836 439,678 0.011 0.110
stackoverflow 2,584,164 28,183,518 163 41,651 5,709,796 0.016 0.187
livejournal 4,846,609 42,851,237 329 6,090 1,054,941 0.001 0.022
orkut 3,072,441 117,185,083 253 71,507 13,469,722 0.023 0.113
twitter 41,652,230 1,202,513,046 2,484 24,480 36,136,023 0.001 0.029
friendster 65,608,366 1,806,067,135 304 1,474,236 271,902,207 0.022 0.146
clueweb 978,408,098 37,372,179,311 4,244 91,874 132,549,663 9.39e-05 0.003
hyperlink2012 3,563,602,789 112,920,331,616 10,565 250,477 1,046,929,322 7.02e-05 0.009

Table 5.2. Graph sizes, their maximum core values (kmax), their ⌈kmax/2⌉-
core sizes, and their vertex (edge) ratios, where this quantity is the number of
vertices (edges) in core(G, ⌈kmax

2
⌉) divided by the number of vertices (edges)

in G.

5.3.1. Core-Based Pruning

Pruning with core(G, ⌈kmax

2
⌉). We first study the benefit of performing pruning using

the exact k-core computation. The data for this experiment across all graphs is shown

in Table 5.2. For most real-world graphs, the cores contain between 5× to 100× fewer edges

than the actual graphs (40× fewer on average), and between 4× to 10000× fewer vertices

(1951× fewer on average). The only exception is the brain dataset, where the core is half

the actual size. Even in this case, the number of vertices left in the core is around 25% of

the original graph. For the synthetic dataset closecliques, the input is designed so that

the maximum-core is identical to the original graph, so there is no benefit to pruning. We

note that this situation is very unlikely to occur in real-world datasets.

Due to the significant reduction in graph sizes in terms of both the number of vertices and

number of edges, using core(G, ⌈kmax

2
⌉) is almost always preferable over using G, especially

since computing all cores of G (a linear-work algorithm, with reasonably high parallelism

in practice [DBS17]) is inexpensive compared to the cost of running any of the refinement

157

algorithms, which mostly require super-linear work. To summarize, we find that pruning is

nearly always beneficial and should be applied prior to refinement.

Pruning with highest cores. As our algorithms progress, we perform additional pruning

to shrink the graph even further. We include a table that has the sizes of the final graphs

in our supplementary materials. In many cases, the sizes of the final graph we process

are less than half of their ⌈kmax

2
⌉-cores. The extreme case here is friendster, where the

final size is only .73 percent of the original size. Another extreme case is clueweb, where

the best density found is roughly ⌈kmax

2
⌉, so there is little benefit from additional pruning.

Across all datasets, we find that iterative pruning yields a 5.5× reduction in the number of

vertices in the input subgraph to the refinement step, and a 16.3× reduction in the number

of edges when comparing these quantities in core(G, ⌈kmax/2⌉) and core(G, ⌈ρ̃⌉), where ρ̃ is

best density found by our algorithms.

5.3.2. Number of Iterations Versus Density

Next, we study the progress that different refinement algorithms make in our framework

toward finding the maximum density. We select following algorithms for this experiment:

PaRGreedy++, PaRSorting++, FISTA, Greedy++, FrankWolfe, and MWU. All algorithms were

run for 20 iterations. The result is illustrated in Section 5.3.4. In fact, most algorithms

converge really early. Two algorithms, namely, PaRSorting++ and MWU take more iterations

in many graphs. This correlates with our understanding of the width of MWU as we will

discuss further below.

158

Graph Dataset ρ̃ FISTA MWU FrankWolfe Greedy++ PaRGreedy++ PaRSorting++

hepph 265.969 1.014707341 1.000240687 1.000327213 1.000067682 1.000105283 1.002712634
dblp 56.56522 1.000000354 1.000000354 1.000000354 1.000000354 1.000000046 1.000000046
brain 1057.458 1.000111601 1.00160832 1.001845553 1 1.000000204 1.002204238
wiki 108.5877 1 1 1.023273149 1 1 1.000070379
youtube 45.59877 1.000225276 1.00379449 1.045663475 1.000201142 1.000190795 1.00170595
stackoverflow 181.5867 1.000003855 1.000064436 1.014093922 1.000003855 1.000000082 1.000093301
livejournal 229.8459 1.002415697 1.017048758 1.13958293 1 1.000001356 1.022995862
orkut 227.874 1 1.000351195 1.003593795 1 1.000000112 1.000325247
twitter 1643.301 n/a n/a n/a 1.000000609 1 1.00267877
friendster 273.5187 n/a n/a n/a n/a 1 1.000002608
clueweb 2122.5 n/a n/a n/a n/a 1.000000222 1.000000222
hyperlinks 6496.649 n/a n/a n/a n/a 1.000002839 1.066697279

Table 5.3. Approximation Ratio at the 10th iteration for various algorithms.

Graph Dataset ρ̃ FISTA MWU FrankWolfe Greedy++ PaRGreedy++ PaRSorting++

hepph 265.969 1.000425042 1.000105287 1.000109047 1.00000376 1.000001679 1.000307467
dblp 56.56522 1.000000354 1.000000354 1.000000354 1.000000354 1.000000046 1.000000046
brain 1057.458 1.000111601 1.000045394 1.000310274 1 1.000000163 1.000262295
wiki 108.5877 1 1 1.007213617 1 1 1
youtube 45.59877 1.000225276 1.001042122 1.015216864 1.000065138 1 1.000791673
stackoverflow 181.5867 1.000003855 1.000009362 1.003102886 1.000003855 1.000000082 1.000019569
livejournal 229.8459 1.001132038 1.000030021 1.036714839 1 1.000000124 1.000194885
orkut 227.874 1 1.000109722 1.001225862 1 1.000000065 1.000255332
twitter 1643.301 n/a n/a n/a 1.000000609 1 1.000029835
friendster 273.5187 n/a n/a n/a n/a 1 1.000002608
clueweb 2122.5 n/a n/a n/a n/a 1.000000222 1.000000222
hyperlinks 6496.649 n/a n/a n/a n/a 1 1

Table 5.4. Approximation Ratio at the 20th iteration for various algorithms.

5.3.3. Approximation Ratio

In Table 5.3, we compare the densities returned from various algorithms at iteration 10

with the best density known. Excepts for brain, twitter, friendster, clueweb, and

hyperlinks, the best density known is optimal.3

Except for FrankWolfe, all algorithms have approximation ratios less than 1.02 after 10

iterations. We also include a table that compares densities after iteration 20 in our supple-

mentary materials. After 20 iterations, most approximation ratios are less than 1.001 Ta-

ble 5.4. Among our datasets, livejournal is the graph with the highest approximation

3To compute the optimal density, we run a linear program solver on core(G, ⌈ρ̃⌉).

159

brainorkut
livejournaldblp

stackoverflow wiki
youtube

hepph

102

105

108
R

u
n
ti

m
e

(m
s)

PaRGreedy++ PaRSorting++ FISTA Greedy++ FrankWolfe MWU

Figure 5.2. Running times of different densest subgraph algorithms on our
small graph inputs.

ratios after 10 and 20 iterations. Note that Greedy++, PaRGreedy++, and PaRSorting++

took the fewest iterations to converge.

5.3.4. Empirical Widths

As mentioned at the end of Section 5.2.2, in the multiplicative weight update framework,

“width” is a parameter that is correlated to the number of rounds needed for a solution to

converge. In our context, the width corresponds to the maximum increase of a load of a

single vertex in any iteration.4 Clearly the width is bounded by the maximum degree ∆,

which is reflected in the T = O(∆logn
ρ∗ε2

) iterations needed for our algorithms in the worst case.

However, this bound does not reflect reality as Greedy++ usually converges in just a few

iterations. Here, we partially explain this phenomenon by measuring the width empirically.

Table 5.5 shows information about the width across multiple datasets gathered from our

experiments. We observe that widths for running PaRGreedy++ are much closer to the best

density found, while widths from PaRSorting++ are closer to ∆, meaning that PaRSorting++

should take more iterations to converge. This supports what we observed in our experiments,

and also may explain why it takes very few iterations, e.g., fewer than 10–20 iterations, for

PaRGreedy++ to converge.

4See, e.g., [CQT22, AHK12] for more details on width and this analysis.

160

Max. Degree ∆ PaRGreedy++ PaRSorting++

Graph Dataset Num. Vertices ρ̃ G ⌈ kmax
2

⌉-core ⌈ρ̃⌉-core No Pruning Pruning No Pruning Pruning

closecliques 3,230 29.55665 2,000 2,000 2,000 59 59 2,000 2,000

cahepth 9,877 15.5 65 31 31 31 31 65 31

ascaida 26,475 17.53409 2,628 146 76 44 45 2,628 56
hepph 28094 265.969 4,909 3,259 2,589 683 633 4,909 2,543

dblp 317,080 56.56522 343 114 114 114 114 343 114
brain 784,262 1,057.458 21,743 16,151 7,686 2,545 2,676 21,743 13,523

wiki 1,094,018 108.5877 141,951 2,288 1,025 312 338 141,951 1,023

youtube 1,138,499 45.59877 28,754 4,064 1,108 137 139 28,754 1,392
stackoverflow 2,584,164 181.5867 44,065 14,613 3,783 640 619 44,065 3,787

livejournal 4,846,609 229.8459 20,333 1,010 629 546 535 20,333 1,010

orkut 3,072,441 227.874 33,313 13,162 7,186 755 779 33,313 7,447
twitter 41,652,230 1,643.301 2,997,487 19,549 10,705 3,859 3,737 2,997,487 10,286

friendster 65,608,366 273.5187 5,214 2,952 2,190 1,092 1,018 5,214 2,431

clueweb 978,408,098 2,122.5 75,611,696 7,707 7,707 6,661 7,065 75,611,696 7,707
hyperlink2012 3,563,602,789 6,496.649 95,041,164 67,920 3,740 n/a 17,287 95,041,163 67,792

Table 5.5. Empirical widths in our experiments.

PaRGreedy++-1 PaRSorting++-1 FISTA-1 Greedy++ FrankWolfe MWU

100 101 102
101.4

101.6

Iteration

D
B
L
P

D
en
si
ty

100 101 102
102

102.2

Iteration

L
J
D
en
si
ty

100 101 102
102.3

102.32

102.34

102.36

Iteration

O
rk

u
t
D
en
si
ty

100 101 102

102.9

103

Iteration

B
ra

in
D
en
si
ty

100 101 102

103.2

103.21

Iteration

T
w
it
te
r
D
en
si
ty

100 101
102.3

102.4

Iteration

F
ri
e
n
d
st
e
r
D
en
si
ty

100 101

103.2

103.3

Iteration

C
lu
e
W

e
b
D
en
si
ty

100 101 102

103.75

103.8

Iteration

H
y
p
e
rl
in
k
s
D
en
si
ty

Figure 5.3. Densities on different iterations for various algorithms. Only our
algorithms can successfully process large graphs (bottom row) within the 2
hours limit.

In Section 5.3.4, we show the progress between densities and running times on various

algorithms. Note that one of our algorithms, either PaRGreedy++ or PaRSorting++ is the

fastest to converge in wall-clock time.

161

PaRGreedy++-1 PaRSorting++-1 FISTA-1 Greedy++ FrankWolfe MWU

102 103 104

101.6

Time

D
B
L
P

D
en
si
ty

104 105
102

102.2

Time

L
J
D
en
si
ty

104 105 106
102.3

102.32

102.34

102.36

Time

O
rk

u
t
D
en
si
ty

104 105 106

102.9

103

Time

B
ra

in
D
en
si
ty

103.85 103.9 103.95

103.2

103.21

Time

T
w
it
te
r
D
en
si
ty

104.1 104.15 104.2
102.3

102.4

Time

F
ri
e
n
d
st
e
r
D
en
si
ty

104.95 105 105.05

103.2

103.3

Time

C
lu
e
W

e
b
D
en
si
ty

105.45 105.5 105.55 105.6

103.75

103.8

Time

H
y
p
e
rl
in
k
s
D
en
si
ty

Figure 5.4. Densities and time (ms) for various algorithms. PaRGreedy++,
PaRSorting++, FISTA are run on one thread here for smaller graphs (top row)
and 60 threads for the large graphs (bottom row).

PaRGreedy++ PaRSorting++ FISTA

0 20 40 60

102

103

Threads

D
B

L
P

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

Threads

L
J

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

Threads

O
rk

u
t

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

106

Threads

B
ra

in
R

u
n
ti

m
e

(m
s)

PaRGreedy++ PaRSorting++ FISTA

0 20 40 60

102

103

Threads

D
B

L
P

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

Threads

L
J

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

106

Threads

O
rk

u
t

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

106

Threads

B
ra

in
R

u
n
ti

m
e

(m
s)

Figure 5.5. Runtime (ms) of PaRGreedy++, PaRSorting++, and FISTA versus
the number of threads when running for 5 iterations.

PaRGreedy++ PaRSorting++ FISTA

0 20 40 60

102

103

Threads

D
B

L
P

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

Threads

L
J

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

Threads

O
rk

u
t

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

106

Threads

B
ra

in
R

u
n
ti

m
e

(m
s)

PaRGreedy++ PaRSorting++ FISTA

0 20 40 60

102

103

Threads

D
B

L
P

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

Threads

L
J

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

106

Threads

O
rk

u
t

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

106

Threads

B
ra

in
R

u
n
ti

m
e

(m
s)

Figure 5.6. Runtime (ms) of PaRGreedy++, PaRSorting++, and FISTA versus
the number of threads when running for 10 iterations.

162

PaRGreedy++ PaRSorting++ FISTA

0 20 40 60

102

103

104

Threads

D
B

L
P

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

Threads

L
J

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

106

Threads

O
rk

u
t

R
u
n
ti

m
e

(m
s)

0 20 40 60

102

103

104

105

106

Threads

B
ra

in
R

u
n
ti

m
e

(m
s)

Figure 5.7. Runtime (ms) of PaRGreedy++, PaRSorting++, and FISTA versus
the number of threads when running for 20 iterations.

5.3.5. Impact of Parallelism

Here we show the scalability of our algorithms compared to the parallel version of FISTA

in Fig. 5.5. Fig. 5.5 shows the running time of the algorithms (in milliseconds) versus

the number of threads used by our algorithms and parallel FISTA when each algorithm

is run for 5 iterations. We show additional plots in our supplementary materials. We

see that our PaRSorting++ algorithm achieves greater self-relative speedups than FISTA

and PaRGreedy++. Specifically, PaRSorting++ achieves up to a 29.64x self-relative speedup

on livejournal while FISTA achieves up to a 14x self-relative speedup on dblp and

PaRGreedy++ achieves up to a 5.51x self-relative speedup on orkut. Furthermore, both

of our algorithms take shorter time than parallel FISTA regardless of the number of threads.

5.3.6. Comparing the Total Running Time

We first compare PaRSorting++ with the algorithms given in [FYC+19] (see Table 5.6). We

ran experiments on two of their algorithms, namely, CoreExact and CoreApp. CoreExact

took too long to run on most datasets. CoreApp is faster than our implementation, however

since it uses core(G, kmax), this algorithm gives a 2-approximation and is less accurate than

our algorithms.

163

We include plots that compare the total runtime of our algorithms (PaRGreedy++, PaRSorting++)

with Greedy++ [BGP+20], FISTA, FrankWolfe, and MWU [HQC22] in our supplementary ma-

terials. In short, when measuring the quality of our solutions in running time, our algorithms

outperform all existing algorithms by significant margins (3–40× even on one thread situa-

tion). Moreover, even when using multi-threading, our algorithms are the only algorithms

that finish processing large graphs (twitter, friendster, clueweb, and hyperlinks) within

2 hours. Other algorithms could not finish it even if we run them for 5 hours.

CoreApp PaRSorting++ CoreExact

Graph Dataset ρ̃ Density time(ms) Density time(ms) time(ms)

asCaida 17.53 16.72 4704 17.53 13 4704
caHepTh 15.5 15.5 417 15.5 6 417
brain 1057.45 1006.94 23573 1057.45 76959 n/a
dblp 56.57 56.5 65 56.57 154 247018
hepph 265.97 205 61 265.97 1351 n/a
lj 229.85 195.86 2295 229.85 5344 n/a
orkut 227.87 219.32 17757 227.87 14740 n/a
stackoverflow 181.59 173.23 3599 181.59 4462 n/a
wiki 108.59 102.12 408 108.59 487 n/a
youtube 45.60 43.03 273 45.60 642 n/a

Table 5.6. Comparison between PaRSorting++ on one thread and algorithms
from [FYC+19].

5.4. Conclusion

We have introduced a framework that combines pruning and refinement for solving the ap-

proximate densest subgraph problem. We have designed new parallel variants of the sequen-

tial Greedy++ algorithm, and achieved state-of-the-art performance by plugging them into

our framework. We have shown that our algorithms can scale to the large hyperlinks2012

and clueweb graphs for the first time in the literature.

5.5. Authors

This chapter was written by Pattara Sukprasert, Quanquan Liu, Laxman Dhulipala, and

Julian Shun.

164

The preliminary version of this work is under submission at ACM SIGKDD Conference

on Knowledge Discovery and Data Mining (KDD) 2023 [SLDS23].

165

CHAPTER 6

Conclusion

In this thesis, we study four problems related to finding good subgraphs. In the kECSS

problem, we propose an algorithm that finds a (1 + ε)-approximate fractional solution in

near-linear time. We also show a rounding method that rounds the solution obtained into

a (2 + ε)-approximate integral solution. For Dynamic Spanner, we close the recourse gap

between an oblivious adversary setting and an adaptive adversary setting. We show that

an algorithm that achieves both good recourse bounds and good running time is attainable

at least for 3-spanner. For Dataset versioning problem, we propose Dynamic Programming

algorithms for trees and extend them to work with bounded tree-width graph. We also make

use of our algorithm to show better bounds, compared to best known heuristic. For Densest

subgraph problem, we propose a parallel provable algorithm that works very well in practice.

We manage to scale our implementation so that it runs on hyperlinks2012, which is one of

largest available graphs within a reasonable time.

Despite recent progress, many questions remain open. For kECSS, the natural open

problem is to improve the running time of other problems in the survivable network de-

sign family where the demand between pairs of vertices are not necessarily uniform. Jain’s

framework [Jai01] gives 2-approximation to the whole family. Hence, the goal is to develop

efficient algorithms with similar approximation ratios. For dynamic spanners, it would be

interesting to see faster algorithms when for maintaining spanners with stretches higher than

3. For Dataset versioning and related problems in directed graphs, not much is known on

the algorithmic side. Hence, it would be interesting to see any bi-criteria approximation

166

algorithm that works for general graphs. Lastly, for densest subgraph, there are many ex-

citing directions. It is interesting to see a provable condition in which we can surely shrink

the graph with our pruning rule. Here, we might have to look beyond worst-case analysis.

As we have an efficient algorithm for approximate dense subgraphs, it is interesting to ob-

tain an efficient exact algorithm. Despite the development in network flows, especially the

near-linear time algorithm by Chen et al. [CKL+22], we do not have a good exact algorithm

that works well in practice yet. The faster maximum flow result suggests such a possibility.

In this direction, an efficient, possibly parallel, algorithm that solves the linear program for

solving exact densest subgraph [Cha00] is also interesting.

167

References

[ABED+21] Noga Alon, Omri Ben-Eliezer, Yuval Dagan, Shay Moran, Moni Naor, and

Eylon Yogev. Adversarial laws of large numbers and optimal regret in online

classification. In Proceedings of the 53rd Annual ACM SIGACT Symposium on

Theory of Computing, pages 447–455, 2021.

[ABL+20] Chen Avin, Marcin Bienkowski, Andreas Loukas, Maciej Pacut, and Stefan

Schmid. Dynamic balanced graph partitioning. SIAM Journal on Discrete

Mathematics, 34(3):1791–1812, 2020.

[ABS+20] Abu Reyan Ahmed, Greg Bodwin, Faryad Darabi Sahneh, Keaton Hamm,

Mohammad Javad Latifi Jebelli, Stephen G. Kobourov, and Richard Spence.

Graph spanners: A tutorial review. Comput. Sci. Rev., 37:100253, 2020.

[ACP87] Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of

finding embeddings in a k-tree. SIAM Journal on Algebraic Discrete Methods,

8(2):277–284, 1987.

[ADD+93a] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José

Soares. On sparse spanners of weighted graphs. Discrete & Computational

Geometry, 9:81–100, 1993.

[ADD+93b] Ingo Althöfer, Gautam Das, David P. Dobkin, Deborah Joseph, and José

Soares. On sparse spanners of weighted graphs. Discret. Comput. Geom.,

9:81–100, 1993.

[Adj18] David Adjiashvili. Beating approximation factor two for weighted tree aug-

mentation with bounded costs. ACM Transactions on Algorithms (TALG),

168

15(2):1–26, 2018.

[ADK+16] Ittai Abraham, David Durfee, Ioannis Koutis, Sebastian Krinninger, and

Richard Peng. On fully dynamic graph sparsifiers. In FOCS, pages 335–344,

2016.

[AFI06] Giorgio Ausiello, Paolo Giulio Franciosa, and Giuseppe F. Italiano. Small

stretch spanners on dynamic graphs. J. Graph Algorithms Appl., 10(2):365–

385, 2006. Announced at ESA’05.

[AH77] Kenneth Appel and Wolfgang Haken. The solution of the four-color-map prob-

lem. Scientific American, 237(4):108–121, 1977.

[AHDBV05] J. Ignacio Alvarez-Hamelin, Luca Dall’Asta, Alain Barrat, and Alessandro

Vespignani. Large scale networks fingerprinting and visualization using the

k-core decomposition. In Proceedings of the 18th International Conference on

Neural Information Processing Systems, 2005.

[AHK12] Sanjeev Arora, Elad Hazan, and Satyen Kale. The multiplicative weights

update method: a meta-algorithm and applications. Theory of Computing,

8(1):121–164, 2012.

[AKS+14] Albert Angel, Nick Koudas, Nikos Sarkas, Divesh Srivastava, Michael Svendsen,

and Srikanta Tirthapura. Dense subgraph maintenance under streaming edge

weight updates for real-time story identification. VLDB J., 23(2):175–199,

2014.

[AKT21] Amir Abboud, Robert Krauthgamer, and Ohad Trabelsi. APMF < APSP ?

gomory-hu tree for unweighted graphs in almost-quadratic time. 2021 IEEE

62nd Annual Symposium on Foundations of Computer Science (FOCS), pages

1135–1146, 2021.

[Arc00] Aaron Archer. Inapproximability of the asymmetric facility location and k-

median problems. 2000.

169

[Arc01] Aaron Archer. Two o(log*k)-approximation algorithms for the asymmetric k-

center problem. In Karen Aardal and Bert Gerards, editors, Integer Program-

ming and Combinatorial Optimization, pages 1–14, Berlin, Heidelberg, 2001.

Springer Berlin Heidelberg.

[BAD20] Guy E. Blelloch, Daniel Anderson, and Laxman Dhulipala. ParlayLib - a toolkit

for parallel algorithms on shared-memory multicore machines. In Proceedings

of the 32nd ACM Symposium on Parallelism in Algorithms and Architectures,

page 507–509, 2020.

[BB73] Umberto Bertelè and Francesco Brioschi. On non-serial dynamic programming.

Journal of Combinatorial Theory, Series A, 14(2):137–148, 1973.

[BBC+14] Anant Bhardwaj, Souvik Bhattacherjee, Amit Chavan, Amol Deshpande,

Aaron J Elmore, Samuel Madden, and Aditya G Parameswaran. DataHub:

Collaborative Data Science & Dataset Version Management at Scale. arXiv,

2014.

[BBG+20] Aaron Bernstein, Jan van den Brand, Maximilian Probst Gutenberg, Danupon

Nanongkai, Thatchaphol Saranurak, Aaron Sidford, and He Sun. Fully-

dynamic graph sparsifiers against an adaptive adversary. arXiv preprint

arXiv:2004.08432, 2020.

[BBN19] Dan Brickley, Matthew Burgess, and Natasha Noy. Google Dataset Search:

Building a search engine for datasets in an open Web ecosystem. The World

Wide Web Conference, pages 1365–1375, 2019.

[BC16] Aaron Bernstein and Shiri Chechik. Deterministic decremental single source

shortest paths: beyond the o(mn) bound. In STOC, pages 389–397, 2016.

[BC17] Aaron Bernstein and Shiri Chechik. Deterministic partially dynamic single

source shortest paths for sparse graphs. In SODA, pages 453–469, 2017.

170

[BC18] Aaron Bernstein and Shiri Chechik. Incremental topological sort and cycle

detection in expected total time. In Proceedings of the Twenty-Ninth Annual

ACM-SIAM Symposium on Discrete Algorithms, SODA 2018, New Orleans,

LA, USA, January 7-10, 2018, pages 21–34, 2018.

[BCCK16] Surender Baswana, Shreejit Ray Chaudhury, Keerti Choudhary, and Shahbaz

Khan. Dynamic dfs in undirected graphs: breaking the o (m) barrier. In

Proceedings of the twenty-seventh Annual ACM-SIAM Symposium on Discrete

Algorithms, pages 730–739. SIAM, 2016.

[BCH+15] Souvik Bhattacherjee, Amit Chavan, Silu Huang, Amol Deshpande, and

Aditya G. Parameswaran. Principles of dataset versioning: Exploring the recre-

ation/storage tradeoff. Proc. VLDB Endow., 8(12):1346–1357, 2015.

[BDH+19] Soheil Behnezhad, Mahsa Derakhshan, MohammadTaghi Hajiaghayi, Cliff

Stein, and Madhu Sudan. Fully dynamic maximal independent set with poly-

logarithmic update time. In 60th IEEE Annual Symposium on Foundations of

Computer Science, FOCS 2019, Baltimore, Maryland, USA, November 9-12,

2019, pages 382–405, 2019.

[BDT14] Glencora Borradaile, Erik D Demaine, and Siamak Tazari. Polynomial-time

approximation schemes for subset-connectivity problems in bounded-genus

graphs. Algorithmica, 68(2):287–311, 2014.

[BEJWY20] Omri Ben-Eliezer, Rajesh Jayaram, David P Woodruff, and Eylon Yogev. A

framework for adversarially robust streaming algorithms. In Proceedings of

the 39th ACM SIGMOD-SIGACT-SIGAI symposium on principles of database

systems, pages 63–80, 2020.

[Ber17] Aaron Bernstein. Deterministic partially dynamic single source shortest paths

in weighted graphs. In ICALP, volume 80, pages 44:1–44:14, 2017.

171

[BF21] Mahdi Belbasi and Martin Fürer. Finding all leftmost separators of size ≤ k.

In Combinatorial Optimization and Applications: 15th International Confer-

ence, COCOA 2021, Tianjin, China, December 17–19, 2021, Proceedings, page

273–287, Berlin, Heidelberg, 2021. Springer-Verlag.

[BFH19] Aaron Bernstein, Sebastian Forster, and Monika Henzinger. A deamortization

approach for dynamic spanner and dynamic maximal matching. In SODA,

pages 1899–1918, 2019.

[BFPK20] Alex Bogatu, Alvaro A. A. Fernandes, Norman W. Paton, and Nikolaos Kon-

stantinou. Dataset Discovery in Data Lakes. 2020 IEEE 36th International

Conference on Data Engineering (ICDE), 00:709–720, 2020.

[BG07] André Berger and Michelangelo Grigni. Minimum weight 2-edge-connected

spanning subgraphs in planar graphs. In International Colloquium on Au-

tomata, Languages, and Programming, pages 90–101. Springer, 2007.

[BGM14] Bahman Bahmani, Ashish Goel, and Kamesh Munagala. Efficient primal-dual

graph algorithms for MapReduce. In International Workshop on Algorithms

and Models for the Web Graph (WAW), volume 8882, pages 59–78, 2014.

[BGP+20] Digvijay Boob, Yu Gao, Richard Peng, Saurabh Sawlani, Charalampos

Tsourakakis, Di Wang, and Junxing Wang. Flowless: Extracting densest sub-

graphs without flow computations. In Proceedings of The Web Conference 2020,

page 573–583, 2020.

[BGS21] Aaron Bernstein, Maximilian Probst Gutenberg, and Thatchaphol Saranurak.

Deterministic decremental sssp and approximate min-cost flow in almost-linear

time. arXiv preprint arXiv:2101.07149, 2021.

[BGW21] Sayan Bhattacharya, Fabrizio Grandoni, and David Wajc. Online edge coloring

algorithms via the nibble method. In Proceedings of the 2021 ACM-SIAM

Symposium on Discrete Algorithms (SODA), pages 2830–2842. SIAM, 2021.

172

[BHI15] Sayan Bhattacharya, Monika Henzinger, and Giuseppe F. Italiano. Determin-

istic fully dynamic data structures for vertex cover and matching. In SODA,

2015.

[BHM+21] Vladimir Braverman, Avinatan Hassidim, Yossi Matias, Mariano Schain,

Sandeep Silwal, and Samson Zhou. Adversarial robustness of streaming algo-

rithms through importance sampling. arXiv preprint arXiv:2106.14952, 2021.

[BHN16] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. New de-

terministic approximation algorithms for fully dynamic matching. In STOC,

pages 398–411, 2016.

[BHN17] Sayan Bhattacharya, Monika Henzinger, and Danupon Nanongkai. Fully dy-

namic approximate maximum matching and minimum vertex cover in O(log3

n) worst case update time. In SODA, pages 470–489, 2017.

[BHNT15] Sayan Bhattacharya, Monika Henzinger, Danupon Nanongkai, and Charalam-

pos Tsourakakis. Space- and time-efficient algorithm for maintaining dense

subgraphs on one-pass dynamic streams. In ACM Symposium on Theory of

Computing (STOC), pages 173–182, 2015.

[BI04] Daniel Bienstock and Garud Iyengar. Faster approximation algorithms for

packing and covering problems. 2004.

[BK15] András A. Benczúr and David R. Karger. Randomized approximation schemes

for cuts and flows in capacitated graphs. SIAM J. Comput., 44(2):290–319,

2015.

[BK16] Greg Bodwin and Sebastian Krinninger. Fully dynamic spanners with worst-

case update time. In ESA, pages 17:1–17:18, 2016.

[BK19] Sayan Bhattacharya and Janardhan Kulkarni. Deterministically maintaining a

(2 + ε)-approximate minimum vertex cover in o(1/ε2) amortized update time.

In SODA, 2019.

173

[BK21] Sayan Bhattacharya and Peter Kiss. Deterministic rounding of dynamic frac-

tional matchings. arXiv preprint arXiv:2105.01615, 2021.

[BKS12] Surender Baswana, Sumeet Khurana, and Soumojit Sarkar. Fully dynamic

randomized algorithms for graph spanners. ACM Trans. Algorithms, 8(4):35:1–

35:51, 2012. Announced at SODA’08.

[BKT00] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Data Provenance:

Some Basic Issues. Lecture Notes in Computer Science, pages 87–93, 2000.

[BKV12] Bahman Bahmani, Ravi Kumar, and Sergei Vassilvitskii. Densest subgraph in

streaming and mapreduce. Proceedings of the VLDB Endowment, 5(5), 2012.

[BKW23] Maximilian Böther, Otto Kißig, and Christopher Weyand. Efficiently comput-

ing directed minimum spanning trees. In 2023 Proceedings of the Symposium

on Algorithm Engineering and Experiments (ALENEX), pages 86–95. SIAM,

2023.

[BL98] Randal C. Burns and Darrell D. E. Long. In-place reconstruction of delta

compressed files. Proceedings of the seventeenth annual ACM symposium on

Principles of distributed computing - PODC ’98, pages 267–275, 1998.

[BLL+21] Jan van den Brand, Yin Tat Lee, Yang P. Liu, Thatchaphol Saranurak, Aaron

Sidford, Zhao Song, and Di Wang. Minimum cost flows, mdps, and l1-regression

in nearly linear time for dense instances. In STOC, pages 859–869. ACM, 2021.

[BNS+21] Raef Bassily, Kobbi Nissim, Adam D. Smith, Thomas Steinke, Uri Stemmer,

and Jonathan R. Ullman. Algorithmic stability for adaptive data analysis.

SIAM J. Comput., 50(3), 2021.

[Bod93] Hans L. Bodlaender. A linear time algorithm for finding tree-decompositions of

small treewidth. In Proceedings of the Twenty-Fifth Annual ACM Symposium

on Theory of Computing, STOC ’93, page 226–234, New York, NY, USA, 1993.

Association for Computing Machinery.

174

[Bod98] Hans L. Bodlaender. A partial k-arboretum of graphs with bounded treewidth.

Theoretical Computer Science, 209(1):1–45, 1998.

[BPW19] Aaron Bernstein, Maximilian Probst, and Christian Wulff-Nilsen. Decremen-

tal strongly-connected components and single-source reachability in near-linear

time. In STOC, pages 365–376, 2019.

[BSS22] Sayan Bhattacharya, Thatchaphol Saranurak, and Pattara Sukprasert. Simple

dynamic spanners with near-optimal recourse against an adaptive adversary. In

Shiri Chechik, Gonzalo Navarro, Eva Rotenberg, and Grzegorz Herman, editors,

30th Annual European Symposium on Algorithms, ESA 2022, September 5-

9, 2022, Berlin/Potsdam, Germany, volume 244 of LIPIcs, pages 17:1–17:19.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[BT09] Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algo-

rithm for linear inverse problems. SIAM journal on imaging sciences, 2(1):183–

202, 2009.

[BV04] Paolo Boldi and Sebastiano Vigna. The webgraph framework I: compression

techniques. In Proceedings of the 13th International Conference on World Wide

Web, pages 595–602, 2004.

[BV14] Ashwinkumar Badanidiyuru and Jan Vondrák. Fast algorithms for maximizing

submodular functions. In Chandra Chekuri, editor, Proceedings of the Twenty-

Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,

Portland, Oregon, USA, January 5-7, 2014, pages 1497–1514. SIAM, 2014.

[BW21] Jackson Brown and Nicholas Weber. DSDB: An Open-Source System for Data-

base Versioning & Curation. 2021 ACM/IEEE Joint Conference on Digital

Libraries (JCDL), 00:299–307, 2021.

[CD17] Amit Chavan and Amol Deshpande. DEX: Query Execution in a Delta-based

Storage System. Proceedings of the 2017 ACM International Conference on

175

Management of Data, pages 171–186, 2017.

[CDE+18] Parinya Chalermsook, Syamantak Das, Guy Even, Bundit Laekhanukit, and

Daniel Vaz. Survivable network design for group connectivity in low-treewidth

graphs. Approximation, Randomization, and Combinatorial Optimization. Al-

gorithms and Techniques, 2018.

[CGH+05] Julia Chuzhoy, Sudipto Guha, Eran Halperin, Sanjeev Khanna, Guy Kortsarz,

Robert Krauthgamer, and Joseph (Seffi) Naor. Asymmetric k-center is log*

n-hard to approximate. J. ACM, 52(4):538–551, jul 2005.

[CGH+20] Li Chen, Gramoz Goranci, Monika Henzinger, Richard Peng, and Thatchaphol

Saranurak. Fast dynamic cuts, distances and effective resistances via vertex

sparsifiers. In 2020 IEEE 61st Annual Symposium on Foundations of Computer

Science (FOCS), pages 1135–1146. IEEE, 2020.

[CGL+19] Julia Chuzhoy, Yu Gao, Jason Li, Danupon Nanongkai, Richard Peng, and

Thatchaphol Saranurak. A deterministic algorithm for balanced cut with ap-

plications to dynamic connectivity, flows, and beyond. CoRR, abs/1910.08025,

2019.

[CGSZ04] Artur Czumaj, Michelangelo Grigni, Papa Sissokho, and Hairong Zhao. Ap-

proximation schemes for minimum 2-edge-connected and biconnected sub-

graphs in planar graphs. In Proceedings of the fifteenth annual ACM-SIAM

symposium on Discrete algorithms, pages 496–505. Society for Industrial and

Applied Mathematics, 2004.

[Cha00] Moses Charikar. Greedy approximation algorithms for finding dense compo-

nents in a graph. In Approximation Algorithms for Combinatorial Optimization,

pages 84–95, 2000.

[CHK16] Keren Censor-Hillel, Elad Haramaty, and Zohar S. Karnin. Optimal dynamic

distributed MIS. In Proceedings of the 2016 ACM Symposium on Principles

176

of Distributed Computing, PODC 2016, Chicago, IL, USA, July 25-28, 2016,

pages 217–226, 2016.

[CHKZ03] Edith Cohen, Eran Halperin, Haim Kaplan, and Uri Zwick. Reachability and

distance queries via 2-hop labels. SIAM Journal on Computing, 32(5):1338–

1355, 2003.

[CHN+22] Parinya Chalermsook, Chien-Chung Huang, Danupon Nanongkai, Thatchaphol

Saranurak, Pattara Sukprasert, and Sorrachai Yingchareonthawornchai. Ap-

proximating k-edge-connected spanning subgraphs via a near-linear time LP

solver. In Mikolaj Bojanczyk, Emanuela Merelli, and David P. Woodruff, ed-

itors, 49th International Colloquium on Automata, Languages, and Program-

ming, ICALP 2022, July 4-8, 2022, Paris, France, volume 229 of LIPIcs, pages

37:1–37:20. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2022.

[CHPQ20] Chandra Chekuri, Sariel Har-Peled, and Kent Quanrud. Fast lp-based ap-

proximations for geometric packing and covering problems. In Proceedings of

the Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, pages

1019–1038. SIAM, 2020.

[Chu21] Julia Chuzhoy. Decremental all-pairs shortest paths in deterministic near-linear

time. In STOC ’21: 53rd Annual ACM SIGACT Symposium on Theory of

Computing, Virtual Event, Italy, June 21-25, 2021, pages 626–639, 2021.

[CHv+22] Aleksander B. G. Christiansen, Jacob Holm, Ivor van der Hoog, Eva Rotenberg,

and Chris Schwiegelshohn. Adaptive out-orientations with applications. CoRR,

abs/2209.14087, 2022.

[CK19] Julia Chuzhoy and Sanjeev Khanna. A new algorithm for decremental single-

source shortest paths with applications to vertex-capacitated flow and cut prob-

lems. In STOC, pages 389–400, 2019.

177

[CKK02] Béla Csaba, Marek Karpinski, and Piotr Krysta. Approximability of dense and

sparse instances of minimum 2-connectivity, tsp and path problems. In Proceed-

ings of the thirteenth annual ACM-SIAM symposium on Discrete algorithms,

pages 74–83. Society for Industrial and Applied Mathematics, 2002.

[CKL+22] Li Chen, Rasmus Kyng, Yang P. Liu, Richard Peng, Maximilian Probst Guten-

berg, and Sushant Sachdeva. Maximum flow and minimum-cost flow in almost-

linear time. In 2022 IEEE 63rd Annual Symposium on Foundations of Com-

puter Science (FOCS), pages 612–623, 2022.

[CL99] Artur Czumaj and Andrzej Lingas. On approximability of the minimum-cost

k-connected spanning subgraph problem. In Proceedings of the tenth annual

ACM-SIAM symposium on Discrete algorithms, pages 281–290. Citeseer, 1999.

[CL00] Artur Czumaj and Andrzej Lingas. Fast approximation schemes for euclidean

multi-connectivity problems. In International Colloquium on Automata, Lan-

guages, and Programming, pages 856–868. Springer, 2000.

[CL07] Artur Czumaj and Andrzej Lingas. Approximation schemes for minimum-cost

k-connectivity problems in geometric graphs. In Handbook of Approximation

Algorithms and Metaheuristics. Chapman and Hall/CRC, 2007.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.

Introduction to Algorithms (3. ed.). MIT Press, 2009.

[CQ17a] Chandra Chekuri and Kent Quanrud. Approximating the held-karp bound for

metric TSP in nearly-linear time. CoRR, abs/1702.04307, 2017.

[CQ17b] Chandra Chekuri and Kent Quanrud. Near-linear time approximation schemes

for some implicit fractional packing problems. In ACM-SIAM Symposium on

Discrete Algorithms, 2017.

[CQ18] Chandra Chekuri and Kent Quanrud. Fast approximations for metric-tsp via

linear programming. CoRR, abs/1802.01242, 2018.

178

[CQ22] Chandra Chekuri and Kent Quanrud. (1−ε)-approximate fully dynamic densest

subgraph: linear space and faster update time, 2022.

[CQT22] Chandra Chekuri, Kent Quanrud, and Manuel R. Torres. Densest subgraph:

Supermodularity, iterative peeling, and flow. In Proceedings of the Annual

ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1531–1555,

2022.

[Cre97] P. Crescenzi. A short guide to approximation preserving reductions. In Pro-

ceedings of Computational Complexity. Twelfth Annual IEEE Conference, pages

262–273, 1997.

[CS15] Markus Chimani and Joachim Spoerhase. Network Design Problems with

Bounded Distances via Shallow-Light Steiner Trees. In Ernst W. Mayr and

Nicolas Ollinger, editors, 32nd International Symposium on Theoretical As-

pects of Computer Science (STACS 2015), volume 30 of Leibniz International

Proceedings in Informatics (LIPIcs), pages 238–248, Dagstuhl, Germany, 2015.

Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[CS21] Julia Chuzhoy and Thatchaphol Saranurak. Deterministic algorithms for decre-

mental shortest paths via layered core decomposition. In Dániel Marx, editor,

Proceedings of the 2021 ACM-SIAM Symposium on Discrete Algorithms, SODA

2021, Virtual Conference, January 10 - 13, 2021, pages 2478–2496. SIAM,

2021.

[CZ19] Shiri Chechik and Tianyi Zhang. Fully dynamic maximal independent set in

expected poly-log update time. In 60th IEEE Annual Symposium on Founda-

tions of Computer Science, FOCS 2019, Baltimore, Maryland, USA, November

9-12, 2019, pages 370–381, 2019.

179

[CZ20] Shiri Chechik and Tianyi Zhang. Dynamic low-stretch spanning trees in sub-

polynomial time. In Proceedings of the Fourteenth Annual ACM-SIAM Sym-

posium on Discrete Algorithms, pages 463–475. SIAM, 2020.

[DBS17] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Julienne: A framework

for parallel graph algorithms using work-efficient bucketing. In ACM Sympo-

sium on Parallelism in Algorithms and Architectures (SPAA), pages 293–304,

2017.

[DBS18] Laxman Dhulipala, Guy E. Blelloch, and Julian Shun. Theoretically efficient

parallel graph algorithms can be fast and scalable. In ACM Symposium on

Parallelism in Algorithms and Architectures (SPAA), 2018.

[DCS17] Maximilien Danisch, T.-H. Hubert Chan, and Mauro Sozio. Large scale density-

friendly graph decomposition via convex programming. In Proceedings of the

26th International Conference on World Wide Web, page 233–242, 2017.

[DFH+15] Cynthia Dwork, Vitaly Feldman, Moritz Hardt, Toniann Pitassi, Omer Rein-

gold, and Aaron Leon Roth. Preserving statistical validity in adaptive data

analysis. In Proceedings of the forty-seventh annual ACM symposium on The-

ory of computing, pages 117–126, 2015.

[DHZ22] Riccardo Dondi, Mohammad Mehdi Hosseinzadeh, and Italo Zoppis. Dense

temporal subgraphs in protein-protein interaction networks. In International

Conference on Computational Science, volume 13351, pages 469–480, 2022.

[DJD+09] Xiaoxi Du, Ruoming Jin, Liang Ding, Victor E. Lee, and John H. Thornton.

Migration motif: A spatial - temporal pattern mining approach for financial

markets. In Proceedings of the 15th ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, page 1135–1144, 2009.

180

[DLR+22] Laxman Dhulipala, Quanquan C. Liu, Sofya Raskhodnikova, Jessica Shi, Julian

Shun, and Shangdi Yu. Differential privacy from locally adjustable graph algo-

rithms: k-core decomposition, low out-degree ordering, and densest subgraphs.

In 63rd IEEE Annual Symposium on Foundations of Computer Science, pages

754–765, 2022.

[Doe20] Benjamin Doerr. Probabilistic Tools for the Analysis of Randomized Optimiza-

tion Heuristics, pages 1–87. Springer International Publishing, Cham, 2020.

[Dol19] Dolt. https://github.com/dolthub/dolt, 2019. last accessed: 13-Oct-22.

[DRMK+22] Behrouz Derakhshan, Alireza Rezaei Mahdiraji, Zoi Kaoudi, Tilmann Rabl,

and Volker Markl. Materialization and reuse optimizations for production data

science pipelines. SIGMOD ’22, page 1962–1976, New York, NY, USA, 2022.

Association for Computing Machinery.

[DVC17] DVC. https://github.com/iterative/dvc, 2017. last accessed: 13-Oct-22.

[Elk11] Michael Elkin. Streaming and fully dynamic centralized algorithms for con-

structing and maintaining sparse spanners. ACM Trans. Algorithms, 7(2):20:1–

20:17, 2011. Announced at ICALP’07.

[Epp92] David Eppstein. Parallel recognition of series-parallel graphs. Information and

Computation, 98(1):41–55, 1992.

[Erd86] Paul Erdös. Two problems in extremal graph theory. Graphs and Combina-

torics, 2(1):189–190, 1986.

[Eul41] Leonhard Euler. Solutio problematis ad geometriam situs pertinentis. Com-

mentarii academiae scientiarum Petropolitanae, pages 128–140, 1741.

[FAK+18] Raul Castro Fernandez, Ziawasch Abedjan, Famien Koko, Gina Yuan, Sam

Madden, and Michael Stonebraker. Aurum: A Data Discovery System. 2018

IEEE 34th International Conference on Data Engineering (ICDE), pages 1001–

1012, 2018.

181

[Fei98] Uriel Feige. A threshold of ln n for approximating set cover. J. ACM,

45(4):634–652, jul 1998.

[Fer98] Cristina G Fernandes. A better approximation ratio for the minimum sizek-

edge-connected spanning subgraph problem. Journal of Algorithms, 28(1):105–

124, 1998.

[FG19] Sebastian Forster and Gramoz Goranci. Dynamic low-stretch trees via dynamic

low-diameter decompositions. In STOC, pages 377–388. ACM, 2019.

[FGKS18] Samuel Fiorini, Martin Groß, Jochen Könemann, and Laura Sanità. Approx-

imating weighted tree augmentation via chvátal-gomory cuts. In Proceedings

of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,

pages 817–831. SIAM, 2018.

[FHL05] Uriel Feige, MohammadTaghi Hajiaghayi, and James R. Lee. Improved approx-

imation algorithms for minimum-weight vertex separators. In Proceedings of

the Thirty-Seventh Annual ACM Symposium on Theory of Computing, STOC

’05, page 563–572, New York, NY, USA, 2005. Association for Computing Ma-

chinery.

[FHS22] Alireza Farhadi, Mohammad Taghi Hajiaghai, and Elaine Shi. Differentially

private densest subgraph. In International Conference on Artificial Intelligence

and Statistics (AISTATS), volume 151, pages 11581–11597, 2022.

[FJ81] Greg N. Frederickson and Joseph JáJá. Approximation algorithms for several

graph augmentation problems. SIAM J. Comput., 10(2):270–283, 1981.

[FKPS16] Andreas Emil Feldmann, Jochen Könemann, Kanstantsin Pashkovich, and

Laura Sanità. Fast approximation algorithms for the generalized survivable

network design problem. In ISAAC, volume 64 of LIPIcs, pages 33:1–33:12.

Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

182

[Fle00] Lisa Fleischer. Approximating fractional multicommodity flow independent of

the number of commodities. SIAM J. Discrete Math., 13(4):505–520, 2000.

[Fle04] Lisa Fleischer. A fast approximation scheme for fractional covering problems

with variable upper bounds. In Proceedings of the fifteenth annual ACM-SIAM

symposium on Discrete algorithms, pages 1001–1010, 2004.

[FLS+18] Fedor V. Fomin, Daniel Lokshtanov, Saket Saurabh, Micha L Pilipczuk, and

Marcin Wrochna. Fully polynomial-time parameterized computations for

graphs and matrices of low treewidth. ACM Trans. Algorithms, 14(3), jun

2018.

[FNBB06] E. Fratkin, B. T. Naughton, D. L. Brutlag, and S. Batzoglou. Motifcut: regula-

tory motifs finding with maximum density subgraphs. In ISMB, pages 156–157,

2006.

[FTV15] Fedor V. Fomin, Ioan Todinca, and Yngve Villanger. Large induced subgraphs

via triangulations and cmso. SIAM Journal on Computing, 44(1):54–87, 2015.

[FYC+19] Yixiang Fang, Kaiqiang Yu, Reynold Cheng, Laks V. S. Lakshmanan, and

Xuemin Lin. Efficient algorithms for densest subgraph discovery. Proc. VLDB

Endow., 12(11):1719–1732, 2019.

[Gab95] Harold N Gabow. A matroid approach to finding edge connectivity and packing

arborescences. Journal of Computer and System Sciences, 50(2):259–273, 1995.

[Gao12] Yong Gao. Treewidth of erdős–rényi random graphs, random intersection

graphs, and scale-free random graphs. Discrete Applied Mathematics, 160(4-

5):566–578, 2012.

[GGST86] Harold N Gabow, Zvi Galil, Thomas Spencer, and Robert E Tarjan. Efficient al-

gorithms for finding minimum spanning trees in undirected and directed graphs.

Combinatorica, 6(2):109–122, 1986.

183

[GGT89] Giorgio Gallo, Michael D Grigoriadis, and Robert E Tarjan. A fast paramet-

ric maximum flow algorithm and applications. SIAM Journal on Computing,

18(1):30–55, 1989.

[GGTW09] Harold N Gabow, Michel X Goemans, Éva Tardos, and David P Williamson.

Approximating the smallest k-edge connected spanning subgraph by lp-

rounding. Networks: An International Journal, 53(4):345–357, 2009.

[GGW98] Harold N. Gabow, Michel X. Goemans, and David P. Williamson. An efficient

approximation algorithm for the survivable network design problem. Math.

Program., 82:13–40, 1998. announced at IPCO’93.

[git05] Git. https://github.com/git/git, 2005. last accessed: 13-Oct-22.

[GJL+13] Aristides Gionis, Flavio Junqueira, Vincent Leroy, Marco Serafini, and Ingmar

Weber. Piggybacking on social networks. Proc. VLDB Endow., 6(6):409–420,

apr 2013.

[GJN+21] Varun Gupta, Christopher Jung, Seth Neel, Aaron Roth, Saeed Sharifi-

Malvajerdi, and Chris Waites. Adaptive machine unlearning. arXiv preprint

arXiv:2106.04378, 2021.

[GK07] Naveen Garg and Jochen Könemann. Faster and simpler algorithms for mul-

ticommodity flow and other fractional packing problems. SIAM J. Comput.,

37(2):630–652, 2007.

[GK14] Anupam Gupta and Amit Kumar. Online steiner tree with deletions. In Pro-

ceedings of the twenty-fifth annual ACM-SIAM symposium on Discrete algo-

rithms, pages 455–467. SIAM, 2014.

[GKS14] Anupam Gupta, Amit Kumar, and Cliff Stein. Maintaining assignments on-

line: Matching, scheduling, and flows. In Proceedings of the twenty-fifth annual

ACM-SIAM symposium on Discrete algorithms, pages 468–479. SIAM, 2014.

184

[GKZ18] Fabrizio Grandoni, Christos Kalaitzis, and Rico Zenklusen. Improved approx-

imation for tree augmentation: saving by rewiring. In Proceedings of the 50th

Annual ACM SIGACT Symposium on Theory of Computing, pages 632–645,

2018.

[GL78] GB Gens and YV Levner. Approximate algorithms for certain universal prob-

lems in scheduling theory. Engineering Cybernetics, 16(6):31–36, 1978.

[GL94] George Gens and Eugene Levner. A fast approximation algorithm for the

subset-sum problem. INFOR: Information Systems and Operational Research,

32(3):143–148, 1994.

[GL20] Anupam Gupta and Roie Levin. Fully-dynamic submodular cover with bounded

recourse. In 2020 IEEE 61st Annual Symposium on Foundations of Computer

Science (FOCS), pages 1147–1157. IEEE, 2020.

[GLM19] Mohsen Ghaffari, Silvio Lattanzi, and Slobodan Mitrović. Improved parallel

algorithms for density-based network clustering. In Proceedings of the 36th

International Conference on Machine Learning, pages 2201–2210, 2019.

[GLS+23] Anxin (Bob) Guo, Jingwei (Sofia) Li, Pattara Sukprasert, Samir Khuller, Amol

Deshpande, and Koyel Mukherjee. To Store or Not to Store: a graph theoretical

approach for Dataset Versioning. Under submission, 2023.

[GN22] Rohan Ghuge and Viswanath Nagarajan. Quasi-polynomial algorithms for sub-

modular tree orienteering and directed network design problems. Mathematics

of Operations Research, 47(2):1612–1630, 2022.

[Gol84] Andrew V Goldberg. Finding a maximum density subgraph. 1984.

[Gon85] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance.

Theoretical computer science, 38:293–306, 1985.

[GP17] Ofer Grossman and Merav Parter. Improved deterministic distributed con-

struction of spanners. In DISC, pages 24:1–24:16, 2017.

185

[GRST21] Gramoz Goranci, Harald Räcke, Thatchaphol Saranurak, and Zihan Tan. The

expander hierarchy and its applications to dynamic graph algorithms. In Dániel

Marx, editor, Proceedings of the 2021 ACM-SIAM Symposium on Discrete Al-

gorithms, SODA 2021, Virtual Conference, January 10 - 13, 2021, pages 2212–

2228. SIAM, 2021.

[GSS82] Leslie M. Goldschlager, Ralph A. Shaw, and J. Staples. The maximum flow

problem is log space complete for p. Theoretical Computer Science, 21:105–111,

1982.

[Gur22] Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2022.

[Gut80] Frederick Guthrie. 9. note on the colouring of maps. Proceedings of the Royal

Society of Edinburgh, 10:727–728, 1880.

[GWN20a] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Decremental SSSP

in weighted digraphs: Faster and against an adaptive adversary. In SODA,

pages 2542–2561, 2020.

[GWN20b] Maximilian Probst Gutenberg and Christian Wulff-Nilsen. Deterministic al-

gorithms for decremental approximate shortest paths: Faster and simpler. In

SODA, pages 2522–2541, 2020.

[GWW20] Maximilian Probst Gutenberg, Virginia Vassilevska Williams, and Nicole Wein.

New algorithms and hardness for incremental single-source shortest paths in

directed graphs. In Symposium on Theory of Computing, 2020.

[Haj01] Mohammad Taghi Hajiaghayi. Algorithms for graphs of (locally) bounded

treewidth. PhD thesis, Citeseer, 2001.

[HDLT01] Jacob Holm, Kristian De Lichtenberg, and Mikkel Thorup. Poly-logarithmic de-

terministic fully-dynamic algorithms for connectivity, minimum spanning tree,

2-edge, and biconnectivity. Journal of the ACM (JACM), 48(4):723–760, 2001.

186

[HHZ21] Bernhard Haeupler, D. Ellis Hershkowitz, and Goran Zuzic. Tree embeddings

for hop-constrained network design. In Proceedings of the 53rd Annual ACM

SIGACT Symposium on Theory of Computing, STOC 2021, page 356–369, New

York, NY, USA, 2021. Association for Computing Machinery.

[HKM+20] Avinatan Hasidim, Haim Kaplan, Yishay Mansour, Yossi Matias, and Uri

Stemmer. Adversarially robust streaming algorithms via differential privacy.

Advances in Neural Information Processing Systems, 33, 2020.

[HKS09] Mohammad Taghi Hajiaghayi, Guy Kortsarz, and Mohammad R Salavatipour.

Approximating buy-at-bulk and shallow-light k-steiner trees. Algorithmica,

53(1):89–103, 2009.

[HQC22] Elfarouk Harb, Kent Quanrud, and Chandra Chekuri. Faster and scalable

algorithms for densest subgraph and decomposition. In Advances in Neural

Information Processing Systems, 2022.

[HR20a] Jacob Holm and Eva Rotenberg. Fully-dynamic planarity testing in polyloga-

rithmic time. In STOC, pages 167–180. ACM, 2020.

[HR20b] Jacob Holm and Eva Rotenberg. Worst-case polylog incremental spqr-trees:

Embeddings, planarity, and triconnectivity. In Proceedings of the 2020 ACM-

SIAM Symposium on Discrete Algorithms, SODA 2020, Salt Lake City, UT,

USA, January 5-8, 2020, pages 2378–2397, 2020.

[HSB+16] Bryan Hooi, Hyun Ah Song, Alex Beutel, Neil Shah, Kijung Shin, and Christos

Faloutsos. FRAUDAR: Bounding graph fraud in the face of camouflage. In

Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge

Discovery and Data Mining, page 895–904, 2016.

[HSSC08] Aric Hagberg, Pieter Swart, and Daniel S Chult. Exploring network structure,

dynamics, and function using networkx. Technical report, Los Alamos National

Lab.(LANL), Los Alamos, NM (United States), 2008.

187

[HU14] Moritz Hardt and Jonathan Ullman. Preventing false discovery in interactive

data analysis is hard. In 2014 IEEE 55th Annual Symposium on Foundations

of Computer Science, pages 454–463. IEEE, 2014.

[HVT98] James J. Hunt, Kiem-Phong Vo, and Walter F. Tichy. Delta algorithms: an em-

pirical analysis. ACM Transactions on Software Engineering and Methodology

(TOSEM), 7(2):192–214, 1998.

[HXL+20] Silu Huang, Liqi Xu, Jialin Liu, Aaron J. Elmore, and Aditya Parameswaran.

ORPHEUSDB: bolt-on versioning for relational databases (extended version).

The VLDB Journal, 29(1):509–538, 2020.

[IK75] Oscar H. Ibarra and Chul E. Kim. Fast approximation algorithms for the

knapsack and sum of subset problems. J. ACM, 22(4):463–468, oct 1975.

[Jai01] Kamal Jain. A factor 2 approximation algorithm for the generalized steiner

network problem. Combinatorica, 21(1):39–60, 2001.

[Jaj92] J. Jaja. Introduction to Parallel Algorithms. Addison-Wesley Professional,

1992.

[Jan01] Klaus Jansen. Approximation algorithms for fractional covering and packing

problems, and applications. In International Symposium on Fundamentals of

Computation Theory, 2001.

[JJ19] Yasith Jayawardana and Sampath Jayarathna. DFS: A Dataset File System

for Data Discovering Users. 2019 ACM/IEEE Joint Conference on Digital

Libraries (JCDL), 00:355–356, 2019.

[JMS02] Kamal Jain, Mohammad Mahdian, and Amin Saberi. A new greedy approach

for facility location problems. In Proceedings of the Thiry-Fourth Annual ACM

Symposium on Theory of Computing, STOC ’02, page 731–740, New York, NY,

USA, 2002. Association for Computing Machinery.

188

[JRST01] Thor Johnson, Neil Robertson, P. D. Seymour, and Robin Thomas. Directed

tree-width. Journal of Combinatorial Theory. Series B, 82(1):138–154, May

2001. Funding Information: 1Partially supported by the NSF under Grant

DMS-9701598. 2 Research partially supported by the DIMACS Center, Rutgers

University, New Brunswick, NJ 08903. 3Partially supported by the NSF under

Grant DMS-9401981. 4Partially supported by the ONR under Contact N00014-

97-1-0512. 5Partially supported by the NSF under Grant DMS-9623031 and by

the NSA under Contract MDA904-98-1-0517.

[JXRF09] Ruoming Jin, Yang Xiang, Ning Ruan, and David Fuhry. 3-HOP: A high-

compression indexing scheme for reachability query. In Proceedings of the ACM

SIGMOD International Conference on Management of Data, page 813–826,

2009.

[Kar75] Richard M Karp. The fast approximate solution of hard combinatorial prob-

lems. In Proc. 6th South-Eastern Conf. Combinatorics, Graph Theory and

Computing (Florida Atlantic U. 1975), pages 15–31, 1975.

[Kar99] David R. Karger. Random sampling in cut, flow, and network design problems.

Math. Oper. Res., 24(2):383–413, 1999.

[Kar00] David R Karger. Minimum cuts in near-linear time. Journal of the ACM

(JACM), 47(1):46–76, 2000. announced at STOC’96.

[KD12] Udayan Khurana and Amol Deshpande. Efficient Snapshot Retrieval over His-

torical Graph Data. arXiv, 2012. Graph database systems — stroing dynamic

graphs so that a graph at a specific time can be queried. Vertices are marked

with bits encoding information on which versions it belong to.

[Kis21] Peter Kiss. Deterministic dynamic matching in worst-case update time. arXiv

preprint arXiv:2108.10461, 2021.

189

[KKOV07] Rohit Khandekar, Subhash Khot, Lorenzo Orecchia, and Nisheeth K Vishnoi.

On a cut-matching game for the sparsest cut problem. Univ. California, Berke-

ley, CA, USA, Tech. Rep. UCB/EECS-2007-177, 2007.

[KKT95] David R Karger, Philip N Klein, and Robert E Tarjan. A randomized linear-

time algorithm to find minimum spanning trees. Journal of the ACM (JACM),

42(2):321–328, 1995.

[KMNS21] Haim Kaplan, Yishay Mansour, Kobbi Nissim, and Uri Stemmer. Separating

adaptive streaming from oblivious streaming. arXiv preprint arXiv:2101.10836,

2021.

[KMPS03] Hans Kellerer, Renata Mansini, Ulrich Pferschy, and Maria Grazia Speranza.

An efficient fully polynomial approximation scheme for the subset-sum problem.

Journal of Computer and System Sciences, 66(2):349–370, 2003.

[Kor22] Tuukka Korhonen. A single-exponential time 2-approximation algorithm for

treewidth. In 2021 IEEE 62nd Annual Symposium on Foundations of Computer

Science (FOCS), pages 184–192, 2022.

[KP97] Guy Kortsarz and David Peleg. Approximating shallow-light trees. In Proceed-

ings of the eighth annual ACM-SIAM symposium on Discrete algorithms, pages

103–110, 1997.

[KRRT99] Ravi Kumar, Prabhakar Raghavan, Sridhar Rajagopalan, and Andrew

Tomkins. Trawling the web for emerging cyber-communities. Computer Net-

works, 31(11):1481–1493, 1999.

[KRV09] Rohit Khandekar, Satish Rao, and Umesh V. Vazirani. Graph partitioning

using single commodity flows. J. ACM, 56(4):19:1–19:15, 2009.

[KRY95] Samir Khuller, Balaji Raghavachari, and Neal E. Young. Balancing minimum

spanning trees and shortest-path trees. Algorithmica, 14(4):305–321, 1995.

190

[KS09] Samir Khuller and Barna Saha. On finding dense subgraphs. In Susanne Al-

bers, Alberto Marchetti-Spaccamela, Yossi Matias, Sotiris E. Nikoletseas, and

Wolfgang Thomas, editors, International Colloquium on Automata, Languages

and Programming, volume 5555, pages 597–608, 2009.

[KS16] M. Reza Khani and Mohammad R. Salavatipour. Improved approximations

for buy-at-bulk and shallow-light k-steiner trees and (k,2)-subgraph. J. Comb.

Optim., 31(2):669–685, feb 2016.

[KT93] Samir Khuller and Ramakrishna Thurimella. Approximation algorithms for

graph augmentation. Journal of Algorithms, 14(2):214–225, 1993.

[KV94] Samir Khuller and Uzi Vishkin. Biconnectivity approximations and graph carv-

ings. J. ACM, 41(2):214–235, 1994. announced at STOC’92.

[KY99] Philip N. Klein and N. Young. On the number of iterations for dantzig-wolfe op-

timization and packing-covering approximation algorithms. SIAM J. Comput.,

44:1154–1172, 1999.

[Lak20] LakeFS. https://github.com/treeverse/lakeFS, 2020. last accessed: 13-Oct-22.

[LGS12] Bundit Laekhanukit, Shayan Oveis Gharan, and Mohit Singh. A rounding by

sampling approach to the minimum size k-arc connected subgraph problem. In

International Colloquium on Automata, Languages, and Programming, pages

606–616. Springer, 2012.

[Li21] Jason Li. Deterministic mincut in almost-linear time. In STOC, pages 384–395.

ACM, 2021.

[LK14] Jure Leskovec and Andrej Krevl. SNAP Datasets: Stanford large network

dataset collection. June 2014.

[LNP+21] Jason Li, Danupon Nanongkai, Debmalya Panigrahi, Thatchaphol Saranu-

rak, and Sorrachai Yingchareonthawornchai. Vertex connectivity in poly-

logarithmic max-flows. In STOC, pages 317–329. ACM, 2021.

191

[LPS21] Jason Li, Debmalya Panigrahi, and Thatchaphol Saranurak. A nearly optimal

all-pairs min-cuts algorithm in simple graphs. arXiv preprint arXiv:2106.02233,

2021.

[LS21] Jason Li and Thatchaphol Saranurak. Deterministic weighted expander decom-

position in almost-linear time. arXiv preprint arXiv:2106.01567, 2021.

[LSY+22] Quanquan C. Liu, Jessica Shi, Shangdi Yu, Laxman Dhulipala, and Julian

Shun. Parallel batch-dynamic algorithms for k-core decomposition and related

graph problems. In ACM Symposium on Parallelism in Algorithms and Archi-

tectures, pages 191–204, 2022.

[Mac00] Josh MacDonald. File system support for delta compression. PhD thesis, Mas-

ters thesis. Department of Electrical Engineering and Computer Science, Uni-

versity of California at Berkley, 2000.

[Mad10a] Aleksander Madry. Fast approximation algorithms for cut-based problems in

undirected graphs. In FOCS, pages 245–254. IEEE Computer Society, 2010.

[Mad10b] Aleksander Madry. Faster approximation schemes for fractional multicommod-

ity flow problems via dynamic graph algorithms. In Proceedings of the 42nd

ACM Symposium on Theory of Computing, STOC 2010, Cambridge, Mas-

sachusetts, USA, 5-8 June 2010, pages 121–130, 2010.

[MGE+16] Michael Maddox, David Goehring, Aaron J. Elmore, Samuel Madden, Aditya

Parameswaran, and Amol Deshpande. Decibel: The Relational Dataset Branch-

ing System. Proceedings of the VLDB Endowment. International Conference

on Very Large Data Bases, 9(9):624–635, 2016.

[MRS+98] Madhav V Marathe, Ramamoorthi Ravi, Ravi Sundaram, SS Ravi, Daniel J

Rosenkrantz, and Harry B Hunt III. Bicriteria network design problems. Jour-

nal of algorithms, 28(1):142–171, 1998.

192

[MSM+22] Naga Nithin Manne, Shilvi Satpati, Tanu Malik, Amitabha Bagchi, Ashish

Gehani, and Amitabh Chaudhary. CHEX: multiversion replay with ordered

checkpoints. Proceedings of the VLDB Endowment, 15(6):1297–1310, 2022.

[MSS+23] Koyel Mukherjee, Raunak Shah, Shiv K. Saini, Karanpreet Singh, Khushi ,

Harsh Kesarwani, Kavya Barnwal, and Ayush Chauhan. Towards optimizing

storage costs on the cloud. IEEE 39th International Conference on Data En-

gineering (ICDE) (To Appear), 2023.

[MVLB15] Robert Meusel, Sebastiano Vigna, Oliver Lehmberg, and Christian Bizer. The

graph structure in the web - analyzed on different aggregation levels. J. Web

Sci., 1:33–47, 2015.

[Nag06] William Nagel. Subversion: not just for code anymore. Linux Journal,

2006(143):10, 2006.

[Nes83] Yurii Evgen’evich Nesterov. A method of solving a convex programming prob-

lem with convergence rate o
(

1
k2

)
. In Doklady Akademii Nauk, volume 269, pages

543–547. Russian Academy of Sciences, 1983.

[NS17a] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest

with worst-case update time: adaptive, las vegas, and o (n1/2-ε)-time. In

Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Com-

puting, pages 1122–1129, 2017.

[NS17b] Danupon Nanongkai and Thatchaphol Saranurak. Dynamic spanning forest

with worst-case update time: adaptive, Las vegas, and O(n1/2−ε)-time. In

STOC, pages 1122–1129, 2017.

[NSW17] Danupon Nanongkai, Thatchaphol Saranurak, and Christian Wulff-Nilsen. Dy-

namic minimum spanning forest with subpolynomial worst-case update time.

In FOCS, pages 950–961. IEEE Computer Society, 2017.

193

[NV21] Dung Nguyen and Anil Vullikanti. Differentially private densest subgraph detec-

tion. In Proceedings of the 38th International Conference on Machine Learning,

pages 8140–8151, 2021.

[NZM+19] Fatemeh Nargesian, Erkang Zhu, Renée J. Miller, Ken Q. Pu, and Patricia C.

Arocena. Data lake management: Challenges and opportunities. Proc. VLDB

Endow., 12(12):1986–1989, aug 2019.

[pac16] Pachyderm. https://github.com/pachyderm/pachyderm, 2016. last accessed:

13-Oct-22.

[Pri10] David Pritchard. k -edge-connectivity: Approximation and LP relaxation. In

WAOA, volume 6534 of Lecture Notes in Computer Science, pages 225–236.

Springer, 2010.

[PS89] David Peleg and Alejandro A. Schäffer. Graph spanners. Journal of Graph

Theory, 13(1):99–116, 1989.

[PST91] Serge A. Plotkin, David B. Shmoys, and Éva Tardos. Fast approximation

algorithms for fractional packing and covering problems. [1991] Proceedings

32nd Annual Symposium of Foundations of Computer Science, pages 495–504,

1991.

[RA15] Ryan A. Rossi and Nesreen K. Ahmed. The network data repository with

interactive graph analytics and visualization. In AAAI, 2015.

[Ram90] Rajeev Raman. The power of collision: Randomized parallel algorithms for

chaining and integer sorting. In Foundations of Software Technology and The-

oretical Computer Science, pages 161–175, 1990.

[Rav94] R. Ravi. Rapid rumor ramification: approximating the minimum broadcast

time. In Proceedings 35th Annual Symposium on Foundations of Computer

Science, pages 202–213, 1994.

194

[RFT22] Paul Roome, Tao Feng, and Sachin Thakur. Announc-

ing the availability of data lineage with unity catalog.

https://www.databricks.com/blog/2022/06/08/announcing-the-availability-of-

data-lineage-with-unity-catalog.html, 2022. last accessed: 13-Oct-22.

[RTG14] Polina Rozenshtein, Nikolaj Tatti, and Aristides Gionis. Discovering dynamic

communities in interaction networks. In Machine Learning and Knowledge

Discovery in Databases, pages 678–693, 2014.

[Sch03] Alexander Schrijver. Combinatorial optimization: polyhedra and efficiency, vol-

ume 24. Springer Science & Business Media, 2003.

[SCMMS12] Adam Seering, Philippe Cudre-Mauroux, Samuel Madden, and Michael Stone-

braker. Efficient Versioning for Scientific Array Databases. 2012 IEEE 28th

International Conference on Data Engineering, 1:1013–1024, 2012.

[SGT+08] Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and

Gabriele Monfardini. The graph neural network model. IEEE transactions

on neural networks, 20(1):61–80, 2008.

[She09] Jonah Sherman. Breaking the multicommodity flow barrier for o(vlog n)-

approximations to sparsest cut. In FOCS, pages 363–372. IEEE Computer

Society, 2009.

[She13] Jonah Sherman. Nearly maximum flows in nearly linear time. In FOCS, pages

263–269. IEEE Computer Society, 2013.

[SHK+10] Barna Saha, Allison Hoch, Samir Khuller, Louiqa Raschid, and Xiao-Ning

Zhang. Dense subgraphs with restrictions and applications to gene annotation

graphs. In Annual International Conference on Research in Computational

Molecular Biology, 2010.

[SKS+19] Maximilian E Schule, Lukas Karnowski, Josef Schmeißer, Benedikt Kleiner,

Alfons Kemper, and Thomas Neumann. Versioning in Main-Memory Database

195

Systems: From MusaeusDB to TardisDB. Proceedings of the 31st International

Conference on Scientific and Statistical Database Management, pages 169–180,

2019.

[SLDS23] Pattara Sukprasert, Quanquan Liu, Laxman Dhulipala, and Julian Shun. Prac-

tical Parallel Algorithms for Near-Optimal Densest Subgraphs on Massive

Graphs. Under submission, 2023.

[SO06] Roberto Solis-Oba. Approximation Algorithms for the k-Median Problem, pages

292–320. Springer Berlin Heidelberg, Berlin, Heidelberg, 2006.

[SPG+] Yogesh L Simmhan, Beth Plale, Dennis Gannon, et al. A survey of data prove-

nance techniques.

[SSA+15] Tripti Swarnkar, Sérgio Nery Simões, Anji Anurak, Helena Brentani, Jyotirmoy

Chatterjee, Ronaldo Fumio Hashimoto, David Correa Martins, and Pabitra

Mitra. Identifying dense subgraphs in protein-protein interaction network for

gene selection from microarray data. Netw. Model. Anal. Health Informatics

Bioinform., 4(1):33, 2015.

[SU17] Thomas Steinke and Jonathan Ullman. Tight lower bounds for differentially

private selection. In 2017 IEEE 58th Annual Symposium on Foundations of

Computer Science (FOCS), pages 552–563. IEEE, 2017.

[Sue02] Dimitre Trendafilov Nasir Memon Torsten Suel. zdelta: An efficient delta

compression tool. 2002.

[SV20] Hsin-Hao Su and Hoa T. Vu. Distributed Dense Subgraph Detection and Low

Outdegree Orientation. In 34th International Symposium on Distributed Com-

puting, pages 15:1–15:18, 2020.

[SW19] Thatchaphol Saranurak and Di Wang. Expander decomposition and pruning:

Faster, stronger, and simpler. In SODA, pages 2616–2635. SIAM, 2019.

196

[SW20] Shay Solomon and Nicole Wein. Improved dynamic graph coloring. ACM

Trans. Algorithms, 16(3), June 2020.

[Ter19] TerminusDB. https://github.com/terminusdb/terminusdb, 2019. last accessed:

13-Oct-22.

[TG15] Nikolaj Tatti and Aristides Gionis. Density-friendly graph decomposition. In

Proceedings of the 24th International Conference on World Wide Web, page

1089–1099, 2015.

[Tho05] Mikkel Thorup. Worst-case update times for fully-dynamic all-pairs shortest

paths. In Proceedings of the thirty-seventh annual ACM symposium on Theory

of computing, pages 112–119, 2005.

[vdBLN+20] Jan van den Brand, Yin Tat Lee, Danupon Nanongkai, Richard Peng,

Thatchaphol Saranurak, Aaron Sidford, Zhao Song, and Di Wang. Bipartite

matching in nearly-linear time on moderately dense graphs. In FOCS, pages

919–930. IEEE, 2020.

[Vis10] Uzi Vishkin. Thinking in parallel: Some basic data-parallel algorithms and

techniques. Parallel Algorithms, 2010.

[Waj20] David Wajc. Rounding dynamic matchings against an adaptive adversary.

Symposium on Theory of Computing, 2020.

[WDL+18] Sheng Wang, Tien Tuan Anh Dinh, Qian Lin, Zhongle Xie, Meihui Zhang,

Qingchao Cai, Gang Chen, Beng Chin Ooi, and Pingcheng Ruan. Forkbase: An

efficient storage engine for blockchain and forkable applications. Proc. VLDB

Endow., 11(10):1137–1150, jun 2018.

[Wen91] Rephael Wenger. Extremal graphs with no c4’s, c6’s, or c10’s. Journal of

Combinatorial Theory, Series B, 52(1):113–116, 1991.

197

[WPC+20] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and

S Yu Philip. A comprehensive survey on graph neural networks. IEEE trans-

actions on neural networks and learning systems, 32(1):4–24, 2020.

[Wul17] Christian Wulff-Nilsen. Fully-dynamic minimum spanning forest with improved

worst-case update time. In Proceedings of the 49th Annual ACM SIGACT

Symposium on Theory of Computing, STOC 2017, Montreal, QC, Canada,

June 19-23, 2017, pages 1130–1143, 2017.

[WZ20] David P Woodruff and Samson Zhou. Tight bounds for adversarially ro-

bust streams and sliding windows via difference estimators. arXiv preprint

arXiv:2011.07471, 2020.

[XJF+14] Wen Xia, Hong Jiang, Dan Feng, Lei Tian, Min Fu, and Yukun Zhou. Ddelta:

A deduplication-inspired fast delta compression approach. Performance Eval-

uation, 79:258–272, 2014.

[YCJ20] Tangwei Ying, Hanhua Chen, and Hai Jin. Pensieve: Skewness-aware version

switching for efficient graph processing. In Proceedings of the 2020 ACM SIG-

MOD International Conference on Management of Data, SIGMOD ’20, page

699–713, New York, NY, USA, 2020. Association for Computing Machinery.

[You14] Neal E. Young. Nearly linear-time approximation schemes for mixed packing/-

covering and facility-location linear programs. CoRR, abs/1407.3015, 2014.

[ZCH+20] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan

Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph neural networks:

A review of methods and applications. AI open, 1:57–81, 2020.

[Zen14] Rico Zenklusen. Connectivity interdiction. Oper. Res. Lett., 42(6-7):450–454,

2014.

[Zha21] Tianyi Zhang. Faster cut-equivalent trees in simple graphs. arXiv preprint

arXiv:2106.03305, 2021.

198

[ZLJG18] Yin Zhang, Huiping Liu, Cheqing Jin, and Ye Guo. Storage and recreation

trade-off for multi-version data management. In Yi Cai, Yoshiharu Ishikawa,

and Jianliang Xu, editors, Web and Big Data, pages 394–409, Cham, 2018.

Springer International Publishing.

199

APPENDIX A

k-Edge Connected Spanning Subgraphs

A.1. Sparsify the fractional solution (Proof of Lemma 2.31)

It suffices to prove the following lemma.

Lemma A.1. Given a feasible solution x to kECSS, and a non-negative cost function : E →

R≥0, and ε > 0, there is an algorithm that runs in Õ(m) time, and w.h.p., outputs another

feasible solution y to kECSS such that

• ∑e∈E ceye ≤ (1 + ε)
∑

e∈E cexe.

• support(y) ⊆ support(x).

• | support(y)| = O
(
kn logn

ε2

)
.

We devote the rest of this subsection to proving Lemma A.1.

Let x be a near-optimal kECSS fractional solution obtained by Theorem 2.1. Compute

the solution y using Lemma A.1. Create a graph G′ by keeping only edges in the support of

y.

Before proving the lemma, we first develop an extension to the sparsification theorem

from the paper of Benczur and Karger.

We follow the definitions by [BK15, CQ18].

Definition A.2 (Edge stength). Let G = (V,E,w) be a weighted undirected graph.

• G is k-connected if every cut in G has weight at least k.

• A k-strong component is a maximal non-empty k-connected vertex-induced subgraph

of G.

200

• The strength of an edge e, denoted as κe is the maximum k such that both endpoints

of e belong to some k-strong component.

Lemma A.3 ([BK15]). ∑
e∈E

we

κe

≤ n− 1

Lemma A.4 ([BK15]). In Õ(m) time, we can compute approximate stength κ̃e for each edge

e ∈ E such that κ̃e ≤ κe and
∑

e∈E
we

κ̃e
= O(n)

Given a cut C and a subset S ⊆ C of its edges, where |S| ≤ k − 1, we say CS is a

constrained cut. The next theorem states that all constrained cuts would have their weights

closed to their original weights after the sampling.

Theorem A.5 (Extension to Compression Theorem [BK15]). Given G = (V,E,w), let

p : E → [0, 1] be a probability function over edges of G. We construct a random weighted

graph H = (V,EH , w
′) as follows. For each edge e ∈ E, we independently add edge e into

EH with weight w′
e = we/pe, with probability pe. For δ ≥ Ω(kd log n), if pe ≥ min{1, δwe

κe
} for

all e ∈ E, then with high probability
(
over 1− 1

nd

)
, every constrained cut in H has weight

between (1− ε) and (1 + ε) times its value in G.

Proof. This theorem follows almost closely the proof of Benczur-Karger. We sketch here

the part where we need a minor modification.

The proof of Benczur-Karger roughly has two components. The first reduces the analysis

for general case to the “weighted sum” of the “uniform” cases where the minimum cut is

large, i.e. edge weights are at most 1 and minimum cut at least D = Ω (kd log n). This first

component works exactly the same in our case.

Now in each uniform instance which is the second component of Benczur-Karger, the

probabilistic arguments can be made in the following way: For each cut C, since edges are

sampled independently, we can use Chernoff bound to upper bound the probability that each

201

cut C deviates more than (1 + ε) factor (after sampling). Let µC denote this probability.

Therefore, the bad event that there is a cut deviating too much is upper bounded by
∑

C µC .

Benczur-Karger analyzes this probability by constructing an auxiliary experiment: Imag-

ine each edge is deleted with probability p, then the sum is exactly the expected number of

“empty cuts” in the resulting graph. They upper bound this by using the term E[2R] where

R is the (random) number of connected components in the resulting graph. They show (us-

ing a coupling argument) that E[2R] = O
(
n2pD

)
, which vanishes whenever D = Ω (d log n).

Here is where we need to slightly change the proof. The bad even that we need to bound is

not just all the cuts

(∑
C

µC

)
, but also all the constraint cuts. Let µC\S be the probability

of the bad event that the constraint cut C \ S is deviating too much. We want to bound

∑
C

∑
S⊆C,|S|≤k−1

µC\S.

We will create, by enumerating,
(
m
k

)
different graphs H so that each H has at most k

edges removed from G. Note that all constrained cuts are now defined in these graphs H.

In the original sampling, if an edge G is removed, then we remove it similarly in all graphs

H (ignoring it is present in H or not).

Given that there are R connected components in H, there are O(2R) empty cuts. We con-

sider
(
m
k

)
different graphs derived from H by exhaustively remove a subset S ⊆ E of k edges.

Some edges in S might already be removed in H, so some configurations will be identical.

We now count the empty cuts in these
(
m
k

)
graphs. To upper bound

∑
C

∑
S⊆C,|S|≤k−1 µC\S,

we just need to compute the total number of “empty cuts” in all these graphs H.

In each H, there are at most R + k connected components. Hence, each graph has at

most 2R+k empty cuts. Sum up this number among all the graphs, we get that

∑
C

∑
S⊆C,|S|≤k−1

µC\S ≤ E
[(

m

k

)
2R+k

]
.

202

Since E[2R] = O(n2pD), we get that

∑
C

∑
S⊆C,|S|≤k

µC\S = O

((
m

k

)
2kn2pD

)
= O

((
2em

k

)k

n2pD

)
,

which again vanishes if D is large enough (at least Ω(kd log n)).

□

We are now ready to prove Lemma A.1. In fact the same proof in [CQ18] can be applied

once we have Theorem A.5.

Proof of Lemma A.1. We first use Lemma A.4 to compute approximate edge strength

κ̃e for each edge e ∈ E so that κ̃e ≤ κ and
∑

e∈E
we

κ̃e
= O(n) in Õ(m) time. Let δ =

Θ(kd log n) for some large constant d. Let cost(x) =
∑

e∈E cexe . For each edge e ∈ E let

pe = min{1, δxe

ε2κ̃e
}, and qe = min{1, δcexe

ε2cost(x)
}, and define re = max(pe, qe).

We will focus on x from the perspective of kECSS LP with knapsack constraints.

We construct a random graph H = (V,E ′, x′) using r as a probability function over

edges of G and we x as weight function of the graph as follows. For each edge e ∈ E, we

independently sample edge e into E ′ with weight x′
e = xe/re with probability re. Since

re = max(pe, qe) ≥ pe = min{1, δxe

ε2κ̃e

} ≥ min{1, δ xe

κe

}

for sufficiently large constant d, by Theorem A.5, we get w.h.p.,

∀C ∈ C∀S ∈ C, |S| ≤ k − 1,
∑

e∈C\S

x′
e ≥ (1− ε)

∑
e∈C\S

xe ≥ (1− ε)(k − |S|).

Observe that ∑
e∈E

re ≤
∑
e∈E

pe +
∑
e∈E

qe = O(
nδ

ε2
+

δ

ε2
) = O(

nδ

ε2
)

203

By Chernoff bound, we have

P (
∑
e∈E

cex
′
e ≥ (1 + ε)

∑
e∈E

cexe) ≤ exp(−Ω(δ))

and,

P (|E ′| ≥ (1 + ε)O(
nδ

ε2
)) ≤ exp(−δ/ε2)

By the union bound, we have the followings w.h.p.

∑
e∈C\S

x′
e ≥ (1− ε)(k − |S|), ∀C ∈ C,∀S ∈ C, |S| ≤ k − 1,

| support(x′)| ≤ O(
nδ

ε2
) and

∑
e∈E

cex
′
e ≤ (1 + ε)

∑
e∈E

cexe

Therefore, y′ = (1+ε)x′ is a feasible solution to kECSS. Also, | support(y′)| ≤ O(nδ
ε2

), and∑
e∈E cey

′
e ≤ (1 + ε)2

∑
e∈E cexe. Finally, we can get (1 + ε′)

∑
e∈E cexe by a proper scaling

factor for ε.

□

A.2. Bounding the minimum normalized free cut (Proof of Theorem 2.7)

Let us assume that the costs ce are integers (but they can be exponentially large in

values). Karger’s sampling [Kar00] gives a near-linear time algorithm to create a skeleton

graph H so that all cuts in H are approximately preserved, and the minimum cut value is

O(log |E|). It only requires an easy modification of Karger’s arguments to show that we

can create a skeleton H such that all k-free minimum cuts are approximately preserved, and

that the value of the minimum k-free cuts is Θ(k log |E|). We will run our static algorithm

in graph H instead. As outlined in Karger’s paper [Kar99], the assumption that we do not

know the value of the optimal can be resolved by enumerating them in the geometric scales,

and the sampling will guarantee that the running time would not blow up by more than a

constant factor.

204

A.3. Multiplicative weight update guarantee (Proof of Theorem 2.16)

The proof is done via duality. The primal and dual solutions will be maintained and

updated, until the point where one can argue that their values converge to each other; this

implies that both the primal and dual solutions are approximately optimal. Recall the primal

LP is the covering LP:

min{cTx : Ax ≥ 1, x ≥ 0}

The dual LP is the following packing LP:

max{yT1 : yTA ≤ cT , y ≥ 0}

For the primal LP, we maintain vectors w(t) ∈ Rn, where w
(0)
i = 1/ci for each i ∈ [n]. The

tentative primal solution on day t is w̄(t) = w(t)/MinRow(A,w(t)). For the dual packing

LP, we maintain vectors f(t) ∈ Rm where f(0) = 0. The tentative dual solution on day t is

defined as f̄
(t)

= f (t)/cong(f(t)), where cong(f) is the maximum ratio of violated constraints

by f, that is,

cong(f) = max
i∈[n]

(fTA)i
ci

.(A.1)

Notice that f̄
(t)

is a feasible dual solution on each day.

Now we explain the update rules on each day. Let j(t) be the row that achieves

Aj(t)w
(t−1) ≤ (1 + ε)MinRow(A,w(t−1)).

• Update f
(t)
j(t) ← f

(t−1)
j(t) + δ(t) where δ(t) = mini∈[n]

ci
Aj(t),i

is the “increment” on day t.

• Update w
(t)
i ← w

(t−1)
i exp

(
ε · δ(t)Aj(t),i

ci

)
for each i ∈ [n].

Denote the primal value at time t by P (t) = cT w̄(t) and the dual by D(t) = ||̄f(t)||1; so

we have P (t) ≥ D(t) for all t.

205

Theorem A.6. Let t∗ be the day t for which P (t) is minimized and N = Ω(n
ε2

lnn) be

the total number of days. Then we have that P (t∗) ≤ (1 + O(ε))D(N). In particular, w̄(t∗)

and f̄
(N)

are near-optimal primal and dual solutions.

Our proof relies on the estimates of a potential function defined as Φ(t) = cTw(t) =∑
i∈[n] ciw

(t)
i .

Lemma A.7. We have, on each day t,

exp(ε · cong(f(t))) ≤ Φ(t) ≤ n · exp

(
ε(1 + 3ε)

∑
0<t′≤t

δ(t′)

P (t′ − 1)

)
.

Proof. First we show the lower bound of Φ(t). Fix column i ∈ [n] such that ((f(t))TA)i
ci

=

cong(f(t)). Notice that the value of ciw
(t)
i is equal to:

exp

(
ε

ci
·
∑
t′≤t

δ(t′)Aj(t′),i

)
.

The term δ(t′)Aj(t),i is exactly the increase in ((f(t))TA)i at time t, so we have that

ciw
(t)
i ≥ exp

(
ε

ci
· ((f(t))TA)i

)
= exp(ε · cong(f(t))),

as desired.

Next, we prove the upper bound on the potential function. Observe that1 w
(t)
i ≤

w
(t−1)
i (1 + ε(1 + ε) · δ(t)Aj(t),i

ci
). This formula shows the increase of potential at time t to

be at most

Φ(t) ≤ Φ(t−1) +
∑
i∈[n]

ε(1 + ε) · δ(t)Aj(t),iw
(t−1)
i ≤ Φ(t−1)exp

ε(1 + ε)δ(t)

Φ(t−1)
·
∑
i∈[n]

Aj(t),iw
(t−1)
i

1In particular, we use the inequality eγ ≤ 1 + γ + γ2 for γ ∈ [0, 1) and the fact that the ratio δ(t)Aj(t),i/ci
is at most 1.

206

Notice that
∑

i∈[n] Aj(t),iw
(t−1)
i = (Aj(t)w

(t−1)) is at most (1 + ε)MinRow(A,w(t−1)) by the

choice of the update rules. The term reduces further to:

Φ(t) ≤ Φ(t−1)exp

(
ε(1 + ε)2δ(t)

P (t− 1)

)
≤ Φ(t−1)exp

(
ε(1 + 3ε)δ(t)

P (t− 1)
.

)

By applying the fact that Φ(0) = n and the above fact iteratively, we get the desired bound.

□

Finally, we argue that the lemma implies Theorem A.6. Consider the last day N . Taking

logarithms on both sides gives us:

cong(f(N)) ≤ lnn

ε
+ (1 + 3ε)

∑
0<t′≤N

δ(t′)

P (t′ − 1)
≤ lnn

ε
+ (1 + 3ε)

||f(N)||1
P (t∗)

The second inequality uses the fact that ||f (N)||1 =
∑

t′ δ(t′) and that P (t∗) ≤ P (t) for all t.

Claim A.8. cong(f(N)) ≥ N/n, so this implies that cong(f(N)) ≥ lnn/ε2 when N ≥ n lnn/ε2.

Proof. We will argue that
∑

i∈[n]
f(t)A
ci

increases by at least one on each day. Since

this sum is at most ncong(f(t)), we have the desired result. To see the increase, let i be

the column that defines δ(t), that is i = arg mini∈[n] ci/Aj(t),i. Notice that ((f(t+1))TA)i =

((f(t))TA)i +δ(t)Aj(t),i ≥ ((f(t))TA)i +ci. This shows an increase of one in the above sum. □

Plugging in this term, we have that:

cong(f(N)) ≤ εcong(f(N)) + (1 + 3ε)
||f(N)||1
P (t∗)

This implies that P (t∗) ≤ (1 + 6ε)D(N).

A.4. Fast LP solver (Proof of Theorem 2.23)

By Lemma 2.17, it is enough to solve kECSS LP with KC inequalities.

207

A.4.1. Interpretation of MWU Framework

We interpret the analysis in Appendix A.3 in the language of graphs. An interesting feature

is that the dual variables are only used in the analysis; it is not used in the implementation

at all.

We use wmwu to be the weights that the primal LP maintains. Let {(C(t), F (t), c
(t)
min)}t≤T a

sequence of normalized free cuts (C(t), F (t)) and the value c
(t)
min = mine∈C(t)\F (t) c(e) obtained

by the MWU algorithm up to day T . For each edge e, we define congestion cong(e) = 1
c(e)
·∑

t≤T : e∈C(t)\F (t) c
(t)
min. The congestion of the graph is denoted as cong(G) = maxe∈E cong(e).

Note that cong(G) is precisely the same as cong in Equation (A.1) when we restrict the LP

instance to kECSS LP. Furthermore, by definition, we have

∀e,wmwu(e) ≤ 1

c(e)
· exp(εcong(G))(A.2)

Since the running time of the Range Punisher depends on the change of weights, we need

to ensure that the total change (the sum-of-log (SOL) terms) is at most near-linear. We

bound the SOL term using a slightly different stopping criteria: Observe that the analysis rely

crucially on the fact that congestion cong(G) ≥ 1
ε2

lnm. We could also use cong(G) ≥ 1
ε2

lnm

as a stopping condition (instead of running up to O(1
ε2
m logm) days), and the stopping

condition implies the number of days is at most O(1
ε2
m logm).

We can infer cong(G) from the weight function wmwu by the following. Let ϕmwu(e) :=

1
ε
· ln(c(e) · wmwu(e)) for all e ∈ E. By definition of cong(e), we have wmwu(e) = 1

c(e)
·

exp(εcong(e)), and so ϕmwu(e) = cong(e). Therefore, we have

∥ϕmwu∥∞ = cong(G).(A.3)

208

Algorithm 9: kECSSLPSolver(G, c, ε)

Input: An undirected graph G = (V,E), a cost function c, ε ∈ (0, 1)
Output: A fractional solution wsol.

1 ∀e ∈ E,wmwu(e)← 1
c(e)

2 Let λ̃ be an (1 + ε)-approximation to OPTwmwu

3 λ← λ̃
1+ε

4 wbest ← wmwu

λ̃

5 repeat
6 (wmwu,wsol)← RangePunish(G,wmwu, λ)
7 λ← λ(1 + ε)

8 if cTwbest > cTwsol then wbest ← wsol.

9 until ∃ a day such that ∥ϕ∥∞ > 1
ε2
· lnm (and early terminate)

10 return wbest.

A.4.2. Algorithm

For the implementation, recall that we denote wmwu to be the real weights on MWU frame-

work, and w to be the approximate weight that the data structure maintains.

We describe extra bookkeeping from RangePunisher to construct to the final solution.

First, it outputs a pair of weight function (wmwu,wsol) where wmwu is the weights at the

end of RangePunisher and wsol = winit

val
winit (C,F)

where winit is the initial weight function

for RangePunisher, and (C,F) is the first normalized mincut obtained during the range

punisher.

Since the range punisher maintains approximate weights, we next explain how to detect

the stopping condition using approximate weights. We want to stop as soon as ∥ϕmwu∥∞ >

1
ε2
·lnm. Since we can only keep the approximate weights, we can only detect the approximate

value with O(1/ε)-additive error as follows. First, it keeps track of ϕ(e) := 1
ε
· ln(c(e) ·w(e))

for all e ∈ E, and early stop as soon as ∥ϕ∥∞ > 1
ε
· lnm. Since w is (1 + ε)-approximation to

the real weight wmwu, it implies that with respect to weight right before the stopping day,

∥ϕmwu∥∞ ≤ 1
ε
· lnm + O(ε−1) = O(1

ε
lnm).

The algorithm for LP solver is described in Algorithm 9.

209

A.4.3. Correctness

We first show that Algorithm 9 punish a sequence of (1 + O(ε))-approximate normalized

free cuts with respect to wmwu where the weight update rule is defined in the PunishMin

operations. Initially, wmwu(e) = 1
c(e)

for all e ∈ E. By definition, OPTwmwu ∈ [λ̃/(1 + ε), λ̃)

and thus OPTwmwu ∈ [λ, (1 + ε)λ). For each iteration where OPTwmwu ∈ [λ, (1 + ε)λ), the

range punisher (Theorem 2.22) keeps punishing (1+O(ε))-approximate normalized free cuts

until OPTwmwu ≥ (1 + ε)λ.

By discussion in Appendix A.4.1, and Theorem A.6, there must be a day t∗ such that

in some range such that w(t∗)

val
w(t∗) (C

(t∗),F (t∗))
is (1 + O(ε))-approximation to the LP solution

where w(t∗) is wmwu at day t∗. Since each normalized cut value is within (1 + ε) factor from

any other cut inside the same range, we can easily show that the first cut in the range is

(1 + ε)-competitive with any cut in the range. Therefore, Algorithm 9 outputs (1 + O(ε))-

approximate solution to kECSS LP.

A.4.4. Running Time

By Corollary 2.8, the running time for computing the value λ̃ is Õ(1
ε
·m). By Theorem 2.22,

the total running time is

Õ(mℓ + K +
1

ε
·
∑
e∈E

log(
wmwu(e)

winit(e)
)),

where ℓ is the number of iterations, and K is the total number of normalized free cuts

punished (including all iterations), wmwu is the final weight at the end of the algorithm, and

winit(e) = 1/c(e) for all e.

Since we early stop as soon as ∥ϕ∥∞ > 1
ε2
· lnm, it means that the day right before we

stop we have ∥ϕmwu∥∞ = O(1
ε2
· lnm). By the stopping condition,

210

cong(G)
(A.3)
= ∥ϕmwu∥∞ = O(

1

ε2
· lnm).(A.4)

The following three claims finish the proof.

Claim A.9. ℓ = O(1
ε2

logm).

Proof. Initially, we have OPTwmwu ∈ [λ, (1+ε)λ). By Equation (A.2), we have wmwu(e) ≤
1

c(e)
· exp(εcong(G))

(A.4)
= O(1

c(e)
·mO(1

ε
)) for all e ∈ E. Let (C(0), F (0)) be the first normalized

free cut that we punish. Let λ0 be the value of that cut. We have that each edge is increase by

at most a factor of mO(1
ε
), and thus the cut at day right before the stopping happens must be

smaller than λ0 ·mO(1
ε
). Therefore, the number of ranges is log1+ε(m

O(1
ε
)) = O(1

ε2
logm). □

Claim A.10. K = O(1
ε2
m logm).

Proof. Observe that for each normalized free cut (C,F) that we punish there exists a

bottleneck edge e ∈ C \F whose c(e) is minimum. By the weight update rule, the congestion

is this edge is increased by exactly 1. Therefore, the number of normalized free cuts is at

most O(m · cong(G))
(A.4)
= O(1

ε2
m logm). □

Claim A.11. For each e, log(w
mwu(e)

winit(e)
)) = O(1

ε
logm).

Proof. Recall that the initial weight winit(e) = 1/c(e) for all e. Therefore,

∀e ∈ E, log(
wmwu(e)

winit(e)
))

(A.2)

≤ εcong(G)
(A.4)

≤ O(
1

ε
· logm).

□

211

APPENDIX B

Dynamic Spanner

B.1. Lifting the Machine-Disjoint Assumption

In the proof of Lemma 3.14 in Section 3.4, we assume Assumption 3.17 which says that,

for a fixed job u, routines for u are machine-disjoint. In this section, we show how to remove

it.

Reiterating the pain point. Each experiment Xi is defined with respect to a sampling

on each edge. In any sequence X (t,x), there could be two (t, x)-relevant experiments X
(t,x)
i

and X
(t,x)
j where i < j such that t(X

(t,x)
i) = t(X

(t,x)
j) and job(X

(t,x)
i) = job(X

(t,x)
j). By our

sampling process, these two variables are negatively correlated as knowing X
(t,x)
i = 1 would

immediately imply that X
(t,x)
j = 0 and vice versa.

To see why the condition in Lemma 3.22 may not be true in this case, let consider the

case where we have two random variables X and Y where P[X = 1] = p be the probability

that X being 1. If these two variables are correlated in such a way that X +Y = 1, then we

cannot show that X̂, Ŷ such that X+Y ⪯ X̂+ Ŷ using Lemma 3.22 unless P[X̂] = P[Ŷ] = 1.

We want to make sure that variables in the sequence we want to analyze do not have such

correlation.

Proving strategy. Here, we will define two other sequences Y(t,x) and Ŷ(t,x). These two

sequences are defined analogous to X (t,x) and X̂ (t,x). We then define d̃egAt(x) =
∑

Ŷ ∈Ŷ(t,x) Ŷ .

We will replace d̂egAt(x) in Key Steps 2 and 3 by d̃egAt(x). More precisely, instead of

Lemma 3.20, we will prove degAt(x) ⪯ d̃egAt(x), and we will prove that, w.h.p., d̃egAt(x) ≤

2targett(x) + O(log |M |) instead of Lemma 3.21.

212

Redefining relevant experiments. For a fixed X (t,x), we let π(t,x)(t′, u) = {X(t,x)
i : t(X

(t,x)
i) =

t′, job(X
(t,x)
i) = u} be the set of (t, x)-relevant experiments containing u taken at time t′.

We then let Y (t,x)(t′, u) be a boolean random variable that is one if any of experiments in

π(t,x)(t′, u) succeed. In other words,

Y (t,x)(t′, u) =
∑

X∈π(t,x)(t′,u)

X.

Note that Y (t,x)(t′, u) is a boolean random variable because only at most one variable in

π(t,x)(t′, u) can be true as they are being sampled with the same Resample(u) call. We say

that Y (t,x)(t′, u) is well-defined if |π(t,x)(t′, u)| > 0. Note that

P[Y (t,x)(t′, u) = 1] =
|π(t,x)(t′, u)|
degGt′ (u)

.

Now let us define more notations to help count the number of relevant experiments in

form of Y (t,x)(., .).

Definition B.1. We say that a timestep t′ is (t, x, u)-relevant if Y (t,x)(t′, u) is well-defined.

Let Rel(t, x, u) be the number of (t, x, u)-relevant timesteps, this is exactly the number of

possible t′ such that Y (t,x)(t′, u) is well-defined. We also let R̃el(t, x) =
∑

uRel(t, x, u) be the

number of possible pairs of t′, u such that Y (t,x)(t′, u) is well-defined.

We then define a sequence Y(t,x) = Y
(t,x)
1 , Y

(t,x)
2 , . . . , Y

(t,x)

R̃el(t,x)
to be the sequence of well-

defined Y (t,x)(., .) order by the time of these experiments. Notice that degAt(x) =
∑

X∈X (t,x) X =∑
Y ∈Y(t,x) Y.

Now we discuss the replacement of X̂ (t,x). For each Y
(t,x)
i , we let Ŷ

(t,x)
i be an indepen-

dent random variable that is true with probability |π(t,x)(t′,u)|
degGt (u)

. Then the sequence Ŷ(t,x) is

Ŷ
(t,x)
1 , Ŷ

(t,x)
2 , . . . , Ŷ

(t,x)

R̃el(t,x)
. As mentioned above, d̃egAt(x) =

∑
Ŷ ∈Ŷ(t,x) Ŷ .

We state the two main claims below.

213

Claim B.2 (Key Step 2′). degAt(x) ⪯ d̃egAt(x).

Proof. As degAt(x) =
∑

Y ∈Y (t,x) Y , by Lemma 3.22, we need to show that P[Y
(t,x)
i =

1|Y (t,x)
1 , . . . , Y

(t,x)
i−1] ≤ P[Ŷ

(t,x)
i]. By replacing X (t,x) and X̂ (t,x) with Y(t,x) and Ŷ(t,x), the proof

here can be done with the same arguments we used in Section 3.5.1. Note that the proof

works because random variables from Y(t,x) are not negatively correlated. □

Claim B.3 (Key Step 3′). d̃egAt(x) ≤ 2 log (t)targett(x) + O(log |M |) with probability 1 −

1/|M |10.

Proof. We can follow exactly the proof in Section 3.5.2. The only crucial part is to show

that E[d̃egAt(x)] = E[d̂egAt(x)]. The other parts can be argued exactly the same way.

This is true by the way we define the process. For each Ŷ
(t,x)
i that is being 1 with

probability c/ degGt(job(Y
(t,x)
i) for some integer c, we have c different boolean variables

X̂1, X̂2, . . . , X̂c in X̂ (t,x) that is being 1 with probability 1/ degGt(job(Y
(t,x)
i)). Hence, the two

expectations are identical by linearity of expectation. □

B.2. A Fully-dynamic-to-decremental Reduction for Spanners

In this section, we give a reduction from a fully-dynamic spanner to a decremental span-

ner. This reduction is due to [BKS12] and we provide it here for the completeness of our

paper.

Let E1 . . . Ej be a partition of E, then the observation below states that the union of

spanners of E1 . . . Ej is a spanner of E.

Observation B.4 (Observation 5.2 in [BKS12]). For a given graph G = (V,E), let E1 . . . Ej

be a partition of the set of edges E, and let E1 . . . Ej be respectively the t-spanner of subgraphs

G1 = (V,E1), . . . , Gj = (V,Ej). Then
⋃

i Ei is a t-spanner of the original graph G = (V,E).

With this observation, the idea behind the reduction is to split into O(log n) subgraphs

in such a way that every subgraph, excepts one subgraph, is a decremental instance.

214

Formally, let ℓ0 be the greatest integer such that 2ℓ0 ≤ n1+1/k. We do the following.

(1) We partition E into E0 . . . Ej, j = ⌈log2 n
1−1/k⌉ such that |Ei| ≤ 2ℓ0+i. Each edge

will belong to only one set Ei and we keep track of this information.

(2) For each Ei, i > 0, we maintain Hi = (V, Ei), which is a (2k− 1)-spanner of (V,Ei).

(3) We maintains a binary counter C which counts from 0 to n(n−1)
2

. This will be used

to decide when to rebuild Ei.

In the beginning, we set Ej = E and Ei = ∅ for all i < j. The counter C is set to 0. Any

edge deletion of e ∈ Ei for any i is handled as in the decremental case. When an edge e is

inserted, we increment the counter C by one. Let g be the highest bit of C that gets flipped.

If g ≤ ℓ0, then we put e in E0 and E0. Otherwise, we insert e into Eh, where h = g − ℓ0,

move all edges from Ei, i < h to Eh. At this moment Ei = ∅ for all i < h. We then rebuilt

the spanner Eh.

From Observation B.4,
⋃

i Ei is a (2k − 1)-spanner of G.

Lemma B.5 (Restate Lemma 3.6). Suppose that for a graph G with n vertices and m initial

edges undergoing only edge deletions, there is an algorithm that maintains a (2k−1)-spanner

H of size O(S(n)) with O(F (m)) total recourse where F (m) = Ω(m), then there exists an

algorithm that maintains a (2k − 1)-spanner H ′ of size O(S(n) log n) in a fully dynamic

graph with O(F ((U) log n)) total recourse. Here U is the number of updates made throughout

the algorithm, starting from an empty graph.

Proof of Lemmma 3.6. We use the reduction above to partition the graph into E1, . . . , Ej.

We then use the decremental algorithm to maintain each Ei for all i > 0.

We first show that the size of |H ′| = |⋃i Ei| = O(log nS(n)). As we have O(log n)

subgraphs, |⋃i Ei| =
∑

i S(|Ei|) ≤ O(S(n) log n).

Now we show the total recourse. Let G1,G2, . . . ,Gk be all the graph we rebuilt throughout

all the timesteps. Then the total recourse is bounded by
∑

i F (|Gi|) ≤ F (
∑

i |Gi|). Notice

215

that the level of any edge e can only go up, so e can contribute the recourse to only log n

different graphs. Hence, this inequality becomes

F (
∑
i

|Gi|) ≤ F ((U) log n).

□

B.3. Missing Proofs from Section 3.2

Claim B.6 (Restate Claim 3.7). The subgraph H = (V,E1 ∪ E2 ∪ E3) is a 3-spanner of G

consisting of at most O(n
√
n) edges.

Proof. We need to show that (1) H is a 3-spanner and (2) EH = E1 ∪ E2 ∪ E3 has size

at most O(n
√
n). GG

Stretch. Consider an edge e = (u, v) where u ∈ Vi, v ∈ Vj. We show that H has a path

of length at most 3 between u and v. The easy case is when (u, v) ∈ EH . This gives us a

path of one edge. It happens when u = ci(v) or v = cj(u), or i = j. Suppose (u, v) /∈ EH .

Consider v′ = cj(u). Since u is a common neighbor between v and v′, P (v, v′) is not empty.

As e /∈ EH , u ̸= wvv′ . As, the path u, v′, wvv′ , v has length exactly 3, the stretch part is

concluded.

Size. Each vertex u has upto
√
n partners. Since we have n vertices, |E1| = O(n

√
n).

For E2, the graph induced on Vi has at most O(n) edges. Since we have
√
n buckets,

|E2| = O(n
√
n). For E3, |E3| is bounded by the number of witnesses we need. Since

we have O
√
n buckets, and we have O(n) pairs of vertices within the same bucket, for

all buckets, |E3| must be bounded by O(n
√
n). We conclude the proof by saying that

|EH | = O(|E1|+ |E2|+ |E3|) = O(n
√
n)

□

216

B.3.1. Making the update time worst case

It is evident that the update time in Lemma 3.10 is in worst-case. The whole algorithm

is amortized only because we are replacing E3 from scratch at the start of each phase,

which takes Õ(n2) time, and this time needs to be amortized over the length of the phase.

Using very standard techniques from the existing literature on dynamic algorithms (see

e.g. [Tho05, BCCK16, NSW17, Kis21]), we can easily convert this into an overall worst case

update time guarantee. The idea is to spread out the Õ(n2) cost of rebuilding at the start

of a given phase through a sufficiently large chunk of updates in the phase preceding it.

For completeness, we will describe the idea in more detail here. Let Gi be the graph after

i updates. We will use one instance of our algorithm to handle L = Θ̃(n
√
n), that is, the

i-th instance will be used to handle the time steps [(i− 1)L, iL). For our idea to work, any

copy must be able to handle 2L updates (which is fine in our case). At the beginning, we

initiate the first copy D1 with time Õ(n2). We want to initiate D2, as well as feed D2 with

L updates, so that D2 is ready to use at the timestep L. This can be done in the following

manner.

• During time steps [0, L/3), we initiate D2 with the graph G0,

• During time steps [L/3, 2L/3), we carefully feed the surviving1 output from D2 into

our actual output,

• During time steps [2L/3, L), we update D2 with updates from time steps [0, L), 3

updates at a time.

Hence, at time step L, we can switch from D1 to D2, disregard D1, and start initiating

D3. More generally, suppose at time step iL, after we have initiated Di, which we will use

for time step [iL, (i + 1)L). In the following L time steps, to disregard Di−1 and initiate

Di+1, we do the following.

1Some edges in the spanner of D2 might be deleted between the time step [0, 2L/3], we must not add deleted
edges in our actual output.

217

• During time steps [iL, iL + L/3), we initiate Di+1 with the graph GiL and slowly

disregard the output from Di−1,

• During time steps [iL+L/3, iL+2L/3), we carefully feed the surviving output from

Di+1 into our actual output,

• During time steps [iL + 2L/3, (i + 1)L), we update Di+1 with updates from time

steps [iL, (i + 1)L), 3 updates at a time.

Then, at time step (i+ 1)L, we completely disregard Di−1, and completely initiate Di+1,

hence maintaining all the desired properties. Our actual output at time step t, is consisting

of EDi
and EDi+1

, which are output of Di and Di+1, respectively. Notice that, (V,EDi
) is a

3-spanner of Gt, hence, (V,EDi
∪EDi+1

) is also a 3-spanner of Gt. This is because a spanner

with extra edges is still a spanner. Hence, as long as |EDi
∪ EDi+1

| is not too large, we can

keep both of them in our output at the same time. We conclude by saying that, this idea of

maintaining multiple copies, along with our Lemma 3.11, implies Theorem 3.3.

Note. As a corollary, we note that the idea above does not have anything to do with

Spanner. Rather, it is applicable to any dynamic problem, as long as, it can handle batch

updates in worst-case time, and that the bottleneck of the algorithm is on the initialization

time.

218

APPENDIX C

Graph Versioning

C.1. DP on tree via FPTAS 4.4.1

C.1.1. Reduction from general tree to binary tree

Lemma C.1. If algorithm A solves BMR on binary tree instances in O(f(n)) time where

n is the number of vertices in the tree, then there exists algorithm A′ solving BMR on all

tree instances in O(f(2n)) time.

Proof Sketch. If a node v has more than two children, we modify the graph as follows:

(1) Create node v′ and attach it as a child of v.

(2) Move all but the left-most children of v to be children of v′

(3) Set the deltas of (v, v′) = (v′, v) = 0; set (v′, ci) = (v, ci) and (ci, v
′) = (ci, v) for all

transferred children ci.

By repeating this process we obtain a binary tree with ≤ 2n nodes which has the same

optimal objective value as before. Hence, after producing a binary tree, we can utilize the

algorithm for binary tree to solve BMR on any tree. □

C.1.2. All connection cases for DP for MSR on trees

We present the 5 cases in the recurrent step here as promised in Section 4.4.1. All other cases

are symmetric to the cases we present, hence omitted. We use Si to denote the minimum

storage cost in case i, as shown in Fig. 4.7.

219

S1 = sv + min
ρ1+ρ2=ρ

{
min
k1,γ1
{DP [c1][k1][γ2][ρ1]}

+ min
k2,γ2
{DP [c2][k2][γ2][ρ2]

}
S3 = sv + sv,c2 − sc2 + min

ρ1+ρ2=ρ

{
min
k′,γ1
{DP [c1][k

′][γ1][ρ1]}

+DP [c2][k − 1][0][ρ2 − (k − 1)rv,c2]
}

S4 = sv + sv,c1 − sc1 + sv,c2 − sc2 + min
ρ1+ρ2=ρ

min
k1+k2=k−1

{
DP [c1][k1][0][ρ1 − k1rv,c1]

+DP [c2][k2][0][ρ2 − k2rv,c2]
}

S6 = sc2,v + min
ρ1+ρ2=ρ

{
min
k2
{DP [c2][k2][γ − rc2,v][ρ2 − γ]}

+ min
k1,γ′
{DP [c1][k1][γ

′][ρ1]}
}

S7 = sc2,v + sv,c1 − sc1 + min
ρ1+ρ2=ρ

{
DP [c1][k − 1][0][ρ1 − (k − 1) · (rv,c1 + γ)]

+ min
k′
{DP [c2][k

′][γ − rc2,v][ρ2 − γ]}
}

C.2. Supplementary materials for Section 4.4.3

C.2.1. Algorithms in Section 4.4.3

We present the pseudo code for Algorithms 10, 11, and 12 below, as mentioned in Sec-

tion 4.4.3:

C.2.2. Calculation of ρ

We hereby demonstrate that the method for calculating ρ∆ in Algorithm 13 is indeed correct.

For a pair of compatible partial solutions Ta, Tb with regards to Tz, ρ∆ is defined such

that ρa + ρb = ρz − ρ∆. Therefore, as we go down a path described by Tz in topological

220

Algorithm 10: Scan Uprooted Nodes

Input : Sz, Sa, Sb, Tz
1 Ua ← ∅; Ub ← ∅
2 for v in Sz do
3 if v in Sa and Parz(v) in Sb \ Sa then
4 Ua ← Ua ∪ {v}
5 else if v in Sb and Parz(v) in Sa \ Sb then
6 Ub ← Ub ∪ {v}
7 return Ua, Ub

Algorithm 11: Un-Uproot

Input : Sz, Tz, Sa, Ua, Sb, Ub

1 Ta := (Para,Depa,Reta,Anca)← Tz
2 Tb := (Parb,Depb,Retb,Ancb)← Tz
3 Sort Sz in topological order according to Ancz
4 for v ∈ Sz do
5 if v ∈ Ua then /* Case 1 in Fig. 4.9 */

6 Para(v)← v; Reta(v)← 0; Anca(v)← ∅
7 for u ∈ Ancb(v) do

// Dependents of v, including v, are removed.

8 Depb(u)← Depb(u)−Depb(v) + 1
9 else if v ∈ Ub then /* Case 3 in Fig. 4.9. */

10 Parb(v)← v; Retb(v)← 0; Ancb(v)← ∅
11 for u ∈ Anca(v) do
12 Depa(u)← Depa(u)−Depa(v) + 1
13 else /* Case 2 in Fig. 4.9. */

// Do nothing if v ̸∈ Sa. Same for the following lines.

14 Anca(v)← Anca(Parz(v)) ∪ {Parz(v)}
15 Ancb(v)← Ancb(Parz(v)) ∪ {Parz(v)}
16 Reta(v)← Reta(Parz(v)) + rParz(v),v
17 Retb(v)← Retb(Parz(v)) + rParz(v),v
18 return Ta, Tb

order, we analyze how many times the retrieval cost of an edge is counted by both ρa and

ρb as compared to that by ρz. For example, in figure C.1, the retrieval cost of edge (1, 2) is

counted 8 times in Tz, zero times in Ta, and twice in Tb. The details are as below:

(1) We observe that all edges in Ta and Tb are must also be in Tz: in Compatibility,

no additional edges. Hence, it suffices to focus on all edges of Tz

221

Algorithm 12: Compatibility

Input : Sz, Sa, Sb, Ta, Tb
1 Ua, Ub ← Scan Uprooted Note(Sz, Sa, Sb, Tz)
2 T ′

a , T ′
b ←Un-Uproot(Sz, Tz, Sa, Ua, Sb, Ub)

3 for v ∈ Sa ∩ Sb do
4 ExtDepz ← Depz(v)− ∑

w∈Sz :Parz(w)=v

Depz(w) // External dependency.

5 ExtDepa ← Depa(v)− ∑
w∈Sa:Para(w)=v

Depa(w)

6 ExtDepb ← Depb(v)− ∑
w∈Sb:Parb(w)=v

Depb(w)

7 if ExtDepz ̸= ExtDepa + ExtDepb then
8 return False
9 for u ∈ Anc′a(v) do

10 Dep′
a(u)← Dep′

a(u)− (ExtDepz − ExtDepa)
// subtract external dependencies in V[b] \ Sb from T ′

a

11 for u ∈ Anc′b(v) do
12 Dep′

b(u)← Dep′
b(u)− (ExtDepz − ExtDepb)

13 if Ta = T ′
a and Tb = T ′

b then
14 return True
15 else
16 return False

Algorithm 13: Distribute Retrieval

Input : Sz, Tz, ρz, Sa, Sb, Ta, Tb
1 ρ∆ ← 0 // We Want ρz − ρ∆ = ρa + ρb
2 for v ∈ Sz such that Parz(v) ̸= v do
3 Count← Depz(v) // the number of times rParz(v),v is counted

4 if Para(v) = Parz(v) then
5 Count← Count−Depa(v)
6 if Parb(v) = Parz(v) then
7 Count← Count−Depb(v)
8 if Parz(v) ∈ Sz then

// The edge rParz(v),v is over/undercounted.

9 ρ∆ ← ρ∆ + Count · rParz(v),v
10 else

// The entire Retz(v) is over/undercounted.

11 ρ∆ ← ρ∆ + Count · Retz(v)
12 return ρ∆

(2) For each v not materialized in T , we use the temporary variable Count to denote

how many times the edge e = (Parz(v), v) is over/undercounted in ρz.

222

To put this formally, we can abuse notation and let Depz(e) be the number of

times re is counted towards total retrieval cost in Tz. Then we have

Count = Depz(e)− (Depa(e) + Depb(e))

where if Para(v) ̸= Parz(v), clearly Depa(e) should be 0, since it’s not even stored

in Ta.

(3) If both endpoints of e are in Sz, then the amount of retrieval cost overcount in ρz is

exactly Count · re. On the other hand, if e is a delta from outside Sz, the overcount

should be Count · Retz(v), since the entire retrieval cost of v is overcounted Count

times.

Figure C.1. Illustration of the retrieval path for Fig. 4.8

C.3. ILP Formulation

In the following formulation, we have integer variables {xe} representing how many v ∈ V

is retrieved through the edge e. Ie is a Boolean variable denoting whether edge e is stored.

We work on the extend graph with the auxiliary node vaux for convenience.

223

min
∑
e∈E

rexe s.t.

xe ≤ |V − 1|Ie (indicator constraint)∑
e∈E

seIe ≤ R (storage cost)∑
e∈In(u)

xe =
∑

e∈Out(u)

xe + 1 ∀u ∈ V \ {vaux} (sink)

xe ∈ {0, 1, . . . , |V |}

Ie ∈ {0, 1}

	ABSTRACT
	Acknowledgements
	Table of Contents
	List of Tables
	List of Figures
	Chapter 1. Introduction
	1.1. k-Edge Connected Spanning Subgraphs
	1.2. Dynamic Spanners
	1.3. Dataset Versioning
	1.4. Densest Subgraphs
	1.5. Organization

	Chapter 2. k-Edge Connected Spanning Subgraphs
	2.1. Overview of Techniques
	2.2. Preliminaries
	2.3. Range Mapping Theorem
	2.4. Fast Approximate LP Solver
	2.5. LP Rounding for kECSS (Proof of thm: fast rounding)
	2.6. Truncated Lazy MWU Increment (Proof of thm:tlmi)
	2.7. Authors

	Chapter 3. Dynamic Spanners
	3.1. Deterministic Spanner with Near-optimal Recourse
	3.2. 3-Spanner with Near-optimal Recourse and Fast Update Time
	3.3. Proactive Resampling: Abstraction
	3.4. Proactive Resampling: Analysis (Proof of lemma:secondguarantee)
	3.5. Bounding Load (Proof of lemma:overhead)
	3.6. Conclusion
	3.7. Authors

	Chapter 4. Dataset Versioning
	4.1. Preliminaries
	4.2. Hardness results
	4.3. Exact Algorithm for MMR and BMR on bi-directional trees
	4.4. Fully polynomial time approximation scheme for MSR via Dynamic Programming
	4.5. Experiments and Improved Heuristics for MSR and BMR
	4.6. Experiments and Improved Heuristics for MSR and BMR
	4.7. Conclusion
	4.8. Authors

	Chapter 5. Densest Subgraph
	5.1. Preliminaries
	5.2. Pruning-and-Refining Framework
	5.3. Experiments
	5.4. Conclusion
	5.5. Authors

	Chapter 6. Conclusion
	References
	Appendix A. k-Edge Connected Spanning Subgraphs
	A.1. Sparsify the fractional solution (Proof of lem:spase graph)
	A.2. Bounding the minimum normalized free cut (Proof of thm: warmup)
	A.3. Multiplicative weight update guarantee (Proof of Theorem 2.16)
	A.4. Fast LP solver (Proof of thm:fast LP solver)

	Appendix B. Dynamic Spanner
	B.1. Lifting the Machine-Disjoint Assumption
	B.2. A Fully-dynamic-to-decremental Reduction for Spanners
	B.3. Missing Proofs from sec:3spanner

	Appendix C. Graph Versioning
	C.1. DP on tree via FPTAS 4.4.1
	C.2. Supplementary materials for Section 4.4.3
	C.3. ILP Formulation

