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ABSTRACT

A model of the distribution of arrival time at the scene of an emergency

for the first of n vehicles is developed for the case in which travel times on

the links of the network are Normally distributed and the path travel times of

different vehicles are correlated. The model suggests that the probability

that the first vehicle arrives at the scene within a given time may be in-

creased by reducing the path time correlations, even if doing so necessitates

increasing the mean path travel time for some vehicles. The model with

Normally distributed travel times is coitpared with a more complex model that

assumes Erlang distributed travel times and the results are shown to be in

close agreement.



1. Introduction

The provision of emergency services to the public is one of the most

important functions of local governments. Such services include fire protec-

tion, police protection and emergency medical services. The private sector is

often also involved in the provision of backup emergency medical care and

emergency road services for automobiles. Whether operated in the public or

private sectors, the perceived quality of these services is often directly

related to the time between when a need for service is first reported and the

arrival time at the scene of the first unit responding to the emergency. In

this research, we are concerned with estimating the distribution of the arriv-

al time of the first emergency vehicle at the scene when multiple units are

simultaneously dispatched to the scene and when travel times on the network

are stochastic. The results have implications on the routes emergency vehi-

cles should take in travelling to the scene of an emergency, on the locations

from which they should be dispatched and, ultimately, on the sites at which

facilities should be located. In this paper, we focus on the routing and

dispatching implications, leaving the location aspects to future research.

The literature on emergency services is vast. However, most previous

studies have focused on locating facilities on a network using a variety of

objectives, including minimization of the number of facilities needed to

attain a given level of service [3, 14, 24, 25], maximization of the number of

demands served by a given number of facilities [2, 10, 13, 15] and minimi-

zation of mean travel times [4, 17, 26]. In almost all cases, the studies

assumed that travel times were deterministic, that the nearest available

vehicle is dispatched to the emergency, and that the demands for service can

be satisfied by a single vehicle.
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Several authors have examined travel times in detail. Mirchandani and

Odoni [23] treated travel times as random variables. In their formulation,

the source of randomness is such that the travel time between any vehicle site

and a given demand location at a particular time is known; however, for the

same vehicle site and the same demand location, the travel time at a future

point in time may differ from the present travel time for the vehicle and

demand combination. They found that travel time variability of this form can

significantly influence vehicle siting decisions. Chelst and Jarvis [9]

proposed using Larson's hypercube queuing model [21, 22] to estimate the

distribution of travel times for emergency services. They assumed that the

travel times between any two atoms or nodes in the network is deterministic

and known. Hie sources of randomness in their approach include the location

of the demand for service, the availability of the different emergency vehi-

cles, and the location of the unit selected to respond to a particular

demand. Finally, several researchers [18, 19, 20] have investigated the

relationship between travel distance and travel time and have found that

travel time is a non-linear function of travel distance for short trips.

Carter, Chaiken and Ignall [5] studied vehicle dispatching policies and

showed that dispatching the nearest available vehicle may increase the system-

wide expected response time for future demands so much that it would be better

to dispatch a more remote vehicle to respond to the current demand and to

preserve the capability to respond adequately to future demands. We show

below that dispatching the two nearest available vehicles when multiple vehi-

cles are sent to a single emergency may be suboptimal even in terms of serving

the present demand, regardless of the impact on future demands.
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Several papers have also examined the problem of multiple vehicle dis-

patches. Chaiken [6] developed a Markov model that may be used to estimate

the number of vehicles that are busy at the scene of an emergency. Chelst and

Barlach [8] extended the hypercube model to account for demands that require

two vehicles to be dispatched. They assumed that service times for the two

vehicles follow independent identically distributed exponential

distributions. With this assumption, they modified the hypercube model to

obtain a model whose solution provides the steady-state state probabilities of

finding a unique combination of busy and free vehicles. From the state

probabilities they computed a variety of system performance measures including

the mean response times for the primary and secondary vehicles and for the

first and second arriving units. In all these computations, travel times

between atoms or nodes of the network are assumed to be deterministic. Chelst

[7] has developed a model to predict travel times of the first and second

arriving units that accounts for vehicle availability. The model is based on

geometric probability results and is used to compare travel times of one and

two officer police patrol units, as well as the manpower requirement impacts

of a change from one-officer to two-officer units.

In this study we adopt a different approach; we begin by focusing on

vehicle routing and dispatching decisions rather than facility location

decisions. We assume travel times are random variables and that multiple

vehicles are to be dispatched to the emergency scene. In the next section we

outline our basic assumptions and develop a model to estimate performance

under these assumptions. Section 3 presents a simple example of the use of

the model showing the implications of the results on routing and dispatching

decisions. In section 4 we relax the assumption of Normally distributed link

travel times made in Section 2 and compare the results of Section 2 with those
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obtained using a more realistic Erlang distribution for link travel times.

Section 5 contains our conclusions and recommendations for future study.

2. A Multivehicle Response Time Model

The problem we address is that of finding the distribution of the arrival

time of the first emergency vehicle at the scene of an emergency. We assume

that demands for service are generated at the nodes of a connected network and

that the travel times on the links are random variables. The sources of this

randomness include traffic delays, delays due to the inability or unwilling-

ness of drivers to yield to the emergency units and delays due to such rare

events as train crossings or traffic accidents.

Let X^_ be a random variable denoting the travel time on link k. We
assume (.until Section 4 belcw) that X is Normally distributed with mean p

and variance n that the variance is proportional to the mean. That is, we
\

assume

V = (1)k k

where y is the variance of travel time per unit mean travel time or, more

simply, the unit variance.

This final assumption relating the mean and variance is not strictly

needed, though it simplifies our presentation in Sections 3 and 4. In princi-

pie, the unit variances may differ from link to link. In particular, there is

no a prior reason to assume that the unit variances on expressways, arterials

and local streets are the same.
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Let T, be a new second random variable denoting the travel time on a path

or sequence of links. Under the above assumptions for X^, is also a
2

Normally distributed random variable with mean, y , and variance, oT t given
i i

by

»Ti " E(V " I *ik \ <2)

4 . v„r(T1 ) - I . < <31
k

where

a m = ■<ik

1 if link k is on path i

0 otherwise

2
The covariance in path travel a„ „ , between paths i and j is given by

i' j

°Ti'Ti = I 6ijk X U)
where

6 ,

13k

i 1

1 if link k is on both path i and path j

0 otherwise

That is, we assume that the covariance in path travel times is equal to the

sum of the variances in the link travel times for the links that the two paths

share in common.

To summarize, let T be a vector of random path travel times from the

sites of all available emergency vehicles that will be dispatched to a partic-

ular emergency scene. We note that the paths need not be the minimum paths

from the vehicle sites to the emergency location and, as discussed below,

should not be the minimum paths under certain circumstances. Thus, if three

vehicles are to be dispatched to an emergency — for example, two pumpers and
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one ladder to a fire — the vector would contain 3 elements. Under our

assumptions, T follcws a multivariate Normal distribution,

and is a variance-covariance matrix of path travel times whose diagonal

elements are given by (3) and whose off-diagonal elements are given by (4).

As discussed above, the perceived guality of an emergency system is often

related directly to the response time of the first unit on the scene after an

emergency has been reported. While we recognize that the response time is

composed of several components, including dispatching delays and possible

delays incurred while waiting for an available vehicle [16], we focus on the

travel time component of response time as this is the component most affected

by vehicle location, dispatching and routing decisions. Let Y be a random

variable equal to the travel time of the first unit on the scene. The cumu-

lative distribution of Y is given by

T ~ MVN ( ÎV } (5a)

where is a vector of mean path travel times whose elements are given by (2)

Prob ( Y < y ) = Prob { MIN (Tj < y }
i

(6a)

Alternatively, we may rewrite (5a) as

-T ~ MVN ( -u , L ) (5b)

in which case

Prob ( Y < y ) = Prob { MAX (-T.) > y }
i

(6b)
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The transformation of equation (6a) into (6b) is useful since Clark [11]

has developed a procedure for estimating the distribution of the maximum of a

set of Normally distributed random variables. The result is that the maximum

is distributed approximately Normally with a mean and variance that depend

on E • Thus, Y, the travel time of the first unit on the scene, isHIP —jp *

approximately Normally distributed. Daganzo [12] reports that Clark's

approximation is satisfactory except when the means are similar and the vari-

ances are quite different. If assumption (1) holds -- that is, if the vari-

ances of link travel times are proportional to the means — we will not

encounter this problem, as the means could not be similar and the variances

dissimilar under this assumption. Daganzo [12] also reports that positive

correlations improve the accuracy of Clark's approximation. This effect

accounts, in part, for the approximate nature of the results reported on the

following section.

3. Application of the Normal Model

In this section we apply the model developed in Section 2 to the small

example problem shown in Figure 1. A demand for service at node 4 requires a

response by vehicles at both nodes 1 and 2. We assume the two vehicles are

dispatched simultaneously and we will be interested in the probability that

the first vehicle to arrive at node 4 has arrived by a given time. We refer

to this as the probability node 4 is covered in the specified critical cover-

age time, Tc. The example allcws us to explore the effect of changes in (i)

the covariance of path travel times, (ii) the variance per unit travel

time y, and (iii) the critical coverage time, Tc, on the probability node 4 is

covered. In addition, through this simple example we are able to develop

additional insights into desirable dispatching and routing strategies.



FIG 1 - EXAMPLE NETWORK

KEY:

O ©
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Vehicle Base Nodes

Demand Node

Intermediate Node

Expected Link Travel



For the example in Figure 1, we have

Using Clark's formulae we find

!(Y) = E{ MIN (T1 , T ) } = 11- $(0) - b<j> (0) (8a)

E(YZ) = 121 + 11y - [21 + y]$(0) ~ 21 b<j> (3) (8b)

2 2
Var(Y) = E(Y ) - E (Y)

= [11 - $(0)]y - [ b<j> (0) + $(0)] [b<j> (0) + $(0) - 1] (8c)

where b = [ y (21 - 2a) (8d)

0 = [ y (21 - 2a) ] (8e)

and <j>(x) and $(x) are the Normal probability density and cumulative prob-

ability functions respectively.

Figures 2 and 3 plot the mean and standard deviation respectively of the

minimum travel time or the time the first vehicle arrives at node 4 as a

function of the mean travel time on the link the two vehicles travel in

common, for values of the unit variance of travel time of 0.1, 0.2, and 0.3.

The covariance of the two path times increases with the time on the common

link. Both the mean and standard deviation of the minimum travel time
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increase as the mean time on the common link increases. As the unit variance

in travel time increases, holding the travel time on the common link fixed,

the mean of the minimum travel time decreases while the standard deviation

increases.

Figure 4 plots the probability node 4 is covered in a travel time of 11

units as a function of the travel time on the common link, for values of the

unit variance of 0.1, 0.2, and 0.3. As expected, the probability node 4 is

covered decreases as the travel time on the common link increases. This is a

result of the increase in the mean of the minimum travel time with increased

travel time on the common link (as shown in Figure 2). The probability node 4

is covered decreases with increases in the unit variance due to the larger

standard deviation of the minimum travel time with larger unit variance (as

shewn in Figure 3). Figure 5 plots the probability node 4 is covered when the

unit variance in travel time is 0.2 as a function of the travel time on the

common link, for critical coverage times of 10.0, 11.0, and 12.0. Again, the

probability node 4 is covered decreases with increases in the travel time on

the common link. As expected, the probability node 4 is covered increases

with increases in the critical travel time.

Figures 4 and 5 suggest that if the travel time on the common link is

large, the probability that node 4 is covered may be increased by dispatching

the two vehicles from node 1 and some node 5 which may be farther from the

demand node 4 than is node 2, as long as the mean travel time on the paths in

common for the two vehicles is small (as shown in Figure 6a). Alternatively,

we may dispatch the two vehicles from nodes 1 and 2, routing the vehicle from

1 along the indicated path and the vehicle from 2 along an alternate path.

Again the probability of node 4 being covered may be increased even if the

mean time on the alternate path exceeds the 11 units shown for the path from 2
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to 4 in Figure 1, as long as the travel time in common between the alternate

path and the path taken by the node 1 vehicle is small. Figure 6b illustrates

an independent alternate path with mean travel time Z for the vehicle located

at node 2.

We can readily determine the mean travel time on the alternate

independent path which makes the probability node 4 is covered equal to that

obtained by routing the vehicle from 2 along the original path. Let Zg be the

equivalent mean travel time on the independent path. The probability that

node 4 is covered using the original routing may be computed using the tech-

nique outlined in Section 2. Let this probability be Pc. The probability
node 4 is covered using the independent path for the vehicle located at 2 may

also be computed in the same manner. Alternatively, the probability node 4 is

covered using the independent path is

P = 1 - P( T, > T ) P( Z > T )
c 1 c e c

i - $

'
T -10

c
/ T -Z

c e
1 - $ / ——1

l ■ \V^T
(9)

Solving for Ze, we find

1 - $

T -Z
c e

1 - p

1 - $

T -1 0
c

V1 0y

(10)

or

T -Z
c e .-1

1 - p

1 -

1 -

T -1 0
c

V1°Y

> = a (id
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FIG 6 - ALTERNATE DISPATCHING AND ROUTING SCHEMES

Dispatching From A More Remote Node Along An Independent Path

(a)
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where $ ^(x) is the inverse cumulative Normal distribution function. Squaring

both sides of (11), we obtain a quadratic equation for Z
e

Z2 - (2T + Ct2v) Z + T2 = 0 (12)
e c e c

whose roots are

2 +

(2Tc + a y) - -y
2 2 2

[2T + a y] - 4T
Z = : 2 2. (13)

e

Since only one of the roots will actually satisfy equation (11), the correct

root may be readily identified by substituting each into (11).

Figure 7 plots the equivalent mean travel time on the alternate indepen-

dent path from 2 to 4 as a function of the travel time on the common link in

the original routing scheme for unit variances of 0.1, 0.2, and 0.3. As the

time on the link in common increases — or as the covariance between the path

travel times in the original routing scheme increases — the equivalent mean

travel time on the independent path increases. Thus, for example, if the mean

time on the link in common is 8, the unit variance is 0.2, and the critical

travel time is 11 units, the mean travel time on the alternate equivalent path

is 13.189. In other words, we could increase the probability of covering node

4 in 11 time units by dispatching the vehicle from 2 along any path whose mean

time was less than 13.189 units if the path was independent of the path to be

taken by the vehicle from 1 . Note that this means that even if we increase

the mean travel time from node 2 to node 4 by up to 20 percent, we can improve

the probability of coverage if we reduce the covariance in path travel times

sufficiently. Alternatively, we could dispatch a vehicle further from the

scene of the emergency than the vehicle located at 2 — even up to 20 percent

further — and improve the probability that the first vehicle arrives at node

4 within 11 time units, as long as the two vehicles travel independent paths.
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Figure 8 plots the equivalent mean travel time on the independent path as

a function of the mean time on the link in common under the original routing

scheme for critical times of 10.0, 11.0 and 12.0 units. Again, the equivalent

mean time on the independent path increases with the covariance in path travel

times and with the critical coverage time. For example, if the mean time on

the common link in the original routing scheme is 8 units, the equivalent mean

time on an independent path increases from 12.654 to 13.774 as the critical

coverage time increases from 10 to 12 units.

Finally, we can gain insight into the magnitude of the errors introduced

by using Clark's approximation to the maximum of two independent Normal varia-

bles, as well as the errors caused by using polynomial approximations [1] to

the cumulative Normal and inverse Normal functions, by considering the results

shewn in Figure 8 for the case in which the mean time on the link in common is

0.0. At this point, the length of the alternate independent path should be

11.0, for all values of the critical travel time, since the path from 2 to 4

is independent of the route from 1 to 4 under the original routing scheme;

therefore, nothing can be gained by using an alternate path from 2 to 4 of

length greater than 11.0 units. However, as shown in Figure 8, our approxima-

tions result in estimates of 10.924, 11.043 and 11.216 for the time on the

alternate path from node 2 to node 4 for critical travel times of 10.0, 11.0

and 12.0 respectively. We note that the largest of these three errors is less

than 2 percent. Also, Clark's approximation improves as the covariance in

route travel times increases [12] which is just when we are most interested in

the results from a practical perspective. In the next section we consider the

effects of another source of error, the assumption of Normally distributed

link travel times.
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4. A Model with Erlang Distributed Travel Times

The assumption of Normally distributed travel times is subject to two

criticisms: first, it admits the possibility of negative travel times;

second, it implies that travel times on a link are distributed symmetrically

about the mean link travel time when, in fact, the travel time distribution is

likely to be skewed to the right. In this section, we relax the assumption of

Normally distributed travel times, by assuming that X, the link travel time,

follows an Erlang-k distribution,

0(9x)k~1 e~0x
fx(x) = —(k^Trr— (14a)

with mean and variance given by

E(X) = (14b)

Var(X) = k- - ■ (14c)

Ebr the mean of the Erlang distribution to equal the mean of the Normal

distribution used in Section 2, we require

0E(X) = 9px (15a)

If we also retain assumption (1) that the variance is proportional to the

expected time, we further require

— (15b)
Y
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While equations (15) may be used to equate the means and variances for

the Normal and Erlang approximations to the distribution of link travel times,

the relation between the underlying assumptions for the two distributions

should be made explicit. The Normal approximation assumes that the travel

time on a link of unit distance is distributed Normally with mean 1 and vari-

ance y. The Erlang approximation assumes that the travel time on a

link y distance units long is exponentially distributed, or equivalently (for

integer values of 0) that the travel time on a link of unit distance follows

an Erlang-0 distribution. Both approximations assume that travel times on

non-overlapping segments of a link, or on different links, are independent and

that the covariance of travel time for paths that share links in common is

proportional to the expected travel time on the common links. Finally, we

note that while the Erlang distribution may be a more realistic distribution

of travel times since it does not allcw negative times and is skewed to the

right, the distribution requires k to be integer. However, for our purposes

this is not a serious limitation as we will be using the Erlang distribution

only to assess the approximate magnitude of the errors introduced by using the

more flexible and more tractable Normal distribution.

To determine the probability that a demand is covered when two vehicles

are dispatched to the emergency, consider Figure 9 with vehicles again located

at nodes 1 and 2 and a demand at node 4. We assume that travel time on the

link from 3 to 4 follows an Erlang-k^ distribution and let A be the random
variable denoting this travel time. Similar assumptions hold for the other

links. Again, let be the travel time to the demand for the vehicle based

at node i. The probability the demand is covered in time Tc is

P(covered) = 1 - P(T, > T ) P(T„ > T )1 c 2 c
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9 - NETWORK FOR ERLANG AND NORMAL DISTRIBUTION COMPARISONS
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P(A + B > T ) P(A + C > T )
m C CT

LC f (a) P(B > T -a) P(C > T -a) da
10 A c c

+ P (A > T )
c

(16)

From the cumulative Erlang-kft distribution we we have

kA_1 (0T e~(9Tc)
P(A > T ) = )

n *->

j=0 j!
(17)

Substituting (17) and similar expressions for P(B > Tc-a) and p(C > Tc-a)
into (16) we find

V1 (0Tc)J e~( 9Tc}
P( Covered) = 1 - —

f
3=0

6(6a)V1 e"(9a)
(k -a)!

A

V1 le(T-a)}
I

n=0

V1 {0(T-a)}m e"le(Va)l
y i

m=0

n -j0(T -a)[e 1 c J
da (18a)

Reversing the order of summation and integration and collecting terms, we

V (eVle-«>V
P(covered) = 1 - ^

j=o j!

kB "<28V V V k-,
0 e v y I A ,m _^m+n _0a

° Jr

n _ I cA m=0 n=0

v \ I /m v iu-rn ua _ . „ .

2_ )_ I a (T -a) e da (18b)

To evaluate the integral in (18b), let us write it in a general form as
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T

I(a,3) = / C ya (T - y)9 e9y dy (19)
0 c

where a and g are non-negative integers. Integrating by parts, we obtain

I(a, 3 ) = ——— I (a, 3~1) — I (a-1 ,3 ) a>1, 3>1 (20a)
O U

mct (0T )T e c

I (a, 0) = -2 - -2L_ Kc-i ,o) a>1, 3=0 (20b)
u 0

1(0,3) = - + -|- 1(0,3-1) a=0, 3>1 (20c)U t)

P(eTr) 1
1(0,0) = -2 b a=0, 3=0 (20d)

O

Equations (20) provide a recursive method for evaluating the integral in

(18b).

Figure 10 compares the probability that node 4 is covered using the

Normal and Erlang distributions as a function of the critical travel time for

the parameters shown in Table 1 . As can be seen, the two approximations yield

almost identical results. The maximum absolute difference in the probability

node 4 is covered is only 0.0170, while the maximum absolute difference for

probabilities in excess of 0.75 — the range in which we are most interested

— is 0.0088. The Normal approximation slightly overestimates the coverage

probability at the extremes of the distribution and underestimates the cover-

age probability in the midrange when compared with the Erlang distribution.

The results are not surprising since, for the parameter values shown in Thble

1, the Normal and Erlang distributions involved are almost identical.
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Table 1 - Parameters for Figure 10 Comparison

Norma 1 Erlang

0.2

UX = 8 kft = 40

% 2 kB * 10

y = 3 kc= 15
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Figure 11 compares the Normal and Erlang approximations using the

parameter values shown in Table 2 for which the Normal and Erlang distri-

butions are rather dissimilar. Note, for example that using the Normal

approximation, the probability of obtaining a negative travel time on link B

is 0.079 for the values shown in Table 2 but only 0.00078 for the values shown

in Table 1. Even in the extreme case shown in Figure 1 1, the results for the

model with Normally distributed travel times follow those of the model with

Erlang distributed times guite well. The maximum absolute difference in

coverage probability is 0.0471 while the maximum absolute difference for

probabilities in excess of 0.75 is only 0.0323.

While the Erlang distribution may be a more realistic representation of

link travel times than the Normal distribution, the computational burden asso-

ciated with using the Erlang distribution is considerably greater. All the

computations needed to evaluate the Normal model may be readily performed on a

good programmable calculator; to evaluate the integrals needed in the Erlang

model we were forced to use double precision arithmetic on a CDC CYBER 170/730

computer to avoid excessive roundoff errors. Also, as noted above, the Erlang

model is restricted to cases in which the parameter k is an integer for all

links. Finally, while in theory the Erlang model may be extended to the case

of more than two vehicles, the computational burden involved in such an

extension is likely to be prohibitive; there are no such difficulties in

extending the Normal model to include cases in which three or more vehicles

are dispatched to an emergency.
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Table 2 - Parameters for Figure 11 Comparison

No rma 1 Er lang
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In light of the greater flexibility afforded by the Normal model, its

computational simplicity, and the similarity of the results between it and the

Erlang model as shown in Figures 10 and 11, we recommend using the Normal

model instead of the Erlang model, despite its somewhat less realistic

underlying assumptions.

5. Summary and Recommendations

In this paper, we have developed a model that estimates the distribution

of time required for the first of n vehicles to arrive at an emergency scene

assuming all vehicles are dispatched at the same time. The model accounts for

travel time variability on links of the network as well as the covariance of

travel times between paths for different vehicles. The model suggests that

positive covariances reduce the coverage probability that the first vehicle

will arrive within a given time. The model also suggests that the coverage

probability may be increased by reducing the covariance in path times through

the selection of alternate paths, or by dispatching alternate vehicles even if

doing so necessitates increasing the mean travel time for some vehicles.

The model assumes that link travel times are distributed Normally. To

test the sensitivity of this assumption, we also developed a model that

assumes Erlang distributed link times. The Erlang model precludes the possi-

bility of negative travel times which are permitted in the model based on

Normally distributed travel times; also, the Erlang model relaxes the implicit

assumption of the Normal model that travel times are distributed symmetrically

about the mean. The primary drawbacks to the Erlang model are its

computational complexity, the limitations it places on the selection of

parameter values and the anticipated difficulties associated with extending

the model to include more than two vehicles. The results of the Normal and
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Erlang models are almost identical; therefore, we suggest using the more

flexible and more computationally tractable model of Section 2 based on the

assumption of Normally distributed link travel times.

The models developed in this study should be validated by collecting data

on the travel times of emergency vehicles. This would enable us to determine

both the shape of the travel time distribution and its parameter values.

Assuming the times are approximately Normally distributed, the models

developed above may be used to predict the distribution of the arrival time of

the first of several vehicles dispatched to an emergency. The recommendations

of the research regarding vehicle routing and dispatching should then be

tested on a small scale before they are adopted more generally. In testing

these recommendations, we should monitor not only changes in the mean arrival

time of the first vehicle, but also changes in the disruption of local traffic

caused by routing emergency vehicles along multiple parallel paths as well as

changes in the number of traffic accidents caused by the emergency vehicles

themselves. These latter two points are likely to be mitigating factors that

will drive the desired policy back toward one of routing all vehicles along a

common path.

Despite this tone of caution regarding the implementation of our theoret-

ically-based findings, we conclude by noting that the routing and dispatching

suggestions make intuitive sense as they are really saying, "Don't put all

your eggs in one basket." Current practice apparently violates this guideline

as one frequently observes several vehicles following each other on the same

street en route to an emergency. The model suggests that they take different

but parallel paths so that if one vehicle encounters an unexpected delay,

other vehicles are not delayed with it and at least one vehicle will arrive

expeditiously at the scene.
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